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Abstract—In this paper we study several ways in which mobile
terminals can backoff on their uplink transmit power in order
to extend battery lifetimes. This is particularly effective when
a wireless system is underloaded as the degradation in user’s
perceived quality of service can be negligible. The challenge,
however, is developing a mechanism that achieves a good tradeoff
among transmit power, idling/circuit power, and the performance
customers will see. We consider systems with flow-level dynamics
supporting either real-time or best effort (e.g., file transfers)
sessions. The energy-optimal transmission strategy for real-time
sessions is determined by solving a convex optimization. An
iterative approach exhibiting superlinear convergence achieves
substantial amount energy savings, e.g., more than 50% when
the session blocking probability is 0.1% or less. The case of
file transfers is more subtle because power backoff changes the
system dynamics. We study energy-efficient transmission strate-
gies that realize energy-delay tradeoff. The proposed mechanism
achieves a 35–75% in energy savings depending on the load and
file transfer target throughput. A key insight, relative to previous
work focusing on static scenarios, is that idling power has a
significant impact on energy-efficiency, while circuit power has
limited impact as the load increases.

Index Terms—Energy-efficiency, flow-level dynamics, idling/
circuit power, wireless systems.

I. INTRODUCTION

Wireless cellular systems such as WiMAX are evolving to
support mobile broadband services [1]. Though future wireless
systems promise to support higher capacity, this will be
achieved, in most cases, at the expense of higher energy con-
sumption resulting in shorter battery lifetimes for mobile ter-
minals. So, work on energy conservation has become a critical
and active research area. Unlike previous research on energy
conservation in sensor and wireless local area networks (LAN)
[2]–[8], we focus on energy saving techniques for broadband
cellular systems, e.g., WiMAX or 3GPP-LTE. Specifically, we
focus on reducing uplink RF transmission energy recognizing
it is one of the main contributors to battery consumption (e.g.,
60% in time division multiple access (TDMA) phones [4]).
Other energy consumption such as display or microprocessor,
etc., are not considered in this paper.

Not unlike most networking infrastructure (particularly that
supporting data), wireless access networks are unlikely to be
fully utilized all the time. Indeed as a result of time varying,
non-stationary loads, or unpredictable bursty loads these net-
works are often overdesigned to be able to support a peak load
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condition, and so often underutilized. For example Internet
service providers’ networks see a long term utilization as low
as 20% [9]. Similarly a substantial fraction of Wi-Fi hotspot
capacity is unused [10]. More generally, due to the high
variations in capacity that a wireless access system can deliver
to various locations in its coverage area, e.g., up to three orders
of magnitude difference, one can also expect high variability
in the system load [1], [11]. Furthermore in some cases, e.g.,
cellular networks, a substantial amount of bandwidth is set
aside to ensure that calls are not dropped during handoffs; for
example, a 0.5% of call dropping probability requires 30% of
system capacity to be reserved [12]. This further contributes
to underutilization of the system, even when the loads are
heavy. The central premise of this paper is that wireless access
networks whose resources are occasionally underutilized can
provide their users a better service/value by reducing mobile
terminal energy consumption while causing a controlled or
imperceptible impact on user’s perceived quality of service
(QoS).

The basic idea towards conserving energy is as follows. As a
rough model for the relationship between power and capacity,
consider Shannon’s capacity formula

x = w log
(
1 +

pout g

σ2

)
⇔ pout =

(
exp

( x

w

)
− 1

) σ2

g
(1)

where x is the transmission rate, w is the spectral bandwidth,
pout is the output power of the RF power amplifier, g is the
channel gain and σ2 is the noise power. Note that the output
power (defined as the power dissipated into the air) is an
exponential function of the transmission rate. Thus a small
back off in the transmission rate x results in an exponential
reduction in output power. The cost of doing so is a slow down
in transmissions. So if users are insensitive to such slow downs
a system can realize beneficial tradeoffs.

Users or applications are insensitive to slow downs if the
expected quality of service is met. For real-time or streaming
services this means meeting the required transmission rates.
Thus when a wireless access point is underloaded one can back
off from a user’s individual instantaneous peak transmission
rate without impacting the perceived performance. By contrast,
for file transfers, reducing transmission rates will impact file
transfer delays, yet may still be desirable if noticeable energy
savings can be achieved. Specifically, for the downlink, fast
transmission may be critical to ensure users’ satisfaction with
web browsing applications or file download speeds. However,
on the uplink, e.g., uploading of files such as pictures or
emails, users may be quite delay-tolerant, so much so that
transfers could be carried out as background processes. For
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best effort traffic it makes sense to set a target average
throughput users might expect over a given time window.
This recognizes the fact that file transfer delays depend on
average throughput rather than instantaneous transmission rate.
The time window reflects the time scales on which such
averages make sense, e.g., seconds to minutes. The bigger the
time windows the more flexibility a wireless system has in
exploiting transient underloads to conserve energy.

In this paper, we focus on dynamic user populations and
traffic loads in a cellular system where new flows, either real-
time sessions or file transfers, are initiated at random and leave
the system after being served – these are sometimes referred
to as flow-level dynamics [13], see Fig. 1. Dynamic systems
are, in general, hard to analyze and have not been studied
as extensively as the static versions, i.e., with a fixed set of
backlogged users.

To better understand the challenges involved, consider a
TDMA system supporting, a stationary dynamic load, of file
transfer requests. If one slows down the uplink transmission
rate to save energy then the number of users in the system may
grow, resulting in excess power consumption associated with
users that idle while awaiting transmission. Indeed although
ideally idling users turn off their transmission chains, in
practice they still consume power due to leakage current1

[14], [15]. Hence, in a dynamic system, if the transmission
rates are excessively reduced, the number of users that are
idling may accumulate resulting in excessive overall idling
power consumption. This makes tradeoffs between energy
conservation and delay somewhat complex. Another challenge
is to capture the power consumptions from several components
in RF transmission chain of active users (as opposed to idling
users). Even though the power amplifier is the main consumer
of power, other analog devices such as mixers, filters, local
oscillators, D/A converters, may also consume non-negligible
power called circuit power [5], [15].

Earlier research on power control mainly focused on con-
trolling interference rather than reducing energy consumption,
i.e., sustaining a required signal to interference ratio (SIR) for
reliable voice connections [16]–[18]. Energy-efficient power
control was first explored in the context of sensor networks [2],
[3]. The authors proposed ‘lazy scheduling’ where packets are
transmitted as slowly as possible while meeting packet delay
constraints. Lazy scheduling performs smoothing on arriving
packets and thus makes output packet flows less ‘bursty.’ This
leads to significant energy savings.

The work in [19], [20], [4] further explore energy-delay
tradeoffs under various scenarios; they study minimizing the
average transmit power subject to average buffer delay con-
straints under two state Gilbert-Elliot channels, fading chan-
nels, and additive white Gaussian noise (AWGN) channels,
respectively. In fading environments, the use of opportunistic
transmission to save energy was studied in [21]–[24]; i.e.,
when the channel is good, transmit power is increased. How-
ever, the above work neglects circuit power, idling power and
flow-level dynamics.

1Idling power consumption depends on the specific power amplifier design.
For example, power amplifier for WiMAX from Analog Devices consumes
2.5 to 25 mW during idling period [14].

