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Abstract—Stochastic loss network models have been widely
used to study the characteristics of a large class of resource
constrained networks in terms of their blocking probability.
We consider a distributed capacity allocation problem for a
loss network with directed edges. Each infrastructure node (or
superpeer) can independently adjust its link-capacity allocations,
subject to a constraint on the total amount for each node, so
as to minimize its estimate of call blocking rates. We argue via
Erlang fixed-point approximation that such decentralized local
changes do work to minimize a global measure of weighted call
blocking rates.

I. INTRODUCTION

Loss networks provide a probabilistic framework to study
resource constrained networks and have been extensively used
to study a large class of diverse networks ranging from tele-
phone networks to inventory systems in large companies. The
links of the network with their finite capacities represent the
limited resources of the network and are subject to utilization
by users based on random service requests and random service
times. Such a network is studied as a stochastic process
and its stationary behavior is used to characterize its overall
performance. Specifically, the stationary probability of denial
of service termed as “blocking probability” is used.

However, due to the computational complexity of finding the
blocking probabilities, a technique called Erlang fixed point
(EFP) approximation [4] is used instead which allows for a
guaranteed fixed point value for the blocking probabilities via
iterative computations. An inverse loss network model can
be used for capacity planning wherein the links are assigned
capacities to get the desired blocking probabilities or to
optimize an arbitrary cost function that reflects an application
specific utility for a given topology (a recent reference is
theorem 5 of [3]).

In this work we focus on the decentralized network capacity
allocation or the distributed and dynamic adjustment of link
capacities to deal with time-varying demand. Our model of
a loss network specifically considers links that are “owned”
by nodes or superpeers i.e., the nodes or superpeers have the
liberty to assign capacities to the links that they own subject
to the constraint on the total capacity at their disposal. As
an application, consider a federation of secondary providers.
These providers lease a quantity of bandwidth from primary
bandwidth owners, but may have flexibility regarding how
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much of their leased bandwidth they allocate on particular
links of the primary. Each such secondary provider must
satisfy connections initiated by their own (local) clients and
those initiated by (not local) others to their own clients. As
another example, superpeers can adopt the following dynamic
loss network model to decide how to fairly service (peer-to-
peer) queries from a broader community of peers.

This makes the problem distributed in nature and neces-
sitates the study of local decisions that help to maximize
the global utility in some sense. We define a global measure
of weighted call blocking rates and approximate it to allow
for local decisions via Erlang fixed point approximations. We
show that such a local approximation works sufficiently well
in different scenarios with very few erroneous decisions which
we refer to as “inconsistent” decisions in this paper.

This paper is organized as follows. We begin with the
discussion on the background of loss networks and the Erlang
fixed point approximation in section I. In this section we
also motivate the decentralized capacity allocation problem.
In section III, we explain our network model and the local
approximation of the formula for finding blocking probabil-
ities. Section IV, defines the global measure and iterative
local decisions to improve the global cost. In section V, we
describe the numerical experiment to study the optimality
of the iterative method and the inconsistencies with local
decisions and we conclude with section VI.

II. BACKGROUND

Consider a graph G = (V,L) with node (vertex) set V and
link (edge) set L. Each link (edge) l ∈ L has a finite capacity
cl where cl ∈ Z+ is expressed as the number of “circuits”
each circuit having a fixed capacity, e.g., a circuit could be a
64 Kbps channel (voice line) or a T1 line of 1.544 Mbps. Each
route r ∈ R consists of a set of links and represents a single
user (source-destination pair). Each user or a route r generates
“calls” at random times modeled by a Poisson process with a
mean λr. A call setup requires one circuit from each of the
links contained in the route. A call is successful if at least
one circuit is available at each link belonging to the route.
A call has a random life time modeled with an exponential
distribution.

Many iterative improvement approaches (including ex-
haustive search) have been proposed for capacity alloca-
tion/planning in practical computer networking contexts, in-
cluding where fault tolerance and recovery are of concern.
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Fig. 1. Dumbbell topology example

These are typically formulated with a centralized objective
function, see, e.g., [13], [9] and the references therein.

