
Losing Opportunism: Evaluating Service Integration
in an Opportunistic Wireless System∗

Hongseok Kim and Gustavo de Veciana
Wireless Networking and Communications Group (WNCG)

Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, TX 78712
{hkim4, gustavo}@ece.utexas.edu

Abstract— In this paper we evaluate interactions among flow-
level performance metrics when integrating QoS and best effort
flows in a wireless system using opportunistic scheduling. We in-
troduce a simple flow-level model capturing the salient features of
bandwidth sharing for an opportunistic scheduler which ensures
a mean throughput to each QoS stream for every time slot. We
then explore the flow-level performance showing that integration
of QoS and best effort flows results in loss in opportunism, which
in turn results in a reduction of the stability region, degradation
in system throughput, and increased file transfer delay. These
losses are shown to be proportional to opportunistic gains, the
guaranteed bandwidth and number of QoS flows, but inversely
proportional to SNR under a Rayleigh fading channel model.
In an integrated system exploiting opportunism, local instability
appears to be more severe than in wired networks and average
delays experienced by best effort flows are prolonged. We suggest
that a form of admission control for best effort flows is necessary
to avoid local instability, and ensure adequate performance.

I. INTRODUCTION

Wireless networks are evolving towards supporting multiple
services, e.g., both best effort and QoS streaming traffic.
Since the integration of different services on a single platform
is expected to generate new revenue and reduce network
management cost, intensive research efforts have been devoted
towards designing such networks. However, because wireless
resources are limited and shared by users experiencing time-
varying channels, service integration may be quite challenging.
A key element in such systems is the traffic scheduler and
complementary resource management component that can
assure users appropriate QoS. In addition, such schedulers may
be designed to be opportunistic, i.e., serve users whose current
channel capacities are high. Attempting to be opportunistic
while meeting users’ QoS requirements presents significant
new challenges, see [1]–[11].

Opportunistic scheduling schemes developed so far are
mostly packet-level algorithms [1]–[4], [6], [7], [9]–[11] focus-
ing on the case where the user population is static and queues
are infinitely backlogged. This assumption is meaningful in
short time scales where the user population does not change
much. Under this assumption, Liu et al. propose throughput
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optimal solutions under temporal and utilitarian fairness crite-
ria [3], [4]. Patil et al. and Park et al. independently propose a
scheduling scheme based on a history of channel information
[7]–[9]. However, static approaches may not capture the flow-
level dynamics in which new flows come to the system
randomly and leave after being served. In a real system, user
population changes over time and it is of interest to know
system performance such as average throughput and average
file transfer delays. This problem was first addressed by Borst
who proposed flow-level analysis using multi-class processor
sharing model [5]. However, this work did not deal with the
mixes of QoS and best effort traffic. Other attempts to integrate
QoS and best effort in wireless opportunistic systems have
been recently done by [6], [8], [10]. But, these studies focused
on packet-level performance only.

Hence, we are motivated to study a new model that ad-
dresses the interaction of heterogeneous traffic at the flow-
level. In wired network case, there had been several studies
on this topic [12]–[19]. To analyze the interaction of elastic
and streaming flows, researchers have used a 2-dimensional
Markovian model [15]–[17]. The work of Key et al. suggests
that the integration of heterogeneous traffic has a positive
consequence, i.e., stabilizing effect [15]. The work in [13]
highlights that such systems are likely to see transient, or local,
instability. Specifically when there are too many QoS sessions,
the best effort flows may accumulate, but subsequently subside
once more bandwidth becomes available, i.e., QoS sessions
leave the system. In [14], [19] the authors propose an in-
tegrated admission control for both of streaming and elastic
traffic to guarantee QoS. Note that these studies were done at a
higher level, i.e., considering the integration of TCP and UDP
and where the service rate of wired network is constant. The
major difference that arises in wireless networks, however, lies
in that the service rate of a wireless network is time-varying,
and, furthermore, may be shared in an opportunistic manner
making the analysis somewhat challenging. The main goal of
this paper is to model and study the flow-level characteristics
for an opportunistic wireless system shared by a traffic mix of
QoS streaming and best effort traffic.

To this end, we propose a new flow-level model for such
a system. The scheduler is designed to guarantee a mean



throughput to streaming media irrespective of the number of
ongoing flows by borrowing/lending bandwidth from/to best
effort flows. Thus, QoS flows have a fixed average throughput
per slot which might be set to roughly meet their QoS
requirements. Other QoS metrics such as delay or jitter are
not considered here to keep the model simple. By contrast, the
performance metric for best effort flows will be the average
delay to finish a finite size of file transfer using HTTP or
FTP. Our QoS definition is simple but it gives us an insight
of evaluating service integration.

Contributions: The following are the key contributions of
this paper.

