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Abstract—This paper proposes a stochastic geometry frame-

work to study the temporal performance variations experienced

by a mobile user in a cellular network. The focus is on the

variations of the Signal to Noise Ratio (SNR) and the downlink

Shannon rate experienced when the user moves across Poisson

cellular network of the Euclidean plane. The motion is the

simplest possible i.e., a user moving at a constant velocity on

a straight line. The level crossings of the associated SNR process

are shown to form an alternating-renewal process. The two

distributions characterizing this process are derived in closed

form. The theory of rare events provides simplified expressions

for the law of this process for extremes (very large and very small)

SNR thresholds. The framework is then leveraged to predict the

quality of service experienced by mobile users in two concrete

scenarios: that of streaming a video on the downlink and partially

buffered on the hand-set to prevent video freezing; and that of

downloading a large file, where the main question is the download

delay. Finally, discrete event simulation is used to assess practical

use of this model on its robustness to perturbations that cannot

presently be taken into account in the analysis.

I. INTRODUCTION

The primary goal of this paper is to model and study the
temporal capacity variations experienced by wireless users
moving through space. These are driven by variation in their
spatial and environmental relationships (associations) to the
infrastructure, as well as random fluctuations intrinsic to
wireless channels, i.e., fast fading, which occur quickly even
for stationary users. Our focus on temporal variability due to
spatial heterogeneity should be contrasted with the extensive
work characterizing spatial variability as seen by randomly
located users, e.g., through metrics such as coverage probabil-
ity, spatial density of throughput, 90% quantile rate, “edge”
capacity, spectral efficiency, etc. There are several reasons
why devoting some effort to studying the temporal variations
experienced by a mobile user is of increasing interest.

First, the Quality of Service (QoS) seen by such users is
critically dependent on the capacity variations they experience
as they move through space. This is particularly true for
applications that operate over longer time scales at which
the mobile is traveling, e.g., video/audio streaming, naviga-
tion/augmented reality, transfers of files for which the capacity
variability may determine the user’s quality of experience.

Second, an increasing volume of data traffic is being gener-
ated by wireless devices [1], and perhaps more interestingly a
substantial fraction of this traffic, e.g., 20-30% of cellular data,
is being generated during hours most commonly associated
with commuting, i.e., by devices most likely on the move [2].
In the future, if driverless cars become prevalent, the amount of

traffic associated with moving devices may grow substantially.
Hence the importance of understanding the variations alluded
to above.

Third, current trends towards heterogeneous network den-
sification leverage opportunistic access to technologies pro-
viding different coverage-throughput tradeoffs, e.g., cellular
(macro, pico, femto cells), WIFI and perhaps, in the future,
mmWave access points. Understanding the effectiveness of
offloading or onloading across such networks, in particular for
mobile users, depends on the policies and capacity variations
the latter will see. Consider an audio/video streaming applica-
tion to a customer on the move. One might ask what density
of WIFI Access Points (APs) will suffice to serve it adequately
through periodic opportunistic AP encounters, requiring few
resources from the cellular network.

Related work. There is a rich literature on the modeling of
the spatial capacity variability that wireless infrastructures can
deliver to a typical (stationary) user. Of particular relevance to
our work is the line of research based on stochastic geometry,
which captures the effect on the typical user of the variability
in base station locations, as well as the variability in the
environment through shadowing, and in the channel through
fading. For a survey on the matter, see e.g. [3]. By contrast
work studying the temporal capacity variations for a user on
the move is limited.

There has also been a significant related work on Delay-
Tolerant Networks (DTN). This literature considers mobile
nodes, where the contact duration and the inter-contact time
are defined and empirically measured from real traces [4], [5]
as well as through mobility models [6]. In addition to mobility
induced inter-contact process, [7] considered other factors like
user availability. However, this work is in the context of
opportunistic ad-hoc communication networks where a set of
mobile nodes are moving under different mobility patterns.
Our focus is on studying the continuous-parameter stochastic
process experienced by a tagged mobile user traversing a static
pattern of nodes.

To the best of our knowledge the proposed simple level-
crossing analysis for the SNR process proposed and analyzed
in this paper is new and provides a first order answer to
this class of questions.It can be seen as a first and necessary
step towards characterizing such temporal variability for more
complex random structures and in particular for the study of
SINR variations, which in this paper are only explored via
simulations for comparison to SNR variations. The fact that
comprehensive results are already available for continuous-
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parameter processes extracted from shot noise fields (see [3],
Volume 1) indicates that such extensions might be tractable.
However, this will require completely different tools which are
beyond what will be discussed in the present paper.