In the following, we use a loss network framework. The
theory of loss networks is surveyed in [5], [11] and, more
recently, in [8], [14] together with a discussion of open prob-
lems. A principal idea for capacity planning in loss networks is
the inverse Erlang formula wherein blocking rates are specified
and suitable edge capacities can be computed to meet them for
a given topology . Also, capacity planning for loss networks
with time-varying workloads is considered in [1].

III. PROBLEM FORMULATION

In this paper, we formulate a decentralized problem gen-
erally similar to the mean-field framework considered in,
e.g., [6], [2]. Though loss networks typically work on undi-
rected graphs, our assumption is a directed graph. The interior
(infrastructure or superpeer) nodes attempt to load balance
their limited resources among the peripheral nodes requesting
paths between themselves and other peripheral nodes. Also
unlike past work, we assume in the following that the total
bandwidth resources allocated to each interior node, though
limited, can be dynamically distributed among the physical
links that connect it. That is, each interior node has a limited
capacity but can allocate that capacity in different ways along
its outbound edges.

So, the graph G = (V,L) has directed links (edges) in L
such that every pair of connected nodes in V are connected
by two links, one in each direction. Suppose each edge l ∈
L has a single “controlling” vertex v ∈ V , denoted l ∈ v.
The interior nodes are assumed to form a connected subgraph
to which all other nodes are connected. Path set-up attempts
follow unidirectional paths from one peripheral (non-interior)
node to another.

For the dumbbell topology example of Figure 1 with six
nodes, the two interior nodes are A and B and there are twelve
possible paths/routes, e.g., path 1, A,B, 4 from node 1 to node
4 with intensity λ1,A,B,4 =: λ1,4 queries/s. Peer B controls
the three (solid) edges from B to A, 3, 4. The arrival intensity
on the edge from A to B is the superposition λ1,4 + λ1,3 +
λ2,4+λ2,3. The solid edges have limited “circuits” c <∞ and
so blocking on them may occur, whereas there is no blocking
on the dotted edges, i.e., c =∞.

Consider a loss network with a large-capacity stationary
regime where the route (r) blocking probabilities Br satisfy

1−Br ≈
∏
l∈r

[1− E(ρl, cl)] (1)

where ρl is reduced load or the net arrival rate at edge l, E
is the Erlang blocking formula

E(ρ, c) :=
ρc/c!∑c
i=0 ρ

i/i!
, (2)

cl ∈ Z+ is the number of circuits on edge l, and we have
assumed a common universal mean connection lifetime taken
here to be unity without loss of generality. That is,

bl := E(ρl, cl)

is the blocking probability of edge l. The net edge arrival rate
can be obtained from the fixed exogenous arrival rate to each
route r, λr, by the Erlang fixed point approximation:

ρl =
∑
r: l∈r

λr
∏

l′∈r, l′ 6=l

(1− E(ρl′ , cl′)) (3)

for all l ∈ L. It is known that for the above iterative
computations, a unique fixed point exists. See Theorem 3.12
of [5].

In the following, we will consider dynamics in which
capacities are adjusted in a decentralized and asynchronous
way. We first observe from (2) that

E(ρ, c+ 1) =

ρ
c+1E(ρ, c)

1 + ρ
c+1E(ρ, c)

, (4)

and for c > 1,

E(ρ, c− 1) =

c
ρE(ρ, c)

1− E(ρ, c)
. (5)

Thus, to model one such system, when cl is increased to
cl + 1 for some l ∈ L and all other edge capacities do not
change, the blocking probabilities B̃r for the routes r that this
link l is adjacent to become (i.e., ∀r : l ∈ r):

1− B̃r ≈
∏
l′∈r

(1− b̃l′)

≈ (1− E(ρl, cl + 1))
∏

l′∈r, l′ 6=l

(1− bl′)

