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On Application-level Load Balancing in
FastReplica

Jangwon Lee, Gustavo de Veciana

Abstract—
In the paper, we consider the problem of distributing

large-size content to a fixed set of nodes. In contrast with
the most existing end-system solutions to this problem, Fas-
tReplica [1] does not attempt to build a ‘good’ overlay struc-
ture, but simply uses a fixed mesh overlay structure. This
can significantly reduces the overheads incurred in probing,
building and maintaining the overlay structure, otherwise.
However, FastReplica is oblivious to heterogeneous and dy-
namic environments. To remedy this problem, we propose
an application-level load balancing idea: putting more data
on ‘good’ paths and less on ‘bad’ ones. Our goal is to study
(1) how to make FastReplica adaptive to dynamic environ-
ments and (2) how much performance gain can be achieved
by exploring the application-level load balancing idea in
FastReplica.

Toward this end, we provide a theoretical analysis of a
simplified model, which provides the insights serving as a
basis to develop an implementation of this concept. Then,
we present a performance evaluation on a wide-area testbed
with a prototype implementation, showing that addition of
application-level load balancing in FastReplica can achieve
significant speedups by exploiting heterogeneous paths and
dynamically adapting to bursty traffic.

keywords Communications/Networking and Informa-
tion Technology, Network Protocols

I. INTRODUCTION

Content delivery networks (CDNs) are deployed to
improve network, system and end-user performance by
caching popular content on edge servers located close
to clients. Since content is delivered from the closest
edge server to a user, CDNs can save network bandwidth,
overcome server overload problems and reduce delays to
end clients. CDN edge servers were originally intended
for static web content, e.g., web documents and images.
Thus, if the requested content was not available or out-of-
date, the local server would contact the original server,
refresh its local copy and send it to the client. This
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pull type of operation works reasonably well for small to
medium size web content, since the performance penal-
ties for a cache miss, e.g., additional network traffic from
the original server to the local server and higher delay
to the client, are not significant. However, CDNs have
recently been used to the deliver large files, e.g., digital
movies, streaming media and software download pack-
ages. For large files, it is desirable to operate in apush
model, i.e., replicating files at edge servers in advance of
user’s requests, since their distribution requires significant
amounts of bandwidth. The download times may be high,
e.g., 20 min media file encoded at 1 Mbit/s results in a 150
MBytes file or a high quality digital movie may be around
700 MBytes. Such push style file replication across dis-
tributed machines is also required for web mirror services.

In this paper we consider the problem of content distri-
bution across geographically distributed nodes. Our focus
is on distributing large files such as software packages or
stored media files, and our objective is to minimize the
overall replication time, i.e., minimizing the worst case
download time to a set of receivers.1

Recently, an end-system approach [2], [3], [4], [5], [6],
[7], has been emerged as a powerful method for deliv-
ering content while overcoming the deployment hurdles
of IP multicast, e.g., reliability, router modification, and
congestion control issues. In the end-system approach,
hosts cooperate to construct anoverlaystructure consist-
ing of unicast connections between end-systems. Since
each overlay path is mapped onto a path in the underly-
ing physical network, choosing and using good quality
overlay paths when constructing overlay structures sig-
nificantly impacts performance. Despite variations, most
existing solutions based on the end-system approach, fo-
cus on finding and maintaining ‘good’ overlay structures
(either tree or mesh) or reconfiguring them to optimize
performance according to the application’s requirements.

However, the above-mentioned flexibility in building
overlay structures comes at a price. That is, building op-

1Note that there exist many applications whose performance is de-
termined by that of the worst case, e.g., especially in distributed envi-
ronments where each node is responsible for a unique part of overall
work based on the replicated data.
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timized overlay structures requires path quality informa-
tion among hosts. Since overlay paths may share common
physical links,sequentialprobing to estimate available
bandwidth on end-to-end paths (i.e., without the presence
of other overlay path probing) may result in poor choice.
If this is the case,joint probing over a large number of
combinations should be performed, which may lead to
huge overheads. After building an overlay structure, par-
ticipants need to maintain it by exchanging control sig-
nals. To adapt to dynamic network situations, additional
monitoring of alternative paths may be required. Further-
more, while restructuring happens, further overheads may
be incurred due to lost packets or reconfiguration.

To expedite the delivery time in distributing large files
in the context of a content delivery network, we proposed
FastReplica, which is also an application level approach
[1]. FastReplica uses two key ideas: (1) file splitting and
(2) multiple concurrent connections. That is, the source
divides the original file intom (the number of receivers)
chunks, and concurrently transmits a different chunk to
each receiver. Meanwhile each receiver relays its chunk
to the remaining nodes so that each node ends up with all
mchunks.2

In contrast with most existing end-system approaches,
FastReplica does not attempt to build a “good” overlay
structure, but simply uses all available paths, i.e., fixed
m2 overlay paths among the source andm receivers. The
key feature associated with using a fixed overlay structure
in this manner is that there is virtually no control over-
head required with finding, maintaining and reconfiguring
a good overlay structure. Furthermore, experiments on a
wide-area testbed showed the potential of this approach to
reduce the overall replication time [1].

However, FastReplica is oblivious to heterogeneity in
the overlay paths, and simply puts an equal amount of
data on each chunk. Heterogeneity in the overlay paths
may arise due to the following factors. First, it is in-
herent in network resources. Infrastructure-based CDNs
or web server replica networks are equipped with a ded-
icated set of machines and/or network links, which are
engineered to provide a high level of performance. How-
ever, there are inherent heterogeneities among network re-
sources, e.g., different capabilities of servers or available
capacity on network links. Second, even with homoge-
neous network resource assumption, (e.g., nodes’ capa-
bilities and capacities of links between all end points are
uniform), each chunk transfer may not achieve the same
throughput since multiple overlay paths may be mapped

2This is FastReplica in the Small algorithm. To support a larger
number of receivers in the group, FastReplica in the Small algorithm
is applied iteratively using a hierarchicalk-ary tree structure [1].

onto the common physical links. Third, Internet traffic is
variable. The available bandwidth on each path may vary
with time possibly even during the file transfer.

The motivation of our work in this paper is to make Fas-
tReplica in the Small [1] adaptive to dynamic and hetero-
geneous environments. The key idea for it, is simple: in-
troducing application-level load balancing in FastReplica
framework [1], i.e., instead of putting the same amount of
portion in each chunk, the source node puts more data on
‘good’ overlay paths and less data on ‘bad’ ones.

The goal of this paper is (1) to propose how this
seemingly obvious and simple application-load balanc-
ing idea can be incorporated toward a practical solution,
called Adaptive FastReplica (AFR), and (2) to study how
much performance gain can be achieved by adding this
application-load balancing idea into FastReplica.

Toward this end, we propose an analytical network
model and study the optimal file partitioning rule which
minimizes the overall replication time, i.e., the worst case
download time. Furthermore, we show convergence for a
proposed iterative algorithm towards an optimal partition-
ing. Despite the fact that this analysis makes some sim-
plifications on the network and traffic models due to its
tractability, it is of theoretical value and provides insights.