There certainly is a lot of interest in studying how to design
networks to better address the needs of mobile users or to
leverage user mobility for offloading/onloading traffic. For
example [8] studies how user mobility patterns and users per-
ceived QoS might drive the selection of macro-cell upgrades.
The work in [9] examines the effectiveness of algorithms for
optimizing offloading to a set of spatially distributed WIFI
APs. The work in [10] evaluates how proactive knowledge of
capacity variations could be used in designing new models
for video delivery. These works exemplify applications and
engineering problems which depend critically on the temporal
variability mobile users would experience, but do not directly
address the characteristics of such processes.

Contributions of this paper. This paper proposes a stochas-
tic geometry framework to model the temporal performance
variations experienced by a user moving at constant velocity
along a straight line in a Poisson cellular network in the
Euclidean plane. This model has the merit of being the
simplest parametric setting, which justifies its analysis in
a first step. It is clear that it can be generalized to other
types of motion and to other types of base station patterns.
These generalizations are left for future research. The level
crossings of the associated SNR process are shown to form an
alternating-renewal process when: (a) the base stations form
a realization of a Poisson point process; (b) association is to
the closest base station; (c) there is neither shadowing nor
fading. The two distributions characterizing this process are
derived in closed form using connections with queuing theory.
The theory of rare events provides simplified expressions
for the law of this process for extreme values of the SNR
levels. An interesting observation is the verification of the
“rarity hence exponentiality” principle [11], [12] within this
context: when properly rescaled, the extreme events in SNR
variability converge to Poisson point processes of intensity
one on the real line. The framework is then leveraged to
predict the QoS experienced by mobile users in two concrete
scenarios: (1) a user streaming video on a wireless downlink
and opportunistically buffering the video frames on the hand-
set to prevent video freezing during “off” periods; the main
question is whether there exists a transmission policy for
which such video freezing can be completely avoided in steady
state; (2) opportunistic downloading of large file within the
WIFI offloading context described above, where the main
question is the distribution of the download time resulting from
the alternating on and off periods. The paper is completed
by discrete event simulations which are used to assess the
robustness of this model to perturbations that were not yet
taken into account in the analysis. For example the relative
impact of variability associated with the changing geometry
(proximity of base stations) seen by a mobile vs that associated
with channel variability due to channel fades.

Organization. The rest of the paper is organized as follows.

We describe the basic model for cellular infrastructure in
Section II. We characterize the temporal variations of the SNR
seen by a mobile user as an alternating-renewal process and
study its asymptotics in Section III. The two applications of
our model are discussed in Section IV. The simulation results
are presented in Section V and Section VI concludes the paper.

II. BASIC MODEL FOR INFRASTRUCTURE

Consider any general network consisting of nodes repre-
senting base stations/WIFI hotspots, modeled through their
coordinates on the plane R2. The configuration of the nodes
is assumed to be a realization of a Poisson process � =

{x1, x2, ..} of intensity �. We shall assume that users associate
to the closest node. In this case, the region served by station
x
i

is a convex polygon known as the Voronoi cell with nucleus
x
i

constructed with respect to the set of stations � [3]. The
collection of cells forms a tessellation of the plane called the
Voronoi tessellation.

Consider a mobile user moving with uniform velocity v on
a randomly selected straight line. Without loss of generality,
this line can be assumed horizontal and passing through the
origin. We shall assume that all nodes transmit at equal and
constant power P

tx

. We shall primarily use the classical power
law path loss function, so that in the absence of fading and
shadowing, the power received by the mobile user when at a
distance d from the closest node is

P
rx

= P
tx

d�� for � > 2, (1)

and the Signal-to-Noise Ratio (SNR) is given by

SNR =

P
tx

d��

W
, (2)

where W denotes the noise power. However many parts of the
analysis extend to arbitrary monotonic path loss functions.

III. CHARACTERIZATION OF SNR LEVEL CROSSING
PROCESS AND ITS ASYMPTOTICS

Given a certain SNR threshold �, we analyze the temporal
variations of the SNR by characterizing the level crossing
process. Note that the SNR seen by the mobile user exceeds
� if its distance to the closest node is less than

r
�

=

✓
P
tx

W�

◆1/�

(3)

(see Eq. (2)).Therefore, the characterization of the level cross-
ings of the SNR process is equivalent to that of the process
tracking the distance of the mobile user to the closest node.

