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Abstract—This paper considers the design of cross-layer op-
portunistic transport for stored video over wireless networks with
a slow varying (average) capacity. We focus on two key ideas:
(1) scheduling data transmissions when capacity is high; and (2),
exploiting knowledge of future capacity variations. The latter is
possible when users’ mobility is known or predictable, e.g., users
riding on public transportation or using navigation systems. We
consider the design of cross-layer transmission schedules which
minimize system utilization (and thus possibly transmit/receive
energy) while avoiding, if at all possible, rebuffering/delays, in
several scenarios. For the single-user anticipative case where all
future capacity variations are known beforehand; we establish the
optimal transmission schedule is a Generalized Piecewise Con-
stant Thresholding (GPCT) scheme. For the single-user partially
anticipative case where only a finite window of future capacity
variations is known, we propose an online Greedy Fixed Horizon
Control (GFHC). An upper bound on the competitive ratio
of GFHC and GPCT is established showing how performance
loss depends on the window size, receiver playback buffer, and
capacity variability. Finally we consider the multiuser case where
we can exploit both future temporal and multiuser diversity. Our
simulations and evaluation based on a measured wireless capacity
trace exhibit robust potential gains for our proposed transmission
schemes.

I. INTRODUCTION

Video delivery over wireless networks is expected to grow
quickly in the next few years. Recent studies (see [1]) show
that mobile data traffic will increase 25-fold between 2011 and
2016 and about two-thirds of the traffic will be video including
real-time video, video on demand (VoD), video conferencing
etc. The wireless infrastructure can hardly keep pace with
such growth, thus it is important to make effective use of the
available wireless resources in video delivery.

Even the successor to current cellular systems, 4G broad-
band, promises not only improvements in overall capacity
but also, unfortunately, higher degrees of capacity variability,
particularly in the case of mobile users. Our premise in this
paper, is that approaches can be devised that exploit such
capacity variations, and the nature of the underlying services.
Indeed, mobile devices are increasingly equipped with video
playback buffers, giving more flexibility in exploiting capacity
variations without interrupting playback.

In this paper we design of application-layer opportunistic
transport for stored video over wireless networks with a slow
varying (average) capacity. We focus on two key ideas: (1)
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scheduling data transmission when capacity is high; and (2),
exploiting knowledge of future capacity variations. The latter
is possible when users’ future locations are known, which can
in turn be used to infer their future wireless coverage/capacity.
For example this is the case for users on public transportation
buses/trains, or others using navigation systems in their cars.
In fact, even without prior knowledge of vehicle routes, one
can still infer future vehicle’s mobility. Indeed [2] demonstrate
the effectiveness on real data of “K Nearest Trajectories” an
algorithm to predict future capacity variations for vehicles.
More generally, humans’ mobility patterns tend to be highly
predictable, [3] show a potential 93% average ‘predictability’
suggesting knowing the future (in this regard) is quite reason-
able.

Let us consider a simple example. Suppose a server is
delivering a constant-bit-rate stored video to a mobile user.
The length of the video is 4 seconds and the streaming rate
is 200kbps, thus the size of the video is 800kb. Suppose
the capacity variation is as shown in Fig. 1. If the video
is delivered at a fixed rate of roughly 200kbps then two of
the four slots are partially utilized, leading to a 75% system
utilization. However if the video is delivered greedily, i.e.,
at the full available capacity, then transmission completes in
2.5secs, resulting in utilization of 62.5%. However, it is easy to
see that an optimal schedule would send at a full rate in Slots 1
and 3, and transmit nothing in Slots 2 and 4, which guarantees
smooth video playback and results in a minimal utilization
of 50%. This scheme transmits when channel conditions are
good, i.e., we set a threshold and transmit only when the
capacity is above the threshold. The threshold choice, however,
depends on the future capacity variations and video playback
requirements. We will call this a ‘thresholding scheme’ and
define it formally in the sequel.

Related Work. There has been a substantial body of literature
on stored video delivery. Below we focus on a few key works
that are akin, in terms of methodology but differ terms of
their objectives. Indeed to our knowledge there is no prior
work on devising transport protocols that exploiting (future)
capacity variations. For example, a piecewise constant-rate
transmission scheme was developed in [4], wherein dynamic
programming was applied to find the optimal schedules for
a variety of optimization criteria, in particular minimizing
the maximum transmission rate subject to a maximum initial
delay, minimizing the maximum transmission rate subject to
a maximum temporal-jump delay, and minimizing the average
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Fig. 1. The channel variations in four time slots. Transmitting the video
at peak capacity in the first and third slots and transmitting nothing in the
second and fourth slots, gives the lowest system utilization.

temporal-jump delay subject to a constraint on the maximum
transmission rate. Similarly [5] suggest several ways to reduce
transmission rate variability for stored video delivery and pro-
pose an optimal smoothing scheme which is further explored
in [6], [7]. However, if one or more users will see highly
variable wireless capacity, it should be clear that smoothing
transmissions may not be the right objective; indeed, ‘bursty’
transmissions might be preferable. [8] consider a scenario
where video streams share a source server. They propose
a centralized prefetching protocol which schedules transmis-
sions to users whose playback buffer queues are shortest.
This does not explicitly account for capacity variations –
present or future. The work in [9], proposes a decentralized
protocol targeting a scenario where streams from multiple
video servers share a multiplexer and dynamically adjust their
transmit windows in a window flow control mechanism to
mitigate packet loss. The key differentiating element of our
work is a formal investigation of how knowledge of future
capacity variations could be used towards reducing utilization
(increasing capacity) while minimizing video rebuffering.