Fig. 1. Flow-level model for uplink transmission in a dynamic system. One
user corresponds to one flow.

Recent results show that if circuit power is taken into
account, circuit energy consumption increases monotonically
as the transmission time grows [5], [7], [25], [26]. Thus, we
cannot slow down the transmission rate arbitrarily, and indeed,
there exists an energy-optimal transmission rate. In solving this
optimization problem, the work in [5] focuses on the physi-
cal modulation techniques with a single sender and receiver
pair for sensor networks. Cross-layer optimizations are also
proposed with a view on capturing the physical and medium
access control (MAC) layer in small scale sensor networks [6]
and in wireless LANs [7], and further up-to the routing layer
[8]. Energy-efficient transmission strategy for orthogonal fre-
quency division multiple access (OFDMA) system considering
circuit power was proposed in [27]. However, previous work
has addressed static systems, not dynamic systems, and thus
could not capture the coupling between power backoff and
its impact on system dynamics. For example, idling power
consumption may become huge when the number of users
accumulate, e.g., 10–100, albeit only occasionally [15].

Contributions. We highlight the contributions of this paper
as follows.

First, based on a detailed transmit power model, we show
that idling power has a substantial impact on energy efficiency
when reducing transmission rate changes the system dynamics,
e.g., in the case of file transfers. Previous work has focused
on static systems, thus only the impact of circuit power was
exhibited. However, we show that, as the load increases, circuit
power is asymptotically negligible in the case of dynamic
systems. Nevertheless, circuit power remains important in the
case of systems supporting real-time sessions.

Second, we show how energy savings scale with the average
load in a stationary system. Our flow-level queueing model
captures the dynamic behavior of real systems and indicates
that energy can be significantly saved when the system is un-
derloaded. For example, in the case of real-time sessions, when
the call blocking probability is less than 0.1%, more than 50%
of energy can be saved without compromising user-perceived
performance. In the case of file transfers, we demonstrate that
35–75% of the energy can be saved depending on the loads
and target throughput.

Third, we propose two practical energy saving techniques
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for real-time sessions and file transfers, respectively. In the
case of real-time sessions, we formulate the problem as a
convex optimization and solve it in an iterative fashion exhibit-
ing superlinear convergence. Our energy-optimal transmission
policy minimizes the adverse impact of circuit power while
reducing the output power level of mobile terminals at the
cell edge, e.g., by 15 dB. This in turn can be beneficial in
mitigating inter-cell interference. In the case of file transfers,
we propose an energy-efficient algorithm that exploits energy-
delay tradeoff considering users’ preferences. The proposed
algorithm addresses the possibly unfavorable impact of idling
power.

Our work is significant in its wide applicability to future
broadband wireless systems, which promise to support higher
capacity but, in most cases, at the expense of much higher
energy expenditures.

Organization. The paper is organized as follows. In Sec-
tion II, we describe our system model and assumptions.
Section III is devoted to the optimization for energy-efficiency
for real-time sessions. We address the energy savings for file
transfers in a dynamic system in Section IV and conclude the
paper with Section V.

II. SYSTEM MODEL

A. Assumptions

We consider a centralized wireless communication system
where a base station serves multiple mobile terminals, e.g.,
WiMAX or 3GPP-LTE. For simplicity, we assume that the
system is shared via TDMA. Note, however, that the same
approach is applicable in the context of frequency division
multiple access (FDMA), and furthermore, already applied
to multiple input multiple output (MIMO) systems [15]. We
define a time frame as the fixed time period during which
every user is scheduled once. We use t to denote the time
frame index and s for continuous time. Since energy savings
are more important at mobile terminals than at the base station,
we focus on uplink transmissions as shown in Fig. 1. However,
our framework is also applicable to downlink transmissions.
Our goal is to reduce the energy consumed in uplink RF trans-
mission of mobile terminals. We assume that the transmission
rate is continuous, and the power/rate mapping function is
convex and differentiable.

B. Flow-level model for system dynamics

We will study a dynamic system where the number of
ongoing users varies with time. User sessions/flows arrive to
the system according to a Poisson process with rate λ and leave
after being served. We will separately consider the case where
a flow corresponds to real-time session or a file transfer, in
Section III and Section IV respectively. The system dynamics
are captured by a flow-level queueing model shown in Fig. 1
which tracks the arrival and departure process of users (or
flows), see e.g., [13]. We will assume each user corresponds
to a single flow, and so user and flow are used interchangeably.
We refer to the number of flows in the system n as the system’s
state in the sequel.

C. Minimizing energy consumption in a stationary system

Our objective is to minimize the energy consumption of a
typical2 flow in a stationary system. Let (F (s), s ∈ [0, T ])
be a random process modeling the power consumption of a
typical flow, starting at 0 and whose typical sojourn time is
modeled by a random variable T. Letting J denote the energy
consumption of a typical flow, our goal will be to minimize

E[J ] = E

[∫ T

0

F (s)ds

]
(2)

subject to either sustaining minimum rate requirements for
real-time sessions or achieving an average throughput for file
transfers. Minimizing (2) is not straightforward because both
T and F (s) may depend on system dynamics; in particular
in the case of file transfers they are not independent, i.e.,
power backoff may reduce F (·) but increase T . However for a
stationary system, minimizing the average energy consumption
of a typical flow is equivalent to minimizing the average system
power consumption. This is akin to Little’s law and formally
stated as follows.

Theorem 1 (Energy-power equivalence): Let P be a ran-
dom variable denoting the stationary system power consump-
tion, J be a random variable denoting the energy consumed
to serve a typical user’s flow, and λ be the arrival rate of
users/flows to the system. Then, if the system is stationary,

E[P ] = λE[J ]. (3)

Proof: This result is intuitive and can be shown via
Brumelle’s theorem [28], which is a generalized version of
Little’s law.

Based on Theorem 1, we below focus on minimizing the
average system power consumption which in turn minimizes
the average energy consumed by a typical mobile terminal.

D. Transmission power model

A key element of our work is to have a proper transmit
power model. The power consumption in a real transmission
chain depends on various factors such as drain efficiency of
the RF power amplifier and associated circuit blocks [5],
[15]. It also depends on classes of power amplifiers, modu-
lation schemes and power-saving mechanisms [29]. To have
a realistic but also analytically tractable power model, we
assume that the power consumed by the power amplifier is
linearly dependent on output power of power amplifier, i.e.,
constant drain efficiency [5]. Then, the power equation f(x)
at transmission rate x can be derived from (1) to give

f(x) =

{(
exp( x

w )− 1
)

σ2

ηg + α (active, x > 0)
β (idling, x = 0),

(4)

where η is the drain efficiency, which is defined as the ratio
of the output power and the power consumed in the power
amplifier; α is the circuit power; and β is the idling power
[5], [15]. To simplify our notation, we let γ = ηg

σ2 , i.e., the

2For simplicity we define performance metrics for typical flows directly
in terms of appropriate random variables rather than introducing Palm
probabilities.
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TABLE I
NOTATION SUMMARY

t time frame index (discrete)
s time variable (continuous)
i user index (can be a subscript)
A a set of ongoing users (= flows)
n := |A|, the number of flows in A
x instantaneous transmission rate
w spectral bandwidth
η drain efficiency
g channel gain
σ2 noise power (=N0w).
γ := ηg

σ2 , SNR with unit transmit power
α circuit power
β idling power
ξ := α− β
λ arrival rate of files
µ−1 mean file size
ρ := λ

µ , traffic load
q a desired or target throughput per user
cmax maximum system capacity
pmax maximum output power

Fig. 2. Transmission power model in TDMA systems.

signal-to-noise ratio (SNR) when the transmit power, defined
below, is 1. We summarize our terminologies as follows.