We evaluate the performance of our preliminary imple-
mentation on a real, but still somewhat controlled, Internet
environment [8]. We find that application-level load bal-
ancing allows AFR to achieve significant speedups over
FastReplica by enabling adaptivity to dynamic and het-
erogeneous Internet environments – these benefits are in
turn significant when the network is highly dynamic.

The rest of the paper is organized as follows. In Sec-
tion II, we introduce analytic models and then formulate
and solve the optimization problem associated with min-
imizing the overall replication time. Section III proposes
AFR mechanism and discusses its prototype implementa-
tion. This is followed by Section IV wherein we present
our experimental results over a wide-area network envi-
ronment. In Section V we discuss related work, and Sec-
tion VI contains the conclusion and future work.

II. A NALYSIS

In this section, we present a network model and theoret-
ical analysis to study application-level load balancing in
FastReplica. The analytical results developed in this sec-
tion will serve as a basis for AFR mechanism presented in
Section III as well as the subsequent implementation.

A. Framework

Suppose a filef is available at a source noden0 and is
to be replicated across a set of receiver nodes,R= {ni |i ∈
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N}, whereN = {1, . . . ,m} is the index set for receivers.
Here, R is known to the source. Letf also denote the
size of file in bytes. The filef is divided intom chunks,
f1, . . . , fm, such that∑m

i=1 fi = f and fi ≥ 0, i ∈N. In order
to represent the portion of the original file that goes to
each chunk, we define apartition ratio vector, x = (xi =
fi
f , i ∈N). Note that 0≤ xi ≤ 1 and∑m

i=1 xi = 1. Then, the
file is replicated as follows.
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(a) At the source.
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(b) At the receivers.

Fig. 1. An illustration of the replication framework.

• At the source n0: Noden0 opensm concurrent connec-
tions to each node in the replicating set,n1, . . . ,nm, and
sends to each of these nodes, the following two items: (1)
a list of replicating nodes,{ni |i ∈ N}, and (2) its associ-
ated chunk of the file, i.e., chunkfk is sent to nodenk.
This procedure is shown in Figure 1(a) in the case where
m= 3.
• At each node nk: After receiving the list of replicating
nodes, a nodenk opensm− 1 concurrent connections to
the remaining nodes,R\{nk}, and concurrently relays its
chunk, fk to each of them. This procedure is depicted in
Figure 1(b). We assume relaying of data takes place on
the fly, i.e., the node does not wait for the arrival of the
entire chunk prior to relaying.
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Fig. 2. Overlay tree of theith chunk.

Figure 2 shows theoverlay treetraversed by data in
chunki. As can be seen, the tree includesm overlay links
(paths). An overlay link between two nodes may consist
of multiple physical links and routers, i.e., it corresponds
to a unicast path in the underlying physical network. Also,
note that multiple overlay paths may share the same phys-
ical link. Since there arem relay nodes, there arem such
trees. Thus,m2 overlay links are used for the entire file
transfer. It should be noted that this paper deals with Fas-

tReplica in the Small wherem is small. If m is large,
a hierarchical structure proposed in [1] could be used to
achieve scalability. How to select suchmvalue needs fur-
ther future study.

We shall letti j (x), i, j ∈ N, denote thetransfer timeof
the ith chunk from noden0 to noden j , when the partition
vectorx is used. We further define thedownload timeto
the jth receiver,d j(x) = max

i∈N
[ti j (x)] and theworst case

transfer timefor the ith chunk,ti(x) = max
j∈N

[ti j (x)]. These

times all depend on the partition ratio vectorx. For sim-
plicity, we will occasionally suppressx in these notations.

B. Network Model

In our analytical network model, we assume that file
transfer time is governed by the available bandwidth from
a source to a destination node. This is reasonable when
large files are being transferred [9]. For bandwidth avail-
ability, we assume atree session model wherein chunk is
transferred at the same rate along the entire overlay tree.
This is not the case where each overlay path is realized
by TCP connection. However, as can be seen in the se-
quel, the tree session model assumption provides us with
not only tractability but also the key insights needed for
an intuitive solution to the real-world problem.

We consider a network consisting of a set of linksL
with capacityc = (cl , l ∈ L ). We associate atreesession
with each chunk. LetS denote the set ofm tree sessions
sharing the network. Bandwidth is allocated to each tree
session, according to an appropriate criterion, e.g., max-
min fair allocation [10], proportional fair allocation [11],
max-throughput allocation [12], or that realized by cou-
pled TCP sessions.

For si ∈ A⊂ S , we leta∗si
(A) denote the bandwidth al-

located to sessionsi when the tree sessions inA persiston
the network. Subsequently, we will callA⊂ S theactive
set, i.e., the set of tree sessions which still have a back-
log to send. Forsi ∈ S , we leta∗si

denote the bandwidth
allocated tosi when allm tree sessions are active in the
system, i.e.,a∗si

= a∗si
(S ).

Since the same bandwidth is allocated along all paths
of the tree session for each chunk, the completion times
under this model will satisfyti j = ti , ∀ j ∈ N, i.e., all re-
ceivers will get each chunk at the same time. Each tree
sessionsi ∈ S traverses a set of physical linksLsi associ-
ated with the overlay tree forith chunk. Recall that there
may be multiple-crossings of the same link by a given tree
session, and such multiplicities can be easily accounted
for. Since there is a one-to-one mapping between a chunk
and a tree session, we will use these interchangeably in
our notation, i.e., we will usea∗i anda∗si

, or N andS , in-
terchangeably.
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C. Optimal partitioning

If the partition ratios are the same for all chunks, i.e.,
xi = 1/m, i ∈ N, the scheme in Section II corresponds to
the FastReplica algorithm [1]. By controlling the partition
ratio vector, the source can determine how much data is
injected into each tree session, i.e.,f xi will be delivered
through theith tree session. In this section, we formulate
the following optimization problem assuming the network
capacity is fixed (i.e., no other interfering traffic).

Problem 1: Suppose we are given a filef at a source
noden0 and a receiver setR. Under the tree session band-
width allocation model, determine a partition ratio vector,
x = (x1, . . . ,xm) which minimizes the overall replication
time r(x), given by

r(x) = max
j∈N

[d j(x)] = max
i, j∈N

[ti j (x)] = max
i∈N

[ti(x)].

Depending on the partition ratio vectorx and the network
capacity, the bandwidths allocated for tree sessions may
change dynamically over time. This is because if a session
leaves the system (i.e., a chunk is successfully delivered),
the network resources will be shared among the remaining
sessions, possibly resulting in a new bandwidth allocation.

Let us consider an example to understand dynamics as-
sociated with Problem 1, i.e., how the transfer time of each
chunk and the available bandwidth for each session are
dynamically determined. We will suppose for simplicity
that bandwidths among trees are allocated according to
the max-min fair criterion3 in our examples. Suppose the
file size isf = 4 and the number of receivers ism= 3. Ses-
sionss1 ands2 share a physical bottleneck linkl1 whose
capacity is 2. Sessionss2 ands3 share a bottleneck linkl2
whose capacity is 3. The remaining links in the network
are unconstrained and not shown in Figure 3(a).

