On Application-level Load Balancing in
FastReplica

Jangwon Lee, Gustavo de Veciana

Abstract— pull type of operation works reasonably well for small to

In the paper, we consider the problem of distributing medium size web content, since the performance penal-
large-size content to a fixed set of nodes. In contrast with ties for a cache miss, e.g., additional network traffic from
the most existing end-system solutions to this problem, Fas the original server to the local server and higher delay
tReplica [1] does not attempt to build a ‘good’ overlay struc to the client, are not significant. However, CDNs have
ture, but simply uses a fixed mesh overlay structure. This ’ o o .
can significantly reduces the overheads incurred in probing "€C€Ntly been used to the deliver large files, e.g., digital
building and maintaining the overlay structure, otherwise. Movies, streaming media and software download pack-
However, FastReplica is oblivious to heterogeneous and dy-ages. For large files, it is desirable to operate jpush
namic environments. To remedy this problem, we propose model, i.e., replicating files at edge servers in advance of
an application-level load balancing idea: putting more data yser’s requests, since their distribution requires sicgifi
on ‘good’ paths and less on ‘bad’ ones. Our goal is to study amounts of bandwidth. The download times may be high,
(1) how K:j r(r;’;ﬂ(he FaStRip"Ci adaptive to _dynambic en\éi_ron-de.g. 20 min media file encoded at 1 Mbit/s results in a 150
ments an ow much performance gain can be achieve ' .) o .
by exploring the application-level load balancing idea in MBytes file or a high quality d|g|t_al mOV_'e may be aroun_d
FastReplica. 700 MBytes. Such push style file replication across dis-

Toward this end, we provide a theoretical analysis of a tributed machines is also required for web mirror services.
simplified model, which provides the insights serving as a In this paper we consider the problem of content distri-
basis to develop an implementation of this concept. Then, bution across geographically distributed nodes. Our focus
we presenta performance eValuation on aWide'area testbed |S on dlstrlbunng |arge flles Such as Software packages or
with a prototype implementation, showing that addition of 14104 media files, and our objective is to minimize the
application-level load balancing in FastReplica can achiee overall replication ’time i.e., minimizing the worst case
significant speedups by exploiting heterogeneous paths and . T
dynamically adapting to bursty traffic. download time to a set of receivefs.

o _ Recently, an end-system approach [2], [3], [4], [5], [6],
keywords Communications/Networking and Informa{7] has been emerged as a powerful method for deliv-

tion Technology, Network Protocols ering content while overcoming the deployment hurdles
of IP multicast, e.qg., reliability, router modification, can
I. INTRODUCTION congestion control issues. In the end-system approach,

Content delivery networks (CDNs) are deployed tBosts cooperate to construct everlay structure consist-
improve network, system and end-user performance @ Of unicast connections between end-systems. Since
caching popular content on edge servers located cl@@ch overlay path is mapped onto a path in the underly-
to clients. Since content is delivered from the closettd physical network, choosing and using good quality
edge server to a user, CDNs can save network bandwidd4erlay paths when constructing overlay structures sig-
overcome server overload problems and reduce delaydtécantly impacts performance. Despite variations, most
end clients. CDN edge servers were originally intendéXisting solutions based on the end-system approach, fo-
for static web content, e.g., web documents and imagéys on finding and maintaining ‘good’ overlay structures
Thus, if the requested content was not available or out-¢gither tree or mesh) or reconfiguring them to optimize
date, the local server would contact the original servdierformance according to the application’s requirements.

refresh its local copy and send it to the client. This However, the above-mentioned flexibility in building

overlay structures comes at a price. That is, building op-
J. Lee is with Qualcomm, Inc., and G. de Veciana is with Eiectr

cal and Computer Eng., The University of Texas at Austin. r€or INote that there exist many applications whose performascii
sponding Author: Jangwon Lee, 5775 Morehouse Drive, Sagd)ie termined by that of the worst case, e.g., especially inidisted envi-
CA 92121, Tel) 858-651-5185, Fax) 858-845-2651, E-mailngja ronments where each node is responsible for a unique paxtesélo
wonl@qualcomm.com work based on the replicated data.

timized overlay structures requires path quality informamnto the common physical links. Third, Internet traffic is
tion among hosts. Since overlay paths may share commamiable. The available bandwidth on each path may vary
physical links, sequentialprobing to estimate availablewith time possibly even during the file transfer.
bandwidth on end-to-end paths (i.e., without the presencel he motivation of our work in this paper is to make Fas-
of other overlay path probing) may result in poor choicgéReplica in the Small [1] adaptive to dynamic and hetero-
If this is the casejoint probing over a large number ofgeneous environments. The key idea for it, is simple: in-
combinations should be performed, which may lead tooducing application-level load balancing in FastReplic
huge overheads. After building an overlay structure, pdramework [1], i.e., instead of putting the same amount of
ticipants need to maintain it by exchanging control sigrortion in each chunk, the source node puts more data on
nals. To adapt to dynamic network situations, additiongjood’ overlay paths and less data on ‘bad’ ones.
monitoring of alternative paths may be required. Further- The goal of this paper is (1) to propose how this
more, while restructuring happens, further overheads mggemingly obvious and simple application-load balanc-
be incurred due to lost packets or reconfiguration. ing idea can be incorporated toward a practical solution,
To expedite the delivery time in distributing large filesalled Adaptive FastReplica (AFR), and (2) to study how
in the context of a content delivery network, we proposgtiuch performance gain can be achieved by adding this
FastReplica which is also an application level approaclapplication-load balancing idea into FastReplica.
[1]. FastReplica uses two key ideas: (1) file splitting and Toward this end, we propose an analytical network
(2) multiple concurrent connections. That is, the sourd¢@odel and study the optimal file partitioning rule which
divides the original file intan (the number of receivers) minimizes the overall replication time, i.e., the worsteas
chunks, and concurrently transmits a different chunk @ownload time. Furthermore, we show convergence for a
each receiver. Meanwhile each receiver relays its chupkoposed iterative algorithm towards an optimal partition
to the remaining nodes so that each node ends up withia). Despite the fact that this analysis makes some sim-
m chunks? plifications on the network and traffic models due to its
In contrast with most existing end-system approachdgactability, it is of theoretical value and provides irtsig}
FastReplica does not attempt to build a “good” overlay We evaluate the performance of our preliminary imple-
structure, but simply uses all available paths, i.e., fixé@entation on areal, but still somewhat controlled, Interne
rnz Over|ay pa‘[hs among the source andeceivers. The environment [8] We find that application—level load bal-
key feature associated with using a fixed overlay structu®8cing allows AFR to achieve significant speedups over
in this manner is that there is virtually no control overFastReplica by enabling adaptivity to dynamic and het-
head required with finding, maintaining and reconfiguringrogeneous Internet environments — these benefits are in
a good overlay structure. Furthermore, experiments odUin significant when the network is highly dynamic.
wide-area testbed showed the potential of this approach tdfhe rest of the paper is organized as follows. In Sec-
reduce the overall replication time [1]. tion Il, we introduce analytic models and then formulate
However, FastReplica is oblivious to heterogeneity i@nd solve the optimization problem associated with min-
the overlay paths, and simply puts an equal amount i#1Zing the overall replication time. Section IIl proposes
data on each chunk. Heterogeneity in the overlay patfi§R mechanism and discusses its prototype implementa-
may arise due to the following factors. First, it is infion. This is followed by Section IV wherein we present
herent in network resources. Infrastructure-based CDR4 €xperimental results over a wide-area network envi-
or web server replica networks are equipped with a de@nment. In Section V we discuss related work, and Sec-
icated set of machines and/or network links, which a#on VI contains the conclusion and future work.
engineered to provide a high level of performance. How-
ever, there are inherent heterogeneities among network re- Il. ANALYSIS
sources, e.g., different capabilities of servers or aoldla In this section, we present a network model and theoret-
capacity on network links. Second, even with homogéeal analysis to study application-level load balancing in
neous network resource assumption, (e.g., nodes’ capastReplica. The analytical results developed in this sec-
bilities and capacities of links between all end points at®n will serve as a basis for AFR mechanism presented in
uniform), each chunk transfer may not achieve the sar8ection Il as well as the subsequent implementation.
throughput since multiple overlay paths may be mapped