1) Active power: When a user is transmitting, the active
power is the collective power consumption in the transmission
chain, i.e., the sum of the transmit power and circuit power as
shown in Fig 2.

2) Transmit power: We refer to exp( x
w )−1

γ as the transmit
power which captures the power consumed in the power
amplifier. Transmit power is the main factor of power con-
sumption in the transmission chain and equal to the output
power divided by the drain efficiency.

3) Circuit power α: The circuit power α includes several
circuit blocks in the transmission chain and remains almost
constant irrespective of the transmission rate x. It is modeled
in [5], [15], by α = pdac + pmix + pfilt + psyn, where pdac, pmix,
pfilt, psyn stand for the power consumption from a digital-to-
analog converter, a mixer, a filter, a frequency synthesizer,
respectively.

4) Idling power β: Recall that our focus herein is on
TDMA systems; one user transmits at any time instance, and
all other users wait to be scheduled. Users who do not transmit
but wait are said to be idling, as opposed to active. As shown
in Fig. 2, idling users turn off their transmission circuits and

TABLE II
SYSTEM PARAMETERS

pdac = 15.6 mW η = 0.2
pmix = 30.3 mW pmax = 27.5 dBm
pfilt = 20.0 mW w = 1 MHz
psyn = 50.0 mW time frame = 5 ms
α = 115.9 mW N0 = −174 dBm
β = 25 mW µ−1 = 60 kbytes

power amplifier to save energy, but they still consume idling
power β, ranging from a few to tens of mW, due to leakage
currents [14]. Even though β could be negligible in a static
system, it remains non-negligible in a dynamic system [15].
We will see the impact of idling power, particularly for the
case of file transfers in Section IV. Power-related parameters
and notations are summarized in Table II and Table I.

III. ENERGY SAVINGS FOR REAL-TIME SESSIONS

In this section, we consider realizing energy savings in
systems supporting real-time, e.g., video/voice, sessions on the
uplink. We show that the energy-optimal transmission policy is
given by a dynamic policy determined by convex optimization
problems associated with fixed user populations.

A. Problem formulation
We assume that the arrivals of real-time sessions follow a

Poisson process with arrival rate λs and have holding times
which are identical, independent with mean µ−1

s . Let ri be the
session rate requirement and xi be the instantaneous uplink
transmission rate of user i. Then, in a TDMA system, the
fraction of time user i is active is ri/xi. Let ci be the maximum
feasible transmission rate for user i, which depends on the
maximum output power pmax. Then, ci = wlog

(
1 + pmaxgi

σ2

)
.

We assume that call admission control allows a new user
into the system only if there are resources to support the
request, e.g.,

∑

i∈A∪{k}

ri

ci
≤ 1 (5)

where A denotes the set of ongoing users and k is a new user
(either new call or handoff). Let n∗ be the maximum number
of users determined by a proper call admission control. The
stationary distribution for the number of users πs(n) is then
given by

πs(n) = πs(0)
ρn

s

n!
(6)

where ρs := λs

µs
and πs(0) =

[∑n∗

n=0 ρn
s

1
n!

]−1

. The blocking
probability of real-time sessions is given by Erlang-B formula
as πs(n∗) [30].

From Theorem 1, our objective is to minimize the average
system power consumption E[P ] while satisfying ri for all i ∈
A. Note that in this case backing off on transmit power will not
change πs(n) since allocating more bandwidth does not imply
real-time users would leave the system earlier. We refer to this
as a decoupling property.3 Thus, the problem reduces to one

3In Section IV we will see that decoupling property does not hold for
system dynamics of file transfers.
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of optimizing power consumption for a static user population.
Now, we consider the convex optimization associated with

minimizing power for a static user population. In every time
frame t, we solve

min
xÂ0

∑

i∈A

ri

xi


exp(xi

w )− 1
γi

+ αi +
∑

j∈A\{i}
βj




+

(
1−

∑

i∈A

ri

xi

) ∑

i∈A
βi

s.t.
∑

i∈A

ri

xi
≤ 1, (7)

where x is a vector whose elements are xi and γi = ηgi

σ2 , i ∈ A.
We put the subscript i for α, β, g and γ to accommodate the
heterogeneous users.

Note that γi and A may vary over different frames t yet
for simplicity we drop the time dependence. The optimization
needs to be redone when γi or A changes. As we will see in
the sequel, the superlinear convergence speed and reuse of the
previously determined optimal values make this optimization
quickly computable on the fly.

The interpretation of the above optimization is as follows.
When user i transmits, the system power consumption is
(exp(xi/w)− 1) /γi +αi +

∑
j∈A\{i} βj . This is weighted by

ri

xi
, the fraction of time user i transmits. The sum over all users

gives the average system power consumption. In addition, for
a fraction of time 1−∑

i∈A
ri

xi
, all users consume idling power∑

i∈A βi.
By manipulating the above we have an equivalent but

simpler optimization problem given by,
Problem O1:

min
xÂ0

∑

i∈A

ri

xi

(
exp(xi

w )− 1
γi

+ ξi

)
(8)

s.t.
∑

i∈A

ri

xi
≤ 1, (9)

where ξi := αi − βi. Note that Problem O1 is a convex op-
timization with an inequality constraint because the objective
function is a weighted sum of convex functions of xi. Because
the circuit power is higher than the idling power in practice,
we assume ξi ≥ 0. When ξi ≤ 0, Problem O1 can be further
simplified to have an equality constraint and ξi can be dropped.

B. Solution: An Energy Optimal Transmission Policy

We propose an energy optimal transmission strategy for
real-time sessions based on an iterative solution to Problem
O1. Given γi, ξi and ri, the base station solves the convex
optimization problem using Lagrangian method. The optimal
Lagrange multiplier is then computed by Newton’s method,
which guarantees superlinear convergence (faster than expo-
nential). The base station then broadcasts the optimal Lagrange
multiplier to mobile terminals, which, in turn, independently
determine an associated transmission rate/power level. This
makes for a scalable implementation.

Let κ denote the Lagrange multiplier associated with the
constraint in Problem O1. The Lagrangian function is then

given by

L(x, κ) =
∑

i∈A

ri

xi

(
exp(xi

w )− 1
γi

+ ξi

)
+ κ

(∑

i∈A

ri

xi
− 1

)
.