Figure 3(b) shows each session’s transfer time and as-
signed available bandwidth as time evolves when the par-
tition ratio vector isx = (0.1,0.3,0.6). Timest1, t2, and
t3 in Figure 3(b) represent the transfer times of chunks 1,
2 and 3 respectively. Over time, we have the following
active sets and bandwidth allocations:

0≤ t ≤ t1, A = {s1,s2,s3},a
∗
1(A) = a∗2(A) = 1

a∗3(A) = 2

t1 < t ≤ t2, A = {s2,s3},a
∗
2(A) = a∗3(A) = 1.5

t2 < t ≤ t3, A = {s3},a
∗
3(A) = 3

3In max-min fair bandwidth allocation method, each session cross-
ing a link should get as much as other such sessions sharing the link un-
less they are constrained elsewhere. Thus, it has the following charac-
teristics: (1) each session has a bottleneck link, and (2) unconstrained
sessions at a given link are given an equal share of the available capac-
ity [10], [13].
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(a) An example network.
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(b) Max-min fair bandwidth allocation
whenx = (0.1,0.3,0.6) and f = 4.

Fig. 3. Illustration of dynamic bandwidth allocation.

For a given active set of sessionsA, we let g(A) =

∑i∈Aa∗i (A) denote theaggregate bandwidth, i.e., the sum
of bandwidths allocated to tree sessions inA. Then, the
following provides an optimal solution to Problem 1.

Theorem 1:Suppose thatA∗ maximizes the aggregate
bandwidth among all possible active sets inS , i.e.,

A∗ ∈ argmax
A⊂S

g(A) = argmax
A⊂S

∑
i∈A

a∗i (A). (1)

Then,x∗i given by

x∗i =

{

a∗i (A
∗)

∑k∈A∗ a∗k(A
∗) , i ∈ A∗

0 i ∈ S \A∗ ,
(2)

is an optimal solution to Problem 1.
Proof: Note that under the partition ratiox∗i , all

sessions inA∗ complete at the same time, i.e.,f x∗i
a∗i (A

∗) =
f

∑k∈A∗ a∗k(A
∗) , for all i ∈ A∗. By definition, A∗ offers the

maximum instantaneous aggregate bandwidth rate to the
receivers throughout the entire transfer. Thus, the pro-
posed partition ratio vector must be optimal, though not
necessarily unique.
From the perspective of the receivers,g(A) is the amount
of data per unit time they will get when all sessions in
A are being used to transfer the file. A higher aggregate
bandwidth will result in a lower overall replication time.
Thus, Theorem 1 says that (1) we need to find which ac-
tive set (tree session configuration) provides us with the
maximal aggregate bandwidth, and (2) given such a set,
sayA∗, the partition ratiox∗i satisfying Eq.(2) guarantees
that the maximal aggregate bandwidth will be achieved
throughout the file transfer. For example, for the network
in Figure 3(a), we obtainA∗ = {s1,s3}, g(A∗) = 5, x∗ =
(2/5,0,3/5), r(x∗) = f

5 . and for the network in Figure
4, we haveA∗ = {s1,s2,s3}, g(A∗) = 4, x∗ = (1/4,1/4,
1/2), r(x∗) = f

4 .
Theorem 1 does not assert that the solution is unique,

i.e., there may be multiple optimal solutions not satisfying
the conditions in Theorem 1.
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Fig. 4. Example networks.

III. AFR M ECHANISM

In this section, we introduce key ideas underlying the
AFR mechanism while gradually relaxing assumptions
made in the analysis and considering a practical perspec-
tive. We then describe an AFR prototype implementation.

A. Full mesh structure

Theorem 1 suggests an optimal strategy based on the
available bandwidth along overlay trees to minimize the
overall file replication time. However, there are critical
limitations to applying this result in practice. One of them
is obtaining the active setA∗ which maximizes the aggre-
gate bandwidth. This is a complex combinatorial prob-
lem requiring either detailed knowledge of the network
and tree structures, or possibly a brute force search over
2m−1 possible solutions.

Instead of searching for an optimal active set, as with
FastReplica, all tree sessions (m overlay trees) are used
for the file transfer, i.e.,A = S , with the partition ratio
vector suggested by Theorem 1:

x+
i =

a∗i
∑k∈S a∗k

, i ∈ S . (3)

Recall thata∗i = a∗i (S ) in Section II-B. Note that this so-
lution may not be optimal. For example, for the cases
in Figure 3(a) and Figure 4, this approach results in sub-
optimal and optimal solutions respectively.

Note that the partition ratio for theith chunk,x+
i is pro-

portional to the bandwidtha∗i . It is intuitive that for a ‘bad’
route (i.e., smalla∗i ), a small chunk should be chosen, and
for a ‘good’ route (i.e., largea∗i ), a large size chunk should
be selected in order to reduce the overall replication time.
Also recall that this partition ratio will make the transfer
times for each chunk identical.

Under the model, the overall replication times for Fas-
tReplica (FR) and AFR would be4

rFR≈
f

mmin
i∈S

a∗i
, rAFR =

f

∑i∈S a∗i
. (4)

Since ∑i∈S a∗i > mmin
i∈S

a∗i , AFR will always beat Fas-

tReplica in terms of minimizing overall replication time.

4Note thatrFR is an approximation in Eq.(4). This is because all
chunks may not complete at the same time.

While the performance of FastReplica is limited by a sin-
gle worst bottleneck link, the performance of AFR is lim-
ited by the sum of them tree bottleneck links.

B. Block-level adaptation & In-band measurement

There are some more practical issues to be consid-
ered. First, in order to determine a partition ratio vec-
tor, a source needs prior knowledge of all the available
bandwidths. A large amount of extra measurement traffic
may need to be injected into the network to obtain accu-
rate bandwidth estimation [14], [15]. Second, in the anal-
ysis in Section II-C, we assumed that the available net-
work capacity for file transfers was fixed. However, this
need not be the case in practice, i.e., the available band-
width may change dynamically because of other traffic
sharing the network. Even during a single file transfer, the
available bandwidths for overlay paths may significantly
change due to highly variable Internet traffic.

To adapt to such variations and reduce the overheads to
obtain path quality information, the following block-level
adaptation and in-band measurement approach is used. A
large file is divided into multiple equal-sizedblocks. Each
block is again partitioned intom chunks based on aver-
age throughput information from past block transfers. Let
f (n) be thenth block of file f . Throughout the rest of the
paper, the number inside parenthesis represents an itera-
tion step, e.g.,x(n) is a partition ratio vector used fornth

block transfer andti(n) is the worst transfer time for the
ith chunk fornth block transfer.

The following describes the approach in more detail:
• For the first block transfer, the source uses an arbitrary
partition ratio vectorxi(1) > 0, i ∈ N.
• At the (n− 1)th iteration step (n ≥ 2), each receiver
n j measuresai j (n− 1) ≡ f (n−1)xi (n−1)

ti j (n−1) , i ∈ N defined as

an average throughputachieved by theith chunk to the
receivern j and sends it to the source – each receiver does
this for all chunks in a block.
• At thenth iteration step, the source updates the partition
ratio vectorx(n):

xi(n) =
ai(n−1)

∑m
k=1ak(n−1)

, i ∈ N (5)

whereai(n−1) = min
j∈N

[ai j (n−1)].