Thus, let D(r)
t

, for r > 0, denotes the closed disc of radius
r on R2 centered on the mobile user’s location at time t. This
closed disc follows the mobile user motion along the straight
line. Let C(r)

(t) = � \ D
(r)
t

denote the set of nodes in �

that are inside the disc at time t and N (r)
(t) = |C(r)

(t)|
denote the number of nodes that are within the disc at time t.
The following theorem provides a simple characterization of
(N (r)

(t), t � 0) which helps in characterizing the SNR level
crossing process.
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Fig. 1. Figure showing the disc around the mobile user with area R
(r)
� and

the chord along which the node moves

Theorem 1. The process (N (r)
(t), t � 0) can be modeled as

an M/GI/1 queue with arrival rate �(r)
= 2rv� and with

independent and identically distributed service times, denoted
by S(r), with probability density

f
S

(r)(s) =

(
v

2
s

2r
p
4r2�v

2
s

2 . for s 2 [0, 2r/v]

0 otherwise.
(4)

Proof. The entry of a node into the closed disc D
(r)
t

can be
viewed as an arrival to the queue. The amount of time spent
by the node in D

(r)
t

is its service time and the exit from D
(r)
t

is its departure from the queue.
Now, consider the arrival process A(r)

(t) to the queue. The
probability that there is an arrival in the next � seconds is the
probability that there is a node in the area R

(r)
�

= 2rv� as
depicted in Fig. 1. Since the nodes are distributed according
to an homogeneous Poisson point process of intensity �, the
number of nodes in any closed set of area A follows the
Poisson distribution with parameter �A. Thus, for any � > 0,
the increments in the arrival process have the same distribu-
tion. Also, the numbers of nodes in any two disjoint closed
sets are independent which implies that the increment over
disjoint intervals are independent. Thus, the arrival process has
independent stationary Poisson increments. For a small value
of �, the probability that there is a single arrival is given by
�R

(r)
�

+ o(�). Thus, the arrival process is Poisson with rate
2rv�.

Every node that enters the moving closed ball stays in it
for a time that depends on its entry location which is given
by the chord shown in Fig. 1.

So, the time taken for a node to travel the chord is its service
time in the queue. As the mobile moves with constant velocity,
the distribution of the service times can be derived from the
distribution of the chord lengths. If the location of the mobile
is considered to be the origin, then the y coordinate of the
location of a typical node entering the disc D

(r)
t

, Y (r) is

Fig. 2. Level Crossings of SNR process as On-Off Process

uniform on [�r, r]. The random variable S(r) representing
the service time is given by:

S(r)
=

2

p
r2 � (Y (r)

)

2

v
.

The density of S(r) is given by (4), as a direct corollary of
the change of variables formula, and the mean service time is
E[S(r)

] =

⇡r

2v .
Thus, the process N (r)

(t) capturing the number of nodes
in D

(r)
t

at time t follows the dynamics of the number of
customers in an M/GI/1 queue with arrival rate �(r)

=

2rv� and general independent service times following the
distribution of S(r). The stationary distribution for N (r)

(t)
is thus Poisson with mean ⇡r2� . ⌅
A. Characterization of the level crossing processes

The level crossing process can be characterized as an on-
off/up-down process which alternates between successive “on”
intervals {B(r

�

)
n

, n � 1} and “off” intervals {I(r�)
n

, n � 1} as
depicted in Fig. 2. Let T (r

�

)
n

, n � 1 and S
(r

�

)
n

, n � 1 be the
sequence of up-crossing and down-crossing times respectively.
Let V (r

�

) ⇠ T
(r

�

)
n

� T
(r

�

)
n�1 be a random variable whose

distribution is that associated with inter arrivals as illustrated
in Fig. 2.

Definition 1. An alternating renewal process switches between
two states, called on-off or up-down. The system alternates
between successive up intervals and down intervals. If the
random vectors {(B

n

, I
n

), n � 1} are independent and
identically distributed, then the sequence {(T

n

, S
n

), n � 1}
is called an alternating renewal process.

Thus, if the pairs {(B(r
�

)
n

, I
(r

�

)
n

), n � 1} are i.i.d random
vectors, then the associated up and down level crossings
form an alternating-renewal process. Below, we will use the
following theorem shown in [13] which characterizes the busy
period in an M/GI/1 queue. In this theorem and below, for
a given R+ valued random variable X , we denote by ˆX a
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random variable distributed like the forward recurrence time
of X which is defined by

P (

ˆX > x) =
1

E[X]

Z 1

x

P (X > z)dz. (5)

Theorem 2. (Makowski [13]) Consider an M/GI/1 queue
with arrival rate � and generic service time S. Let M
denote an N-valued random variable which is geometrically
distributed according to

P (M = l) = (1� ⌫)(⌫)l�1, l = 1, 2, . . . (6)

with
⇢ = �E[S] and ⌫ = 1� e�⇢. (7)

Consider the R+-valued random variable U distributed ac-
cording to

P (U  u) =
1

⌫
(1� e�⇢P [Ŝu]

) , u � 0, (8)

where, ˆS is the forward recurrence time associated with the
generic service time S. Let {U

n

, n � 1} be an i.i.d sequence
independent of the random variable M . Let B denote a typical
busy period. Then the forward recurrence time ˆB associated
with B admits the random sum representation:

ˆB =

d

MX

i=1

U
i

, (9)

where =

d

denotes equality in distribution.