o o . A. Framework
2This is FastReplica in the Small algorithm. To support adarg

number of receivers in the group, FastReplica in the Smgtirithm SUppOS_e a file is available at a SC_’UfCG node anq is
is applied iteratively using a hierarchidahbry tree structure [1]. to be replicated across a set of receiver noBes,{n;|i €

N}, whereN = {1,...,m} is the index set for receivers.tReplica in the Small wheren is small. If mis large,
Here, R is known to the source. Let also denote the a hierarchical structure proposed in [1] could be used to
size of file in bytes. The fild is divided intom chunks, achieve scalability. How to select suatwvalue needs fur-
f1,..., fm, suchthag", fi = f andf; >0, i € N. Inorder ther future study.

to represent the portion of the original file that goes to We shall lettj (x), i, j € N, denote theransfer timeof
each chunk, we definepartition ratio vector x = (x;, = theit" chunk from nodeng to noden;, when the partition

%, i €N). Note that 0< x; < 1andy";x = 1. Then, the vectorx is used. We further define tliownload timeto

file is replicated as follows. the jt" receiver,d;(x) = mﬁx[tij(x)] and theworst case
le
On1 transfer timefor theit" chunk,t;(x) = m%X[tij (X)]. These
f1 _ . 1€ .
times all depend on the partition ratio vectorFor sim-
fs plicity, we will occasionally suppressin these notations.
| |0 = On,
/.h B. Network Model
_ ,
Qn In our analytical network model, we assume that file
) _ transfer time is governed by the available bandwidth from
(a) Atthe source. (b) At the receivers.

a source to a destination node. This is reasonable when
Fig. 1. Anillustration of the replication framework. large files are being transferred [9]. For bandwidth avail-
ability, we assume tree session model wherein chunk is
* Atthe source @i Nodenp opensm concurrent CONNEC- yansferred at the same rate along the entire overlay tree.
tions to each node in the replicating sf,...,Nm, and Thjs js not the case where each overlay path is realized
sends to each of these nodes, the following two items: Q;Q TCP connection. However, as can be seen in the se-
a list of replicating nodes{ni|i € N}, and (2) its associ- q|, the tree session model assumption provides us with
ated chunk of the file, i.e., chunk is sent to Nod&%. ¢ only tractability but also the key insights needed for
This procedure is shown in Figure 1(a) in the case Whesg jnqitive solution to the real-world problem.
m=3. We consider a network consisting of a set of links
* Ateach noden After receiving the list of replicating with capacityc = (¢, € £). We associate tiee session
nodes, a nodex opensm— 1 concurrent connections tOyith each chunk. Les denote the set af tree sessions
the remaining node®\ {nc}, and concurrently relays its sharing the network. Bandwidth is allocated to each tree
chunk, fy to each of them. This procedure is depicted i§ession, according to an appropriate criterion, e.g., max-
Figure 1(b). We assume relaying of data takes place gfi fair allocation [10], proportional fair allocation [L1
the fly, i.e., the node does not wait for the arrival of thﬁ1ax—throughput allocation [12], or that realized by cou-
entire chunk prior to relaying. pled TCP sessions.
Fors € AC s, we letag (A) denote the bandwidth al-
located to sessiog when the tree sessionsAnpersiston
the network. Subsequently, we will c#llC s the active
set i.e., the set of tree sessions which still have a back-
log to send. Fos € s, we Ietag denote the bandwidth
allocated tos when allm tree sessions are active in the
system, i.e.a5 = a5 (s).
i Since the same bandwidth is allocated along all paths
Fig. 2. Overlay tree of thé" chunk. of the tree session for each chunk, the completion times
under this model will satisfy;; =t;, Vj € N, i.e., all re-
Figure 2 shows theverlay treetraversed by data in ceivers will get each chunk at the same time. Each tree
chunki. As can be seen, the tree includasverlay links sessiors € s traverses a set of physical links, associ-
(paths) An overlay link between two nodes may consisated with the overlay tree fof" chunk. Recall that there
of multiple physical links and routers, i.e., it correspsndmay be multiple-crossings of the same link by a given tree
to a unicast path in the underlying physical network. Alsggssion, and such multiplicities can be easily accounted
note that multiple overlay paths may share the same phja= Since there is a one-to-one mapping between a chunk
ical link. Since there arerelay nodes, there amsuch and a tree session, we will use these interchangeably in
trees. Thusp? overlay links are used for the entire fileour notation, i.e., we will use; anda, or N ands, in-
transfer. It should be noted that this paper deals with Fasrchangeably.

C. Optimal partitioning 2

If the partition ratios are the same for all chunks, i.e.,)é)\)ék%
S

X =1/m, i € N, the scheme in Section Il corresponds to

the FastReplica algorithm [1]. By controlling the partitio (@) An example network.

ratio vector, the source can determine how much data is % =3

.. G, =2 =

injected into each tree session, i.ex will be delivered o fxs=2.4

through tha'" tree session. In this section, we formulate jfxz: iz ﬁ: 12

the following optimization problem assuming the network =041, =0.93 t3=12

capacity is fixed (i.e., no other interfering traffic). (b) Max-min fair bandwidth allocation
Problem 1. Suppose we are given a fileat a source whenx = (0.1,0.3,0.6) andf = 4.

nc_’denO and a receiver set. Und_er the tre?_seSSiC_m bandgig. 3. ustration of dynamic bandwidth allocation.
width allocation model, determine a partition ratio vector _) _
X = (Xu,...,%n) Which minimizes the overall replication FOr a given active set of sessiods we let g(A) =

timer(x), given by Yiead (A) denote theaggregate bandwidth.e., the sum
of bandwidths allocated to tree sessionsAinThen, the
r(x) = max [dj(x)] = max [tij (X)] = mﬁx[ti (x)]. following provides an optimal solution to Problem 1.
Ie I,je i€

Theorem 1:Suppose thaf* maximizes the aggregate

Depending on the partition ratio vectornd the network Pandwidth among all possible active setsin.e.,
capacity, the bandwidths allocated for tree sessions may

change dynamically over time. This is because if a session Ae argcrr;axg(A) N argcrr;axi;ai (A). (1)
leaves the system (i.e., a chunk is successfully delivered _
the network resources will be shared among the remainiﬁgenixi* given by
sessions, possibly resulting in a new bandwidth allocation a (AY) i i