This is a convex optimization so the necessary and sufficient
conditions for optimality are given by Karush-Kuhn-Tucker
(KKT) conditions [31], i.e., for all i ∈ A

∂L

∂x∗i
= 0 and κ∗

(∑

i∈A

ri

x∗i
− 1

)
= 0 (10)

where κ∗ denotes the optimal multiplier and x∗i is the optimal
xi. From ∂L

∂x∗i
= 0, we have that

κ∗ =
1
γi

(
exp

(
x∗i
w

)(
x∗i
w
− 1

)
+ 1

)
− ξi, ∀i ∈ A. (11)

Suppose that κ∗ is known; the algorithm to compute κ∗ will
be provided in Appendix I. Then the base station broadcasts
κ∗, and mobile terminals solve (11). Unlike the previous work
which approximated the solution assuming high transmission
rate [32] or used interior point method [33], we directly use
the Lambert W function and obtain a closed form solution.
Lambert W function also contributes to computing κ∗ in an ef-
ficient way combined with Newton’s method, see Appendix I.
Recall W (z) is defined as [34]

W (z)eW (z) = z, (12)

and a concave, monotone increasing and differentiable func-
tion. We assume that mobile terminals have tabulated or can
compute W (z). The solution to (11) is then given by

x∗i =
(

W

(
(κ∗ + ξi)γi − 1

e

)
+ 1

)
w, i ∈ A (13)

and, the optimal output power level for i ∈ A is given by

p∗i =
(

exp
(

W

(
(κ∗ + ξi)γi − 1

e

)
+ 1

)
− 1

)
σ2

gi
. (14)

Let us consider two simple examples capturing the character
of such uplink power control.

Example 1 (Homogeneous Case 1): Suppose γi = γ, and
ξi = 0, then we have that x∗i =

∑
j∈A rj for all i ∈ A,

i.e., the sum of all required rates. This yields the same power
allocation across all users irrespective of their individual rate
requirements, but a time allocation to each user is proportional
to ri.

Example 2 (Homogeneous Case 2): Suppose still that γi =
γ, but now that ξi = ξ > 0. In this case (13) implies that
x∗i = x∗ for all i ∈ A, but x∗ may be greater than

∑
i∈A ri.

This will occur when the circuit power is large, so transmitting
quickly and then idling is more beneficial than fully utilizing
the time resource.

C. Energy-savings under various loads

So far, we considered the optimization for a fixed number
of users. Recall that our objective is to minimize the per-
flow energy in a dynamic system, and it is of interest to
see how energy saving benefits scale under various loads. To
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Fig. 3. Energy saving for real-time sessions under various loads. ri = 150
kbps for all users, n∗ = 23, cmax = 3.49 Mbps, µ−1

s = 180 sec, received
SNR with full power transmit = 15 dB, other parameters are shown in Table II.

demonstrate this, we consider, for simplicity, homogeneous
users with identical γ and rate requirement r, so user index i is
dropped. We compare three transmission policies. The baseline
policy is such that each terminal transmits at the maximum
rate, i.e., the instantaneous transmission rate is x = cmax.
The second policy simply scales with the number of users,
so x = nr, which fully utilizes the time resource. The third
policy is our energy optimized one where x∗ is given by (13).
Let p(n) denote the system power consumption in state n; it
is given by

p(n) =
nr

x
(f(x) + (n− 1)β) +

(
1− nr

x

)
nβ. (15)

Then, the average system power consumption is E[P ] =∑n∗

n=1 p(n)πs(n) where πs(n) is given in (6). From Theo-
rem 1 and considering the call blocking probability πs(n∗),
the average per-flow energy is given by

E[J ] =
E[P ]

λs(1− πs(n∗))
. (16)

Representative results for the three policies are shown in
Fig. 3. As can be seen, the optimal policy (solid line) sig-
nificantly saves energy with respect to the baseline (dashed
line). Per-flow energy is reduced by more than 50% when
the call blocking probability is 0.1% or less. The energy
saving benefits become more significant when the loads are
low. Recall that energy savings come at no cost in terms of
compromising user perceived performance.

Remark 3.1: The second policy x = nr (dash-dot line)
exhibits an interesting behavior in Fig. 3; this policy is
asymptotically optimal as the loads grow, however, far from
optimal when the loads are low. This is because of the impact
of circuit power. When the loads are low, and n is usually
small, the circuit energy may dominate the transmit energy.
Thus, transmitting faster than the required rate (i.e., x∗ > nr)
saves energy. Recall that Example 2 demonstrated this effect
in a static system; here we see the analogous effect for the
dynamic system.
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Fig. 4. Spatial power smoothing, (a) Equal time fraction allocation (b)
Optimized rate and time fraction (c) Side view of (a), (d) Side view of (b):
ri = 50 kbps, path loss exponent = 3, cell radius = 300 m, 100 users, carrier
frequency = 1 GHz, other parameters are shown in Table II.

D. Spatial power smoothing

A further gain of our energy-optimal transmission policy is
that the output power levels of mobile terminals are spatially
smoothed. Let us consider an example. A base station is placed
at (0, 0) and 100 mobile terminals are placed every 30 m on
a 10 by 10 square grid. We consider both of large and small
scale fading; specifically path loss with exponent 3 and i.i.d.
Rayleigh fading channels. Fig. 4 (a) exhibits the output power
levels when all terminals are allocated an equal fraction of
time. As can be seen, the output powers generally increase
with the distance from the base station. Fig. 4 (b) exhibits the
output powers after applying our energy optimal transmission
policy; the power levels are significantly smoothed and almost
same across the cell. Fig. 4 (c) and (d) are the side views of (a)
and (b), which reveal that the deviation of output powers are
reduced significantly, i.e., from 40 dB to 5 dB. Furthermore,
at the cell edge, the optimization reduces the output power
levels by up to 15 dB. Even though we do not consider inter-
cell interference in this paper, reduced output power at the cell
boundary suggests that our energy-saving mechanism could
contribute to reducing inter-cell interference in multiple cell
scenario.

IV. ENERGY SAVINGS FOR FILE TRANSFERS

In this section, we consider energy savings in the context
of uplink file transfers. Our focus is again on flow-level
dynamics, and understanding how energy-savings can exploit
times when the system is underloaded. A practical algorithm
is proposed to achieve energy-efficiency and target throughput.
The approach is then combined with opportunistic scheduling
to exploit time-varying channels.

There are three key differences between achieving energy
savings in system supporting real-time sessions versus file
transfers. First, real-time sessions have strict rate requirements
that must be achieved, otherwise, the sessions may be dropped.
By contrast, file transfers are delay-tolerant, and users can
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Fig. 5. Time varying number of users in a dynamic system with offered
load 30%. Individual target throughput is (a) 5.10 Mbps (b) 1,275 kbps (c)
318 kbps, and the arrival processes are identical. Simulation setup is given in
Section IV-H.

specify a target throughput considering their preferences be-
tween energy savings and fast transmission. For example, a
user with sufficient residual battery may prefer fast transmis-
sion, but another user with scarce battery may prefer slow
transmission to benefit from the energy-delay tradeoff. Second,
in the case of real-time sessions, the stationary distribution of
the number of users is independent of the power control policy;
we called this the decoupling property. In the case of file
transfers, however, power control changes the stationary distri-
bution, which makes the problem more challenging. Third, in
determining energy-efficient transmission, circuit power was
important for real-time sessions, but, as we will see, idling
power plays a more crucial role in the case of file transfers.

A. Energy savings in an underutilized system

Recall our claim that energy can be saved without sub-
stantially impacting user perceived performance in an un-
derutilized system. For purposes of developing some insight,
consider two simple examples from the perspective of different
time scales.

