
Optimizing Stored Video Delivery For Wireless
Networks: The Value of Knowing the Future

Zheng Lu and Gustavo de Veciana
Department of Electrical and Computer Engineering

University of Texas at Austin

Abstract—This paper considers the design of cross-layer op-
portunistic transport protocols for stored video over wireless
networks with a slow varying (average) capacity. We focus
on two key principles: (1) scheduling data transmissions when
capacity is high; and (2), exploiting knowledge of future capacity
variations. The latter is possible when users’ mobility is known
or predictable, e.g., users riding on public transportation or
using navigation systems. We consider the design of cross-layer
transmission schedules which minimize system utilization (and
thus possibly transmit/receive energy) while avoiding, if at all
possible, rebuffering/delays, in several scenarios. For the single-
user anticipative case where all future capacity variations are
known beforehand; we establish the optimal transmission sched-
ule is a Generalized Piecewise Constant Thresholding (GPCT)
scheme. For the single-user partially anticipative case where
only a finite window of future capacity variations is known,
we propose an online Greedy Fixed Horizon Control (GFHC).
An upper bound on the competitive ratio of GFHC and GPCT
is established showing how performance loss depends on the
window size, receiver playback buffer, and capacity variability.
We also consider the multiuser case where one can exploit both
future temporal and multiuser diversity. Finally we investigate the
impact of uncertainty in knowledge of future capacity variations,
and propose an offline approach as well as an online algorithm to
deal with such uncertainty. Our simulations and evaluation based
on a measured wireless capacity trace exhibit robust potential
gains for our proposed transmission schemes.

I. INTRODUCTION

Video delivery over wireless networks is expected to grow
quickly in the next few years. Recent studies (see [1]) show
that mobile data traffic will increase sevenfold between 2016
and 2021 and about 80 percent of the traffic will be video
including real-time video, video on demand (VoD), video
conferencing etc. The wireless infrastructure can hardly keep
pace with such growth, thus it is important to make effective
use of the available wireless resources in video delivery.

Even the successor to current cellular systems, 4G/5G
broadband, promises not only improvements in overall capac-
ity but also, unfortunately, higher degrees of capacity variabil-
ity, particularly in the case of mobile users. Our premise in
this paper, is that approaches can be devised that exploit such
capacity variations, and the nature of the underlying services.
Indeed, mobile devices are increasingly equipped with video
playback buffers, giving more flexibility in exploiting capacity
variations without interrupting playback.

In this paper we design application-layer opportunistic
transport protocols for stored video over wireless networks
with a slow varying (average) capacity. We focus on two key

ideas: (1) scheduling data transmission when capacity is high;
and (2), exploiting knowledge of future capacity variations.
The latter is possible when users’ future locations are known,
which can in turn be used to infer their future wireless
coverage/capacity. For example this is the case for users on
public transportation buses/trains, or others using navigation
systems in their cars. In fact, even without prior knowledge
of vehicle routes, one can still infer future vehicle’s mobility.
Indeed [2] demonstrate the effectiveness on real data of “K
Nearest Trajectories” an algorithm to predict future capacity
variations for vehicles. More generally, humans’ mobility
patterns tend to be highly predictable, [3] show a potential
93% average ‘predictability’ suggesting knowing the future
(in this regard) is quite reasonable. Moreover, the bit-rate of
videos can be known or predicted ([4]–[7]) in advance, which
provides opportunities for video clients to exploit knowledge
of future capacity variations.

Let us consider a simple example. Suppose a server is
delivering a constant-bit-rate stored video to a mobile user.
The length of the video is 4 seconds and the streaming rate
is 200kbps, thus the size of the video is 800kb. Suppose
the capacity variation is as shown in Fig. 1. If the video
is delivered at a fixed rate of roughly 200kbps then two of
the four slots are partially utilized, leading to a 75% system
utilization. However if the video is delivered greedily, i.e.,
at the full available capacity, then transmission completes in
2.5secs, resulting in utilization of 62.5%. However, it is easy to
see that an optimal schedule would send at a full rate in Slots 1
and 3, and transmit nothing in Slots 2 and 4, which guarantees
smooth video playback and results in a minimal utilization
of 50%. This scheme transmits when channel conditions are
good, i.e., we set a threshold and transmit only when the
capacity is above the threshold. The threshold choice, however,
depends on the future capacity variations and video playback
requirements. We will call this a ‘thresholding scheme’ and
define it formally in the sequel.

Related Work. There has been a substantial body of literature
on stored video delivery. Below we focus on a few key
works that are closest to ours, in terms of methodology, but
differ in terms of their objectives. A piecewise constant-rate
transmission scheme was developed in [8], wherein dynamic
programming was applied to find the optimal schedules for
a variety of optimization criteria, in particular minimizing
the maximum transmission rate subject to a maximum initial
delay, minimizing the maximum transmission rate subject to a

2

0

Capacity

/kbps

400

200

0
t/sec1 2 3 4

Fig. 1. The channel variations in four time slots. Transmitting the video
at peak capacity in the first and third slots and transmitting nothing in the
second and fourth slots, gives the lowest system utilization.

maximum user interaction delay, and minimizing the average
user interaction delay subject to a constraint on the maximum
transmission rate. Similarly [9] suggest several ways to reduce
transmission rate variability for stored video delivery and pro-
pose an optimal smoothing scheme which is further explored
in [10]–[12]. However, if one or more users will see highly
variable wireless capacity, it should be clear that smoothing
transmissions may not be the right objective; indeed, ‘bursty’
transmissions might be preferable.

The key differentiating element of our work from the above
is a formal investigation of how knowledge of future capacity
variations could be used towards reducing utilization (increas-
ing capacity) while minimizing video rebuffering. The idea of
exploiting knowledge of future capacity variations has been
studied by a few works, e.g., [13] formulates multipath video
streaming into an optimization problem under the assumption
that the server can predict accurately the state of the network.
The work however, aims at video distortion reduction, which
is different from our work where we focus on minimizing
system utilization. [14] develops a class of Prediction-Based
Adaptation (PBA) algorithms by utilizing predicted band-
width, which significantly improves video as compared to the
video transport protocols that do not employ such predictions.
However this work focuses on maximizing video QoE, which
is again different from our objective. [15] proposes an optimal
proactive resource allocation which assumes users’ demand
can be tracked, learned and predicted. And predictable peak-
hour requests are served during off-peak time to reduce cost in
the networks. This is similar to our work from the perspective
of exploiting temporal diversity in the future capacity varia-
tions. However it has a much slower time scale, i.e., offloading
traffic from peak time to off-peak time considers a time scale
of hours, as compared to a time scale of seconds in our work.
Also their paper does not consider the delay sensitivity of
video delivery (e.g., rebuffering constraints) as we do. In [16]
the authors exploit future knowledge of capacity variations to
improve the performance of video delivery. Their goal is to

trade off video quality with rebuffering, which is different from
our objective. Also they did not look into the case as we do,
where predictions of future capacity variations have error. [17]
has a similar objective as our work. It first proposes an offline
optimal resource allocation that minimizes system utilization
under perfect capacity predictions, then proposes an online
algorithm to deal with uncertainty in the predictions. However,
[17] is different from our work in the following aspects: (1)
the offline algorithm in [17] only considers the optimization
of one video user and treats all the other users as background
traffic, but in our work we exploit multiuser diversity by
jointly considering video traffic from multiple concurrent
users; (2) we perform analysis and show an upper bound on
the performance degradation caused by prediction error, which
is not studied in [17]; and (3) to deal with prediction error, [17]
proposes an online algorithm that iteratively uses the offline
algorithm in a finite horizon, which has higher complexity and
requires more statistical capacity information, as compared to
our BDT algorithm which does not make use of the offline
optimal algorithm and only requires the prediction of mean
capacity in a finite horizon. [18] proposes a similar framework
but with an extended objective which trades off system utiliza-
tion with video quality, rebuffering and robustness. However
the paper only focuses on the single-user anticipative case;
it does not study the single-user partially anticipative case
and the multiuser case as we do. In [19], [20], the authors
propose a predictive green streaming optimization framework
that exploits rate predictions to optimize several objectives
including minimizing transmission airtime and base station
power consumption. And later in [21] the authors propose a
joint chance-constrained predictive resource allocation aiming
at minimizing the energy consumed by the base stations in
transmitting videos to users while satisfying their QoS level.
Their objectives are similar to our work under the multiuser
case. Also similar to our work, the paper indicates that the
optimal solution is hard to calculate (it has non-convexity)
and seeks sub-optimal solutions instead. But the two papers
take different approaches: the two-stage solution in [21] is a
centralized approach where all the calculation is done on the
base station; whereas in our solution we decouple the multiuser
diversity and the future temporal diversity, which offloads most
of the computational complexity onto each individual client,
and thus allows a light-weight centralized design that has a
lower complexity. Moreover our work stands out from the
aforementioned papers in the aspect that we perform analysis
on the impact of prediction error of future capacity variations
by deriving an upper bound on the performance degradation
of our proposed algorithm caused by prediction error.