Let us consider an example to understand dynamics as- X = { Sen A € A 2)
sociated with Problem 1, i.e., how the transfer time of each 0 es\A,

chunk and the available bandwidth for each session are imal soluti bl
dynamically determined. We will suppose for simplicit)}S anF?ptlTa IS;IO Ut'orr: to Pr(cj) errr: L. . . I
that bandwidths among trees are allocated according to root. ote that under the partition ratle:, a

the max-min fair criteriodin our examples. Suppose thes€SSions iPA* complete at the same time, i.5 =
file size isf = 4 and the number of receiverars= 3. Ses- m, for all i € A*. By definition, A* offers the

sionss; ands, share a physical bottleneck linkwhose maximum instantaneous aggregate bandwidth rate to the
capacity is 2. Sessiorss ands; share a bottleneck link receivers throughout the entire transfer. Thus, the pro-
whose capacity is 3. The remaining links in the networosed partition ratio vector must be optimal, though not
are unconstrained and not shown in Figure 3(a). necessarily unique.]
Figure 3(b) shows each session’s transfer time and &om the perspective of the receivegép) is the amount
signed available bandwidth as time evolves when the paFf-data per unit time they will get when all sessions in
tition ratio vector isx = (0.1,0.3,0.6). Timesty,t;, and A are being used to transfer the file. A higher aggregate
t3 in Figure 3(b) represent the transfer times of chunks Bandwidth will result in a lower overall replication time.
2 and 3 respectively. Over time, we have the followinghus, Theorem 1 says that (1) we need to find which ac-
active sets and bandwidth allocations: tive set (tree session configuration) provides us with the
maximal aggregate bandwidth, and (2) given such a set,
0<t<t;, A={s,%,%},a(A)=aA) =1 sayA*, the partition ratioc" satisfying Eq.(2) guarantees

az(A) =2 that the maximal aggregate bandwidth will be achieved
t1<t<ty, A={s,s3},a5(A) =a3(A) =15 throughout the file transfer. For example, for the network
b <t<ts, A={ss},a3(A)=3 in Figure 3(a), we obtailh* = {s1,s3}, g(A*) =5, x* =

(2/5,0,3/5), r(x*) = é and for the network in Figure
3In max-min fair bandwidth allocation method, each sessims: 4, we haveA* = {s;,s,,S3}, g(A*) = 4, x* = (1/4,1/4,
ing a link should get as much as other such sessions shaeigkhun- :|_/2)7 r(x*) _f

less they are constrained elsewhere. Thus, it has the folipgharac-

7
teristics: (1) each session has a bottleneck link, and (@ynstrained Theorem 1 does not assert that the solution is unique,

sessions at a given link are given an equal share of the bisapac- 1-€-» there may be multiple optimal solutions not satisfyin
ity [10], [13]. the conditions in Theorem 1.

While the performance of FastReplica is limited by a sin-

2 3
* 2 gle worst bottleneck link, the performance of AFR is lim-
Lo ited by the sum of then tree bottleneck links.

Fig. 4. Example networks.

B. Block-level adaptation & In-band measurement

I1l. AFR MECHANISM There are some more practical issues to be consid-

In this section, we introduce key ideas underlying thered. First, in order to determine a partition ratio vec-
AFR mechanism while gradually relaxing assumptiori®r, a source needs prior knowledge of all the available
made in the analysis and considering a practical perspbandwidths. A large amount of extra measurement traffic
tive. We then describe an AFR prototype implementatiomay need to be injected into the network to obtain accu-
rate bandwidth estimation [14], [15]. Second, in the anal-
ysis in Section II-C, we assumed that the available net-

. work capacity for file transfers was fixed. However, this
Theorem 1 suggests an optimal strategy based on [ie,y ot pe the case in practice, i.e., the available band-

available bandwidth along overlay trees to minimize tGiyh may change dynamically because of other traffic
overall file replication time. However, there are criticaly,,ring the network. Even during a single file transfer, the
limitations to applying this result in practice. One of them, ijapie handwidths for overlay paths may significantly
is obtaining the active sét" which maximizes the aggre- ., ange due to highly variable Internet traffic.
Igate bangl_/wdth_. hThIZI IS T ((;olr(nple>|< ccjomblpa;orlal prob- To adapt to such variations and reduce the overheads to
em requiring either detailed knowledge of the networky, iy nath quality information, the following block-ldve
and tree structures, or possibly a brute force search O}S%Iréptation and in-band measurement approach is used. A
m . .

2" —1 possible solutions. _ _ Jarge file is divided into multiple equal-sizédocks Each
Instead_ of searching for_ an optimal active set, as VV'mock is again partitioned inton chunks based on aver-
FastRep_hca, all tree_sessmrm Oyerlay trees_)_are US_Edage throughput information from past block transfers. Let

for the file transfer, i.e.A =5, with the partition ratio f(n) be thenth block of file f. Throughout the rest of the
vector suggested by Theorem 1. paper, the number inside parenthesis represents an itera-
. ar _ tion step, e.g.x(n) is a partition ratio vector used fof"
X = Skes A res . (3) block transfer and;(n) is the worst transfer time for the
s it chunk fornt" block transfer.

Recall thata® = & () in Section II-B. Note that this so- The following describes the approach in more detail:
lution may not be optimal. For example, for the cases For the first block transfer, the source uses an arbitrary
in Figure 3(a) and Figure 4, this approach results in supartition ratio vector; (1) > 0, i € N.
optimal and optimal solutions respectively. e At the (n— 1)!" iteration step 1f > 2), each receiver

Note that the partition ratio for th&" chunk,x" is pro- n; measuresy; (n— 1) = %, i € N defined as
portional to the bandwidt". Itis intuitive that fora‘bad’ | average throughpuachie\”/ed by théh chunk to the
route (i.e., smalai*)., a small chunk shou_ld be chosen, an ceivem; and sends it to the source — each receiver does
for a ‘good’ route (i.e., large;’), a large size chunk ShOUIdthiSfOI’ all chunks in a block
be selected in order to reduce the overall replication tim.e.At the nth iteration step, the source updates the partition
Also recall that this partition ratio will make the transfe;atio vector(n): ’

times for each chunk identical.

A. Full mesh structure

Under the model, the overall replication times for Fas- a(n—1) _
tReplica (FR) and AFR would Be Xi(n) = ST an—1)’ leN (5)
rER & m ; TAFR= s, f &’ (4) wherea(n—1) = rjg',{ﬂ [aij (n—1)].
ies < In the above approach, the theoretical available band-

widths are replaced with receiver estimates for average
e o o ~ throughputs. See Eq. (5) vs. Eq (3). The intuition for
tReplica in terms of minimizing overall replication time g strategy is that a route is considered as ‘good’ if it

4Note thatrr is an approximation in Eq.(4). This is because afichieved a high throughput and a route is ‘bad’ if it saw a
chunks may not complete at the same time. low throughput.