Example 3 (Long-term time scale): If an M/M/1 processor
sharing system is stationary, the average file delay is given
by d = 1

µc−λ where µ−1 is the average file size, λ is the
file arrival rate, and c is the system capacity (or equivalently,
system throughput.4) So, the system capacity to achieve an
average delay d is given by c = λ

µ + 1
µd . Suppose that the

arrival rate over a long time scale is reduced to λ′. Then, c
could in principle be adapted to this and reduced to λ′

µ + 1
µd

and energy can be saved without impacting average file delay.
Example 4 (Short-term time scale): Fig. 5 exhibits n(t) =

|A(t)| when the mean offered load is 30%. Unlike the previous
case, let us consider short term dynamics. As can be seen in
Fig. 5 (a), the base station frequently experiences periods when
the system is idle, i.e., no users, corresponding to periods when
the resources are essentially unused. These periods can be
leveraged to save energy, by having users can backoff on their

4System capacity in this paper is not the same notion as the information
theoretic capacity.

transmit power and rate as long as the resulting performance
is acceptable. As shown in Figs. 5 (b) and (c) when such a
strategy is used the system utilization increases, yet energy
may be conserved.

B. Problem formulation

Let us go back to the system model shown in Fig. 1 to
formulate the problem in a dynamic system. Our objective is
to minimize E[J ], see (2), while achieving a target throughput
per user denoted by qi; qi can be thought of as a tuning
parameter controlling the tradeoff between fast transmission
and energy savings.

In minimizing E[J ] in a stationary system, the two key
elements are the system capacity, and how it is shared among
ongoing flows. The system capacity not only determines the
departure rate of flows but also controls the energy con-
sumption of mobile terminals. We describe three models for
the system capacity as a function of n, denoted by c(n).
We assume for simplicity that users have the same target
throughput and experience homogeneous channels, so the user
index i is dropped.

Baseline policy: Suppose all users are scheduled for an
equal fraction of time and transmit at the full power to achieve
the maximum achievable throughput. In this case the system
capacity is not state dependent, and given by

c(n) = cmax, (17)

where cmax is the maximum uplink capacity achievable by any
individual user, and the scheduling discipline can be modeled
as a processor sharing queue. Among the “fair” policies we
consider, this one minimizes the file transfer delay, but expends
the most power.

State-dependent policy: Alternatively, consider a state-
dependent transmission policy where the system capacity is
given by

c(n) = min(nq, cmax), (18)

The system capacity increases linearly to satisfy the individual
targets until the system is overloaded i.e., c(n) = cmax. As-
suming once again a processor sharing scheduling discipline,
if the system is not overloaded each user should see his target
throughput. This policy represents a simple approach towards
exploiting dynamic spare capacity to conserve energy; when
the system is congested, it operates the same as the baseline
policy, however, when underutilized, overall transmit power
and the system capacity reduced with n.

Opportunistic policy: If channels are time-varying, we may
use opportunistic scheduling. In the simplest case where
users are homogeneous, the system capacity using max-rate
scheduling [35] would

c(n) = E[max(R1, · · · , Rn)] (19)

where Ri, i ∈ A is a random variable denoting the channel
capacity of user i. Note that under max-rate scheduling for
a homogeneous system each user would be served an equal
fraction of time, thus processor sharing is again roughly a good
approximation for how users are scheduled.
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C. Flow-level dynamics

Given the above three simple models for system capacity we
now obtain a Markov chain model for the number of ongoing
flows in the system. We assume that the arrivals of file transfer
requests follow an independent Poisson process with arrival
rate λ and have independent file sizes with mean µ−1. Let
N = (N(s), s ≥ 0) denote a random process representing the
number of ongoing file transfers at time s. Then, if file sizes
are exponentially distributed, N is a Markov process with state
space Z+ and rate matrix Q is given by

q(n, n + 1) = λ

q(n + 1, n) = µc(n + 1) for n ≥ 0.

The stationary distribution π, if it exists, is given by

π(n) = π(0)
ρn

Πn
m=1c(m)

, (20)

where ρ := λ
µ is the traffic load (bits per second) and

π(0) =
(
1 +

∑∞
n=1

ρn

Πn
m=1c(m)

)−1. Note that the insensitivity
property for Processor sharing queue ensures this distribution
also holds for general file size distributions. In the sequel we
let N be a random variable with distribution π. In steady
state, the average system power consumption is given by
E[P ] =

∑∞
n=0 p(n)π(n) where p(n) is a function which

captures the overall system power expenditure in state n and
given by

p(n) = f(c(n)) + (n− 1)β, (21)

because, at any time instance, one user is transmitting at the
instantaneous rate c(n) and n − 1 users are idling. Finally,
from Theorem 1, the average energy per flow is given by

E[J ] =
1
λ

∞∑
n=1

(
f(c(n)) + (n− 1)β

)
π(n). (22)

Note that π(n) depends on the system capacity c(n), i.e., these
are coupled together, see (20). Hence, the subtlety here is
that, by backing off on transmit power one likely increases the
number of flows in the system making the overall optimization
of the dynamic system more challenging.

D. Energy-delay tradeoffs: Numerical results

Next, we investigate how changing the tuning parameter q
in (18) impacts the energy and delay performance; specifically,
by reducing q from cmax, different performance pairs for
delay and energy are obtained; these are shown in Fig. 6.
When q = cmax, the state-dependent policy is identical to the
baseline; the delay is the smallest but the energy consumption
is the highest. This baseline is exhibited by © in Fig. 6. Then,
as q is reduced, energy is saved but average delay increases.
We consider three power models, differing in whether they
include the effect of circuit and/or idling power. As can be
seen, Power Model 1 comprises both circuit and idling power
and significant amount of energy, e.g., up-to 60% relative
to the baseline, can be saved as q is reduced (solid line).
Interestingly, however, if q is excessively reduced, the energy
consumption grows again. This is because further reducing
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Fig. 6. Energy-delay tradeoff for various throughput q. (λ = 3.65/sec,
cmax = 5.84 Mbps, offered load = 30%, received SNR with maximum rate
transmission = 17.5 dB. Model 1: α = 115.9 mW, β = 25 mW, Model 2: α
= 115.9 mW, and β = 0 mW, Model 3: α = β = 0 mW. Other parameters
are given in Table II.)

q results in an increased number of idling users expending
excessive idling energy. Thus there exists an energy-optimal
target throughput where the most benefit is achieved. Before
investigating energy optimal throughput, we first provide a
lemma emphasizing the weak impact of circuit power on the
energy consumption.

Lemma 1 (Bounded circuit energy): If a dynamic system
is stationary, the impact of circuit energy per flow is mono-
tonically increasing as the delay grows, but bounded by α

λ .
Proof: The average circuit power consumption in the

system is
∑∞

n=1 απ(n) = α (1− π(0)). From Theorem 1,
the average circuit energy per flow denoted by φc is given by
φc = α(1−π(0))

λ ≤ α
λ . Since π(0) is decreasing in delay, φc is

monotonically increasing as delay grows, but bounded by α
λ .

Theorem 2 (Asymptotically negligible circuit energy): If
a dynamic system is stationary, the impact of circuit energy
per flow becomes asymptotically negligible as the load grows.