=

(
1 +

ρl
cl + 1

bl

)−1 ∏
l′∈r, l′ 6=l

(1− bl′). (6)

The first approximation is due to Erlang fixed point, whereas
the second approximation assumes that for all edges l′ 6= l,
the change in the blocking probability bl′ is negligible. Note
that due to the change in the capacity of link l, the fixed
point solution for the system is “shifted” potentially affecting
the blocking probabilities of all the links and the second
approximation ignores this fact. Similarly if cl → cl − 1 for
some l ∈ L, then ∀r,

1− B̃r ≈
∏
l′∈r

(1− b̃l′)

≈ (1− E(ρl, cl − 1))
∏

l′∈r, l′ 6=l

(1− bl′)

=

(
1− (1 + cl

ρl
)bl

1− bl

) ∏
l′∈r, l′ 6=l

(1− bl′). (7)
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IV. A MODEL FOR DECENTRALIZED CAPACITY CONTROL

The limited total link capacity of a interior node v is
captured by ∑

l∈v

cl = Cv, (8)

for some fixed Cv > 0. Let us define the following objective
function which is the total logarithmic acceptance probabilities
over all routes weighed by their respective arrival rates,

U(c) :=
∑
r

λr log(1−Br), (9)

where c = (cl : l ∈ L), The effect of the logarithm in
the expression for U is to exaggerate the smaller acceptance
probabilities. Our aim is to find an optimal capacity allocation
policy in order to maximize the objective function subject to
the capacity constraints on all vertices (8).

Using (1), we can approximate (9) by

U(c) ≈ Ũ(c) :=
∑
r

λr
∑
l∈r

log(1− bl)

=
∑
l

log(1− bl)
∑
r:l∈r

λr

=
∑
l

Λl log(1− bl), (10)

where Λl is the sum of arrival rates of routes that the link l
belongs to.

Suppose that there are two capacity allocation vectors c and
c̃ such that there exist a single vertex v and two links l, l′ ∈ v
with cl > 1, c̃l = cl − 1 and c̃l′ = cl′ + 1, that is, one unit of
capacity of vertex v is reallocated from link l to link l′. Then,

U(c)− U(c̃) ≈ Ũ(c)− Ũ(c̃)

≈ Λl

(
log(1− bl)− log

(
1− (1 + cl

ρl
)bl

1− bl

))

+Λl′

(
log(1− bl′)− log

(
1 +

ρl′

cl′ + 1
bl′

)−1)
by (6) and (7)

= Λl log

(
(1− bl)2

(
1− (1 +

cl
ρl

)bl

)−1)

+Λl′ log

(
(1− bl′)

(
1 +

ρl′

cl′ + 1
bl′

))
. (11)

Note that the probability (11) depends only on information
that can be estimated locally at v, i.e., mean link blocking
rates bl and the net arrival rate Λl.

We propose an approach wherein each interior node, v,
selects at random two different edges it controls, l and l′,
and decides to move one circuit from l to l′ only if the
quantity (11) is negative. The manner in which candidate edges
to move a circuit are chosen and the fact that (11) requires
only information local to v implies that this approach is
decentralized. However, the tradeoff for having a decentralized
scheme is the loss in accuracy due to the local approximation
of the global cost function. We can easily show that Ũ(c) is a
concave function and so there ought to be a unique maximum
for the centralized constrained optimization problem. This is

TABLE I
TOTAL CAPACITY OWNED BY INTERIOR NODES

Node Capacity Node Capacity

0 119 8 79
1 78 9 90
2 99 10 108
3 128 11 43
4 108 12 108
5 109 13 91
6 89 14 108
7 46

TABLE II
ARRIVAL RATE FOR THE ROUTES

Route 1 2 3 4 5 6 7 8 9 10 11 12 13

Arrival
Rate

9 11 10 8 10 10 8 10 8 9 11 11 8

due to the Erlang blocking formula E(ρ, c) in (2) being convex
in c [12]. Thus, log(1 − E(ρ, c)) is concave in c. However
the local approximation may not give a unique solution or a
guaranteed increase in the cost for each reallocation step. In
the numerical experiments below, we explore this phenomenon
along with other issues such as speed of convergence and the
optimality with respect to Ũ of the distributed solution.