Since i & > mminag’, AFR will always beat Fas-
les

The proposed in-band measurement has several practi- INPUT: file f, list of receivers, block sizB
cal advantages. First, the overhead to obtain path cha# send the list of receivers ®
acteristics is low. It is easy to estimate average realize@ initialize x;(1) = &, i €N
throughput rather than available bandwidth. Furthermores: for n=1to (é} do
since it uses an in-band measurement, this approach dogs if there is a new latest throughput information
not generate any extra traffic except feedback messages (ai(j), ieN, j <_n) then

from receivers to the source. Second, the approach can X'(n) — fﬁ%’ ieN

provide more accurate path information as compared to. x(n)=(1—a)x(n—1)+ax®n),0<a<1
sequentialprobing. Since overlay paths may share comg. g|se

mon physical links, sequential probing for estimation ofy. % (n) =x(n—1)

available bandwidth between two nodes (i.e., without thg). end if

presence of other overlay path probing) may resultin pog§: assignit" chunk size based or(n) and concur-
estimation. In order to obtain more accurate path qual- rently send it to node;, i € N with size and block
ity information, this requires joint probing with a num- index information.

ber of combinations, which would incur a huge overheads: end for

Since estimates for the average realized throughputs are

obtained in the presence of other active overlay paths, tHe§ 3 AFR algorithm for a source.

will provide fairly accurate path quality information. The difficulty in dealing with this question is that when
Compared to IP multicast, a key advantage of enghe partition ratio is not optimal, different chunks will
system approach is the ability to adapt to changing nebmplete at different times, e.g., see Figure 3(b). Thus,
work conditions. For example, one can reroute aroufhe will obtain possibly biased estimates of the available
congested or unstable areas of the Internet or reconfiggegdwidth for tree sessions which see dynamically chang-
the overlay structures. However, in most existing enthg bandwidth allocations. Nevertheless, under simpli-
system approaches, time-scale for those adaptive recgiihg assumptions one can show the convergence result
figuration cannot be too small fine-grained due to largghich suggests such biases may not be problematic.
amount of control overhead during the reconfiguration Theorem 2:Under the Synchronoagterative adapta_
phase. In contrast, the time scale of adaptivity in AFffon detailed in Section I1l-B with max-min fair band-
roughly becomes the order of transferring a block. Thigidth allocation across tree sessions, given any initied pa
enables AFR to achieve fine-grained adaptivity to dyition ratio vectorx(1) > 0, i € N, and a file of infinite

namic Internet traffic. length, the partition ratia; (n) converges geometrically to
The proposed approach does not incur a significaq‘t given in Eq. (3).

amount of control overhead: the total number of feedbagkoof: See the Appendix.

messages generated in our solution for a single file transTheorem 2 suggests that dynamic interactions among
fer ismP[£ whereB denotes the block size (each receivejyeriay paths sharing physical resources are not likely to
generatesm[é} feedback messages). This overhead lisad to instabilities.
further alleviated with TCP’s piggyback mechanism [16],
where a receiver does not have to send a separate TCP _ _
acknowledgment. D. AFR prototype implementation
In this section, the prototype implementation of AFR is
described. We have implemented AFR in multi-threaded

C. Convergence C on the Linux system. As with most end-system ap-

With the proposed approach in Section 1lI-B, initia”yproaches, each overlay path is realized by TCP connec-
the source has no knowledge of the path characteristil@N- These connections are used to create sessions from
However, it learns path quality information from pasfthe source to intermediate relays(receivers) which in turn
block transfers, and uses these to update partition ratig€ate sessions to other receivers. The average throughput
A natural question to ask is whether this procedure wouY@/ue associated with tree sessioim our analysis, now
converge, and if so, how quickly when the network capag0rresponds to the worst case average throughput among
ity is static (i.e., there is no other interfering traffichat M TCP connections relaying th chunk.

is, irrespective of the initial chunk sizes, will the itdvat 5An extension to asynchronous updates subject to persiseat-

algorithm converge to the partition ratio vector given ifhg in bounded time for each tree session should be straigafd
Eq. (3)? [17].

1: receive the list of receivers to run experiments in similar environments to those pre-

2: while file f not completely downloadedio sented in [1]. We ran experiments by varying the source,
3 concurrently keep reading data framy and other recejver nodes’ locations, and the number of participants,
receivers and report representative results involving the 9 hosts
4. if data is coming fronmg then shown in Table I. Table Il shows the five different con-
5 forward them to other receivers tent distribution configurations used to obtain the results
6. endif below. For performance results of FastReplica with vari-
7 if each chunk completely downloadttkn ous configurations, refer to [1].
8 send feedback messagetpcontaining its aver-
age throughput value no | utexas.edu | | | source] receiver set
o endif o gaischeda| | O] ™ | mEmm
10: end while nz | umich.edu CONFIGZ | v | To.ns,nz.ns,ma,
ng ucla.edu Ns, Ng, Ng
Fig. 6. AFR algorithm for receivers. Ns cam.ac.uk CONFIG 3 no N1, N2, N3, N4
ne | caltech.edu CONFIG4 | m No, Ns, Ne, Ng
Figures 5 and 6 exhibit pseudo-codes describing the bg-n7 | upenn.edu CONFIG5 | no n,ny
haviors of the source and receiver respectively in AFR!_"e | utah-edu
The file is sent block by block. Each block is partitoned =~ TABLE | TABLE Il

into mchunks depending on the current partition ratio ve®ARTICIPATING NODES. CONFIGURATIONS.

tor. 8 In the AFR implementation, the source does not

walit for the arrival of all feedback information from pre-))

vious blocks prior to sending the next block — this should The. performancg metrics we measurgd |.nclu.de: 1)
be contrasted with the approach discussed in Section Hf}€ Primary metric in the papeoverall re_pllcaltlog time

B. To expedite the file transfer, the source keeps puéﬂ%)(di’ and (2) theaverage replication timeg; 5, Gk.

ing blocks, and changes partitions only when the updatéiie measured times do not include any overheads that
throughput information is available. In order to handigight be incurred due to the reintegration of chopped seg-
highly variable Internet traffic, the partition ratio vectoments.

was obtained by taking a weighted average between thd-or ease of exposition, we define the percgrtedup
previous partition ratio vectog(n— 1), and new estimate of schemer over schemé as 10Qrz /ry — 1)% whererz

for the partition ratio vectox™"%(n) as shown on Line 7 in andry are replication times oZ andY schemes respec-
Figure 5. The impact of the moving average parametertively. Thus, for example, 30% speedup of schefrmver

and block size is studied in Section IV-B. schemeZ means that schemé is 1.3 times faster than
schemeZ. Unless explicitly mentioned, all results are av-
eraged over 10 different runs and the vertical lines at data
points represent 90% confidence intervals.

We conducted experiments of the prototype of AFR im-
plementation over the Internet testbed [8]. The conduct%d
experiments are not intended to be representative of typ-
ical Internet performance, however, they do allow us to Exploiting heterogeneous network pathsWe exam-
evaluate and validate the implementation and practical #3€d performance results for AFR and FR under CONFIG
pects Of our approach. The goal for the experiments ls In thIS experiment, 8MB fi|eS are tranSferred from the
to study (1) how the application-level load balancing ca¥purce to receivers and we used a block size of 512KB
improve FastReplica, (2) what elements achieve such iifith o = 0.1 in AFR. (Later, we will discuss the im-

provements, (3) the impact of setting parameters in AFRact of varying block size and on the performance of
AFR.) Figure 7(a) shows the overall and average replica-

tion times for AFR and FR. AFR outperforms FR: there
are 26% and 18% speedups of AFR over FR for overall
Since the primary goal for the experiments is to evaénd average replication times respectively. We plot a par-
uate the performance of AFR against FR, we attemptédular realization of the partition ratio vectors for AFR a
6Since the ratios are not integer valued, the floor operasioiséd to a funcUo_n of the block index l-n Flgu-r? 7(b)'- Note that -the
assign the appropriate number of bytes to each chunk, thitis — summation of each element in partition ratio vectors is 1.

|Bx(n)|. Then, the remaining bytes were distributed among chunkd the beginning of a file transfer, the partition ratio vec-
with the higher partition ratios in a round-robin manner. tors stay fixed at 0.125, i.e., source uniformly assigns traf