Contributions and Organization. This paper proposes a new
class of cross-layer transmission schedules which minimize
system utilization (and thus possibly transmit/receive energy)
while avoiding, if at all possible, rebuffering/delays. In Sec-
tion II we study the single-user anticipative case where all
future capacity variations are known beforehand; we formally
establish the optimal transmission schedule is a Generalized
Piecewise Constant Thresholding (GPCT) scheme. In Section
III we consider the single-user partially anticipative case where
only a finite window of future capacity variations is known, we
propose an online Greedy Fixed Horizon Control (GFHC). An
upper bound on the competitive ratio of GFHC and GPCT is
established clearly indicating how performance loss depends
on the window size, receiver playback buffer, and capacity
variability. Finally in Section IV, we consider the multi-user
anticipative case, and we develop two multiuser schemes
based on GPCT, which are suboptimal, but straightforward to
implement, and able to achieve good performance. Simulations
described in Section V explore the performance gains achiev-
able for a typical scenario and explore the impact of correlation
in capacity variations on these gains. Our simulations show the

potential gains for such opportunistic transmission schemes
exhibit an up to 70% reduction in the system utilization.
Section VI briefly concludes the paper.

II. SINGLE-USER ANTICIPATIVE CASE

We will first consider the anticipative case where a server is
delivering video content to a single user and future variations
in wireless capacity are known beforehand.

A. Model Formulation

Consider a video server streaming a stored video to a mobile
user via one (or more) base station(s). Suppose the wireless
part is the bottleneck so that the application layer throughput
mainly depends on the wireless capacity. Further let us focus
on slow variations in wireless capacity, e.g., on the order
of secs, so that timely end-to-end feedback actions can be
realized before the capacity changes too much. Let c(t) be
the average1of the peak capacity at time t, and r(t) be the
actual transmission schedule such that 0 ≤ r(t) ≤ c(t). Then
r(t)/c(t) can be roughly regarded as the system utilization at
time t. Let s(t) be the cumulative amount of data sent and
received2, i.e. s(t) =

∫ t
0
r(τ)dτ .

Now suppose the video to be transmitted has a finite length
T (seconds), a finite size S (bits), and define two functions
l(·) and u(·) associated with requirements on the video’s
transmission. Suppose the transmission begins at time 0 and no
interruptions (rebuffering) happen during the transmission. Let
l(t) denote the cumulative data consumed if the user watches
the first t secs of the video, where t ∈ [0, T ]. Note that if the
user’s playback buffer has finite size, s/he can only receive
a limited amount of data before viewing it. We define u(t)
to be the maximum cumulative amount of data that can be
received by the user over [0, t], where t ∈ [0, T ]. Further
we assume l(·) and u(·) are both nondecreasing piecewise
constant and right continuous functions as depicted in Fig. 2,
where jumps happen at times t0, t1, t2, ..., tn. The jumps might
correspond to individual (or groups of related, e.g., intra-
coded/predicted) frames being displayed and which are no
longer necessary to reconstruct future content. Note that the
jump points are chosen such that t0 = 0, tn = T , and
t0 ≤ t1 ≤ t2 ≤ ... ≤ tn. Also note that it is possible for
ti = ti+1 where ti is a jump point of u(·) and ti+1 is a jump
point of l(·). Further let Il = {i : ti is a jump point of l(·)}
and Iu = {i : ti is a jump point of u(·)} denote the sets of
jump point indices for the two piecewise constant functions.
Note that if the client has a fixed playback buffer size b, then
there is a vertical gap of size b between u(·) and l(·). However
Fig. 2 shows a more general case where there may be time
varying buffer allocations for playback.

Next, we define the cost function in our model. The cost
is a sum of two terms: the average system utilization costu
and the rebuffering time costr. Assuming no rebuffering, the

1The average is taken over periods on the order of seconds to smooth out
fast capacity variations.

2We assume that transport exploits playback buffering and thus can be made
reliable.
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Fig. 2. The piecewise constant functions l(·), u(·) and the cumulatively
transmitted data s(·). l(t) is the cumulative amount of data consumed (i.e.
watched) by the user over [t0, t]. u(t) is the maximum cumulative amount
of data that can be received by the user over [t0, t]. Jumps happen at times
t1, t2, t3, ..., tn. s(·) lies between l(·) and u(·) if there are no playback buffer
underflow and overflow.

average system utilization during video watch period [0, T ]
can be defined as:

costu =
1

T

∫ ∞
0

r(t)

c(t)
dt.

Note we assume r(t) = 0 after the transmission finishes, so
the above integration actually has a finite time horizon. We
use the above cost function versus

∫ T
0
r(t)dt/

∫ T
0
c(t)dt be-

cause the former properly captures the reduction in utilization
in a system with time varying capacity using opportunistic
‘scheduling.’

The rebuffering cost depends on the waiting time a user
experiences when buffer underflow occurs during video play-
back. We assume that playback buffer underflows can only
happen at the jump points for l(·), i.e., times in Il. This is a
reasonable assumption since the video playback can be paused
only after an entire frame is displayed. Further we denote the
associated waiting times as τ0, τ1, ..., τn. Note the functions
u(·), l(·) and the jump points in Fig. 2 are known before
transmission, and thus they do not take into account delays
due to rebuffering times. In other words, t0, t1, t2, ..., tn are
fixed constants before transmission, which may be shifted by
τ0, τ1, ..., τn, which are variables whose values depend on the
actual wireless capacities and rebuffering during transmission.