V. NUMERICAL EXPERIMENTS

We numerically studied the effect of local decisions on the
global cost function equation (9) and now give the results
for a typical topology we considered. Among several others,
we simulated a network of 15 interior nodes using NetLogo
[10] whose topology is depicted in Figure 2. Each interior
node had a random number (ranging from 1 to 4) of directed
links originating from itself to another randomly chosen node
other than itself. We created 13 random routes each with a
random arrival rate. In order that the Erlang fixed point (EFP)
approximation is reasonably accurate, the initial capacity of
each link was chosen so as to get the average “incident” load
on each link, i.e., the sum of the unblocked arrival rates of all
the routes that use a link divided by its capacity, between 0.9
to 1, i.e., a heavy traffic regime when EFP approximation is
accurate [5] and motivating capacity reallocation. Each node
owned links that originated from itself, i.e., the node could
arbitrate the assignment of capacity to the links that it owned
subject to the sum of their capacities remaining constant. The
fixed total capacities per interior node (in discrete circuit units)
is given in Table I.

Following the initial setup, we calculated the net arrival
rate for each link and the blocking probability by using
the EFP recursion. For this initial capacity assignment, we
calculated the objective function given by equation (9). We
then performed iterative, decentralized, asynchronous capacity
adjustment as described below: Two directed edges owned by
a randomly chosen node were chosen at random, the value
of Ũ(c) − Ũ(c̃) using (11) was calculated, and a circuit was
transferred between the chosen links if this value was negative.
For purposes of performance evaluation, the new blocking
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Fig. 2. Typical assessed network topology with one of its 13 routes indicated
in bold.

probabilities were then calculated using the EFP recursion
for the new capacity allocation vector before the next local
capacity adjustment iteration was executed. The steps are
summarized in Algorithm 1.

Algorithm 1 Steps for Simulation
1: initialize random graph
2: create random routes with random λs
3: calculate bl and ρl using EFP
4: repeat
5: d← 0
6: repeat
7: randomly choose a node with links > 2
8: randomly choose 2 links owned by the above node
9: Calculate d = Ũ(c)− Ũ(c̃)

10: until d < 0
11: reallocate capacities for the above two links
12: calculate bl and ρl using EFP
13: calculate Ũ with this new allocation
14: until iterations < max iterations
15: Plot Ũ versus iterations

We repeated this 250 times i.e., max iterations = 250,
each time observing the change in Ũ(c). This was done for
10 different initializations. We saw that the objective function
predominantly increased with each local capacity reallocation,
except on few occasions when there was an inconsistency in
the local decision i.e., for such reallocation steps the global
cost function actually decreased. These inconsistent decision
are due to approximation for deriving local cost given by
(11). In Figure 3, a graph is shown of the objective function
Ũ versus the number of iterations for three different initial
values of feasible capacity allocations, i.e., sum of capacities
of the links originating from the same node remains constant
(as shown in Table I) for all the initializations. Thus, we
can conclude that incremental decentralized capacity reallo-
cation indeed improves the system performance. Moreover,
we observed that for all these initial capacity allocations,
the final link-capacity vectors were very close to each other,
the maximum L1 distance1 between them being less than 10
circuits. The algorithm often did not converge, but orbited in

1The L1 distance between two link-capacity vectors is |c−c′| =
∑

l |cl−
c′l| circuits.