IV. EXPERIMENTS

Performance results

A. Experimental Setup and Metrics

fic load to each of chunk. Once feedback messages céigure 7(b). Specifically by observing the block index,
taining throughput information are available at the sourc&here the partition ratio has converged, one can roughly
the source employs non-uniform partitions for next blodkfer convergence time. In Figure 7(b), the time taken
transfer. Observe that partition ratios in AFR keep evolfrom the beginning to the delivery of 6th block is 6.65
ing attempting to converge to ‘good’ partitions reflectingeconds, which can be considered as an approximate con-
inherent network path characteristics. In contrast, thie paergence time. However, note that the concept of the con-
tition ratio vectors for FR are fixed at 0.125 for the entirgergence rate in the theoretical model can not be exactly

file transfer irrespective of quality of paths. mapped into one in the real situation, since the experiment
was performed in the actual network with possibly chang-
2 025] o ¥ ing state due to dynamics in the network. Furthermore, in

Il Overall
[Average

the theoretical model, when a source calculates the parti-
tion ratio vector an™ block, the throughput information
achieved afn— 1)" block is available. However, note that

Time (sec)

1 01 \SoeDaassss in the practical situation, this will not be the case since a
. oo _...-==+""] source needs to keep sending blocks without waiting for
the previous block’s achieved throughput feedback.
’ R o ® Bookindex 0 Adapting to dynamic environments. Next we stud-
(a) Overall & Average time. (b) Partition ratio vectors for i€d the potential benefit of AFR from being adaptive to
AFR. dynamic traffic loads. For this, we ran the following two

Fig. 7. Performance results for AFR and FR under CONFIG 1. experiments on CONFIG 5 in Table Il. For the first exper-
iment, the sourceg transfers an 8MB file to receivens;

The better performance of AFR results has seve/dldn7- For the second experiment, as with the first one,
sources: first, AFR exploits inherent (static) heterog8o Sends an 8MB file. However, 5 seconds after initiating
neous network paths, and second, AFR adapts to dynaffig transfer, we deliberately generate interfering tréyic
traffic environments. Interestingly, we observed fairl{PTcing N7 to transmit a 32MB file to all the hosts in Table
tight confidence intervals on our measurements during JufXCept forno andmy. This interference traffic liminy's
experiments, which indicates the network traffic loads (ci"ding ability resulting in an increase in the replication
PlanetLab) are fairly stable. To verify this, we also corfiMe- Here, we used a block size of 128KB amé 0.1
ducted the following experiments: we collected partitiof?r AFR.
ratio vector values at the end of file transfers using AFR, 30
and used them as the initial partition ratio values in FR | e
scheme instead of equal partition ratio values. This FR-
variant scheme can factor out the performance benefit ob-
tained by adapting to bursty traffic loads, but holds perfor-
mance benefit from being aware of inherent heterogeneity
of network capacities. We observed that the replication
times are slightly higher than but very close to those of |
AFR. We conclude that the performance benefits of AFR (mal) (orma) (@omamic) (@ymami)
over FR mainly comes from being adapting to heteng_i_g. 8. Performance results for AFR and FR with/without dyi@a
neous network paths rather than to more dynamic trafigyironments.
loads. Note that using previous file transfer information

to generate non-uniform initial partition ratio vectors as Figure 8 exhibits the performance results for AFR and
in this experiment can help AFR to quickly converge tgR with and without traffic interference. In the first exper-
correct values and eventually expedite file transfers. iment without traffic interference, we see a 5% speedup
In Section Ill, we show exponential rates of convergain of AFR over FR in the overall replication time.
gence, under a static scenario for a simplified model. Ofis with previous experiments, this gain comes from ex-
goal however is to implement and use this scheme in prauieiting static heterogeneous network paths. However, in
tice, to see the adaptivity and convergence characteristibe second experiment with traffic interference a speedup
in a practical setting. In the practical setting, the conveof 28% was obtained. To study how these gains were
gence time can only be approximately inferred based anhieved, we plot typical partition ratio vectors for the
the dynamics of the partition ratio vector evolution, e.gtwo experiments in Figure 9. Initially, both vectors fol-

Time (sec)
= = N
o o o

3]

= = the chunk going ta1,, but coming back to previous par-
0.65[= %7 0.651 == %7
o o tition vectors after 1MB file transfers. (This again shows
o_SSW 0ss the ability of AFR to adapt to dynamic environments.) As
os . o=t expected, the value aof determines the degree of respon-
B o siveness. As with block size, there are tradeoffs in select-
4 f ™] ° s . . . ’ .
0_035 T 025 MM% ing a. A large a will quickly track changes in network
R Pl e == state, but experience hlghgr vgrlablllty due to the mea-
plackindex poeknde surement noise as shown in Figure 10(b). A snoals
(@) Normal (b) Dynamic conservative and may not gain benefits from being adap-

Fig. 9. Partition ratio vectors with/without dynamic emsiments. tive to dynamic network changes.

low similar patterns before around 20 blocks. However _ y e
while vectors of the normal case settle down to arour = asos

constant value (0.6, 0.4) until the end of file transfer, d?nos{%
of dynamic case keep reducing the fraction of chunéz0
associated with noda;. This is because AFR can ac-
count for the limited sending ability af; after 5 seconds
and adapt to it. Note that there is no additional contr

overheads incurred to account for these dynamic envirc =z wa O w0 w0 150 20 250

512]
Block size (KB) Block index

ments. By S|mpl_y placing different traff_|c Ioads_ at thQa) The impact of varying blockb) Partition ratio vectors for AFR
source based on in-band measurement information, Akfe on the performance of AFRith a = 0.1, 0.5.

effectively deals with varying Internet traffic potentiall

achieving significant performance benefits. We beliey§y. 10. The impact of varying parameters on the performarice
this feature of AFR can be more important in a highlypFR.

dynamic network environment.

Overall replicati
=
o)

Varying parameters. We fix the moving average pa- ol 1 verage ol £ verage
rametera to 0.1 and change the block size from 128KB » ®
to 1024KB under CONFIG 1 to study the impact of differ-
ent choices for the block size on the performance of AFR.
Figure 10(a) shows the impact of varying block size on 5 w0

Time (sec)
8 8

ec)

g

el
Tim

@

8

overall replication time when sending 8MB files. When SR m o su o me O wm m o su s

blocks are two large, we lose opportunities to respond to (a) CONFIG 1. (b) CONFIG 2.

dynamic changes in network bandwidth. At the extreme “raoss N v

end where block size is equal to the file size, no adaptation = p e

is performed. On the other hand, there are large overheads 3" g

incurred in processing feedback messages and reintegra- £ |

tion when blocks are too small. Figure 10(a) illustrates . .

this tradeoff. iE BEN SEN SEN SEENE AN EEN N
To assess the impact of differemtvalues on the perfor- (c) CONFIG 3. (d) CONFIG 4.

mance of AFR, we varied under CONFIG 1. However Fig. 11. Performance results under CONFIG 1-4.