1) To our knowledge, this paper is the first to attempt to
investigate the flow-level interaction between QoS and
best effort traffic in systems exploiting opportunism. Our
model is simplistic but significant in that it incorporates
the essential ingredients of flow-level behaviors such as
QoS requirements, opportunistic sharing, stability and
evaluation of the stationary distribution. We also identify
the necessary and sufficient stability condition of 2-
dimensional Markov chain.

2) We show how the integration of QoS and best effort
flows compromises the benefits of opportunism in cru-
cial aspects; stability region reduction, system through-
put degradation and increased file transfer delay. All of
these negative impacts are called loss in opportunism
of integration. Our analysis shows that, for example,
introducing a single QoS user requesting 300kbps would
degrade by 33% the maximum system capacity in the
CDMA/HDR system described in [1]. We will show that
such losses increase in proportion to the opportunistic
gains, the number of QoS users and the guaranteed
bandwidth, but is inversely proportional to SNR in
Rayleigh fading channel model.

3) As in the wired case [13], [17], even if the system is sta-
ble, it may exhibit local instability for best effort users.
However it appears to be a more crucial phenomenon in
wireless systems exploiting opportunism. To circumvent
this problem, we suggest that admission control of best
effort flows is necessary.

The paper is organized as follows. In Section II we describe
our flow-level model for mixed traffic based on bandwidth
borrowing and lending among traffic types. We also build up
a compact model and analysis tool to investigate flow-level
dynamics. Section III is devoted to the stability of the system.
Section IV evaluates the opportunistic losses of integration by
quantifying the reduction in the stability region, throughput
degradation and increase in delay. Section V deals with the
performance impact of local instability and the necessity of
call admission control, and is followed by conclusions in
Section VI.

II. SYSTEM MODEL

A. Assumptions

We consider a wireless access point shared by multiple mo-
bile users. Wireless access point is assumed to accommodate

multiple users by Time Division Multiple Access (TDMA)
scheme where time is divided into equal-sized slots and at
most one user gets served per slot. We assume that channel
capacity for each user is a stationary ergodic process and these
processes are independent, identically distributed (i.i.d.) across
users. This assumption allows us to adopt max rate scheduling
as a basic scheduling policy. It maximizes total capacity or
throughput of the system [20], [21]. (We will use the term
capacity or throughput interchangeably in the sequel.) The
scheduling policy will be revised to model the need to meet
QoS session requirements. For simplicity, we divide users into
two groups: QoS and best effort users. 1 The channel capacity
for each user is independent across slots and remains constant
during a slot, i.e., we assume fast fading channel, with a
slot time corresponding to coherent time. In the sequel we
assume time slots are small relative to flow dynamics and
time-scale, and we will model the system dynamics based on
a continuous-time model.

A sustained throughput is one of the basic requirements
for QoS, so we assume that QoS users are guaranteed a
mean throughput b̄ per time slot irrespective of the number
of best effort users. Our notion of QoS, however, does not
guarantee delay constraints. In fact, one might argue that
this assumption is not realistic because real-time interactive
applications such as voice or video communication will require
delay constraints. Nevertheless, if every time slot, QoS users
get an average throughput b̄, it is very unlikely that QoS user
is starved for long period of time slots, which implies decent
delay performance. This simple model roughly captures the
throughput loss in the system - it is likely to be worse if a more
sophisticated scheduling scheme meeting QoS requirements is
used. Furthermore, for non real-time one-way streaming media
such as video on demand, our QoS notion makes sense because
we can assume that end-user devices have buffer space to
compensate delay or jitter occurred during transmission.

B. Flow-level model of mixed traffic

In our flow-level model, QoS and best effort flows arrive
randomly and leave after being served. We assume that the
arrivals of QoS flows follow a Poisson process with arrival rate
λq and have a holding time which is exponentially distributed
with mean µ−1

q . The maximum number of QoS flows is limited
to n∗ in order to guarantee a bandwidth b̄. We also assume
that the arrivals of best effort flows follow an independent
Poisson process with arrival rate λb and have file sizes which
are exponentially distributed with mean µ−1

b .
Let Nq(t) be the number of QoS flows and Nb(t)

be the number of best effort flows in the system. Then,
(Nq(t), Nb(t)) is a 2-dimensional Markov process with state
space {0, . . . , n∗} × Z

+. Since our model is an opportunistic
system, the available capacity for QoS and best effort flows
depends on how they are scheduled. Let g(nq, nb) denote
the average system capacity given (nq, nb). Then, the total

1Even under this assumption, each user can still receive both QoS and best
effort services using TDMA.



capacity required for QoS flows is nq b̄ and the capacity
available to best effort flows is gb(nq, nb) := g(nq, nb)−nq b̄.
The rate matrix for the chain is then given by:

q
(
(nq, nb), (nq + 1, nb)

)
= λq1{nq<n∗};

q
(
(nq, nb), (nq, nb + 1)

)
= λb;

q
(
(nq, nb), (nq, nb − 1)

)
= gb(nq, nb)µb1{nb≥1};

q
(
(nq, nb), (nq − 1, nb)

)
= nqµq. (1)

Note that the number of QoS sessions follows an M/M/m/m-
like system so the stationary distribution of QoS flows πq(nq)
is independent of nb and given by

πq(nq) = πq(0)ρnq
q

1
nq!