Contributions and Organization. This paper proposes a new
class of cross-layer transmission schedules which minimize
system utilization (and thus possibly transmit/receive energy)
while avoiding, if at all possible, rebuffering/delays. We pro-
pose approaches to exploit the knowledge of future capacity
variations and study how to deal with error in the predictions
of capacity variations. In Section II we study the single-user
anticipative case where all future capacity variations are known

3

beforehand; we formally establish the optimal transmission
schedule is a Generalized Piecewise Constant Thresholding
(GPCT) scheme. In Section III we consider the single-user
partially anticipative case where only a finite window of
future capacity variations is known, we propose an online
Greedy Fixed Horizon Control (GFHC). An upper bound on
the competitive ratio of GFHC and GPCT is established clearly
indicating how performance loss depends on the window size,
receiver playback buffer, and capacity variability. In Section
IV, we consider the multi-user anticipative case, and we
develop two multiuser schemes based on GPCT, which are
suboptimal, but straightforward to implement, and able to
achieve good performance. Simulations described in Section V
explore the performance gains achievable for a typical scenario
and explore the impact of correlation in capacity variations
on these gains. Our simulations show the potential gains for
such opportunistic transmission schemes exhibit an up to 70%
reduction in the system utilization. In Section VI we deal with
the uncertainty in capacity predictions. We first propose an
offline approach and show an upper bound on the performance
degradation caused by prediction error. We then propose an
online Buffer-Dependent Thresholding (BDT) algorithm that
only requires the prediction of mean capacity for a finite
window in the future. Simulations show that BDT is effective
and robust. Section VII briefly concludes the paper.

II. SINGLE-USER ANTICIPATIVE CASE

We will first consider the anticipative case where a server is
delivering video content to a single user and future variations
in wireless capacity are known beforehand.

A. Model Formulation

Consider a video server streaming a stored video to a mobile
user via one (or more) base station(s). Suppose the wireless
part is the bottleneck so that the application layer throughput
mainly depends on the wireless capacity. Further let us focus
on slow variations in wireless capacity, e.g., on the order
of secs, so that timely end-to-end feedback actions can be
realized before the capacity changes too much. Let c(t) be
the average1of the peak capacity at time t, and r(t) be the
actual transmission schedule such that 0 ≤ r(t) ≤ c(t). Then
r(t)/c(t) can be roughly regarded as the system utilization at
time t. Let s(t) be the cumulative amount of data sent and
received2, i.e. s(t) =

∫ t
0
r(τ)dτ .

Now suppose the video to be transmitted has a finite length
T (seconds), a finite size S (bits), and define two functions
l(·) and u(·) associated with requirements on the video’s
transmission. Suppose the transmission begins at time 0 and no
interruptions (rebuffering) happen during the transmission. Let
l(t) denote the cumulative data consumed if the user watches
the first t secs of the video, where t ∈ [0, T]. Note that if the
user’s playback buffer has finite size, s/he can only receive
a limited amount of data before viewing it. We define u(t)
to be the maximum cumulative amount of data that can be
received by the user over [0, t], where t ∈ [0, T]. Further
we assume l(·) and u(·) are both nondecreasing piecewise

t0 t1t2 t3t4 t5t6 tn-1

u(t)

tn

l(t)

......

s(t)

Fig. 2. The piecewise constant functions l(·), u(·) and the cumulatively
transmitted data s(·). l(t) is the cumulative amount of data consumed (i.e.
watched) by the user over [t0, t]. u(t) is the maximum cumulative amount
of data that can be received by the user over [t0, t]. Jumps happen at times
t1, t2, t3, ..., tn. s(·) lies between l(·) and u(·) if there are no playback buffer
underflow and overflow.

constant and right continuous functions as depicted in Fig. 2,
where jumps happen at times t0, t1, t2, ..., tn. The jumps might
correspond to individual (or groups of related, e.g., intra-
coded/predicted) frames being displayed and which are no
longer necessary to reconstruct future content. Note that the
jump points are chosen such that t0 = 0, tn = T , and
t0 ≤ t1 ≤ t2 ≤ ... ≤ tn. Also note that it is possible for
ti = ti+1 where ti is a jump point of u(·) and ti+1 is a jump
point of l(·). Further let Il = {i : ti is a jump point of l(·)}
and Iu = {i : ti is a jump point of u(·)} denote the sets of
jump point indices for the two piecewise constant functions.
Note that if the client has a fixed playback buffer size b, then
there is a vertical gap of size b between u(·) and l(·). However
Fig. 2 shows a more general case where there may be time
varying buffer allocations for playback.

Next, we define the cost function in our model. The cost
is a sum of two terms: the average system utilization costu
and the rebuffering time costr. Assuming no rebuffering, the
average system utilization during video watch period [0, T]
can be defined as:

costu =
1

T

∫ ∞
0

r(t)

c(t)
dt.

Note we assume r(t) = 0 after the transmission finishes, so
the above integration actually has a finite time horizon. We
use the above cost function versus

∫ T
0
r(t)dt/

∫ T
0
c(t)dt be-

cause the former properly captures the reduction in utilization
in a system with time varying capacity using opportunistic
‘scheduling.’

The rebuffering cost depends on the waiting time a user

1The average is taken over periods on the order of seconds to smooth out
fast capacity variations.

2We assume that transport exploits playback buffering and thus can be made
reliable.

4

experiences when buffer underflow occurs during video play-
back. We assume that playback buffer underflows can only
happen at the jump points for l(·), i.e., times in Il. This is a
reasonable assumption since the video playback can be paused
only after an entire frame is displayed. Further we denote the
associated waiting times as τ0, τ1, ..., τn. Note the functions
u(·), l(·) and the jump points in Fig. 2 are known before
transmission, and thus they do not take into account delays
due to rebuffering times. In other words, t0, t1, t2, ..., tn are
fixed constants before transmission, which may be shifted by
τ0, τ1, ..., τn, which are variables whose values depend on the
actual wireless capacities and rebuffering during transmission.

Our rebuffering cost is defined as

costr = a

n∑
i=0

τi,

where a is a constant. In practice it is natural to put a higher
priority on minimizing rebuffering over system utilization.
Thus the constant a should be large enough such that one
cannot obtain a lower total cost by increasing rebuffering
time to reduce system utilization. Suppose we know upper
and lower bounds on the wireless capacity, denoted cmax
and cmin > 0. Then adding a waiting time τ can result
in a maximum reduction in system utilization of no more
than τ(cmax−cmin)

Tcmin
, which is obtained by assuming video

content of size cmaxτ is transmitted at rate cmax during
the waiting time τ instead of being transmitted at rate cmin
during a period of cmaxτ

cmin
, which results in a reduction of

cmaxτ
cminT

− τ
T = τ(cmax−cmin)

Tcmin
in system utilization. Thus if we

set a = cmax−cmin

Tcmin
, we achieve our goal of strictly prioritizing

minimization of rebuffering cost over system utilization.

The above rebuffering cost function is a simplification,
since it only captures the cumulative rebuffering time without
accounting for how rebuffering periods are distributed over
time. In fact, a viewer may prefer that rebuffering happen
all at once rather than being spread out and causing several
interruptions during playback. To capture this concern one
can take a concave function to each waiting time τi before
summing them up so as to penalize a higher number of
interruptions. In the rest of the paper, we will focus on the
simpler cost function. The “concave-sum” version can be
studied similarly.

Also note that if we assume cmin > 0, the normalization
factor T in costu can be replaced by T̃ = max[S

cmin
, T]

ensuring the utilization cost remains below 1 without changing
the overall character of the objective function. Correspond-
ingly we choose a = cmax−cmin

T̃ cmin
to prioritize minimization of

rebuffering. We will use these from now on.

When minimizing our cost, we are constrained to ensure
that the playback buffer does not drop below 0 or exceed
the available buffer. This can be captured by the following

constraints:∫ ti+
∑i

k=0 τk

0

r(t)dt+ b0 ≥ l(ti), ∀i ∈ Il∫ ti+
∑i

k=0 τk

0

r(t)dt+ b0 ≤ u(ti), ∀i ∈ Iu

where b0 is the initial buffer content (in bits) that is not
accounted in the transmission schedule (often, it is 0). Note the
upper bound in the above integration intervals is the current
total time ti +

∑i
k=0 τk which consists of the current time

of the video ti and the cumulative rebuffering time
∑i
k=0 τk.

We call these buffer underflow and overflow constraints re-
spectively. Also we have the terminal condition:∫ tn+

∑n
k=0 τk

0

r(t)dt+ b0 = l(tn),

which captures the fact that the video transmission must finish
prior to final video playback.

Letting ~τ = (τ0, τ1, ..., τn) denote the rebuffering times and
letting r(·) denote the video transmission schedule, we sum-
marize our overall goal in terms of the following optimization
problem:

Optimal Streaming Problem

min
r(·),~τ

1

T̃

∫ ∞
0

r(t)

c(t)
dt+

cmax − cmin
T̃ cmin

n∑
i=0

τi, (1)

s. t.
∫ ti+

∑i
k=0 τk

0

r(t)dt+ b0 ≥ l(ti), ∀i ∈ Il,∫ ti+
∑i

k=0 τk

0

r(t)dt+ b0 ≤ u(ti), ∀i ∈ Iu,∫ tn+
∑n

k=0 τk

0

r(t)dt+ b0 = l(tn).