In the above approach, the theoretical available band-
widths are replaced with receiver estimates for average
throughputs. See Eq. (5) vs. Eq (3). The intuition for
this strategy is that a route is considered as ‘good’ if it
achieved a high throughput and a route is ‘bad’ if it saw a
low throughput.
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The proposed in-band measurement has several practi-
cal advantages. First, the overhead to obtain path char-
acteristics is low. It is easy to estimate average realized
throughput rather than available bandwidth. Furthermore,
since it uses an in-band measurement, this approach does
not generate any extra traffic except feedback messages
from receivers to the source. Second, the approach can
provide more accurate path information as compared to
sequentialprobing. Since overlay paths may share com-
mon physical links, sequential probing for estimation of
available bandwidth between two nodes (i.e., without the
presence of other overlay path probing) may result in poor
estimation. In order to obtain more accurate path qual-
ity information, this requires joint probing with a num-
ber of combinations, which would incur a huge overhead.
Since estimates for the average realized throughputs are
obtained in the presence of other active overlay paths, they
will provide fairly accurate path quality information.

Compared to IP multicast, a key advantage of end-
system approach is the ability to adapt to changing net-
work conditions. For example, one can reroute around
congested or unstable areas of the Internet or reconfigure
the overlay structures. However, in most existing end-
system approaches, time-scale for those adaptive recon-
figuration cannot be too small fine-grained due to large
amount of control overhead during the reconfiguration
phase. In contrast, the time scale of adaptivity in AFR
roughly becomes the order of transferring a block. This
enables AFR to achieve fine-grained adaptivity to dy-
namic Internet traffic.

The proposed approach does not incur a significant
amount of control overhead: the total number of feedback
messages generated in our solution for a single file trans-
fer ism2⌈ f

B⌉whereB denotes the block size (each receiver

generatesm⌈ f
B⌉ feedback messages). This overhead is

further alleviated with TCP’s piggyback mechanism [16],
where a receiver does not have to send a separate TCP
acknowledgment.

C. Convergence

With the proposed approach in Section III-B, initially,
the source has no knowledge of the path characteristics.
However, it learns path quality information from past
block transfers, and uses these to update partition ratios.
A natural question to ask is whether this procedure would
converge, and if so, how quickly when the network capac-
ity is static (i.e., there is no other interfering traffic). That
is, irrespective of the initial chunk sizes, will the iterative
algorithm converge to the partition ratio vector given in
Eq. (3)?

1: INPUT: file f , list of receivers, block sizeB
2: send the list of receivers toR
3: initialize xi(1) = 1

m, i ∈ N

4: for n = 1 to ⌈ f
B⌉ do

5: if there is a new latest throughput information
(ai( j), i ∈ N, j < n) then

6: xnew
i (n)← ai ( j)

∑m
k=1 ak( j) , i ∈N

7: xi(n) = (1−α)xi(n−1)+α xnew
i (n) , 0≤ α≤ 1

8: else
9: xi(n) = xi(n−1)

10: end if
11: assignith chunk size based onxi(n) and concur-

rently send it to nodeni , i ∈ N with size and block
index information.

12: end for

Fig. 5. AFR algorithm for a source.

The difficulty in dealing with this question is that when
the partition ratio is not optimal, different chunks will
complete at different times, e.g., see Figure 3(b). Thus,
one will obtain possibly biased estimates of the available
bandwidth for tree sessions which see dynamically chang-
ing bandwidth allocations. Nevertheless, under simpli-
fying assumptions one can show the convergence result
which suggests such biases may not be problematic.

Theorem 2:Under the synchronous5 iterative adapta-
tion detailed in Section III-B with max-min fair band-
width allocation across tree sessions, given any initial par-
tition ratio vectorxi(1) > 0, i ∈ N, and a file of infinite
length, the partition ratioxi(n) converges geometrically to
x+

i given in Eq. (3).
Proof: See the Appendix.

Theorem 2 suggests that dynamic interactions among
overlay paths sharing physical resources are not likely to
lead to instabilities.

D. AFR prototype implementation

In this section, the prototype implementation of AFR is
described. We have implemented AFR in multi-threaded
C on the Linux system. As with most end-system ap-
proaches, each overlay path is realized by TCP connec-
tion. These connections are used to create sessions from
the source to intermediate relays(receivers) which in turn
create sessions to other receivers. The average throughput
value associated with tree sessioni in our analysis, now
corresponds to the worst case average throughput among
mTCP connections relaying theith chunk.

5An extension to asynchronous updates subject to persistentupdat-
ing in bounded time for each tree session should be straightforward
[17].
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1: receive the list of receivers
2: while file f not completely downloadeddo
3: concurrently keep reading data fromn0 and other

receivers
4: if data is coming fromn0 then
5: forward them to other receivers
6: end if
7: if each chunk completely downloadedthen
8: send feedback message ton0 containing its aver-

age throughput value
9: end if

10: end while

Fig. 6. AFR algorithm for receivers.

Figures 5 and 6 exhibit pseudo-codes describing the be-
haviors of the source and receiver respectively in AFR.
The file is sent block by block. Each block is partitioned
into mchunks depending on the current partition ratio vec-
tor. 6 In the AFR implementation, the source does not
wait for the arrival of all feedback information from pre-
vious blocks prior to sending the next block – this should
be contrasted with the approach discussed in Section III-
B. To expedite the file transfer, the source keeps push-
ing blocks, and changes partitions only when the updated
throughput information is available. In order to handle
highly variable Internet traffic, the partition ratio vector
was obtained by taking a weighted average between the
previous partition ratio vectorxi(n−1), and new estimate
for the partition ratio vectorxnew

i (n) as shown on Line 7 in
Figure 5. The impact of the moving average parameterα
and block size is studied in Section IV-B.

IV. EXPERIMENTS

We conducted experiments of the prototype of AFR im-
plementation over the Internet testbed [8]. The conducted
experiments are not intended to be representative of typ-
ical Internet performance, however, they do allow us to
evaluate and validate the implementation and practical as-
pects of our approach. The goal for the experiments is
to study (1) how the application-level load balancing can
improve FastReplica, (2) what elements achieve such im-
provements, (3) the impact of setting parameters in AFR.

A. Experimental Setup and Metrics

Since the primary goal for the experiments is to eval-
uate the performance of AFR against FR, we attempted

6Since the ratios are not integer valued, the floor operation is used to
assign the appropriate number of bytes to each chunk, that is, fi(n) =
⌊Bxi(n)⌋. Then, the remaining bytes were distributed among chunks
with the higher partition ratios in a round-robin manner.

to run experiments in similar environments to those pre-
sented in [1]. We ran experiments by varying the source,
receiver nodes’ locations, and the number of participants,
and report representative results involving the 9 hosts
shown in Table I. Table II shows the five different con-
tent distribution configurations used to obtain the results
below. For performance results of FastReplica with vari-
ous configurations, refer to [1].

n0 utexas.edu
n1 columbia.edu
n2 gatech.edu
n3 umich.edu
n4 ucla.edu
n5 cam.ac.uk
n6 caltech.edu
n7 upenn.edu
n8 utah.edu

TABLE I
PARTICIPATING NODES.

source receiver set

CONFIG 1 n0 n1,n2,n3,n4,
n5,n6,n7,n8

CONFIG 2 n7 n0,n1,n2,n3,n4,
n5,n6,n8

CONFIG 3 n0 n1,n2,n3,n4

CONFIG 4 n7 n0,n5,n6,n8

CONFIG 5 n0 n1,n7

TABLE II
CONFIGURATIONS.