(2)

where ρq = λq

µq
and πq(0) =

[ ∑n∗

nq=0 ρ
nq
q

1
nq !

]−1
. The block-

ing probability of QoS flows is given by Erlang-B formula as
πq(n∗) [22]. Meanwhile the dynamics of the number of best
effort flows follow a processor sharing system with varying
capacity.

C. Proposed opportunistic scheduling

Suppose that at a given time we have total number of flows
n. The total number of flows is the sum of nq QoS flows and
nb best effort flows. Let Xi, i ∈ {1, . . . , n} be a random
variable representing channel capacity of user i. Since all
users are symmetric, the maximum system capacity is given
by g(n) := E[X(n)] where X(n) � max[X1, · · · ,Xn] and is
shared equally among the users. So the bandwidth per user
h(n) := g(n)

n is decreasing in n while g(n) is increasing in
n as shown in Fig. 1. Now, for every time slot, we want to
guarantee b̄ to QoS flows. If n ≤ n∗ where

n∗ := max{n|h(n) ≥ b̄, n ∈ Z
+},

every user has a bandwidth of at least b̄ and we satisfy the
QoS requirement. We refer to {(nq, nb)|nq +nb ≤ n∗} as the
normal regime.

However, if nq + nb > n∗, QoS users will not meet their
requirement b̄. How can we guarantee b̄ to QoS flows in the
overloaded regime {(nq, nb)|nq + nb > n∗}? To do this, we
propose to use bandwidth borrowing as follows. If h(n) is
below b̄, i.e., n > n∗, then QoS flows borrow time slots from
best effort flows. Similarly, if h(n) is over b̄, then QoS flows
lend their time slots to best effort flows. As a consequence,
the average throughput of QoS is b̄ in every time slot. Under
this model we still need admission control for QoS flows to
ensure nq ≤ n∗. These borrowing and lending mechanisms
are described in more detail below.

1) Capacity balance equation in the overloaded regime:
The balance equation is given by

h(nq + nb) +
α(nq, nb)

nq
E[X(nq)|X(nb) > X(nq)]Pb = b̄ (3)

where Pb := P
(
X(nb) > X(nq)

)
and α(nq, nb) is the

borrowing probability. The intuition for the equation is as
follows. The amount of bandwidth each QoS flow must borrow

TABLE I

NOTATION SUMMARY

nq number of QoS flows in a system
nb number of best effort flows in a system
n∗ maximum number of QoS flows

b̄ average throughput of QoS flows
Xi a random variable representing channel capacity of user i.

X(n) max[X1, · · · , Xn]

g(n) E[X(n)]

h(n)
g(n)

n
g(nq, nb) the system capacity for nq QoS and nb best effort flows.

gb(nq , nb) g(nq, nb) − nq b̄, the capacity of best effort users.

hb(nq , nb)
gb(nq,nb)

nb
, the individual capacity of best effort user.

ḡ(nq) limnb→∞ g(nq , nb)
ḡb(nq) limnb→∞ gb(nq , nb)

g∗b (nq , nb) g(nq + nb) − nq b̄
α(nq , nb) bandwidth borrowing probability
β(nq, nb) bandwidth lending probability

ξ(b̄, nq) the capacity gap at b̄ and nq

C maximum system capacity
κ C

E[X]
, opportunistic gain

η call blocking probability

is b̄ − h(nq + nb). To compensate this deficiency, we will
randomly, with probability α(nq, nb), give a best effort slot,
i.e., one where X(nb) > X(nq), to the QoS user currently
seeing the best channel. Thus, the total borrowed bandwidth
is E[X(nq)|X(nb) > X(nq)]Pb and it is shared by nq QoS
flows to meet the guaranteed bandwidth b̄.

Note that, in the overload regime, to maintain the average
throughput b̄, at some time slots, a best effort user which cur-
rently has the best channel amongst all users may have to give
the time slot to QoS user. Thus, meeting QoS requirements
inevitably degrades the overall system throughput. We will
study this in detail in Section IV.