We say the above optimization problem is a video delivery
optimization with initial state b0 and terminal state l(tn). Note
this problem is not convex since the constraints are not convex.
However it always has a feasible solution if cmin > 0. In the
sequel, we will first deal with the simpler situation where the
optimization has a feasible solution without rebuffering, i.e.,
~τ = ~0. Subsequently we generalize the solution to situations
where rebuffering is necessary.

B. Piecewise Constant Thresholding (PCT) Algorithm Under
No Rebuffering Assumption

Assume there is a feasible solution to Optimal Streaming
(1) without rebuffering, i.e., ~τ = ~0. Note in the model
above, the constant a is chosen large enough such that costr
dominates costu in the sense that we cannot achieve a lower
cost by adding rebuffering time. Thus under the no rebuffering
assumption, Optimal Streaming (1) is equivalent to the Min
Utilization (2) given below.

5

Min Utilization Problem

min
r(·)

1

T̃

∫ tn

0

r(t)

c(t)
dt, (2)

s. t.
∫ ti

0

r(t)dt+ b0 ≥ l(ti), ∀i ∈ Il,∫ ti

0

r(t)dt+ b0 ≤ u(ti), ∀i ∈ Iu,∫ tn

0

r(t)dt+ b0 = l(tn).

In this subsection we determine delivery schedules that solve
this problem, i.e., schedules r(·) achieving a minimum utiliza-
tion while ensuring the cumulative data s(·) lies between u(·)
and l(·) as shown in Fig. 2. Before introducing our algorithm
let us define some terminology.

Definition 1: A single threshold transmission scheme on an
interval [ts, te] with initial state s(ts) and terminal state s(te)
is such that for t ∈ [ts, te]:

r(t) =

{
c(t) if c(t) > α or c(t) = α, t ≤ τ
0 if c(t) < α or c(t) = α, t > τ

where α ∈ [0,maxt∈[ts,te] c(t)], and τ ∈ [ts, te] are thresholds
such that: ∫ te

ts

r(t)dt = s(te)− s(ts).

Further, we denote by βα,τ,ts(t) =
∫ t
ts
r(τ)dτ + s(ts) the

cumulative amount of transmitted data for t ∈ [ts, te].
Note we refer to this as a “single” threshold scheme al-

though in fact it is a pair: α is a threshold on wireless capacity,
and τ is a threshold on time. Basically the scheme transmits
data only when the capacity is above the threshold α. Thus
continuously decreasing α will increase the cumulative amount
of data transmitted with a potential for jumps if the capacity
stays constant at some levels. By varying τ we can further
control transmission so that the cumulative data transmitted
varies continuously over its range.

The goal of the single threshold transmission scheme is
to find α and τ , such that given an initial state s(ts) and
wireless capacity c(t), t ∈ [ts, te], the terminal state s(te) is
achieved. The thresholds can be computed by using binary
search algorithm. However in practice, we can assume that
the capacity c(·) is a piecewise constant function, i.e., we can
use a discrete-time system model, in which case we assume
the interval [ts, te] is divided into m slots and the capacity
function is constant on each slot. We denote the ith slot as
[pi−1, pi], i = 1, 2, ...,m and denote the associated capacity
as ci. Under these assumptions, the thresholds of the single
threshold transmission scheme can be found by using a sorting
algorithm, which provides a unique one-to-one mapping f :
{1, 2, ...,m} → {1, 2, ...,m} such that f(i) < f(j) if and
only if ci > cj or ci = cj , i < j. Note this mapping sorts the
capacities of the slots in descending order. Then we can sum

the sorted capacities up from the highest value to the lowest
value, such that the sum exceeds s(te) − s(ts). Suppose this
happens after we add the kth sorted slot, and the sum exceeds
s(te) − s(ts) by s. Then the thresholds are α = cf−1(k) and
τ = pf−1(k) − (pf−1(k) − pf−1(k)−1)

s
cf−1(k)

.
Also note that under a single threshold transmission scheme,

the server only has two choices: send at peak capacity or send
nothing. Hence, the corresponding utilization is proportional
to the length of time the server is sending data.

We define two types of constraint violations associated with
Min Utilization (2). We refer to a buffer underflow violation
when one of the first set of constraints (buffer underflow
constraints) in Min Utilization is not met, and we refer to
buffer overflow violation when one of the second set of
constraints (buffer overflow constraints) is not met.

Let u[a,b], l[a,b], c[a,b], r[a,b] and βα,τ,ts,[a,b] denote the
values of the functions u(·), l(·), c(·), r(·) and βα,τ,ts(·) on
the interval [a, b] respectively. Then the optimal transmission
schedule for (2), r?[t0,tn] can be calculated using Piecewise
Constant Thresholding (PCT) algorithm (Algorithm 1) with
initial state ss = b0 and terminal state se = l(tn).

Algorithm 1 Piecewise Constant Thresholding (PCT)
Input: ss, se, l[t0,tn], u[t0,tn], c[t0,tn]

1: m← 0, r?[t0,tn] ← 0
2: ts ← t0, te ← tn
3: repeat
4: (tb, sb, r

?
[ts,tb)

) =
Breakpoint(ss, se, ts, te, l[ts,te], u[ts,te], c[ts,te])

5: m← m+ 1
6: ss ← sb, ts ← tb
7: until ss = se

Output: r?[t0,tn], m

The logic underlying PCT is as follows. First try to apply the
single threshold scheme on the interval [t0, tn] with initial state
ss and terminal state se. If the resulting transmission schedule
r[t0,tn] meets the buffer overflow and underflow constraints,
then it is the final solution; we call it a 1-piecewise constant
thresholding solution. Otherwise if any of the constraints is
violated, divide the time interval [t0, tn] into two subintervals
[t0, tb) and [tb, tn] at some point tb (we call it a breakpoint),
which is carefully chosen such that we can once again run the
single threshold transmission scheme on [t0, tb) to obtain a
feasible solution which is output as the solution on subinterval
[t0, tb). Then the remaining subinterval [tb, tn] is treated as a
new interval and we apply the same procedure to it as on
[t0, tn]. This recursive procedure is realized by a repeat loop
in Algorithm 1, where in each loop, the function “Breakpoint”
is called to calculate the breakpoint tb, and the transmission
schedule r(t) for t ≤ tb. The function “Breakpoint” is
described in Algorithm 2, where we use a loop to find the
breakpoint, and in each loop the single threshold transmission
scheme described in Definition 1 is used. Finally if Algorithm
1 takes m loops to finish, then we end up with m subintervals

6

Algorithm 2 Breakpoint
Input: ss, se, ts, te, l[ts,te], u[ts,te], c[ts,te]

1: loop
2: Apply single threshold transmission scheme on [ts, te]

with initial state ss and terminal state se to get α, τ
and r[ts,te], βα,τ,ts,[ts,te].

3: if βα,τ,ts,[ts,te] does not violate any buffer underflow or
overflow constraints then

4: tb ← te, sb ← βα,τ,ts(te)
5: break
6: else
7: find the largest i, ts ≤ ti ≤ te, such that the

violations on [ts, ti] are of the same type
8: if the violation type is buffer overflow then
9: se ← u(ti), te ← ti

10: else
11: se ← l(ti), te ← ti
12: end if
13: end if
14: end loop
Output: tb, sb, r[ts,te)

and we call the solution an m-piecewise constant thresholding
solution.

The following theorem states that PCT provides an optimal
solution for Min Utilization (2).

Theorem 1: If there exists a feasible solution to Min Uti-
lization (2), then PCT determines an optimal transmission
schedule.

C. Proof of Optimality

We prove the optimality of PCT by induction on the total
number of jumps n in u(·) and l(·).

First, when n = 1, the algorithm is optimal due to the
characteristic of the thresholding scheme, i.e., one transmits
only at the highest capacities.

As an induction hypothesis, suppose the algorithm is opti-
mal for all the feasible video delivery optimization problems
with n jumps where n ≤ k − 1. We then show that it is also
optimal for problems with k jumps.

If PCT results in a 1-piecewise constant thresholding so-
lution, then it is optimal due to the characteristic of the
thresholding scheme. Otherwise, if we obtain an m-piecewise
solution denoted by s0(·) =

∫ ·
0
r0(t)dt, where m > 1, then

suppose the first breakpoint found by the algorithm is ti, and
without loss of generality we suppose s0(ti) = u(ti). (The
other possible case is s0(ti) = l(ti), which can be addressed
in a similar manner.) In the sequel, we will show that the
solution s0(·) is as good as any other feasible solution s1(·).
We consider two cases separately.

Case 1. Suppose s1(ti) = u(ti). In this case, we can change
the constraint s(ti) ≤ u(ti) to s(ti) = u(ti) in the original
Min Utilization (2). Then we will get a new optimization
problem denoted by Õ. Note that both s0(·) and s1(·) are
feasible solutions for Õ. On the other hand, Õ can be divided

into two video delivery optimization problems Õ1 and Õ2,
where Õ1 is on the interval [t0, ti], Õ2 is on the interval
[ti, tk]. And we can solve them separately to obtain the optimal
solution for Õ. Note that it follows from the characteristic
of the proposed algorithm that, if we apply the algorithm on
Õ1 and Õ2 separately, we will get the same result as s0(·).
Further, by the induction hypothesis, the proposed algorithm
gives optimal solutions on Õ1 and Õ2, so s0(·) is an optimal
solution on Õ. Thus, s0(·) is as good as s1(·).