Proof: From Lemma 1, the bound α
λ is decreasing as

λ grows, and thus the circuit energy becomes asymptotically
negligible as the load grows.

Although Lemma 1 and Theorem 2 are simple, they demon-
strate a key difference between static and dynamic systems.
Here are two supporting examples.

Example 5: To focus on the circuit energy effect, we set
the idling power as zero in this example. We compare Power
Model 2 (with transmit and circuit power) with Model 3 (with
transmit power only). Fig. 6 shows that Model 2 consumes
more energy than Model 3 by the amount of circuit energy.
As can be seen, the energy gap between Model 2 and 3
is monotonically increasing as the delay grows, but quickly
saturates to α

λ . As a result, the energy decreases monotonically
in delay.

This result is surprising because it is the opposite of what
happens in static systems, i.e., long delay ultimately increased
the energy consumption and thus there existed an energy-
optimal throughput (or delay), see [5], [7], [25], [26].

Example 6: To have an insight on diminishing impact of
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circuit energy, we plot the energy consumption for Model 2
for various offered loads. In Fig. 7, we exhibit the energy and
delay in the case of single user; the energy increases linearly
when the delay is large (and the slope becomes identical
to circuit power α). However, for stationary systems, as the
offered loads grow (5% to 50%), the impact of circuit energy
is gradually diminishing, and finally, we see the monotonically
decreasing energy consumption in delay. This confirms that for
dynamic systems circuit energy is asymptotically negligible as
the load grows.

E. Stationary analysis

To enable a more quantitative analysis, we consider a regime
where cmax À q, i.e., the maximum system capacity far ex-
ceeds individual users’ target throughput, and the system load
is light. This captures the system dynamics as q goes to zero
(or delay goes to ∞). Then (22) can be simplified using the
approximation c(n) ≈ nq. The queue’s stationary distribution
π(n) in (20) is then roughly Poisson with parameter λ

µq . Let
φ(λ, q) denote the energy per flow at (λ, q), i.e.,

φ(λ, q) :=
∞∑

n=1

(exp(nq
w )− 1
γ

+ α + (n− 1)β
)e−

λ
µq ( λ

µq )n

λn!
.

Recognizing the first term as the moment generating func-
tion of a Poisson random variable, one obtains

φ(λ, q) =
exp

(
λ
µq (exp( q

w )− 1)
)
− 1

λγ
+ (23)

α
1− exp(− λ

µq )

λ
+ β

(
1
µq

−
1− exp(− λ

µq )

λ

)
.

Note that, as λ → 0, (23) also captures the energy expenditure
for a single user which sees no other flows than itself:

lim
λ→0

φ(λ, q) =
1
µq

(
exp( q

w )− 1
γ

+ α

)
. (24)

The first term in (23) accounts for transmit energy, which
increases exponentially in λ given a fixed q. This implies if λ

is reduced (i.e., the system load is reduced), significant energy
can be saved while maintaining the same q. The second term
in (23) accounts for circuit energy. As mentioned in Lemma 1
and Theorem 2, as q goes to zero, the circuit energy goes to
α
λ . Furthermore as the load grows, it becomes asymptotically
negligible.

The third term in (23) accounts for idling energy that plays
a crucial role in determining the energy-efficiency. As can
be seen, as q is decreasing, the idling energy is increasing
while the transmit energy (the first term) is decreasing. Hence,
φ(λ, q) has an energy-optimal throughput for a given λ, which
we denote by

e := argmin
q>0

φ(λ, q). (25)

One can attempt to determine e by solving ∂
∂q φ(λ, q) = 0, yet

this equation does not have a closed form solution. Instead,
to get a sense of its characteristics, we will use a linear
approximation around q = 0, i.e., φ(λ, q) ≈ s1q + s2 + β

µq ,
where s1 and s2 are Taylor series coefficients of φ(λ, q).
Simple calculus gives the following approximation for the
energy-optimal per-flow throughput:

e ≈ w

√
2 exp

(
− ρ

w

)
βγ. (26)

Remark 4.1 (Throughput region): Eq. (26) suggests the
throughput region {q|q ≥ e} where the throughput can be
traded off with energy. Otherwise, both of the average delay
and the energy performance are bad.

Interestingly, e is an increasing function of SNR γ; so trans-
mitting faster when channels are good indeed saves energy. In
addition, fast transmissions are beneficial when idling power β
is high; otherwise accumulated users will consume too much
idling energy.

F. CUTE algorithm

Although we derived the energy-optimal throughput for a
stationary system, it is not straightforward to apply this result
in real system. Users experience heterogeneous and time-
varying channels, the number of users will change, and the
system may not be stationary; even if quasi stationary, it may
not be easy to correctly estimate ρ in (26). In this section we
propose a simple practical algorithm that does not use the prior
knowledge of the traffic load but simply relies on the current
system state n(t).

Energy-efficient rate: The key idea is to replace the energy-
optimal throughput (26), obtained in a stationary regime,
with state-dependent one associated with each time frame t.
Consider an uplink which is equally time shared by n(t)
users. The average energy per bit for user i ∈ A(t) to
achieve throughput x during one time frame is given by(

1
n(t)fi(n(t)x) + n(t)−1

n(t) βi

)
/x where fi(·) is a user-indexed

version of (4). Note that each user uses only a fraction 1
n(t)

of time frame and so the instantaneous rate must be n(t)x.
The most energy-efficient individual throughput ei(t) can be
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Fig. 8. Additional energy saving by relaxed target rate in Rayleigh fading
channels. qi = 320 kbps (1.5 second delay for 60 kbyte file), cmax = 5.1
Mbps, 30 % offered load. (a) average energy per file, (b) target delay (◦), and
the achieved delay (¦). Parameters are same to the simulations in Section IV-H

determined based on

ei(t) := argmin
x≥0

{
fi(n(t)x) + (n(t)− 1)βi

x

}
(27)

i.e., the throughput that minimizes the average energy per bit.
Since (27) is differentiable and convex, ei(t) is given by simple
calculus such as

ei(t) =
w

n(t)

[
W

(
αi + (n(t)− 1)βi

e
γi(t)− 1

e

)
+ 1

]
. (28)

Using (28), each mobile can determine its own energy efficient
rate ei(t) given n(t).

Remark 4.2 (Energy-opportunistic transmission): Note
that ei(t) is energy-opportunistic in the sense that ei(t) is an
increasing function of γi(t); if the channel is good, increasing
the transmission rate saves energy (and vice versa). This is
similar to the time-domain water filling, which is known to be
the optimal transmission policy over a time-varying channel
[21].