2) Capacity balance equation in the normal regime: As-
suming QoS users do not need more bandwidth than b̄, we
reallocate the excess bandwidth of QoS flows to best effort
flows, and the capacity balance equation in the normal regime
is given by

h(nq + nb) − β(nq, nb)
nq

E[X(nq)|X(nb) ≤ X(nq)]Pq = b̄ (4)

where β(nq, nb) is the lending probability and Pq :=
P

(
X(nb) ≤ X(nq)

)
. 2

Solving (3) and (4) we can obtain the opportunistic system
capacity of g(nq, nb). Since QoS users always have average
throughput b̄, the capacity of best effort flows at (nq, nb) state
is gb(nq, nb) = g(nq, nb) − nq b̄.

D. Capacity of best effort flows in overloaded regime

To solve the capacity balance equation of (3) and (4),
we first compute the conditional capacity of QoS users
E[X(nq)|X(nb) > X(nq)]. We will do this as follows:

E[X(nq)|X(nb) > X(nq)]Pb +
E[X(nq)|X(nb) ≤ X(nq)]Pq = E[X(nq)] (5)

2Since we assume that Xi is a continuous random variable, the equality of
X(nb) = X(nq) can be placed either in Pb or Pq . In a discrete case which
is more likely in the case in practice, we need a tie-breaking rule.



where Pb = P (X(nb) > X(nq)) = nb

nq+nb
and Pq = 1 − Pb.

Note that

E[X(nq)|X(nb) ≤ X(nq)] = E[X(nq+nb)]. (6)

Combining (3), (5), (6), we obtain

h(nq + nb)(1 − α(nq, nb)) + h(nq)α(nq, nb) = b̄

which means that the system in overloaded regime is identical
to one operating as if it had only nq flows with probability
α(nq, nb) and one with nq + nb flows with probability 1 −
α(nq, nb). So, the borrowing probability is

α(nq, nb) =
b̄ − h(nq + nb)

h(nq) − h(nq + nb)
.

The numerator of α(nq, nb) is bandwidth deficit for individual
QoS flow. So, as nq increases to n∗, α(nq, nb) goes to 1 and
QoS flows have to borrow more time slots while best effort
flows are starved. If nb goes to ∞, α(nq, nb) goes to b̄

h(nq)

which is less than or equal to 1.
Since best effort flows lose their slots with probability

α(nq, nb), the total capacity available to best effort flows is
gb(nq, nb) = g(nq + nb)Pb(1 − α(nq, nb)), and so

gb(nq, nb) = h(nq + nb)nb
h(nq) − b̄

h(nq) − h(nq + nb)
. (7)

E. Capacity of best effort flows in normal regime

From (4), we can determine the lending probability
β(nq, nb):

β(nq, nb) =
(
h(nq + nb) − b̄

) nq + nb

E[X(nq)|X(nb) ≤ X(nq)]

= 1 − b̄

h(nq + nb)
.

Rearranging the above formula yields (1 − β(nq, nb))h(nq +
nb) = b̄, which is intuitively correct; each QoS flow balances
its bandwidth to exactly b̄.

Then, the capacity of best effort flows in the normal regime
is

gb(nq, nb) = h(nq + nb)nb +

β(nq, nb)E[X(nb)|X(nb) ≤ X(nq)]Pq.

Using the same approach as in (5) and (6), we have

gb(nq, nb) = g(nq + nb)Pb + (1 − b̄

h(nq + nb)
) ×

(
g(nb) − Pbg(nq + nb)

)
.

Now, given the total capacity of best effort flows in overloaded
and normal regime we can analyze 2-D Markov chain given
in (1). To do so we only need to characterize g(n) (or h(n)).

Example 1: In Rayleigh fading channel, signal strength has
Rayleigh distribution, and random variable Y representing
channel SNR has exponential distribution with mean ν−1. Let
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0.5

1

1.5

2

g(
n)

number of users

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

number of users

h(
n)

(a) 

(b) 

Fig. 1. Plot of the total capacity g(n) (a) and individual capacity h(n) (b)
of 0dB Rayleigh fading channel.

Z = Y (n). Then, Shannon (or ergodic) capacity using max
rate scheduling is calculated as

E[X(n)] = E[log(1 + Z)] (8)

=
∫ ∞

0

n(1 − e−νz)n−1νe−νz log(1 + z)dz.

Using the integral with incomplete gamma function Γ(0, x),∫ ∞

0

e−kz log(1 + z)dz =
ekΓ(0, k)

k
(9)

where Γ(0, x) =
∫ ∞

x
e−t

t dt and using the binomial theorem,
g(n) = E[X(n)] is computed from (8) as

g(n) = n
n−1∑
k=0

(−1)k
( n − 1

k

)eν(k+1)Γ
(
0, ν(k + 1)

)
k + 1

.

Otherwise, g(n) can be approximated by numerical calculation
of (8). Fig. 1 shows an example of g(n) and h(n) in 0dB
Rayleigh fading channel.