Case 2. Suppose l(ti) ≤ s1(ti) < u(ti). In this case, we
can remove the constraint s(ti) ≤ u(ti) from the original Min
Utilization (2), to get a new optimization problem Õ. Note
that both s0(·) and s1(·) are feasible solutions for Õ, and by
the induction hypothesis, we can apply the proposed algorithm
on Õ to get an optimal solution s2(·). Suppose the utilizations
of s1(·) and s2(·) are costu1 and costu2 respectively, then
it should be such that costu1 ≥ costu2. Note since ti is a
breakpoint found by PCT algorithm and s0(ti) = u(ti) which
corresponds to a buffer overflow violation, we can claim that
if we relax the buffer overflow constraints at ti, the associated
optimal cumulative transmission at ti should be greater than
u(ti), i.e., s2(ti) > u(ti). Now we construct a feasible solution
s′0(·) to Õ by doing time sharing between s1(·) and s2(·) as
follows,

s′0(t) = λs1(t) + (1− λ)s2(t), t ∈ [t0, tk],

where λ is a parameter chosen from (0, 1) such that,

s′0(ti) = s0(ti) = u(ti).

Then, the utilization of s′0(·) can be calculated as

cost′u0 = λcostu1 + (1− λ)costu2.

Thus, we have costu2 ≤ cost′u0 ≤ costu1. That means,
scheme s′0(·) is as good as s1(·). But according to the result
in Case 1, s0(·) is as good as s′0(·), so we can claim that s0(·)
is as good as s1(·).

Thus, by induction the optimality of the proposed algorithm
is proved.

Note that in the PCT algorithm, the dominating part of
the computational complexity comes from applying single
threshold transmission in a few loops. The single threshold
transmission on interval [ti, tj] can be done by sorting the
capacities in all the time slots on the interval. Assume there
are n time slots ([t1, t2], [t2, t3], , [tn−1, tn]) on interval [ts, te].
Then in the worst case, PCT will need to apply single threshold
transmission on all intervals [ti, tj],∀i < j. Equivalently PCT
needs to sort the capacities on all such intervals. One can
show that the complexity of doing this is on the order of∑n
i=1((n− i) log(i)), which is on the order of n2 log(n).

D. General Piecewise Constant Thresholding (GPCT)

In this subsection, we generalize PCT to solve Optimal
Streaming (1), i.e., including the possibility of rebuffering.
By the results in Subsection II.B, we immediately have the
following corollary:

7

Corollary 1: If there exists a feasible solution to Optimal
Streaming (1) with ~τ = ~0, then PCT solves the optimization.

However, if Optimal Streaming (1) does not allow a feasible
solution with ~τ = ~0, then rebuffering must happen and PCT
cannot be used directly. Instead we require a modification of
PCT to deal with the rebuffering issue. Before we state the
new algorithm, we introduce some definitions.

Definition 2: We say a transmission scheme is greedy if
it sends as much as possible given the capacity and playback
buffer constraints, i.e., the greedy transmission scheme tries
to keep the buffer full. During the transmission the video
plays as long as the playback buffer is not empty and re-
buffering happens only when the buffer underflows. Consider
a greedy transmission scheme starting at time t1, and for
which rebuffering happens at time t2 where t2 > t1. We say
this rebuffering is an I-rebuffering if 100% utilization was
achieved during (t1, t2). Otherwise, if the greedy schedule on
(t1, t2) was precluded from realizing 100% utilization, i.e.,
due to a limited playback buffer, we call the rebuffering a
B-rebuffering.

Note if the playback buffer size is infinite (or at least larger
than the video size), then there can only be I-rebufferings.
While B-rebufferings are caused by playback buffer over-
flows. During a video transmission, both I-rebufferings and
B-rebufferings can happen. Suppose they happen at the jump
points tn1

, tn2
, ..., tnk

, denote the corresponding rebuffering
times as τn1

, τn2
, ..., τnk

, and define d(ni) =
∑i
j=1 τnj

, the
cumulative rebuffering time up to time tni .

With the above definitions we can state our solution to
Optimal Streaming (1) as General Piecewise Constant Thresh-
olding (GPCT) (Algorithm 3) with initial state ss = b0 and
terminal state se = l(tn).

In GPCT, we first use greedy transmission scheme to find
where the rebufferings need to happen and identify all the
associated rebuffering types. If no rebuffering happens, then
the algorithm degenerates to PCT, and Corollary 1 ensures
optimality. Otherwise if an I-rebuffering occurs, we have
to use greedy transmission scheme to minimize the waiting
time since our rebuffering cost dominates the utilization cost.
However if a B-rebuffering happens, we can use PCT before
the latest playback buffer overflow, which is denoted as t̃(ni)
in the algorithm, to achieve the minimum system utilization.
Thus we have the following theorem.

Theorem 2: The General Piecewise Constant Thresholding
(GPCT) solves the Optimal Streaming Problem (1).

Note that GPCT algorithm requires the future capacity vari-
ations as an input. In the modern video transport architectures
like HTTP video streaming, the transmission is driven by the
receiver, i.e., the receiver will decide when to request for
downloading the next chunk of video. In that case GPCT will
be running on the receiver side, where the wireless capacity
variations can also be measured and predicted. However in the
conventional video transport architectures, where transmission
can be driven by the video server, our algorithm will need to
be running on the video server side. In that case, the clients
and/or the base station need to send feedbacks to inform the

Algorithm 3 General Piecewise Constant Thresholding
(GPCT)
Input: ss, se, l[t0,tn], u[t0,tn], c[t0,t0+T̃]

1: Perform greedy transmission on [t0,∞] until se −
ss of the video is delivered. Suppose the rebuffer-
ings under the greedy scheme happen at jump points
tn1 , tn2 , ..., tnk

, denote the corresponding rebuffering
times as τn1

, τn2
, ..., τnk

, and identify their rebuffering
types (I or B). If a B-rebuffering happens at tni

for
some i ∈ [1, k], denote t̃(ni) = max{t < tni

+ d(ni) :
playback buffer is full at t}

2: tn0 ← 0, d(ni)← 0, i← 1
3: while i ≤ k do
4: if the rebuffering at tni

is an I-rebuffering then
5: do greedy transmission on [tni−1

+ d(ni−1), tni
+

d(ni)]. Let the corresponding transmission schedule
be the solution r?[tni−1

+d(ni−1),tni
+d(ni))

6: else
7: run PCT on [tni−1

+ d(ni−1), t̃(ni)] with
input max[l(tni−1

), ss], u(t̃(ni) − d(ni−1)),
l[tni−1

,t̃(ni)−d(ni−1)]
, u[tni−1

,t̃(ni)−d(ni−1)]

and c[tni−1
+d(ni−1),t̃(ni)]

; and do greedy
transmission during [t̃(ni), tni

+ d(ni)]. Let
the corresponding transmission schedule be the
solution r?[tni−1

+d(ni−1),tni
+d(ni))

8: end if
9: i← i+ 1

10: end while
11: if nk < n then
12: Run PCT on [tnk

+ d(nk), tn + d(nk)] with
input max[l(tnk

), ss], se, l[tnk
,tn], u[tnk

,tn] and
c[tnk

+d(nk),tn+d(nk)], and let the corresponding trans-
mission schedule be the solution r?[tnk

+d(nk),tn+d(nk)]

13: end if
Output: r?[t0,tn+d(nk)]

video server of the predictions of capacity variations, which
can impose extra implementation overhead.

III. SINGLE-USER PARTIALLY ANTICIPATIVE CASE

A. Fixed Horizon Control Scheme

Now we consider a ‘partially anticipative’ case in which
only a finite window of future wireless capacity variations
are known beforehand. Assume that at time t, we know the
capacity c[t,t+w], where w is the future window size, and we
do not know the capacity beyond t + w. Thus we cannot
use an offline scheme like GPCT. However we can apply the
GPCT algorithm on [t, t + w], which provides a baseline for
online schemes. We propose a Greedy Fixed Horizon Control
(GFHC) transmission scheme in Algorithm 4 below.

GFHC is an online scheme that successively applies GPCT
on a sequence of w-sized intervals. For each interval it must
set the initial buffer state ss, and target buffer state s′e at
the end of the interval. The latter is done in Step 3 of

8

Algorithm 4 Greedy Fixed Horizon Control (GFHC)
Input: ss, se, l[t0,tn], u[t0,tn], c[t0,t0+T̃]

1: i← 0, d← 0
2: repeat
3: s′e ← ss +mi, where mi is the maximum amount of

data that can be delivered (i.e., using greedy transmis-
sion) during [t0 + iw, t0 + (i+ 1)w]

4: run GPCT on [t0 + iw, t0 + (i + 1)w] with input
ss, s′e, l[t0+iw−d,t0+(i+1)w−d], u[t0+iw−d,t0+(i+1)w−d]
and c[t0+iw,t0+(i+1)w)]. Let the resulting transmission
schedule be r?[t0+iw,t0+(i+1)w), and the rebuffering time
be τ

5: d← d+ τ
6: ss ← ss +

∫ t0+(i+1)w

t0+iw
r?(t)dt

7: i← i+ 1
8: until ss = se

Output: r(·)

Algorithm 4, where s′e ← ss + mi, which is the maximum
one could achieve at the end of the ith interval using greedy
transmission. The initial state ss is initialized and subsequently
updated (Step 6) once the transmission schedule for the current
window is determined. GFHC runs GPCT on w intervals,
during which it computes a transmission schedule and may
incur rebuffering delays. Thus in Step 4, the constraints have
been shifted by d the cumulative rebuffering incurred so far.
The resulting transmission schedule r? is the concatenation of
those computed across w-windows.