we did not see much change in the performance. This

is because the network is fairly stable. Thus, we ran theThe degree of heterogeneityWe conducted additional
following experiments to see how differeatvalues be- experiments under diverse configurations including two
have in AFR: under CONFIG 5, the source sends 32M&her schemesSequential UnicagtSU) measures the file
size files, and 10 seconds latertransfers 1MB files to transfer time from the source to each receiiratepen-
{n2,n3,n4,n5,n6,Ng}. We fixed block size to 128KB anddentlyvia unicast (i.e., in the absence of other receivers),
testeda = 0.1 and 0.5 values. Figure 10(b) shows pagnd then takes the worst case transfer time over all re-
tition ratio vectors for the experiments. We observe thativers assuming these times could be realized in parallel.
both partition ratio vectors track down the change of neBU is a hypothetical “optimistic” construction method for
work bandwidth during 1MB file transfer a. That is, comparison purposes first proposed in [Bjultiple Se-

in the middle of file transfer, AFR puts a larger portion oguential Unicast(mSU) takes the same approach as SU

10

except thatm (the number of receivers) concurrent unitn Bullet [19], nodes initially construct a tree structuipeit
cast connections are used to realize the file transfer. THan use additional parallel downloads from other peers.
is, the file is equally partitioned intm chunks and those A sender disseminates different objects to different nodes
chunks are delivered via parallel connections from the Thus, RanSub [24] is used to locate peers that have dis-
source to the receiver. We use this hypothetical schemgdimt content. Even after locating peers with disjoint con-
provide lower bounds on performance. tent, Bullet requires a reconciliation phase to avoid recei
Figures 11(a)-(d) show the performance results undag redundant data. This reconciliation is done using the
CONFIG 1-4. We find that AFR consistently outperformapproach proposed in [25]. BitTorrent [21] and Slurpie
FR over all configurations. We observe that the degree[@R] find peers using dedicated servers, calletkers
performance gains are proportional to the amount of hetadtopology serversespectively, whose role is to direct
erogeneity in the overlay paths. The more heterogene@upeer to a random subset of other peers which already
overlay paths are, the more performance gains can be bhve portions of the file. In both schemes, a random mesh
tained using AFR. AFR and FR outperforms SU under ali formed among peers to download the file. Trackers
configurations. The key features of AFR and FR over Sid BitTorrent may have a scalability limit, as they con-
are the use of (1) concurrent multiple connections and {@uously update the distribution status of the file. The
diverse paths. The performance benefits resulting frdgturpie approach adapts to varying bandwidth conditions,
these two features are extensively discussed in [1]. Pand scales its number of peers in the subset based on esti-
haps surprisingly in our experiments we found the perfamating bandwidth and group size.
mance of AFR and FR was better than that of mSU underin contrast, the target environment for FastReplica [1]
CONFIG 2 and 4. Since mSU employs multiple concuand AFR is for push-driven CDNs or Web cache sys-
rent connections as with AFR and FR, we can conclugems since a sender initiates file transfer and knows the
that this performance benefit comes from the path diversgceivers a priori. FastReplica [1] and AFR can be viewed

ties offered by AFR and FR. as an extreme form of exploiting multiple parallel con-
nections - a full mesh structure is used. It is not unusual
V. RELATED WORK for less resource intensive techniques to evolve into more

A Iarge amount of research has recently been pursdgéource intensive ones as processing and storage become

towards supporting multicast functionality at the appliCa{nexpensive, and if they provide additional flexibility. &h

tion layer. In this section, we review work sharing sjmiransition from IP multicast to an application-level multi

ilar goals as ours, i.e., specifically targeting bandwidtff2St and fron’rl]a single tre? r|1|1ult|ca;]s_t o m‘élmljzle thIt'CaSt
intensive applications. trees or mesh structures follows this trend. Furthermore,

Overcast [4] organizes nodes into a source-rooted mallce CDNs or Web cache systems are usually equipped

ticast tree with the goal of optimizing bandwidth usag\é(ith dedicated high performance network resources, their

across the tree. The work in [18] proposes an optim%‘?ncems are at how to fully utilize their resources.

tree construction algorithm based on the assumption thaf\0te that most schemes employing file splitting use a
congestion only arises on access links and there are @€ty of éncoding schemes, e.g., erasure codes [26], [27]
lossy links. These two approaches are based on buildffgMultiple Description Coding (MDC) [28] to efficiently
asinglehigh bandwidth overlay tree using bandwidth ediSseminate data or recover from losses. These types of
timation measurements. Accurate bandwidth estimati6Rc0ding schemes can also be used in AFR.

requires extensive probing [14], [15]. Furthermore, since
only a single multicast tree is used, the selection of the
tree significantly impacts performance.

Recently, several approaches employing file splitting In this paper, we explored the application-level load
and multiple peer connections over multiple tree or mesfalancing idea over a fixed overlay structure in Fas-
structures have been proposed [19], [20], [21], [22], [LiReplica framework: exploiting ‘good’ paths by putting
Splitstream [20] splits the content intostripes, sending more data on them. The salient feature of FastReplica,
them over a forest of interior-node-disjoint multicasee which differentiates it from existing approaches, is that i
The focus in this work is on constructing multicast treequires virtually no control overhead to construct over-
such that each intermediate node belongs to at most dae structure. Via theoretic analysis and experiments, our
tree while distributing forward load subject to bandwidtivork showed that addition of application-level load bal-
constraints. In Splitstream, tree construction and maini@ncing in FastReplica can achieve significant speedup by
nance are done in a distributed manner using Scribe [28habling fine-grained adaptivity to dynamically varying

VI. CONCLUSIONS ANDFUTURE WORK

Internet traffic without the need for reconfiguring the over{9]
lay structure.

Here, we conclude our paper with enumerating sorfié!
interesting future topics that remain for FastRepIic[qll
framework. The first one is for FastReplica in the “Large”
[1]. In[1], we suggested that if there are a large number of
receivers, a hierarchicé-ary tree might be constructed.[*?]
Note that in the FastReplica in the “Small”, we deliberp 5
ately chose to ignore topological properties among mem-
bers to eliminate the overhead for constructing an overlay
structure. However, topology closeness within a replicdf!
ing group in FastReplica in the Large, is important. How
one should seledtand how one should cluster the nodegs;
in the replication groups, are the important research $opic
to support an efficient FastReplica-style file distribution
a large-scale environment. {17]

Second one is to do more extensive experimentations
for performance results comparing with various file distr{18]
bution systems mentioned in Related Work section. Even
though the target environment is somewhat different, suala]
experiments would provide a quantitative comparison and
pros / cons of each solution. Moreover, extensive perfor-
mance experiments could lead optimiztion on the selec-
tion of parameterso(and block size) and provide more?¥l
concrete recommendation based on different input param-
eters and environments.

Lastly, extending the proposed application-level loddl]
balancing technique in FastReplica to peer-to-peer tyB@l
applications, is an interesting future topic.

(23]
REFERENCES [24]
[1] L. Cherkasova and J. Lee, “FastReplica: Efficient lartedis-
tribution within content delivery network,” idth USENIX Sym-
posium on Internet Technologies and Systems (USPDSB.
[2] P. Francis, “Yoid: Extending the Internet multicastitecture,” (25]

in Tech. reports, ACIRI, http://www.aciri.org/yqid000.

[3] Y. Chawathe Scattercast: An architecture for Internet broadcast
distribution as an infrastructure servic®h.D. thesis, University [26
of California, Berkeley, 2000.

[4] J.Jannatti, D. Gifford, K. Johnson, F. Kasshoek, and’'JoGle,
“Overcast: Reliable multicasting with an overlay netwbrlaq [27]
USENIX OSDJ2000.