III. STABILITY

In this section we address stability of our system model.
First we discuss the stability in case the maximum capacity
of system is unbounded, i.e., g(n) → ∞ as n → ∞. Ideal
Rayleigh fading channel falls into this category. We show
that the system is stable in this case. Then, we deal with the
system that has finite capacity C and identify the necessary
and sufficient condition of stability. Practical systems will of
course fall in this second category.

A. Unbounded case

Theorem 1: If g(n) is unbounded as n goes to ∞, e.g., in
ideal Rayleigh fading channel, then the system is stable for
any offered load.

Proof: Let χt =
(
Nq(t), Nb(t)

)
denote the state of our

irreducible, aperiodic, continuous time 2-D Markov chain on
S = {(nq, nb)|nq ∈ {0, · · · , n∗}, nb ∈ Z

+}. Based on Foster



theorem [23], since g(n) is unbounded, for any offered load
of best effort flows ρb = λb

µb
, we can find an ∃l < ∞ such that

gb(nq, nb) > ρ for ∀nb > l, which means the drift is negative
with the corresponding Lyapunov function ϕ(χt) = nb.

B. Bounded case

Theorem 2: Suppose C := limn→∞ g(n) < ∞ and the
maximum number of QoS users is limited to n∗. Then, the
system is stable if and only if there exists ∃l < ∞ such that

E[g(Nq(t), l)] > ρq(1 − ηq)b̄ + ρb (10)

where ρq = λq

µq
, ρb = λb

µb
and ηq = πq(n∗), i.e., blocking

probability of QoS flows.
Proof: Since the number of QoS flows is bounded we

need only consider the stability of best effort flows. We model
this system as 1-D queueing system where the service rate is
a state dependent random process gb(Nq(t), nb).

The necessary condition is clear in that the total influx rate
should be less than the average service rate. To prove the
sufficient condition, we shall use the Saturation Rule [24]. Let
Tnb

denote the time of the last departure from a system given
it starts with nb customers at time 0 and there are no more
arrivals thereafter. The Saturation Rule says that Tnb

satisfies
the strong law of large numbers, so limnb

nb

Tnb
exists a.s. and

the system is stable for the input process λb if

lim
nb→∞

nb

Tnb

> λb,

i.e., the departure rate for a saturated system exceeds the arrival
rate. Let T l

nb
denote the stopping time from state nb > l to

state l < ∞. Then, Tnb
= T l

nb
+ T 0

l . Since T 0
l is finite,

limnb

nb

Tnb
= limnb

nb

T l
nb

, a.s. Let si be the file size of best

effort customer i. Since the total served bits on [0, T l
nb

] is less
than

∑nb

i=1 si,

nb

T l
nb

≥ nb

∫ T l
nb

0 gb(Nq(t), l)dt

T l
nb

∑nb

i=1 si

=
1

T l
nb

∫ T l
nb

0 gb(Nq(t), l)dt

1
nb

∑nb

i=1 si

. (11)

Then, limnb

1
T l

nb

∫ T l
nb

0 gb(Nq(t), l)dt = E[gb(Nq(t), l)], a.s.

since gb(Nq(t), l) is an ergodic process and T l
nb

→ ∞, a.s.
as nb → ∞ since service capacity is bounded by C. Also,
by the strong law of large numbers, limnb

1
nb

∑nb

i=1 si = µ−1
b ,

a.s. So, taking limit of (11) yields

lim
nb

nb

Tnb

= lim
nb

nb

T l
nb

≥ E[gb(Nq(t), l)]µb, a.s.

Hence, if there exists ∃l < ∞ such that

E[gb(Nq(t), l)] > ρb, (12)

then limnb

nb

Tnb
> λb. From (2), adding E[Nq]b̄ = ρq(1− ηq)b̄

to (12) makes (10) which completes the proof.

Corollary 1: Let ḡ(nq) := limnb→∞ g(nq, nb). In the case
where g(n) is bounded, E[ḡ(Nq)] is less than C. So the
maximum allowable influx rate into the system gets reduced
by the integration of QoS and best effort flows.

Proof: Corollary 1 is obvious from the capacity gap
described in the next section.

IV. LOSS IN OPPORTUNISM

In this section we address the negative impacts of integrating
QoS and best effort traffic. We shall refer to these as the loss
in opportunism of service integration. The fundamental reason
for losing throughput from opportunism comes from balancing
QoS requirements vs. opportunism. To maximize system ca-
pacity we need to schedule users with high channel rate all the
time. However, if we need to meet QoS requirements, at some
time slots we are forced to select sub-optimal users resulting
in loss of opportunism. Hence, we have a trade-off between
guaranteeing QoS and maximizing capacity.