TABLE III
PROPORTIONAL CAPACITY ALLOCATION

Node Link Λl(circuits*per unit time) Final capacity
(circuits)

0

(0,1) 18 19
(0,2) 9 12
(0,5) 10 12
(0,6) 30 31
(0,13) 38 36
(0,14) 8 9

10

(10,3) 19 21
(10,4) 18 19
(10,5) 8 9
(10,7) 39 39

(10,11) 19 20
* service requests

this group of final link-capacity vectors. Again, this was due
to the approximation errors of (11). If we slightly changed
the local computation algorithm so that we swapped a link
only when Ũ(c)− Ũ(c̃) < −δ, where δ is a reasonably small
positive value such as 0.01, then the algorithm converged to
one a “nearly optimal” link-capacity vector. However, due
to the discrete, incremental and probabilistic nature of the
improvement steps, the algorithm did not necessarily converge
to the same final values for the different initializations. We
repeated the experiment for 10 different initial feasible capac-
ity vectors. The average number of iterations with occurrence
of inconsistent decision (again, where the change in Ũ(c)
predicted by our approximation as positive is actually negative
according to the EFP approximation) was about 12 out of
250 iterations for each initialization of capacity vector. The
maximum observed value of Ũ(c) was −38.24. The minimum
L1 distance between any pair of initial capacity allocation
vector was 162 circuits. The minimum L1 distance between
the initial and final capacity vectors of a single trial was 126
circuits.

It is observed that for the optimal capacity allocation, the
capacity assigned to a link l is approximately proportional to
Λl i.e., the sum of arrival rates of routes that use the link
l. As an example, Table III shows the capacity and the total
arrival rate for the links for two nodes 0 and 10 for the same
realization of randomly generated network as above.

A. Closeness to Optimality

We know that finding the solution to the original global
cost given by (9) is known to be ]P-complete problem [7].
So instead we compare the solution of our method with
the optimal solution for the global cost (10) which can be
calculated via centralized iterative improvement. Again, due
to the concavity of (10), we are guaranteed to find the global
optimum. To do so, we need to slightly modify Algorithm
1 and replace the calculation of Ũ(c) − Ũ(c̃) with EFP
computation to decide whether to transfer the circuit. With
this procedure, the value of the cost function (10) was found
to be −38.054 for the experiment described above which is
very close to the values found by our decentralized scheme.
The L1 distance between the globally optimal solution and
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TABLE IV
INCONSISTENT DECISIONS FOR ASYNCHRONOUS REALLOCATION

No. of nodes simultaneously deciding 1 2 3 4 5
No. of inconsistent decisions 15 23 42 59 67
Iterations needed 267 245 211 183 162

Fig. 3. Global objective with iterative capacity adjustments

the best solution given by our method, out of the 10 different
initializations, was just 5 circuits.

B. Parallel local decisions

The decentralized scheme we have discussed above allows
for only a single node to make decisions at a given iteration.
In our next experiments, we allowed for more than one node
to make a decision at a given iteration. As shown in Table IV,
we observed that the average number of inconsistent decisions
increase with the number of nodes that simultaneously decided
to reallocate circuits. Also, the average number of iterations to
get to 0.1% of the optimal solution decreased with increased
parallelism. Again, in this setup the nodes were chosen ran-
domly for parallel reallocation.

For our next experiment, we modeled a graph that had two
components which were densely connected within themselves
and connected sparsely to each other by one link in each
direction. The routes were randomly generated by a method
that resembled random walk along the graph. The sparse
connectivity implied that the probability that any two links in
the different components share a route is small. We allowed for
parallel moves by nodes, one in each component, and observed
the number of inconsistent decisions which increased only
slightly from 27 when one node made a move per iteration
to 32 for the parallel moves as described above. Thus, one
might choose to select nodes which are geodesically far from
each other for parallel moves to alleviate the penalty in terms
of inconsistent decisions.

VI. CONCLUSION

We proposed a decentralized capacity reallocation scheme
for a loss network model where nodes arbitrate capacity over
the links they “own” in order to optimize a global measure
of system performance. We studied the inconsistent decisions
in the local decisions with respect to the improvement of the
global measure U for different scenarios. It was observed that
such a distributed scheme gave a nearly optimal solution with
reasonably small number of inconsistent decisions (where U

did not increase). We can infer from our experiments that one
can allow for parallel moves only by “distant” nodes in order
to minimize the number of inconsistent decisions.
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