Our rebuffering cost is defined as

costr = a

n∑
i=0

τi,

where a is a constant. In practice it is natural to put a higher
priority on minimizing rebuffering over system utilization.
Thus the constant a should be large enough such that one
cannot obtain a lower total cost by increasing rebuffering
time to reduce system utilization. Suppose we know upper
and lower bounds on the wireless capacity, denoted cmax
and cmin > 0. Then adding a waiting time τ can result
in a maximum reduction in system utilization of no more
than τ(cmax−cmin)

Tcmin
, which is obtained by assuming video

content of size cmaxτ is transmitted at rate cmax during
the waiting time τ instead of being transmitted at rate cmin

during a period of cmaxτ
cmin

, which results in a reduction of
cmaxτ
cminT

− τ
T = τ(cmax−cmin)

Tcmin
in system utilization. Thus if we

set a = cmax−cmin

Tcmin
, we achieve our goal of strictly prioritizing

minimization of rebuffering cost over system utilization.
Also note that if we assume cmin > 0, the normalization

factor T in costu can be replaced by T̃ = max[ S
cmin

, T ]
ensuring the utilization cost remains below 1 without changing
the overall character of the objective function. Corresponding-
ly we choose a = cmax−cmin

T̃ cmin
to prioritize minimization of

rebuffering. We will use these from now on.
When minimizing our cost, we are constrained to ensure

that the playback buffer does not drop below 0 or exceed
the available buffer. This can be captured by the following
constraints:∫ ti+

∑i
k=0 τk

0

r(t)dt+ b0 ≥ l(ti), ∀i ∈ Il∫ ti+
∑i

k=0 τk

0

r(t)dt+ b0 ≤ u(ti), ∀i ∈ Iu

where b0 is the initial buffer content (in bits) that is not
accounted in the transmission schedule (often, it is 0). Note the
upper bound in the above integration intervals is the current
total time ti +

∑i
k=0 τk which consists of the current time

of the video ti and the cumulative rebuffering time
∑i
k=0 τk.

We call these buffer underflow and overflow constraints re-
spectively. Also we have the terminal condition:∫ tn+

∑n
k=0 τk

0

r(t)dt+ b0 = l(tn),

which captures the fact that the video transmission must finish
prior to final video playback.

Letting ~τ = (τ0, τ1, ..., τn) and r(·) denote the rebuffering
times and video transmission schedule, we summarize our
overall goal in terms of the following optimization problem:

Optimal Streaming Problem

min
r(·),~τ

1

T̃

∫ ∞
0

r(t)

c(t)
dt+

cmax − cmin
T̃ cmin

n∑
i=0

τi, (1)

s. t.
∫ ti+

∑i
k=0 τk

0

r(t)dt+ b0 ≥ l(ti), ∀i ∈ Il,∫ ti+
∑i

k=0 τk

0

r(t)dt+ b0 ≤ u(ti), ∀i ∈ Iu,∫ tn+
∑n

k=0 τk

0

r(t)dt+ b0 = l(tn).

We say the above optimization problem is a video delivery
optimization with initial state b0 and terminal state l(tn). Note
this problem is not convex since the constraints are not convex.
However it always has a feasible solution if cmin > 0. In the
sequel, we will first deal with the simpler situation where the
optimization has a feasible solution without rebuffering, i.e.,
~τ = ~0. Subsequently we generalize the solution to situations
where rebuffering is necessary.

t0 t 1 t 2 t 3 t 4 t 5 t 6 tn-1

u(t)

tn

l(t)

......

s(t)
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B. Piecewise Constant Thresholding (PCT) Algorithm Under
No Rebuffering Assumption

Assume c(·) is such that there is a feasible solution to
Optimal Streaming (1) without rebuffering, i.e., ~τ = ~0. Note in
the model above, the constant a is chosen large enough such
that costr dominates costu in the sense that we cannot achieve
a lower cost by adding rebuffering time. Thus under the no
rebuffering assumption, Optimal Streaming (1) is equivalent
to the Min Utilization (2) given below.

Min Utilization Problem

min
r(·)

1

T̃

∫ tn

0

r(t)

c(t)
dt, (2)

s. t.
∫ ti

0

r(t)dt+ b0 ≥ l(ti), ∀i ∈ Il,∫ ti

0

r(t)dt+ b0 ≤ u(ti), ∀i ∈ Iu,∫ tn

0

r(t)dt+ b0 = l(tn).

In this subsection we determine delivery schedules that solve
this problem, i.e., schedules r(·) achieving a minimum utiliza-
tion while ensuring the cumulative data s(·) lies between u(·)
and l(·) as shown in Fig. 2. Before introducing our algorithm
let us define some terminology.

Definition 1: A single threshold transmission scheme on an
interval [ts, te] with initial state s(ts) and terminal state s(te)
is such that for t ∈ [ts, te]:

r(t) =

{
c(t) if c(t) > α or c(t) = α, t ≤ τ
0 if c(t) < α or c(t) = α, t > τ

where α ∈ [0,maxt∈[ts,te] c(t)], and τ ∈ [ts, te] are thresholds
such that: ∫ te

ts

r(t)dt = s(te)− s(ts).

Further, we denote by βα,τ,ts(t) =
∫ t
ts
r(τ)dτ + s(ts) the

cumulative amount of transmitted data for t ∈ [ts, te].
Note we refer to this as a “single” threshold scheme

although in fact it is a pair: α is a threshold on wireless
capacity, and τ is a threshold on time. Basically the scheme
transmits data only when the capacity is above the threshold α.
Thus continuously decreasing α will increase the cumulative
amount of data transmitted with a potential for jumps if the
capacity stays constant at some levels. By varying τ we
can further control transmission so that the cumulative data
transmitted varies continuously over its range.