Note in Step 3 shown in Algorithm 4 the target buffer state
s′e is chosen in a “greedy” manner, i.e., as high as possible
in order to minimize rebuffering time. This is why we call
the proposed scheme “greedy fixed horizon control”. In fact,
one can in principle define different kinds of Fixed Horizon
Control (FHC) schemes by using different strategies in Step
3 of Algorithm 4 to choose s′e. For example, we can define a
“resource saving FHC” by setting s′e = max[ss, l((i+ 1)w)].

B. Competitive Optimality of GFHC

To evaluate the performance of GFHC, we use the “compet-
itive ratio” which is defined as the ratio of the cost of GFHC
and the optimal offline cost achieved by GPCT under the same
problem settings (i.e., the same capacity variations, l(·), u(·),
etc., but they are known ahead of time). We proved in [22]
the following theorem, which gives an upper bound on the
competitive ratio.

Theorem 3: Given a maximum playback buffer size b,
video length T and size S, window size w, maximum capacity
cmax and minimum capacity cmin > 0, the competitive ratio
of GFHC to GPCT satisfies:

costG

costO
≤ 1 + max

[
1

cmin
,
T

S

]
b

w
(
cmax
cmin

− 1).

Note that when S
T > cmin: i.e., the overall average video

compression rate exceeds the minimum capacity the upper
bound in Theorem 3 can be viewed as having two parts.. The

first, b
wcmin

, captures the size of the playback buffer relative
to the minimum amount of data that will be delivered in future
window. If these are close clearly the offline opportunistic
scheduling realized by GPCT will not achieve great gains
over GFHC. The second, cmax

cmin
− 1 captures the worst case

variability in capacity. In general, the worst case performance
of GFHC is closer to GPCT under a larger minimum capacity,
a larger prediction window size, a smaller playback buffer
size and a smaller ratio between the maximum and the lowest
capacities.

IV. MULTIUSER ANTICIPATIVE CASE

In Section II we proposed GPCT and proved that it solves
the Optimal Streaming problem (1). However, the algorithm
was developed for a single-user case and it is hard to generalize
it to the multiuser case. In this section, we develop sub-optimal
multiuser schemes based on GPCT which have reasonable
complexity.

A. Multiuser Piecewise Constant Thresholding Under Propor-
tional Capacity Allocation (MTP)

Suppose a base station is serving n mobile users and user i
has a peak capacity ci(t) at time t, i = 1, 2, ..., n. The peak ca-
pacities are assumed to be known beforehand. A simple way to
deal with the multiuser issue is to make an up-front allocation
of resources among the n users in a round robin fashion and
thus the allocated capacity for user i is c̃i(t) = ci(t)

n , which
is proportional to his/her peak capacity ci(t). Each user i is
then assumed to have a capacity c̃i(t) which is independent
of other users’ capacities and thus we can apply GPCT to
each user separately. We call this scheme multiuser piecewise
constant thresholding under proportional capacity allocation
(MTP). MTP is straightforward to implement since every user
can independently run a single-user algorithm on his/her own
based on knowledge of his/her capacity and the number of
users sharing the bottleneck, and requests transmission from
server accordingly. Thus the scheme works in a decentralized
way and there is no need for a centralized controller. However,
although it applies GPCT which exploits temporal diversity
in capacity variations well, MTP is based on a proportional
capacity allocation which does not directly exploit multiuser
diversity. Below we consider how both might be exploited.

B. Multiuser Piecewise Constant Thresholding Under Oppor-
tunistic Capacity Allocation (MTO)

We introduce a centralized scheme which exploits both
temporal and multiuser diversity. Consider a base station
serving n mobile users. To reduce the system utilization,
there is a central scheduler at the base station which knows
future capacity variations of the mobiles. The system operates
in discrete (slotted) time and each time slot the scheduler
chooses which of the video users could be served in the slot.
In order to exploit capacity variations across different users
while ensuring ’short-term’ fairness, we use the opportunistic
resource allocation scheme with a token counter mechanism
proposed in [23]. It works as follows.

9

Each user i is associated a token counter Ti. At the
beginning, all the token counters are set to be the same positive
integer value m, which is referred to as the token limit. Each
time slot, the scheduler searches among the users who have a
non-zero token counter and chooses the user with the highest
capacity3. Ti is decremented if user i is served in that time
slot. When all the token counters are zero, they are reset to
m. Using the same token limit m for all the users guarantees
that the system allocates the same number (m) of time slots
to each user within m · n slots. Subsequently each user has
his/her allocated capacity c̃i(t) and thus GPCT can again be
applied independently to each user. The resulting scheme is
denoted the multiuser piecewise constant thresholding under
opportunistic capacity allocation (MTO). MTO is of higher
complexity than MTP since it is based on a centralized
controller. However it can achieve a lower system utilization
because it not only exploits the temporal diversity for each
user but also exploits the multiuser diversity across all the
users via the token counter mechanism. The choice of the
token limit m affects the performance of MTO in that a
higher token limit allows the system to exploit the multiuser
diversity more aggressively and results in a higher decrease in
the system utilization, however, a smaller token limit enforces
more temporal fairness and results in a shorter rebuffering
time. We will see this point later in Section V.

V. SIMULATION RESULTS

Performance sensitivity of GFHC. We ran a simulation
to explore the performance sensitivity of GFHC to window,
playback buffer and temporal correlation in capacity varia-
tions. We considered a server delivering a 10-minute constant
bit rate video, 900kbps, to a receiver. We simulated a slotted
system, with slots of length 0.1sec. Thus the jump points for
l(·) are at 0.1sec, 0.2sec, 0.3sec,.. with values l(0.1m) = 9m,
for m = 1, 2, ..., 6000. The initial buffer b0 was set to 0.

Capacity variations, were modeled via a discrete time
Markov chain whose states represent capacities, specifically
0, 250, . . . , 7500kbps. The transition probability matrix for the
chain is selected so that the invariant is a pre-defined stationary
distribution corresponding to the PDF for the throughput
of a randomly positioned user in an realistic HSPA system
single antenna equalizer on the receiver under medium system
load. The distribution is shown in Fig. 3. The source of
the distribution is from field measurements conducted by a
North American mobile network operator. We consider two
such matrices which differ in the speed at which capacity
varies. Specifically in the first case transitions can only hap-
pen between two neighboring states (e.g., from 250kbps to
500kbps) which results in slow variations (i.e., with temporal
correlation); in the second case we simply take iid samples of
the throughput PDF (i.e., with no temporal correlation).

Finally we let the receiver’s playback buffer size b vary
from 1620, 1890, 2160, 2430 to 2700kb, and the window size

3Selection could be weighted or driven by quantiles to address fairness
concerns.

Capacity CDF Capacity CDF Capacity CDF

250 0.0024 2750 0.6851 5250 0.9784

500 0.012 3000 0.7284 5500 0.9832

750 0.1106 3250 0.7716 5750 0.9856

1000 0.2139 3500 0.8173 6000 0.9904

1250 0.2764 3750 0.863 6250 0.9952

1500 0.3582 4000 0.8894 6500 0.9976

1750 0.4303 4250 0.9135 6750 1

2000 0.512 4500 0.9375 7000 1

2250 0.5721 4750 0.9519 7250 1

2500 0.6226 5000 0.9615 7500 1

Fig. 3. The stationary distribution (cdf) of capacity (kbps) used in our
simulation.

0.14

(a)

w
=

6
0
0

w
=

3
0
0

w
=

1
0
0

w
=

5
0

w
=

2
0

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34
b=1620
b=1890
b=2160
b=2430
b=2700

w
=

1
0

1 - utilization

p
e
rc

e
n
ta

g
e
 o

f
re

b
u
ff
e
ri
n
g
 t
im

e

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24
b=1620
b=1890
b=2160
b=2430
b=2700

1 - utilization

p
e
rc

e
n
ta

g
e
 o

f
re

b
u
ff
e
ri
n
g
 t
im

e

(b)

w
=

1
0

w
=

2
0

w
=

5
0

w
=

1
0
0

w
=

3
0
0

w
=

6
0
0

Fig. 4. (a) The performance of GFHC under correlated capacity variation.
(b) The performance of GFHC under iid capacity variation. Each point shows
the percent rebuffering time versus (1 − utilization) for a specific playback
buffer size and window size. The points on the bottom right of the figures
correspond to best performance.

w from 10, 20, 50, 100, 300 to 600sec. Each scenario was
simulated 20 times to obtain average results.