The performance metrics we measured include: (1)
the primary metric in the paper,overall replication time,
max
i∈N

di , and (2) theaverage replication time, 1
m ∑m

k=1 dk.

The measured times do not include any overheads that
might be incurred due to the reintegration of chopped seg-
ments.

For ease of exposition, we define the percentspeedup
of schemeY over schemeZ as 100(rZ/rY−1)% whererZ

and rY are replication times ofZ andY schemes respec-
tively. Thus, for example, 30% speedup of schemeY over
schemeZ means that schemeY is 1.3 times faster than
schemeZ. Unless explicitly mentioned, all results are av-
eraged over 10 different runs and the vertical lines at data
points represent 90% confidence intervals.

B. Performance results

Exploiting heterogeneous network paths.We exam-
ined performance results for AFR and FR under CONFIG
1. In this experiment, 8MB files are transferred from the
source to receivers and we used a block size of 512KB
with α = 0.1 in AFR. (Later, we will discuss the im-
pact of varying block size andα on the performance of
AFR.) Figure 7(a) shows the overall and average replica-
tion times for AFR and FR. AFR outperforms FR: there
are 26% and 18% speedups of AFR over FR for overall
and average replication times respectively. We plot a par-
ticular realization of the partition ratio vectors for AFR as
a function of the block index in Figure 7(b). Note that the
summation of each element in partition ratio vectors is 1.
In the beginning of a file transfer, the partition ratio vec-
tors stay fixed at 0.125, i.e., source uniformly assigns traf-
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fic load to each of chunk. Once feedback messages con-
taining throughput information are available at the source,
the source employs non-uniform partitions for next block
transfer. Observe that partition ratios in AFR keep evolv-
ing attempting to converge to ‘good’ partitions reflecting
inherent network path characteristics. In contrast, the par-
tition ratio vectors for FR are fixed at 0.125 for the entire
file transfer irrespective of quality of paths.
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Fig. 7. Performance results for AFR and FR under CONFIG 1.

The better performance of AFR results has several
sources: first, AFR exploits inherent (static) heteroge-
neous network paths, and second, AFR adapts to dynamic
traffic environments. Interestingly, we observed fairly
tight confidence intervals on our measurements during our
experiments, which indicates the network traffic loads (on
PlanetLab) are fairly stable. To verify this, we also con-
ducted the following experiments: we collected partition
ratio vector values at the end of file transfers using AFR,
and used them as the initial partition ratio values in FR
scheme instead of equal partition ratio values. This FR-
variant scheme can factor out the performance benefit ob-
tained by adapting to bursty traffic loads, but holds perfor-
mance benefit from being aware of inherent heterogeneity
of network capacities. We observed that the replication
times are slightly higher than but very close to those of
AFR. We conclude that the performance benefits of AFR
over FR mainly comes from being adapting to heteroge-
neous network paths rather than to more dynamic traffic
loads. Note that using previous file transfer information
to generate non-uniform initial partition ratio vectors as
in this experiment can help AFR to quickly converge to
correct values and eventually expedite file transfers.

In Section III, we show exponential rates of conver-
gence, under a static scenario for a simplified model. Our
goal however is to implement and use this scheme in prac-
tice, to see the adaptivity and convergence characteristics
in a practical setting. In the practical setting, the conver-
gence time can only be approximately inferred based on
the dynamics of the partition ratio vector evolution, e.g.,

Figure 7(b). Specifically by observing the block index,
where the partition ratio has converged, one can roughly
infer convergence time. In Figure 7(b), the time taken
from the beginning to the delivery of 6th block is 6.65
seconds, which can be considered as an approximate con-
vergence time. However, note that the concept of the con-
vergence rate in the theoretical model can not be exactly
mapped into one in the real situation, since the experiment
was performed in the actual network with possibly chang-
ing state due to dynamics in the network. Furthermore, in
the theoretical model, when a source calculates the parti-
tion ratio vector atnth block, the throughput information
achieved at(n−1)th block is available. However, note that
in the practical situation, this will not be the case since a
source needs to keep sending blocks without waiting for
the previous block’s achieved throughput feedback.

Adapting to dynamic environments. Next we stud-
ied the potential benefit of AFR from being adaptive to
dynamic traffic loads. For this, we ran the following two
experiments on CONFIG 5 in Table II. For the first exper-
iment, the sourcen0 transfers an 8MB file to receivers,n1

andn7. For the second experiment, as with the first one,
n0 sends an 8MB file. However, 5 seconds after initiating
the transfer, we deliberately generate interfering trafficby
forcing n7 to transmit a 32MB file to all the hosts in Table
I except forn0 andn1. This interference traffic limitn7’s
sending ability resulting in an increase in the replication
time. Here, we used a block size of 128KB andα = 0.1
for AFR.
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Fig. 8. Performance results for AFR and FR with/without dynamic
environments.

Figure 8 exhibits the performance results for AFR and
FR with and without traffic interference. In the first exper-
iment without traffic interference, we see a 5% speedup
gain of AFR over FR in the overall replication time.
As with previous experiments, this gain comes from ex-
ploiting static heterogeneous network paths. However, in
the second experiment with traffic interference a speedup
of 28% was obtained. To study how these gains were
achieved, we plot typical partition ratio vectors for the
two experiments in Figure 9. Initially, both vectors fol-
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Fig. 9. Partition ratio vectors with/without dynamic environments.

low similar patterns before around 20 blocks. However,
while vectors of the normal case settle down to around
constant value (0.6, 0.4) until the end of file transfer, those
of dynamic case keep reducing the fraction of chunks
associated with noden7. This is because AFR can ac-
count for the limited sending ability ofn7 after 5 seconds
and adapt to it. Note that there is no additional control
overheads incurred to account for these dynamic environ-
ments. By simply placing different traffic loads at the
source based on in-band measurement information, AFR
effectively deals with varying Internet traffic potentially
achieving significant performance benefits. We believe
this feature of AFR can be more important in a highly
dynamic network environment.

Varying parameters. We fix the moving average pa-
rameterα to 0.1 and change the block size from 128KB
to 1024KB under CONFIG 1 to study the impact of differ-
ent choices for the block size on the performance of AFR.
Figure 10(a) shows the impact of varying block size on
overall replication time when sending 8MB files. When
blocks are two large, we lose opportunities to respond to
dynamic changes in network bandwidth. At the extreme
end where block size is equal to the file size, no adaptation
is performed. On the other hand, there are large overheads
incurred in processing feedback messages and reintegra-
tion when blocks are too small. Figure 10(a) illustrates
this tradeoff.