The goal of the single threshold transmission scheme is
to find α and τ , such that given an initial state s(ts) and
wireless capacity c(t), t ∈ [ts, te], the terminal state s(te) is
achieved. The thresholds can be computed by using binary
search algorithm. However in practice, we can assume that
the capacity c(·) is a piecewise constant function, i.e., we can

use a discrete-time system model, in which case we assume
the interval [ts, te] is divided into m slots and the capacity
function is constant on each slot. We denote the ith slot as
[pi−1, pi], i = 1, 2, ...,m and denote the associated capacity
as ci. Under these assumptions, the thresholds of the single
threshold transmission scheme can be found by using a sorting
algorithm, which provides a unique one-to-one mapping f :
{1, 2, ...,m} → {1, 2, ...,m} such that f(i) < f(j) if and
only if ci > cj or ci = cj , i < j. Note this mapping sorts the
capacities of the slots in descending order. Then we can sum
the sorted capacities up from the highest value to the lowest
value, such that the sum exceeds s(te) − s(ts). Suppose this
happens after we add the kth sorted slot, and the sum exceeds
s(te) − s(ts) by s. Then the thresholds are α = cf−1(k) and
τ = pf−1(k) − (pf−1(k) − pf−1(k)−1)

s
cf−1(k)

.
Also note that under a single threshold transmission scheme,

the server only has two choices: send at peak capacity or send
nothing. Hence, the corresponding utilization is proportional
to the length of time the server is sending data.

We define two types of constraint violations associated with
Min Utilization (2). We refer to a buffer underflow violation
when one of the first set of constraints (buffer underflow
constraints) in Min Utilization is not met, and we refer to
buffer overflow violation when one of the second set of
constraints (buffer overflow constraints) is not met.

Let u[a,b], l[a,b], c[a,b], r[a,b] and βα,τ,ts,[a,b] denote the
values of the functions u(·), l(·), c(·), r(·) and βα,τ,ts(·) on
the interval [a, b] respectively. Then the optimal transmission
schedule for (2), r?[t0,tn] can be calculated using Piecewise
Constant Thresholding (PCT) algorithm (Algorithm 1) with
initial state ss = b0 and terminal state se = l(tn).

Algorithm 1 Piecewise Constant Thresholding (PCT)
Input: ss, se, l[t0,tn], u[t0,tn], c[t0,tn]

1: m← 0, r?[t0,tn] ← 0
2: ts ← t0, te ← tn
3: repeat
4: (tb, sb, r

?
[ts,tb)

) =
Breakpoint(ss, se, ts, te, l[ts,te], u[ts,te], c[ts,te])

5: m← m+ 1
6: ss ← sb, ts ← tb
7: until ss = se

Output: r?[t0,tn], m

The logic underlying PCT is as follows. First try to apply the
single threshold scheme on the interval [t0, tn] with initial state
ss and terminal state se. If the resulting transmission schedule
r[t0,tn] meets the buffer overflow and underflow constraints,
then it is the final solution; we call it a 1-piecewise constant
thresholding solution. Otherwise if any of the constraints is
violated, divide the time interval [t0, tn] into two subintervals
[t0, tb) and [tb, tn] at some point tb (we call it a breakpoint),
which is carefully chosen such that we can once again run the
single threshold transmission scheme on [t0, tb) to obtain a
feasible solution which is output as the solution on subinterval
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Algorithm 2 Breakpoint
Input: ss, se, ts, te, l[ts,te], u[ts,te], c[ts,te]

1: loop
2: Apply single threshold transmission scheme on [ts, te]

with initial state ss and terminal state se to get α, τ
and r[ts,te], βα,τ,ts,[ts,te].

3: if βα,τ,ts,[ts,te] does not violate any buffer underflow or
overflow constraints then

4: tb ← te, sb ← βα,τ,ts(te)
5: break
6: else
7: find the largest i, ts ≤ ti ≤ te, such that the

violations on [ts, ti] are of the same type
8: if the violation type is buffer overflow then
9: se ← u(ti), te ← ti

10: else
11: se ← l(ti), te ← ti
12: end if
13: end if
14: end loop
Output: tb, sb, r[ts,te)

[t0, tb). Then the remaining subinterval [tb, tn] is treated as a
new interval and we apply the same procedure to it as on
[t0, tn]. This recursive procedure is realized by a repeat loop
in Algorithm 1, where in each loop, the function “Breakpoint”
is called to calculate the breakpoint tb, and the transmission
schedule r(t) for t ≤ tb. The function “Breakpoint” is
described in Algorithm 2, where we use a loop to find the
breakpoint, and in each loop the single threshold transmission
scheme described in Definition 1 is used. Finally if Algorithm
1 takes m loops to finish, then we end up with m subintervals
and we call the solution an m-piecewise constant thresholding
solution.

The following theorem states that PCT provides an optimal
solution for Min Utilization (2).

Theorem 1: If there exists a feasible solution to Min U-
tilization (2), then PCT determines an optimal transmission
schedule.

The proof of Theorem 1 can be found in [10]. For suc-
cinctness we leave it out, but the general idea is simply to
recognize that when the single threshold transmission scheme
is not feasible, then the optimal transmission will have to
break up the transmission schedule into subintervals where
fixed thresholds will be used.

C. General Piecewise Constant Thresholding (GPCT)

In this subsection, we generalize PCT to solve Optimal
Streaming (1), i.e., including the possibility of rebuffering.
By the results in Subsection II.B, we immediately have the
following corollary:

Corollary 1: If there exists a feasible solution to Optimal
Streaming (1) with ~τ = ~0, then PCT solves the optimization.