A. Capacity gap

Suppose that the system has a maximum capacity C and
is supporting nq QoS flows. Then, best effort traffic might
expect its capacity to be C−nq b̄. However, the maximum op-
portunistic capacity that best effort flows achieve is ḡb(nq) :=
limnb→∞ gb(nq, nb). This limit is determined from (7) as
C

(
1− b̄

h(nq) ). So, we have a gap between C−nq b̄ and ḡb(nq).
We call this quantity the capacity gap. Given nq active QoS
sessions each of which requires an average throughput of b̄,
the capacity gap ξ(b̄, nq) is given by

ξ(b̄, nq) = b̄nq

( C

g(nq)
− 1

)
> 0, nq = 1, . . . , n∗. (13)

The importance of investigating this gap lies in that it affects
not only the stability region of the system as stated in Corollary
1, but also degrades the performance of best effort flows
because active QoS sessions deprive best effort sessions of
available capacity, more than what is expected, resulting in
local instability for best effort traffic. Local instability means
that conditioned on a fixed number of QoS streams nq, the
arrival rate for best effort traffic λb exceeds the maximum
service rate ḡb(nq)µb and so traffic would temporarily accu-
mulate. This usually happens when nq remains high, and as a
consequence best effort flows would experience long delays.
Performance implications of this will be addressed in the next
section.

Let us consider some characteristics of the capacity gap.
From (13) we see that ξ(b̄, nq) is proportional to the guar-
anteed bandwidth per QoS flow, and as a corner case, if
b̄ = g(1), then n∗ = 1 and ξ(1) = C − b̄, which means
the system can support only one QoS flow and no best effort
flows. The shape of nq

(
C

g(nq) − 1
)

depends on g(n). In turn,
g(n) is determined by the probability density function of
the channel capacity. For example, for uniformly distributed
channel capacity, g(n) = C n

n+1 and ξ(b̄, nq) = b̄, which
means the system experiences a constant capacity gap, i.e.,
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independent of nq. But usually the capacity gap will be an
increasing function of nq in the domain of interest. 3

Example 2: This example will show that the capacity gap
can be quite large in a real system. Let us define the oppor-
tunistic gain as the ratio of system capacity with and without
opportunism, i.e.,

κ := lim
n→∞

g(n)
g(1)

=
C

E[X]
. (14)

Then, the capacity gap of introducing a single QoS user is
given by

ξ(b̄, 1) = b̄(κ − 1).

Suppose that we have sufficient number of best effort users so
that system capacity is close to C. In the CDMA/HDR system
described in [1], C = 2457kbps and E[X] = 659kbps, so
κ = 3.75. If we want to guarantee 300kbps per QoS flow, then
capacity gap is ξ(300, 1) = 300×(3.75−1) = 825kbps, which
is 33 % drop in capacity from 2457kbps. For b̄ = 200kbps,
the gap is 550kbps corresponding to 22% drop. Fig. 2 shows
capacity gaps for various b̄ and nq. Note that each plot has
different range of nq for different b̄ because the maximum
number of QoS streams we can admit depends on b̄. From
the figure, we see that if b̄ > 100kbps, capacity gap increases
as nq grows but the slopes are decreasing in nq. Thus, the
capacity gap impacts the system mostly when the first few QoS
flows are admitted. However, if b̄ is small such as 100kbps,
the capacity gap has a smooth peak and starts to decrease.
This is because if b̄ is small, the system can admit a sufficient
number of QoS flows to generate the opportunistic capacity
gain among the QoS flows. The next example illustrates the
capacity gap of Rayleigh fading channels.

Example 3: Under a Rayleigh fading channel model, the
impact of the capacity gap is more severe in low SNR than
high SNR. Fig. 3 shows plots of capacity gap divided by b̄ so

3If b̄ is very small so n∗ can be large enough, then it can be shown not to
be an increasing function, i.e., eventually decreases in nq .
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as to only reflect the effect of nq. We assume that a maximum
of 1000 users can exist in the system and each SNR has a
different bounded capacity. We see that the capacity gap of
low SNR increases faster than that of high SNR. Considering
the maximum capacity of low SNR is even less than high SNR,
we see that the effect on capacity gap in the low SNR case is
severe. This is consistent with what we see in the opportunistic
gain from (14): κ is 3.57 at 0dB, 2.14 at 10dB, 1.62 at 20dB,
1.41 at 30dB. Thus we see that high opportunistic gains will
be associated with high loss in opportunism for integration.
This is further reflected in the delay performance considered
in next subsection.