To assess the impact of differentα values on the perfor-
mance of AFR, we variedα under CONFIG 1. However
we did not see much change in the performance. This
is because the network is fairly stable. Thus, we ran the
following experiments to see how differentα values be-
have in AFR: under CONFIG 5, the source sends 32MB
size files, and 10 seconds latern7 transfers 1MB files to
{n2,n3,n4,n5,n6,n8}. We fixed block size to 128KB and
testedα = 0.1 and 0.5 values. Figure 10(b) shows par-
tition ratio vectors for the experiments. We observe that
both partition ratio vectors track down the change of net-
work bandwidth during 1MB file transfer atn7. That is,
in the middle of file transfer, AFR puts a larger portion on

the chunk going ton1, but coming back to previous par-
tition vectors after 1MB file transfers. (This again shows
the ability of AFR to adapt to dynamic environments.) As
expected, the value ofα determines the degree of respon-
siveness. As with block size, there are tradeoffs in select-
ing α. A large α will quickly track changes in network
state, but experience higher variability due to the mea-
surement noise as shown in Figure 10(b). A smallα is
conservative and may not gain benefits from being adap-
tive to dynamic network changes.
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Fig. 10. The impact of varying parameters on the performanceof
AFR.
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Fig. 11. Performance results under CONFIG 1-4.

The degree of heterogeneity.We conducted additional
experiments under diverse configurations including two
other schemes.Sequential Unicast(SU) measures the file
transfer time from the source to each receiverindepen-
dentlyvia unicast (i.e., in the absence of other receivers),
and then takes the worst case transfer time over all re-
ceivers assuming these times could be realized in parallel.
SU is a hypothetical “optimistic” construction method for
comparison purposes first proposed in [5].Multiple Se-
quential Unicast(mSU) takes the same approach as SU
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except thatm (the number of receivers) concurrent uni-
cast connections are used to realize the file transfer. That
is, the file is equally partitioned intom chunks and those
chunks are delivered viam parallel connections from the
source to the receiver. We use this hypothetical scheme to
provide lower bounds on performance.

Figures 11(a)-(d) show the performance results under
CONFIG 1-4. We find that AFR consistently outperforms
FR over all configurations. We observe that the degree of
performance gains are proportional to the amount of het-
erogeneity in the overlay paths. The more heterogeneous
overlay paths are, the more performance gains can be ob-
tained using AFR. AFR and FR outperforms SU under all
configurations. The key features of AFR and FR over SU
are the use of (1) concurrent multiple connections and (2)
diverse paths. The performance benefits resulting from
these two features are extensively discussed in [1]. Per-
haps surprisingly in our experiments we found the perfor-
mance of AFR and FR was better than that of mSU under
CONFIG 2 and 4. Since mSU employs multiple concur-
rent connections as with AFR and FR, we can conclude
that this performance benefit comes from the path diversi-
ties offered by AFR and FR.

V. RELATED WORK

A large amount of research has recently been pursued
towards supporting multicast functionality at the applica-
tion layer. In this section, we review work sharing sim-
ilar goals as ours, i.e., specifically targeting bandwidth-
intensive applications.

Overcast [4] organizes nodes into a source-rooted mul-
ticast tree with the goal of optimizing bandwidth usage
across the tree. The work in [18] proposes an optimal
tree construction algorithm based on the assumption that
congestion only arises on access links and there are no
lossy links. These two approaches are based on building
a singlehigh bandwidth overlay tree using bandwidth es-
timation measurements. Accurate bandwidth estimation
requires extensive probing [14], [15]. Furthermore, since
only a single multicast tree is used, the selection of the
tree significantly impacts performance.

Recently, several approaches employing file splitting
and multiple peer connections over multiple tree or mesh
structures have been proposed [19], [20], [21], [22], [1].
Splitstream [20] splits the content intok stripes, sending
them over a forest of interior-node-disjoint multicast trees.
The focus in this work is on constructing multicast trees
such that each intermediate node belongs to at most one
tree while distributing forward load subject to bandwidth
constraints. In Splitstream, tree construction and mainte-
nance are done in a distributed manner using Scribe [23].

In Bullet [19], nodes initially construct a tree structure,but
then use additional parallel downloads from other peers.
A sender disseminates different objects to different nodes.
Thus, RanSub [24] is used to locate peers that have dis-
joint content. Even after locating peers with disjoint con-
tent, Bullet requires a reconciliation phase to avoid receiv-
ing redundant data. This reconciliation is done using the
approach proposed in [25]. BitTorrent [21] and Slurpie
[22] find peers using dedicated servers, calledtrackers
andtopology serversrespectively, whose role is to direct
a peer to a random subset of other peers which already
have portions of the file. In both schemes, a random mesh
is formed among peers to download the file. Trackers
in BitTorrent may have a scalability limit, as they con-
tinuously update the distribution status of the file. The
Slurpie approach adapts to varying bandwidth conditions,
and scales its number of peers in the subset based on esti-
mating bandwidth and group size.

In contrast, the target environment for FastReplica [1]
and AFR is for push-driven CDNs or Web cache sys-
tems since a sender initiates file transfer and knows the
receivers a priori. FastReplica [1] and AFR can be viewed
as an extreme form of exploiting multiple parallel con-
nections - a full mesh structure is used. It is not unusual
for less resource intensive techniques to evolve into more
resource intensive ones as processing and storage become
inexpensive, and if they provide additional flexibility. The
transition from IP multicast to an application-level multi-
cast and from a single tree multicast to multiple multicast
trees or mesh structures follows this trend. Furthermore,
since CDNs or Web cache systems are usually equipped
with dedicated high performance network resources, their
concerns are at how to fully utilize their resources.

Note that most schemes employing file splitting use a
variety of encoding schemes, e.g., erasure codes [26], [27]
or Multiple Description Coding (MDC) [28] to efficiently
disseminate data or recover from losses. These types of
encoding schemes can also be used in AFR.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we explored the application-level load
balancing idea over a fixed overlay structure in Fas-
tReplica framework: exploiting ‘good’ paths by putting
more data on them. The salient feature of FastReplica,
which differentiates it from existing approaches, is that it
requires virtually no control overhead to construct over-
lay structure. Via theoretic analysis and experiments, our
work showed that addition of application-level load bal-
ancing in FastReplica can achieve significant speedup by
enabling fine-grained adaptivity to dynamically varying
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Internet traffic without the need for reconfiguring the over-
lay structure.

Here, we conclude our paper with enumerating some
interesting future topics that remain for FastReplica
framework. The first one is for FastReplica in the “Large”
[1]. In [1], we suggested that if there are a large number of
receivers, a hierarchicalk-ary tree might be constructed.
Note that in the FastReplica in the “Small”, we deliber-
ately chose to ignore topological properties among mem-
bers to eliminate the overhead for constructing an overlay
structure. However, topology closeness within a replicat-
ing group in FastReplica in the Large, is important. How
one should selectk and how one should cluster the nodes
in the replication groups, are the important research topics
to support an efficient FastReplica-style file distributionin
a large-scale environment.

Second one is to do more extensive experimentations
for performance results comparing with various file distri-
bution systems mentioned in Related Work section. Even
though the target environment is somewhat different, such
experiments would provide a quantitative comparison and
pros / cons of each solution. Moreover, extensive perfor-
mance experiments could lead optimiztion on the selec-
tion of parameters (α and block size) and provide more
concrete recommendation based on different input param-
eters and environments.