However, if Optimal Streaming (1) does not allow a feasible
solution with ~τ = ~0, then rebuffering must happen and PCT

cannot be used directly. Instead we require a modification of
PCT to deal with the rebuffering issue. Before we state the
new algorithm, we introduce some definitions.

Definition 2: We say a transmission scheme is greedy if
it sends as much as possible given the capacity and playback
buffer constraints, i.e., the greedy transmission scheme tries
to keep the buffer full. During the transmission the video
plays as long as the playback buffer is not empty and re-
buffering happens only when the buffer underflows. Consider
a greedy transmission scheme starting at time t1, and for
which rebuffering happens at time t2 where t2 > t1. We say
this rebuffering is an I-rebuffering if 100% utilization was
achieved during (t1, t2). Otherwise, if the greedy schedule on
(t1, t2) was precluded from realizing 100% utilization, i.e.,
due to a limited playback buffer, we call the rebuffering a
B-rebuffering.

Note if the playback buffer size is infinite (or at least larger
than the video size), then there can only be I-rebufferings.
While B-rebufferings are caused by playback buffer over-
flows. During a video transmission, both I-rebufferings and
B-rebufferings can happen. Suppose they happen at the jump
points tn1

, tn2
, ..., tnk

, denote the corresponding rebuffering
times as τn1

, τn2
, ..., τnk

, and define d(ni) =
∑i
j=1 τnj

, the
cumulative rebuffering time up to time tni .

With the above definitions we can state our solution to
Optimal Streaming (1) as General Piecewise Constant Thresh-
olding (GPCT) (Algorithm 3) with initial state ss = b0 and
terminal state se = l(tn).

In GPCT, we first use greedy transmission scheme to find
where the rebufferings need to happen and identify all the
associated rebuffering types. If no rebuffering happens, then
the algorithm degenerates to PCT, and Corollary 1 ensures
optimality. Otherwise if an I-rebuffering occurs, we have
to use greedy transmission scheme to minimize the waiting
time since our rebuffering cost dominates the utilization cost.
However if a B-rebuffering happens, we can use PCT before
the latest playback buffer overflow, which is denoted as t̃(ni)
in the algorithm, to achieve the minimum system utilization.
Thus we have the following theorem.

Theorem 2: The General Piecewise Constant Thresholding
(GPCT) solves the Optimal Streaming Problem (1).

III. SINGLE-USER PARTIALLY ANTICIPATIVE CASE

A. Fixed Horizon Control Scheme

Now we consider a ‘partially anticipative’ case in which
only a finite window of future wireless capacity variations
are known beforehand. Assume that at time t, we know the
capacity c[t,t+w], where w is the future window size, and we
do not know the capacity beyond t + w. Thus we cannot
use an offline scheme like GPCT. However we can apply the
GPCT algorithm on [t, t + w], which provides a baseline for
online schemes. We propose a Greedy Fixed Horizon Control
(GFHC) transmission scheme in Algorithm 4 below.

GFHC is an online scheme that successively applies GPCT
on a sequence of w-sized intervals. For each interval it must
set the initial buffer state ss, and target buffer state s′e at
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Algorithm 3 General Piecewise Constant Thresholding
(GPCT)
Input: ss, se, l[t0,tn], u[t0,tn], c[t0,t0+T̃ ]

1: Perform greedy transmission on [t0,∞] until se −
ss of the video is delivered. Suppose the rebuffer-
ings under the greedy scheme happen at jump points
tn1
, tn2

, ..., tnk
, denote the corresponding rebuffering

times as τn1
, τn2

, ..., τnk
, and identify their rebuffering

types (I or B). If a B-rebuffering happens at tni for
some i ∈ [1, k], denote t̃(ni) = max{t < tni + d(ni) :
playback buffer is full at t}

2: tn0
← 0, d(ni)← 0, i← 1

3: while i ≤ k do
4: if the rebuffering at tni

is an I-rebuffering then
5: do greedy transmission on [tni−1 + d(ni−1), tni +

d(ni)]. Let the corresponding transmission schedule
be the solution r?[tni−1

+d(ni−1),tni
+d(ni))

6: else
7: run PCT on [tni−1 + d(ni−1), t̃(ni)] with

input max[l(tni−1), ss], u(t̃(ni) − d(ni−1)),
l[tni−1

,t̃(ni)−d(ni−1)]
, u[tni−1

,t̃(ni)−d(ni−1)]

and c[tni−1
+d(ni−1),t̃(ni)]

; and do greedy
transmission during [t̃(ni), tni + d(ni)]. Let
the corresponding transmission schedule be the
solution r?[tni−1

+d(ni−1),tni
+d(ni))

8: end if
9: i← i+ 1

10: end while
11: if nk < n then
12: Run PCT on [tnk

+ d(nk), tn + d(nk)] with
input max[l(tnk

), ss], se, l[tnk
,tn], u[tnk

,tn] and
c[tnk

+d(nk),tn+d(nk)], and let the corresponding trans-
mission schedule be the solution r?[tnk

+d(nk),tn+d(nk)]

13: end if
Output: r?[t0,tn+d(nk)]

Algorithm 4 Greedy Fixed Horizon Control (GFHC)
Input: ss, se, l[t0,tn], u[t0,tn], c[t0,t0+T̃ ]

1: i← 0, d← 0
2: repeat
3: s′e ← ss+mi, where mi is the maximum amount of da-

ta that can be delivered (i.e., using greedy transmission)
during [t0 + iw, t0 + (i+ 1)w]