The results shown in Figs. 4 (a) and (b) correspond to
the scenarios with correlated and iid capacity variations
respectively. The figures show the percent rebuffering time
versus (1 − utilization) for varying playback buffer and
window sizes. Note the points on the bottom right of the
figures correspond to best performance, i.e., lowest system
utilization and rebuffering time. The figures exhibit the
following three observations.
1. For fixed b and capacity variation, increasing w significantly
reduces utilization but does not affect the rebuffering time.
2. For fixed w and capacity variation, increasing b reduces
rebuffering time and results in a marginal decrease in
utilization. Note Theorem 3 suggests that a smaller b should
result in a better performance, but this corresponded to worst
case ‘performance’ vs the averages considered here.
3. For fixed b and w, temporal correlation in capacity variation
results in increased rebuffering and a higher utilization.

We also evaluated GFHC vs greedy transmission for a wire-
less capacity trace measured from a vehicle driving through
Mountain View, CA. We considered a server delivering a 4min,

10

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

users

s
y
s
te

m
 u

ti
liz

a
ti
o
n

Proportional rate allocation
MTP
MTO token limit 1
MTO token limit 3
MTO token limit 6
MTO token limit 9

70%

60%

2x-3x

increasing token limits

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7
x 10

users

a
v
e
ra

g
e
 p

e
rc

e
n
ta

g
e
 o

f
re

b
u
ff
e
ri
n
g
 t
im

e

Proportional rate allocation
MTP
MTO token limit 1
MTO token limit 3
MTO token limit 6
MTO token limit 9

(a) (b)

-3

Fig. 5. (a) The system utilization. The proportional rate allocation has the
highest system utilization. MTP and MTO achieve reduced system utilization.
MTO schemes do a little better than MTP. An MTO scheme with a higher
token limit achieves a lower system utilization. (b) The average percent
rebuffering time. The proportional rate allocation and MTP have the same
percent rebuffering time. MTO schemes result in higher rebuffering time
which increases as the token limit increases.

900kbps constant bit rate video to a receiver. The capacity
trace was rescaled to have an average rate of 2000kbps. The
playback buffer size was set to be 1/10 of the video size. The
greedy transmission scheme resulted in a 67.69% utilization
and 8.1sec of rebuffering time. The GFHC resulted in the
same rebuffering time, but the utilization was reduced to
29.00%,48.83%,55.17% and 59.44% when the window w was
set to 240, 120, 60, and 30sec respectively. This confirms the
benefit of exploiting anticipated capacity variations for a trace
from a real wireless network.

Performance and comparisons for multiuser algorithms.
We ran simulations to compare the performance of MTP and
MTO versus that of a proportional rate allocation scheme in
which greedy transmission scheme is used and the time slots
are assigned to the mobile users in a round robin fashion
so that the transmission rate to each user is proportional to
his/her peak capacities. In our simulation, we assume a fixed
number of users are being served and each user is watching
a 10-minute video with a constant bit rate of 90kbps. All
the users have the same playback buffer size which was
set to be 18000kb (i.e. one third of the video size), and
they start watching the videos simultaneously. The model
for capacity variations is the slotted model with correlated
variations discussed above.

We let the number of users range from 1 to 12 and repeat
each one 20 times to obtain average results. In MTO, we test
the performance under four token limits which are 1,3,6 and 9.
The average system utilization and average percent rebuffering
time were computed and are plotted in Figs. 5 (a) and (b).

Fig. 5 (a) exhibits the utilization as a function of the number
of users. As can be seen, proportional rate allocation achieves
the highest system utilization; by comparison, MTP and MTO
achieve a 60 − 70% reduction. Alternatively, for the same
system utilization, MTP and MTO might allow 2x-3x more
users. As expected MTO achieves a lower system utilization
than MTP, since it exploits multiuser diversity, and MTO with
a higher token limit results in a lower utilizations. However,
as shown in Fig. 5 (b) this benefit is obtained at the cost

of a additional rebuffering. Fig. 5 (b) exhibits the percent
rebuffering time versus the number of users. It shows that MTP
and proportional rate allocation require the same rebuffering
time, but MTO results in more rebuffering as does MTO with
higher token limits.

Note that we have used a wide range of buffer sizes (e.g., a
few seconds, 24 seconds, and 200 seconds of video content)
in our experiments. The results indicate that our proposed
algorithms are able to achieve significant gains in all the
scenarios.

VI. UNCERTAINTY IN KNOWLEDGE OF FUTURE CAPACITY
VARIATIONS

So far we have developed video delivery policies assuming
knowledge of future capacity variations (either in the anticipa-
tive case or the partially anticipative case) is perfect. However
in practice there will be uncertainty in predictions of future
capacity. Such uncertainty may arise from many sources, e.g.,
the mapping of wireless signal strength on the coverage map
to capacity, uncertainty in a user’s motion, interference from
other mobile users, uncertainty in the number of mobile users
contending for resources, etc.

Such uncertainty limits the optimality of our proposed
approaches (GPCT and GFHC). For example, GPCT oppor-
tunistically chooses when to request video delivery based on
future capacity variations. If the true capacity variations are
lower than the predicted ones, then the users may experience
longer rebuffering times. Similarly one can show that the min-
imum system utilization will not be achieved under imperfect
capacity predictions.

In this section we explore different approaches to address
such uncertainty. We first develop an offline approach which
is able to achieve a minimum rebuffering time with an upper-
bound on system utilization, under the assumption that the
uncertainty in capacity variations can be bounded. We then
propose an online algorithm that can deal with general types
of uncertainty.

A. Offline Approach under Uncertainty in Capacity Prediction

Let c̃(t) denote the predicted capacity at time t, and c(t) the
true capacity which is unknown beforehand. If the prediction
is good, such that c̃(·) is uniformly close to c(·), then it seems
reasonable to use GPCT on the predicted capacity function
to obtain an offline video delivery strategy. We shall denote
such a policy by S̃?. This policy can then be used under
the true capacity function to mediate video delivery. Note
that strategy S̃? specifies when the user should request video
delivery under the predicted capacity function c̃(·), which is
a set of time intervals, e.g., S̃? = {[t1, t2]} indicating that
the user should request video delivery during [t1, t2] under
capacity c̃(·). However, when the user applies S̃? under the
true capacity function c(·), some changes have to be made.
For example, if c̃(t) ≤ c(t), ∀t, the user have more video
delivered than expected. To avoid buffer overflow violations,
the user needs to adjust policy S̃? to stop requesting video

11

delivery whenever the playback buffer is full. We denote this
modification to S̃? by S̃?m.

We can compare the perfromance of S̃?m obtained based on
the predicted capacity function to the optimal policy (GPCT)
S? obtained assuming the true capacity function were known.
Since we give higher priority to avoiding rebuffering, it is rea-
sonable to require that S̃?m result in no more rebuffering time
than S?. The following lemma shows that such requirement
is met if c̃(t) ≤ c(t), ∀t.

Lemma 1: Suppose S? and S̃?m are as defined above, then
applying S̃?m on the true capacity function c(·) results in no
more rebuffering time than S?, if for all t

0 < c̃(t) ≤ c(t). (3)

Proof: We prove the lemma by contradiction. Suppose the
claim is not true, i.e., S̃?m results in more rebuffering time than
S?. This implies that there exists a period [t, t+τ] * S̃?m, such
that the modified strategy S̃?m∪[t, t+τ] reduces the rebuffering
time of S̃?m. Note that since S̃?m differs from S̃? only at times
when the buffer is full, we can claim that [t, t+ τ] /∈ S̃?. Also
by Condition (3) applying S̃? to c̃(·) delivers no more than S̃?m
on c(·) cumulatively at any time. Thus strategy S̃? ∪ [t, t+ τ]
results in less rebuffering time than S̃? under the capacity
function c̃(·), which contradicts the fact that S̃? was obtained
using GPCT and thus results in the minimum rebuffering time.

However in practice, Condition (3), i.e., that predictions are
always pessimistic, may not hold, and the appropriate offline
approaches should depend on the uncertainty in capacity pre-
diction, i.e., the difference between c̃(·) and c(·). To pursue this
further we assume that the prediction error can be bounded.

Definition 3: We say the capacity function prediction sat-
isfies an (α, β) - prediction error if for all t

c(t) ∈ [(1− α)c̃(t), (1 + β)c̃(t)], α, β ∈ [0, 1). (4)

Note that under the (α, β) - prediction error, the true
capacity function is bounded within a certain range of the
predicted one. Let ĉ(t) = (1 − α)c̃(t), which is thus a lower
bound on the true capacity. Let Ŝ? and Ŝ?m denote the strategy
obtained by applying GPCT on ĉ(·) and the corresponding
modified strategy obtained by applying Ŝ? on c(·) avoiding
buffer overflow, respectively. Now according to Lemma 1, Ŝ?m
should result in no more rebuffering time than S?.

To evaluate the performance of Ŝ?m, we need to compare
the system utilization (denoted by û?m) to the optimal system
utilization (denoted by u?) obtained by S?. The following
lemma shows that û?m can indeed be upper bounded.

Lemma 2: Suppose Ŝ?m, S?, û?m and u? are defined as
above, T̃ , cmin, S are as defined in Section II, and the true
capacity satisfies Condition (4), then

u? ≤ û?m ≤ u? +
α+ β

1 + β

S

cminT̃
. (5)

Proof: The first inequality in (5) holds due to the fact
that S? is the strategy obtained by applying GPCT to the
true capacity function c(·), which according to Theorem 2

should lead to the minimum system utilization among all
strategies that result in the minimum rebuffering time for a
given capacity function.