Lastly, extending the proposed application-level load
balancing technique in FastReplica to peer-to-peer type
applications, is an interesting future topic.
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APPENDIX

Notations: Here we formally define the hierarchy bot-
tlenecks related to max-min fairness that will be useful in
the sequel. We define thefair share y1l = cl/m1

l at a link
l ∈ L as a fair partition of capacity at the link in the 1st

level of the hierarchy, wherem1
l = |S l | is the number of
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sessions throughl . Then, the set of 1st level bottleneck
links and sessions are defined as follows:

L (1) = {l ∈ L |∀s∈ S l , a∗s = b(1) = min
k∈L

y1
k},

S (1) = {s∈ S |s∈ S l andl ∈ L (1)}.

wherea∗s is the bandwidth assigned for the sessions. Thus
L (1) is the set of 1st level bottleneck links such that the
sessions inS (1) traversing these links are allocated the
minimum bandwidth (‘fair share’) in the network, denoted
by b(1). These two sets make up the 1st level of the bottle-
neck hierarchy.

The next level of the hierarchy is obtained by applying
the same procedure to a reduced network. The reduced
network is obtained by removing the sessions inS (1). The
capacity at each link inL \L (1) traversed by sessions in
S (1) is reduced by the bandwidth allocated to these ses-
sions. The bottleneck linksL (1) are also removed from
the network. ThusL (2) andS (2) are obtained based on a
network with fewer links and sessions and adjusted capac-
ities. The set of 2nd level bottleneck links, sessions, and
bottleneck rateb(2) are defined as before. This process
continues until no sessions remain.

Let U (h) = ∪h
k=1L

(k) andV (h) = ∪h
k=1S

(k). These are
defined as the cumulative sets of bottleneck links and ses-
sions, respectively, i.e., for levels 1 toh of the hierarchy.
The fair shareyh

l (h≥ 2) of link l in l ∈ L \U (h−1) is de-
fined as the fair share of the available capacity at the link
in thehth level of the hierarchy:

yh
l =

cl −βh∗
l

mh
l

(6)

whereβh∗
l = ∑s∈S∩V (h−1) a∗s is the total flow of sessions

through l which are constrained by bottleneck links in
U (h−1), andmh

l = |S l \V
(h−1)|, wheremh

l > 0, is the num-
ber of sessions throughl which are unconstrained by the
links inU (h−1). Based on the fair share, the set ofhth level
(h > 2) bottleneck links and sessions can be defined as:

L (h) = {l ∈ L \U (h−1)|

∀s∈ S l , a∗s = b(h) = min
k∈L \U (h−1)

yh
k},

S (h) = {s∈ S \V (h−1)|s∈ S l andl ∈ L (h)}. (7)

HereL (h) is the set ofhth level bottleneck links such that
the sessions inS (h) are allocated the minimum fair share
in the reduced network. We repeat this procedure until
we exhaust all the links and sessions resulting in a hi-
erarchy of bottleneck links and corresponding sessions
L (1), . . . ,L (q) andS (1), . . . ,S (q), which is uniquely defined

by (6) and (7), whereq is the number of levels in the hier-
archy.

In the sequel, when we refer to the hierarchy of bot-
tlenecks we mean theinitial hierarchy structure when all
sessions are active, i.e.,A = S . Consider anhth level link
l ∈ L (h) of this bottleneck hierarchy. Note that the ses-
sions sharing linkl can be partitioned into those in levels
1 to h, i.e., S l = ∪h

j=1[S l ∩ S
( j)]. For sessions in thejth

level of the hierarchy, suppose we order them by their fin-
ishing times (i.e., when they depart from the system) on
thenth file transfer. We letsj

i (n) denote theith session to
leave the system amongjth level sessions at thenth step.7

Thus we have that

tsj
1
(n)≤ tsj

2
(n)≤ . . .≤ tsj

k
(n),

wherek = mj
l . Note that at each iteration step, the order

in which sessions complete may change. For the session
sh
i (n), we letp j(sh

i (n)) be the number of sessions at thejth

level whose departure times are equal or less than that of
sessionsh

i (n). Then, note that at timetsh
i
(n), the number of

remaining jth level flows in the system ismj
l − p j(sh

i (n))

sincemj
l is the total number ofjth level sessions in linkl .

Figure 12 illustrates the notation we have defined.
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Fig. 12. Sessions in thehth level link.

Proof of Theorem 2. We will prove Theorem 2 by in-
duction on theinitial bottleneck hierarchy which is con-
structed when all sessions are in the system. Without loss
of generality, we let the file size be 1, i.e.,f (n) = 1, n≥ 1.

Step 1: Consider a 1st level bottleneck linkl ∈ L (1).
Note that for any sessions in S l and at any iteration step
n,

b(1) ≤ as(n). (8)

Indeed the bandwidth rates for all first level sessions are
non-decreasing over time. That is, once sessions start to

7For simplicity, we may suppress an iteration step index in notations,
e.g.,tsj

i (n)
(n) = tsj

i
(n).
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leave the linkl , the additional bandwidth available to the
remaining sessions can only result in an increase in the
bandwidth allocated to a first level bottleneck session. For
s1
i , theith session to leave the system among the first level

sessions on linkl , we have a lower bound on its transfer
time as follows:

ts1
i
(n) =

∑i
k=1 xs1

k
(n)

cl − (m1
l − i)b(1)

≤ ts1
i
(n). (9)

The numerator is the amount of work to be done from
the first to theith session. The denominator is the largest
amount of bandwidth available for transferring this data.
This is because duringts1

i
(n) there are at least (m1

l − i)

flows each with a bandwidth allocation of at leastb(1).
Thus we have that

b(1) ≤ as1
i
(n) =

xs1
i
(n)

ts1
i
(n)
≤

xs1
i
(n)

ts1
i
(n)

=
xs1

i
(n)

∑i
k=1xs1

k
(n)

[cl − (m1
l −1)b(1)] (10)

=
as1

i
(n−1)

∑i
k=1as1

k
(n−1)

[cl − (m1
l −1)b(1)] (11)

≤
as1

i
(n−1)

(i−1)b(1) +as1
i
(n−1)

[cl − (m1
l −1)b(1)]. (12)

We obtain Eq. (11) from Eq. (10) by using Eq. (5) and
we have Eq. (12) from Eq. (11) by Eq. (8). Thus,

|as1
i
(n)−b(1)| ≤

∣

∣

∣

∣

as1
i
(n−1)

(i−1)b(1) +as1
i
(n−1)

[cl − (m1
l −1)b(1)]−b(1)

∣

∣

∣

∣

(13)

=

∣

∣

∣

∣

b(1)(i−1)(as1
i
(n−1)−b(1))

(i−1)b(1) +as1
i
(n−1)

∣

∣

∣

∣

(14)

≤
i−1

i
|as1

i
(n−1)−b(1)|. (15)

Eq. (15) is obtained from Eq. (14) by usingas1
i
(n−1)≥

b(1). Let ξl =
m1

l −1
m1

l
. Then,∀ s ∈ S l we have that

|as(n)−b(1)| ≤ ξl |as(n−1)−b(1)|. (16)

Since 0< ξl < 1, as(n) converges geometrically tob(1) =
a∗s.