4: run GPCT on [t0 + iw, t0 + (i + 1)w] with input
ss, s′e, l[t0+iw−d,t0+(i+1)w−d], u[t0+iw−d,t0+(i+1)w−d]
and c[t0+iw,t0+(i+1)w)]. Let the resulting transmission
schedule be r?[t0+iw,t0+(i+1)w), and the rebuffering time
be τ

5: d← d+ τ
6: ss ← ss +

∫ t0+(i+1)w

t0+iw
r?(t)dt

7: i← i+ 1
8: until ss = se

Output: r(·)

the end of the interval. The latter is done in Step 3 of
Algorithm 4, where s′e ← ss + mi, which is the maximum
one could achieve at the end of the ith interval using greedy
transmission. The initial state ss is initialized and subsequently
updated (Step 6) once the transmission schedule for the current
window is determined. GFHC runs GPCT on w intervals,
during which it computes a transmission schedule and may
incur rebuffering delays. Thus in Step 4, the constraints have
been shifted by d the cumulative rebuffering incurred so far.
The resulting transmission schedule r? is the concatenation of
those computed across w-windows.

Note in Step 3 shown in Algorithm 4 the target buffer state
s′e is chosen in a “greedy” manner, i.e., as high as possible
in order to minimize rebuffering time. This is why we call
the proposed scheme “greedy fixed horizon control”. In fact,
one can in principle define different kinds of Fixed Horizon
Control (FHC) schemes by using different strategies in Step
3 of Algorithm 4 to choose s′e. For example, we can define a
“resource saving FHC” by setting s′e = max[ss, l((i+ 1)w)].

B. Competitive Optimality of GFHC

To evaluate the performance of GFHC, we use the “compet-
itive ratio” which is defined as the ratio of the cost of GFHC
and the optimal offline cost achieved by GPCT under the same
problem settings (i.e., the same capacity variations, l(·), u(·),
etc., but they are known ahead of time). The following theorem
gives an upper bound on the competitive ratio.

Theorem 3: Given a maximum playback buffer size b,
video length T and size S, window size w, maximum capacity
cmax and minimum capacity cmin > 0, the competitive ratio
of GFHC to GPCT satisfies:

costG

costO
≤ 1 + max

[
1

cmin
,
T

S

]
b

w
(
cmax
cmin

− 1).

Note that when S
T > cmin: i.e., the overall average video

compression rate exceeds the minimum capacity the upper
bound in Theorem 3 can be viewed as having two parts.. The
first, b

wcmin
, captures the size of the playback buffer relative

to the minimum amount of data that will be delivered in future
window. If these are close clearly the offline opportunistic
scheduling realized by GPCT will not achieve great gains
over GFHC. The second, cmax

cmin
− 1 captures the worst case

variability in capacity. In general, the worst case performance
of GFHC is closer to GPCT under a larger minimum capacity,
a larger prediction window size, a smaller playback buffer
size and a smaller ratio between the maximum and the lowest
capacities. The proof of Theorem 3 is as follows.

Proof: We denote by costO = costOu + costOr and
costG = costGu + costGr the optimal costs achieved by
GPCT and GFHC – the two terms correspond to the system
utilization and rebuffering time. We also let rO() and rG()
denote the optimal transmission schedules for GPCT of GFHC
respectively. Suppose t0 = 0 and let sO(t) =

∫ t
0
rO(τ)dτ and

sG(t) =
∫ t
0
rG(τ)dτ be the the cumulative transmitted data

for the two schemes. The greedy nature of GFHC ensures
that sG(t) ≥ sO(t),∀t ≥ 0, i.e., GFHC is always ahead of
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GPCT, and so it has a rebuffering cost no higher than GPCT.
Since GPCT strictly prioritizes minimization of rebuffering
cost over system utilization, it follows that GPCT achieves
the lowest possible rebuffering cost. We can conclude that
costGr = costOr . Next we develop an upper bound for the
difference in the utilization costs, i.e., costGu − costOu .

Suppose GFHC uses k window intervals, each with length
w. On the ith interval, 1 ≤ i ≤ k, the amount of data delivered
by GFHC is denoted as δGi = sG(iw) − sG((i − 1)w). Also
denote δOi = sO(iw) − sO((i − 1)w) as the amount of data
delivered by the optimal scheme during the ith interval. Then
we define two index sets as follows:

I1 = {i : δGi ≤ δOi };

I2 = {i : δGi > δOi }.

Note that ∀i ∈ I1, GFHC delivers less data than the optimal
scheme on interval i. We can define an intermediate trans-
mission scheme on this interval, which starts at initial state
sG((i− 1)w), transmits at following rate rI(t):

rI(t) = rO(t)1{t∈[(i−1)w,t̃]},

where t̃ ≤ iw is chosen such that,∫ t̃

(i−1)w
rI(t)dt = sG(iw)− sG((i− 1)w).

It is easy to check that such a scheme is well-defined, and we
can claim that the utilization cost of the intermediate scheme
on interval i is no more than that of GPCT, since it transmits at
the same rate as GPCT on [(i− 1)w, t̃], and transmits nothing
on [t̃, iw]. Note on interval i, GPCT transmits an amount of
δOi − δGi more than the intermediate scheme. Transmission of
the extra data requires an extra utilization no less than δOi −δ

G
i

T̃ cmax
,

which is obtained by assuming that the data is transmitted
at maximum capacity thus achieving the best savings. Thus
we have, costIu,i ≤ costOu,i −

δOi −δ
G
i

T̃ cmax
. Also since sG(t) ≥

sO(t),∀t ≥ 0, we have that sI(t) ≥ sO(t) on interval i, which
in turn implies costIr,i ≤ costOr,i (in fact they are equal). Thus

we have costIi ≤ costOi −
δOi −δ

G
i

T̃ cmax
.