B. Delay increase

In this section, we investigate the effect of the capacity gap
on the delay performance of best effort flows. In a mixed user
system, the ideal capacity that best effort flows could see under
an opportunistic scheduling scheme would be

g∗b (nq, nb) = g(nq + nb) − nq b̄,

i.e., the overall maximum opportunistic capacity minus that
given to QoS streams. However, the actual capacity seen in our
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Fig. 5. Delay comparison at -3dB, Rayleigh fading channel. (a) real delay
(∗) and baseline delay (◦). (b) Delay difference ratio.

model when attempting to meet QoS stream’s requirements is
gb(nq, nb), so the difference is g∗b (nq, nb)− gb(nq, nb), which
converges to the capacity gap as nb → ∞. In a dynamic
system, as long as the best effort flows remain stable, offered
load ρb will be served, yet delay will depend on the character
of gb(nq, nb).

We will start, for simplicity, by evaluating the average delay
of best effort users conditioned on a fixed number of active
QoS sessions. In this case the distribution of best effort flows
given nq active QoS sessions is given by

πb(nb|nq) = πb(0|nq)Πnb
i=1

ρb

gb(nq, i)

E[D|nq] =
1
λb

∞∑
nb=1

nbπb(nb|nq). (15)

As a baseline delay performance, we substitute gb(nq, nb) with
g∗b (nq, nb), and we will compare the delay under various SNR,
b̄ and nq. We shall only consider the case where best effort
flows are locally stable, i.e.,

ḡb(nq) > ρb. (16)

Even though the channel is Rayleigh fading, we assume that
the range of X is finite since practical system can support
only a finite number of users and they generate only finite
opportunism. So, the delay of (15) is divided by 1− ηb where
ηb is blocking probability of best effort flows. We assume that
up-to 1000 users can share the system.

Fig. 5 to Fig. 7 show the average delay for various b̄ and
nq = 1 and 5. The figures show two curves, ‘real’ and baseline
delay associated with gb(nq, nb) and g∗b (nq, nb), respectively.
Here, λb = 1/sec and µ−1

b = 60Kbytes as in [5]. The
baseline delay represents an ideal delay performance under
mixed traffic to show the delay penalty of the integration of
QoS and best effort flows, conditioned on a fixed number of
active QoS sessions.

0 50 100 150 200 250 300
10

0

10
1

10
2

guaranteed bandwidth for QoS(kbps)

M
ea

n 
T

ra
ns

fe
r 

D
el

ay
 (

se
c)

0 50 100 150 200 250 300
10

0

10
1

10
2

10
3

guaranteed bandwidth for QoS(kbps)

In
cr

as
ed

 d
el

ay
 (

%
)

Rayleigh, SNR=0dB, C=1703kbps, g(1)=477kbps, λ
b
 = 1/sec, 1/µ

b
 = 60Kbyte

n
q
=1 

n
q
=1 n

q
=5

n
q
=5

(a) 

 (b) 

Fig. 6. Delay comparison at 0dB, Rayleigh fading channel. (a) real delay
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Fig. 7. Delay comparison at 10dB, Rayleigh fading channel. (a) real delay
(∗) and baseline delay (◦). (b) Delay difference ratio.

In Fig. 5 (a) we see that as b̄ grows, real and baseline delays
increase and after some point the system is unstable. In Fig.
5 (b) we present delay difference ratio of real and baseline
delays. Even for nq = 1, we see penalty in performance. For
example, with SNR = −3dB, C = 1240kbps, g(1) = 290kbps
and b̄ = 120kbps, we see that real average delay is over 10 sec
where as the baseline delay is around 5 sec. This is more than
100% increase. A single QoS flow can substantially increase
average delays of best effort flows. If nq = 5, the delay
difference ratio grows more rapidly.

Comparing Fig. 5 through Fig. 7, one can see that the
delay difference ratio is improved as the SNR increases. For
example, if we compare SNR = -3dB, 0dB, 10dB at nq = 1
and b̄ = 0.4× g(1), then the ratios are 100% at -3dB, 15% at
0dB and 1% at 10dB.

Remark 4.1: From the above delay performance compar-
ison, we can infer that guaranteeing bandwidth to a fixed



number of QoS users will make the delay of best effort longer
than one might expect. This becomes severe for lower SNR,
higher b̄ and large nq .

V. ADMISSION CONTROL FOR BEST EFFORT FLOWS

In this section we consider admission control for best
effort flows to improve delay performance. We propose a
simple admission control strategy to reduce the impact of
local instability where the number of best effort flows might
temporarily grow.

A. Delay and local instability

In the previous section we considered the delay performance
of best effort flows given a fixed number of active QoS
sessions and saw that it deteriorates quickly in the number of
QoS flows. Delays get higher as nq increases and eventually
may be locally unstable. Thus, if QoS flows remain in the
system for a long time, best effort flows are not served
much and their numbers may grow until best effort flows
recover their capacity, i.e., QoS sessions leave the system. As
mentioned earlier this phenomenon is called local instability
[13]. It is not unique to wireless network. It is common
in bandwidth sharing systems where best effort flows are
preempted by QoS flows. However, it is more serious in
opportunistic wireless systems. Suppose that both of wired
and wireless system have a maximum capacity C. For some
given nq, it is possible that a wired system does not experience
local instability while wireless system does. This is because
the wireless system needs a large number of flows to achieve
opportunistic capacity. Clearly for every value of nb, the
capacity of best effort flows is smaller than that of a wired
system. Furthermore, no matter how large nb is, we have a
capacity gap ξ(b̄, nq) that prevents gb(nq, nb) from reaching
the capacity of the wired network.