We prove the second inequality in (5) as follows. Due to
the fact that Ŝ?m is the modified version of Ŝ? so as to avoid
buffer overflow, and that ĉ(t) ≤ c(t), ∀t, we can claim that the
system utilization resulting from applying Ŝ?m to ĉ(·) (denoted
as û?) is no less than û?m, which gives:

û?m ≤ û?. (6)

Paralleling the way we obtained the strategy Ŝ?m, we will
construct another strategy S?m by applying S? to the capacity
function ĉ(·). However since ĉ(t) ≤ c(t), ∀t, S? may end up
delivering only a part of the video under ĉ(·). We deliver the
remaining part of the video (denote its size as Sr bits) using
time intervals not included in S? and in a greedy manner
(i.e., deliver as early as possible) to keep the rebuffering time
as low as possible. We denote this strategy by S?m and the
corresponding system utilization is denoted by u?m. Note that
according to Theorem 2, it follows that

û? ≤ u?m. (7)

Next we calculate the gap between u?m and u?. Note that the
file size of the video S can be written as:

S =

∫
t∈S?

c(t)dt. (8)

Similarly, Sr can be written as:

Sr = S −
∫
t∈S?

ĉ(t)dt. (9)

According to the definition of ĉ(·) and Equation (4), we have:

1− α
1 + β

c(t) ≤ ĉ(t), ∀t. (10)

Combining (8), (9) and (10), we obtain:

Sr ≤
α+ β

1 + β
S. (11)

Thus the extra time spent delivering Sr is no more than
α+β
1+β

S
cmin

. Normalizing the time by T̃ we obtain a bound on
the gap of the realized system utilization:

u?m − u? ≤
α+ β

1 + β

S

cminT̃
. (12)

Combining (6), (7) and (12), we obtain:

û?m − u? ≤
α+ β

1 + β

S

cminT̃
,

which proves the second inequality in (5).
Lemma 2 shows that under errors in capacity prediction if

the prediction is good enough (i.e. α and β are close to zero),
then the offline strategy Ŝ?m performs nearly as well as the
optimal offline strategy S?.

So far we have proposed an offline approach under bounded
prediction error. It first uses GPCT on a lower bound of the
capacity variation (i.e., ĉ(·)) and then modifies the obtained

12

strategy to be feasible, i.e., avoiding buffer overflow when it is
applied to the true capacity function. We have also showed that
the proposed approach results in no more rebuffering time than
GPCT, and the resulting system utilization can be bounded if
the uncertainty in the capacity prediction is bounded. These
results are summarized in the following theorem.

Theorem 4: Suppose Ŝ?m is the offline video delivery strat-
egy proposed earlier in this section, and S? is the optimal
strategy obtained by GPCT. Then under (α, β) - capacity
prediction error, Eq(4), Ŝ?m results in no more rebuffering time
than S?. Also Ŝ?m results in a higher system utilization than
S?, which can be upper bounded as shown in (5).

B. Online Approach under Uncertainty in Capacity Prediction

In the previous subsection we proposed an offline approach,
the performance of which, can only be guaranteed when
uncertainty is small. If there is substantial uncertainty in the
prediction of the future capacity variations, online approaches
are preferable since they are able to adjust their strategies
based on what they have experienced. In this subsection, we
propose an online approach in which the users adaptively
decide their thresholds based on their playback buffer status
and the average value of their predicted capacity for a finite
window into the future. The basic idea of our online approach
is that when a user’s playback buffer is low, in order to avoid
rebuffering, the user should use a small threshold to request
video content as soon as possible; when a user’s playback
buffer is high, in order to reduce the system utilization,
the user should use a relatively large threshold based on
the prediction of the average future capacity to exploit the
temporal opportunism in capacity variations.

To simplify the problem, we assume the requested video has
a constant bit rate r, and the size of the video is S. Suppose we
can predict the average capacity for a window into the future
of wmax seconds. Based on the capacity predictions and the
playback buffer status we make sequential decisions on the
capacity threshold γ (i.e., video will be requested only when
the true capacity is above γ and the playback buffer is not
full). The thresholds are determined by a Buffer-Dependent
Thresholding (BDT) strategy displayed in Algorithm 5.

In Algorithm 5, time is divided into intervals and the capac-
ity threshold γ is determined sequentially on each interval. At
the beginning of the ith interval, suppose there is bi seconds
of unwatched video content in the playback buffer, then the
length of the ith interval is wi = min[wmax, bi]. Suppose the
average predicted capacity in the ith interval is c̃i. We set two
thresholds b and b on the playback buffer with b > b, indicating
the fullness of buffer. We consider the buffer is high if bi > b
and low if bi < b. The capacity threshold of the ith interval
γi is then determined based on the buffer status.

First, if the buffer is neither high nor low, i.e., b ≤ bi ≤ b,
then the threshold is set to

γi = max[c̃i − r, 0]. (13)

We explain the rationale of this capacity threshold as follows.

Algorithm 5 Buffer-Dependent Thresholding (BDT)
Input: r, S, wmax, b, b

1: i← 0, s = 0
2: tsi ← 0
3: repeat
4: bi ← length (sec) of unwatched video in buffer at tsi
5: wi ← min[wmax, bi]
6: tei ← tsi + wi
7: c̃i ← predicted mean capacity in [tsi , t

e
i]

8: if b ≤ bi ≤ b then
9: γi ← max[c̃i − r, 0]

10: else if bi > b then
11: γi ← max[c̃i − r + r(bi−b)

wi
, 0]

12: else
13: γi ← 0
14: end if
15: γ(t)|t∈[tsi ,tei] = γi
16: During [tsi , t

e
i], request video only when the true capac-

ity is above γi and the playback buffer is not full.
17: si ← the amount of video delivered during [tsi , t

e
i]

18: s← s+ si
19: i← i+ 1
20: tsi ← tei−1
21: until s = S
Output: γ(·)

Note that in the thresholding policy (13) if c̃i ≤ r, then
γi = 0, which leads to the greedy strategy and results in the
minimum rebuffering time. Otherwise if c̃i > r, the following
lemma indicates that if the prediction of the average future
capacity is accurate, then the thresholding policy (13) results
in no rebuffering.

Lemma 3: In the thresholding policy (13), suppose the
prediction of the average capacity is accurate, i.e.,

c̃i =
1

tei − tsi

∫ tei

tsi

c(t)dt, (14)

where tsi and tei are the start and end time of the ith interval.
If c̃i > r, then the following holds:

1

tei − tsi

∫
t∈I+i

c(t)dt ≥ r, (15)

where I+i = {t|c(t) ≥ γi, t ∈ [tsi , t
e
i]}, which is the set of

times where video delivery will be requested.
Proof: Let I−i = [tsi , t

e
i]\I

+
i , which is the set of times

where no video will be requested. And let |I−i | be the total
length of time in the set I−i . According to (14), it follows that:

c̃i =
1

tei − tsi

∫
t∈I+i

c(t)dt+
1

tei − tsi

∫
t∈I−i

c(t)dt. (16)

Due to the definition of I−i , we have:

1

|I−i |

∫
t∈I−i

c(t)dt < γi = c̃i − r. (17)

13

Since |I−i | ≤ tei − tsi , the following can be obtained from (17):

1

tei − tsi

∫
t∈I−i

c(t)dt < γi = c̃i − r. (18)

Then (15) can be proved by combining (16) and (18).
Lemma 3 shows that the playback buffer will keep growing

when c̃i > r. If the buffer grows too high, i.e., bi > b it is
reasonable to set the threshold γ in a more aggressive way
than (13) so as to further reduce system utilization. So when
bi > b, we will reduce the amount of requested video so that
the playback buffer drops to b at the end of the ith interval.
Thus the total amount of video delivered is rwi−r(bi−b). By
analogy with the thresholding policy (13), we set the threshold
to be:

γi = max{c̃i −
rwi − r(bi − b)

wi
, 0},

which motivates thresholding policy when buffer is high in
BDT (Line 11).

Lemma 3 holds under the assumption that the prediction of
the average capacity is accurate. However if the prediction is
higher than the true capacity, the thresholding policy (13) may
lead to extra rebuffering time. To mitigate this problem, we
use the greedy strategy, i.e., set γi = 0 when bi < b, which
results in policy when the buffer is low in BDT (Line 13)

Note that BDT does not rely on precise capacity predictions.
It only requires reasonable precision in the prediction of the
average capacity variations for a finite window into the future.

To test the performance of BDT, we ran simulations where
we use the same settings as in Section V. For BDT, we
took wmax = 10s, b = 2s, b = 12s, r = 900kbps,
and the buffer size is 21600kbits, which corresponds to 24
seconds of video. We generate prediction error for the average
capacity variations as i.i.d. Gaussian random variables with
zero mean and standard deviation σ varying within the set
{0, 0.2cavg, 0.4cavg, 0.6cavg, 0.8cavg, cavg}, where cavg is the
average of the true capacity. We compare BDT with GPCT
and the greedy strategy which always delivers video content as
soon as possible. The results are shown in Figure 6. As can be
seen, BDT achieves up to a 15% reduction in system utilization
as compared to the greedy strategy, while the optimal offline
solution achieves a 25% reduction in the same simulation
scenario. Moreover, BDT only results in a slight increase in
rebuffering time (up to 0.05 seconds in the simulations, which
is almost negligible as compared to the length of the video).
Also as the prediction error grows, the performance of BDT
does not drop too much. Thus BDT is effective in terms of
reducing system utilization, and simultaneously keeping a low
rebuffering time, and can work against uncertainty in future
capacity variations.