However note that, the intermediate scheme and GFHC start
at the same initial state and end at the same terminal state
on interval i. Also note that GFHC uses GPCT on interval
i and thus is optimal under fixed initial state and terminal
state on that interval. As a result, we have costGi ≤ costIi . In
conclusion we have

costGi ≤ costOi −
δOi − δGi
T̃ cmax

.

By similar arguments we have, ∀i ∈ I2,

costGi ≤ costOi +
δGi − δOi
T̃ cmin

,

where cmin comes from assuming the extra data is transmitted
at the lowest capacity giving an upper bound on the additional

utilization.
Summing up all the intervals we get:

costG ≤ costO −
∑
i∈I1

δOi − δGi
T̃ cmax

+
∑
i∈I2

δGi − δOi
T̃ cmin

(3)

Note since GPCT and GFHC transmit the same amount of
data at last, there must be:∑

i∈I1

(δOi − δGi ) =
∑
i∈I2

(δGi − δOi )
def
= A.

Also note that on each interval i, the difference between δOi
and δGi cannot exceed the buffer size, i.e., |δOi − δGi | ≤ b, and
since there are at most T̃

w intervals, we have that

A ≤ T̃ b

w
. (4)

Then we can rewrite inequality (3) as

costG ≤ costO +A(− 1

T̃ cmax
+

1

T̃ cmin
). (5)

Combining inequalities (4) and (5), we have

costG ≤ costO − T̃ b/w

T̃ cmax
+
T̃ b/w

T̃ cmin

≤ costO +
b(cmax − cmin)
wcmaxcmin

.

Finally, dividing by costO and noticing that costO ≥ costOu ≥
1
T̃

S
cmax

, we obtain that

costG

costO
≤ 1 +

b(cmax − cmin)T̃
wcminS

,

≤ 1 + max[
1

cmin
,
T

S
]
b

w
(
cmax
cmin

− 1),

where we used the fact that T̃ = max[ S
cmin

, T ].

IV. MULTIUSER ANTICIPATIVE CASE

In Section II we proposed GPCT and proved that it solves
the Optimal Streaming problem (1). However, the algorithm
was developed for a single-user case and it is hard to generalize
it to the multiuser case. In this section, we develop sub-optimal
multiuser schemes based on GPCT which have reasonable
complexity.

A. Multiuser Piecewise Constant Thresholding Under Propor-
tional Capacity Allocation (MTP)

Suppose a base station is serving n mobile users and user i
has a peak capacity ci(t) at time t, i = 1, 2, ..., n. The peak ca-
pacities are assumed to be known beforehand. A simple way to
deal with the multiuser issue is to make an up-front allocation
of resources among the n users in a round robin fashion and
thus the allocated capacity for user i is c̃i(t) = ci(t)

n , which
is proportional to his/her peak capacity ci(t). Each user i is
then assumed to have a capacity c̃i(t) which is independent
of other users’ capacities and thus we can apply GPCT to
each user separately. We call this scheme multiuser piecewise
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constant thresholding under proportional capacity allocation
(MTP). MTP is straightforward to implement since every user
can independently run a single-user algorithm on his/her own
based on knowledge of his/her capacity and the number of
users sharing the bottleneck, and requests transmission from
server accordingly. Thus the scheme works in a decentralized
way and there is no need for a centralized controller. However,
although it applies GPCT which exploits temporal diversity
in capacity variations well, MTP is based on a proportional
capacity allocation which does not directly exploit multiuser
diversity. Below we consider how both might be exploited.

B. Multiuser Piecewise Constant Thresholding Under Oppor-
tunistic Capacity Allocation (MTO)

We introduce a centralized scheme which exploits both
temporal and multiuser diversity. Consider a base station
serving n mobile users. To reduce the system utilization,
there is a central scheduler at the base station which knows
future capacity variations of the mobiles. The system operates
in discrete (slotted) time and each time slot the scheduler
chooses which of the video users could be served in the slot.
In order to exploit capacity variations across different users
while ensuring ’short-term’ fairness, we use the opportunistic
resource allocation scheme with a token counter mechanism
proposed in [11]. It works as follows.

Each user i is associated a token counter Ti. At the
beginning, all the token counters are set to be the same positive
integer value m, which is referred to as the token limit. Each
time slot, the scheduler searches among the users who have a
non-zero token counter and chooses the user with the highest
capacity3. Ti is decremented if user i is served in that time
slot. When all the token counters are zero, they are reset to
m. Using the same token limit m for all the users guarantees
that the system allocates the same number (m) of time slots
to each user within m · n slots. Subsequently each user has
his/her allocated capacity c̃i(t) and thus GPCT can again be
applied independently to each user. The resulting scheme is
denoted the multiuser piecewise constant thresholding under
opportunistic capacity allocation (MTO). MTO is of higher
complexity than MTP since it is based on a centralized
controller. However it can achieve a lower system utilization
because it not only exploits the temporal diversity for each
user but also exploits the multiuser diversity across all the
users via the token counter mechanism. The choice of the
token limit m affects the performance of MTO in that a
higher token limit allows the system to exploit the multiuser
diversity more aggressively and results in a higher decrease in
the system utilization, however, a smaller token limit enforces
more temporal fairness and results in a shorter rebuffering
time. We will see this point later in Section V.