Constraints: Two additional constraints play a role. First
the maximum instantaneous transmission rate of a user is
in practice bounded, say by ci(t). Thus when there are
n(t) users sharing the system, the highest achievable user
throughput is ci(t)/n(t). Second users can specify their own
target throughput qi considering their residual batteries and fast
transmission. Thus, energy-efficient rate is upper and lower
bounded, and the throughput for user i is given by

ri(t) = min
[
max [ei(t), qi] ,

ci(t)
n(t)

]
, i ∈ A(t). (29)

Relaxing target throughput: Since file transfers are delay
tolerant, we do not need to achieve qi instantaneously. Instead,
we might consider achieving it over a reasonable averaging
window. We define the exponentially averaged throughput
r̄i(t) as

r̄i(t) = νr̄i(t− 1) + (1− ν)ri(t), i ∈ A(t) (30)

where ν ∈ (0, 1) corresponds to weight on the past. To meet
qi on average, we choose qi(t) such that

qi = νr̄i(t− 1) + (1− ν)qi(t), i ∈ A(t)

which yields

qi(t) =
qi − νr̄i(t− 1)

1− ν
, i ∈ A(t). (31)

This relaxes the time scale over which the performance target
should be met and contributes to further energy savings. Fig. 8
exhibits how such averaging time scales save energy while
keeping the average file delays almost the same (solid ¦).
In summary the proposed algorithm realizes the following
throughput

ri(t) = min
[
max [ei(t), qi(t)] ,

ci(t)
n(t)

]
, i ∈ A(t).(32)

We refer to this transmission policy as CUTE meaning Con-
serve User Terminals’ Energy. In a run time CUTE alternates
among three transmission modes– energy-efficient mode at
ei(t), target mode at qi(t) and capacity-constrained mode at
ci(t)/n(t) – in accordance with the system state, throughput
history and channel fluctuations so that CUTE achieves (or
exceeds) a target throughput while saves energy.

Remark 4.3 (Energy-efficient mode): The energy-efficient
mode is the most ‘desirable’; indeed when ei(t) ≥ qi(t) and
feasible, user i is served faster than its target and saves energy
as well. If the system is underutilized, or channels are good,
users are more likely to operate in this mode because ei(t)
can be high, see (28).

Otherwise, if qi(t) > ei(t), the user defers energy-saving
and is served at qi(t) in order to meet the target throughput.
Users with low SNR tend to operate in the target mode. If the
system is congested or SNR is bad, that user may be in the
capacity-constrained mode.

The following results are shown in the Appendix II.
Theorem 3 (Convergence of CUTE): Suppose that the

number of users and channel gains are fixed, and consequently
ei(t) = ei and ci(t)

n(t) = ci

n are fixed. Then, the average
throughput r̄i(t) and the transmission rate ri(t) both converge
to min(max(qi, ei), ci

n ). Thus, if feasible, CUTE converges
to the greater of qi and ei, otherwise, to ci

n .
Theorem 4 (Convergence speed): Both of r̄i(t) and ri(t)

converge to the equilibrium rate at least exponentially fast.

G. CUTE with opportunistic scheduling

Opportunistic scheduling is desirable to enhance users’
throughput when they see time-varying channels. Opportunis-
tic scheduling for power control was first proposed in [23],
but the authors exploited opportunism not to save energy but
to enhance throughput. Clearly, opportunistic scheduling can
serve both purposes. CUTE is compatible with various types
of opportunistic scheduling such as [35]–[39]. The benefit
of backing off the transmit power is more apparent when
opportunistic scheduling is used versus round-robin scheduling
because scheduled users are more likely to be experiencing
high SNRs, and operating at energy-efficient mode, see Re-
mark 4.3

To this end, we consider modifying our time sharing dis-
cipline. Consider the case where rather than serving all users
in each frame, we schedule only a single user and assume
the frame length is reduced to the channel coherence time.
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Fig. 9. Energy-delay tradeoffs with round-robin scheduling. (a) CUTE algorithm to mitigate the impact of circuit/idling power on energy-delay tradeoff:
λ = 3.2, offered load = 30 %. (b) Without energy-efficient rate. (c) With energy-efficient rate.

Let sθ(t) denote the index of the scheduled user under an
opportunistic policy θ on frame t. The proposed transmission
policy under an opportunistic scheduling for user i ∈ A(t) is

ri(t) = min (max (ei(t), qi(t)) , ci(t)) 1{i=sθ(t)}, (33)

where 1{} is the indicator function and ei(t) is redefined as

ei(t) = argmin
x≥0

{
fi(x) + (n(t)− 1)βi

x

}

Note that we use fi(x) instead of fi(n(t)x) because only one
user is scheduled per time frame. Also, note that ci(t) is used
instead of ci(t)

n(t) , and qi(t) is modified giving

qi(t) =
n(t)qi − r̄i(t− 1)ν

1− ν
, i ∈ A(t) (34)

where r̄i(t) is computed during the time frames where user i
has been served.

H. Simulation results

To validate the effectiveness of the CUTE algorithm, we es-
timated the average energy consumption per file transfer versus
the average delay using flow-level event-driven simulations.
On each time frame, new user requests arrive according to a
Poisson process with rate λ. Each user requests exactly one
file that is log normally distributed with mean 60 kbytes [13].
Users are assumed to experience independent Rayleigh fading
channels. Our simulation parameters are ν = 0.95, path loss =
−124 dB, and an ergodic channel capacity is 5.1 Mbps. Other
parameters are given in Table II. The average received SNR
at the base station when the mobile terminal transmits at its
maximum output power is 17.5 dB. When mobile terminals
reduce the target throughput, and power backoff is used, the
average received SNR decreases. The number of time frames
per simulation is 1,000,000. We plot the energy-delay tradeoff
curves for qi = (1, 1

2 , 1
4 , 1

8 , 1
16 , 1

32 )×5.1 Mbps to show how the
user’s preference on energy savings against fast transmission
impacts the energy-delay tradeoff.

Fig. 9 demonstrates energy-delay tradeoffs under round-
robin scheduling. Fig. 9 (a) exhibits four curves: transmit
power only (dashed ♦), transmission and circuit power (dashed
◦), transmission, circuit and idling power (solid ◦), and CUTE
algorithm (solid ¤). As expected, idling and circuit power

increase the average energy. Furthermore, the impact of idling
energy dominates when delay is large. This is because the
accumulated users result in high idling energy consumption.
By contrast, circuit energy becomes bounded by α

λ = 36.2
mW as stated in Lemma 1. Comparing solid ◦ line with solid ¤
line shows how the CUTE algorithm significantly improves the
energy-delay performance in the presence of idling and circuit
power. Perhaps surprisingly, CUTE dominates the case where
the system energy expenditures involve only transmit power.
This is because as mentioned in Remark 4.2 transmitting at
rate ei(t) is energy-opportunistic.

Fig. 9 (b) shows the average energy and delay when

ri(t) = min
[
qi(t),

ci(t)
n(t)

]
, i ∈ A(t) (35)

i.e., without the energy efficient rate ei(t). The three curves
correspond to offered loads of 10%, 30%, and 50% of the
ergodic capacity. Without using ei(t), power backoff cannot
fully realize energy-delay tradeoffs, moreover the adverse ef-
fect of idling power emerges when delay is high. Interestingly,
the curve for the offered load of 10% is different from the other
two cases. This is because the circuit energy effect is relatively
dominant when λ is low, see Theorem 2 and Example 6.

Finally, Fig. 9 (c) shows the performance of CUTE when
(35) is replaced by (32). Not only are undesirable energy-
delay pairs removed but also energy savings can be seen to be
significant– as much as 70%. We simulated various offered
loads demonstrating that energy saving benefits are higher
when the offered load is lower. Comparing subfigure (b) with
(c) we see that CUTE significantly improves both energy and
delay performance. For example, at an offered load 30%, the
delay/energy pair at (3 sec, 225 mJ) in Fig. 9 (b) moves to
(0.9 sec, 116 mJ) in Fig. 9 (c); the delay is reduced more than
three times and energy consumption is cut by half. This is not
surprising because the energy-efficient mode will serve a user
faster than the target to save energy, see Remark 4.3.