Step 2:Suppose that for alls∈ V (h−1), as(n) converges
geometrically toa∗s. Consider anhth level link l ∈ L (h)

and ash
i ∈ S l ∩ S

(h), which is theith session to leave the
system amonghth level sessions in linkl at iteration step

n. We will show thatash
i
(n), i ∈ {1, . . . ,mh

l } will converge

to b(h). This can be done by finding a lower bound and an
upper bound and showing the bounds converge tob(h).
Convergence of the lower bound: Let tmin

l (n)=
min

s∈S l∩V (h−1)
[ts(n)] and tmax

l (n)= max
s∈S l∩V (h−1)

[ts(n)]. Thus,

tmin
l (n) andtmax

l (n) are the earliest and the last departure
time among sessions from levels 1 to(h− 1) at link l
respectively. Now, defineεh

l (n) as the difference between
these two times, i.e,εh

l (n) = tmax
l (n)− tmin

l (n). Consider
the time-varying bandwidth allocation for anhth level
session depicted in Figure 13.

S

tmin max
l l
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0
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: Lower bound
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m
l
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b (h)
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h
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(n) (n)

Fig. 13. Bandwidth allocation for anhth level session.

• From the beginning of the transfer totmin
l (n), no session

in S l ∩V (h−1) leaves linkl . Thus, at leastb(h) is allocated
to anhth level session during this period.
• After tmax

l (n), there are onlyhth level sessions remain-
ing, which traverse linkl . A lower bound on bandwidth
allocation for such sessions iscl/mh

l sincemh
l is the entire

number ofhth level sessions at the beginning. Note that
the lower bound is larger thanb(h) by Eq. (6).
• It is possible for thehth level session to be less than
b(h) only during the period fromtmin

l (n) to tmax
l (n). This

may happen if sessions lower thanhth level change their
bottleneck links to linkl during this period. For example,
consider Figure 3(b). Initially, the bottleneck hierarchy
is preserved before sessions1 leaves the system. How-
ever, onces1 departs, sessions2 changes its bottleneck
link from l1 to l2 and equally sharing the capacity ofl2
with s3. This results in reduction ofs3’s bandwidth from
2 to 1.5. During this period of lengthεh(n), we can have
a lower bound on bandwidth for anhth level session by
cl
|S l |

. This lower bound is the first share of the linkl , i.e.,

y1
l . Based on the above observations, we have the follow-

ing lower bound for the average throughput of the anyhth

level session:

ah
l (n) =

b(h)tmin
l (n)+ cl

|S l |
εh

l (n)

tmax
l (n)

= b(h)−
(b(h)− cl

|S l |
)εh

l (n)

tmax
l (n)

≡ b(h)−δh
l (n) (17)

≤ as(n), s∈ S l ∩ S
(h).
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The above lower bound is the average throughput at
time tmax

l in Figure 13, and it is a worst case scenario in-
cluding a maximal amount timeεh

l (n) at the lower rate
cl
|S l |

. By our induction hypothesis, fors∈ V (h−1), as(n)

converges geometrically toa∗s, soεh
l (n) also converges to

0. Also note that asεh
l (n) goes to 0,δh

l (n) also goes to 0
and eventually the lower boundah

s(n) converges geomet-
rically to b(h).
Convergence of the upper bound: Next, consider the fol-
lowing lower bound for the finishing time of sessionsh

i :

tsh
i
(n) =

∑h
j=1∑pj (sh

i )
k=1 xsj

k
(n)

cl −∑h
j=1(m

j
l − p j(sh

i ))a
j
l (n−1)

≤ tsh
i
(n). (18)

As with Eq. (9) in Step 1, the numerator is the amount of
work to be done prior tosh

i ’s departure and the denomi-
nator is an upper bound on the available bandwidth. In a
similar manner to Step 1, we have that

ah
l (n)≤ ash

i
(n)≤

ash
i
(n−1)[cl −∑h

j=1(m
j
l − p j(sh

i ))a
j
l (n−1)]

∑h−1
j=1 p j(sh

i )a
j
l (n−1)+ (ph(sh

i )−1)ah
l (n−1)+ash

i
(n−1)

.

(19)

By replacing Eq. (17) into Eq. (19) and using the fact
thatcl = ∑h

j=1mj
l b

( j), we have that

ash
i
(n)≤

ash
i
(n−1)[∑h

j=1 p j(sh
i )b

( j) +P(n−1)]

∑h
j=1 p j(sh

i )b
( j)−b(h)−Q(n−1)+ash

i
(n−1)

,

where P(n) = ∑h
j=1(m

j
l − p j(sh

i ))δ
j
l (n) and

Q(n) = ∑h−1
j=1 p j(sh

i )δ
j
l (n) − δh

l (n). Now letting
R(n) = max[P(n),Q(n)], we have an upper bound
for an average throughput:

ash
i
(n)≤

ash
i
(n−1)[∑h

j=1 p j(sh
i )b

( j)−R(n−1)]

∑h
j=1 p j(sh

i )b
( j)−b(h) +R(n−1)+ash

i
(n−1)

≡ āsh
i
(n) ≡ T(R(n−1),ash

i
(n−1)) (20)

Now we will show that ¯ash
i
(n) converges tob(h) geomet-

rically. ConsiderT(·,ash
i
). We have that

max
R≥0

∣

∣

∣

∣

∂
∂R

T(R,ash
i
)

∣

∣

∣

∣

≡ A(ash
i
) =

∣

∣

∣

∣

−2ash
i
∑h

j=1 p j(sh
i )b

( j) +ash
i
b(h)− (ash

i
)2

[∑h
j=1 p j(sh

i )b
( j)−b(h) +R(n−1)+ash

i
(n−1)]2

∣

∣

∣

∣

R=0

For anyε > 0, by our lower bound, there is ann such
thatash

i
(n)≥ ash

i
(n)≥ b(h)−ε . Thus, letting the Lipschitz

constantK̄ = A(b(h)− ε), we have that

|T(R(n),ash
i
(n))−T(0,ash

i
(n))| ≤ K̄|R(n)−0| (21)

Note thatR(n) is a linear combination ofδ j
l (n), soR(n)

will converge geometrically to 0. Furthermore,T(R, ·) is a
pseudo-contraction [29], which converges toT(0,b(h)) =
b(h), i.e.,

|T(0,ash
i
(n))−T(0,b(h))| ≤

∣

∣

∣

∣

ash
i
(n)[∑h

j=1 p j(sh
i )b

(h)]

∑h
j=1 p j(sh

i )b
( j)−b(h) +ash

i
(n)
−b(h)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∑h
j=1 p j(sh

i )b
( j)−b(h)

∑h
j=1 p j(sh

i )b
( j)−b(h) +ash

i
(n)

∣

∣

∣

∣

|ash
i
(n)−b(h)|

≤ ξ|ash
i
(n)−b(h)|, 0 < ξ < 1 (22)

So,

|ash
i
(n+1)−b(h)|= |T(R(n),ash

i
(n))−T(0,b(h))|

≤ |T(R(n),ash
i
(n))−T(0,ash

i
(n))|+ |T(0,ash

i
(n))−T(0,b(h))|

≤ K̄|R(n)−0|+ ξ|ash
i
(n)−b(h)|, 0 < ξ < 1.

Thus,ash
i
(n) converges geometrically tob(h). This com-

pletes the proof.