V. SIMULATION RESULTS

Performance sensitivity of GFHC. We ran a simulation
to explore the performance sensitivity of GFHC to window,

3Selection could be weighted or driven by quantiles to address fairness
concerns.

playback buffer and temporal correlation in capacity varia-
tions. We considered a server delivering a 10-minute constant
bit rate video, 900kbps, to a receiver. We simulated a slotted
system, with slots of length 0.1sec. Thus the jump points for
l(·) are at 0.1sec, 0.2sec, 0.3sec,.. with values l(0.1m) = 9m,
for m = 1, 2, ..., 6000. The initial buffer b0 was set to 0.

Capacity variations, were modeled via a discrete time
Markov chain whose states represent capacities, specifically
0, 250, 500, . . . , 7500kbps. The transition probability matrix
for the chain is selected so that the invariant is a pre-
defined stationary distribution corresponding to the PDF for
the throughput of a randomly positioned user in an realistic
HSPA system single antenna equalizer on the receiver under
medium system load. We consider two such matrices which
differ in the speed at which capacity varies. Specifically in the
first case transitions can only happen between the two nearest
states (e.g., from 250kbps to 500kbps) which results in slow
variations (i.e., with temporal correlation); in the second case
we simply take iid samples of the throughput PDF (i.e., with
no temporal correlation).

Finally we let the receiver’s playback buffer size b vary
from 1620, 1890, 2160, 2430 to 2700kb, and the window size
w from 10, 20, 50, 100, 300 to 600sec. Each scenario was
simulated 20 times to obtain average results.

Fig. 3. (a) The performance of GFHC under correlated capacity variation.
(b) The performance of GFHC under iid capacity variation. Each point shows
the percent rebuffering time versus (1 − utilization) for a specific playback
buffer size and window size. The points on the bottom right of the figures
correspond to best performance.

The results shown in Figs. 3 (a) and (b) correspond to
the scenarios with correlated and iid capacity variations
respectively. The figures show the percent rebuffering time
versus (1 − utilization) for varying playback buffer and
window sizes. Note the points on the bottom right of the
figures correspond to best performance, i.e., lowest system
utilization and rebuffering time. The figures exhibit the
following three observations.
1. For fixed b and capacity variation, increasing w significantly
reduces utilization but does not affect the rebuffering time.
2. For fixed w and capacity variation, increasing b reduces
rebuffering time and results in a marginal decrease in
utilization. Note Theorem 3 suggests that a smaller b should
result in a better performance, but this corresponded to worst
case ‘performance’ vs the averages considered here.
3. For fixed b and w, temporal correlation in capacity variation
results in increased rebuffering and a higher utilization.
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We also evaluated GFHC vs greedy transmission for a wire-
less capacity trace measured from a vehicle driving through
Mountain View, CA. We considered a server delivering a 4min,
900kbps constant bit rate video to a receiver. The capacity
trace was rescaled to have an average rate of 2000kbps. The
playback buffer size was set to be 1/10 of the video size. The
greedy transmission scheme resulted in a 67.69% utilization
and 8.1sec of rebuffering time. The GFHC resulted in the
same rebuffering time, but the utilization was reduced to
29.00%,48.83%,55.17% and 59.44% when the window w was
set to 240, 120, 60, and 30sec respectively. This confirms the
benefit of exploiting anticipated capacity variations for a trace
from a real wireless network.

Performance and comparisons for multiuser algorithms.
We ran simulations to compare the performance of MTP and
MTO versus that of a proportional rate allocation scheme in
which greedy transmission scheme is used and the time slots
are assigned to the mobile users in a round robin fashion
so that the transmission rate to each user is proportional to
his/her peak capacities. In our simulation, we assume a fixed
number of users are being served and each user is watching
a 10-minute video with a constant bit rate of 90kbps. All
the users have the same playback buffer size which was
set to be 18000kb (i.e. one third of the video size), and
they start watching the videos simultaneously. The model
for capacity variations is the slotted model with correlated
variations discussed above.

We let the number of users range from 1 to 12 and repeat
each one 20 times to obtain average results. In MTO, we test
the performance under four token limits which are 1,3,6 and 9.
The average system utilization and average percent rebuffering
time were computed and are plotted in Figs. 4 (a) and (b).

Fig. 4. (a) The system utilization. The proportional rate allocation has the
highest system utilization. MTP and MTO achieve reduced system utilization.
MTO schemes do a little better than MTP. An MTO scheme with a higher
token limit achieves a lower system utilization. (b) The average percent
rebuffering time. The proportional rate allocation and MTP have the same
percent rebuffering time. MTO schemes result in higher rebuffering time
which increases as the token limit increases.

Fig. 4 (a) exhibits the utilization as a function of the number
of users. As can be seen, proportional rate allocation achieves
the highest system utilization; by comparison, MTP and MTO
achieve a 60 − 70% reduction. Alternatively, for the same
system utilization, MTP and MTO might allow 2x-3x more

users. As expected MTO achieves a lower system utilization
than MTP, since it exploits multiuser diversity, and MTO with
a higher token limit results in a lower utilizations. However,
as shown in Fig. 4 (b) this benefit is obtained at the cost
of a additional rebuffering. Fig. 4 (b) exhibits the percent
rebuffering time versus the number of users. It shows that MTP
and proportional rate allocation require the same rebuffering
time, but MTO results in more rebuffering as does MTO with
higher token limits.

VI. CONCLUSION

By leveraging geolocation and contextual information re-
garding users mobility patterns it is possible to predict the
large-scale wireless capacity variations mobile users are likely
to see. In this paper we have developed and analyzed new
cross-layer transport protocols that exploit knowledge of future
capacity variations to deliver stored video (or other files)
efficiently without compromising rebuffering/delays. Our anal-
ysis and simulations suggests this has substantial potential to
increase the ability of wireless systems to deliver stored video
in the case of mobile users which seeing high variability in
their available capacity.
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