Fig. 8 illustrates a typical example of local instability for a
Rayleigh fading channel at offered load / C = 0.79 with b̄ =
100kbps, C = 1.31Mbps and n∗ = 10. The joint distributions
were computed numerically for the 2-dimensional Markov
chain [25]. Since nb is finite in a real system, this example
assumes that nb is limited by 30. Then, local instability results
in accumulation of best effort flows at the boundary. In Fig.
8 (b) and (c) we see two peaks in the stationary distribution
π(nq, nb). The first peak at (nq, nb) 	 (2.5, 2.5) is preferred
while the second peak at (nq, nb) 	 (7, 30) is problematic.
For λq = 0.023/sec, µ−1

q = 180 sec, λb = 1.3/sec, µ−1
b =

60Kbytes, we see that the state (nq, nb) is oscillating between
two peaks along with drift arrow. If we decrease λb or λq,
then the first peak becomes dominant and the second peak
diminishes. Conversely, if we increase λb or λq, the first
peak gradually disappears and the second peak dominates.
This appears as to be a weak form of metastability, i.e.,
where the system sees two operating regimes that are likely
to jumps between them. This type of behavior is undesirable
in practice, particularly if one of the modes corresponds to a
poor performance, e.g., long delay for best effort.
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B. Admission control for best effort flows

One way to preclude such metastable behavior is to ensure
that the capacity of best effort flows is always greater than the
offered load, i.e., (16). However, this approach is not preferred
because we need to block QoS flows before nq reaches n∗.
Another way is to apply admission control for best effort flows
[14], [19]. For example, if the system state is (nq, nb), a new
best effort flow might be blocked if

ρb > θ + gb(nq, nb + 1)

where θ is an admission control threshold. So, if the net influx
rate of best effort flows is below some threshold, we admit all
of them. As shown in Fig. 9 this simple admission control can
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Fig. 10. Capacity region expansion by admission control at delay constraint =
20 sec for 10dB Rayleigh fading channel.(a) Admitted load of best effort flows
with and without admission control: Ideal upper bound with no opportunism
and no delay constraint (dashed), with CAC (∗) and without CAC (◦) (b) Call
blocking probability of QoS flows

alleviate the performance impact of local instability effectively.
We see that the undesirable peak is eliminated.

Another importance of admission control is the expansion of
capacity region. We define the capacity region as the amount
of admitted load of best effort flow under a given average
delay constraint. Fig. 10 exhibits the capacity region and call
blocking probability of QoS flows for a fixed offered load of
QoS traffic ρq b̄. The maximum average delay constraint is 20
sec. We see that the capacity region under the delay constraint
is reduced relative to the theoretical limit of C − ρq b̄(1− ηq)
assuming no capacity gap. Nevertheless the capacity region
expands considerably. In this plot, the maximum number of
best effort flows is assumed to be 100. The expansion of
capacity region is meaningful, in that the service provider
can in principle achieve more throughput under the same
delay constraint and thus generate more revenue. Note that
admission control strategy enhances the capacity region with
an increased blocking probability for best effort flows.

VI. CONCLUSION

We have explored the flow-level dynamics and performance
seen by a mixture of QoS and best effort flows sharing an
opportunistic wireless system. In doing so, we proposed a new
opportunistic scheduling scheme/model based on the concept
of bandwidth borrowing/lending from/to best effort flows
which enables the scheme to ensure a mean throughput in
every time slot to QoS streams which is pertinent for the case
where users see roughly homogenous channel variations. We
evaluated the stability and the flow-level performance in this
system. The results suggest that integrating QoS and best effort
flows may degrade system performance in crucial aspects;
reduction of the stability region, a gap in the capacity available
to best effort traffic and increased file transfer delay. These
negative impacts are referred to as loss in opportunism, and
we found them to be proportional to the opportunistic gains,
the guaranteed bandwidth, and to the number of QoS flows.
We note, however, that these losses would be reduced in a

system with a high SNR, assuming a Rayleigh fading channel
model. Finally we explored the possibility of local instability,
or a weak form of metastability in such systems, showing that
it may indeed be more problematic in opportunistic wireless
systems. To reduce this impact and ensure low delays for best
effort flows, we suggest that admission control for best effort
flows is perhaps even more critical than in wireline networks.
We concluded the paper exhibiting the performance that a
simple form of admission control would enhance.
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