[5] Y. Chu, S. Rao, S. Seshan, and H. Zhang, “Enabling contere (28]

ing applications on the Internet using an overlay multicashi-

tecture,” inProc. ACM SIGCOMM2001.

D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, “ALMI:

an application level multicast infrastructure,” 8rd USENIX

Symposium on Internet Technologies and Systems (USHCH).

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. i8hen

“A scalable content-addressable network,” Hroc. ACM SIG-

COMM, 2001.

L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “Adplint

for introducing disruptive technology into the Interneiri Pro-

(29]
[6]

(8]

11

M. Sharma and J. W. Byers, “How well does file size predict
wide-area transfer time?,” i@lobal Internet 2002.

D. Bertsekas and R. Gallagefata Networks Prentice Hall,
1992.

F. P. Kelly, A. K. Maullo, and D. K. H. Tan, “Rate controh i
communication networks: shadow prices, proportionanfss
and stability,” inJournal of Operational Research Societp98.

J. Roberts and L. Massoulig, “Bandwidth sharing anchiadion
control for elastic traffic,” inTC Specialist Seminad 998.

T. Lee, Traffic management & design of multiservice networks:
the Internet & ATM networks Ph.D. thesis, The University of
Texas at Austin, 1999.

K. Lai and M. Baker, “Measuring link bandwidths using e-d
terministic model of packet delay,” iRroc. ACM SIGCOMM
2000.

M. Jain and C. Dovrolis, “End-to-end available bandihidVea-
surement methodology, dynamics, and relation with tcpughe
put,” in Proc. ACM SIGCOMM2002.

16] D. E. Comer,Internetworking with TCP/IPPrentice Hall.

D. Bertsekas and J. TsitsikliBaralle and Distributed Computa-
tion:Numerical MethodsPrentice Hall, 1997.

M. S. Kim, S. S. Lam, and D. Lee, “Optimal distributioreé for
internet streaming media,” iRroc. IEEE International Confer-
ence on Distributed Computing Syste2803.

D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, ‘Bu
let: high bandwidth data dissemination using an overlayhyies
in Proc. of ACM Symposium on Operating Systems Pringiples
2003.

M. Gastro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowst,
and A. Singh, “Splitstream: High-bandwidth content dtsttion

in cooperative environments,” iRroc. of ACM Symposium on
Operating Systems Principle®003.

“Bittorrent,” htt p: / / ww. bi t conj urer. org/Bi t Torrent.

R. Sherwood, R. Braud, and B. Bhattacharjee, “Slurpieoop-
erative bulk data transfer protocol,” IEEE Infocom 2004.

A. Rowstron, , A. Kermarrec, M. Gastro, and P. Druschel,
“SCRIBE: The design of a large-scale event notificationadsir
tructure,” inNetworked Group Communicatipp001.

D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and Aakdat,
“Using random subsets to build scalable network servicés,”
4th USENIX Symposium on Internet Technologies and Systems
(USITS) 2003.

J. Byers, J. Considine, M. Mitzenmacher, and S. Rostotimed
content delivery across adaptive overlay,” Rnoc. ACM SIG-
COMM, 2002.

] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A it

fountain approach to reliable distribution of bulk datay’ACM
SIGCOMM 1998.

M. Luby, “LT codes,” inThe 43rd Annual IEEE Symposium on
Foundations of Computer Scien@902.

V. K. Goyal, “Multiple description coding: Compressioneets
the network,” inlEEE Signal Processing Magazin2001.

D. Bertsekas and J. N. Tsitsikli®arallel and Distributed Com-
putation:Numerical method$rentice Hall, 1989.

APPENDIX

Notations: Here we formally define the hierarchy bot-
tlenecks related to max-min fairness that will be useful in
the sequel. We define tHair share y = ¢;/m{ at a link

. " . S A
ceedings of the First ACM Workshop on Hot Topics in Networkk € £ @s @ fair partition of capacity at the link in thé' 1

2002.

level of the hierarchy, wheray' = || is the number of

12

sessions through Then, the set of 3t level bottleneck by (6) and (7), wherg is the number of levels in the hier-

links and sessions are defined as follows: archy.
. . - In the sequel, when we refer to the hierarchy of bot-
LW = {lervseys, as=bY = minyi}, tlenecks we mean thaitial hierarchy structure when all

sessions are active, i.&,= 5. Consider arh" level link
| € (™ of this bottleneck hierarchy. Note that the ses-

wherea: is the bandwidth assigned for the sessiofihus sions sharing link can be partitioned into those in levels

) . i =uh () ' ' th
£ is the set of ¥ level bottleneck links such that the1 toh ie., St U121[5' Ns'V]. For sessions in thgat_ ,
sessions insY traversing these links are allocated tni§Ve! Of the hierarchy, suppose we order them by their fin-
minimum bandwidth (‘fair share’) in the network, denote hing times (.e., when they depart from the system) on

th £ j th i
by bD). These two sets make up th tevel of the bottle- €N file transfer. We leg (n) denote the session fo
neck hierarchy. leave the system amornj§' level sessions at thé" step!

The next level of the hierarchy is obtained by applyin-gghus we have that

the same proc_edure to a red_uced netwo_rk. '!'he reduced () <ty(n) <...<ty(n),
network is obtained by removing the sessions {H. The S :
capacity at each link i \ £™® traversed by sessions in

o iterati
5@ is reduced by the bandwidth allocated to these s¢& S/eK =M. Note that at each teration step, the order

sions. The bottleneck links @ are also removed from "™ which sessions complete may change. For the session

the network. Thus (@ ands (@ are obtained based on (), we letp!(7()) be the number of sessions at §&

network with fewer links and sessions and adjusted capa)al%\fel whose departure times are equal or less than that of

ities. The set of ™ level bottleneck links, sessions, anéessmm{“(n). Then, note that at tm%“(n)’ the ngmber of

bottleneck rateb? are defined as before. This procesimainingj™ level flows in the system isy — p!(g'(n))

continues until no sessions remain. sincem’ is the total number Ofth level sessions in link.
Let u™ = UﬂzlL(k) andy (W — UE:l_g (K. These are Figure 12 illustrates the notation we have defined.

defined as the cumulative sets of bottleneck links and ses-

sW = {ses|ses andl e M},

sions, respectively, i.e., for levels 1 loof the hierarchy. S ¢
The fair sharef (h > 2) of link I in 1 € £\ « ™Y is de- " 'eve< & > i:i);; .
fined as the fair share of the available capacity at the link T Pmes
in the ht" level of the hierarchy: g) S HE) =2
jmlevel< > mlj_v@)zs
Y= G —B" 6 o
[”\h () : . .
. S > P =3
o _ _ ! '9V< 5 mi-pi(s)) =2
whereB™ = 5 npn-1 8 is the total flow of sessions >

through| which are constrained by bottleneck links in ° Departure Time

u"D, andm' = |5, \ v "Dy, wheren{' > 0, is the num- Fig. 12. Sessions in tH&" level link.

ber of sessions throughwhich are unconstrained by the

links in ("1, Based on the fair share, the seht¥flevel Proof of Theorem 2. We will prove Theorem 2 by in-

(h > 2) bottleneck links and sessions can be defined asduction on thenitial bottleneck hierarchy which is con-
structed when all sessions are in the system. Without loss

£ ={lec\u of generality, we let the file size be 1,i.é(n) =1, n> 1.
vses, at=b"=min y, Step 1: Consider a ¥ level bottleneck link € £ @),
ke \u (-1 Note that for any sessiomin $; and at any iteration step

s =(ses\vMVsegandle LM} (7) n

Here ~ M is the set oht" level bottleneck links such that b < ag(n). (8)
the sessions iz (" are allocated the minimum fair share

in the reduced network. We repeat this procedure unlt'ﬂdeEd the bandwidth rates for all first level sessions are

we exhaust all the links and sessions resulting in a mgn—decreasmg over time. That is, once sessions start to

erarchy of bottleneck links and corresponding sessionror simplicity, we may suppress an iteration step index iations,
L@ c@ands®, ... 5@, whichis uniquely defined e.g.ty (M =ty (n).