VII. CONCLUSION

By leveraging geolocation and contextual information re-
garding users mobility patterns it is possible to predict the
large-scale wireless capacity variations mobile users are likely
to see. In this paper we have developed and analyzed new

0 0.2 0.4 0.6 0.8 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

σ / mean capacity

s
y
s
te

m
 u

ti
liz

a
ti
o
n

Greedy

GPCT

BDT

0 0.2 0.4 0.6 0.8 1
0.27

0.28

0.29

0.3

0.31

0.32

0.33

σ / mean capacity

re
b
u
ff
e
ri
n
g
 t
im

e
 (

s
e
c
o
n
d
)

Greedy

GPCT

BDT

Fig. 6. Performance comparison among BDT, GPCT and the greedy strategy.
BDT achieves up to a 15% reduction in system utilization as compared to
the greedy strategy and only results in a slight increase in rebuffering time.
Also as the prediction error grows, the performance of BDT does not drop
too much.

cross-layer transport protocols that exploit knowledge of future
capacity variations to deliver stored video (or other files)
efficiently without compromising rebuffering/delays. Our anal-
ysis and simulations suggest this has substantial potential to
increase the ability of wireless systems to deliver stored video
in the case of mobile users seeing high variability in their
available capacity.

ACKNOWLEDGMENT

This research has been supported in part by Intel and Cisco
under the VAWN program, and in part by the National Science
Foundation under Grant CNS-1343383. The authors would
like to thank Xiaoqing Zhu and Hao Hu for the discussions
and sharing their simulation data.

REFERENCES

[1] “Cisco visual networking index: Forecast and methodology, 2016-2021,”
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/complete-white-paper-c11-481360.html.

[2] U. Shevade, Y. Chen, L. Qiu, Y. Zhang, V. Chandar, M. K. Han,
H. H. Song, and Y. Seung, “Enabling high-bandwidth vehicular content
distribution,” in Proc. ACM International Conference on emerging
Networking EXperiments and Technologies (CoNEXT), no. 23, 2010,
pp. 1–12.

[3] C. Song, Z. Qu, N. Blumm, and A. Barabasi, “Limits of predictability
in human mobility,” Science, vol. 327, no. 5968, pp. 1018–1021, 2010.

[4] N. Bui, F. Michelinakis, and J. Widmer, “A model for throughput
prediction for mobile users,” in European Wireless 2014; 20th European
Wireless Conference, May 2014, pp. 1–6.

[5] R. Margolies, A. Sridharan, V. Aggarwal, R. Jana, N. K. Shankara-
narayanan, V. A. Vaishampayan, and G. Zussman, “Exploiting mobility
in proportional fair cellular scheduling: Measurements and algorithms,”
IEEE/ACM Transactions on Networking, vol. 24, no. 1, pp. 355–367,
Feb 2016.

[6] H. Kalbkhani, M. G. Shayesteh, and N. Haghighat, “Adaptive lstar
model for long-range variable bit rate video traffic prediction,” IEEE
Transactions on Multimedia, vol. 19, no. 5, pp. 999–1014, May 2017.

[7] A. Kalampogia and P. Koutsakis, “H.264 and h.265 video bandwidth
prediction,” IEEE Transactions on Multimedia, 2017.

[8] J. McManus and K. W. Ross, “A dynamic programming methodology
for managing prerecorded VBR sources in packet-switched networks,”
Telecommunication Systems, vol. 9, pp. 133–152, 1998.

[9] J. Salehi, Z. Zhang, J. Kurose, and D. Towsley, “Supporting stored video:
Reducing rate variability and end-to-end resource requirements through
optimal smoothing,” in Proc. ACM SIGMETRICS, May 1996, pp. 222–
231.

[10] J.Rexford and D.Towsley, “Smoothing variable-bit-ratevideo in an inter-
network,” IEEE/ACM Trans. on Networking, vol. 7, no. 2, pp. 202–215,
April 1999.

14

[11] G. V. der Auwera and M. Reisslein, “Implications of smoothing on
statistical multiplexing of H.264/AVC and SVC video streams,” IEEE
Trans. on Broadcasting, vol. 55, no. 3, pp. 541–558, September 2009.

[12] W. C. Feng and J. Rexford, “Performance evaluation of smoothing
algorithms for transmitting prerecorded variable-bit-rate video,” IEEE
Transactions on Multimedia, vol. 1, no. 3, pp. 302–312, Sep 1999.

[13] D. Jurca and P. Frossard, “Video packet selection and scheduling for
multipath streaming,” IEEE Transactions on Multimedia, vol. 9, no. 3,
pp. 629–641, April 2007.

[14] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana, X. Jin,
J. Rexford, and R. K. Sinha, “Can accurate predictions improve video
streaming in cellular networks?” in Proceedings of the 16th Interna-
tional Workshop on Mobile Computing Systems and Applications, ser.
HotMobile ’15, 2015, pp. 57–62.

[15] J. Tadrous, A. Eryilmaz, and H. E. Gamal, “Proactive content download
and user demand shaping for data networks,” IEEE/ACM Trans. on
Networking, vol. PP, no. 99, August 2014.

[16] N. Bui, S. Valentin, and J. Widmer, “Anticipatory quality-resource
allocation for multi-user mobile video streaming,” in Proc. the 2nd Work-
shop on Communication and Networking Techniques for Contemporary
Video, in conjunction with the 34th IEEE International Conference on
Computer Communications (INFOCOM),, April 2015.

[17] N. Bui and J. Widmer, “Mobile network resource optimization under
imperfect prediction,” in Proc. IEEE 16th International Symposium on
World of Wireless, Mobile and Multimedia Networks (WoWMoM), June
2015.

[18] I. Triki, R. El-Azouzi, and M. Haddad, “Newcast: Anticipating resource
management and qoe provisioning for mobile video streaming,” in 2016
IEEE 17th International Symposium on A World of Wireless, Mobile and
Multimedia Networks (WoWMoM), June 2016, pp. 1–9.

[19] H. Abou-Zeid and H. S. Hassanein, “Toward green media delivery:
location-aware opportunities and approaches,” IEEE Wireless Commu-
nications, vol. 21, no. 4, pp. 38–46, August 2014.

[20] H. Abou-zeid, H. S. Hassanein, and S. Valentin, “Energy-efficient
adaptive video transmission: Exploiting rate predictions in wireless
networks,” IEEE Transactions on Vehicular Technology, vol. 63, no. 5,
pp. 2013–2026, Jun 2014.

[21] R. Atawia, H. Abou-zeid, H. S. Hassanein, and A. Noureldin, “Joint
chance-constrained predictive resource allocation for energy-efficient
video streaming,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 5, pp. 1389–1404, May 2016.

[22] Z. Lu and G. de Veciana, “Optimizing stored video delivery for mobile
networks: The value of knowing the future,” in 2013 Proceedings IEEE
INFOCOM, April 2013, pp. 2706–2714.

[23] S. Patil and G. de Veciana, “Managing resources and quality of service
in heterogeneous wireless systems exploiting opportunism,” IEEE/ACM
Trans. on Networking, vol. 15, no. 5, pp. 1046–58, October 2007.

Zheng Lu Zheng Lu received his BE degree in
Electronics Engineering from Tsinghua University
in China in 2009. He received his MSE and PhD
in Electrical and Computer Engineering from The
University of Texas at Austin in 2011 and 2015
respectively. His research focuses on algorithms and
architectures to enhance perceived video quality for
video streaming, and resource allocation in Device-
to-Device networks to optimize system and user
perceived performance. He interned at Intel Labs,
Hillsboro during summer 2013. Since 2015, he has

been working at Cisco Systems in San Jose, CA.

Gustavo de Veciana Gustavo de Veciana (S’88-
M’94-SM’01-F’09) received his B.S., M.S, and
Ph.D. in electrical engineering from the University
of California at Berkeley in 1987, 1990, and 1993
respectively, and joined the Department of Electrical
and Computer Engineering where he is currently a
Cullen Trust Professor of Engineering. He served as
the Director and Associate Director of the Wireless
Networking and Communications Group (WNCG) at
the University of Texas at Austin, from 2003-2007.
His research focuses on the analysis and design

of communication and computing networks; data-driven decision-making in
man-machine systems, and applied probability and queueing theory. Dr. de
Veciana served as editor and is currently serving as editor-at-large for the
IEEE/ACM Transactions on Networking. He was the recipient of a National
Science Foundation CAREER Award 1996 and a co-recipient of five best
paper awards including: IEEE William McCalla Best ICCAD Paper Award
for 2000, Best Paper in ACM TODAES Jan 2002-2004, Best Paper in ITC
2010, Best Paper in ACM MSWIM 2010, and Best Paper IEEE INFOCOM
2014. In 2009 he was designated IEEE Fellow for his contributions to the
analysis and design of communication networks. He currently serves on the
board of trustees of IMDEA Networks Madrid.