Results for the case where opportunistic scheduling is used
are shown in Fig. 10. We reduce the time frame length to
1 msec. As with the case of the round-robin scheduling,
energy consumption increases as the delay grows but CUTE
successfully removes the undesirable energy and delay pairs.
The energy consumption is, however, a lot less than the case
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Fig. 10. Energy-delay tradeoffs with opportunistic scheduling. (a) CUTE algorithm to mitigate the impact of circuit/idling power on energy-delay tradeoff:
λ = 3.2, offered load = 30 %. (b) Without energy-efficient rate. (c) With energy-efficient rate.

of round-robin scheduling. For example, comparing Fig. 9 (a)
and Fig. 10 (a) shows that, when the delay is 0.5 second,
CUTE with round-robin consumes 140 mJ while CUTE with
opportunistic scheduling expends 70 mJ. Comparing Fig. 9 (c)
and Fig. 10 (c) with offered load 50% also shows that both of
the energy and delay become less than half.

V. CONCLUSION

This work is, to our knowledge, the first to study energy
saving techniques for wireless systems subject to dynamic
loads. The key idea is simple: to reduce uplink transmit power,
but, to do so in a manner that neither leads to excessive
idling/circuit power, nor degrades user perceived performance.
We found that idling power, which was previously neglected
in static systems, plays a crucial role in energy-efficiency
when systems are dynamic, specifically for file transfers. By
contrast, the impact of circuit power, which has been addressed
in previous work, is limited and asymptotically negligible as
the system load grows. Future broadband wireless systems
promise to deliver much higher capacity, but in some cases
at a much higher energy cost. As such, given the importance
of battery lifetimes for mobile terminals, and potential savings
in the uplink transmit energy on the order of more than 50%
for real-time sessions and 35–75% for file transfers exhibited
in this paper, our approach appears to be quite promising.

This work is not the final word on this topic. As mentioned
earlier we expect the approach to be suitable for a broader set
of multiple access technologies, e.g., beyond TDMA, FDMA
to OFDMA, and extended to multiple cell scenario. Another
interesting observation is that such energy saving techniques
effectively reduce the output power level of mobile terminals
and this in turn might be beneficial to mitigating inter-cell
interferences. Thus one might expect to achieve even better
energy savings, or in the case of file transfers to see an
improved energy-delay tradeoff.

APPENDIX I

FINDING THE OPTIMAL LAGRANGE MULTIPLIER

We determine the optimal Lagrange multiplier κ∗ based on
an iterative method that exhibits superlinear convergence. Let

δ denote the uplink utilization of the system, i.e.,

δ =
∑

i∈A

ri

xi
. (36)

By substituting (13) into (36), we have

δ(κ) =
1
w

∑

i∈A

ri

W
(

(κ+ξi)γi−1
e

)
+ 1

. (37)

Note that δ(κ) is a convex and monotone decreasing function
of κ. From KKT conditions in (10), the optimal x satisfies
δ < 1 if and only if κ∗ = 0. Otherwise δ = 1. So consider
setting the initial value as κ0 = 0 and let us check two possible
cases for δ(κ0).

Case 1) If δ(κ0) ≤ 1, then κ∗ = 0 and x∗i and p∗i are
determined from (13) and (14). This is the case for Example 2.

Case 2) If δ(κ0) > 1, the rate vector x is not feasible, and κ
should be increased until δ(κ) equals 1. Since δ(κ) is convex
and monotonically decreasing in κ, Newton’s method can be
used to solve δ(κ) = 1 iteratively, i.e.,

κm+1 = max
[
κm − δ(κm)− 1

δ′(κm)
, κmin

]
(38)

where

δ′(κ) = − 1
w

∑

i∈A

riW
′
(

(κ+ξi)γi−1
e

)

(
W

(
(κ+ξi)γi−1

e

)
+ 1

)2

γi

e
(39)

and W ′(z) = W (z)
z(1+W (z)) if z 6= 0, and W ′(0) = 1 [34].

Although κm converges to κ∗ superlinearly (because it is
Newton’s method [31]), a good initial value further reduces
the number of iterations. In particular we start the iteration at
κmin where

κmin =


min

i




(
exp(v)(v − 1) + 1

)

γi
− ξi







+

(40)

and v =
∑

i∈A ri

w . Because δ(κmin) > 1, limκ→∞ δ(κ) < 1,
and δ(κ) decreases monotonically, δ(κ) finally hits 1. The
iteration ends when δ(κm) enters the interval (1− ε, 1) where
we set ε = 10−6. The number of iterations to convergence
is mostly less than 10. If starting with an optimal multiplier
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obtained in the previous time frame, the iterative optimization
was found to converge after 3 – 5 iterations in a system with
time-correlated Rayleigh fading channels.

APPENDIX II

Proof of Theorem 3: If r̄i(t) converges, then, from (30),
it is obvious that ri(t) also converges to the same value. So,
we only show that r̄i(t) converges to min(max(qi, ei), ci

n ). By
substituting (32) into (30),

r̄i(t) = νr̄i(t− 1) +

(1− ν)min
(

max
(qi − νr̄i(t− 1)ν

1− ν
, ei

)
,
ci

n

)

= min
(

max
(
qi, νr̄i(t− 1) + (1− ν)ei

)
,

νr̄i(t− 1) + (1− ν)
ci

n

)
.

Let f(x) = min
(
max

(
qi, νx + (1− ν)ei

)
, νx + (1− ν) ci

n

)
.

Then, r̄i(t) = f(r̄i(t−1)), and we show that r̄i(t) converges to
min(max(qi, ei), ci

n ) by considering the fixed point equation
f(x) = x and the geometry of the iteration. In Fig. 11 (a)
where qi ≥ ei, if qi is feasible, i.e., ci

n ≥ qi it is obvious from
the figure that the convergence point is M = (qi, qi), i.e., the
intersection of y = x and line (e) y = max(qi, νx+(1−ν)ei).
If ci

n < qi as plotted by line (c3), the convergence point is
K = ( ci

n , ci

n ). So, r̄i(t) converges to min(qi,
ci

n ). Similarly,
in Fig. 11 (b) where qi < ei, if ei is feasible, i.e., ci

n ≥ ei

it is obvious from the figure that the convergence point is
M = (ei, ei), i.e., the intersection of y = x and line (e)
y = max(qi, νx+(1−ν)ei). If ci

n < ei as plotted by line (c2),
the convergence point is K = ( ci

n , ci

n ). So, r̄i(t) converges to
min(ei,

ci

n ). Combining these two results completes the proof.

Proof of Theorem 4: If y = x intersects y = qi, r̄i(t)
converges in one iteration. If y = x intersects y = νx +
(1 − ν)zi where zi is either ci

n or ei, r̄i(t) converges to zi

exponentially fast because

r̄i(t + 1) = f(r̄i(t)) = νr̄i(t) + (1− ν)zi∣∣∣ r̄i(t + 1)− zi

r̄i(t)− zi

∣∣∣ = ν,

and 0 < ν < 1. Thus, large ν means slow convergence.
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