13

leave the linkl, the additional bandwidth available to ther. We will show tha%(n), i €{1,...,m"} will converge

remaining sessions can only result in an increase in ey This can be done by finding a lower bound and an

s, theit" session to leave the system among the first levebnvergence of the lower bound Let tlmin(n):
sessions on link, we have a lower bound on its transfer min ts(n)] and t"™*(n)= max [ts(n)]. Thus,
))

time as follows: sesiny (1 sesinw (-1
t™"(n) andt®(n) are the earliest and the last departure

Yk-1% () time among sessions from levels 1 fo— 1) at link |
- = tﬁl(n)‘ ©) respectively. Now, defing'(n) as the difference between
these two times, i.e!'(n) = tM®(n) —t™M"(n). Consider
The numerator is the amount of work to be done frofihe time-varying bandwidth allocation for ai" level
the first to thei! session. The denominator is the largesfession depicted in Figure 13.
amount of bandwidth available for transferring this data.

This is because during(n) there are at leastng' — i) .
flows each with a bandwidth allocation of at ledst . S Lowerbounc
Thus we have that b} Lowerbound |
& : Lower bound
b < (n) = Xﬁl(n) < Xﬁl(n) 0 [0) r‘.mi‘in) =
tgl(n) Egl(n) \h—l Time
U NP
- Zikzlxsi(n) (6 = (my —1)b™"] (10) Fig. 13. Bandwidth allocation for ani level session.
B asl(n— 1) EPTREY 1 ° From the beginning of the transferg8"(n), no session
T Sliag(n- 1) (& = (m = 1)b] (D in 5 190D leaves linkl. Thus, at leash™ is allocated

(n—1) to anh'" level session during this period.
< _ & o — (mt—1)b®]. (12) © After t™¥(n), there are only" level sessions remain-
~ (i-1)bW +ag(n-1) ing, which traverse link. A lower bound on bandwidth

_ _ allocation for such sessionsdg/m! sincem" is the entire
We obtain Eqg. (11) from Eq. (10) by using Eq. (5) anflymper ofh" level sessions at the beginning. Note that

we have Eq. (12) from Eq. (11) by Eqg. (8). Thus, the lower bound is larger thant” by Eq. (6).
aﬁl(n— 1) e It is possible for theh™ level session to be less than
lag.(n) —bM| < ' : : b only during the period from{™"(n) to t™®(n). This
(i-1pf H—a.il(n— 1) may happen if sessions lower thbfi level change their

bottleneck links to link during this period. For example,
6 — (m = b)) — b (13) consider Figure 3(b). Initially, the bottleneck hierarchy
b (i — 1) (asl (n—1) — b)) is preserved before sessie_p leaves the s_ystem. How-
' _ ‘ (14) ever, onces; departs, sessios changes its bottleneck
(i=1)bW +ag(n—1) link from I to I, and equally sharing the capacity lof
(15) with s3. This results in reduction ak’s bandwidth from
2 to 1.5. During this period of lengti'(n), we can have

. . . a lower bound on bandwidth for an" level session by
. : -1)>
Eq. (15) s obtained from Eq. (14) by usieg(n—=1) = o "1 1o er hound is the first share of the linki.e..

1 . r‘r\lfl [sil
b, Letg = o Then,Vs € 5| we have that yi. Based on the above observations, we have the follow-

ing lower bound for the average throughput of the bifly

< i_Tl|aﬁl(n—1)_|o<l>|.

las(n) — b | < & las(n—1) — b, (16) level session:
(h)min G ¢h
Since 0< & < 1, ag(n) converges geometrically it = a{‘(n) _ Vg™ () + s E (n)
a. B ()
Step 2: Suppose that for afic v ("=1), ag(n) converges . (b — &)ef(n) T
geometrically toat. Consider arht" level link | € £ ® =b" — TR) =b" -9'(n) (17)
|

and as" € 5;Ns™, which is theit" session to leave the .
system among" level sessions in link at iteration step <as(n), sesinNs™.

14

The above lower bound is the average throughput (alnstamK_:A(b(h) —€), we have that
time t"®in Figure 13, and it is a worst case scenario in- _
cluding a maximal amount timg(n) at the lower rate [T(R(N),ax(n)) —T(0,a9(n))| <K[R(n) -0 (21)

1&7- By our induction hypothesis, fasc v "1, ay(n)

converges geometrically &, soel(n) also converges to _NOte thaR(n) is a linear combination a5 (n), soR(n)
0. Also note that aslh(n) goes to oﬁh(n) also goes to 0 will converge geometrically to 0. Furthermoiig(R,) isa
and eventually the lower boura(n) converges geomet- PSéudo-contraction [29], which convergesTi®, b™) =
rically to b®. b, i.e.,
Convergence of the upper boundext, consider the fol-

(h)
lowing lower bound for the finishing time of sessigh T a§ TPl <
ty () = S le— XJ() <to(n). (18) ST 1pj(§) M +ag(n)
6 — 3" (m —pJ@))en (n-1) ‘ s 1pl(§p>b< >_b<h>

As with Eq. (9) in Step 1, the numerator is the amount of ZJ 1P @) aﬁ‘
work to be done prior ta@"s departure and the denomi- < Elag(n) ,0<&<1 (22)
nator is an upper bound on the available bandwidth. In a

similar manner to Step 1, we have that So,
al'(n) <ag(n) < Iaﬁn(+1)- |— IT(R(n) agh(n))—T(O b(“))l

ag(n—1)[o - 3o — pl(e))al(n—1) < IT(R(),ag(n) a-ih (0,ag(n)) = T(0,b™)]
STpi(Ea (n—1) + (P(E) - Dal'(n— 1) +aa(n—1) <K|R(n) 0|+a|a§n b, 0<a<1.
(19)

Thus, ag(n) converges geometrically o). This com-
By replacmg Eq (17) into Eq. (19) and using the facﬁletes the proof.

thatc = z _,m/'bl)), we have that

ag(n—1)[3}-1 ()b + P(n—1)]
S S P00 b — QD+ ag(n—1)

where P(n) = 30,(m - pi(¢)g () and
Q) = M 1pi(g)d(n) — N(n). Now letting
R(n) = maxP(n),Q(n)], we have an upper bound
for an average throughput:

ap(n— 131 p(sHbV —R(n—1)]
(= z?-l PI(S)B0) b +R(n—1) +ag(n -1
_aﬁh =T(R(n —1)7a§(n_1)) (20)

Now we will show thatg (n) converges tb" geomet-
rically. Consider‘l’(-,a,#q). We have that

0
ma kT Rash\ Alag) -
' —2a 3", pl ()b + agb — (ag)?
372 PI ()b — b +R(—1) T ag(n— 1)1

For anye > 0, by our Iower bound, there is amsuch
thata§(a.$ M —g . Thus, letting the Lipschitz