The following theorem characterizes the level crossing
process for the SNR for some fixed threshold �, which is
equivalent to level crossing process for the distance to the
closest node with threshold r

�

(3) as an alternating-renewal
process and gives the distribution of the generic on and off
periods.

Theorem 3. The level crossing process for the SNR for some
fixed threshold � is an alternating-renewal process. If B(r

�

)

and I(r�) are random variables representing the typical on
and off times respectively, then the distribution of I(r�) is
exponential with parameter 2�vr and

P (B(r
�

) < x) = 1� E[B(r
�

)
]f

B̂

(r
�

)(x). (10)

Here, ˆB(r
�

) is the forward recurrence time associated with the
on time; it admits a random sum representation as in (9) for
the M/GI/1 queue given in Theorem 2 with

⇢(r�) = 2rv�E[S(r
�

)
] = �⇡r2 , ⌫(r�) = 1� e�⇢

(r
�

)

(11)

and S = S(r
�

) defined in (4).

Proof. Given the M/GI/1 model, the on and off times of the
process are characterized by the busy and idle periods of the
defined queue. Thus, V (r

�

) is the random variable representing
the sum of a typical busy period B(r

�

) and a typical idle
period I(r�). Since the arrival process is Poisson, the inter
arrival times are exponential with parameter �(r

�

)
= 2�vr.

Because of the memoryless property, the idle periods all obey

the same distribution. Also, the busy period B(r
�

) depends
upon the arrivals and service times of customers arriving after
the customer initiating the busy period which are independent
of the past arrivals. Thus the busy period B(r

�

) and idle period
I(r�) are independent. The successive busy and idle periods
are independent. Hence, the level crossings of the distance
form an alternating-renewal process.

The proof for the characterization of the forward recurrence
time associated with the busy period of the M/GI/1 queue
follows from Theorem 2. Then, we get (10) from (5). ⌅
Corollary 1. In the stationary regime the renewal process is
such that the probability that the mobile user is in an “on”
period i.e., within a distance r

�

from a node is ⌫(r�) and the
probability that it is in an “off” period i.e., within a distance
greater than r

�

is 1� ⌫(r�).

All path loss functions which are monotonic lead to an
analogue of Theorem 3.
B. Asymptotics

In this subsection, we use the characterization of the dis-
tribution of time for which the SNR is above and below
a given threshold � to study the asymptotic behavior of
the level crossing process when the threshold is extreme.
More precisely, we analyze the asymptotic behavior of the
distribution of the inter arrival time of SNR up-crossings as
� ! 1 and as � ! 0 which can be seen as “good” and “bad”
events respectively.

This is equivalent to the characterization of the asymptotic
behavior of the distribution of the random variable V (r

�

)

corresponding to the up-crossings as r
�

! 0 and as r
�

! 1.

Theorem 4. For all r
�

> 0, let T (r
�

)
n

, n 2 Z, be the random
variables denoting the up-crossings of the distance process for
the threshold r

�

i.e., the sequence of times when the mobile
user starts being within a distance r

�

from the closest node
and the SNR is above �. Then {T (r

�

)
n

} is a renewal process.
Let V (r

�

) be the typical interval of this renewal process. Let
f(r

�

) = 2�vr
�

. Then

lim

r

�

!0
f(r

�

)V (r
�

) d�! exp(1).

Let g(r
�

) = 2�vr
�

e��⇡r

2
� . Then

lim

r

�

!1
g(r

�

)V (r
�

) d�! exp(1).

Proof. The proof is given in the Appendix in the extended
version of the paper [14]. As we shall see in section V, these
asymptotic results can infact be used for moderate values of
� for parameters typically found in wireless networks. ⌅

IV. APPLICATIONS

This section presents direct applications of our model. The
generality of the latter allows us to analytically assess some
key properties of two very different wireless scenarios: that
of video streaming in a both homogeneous and heterogeneous
cellular networks, and that of offloading of file downloads in
a WIFI network.
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A. Mobile User Video Quality of Experience (QoE)
Consider a scenario where a mobile user is viewing a video

streamed over a sequence of wireless downlink(s). Within the
framework described in the paper, let � be an SNR threshold,
and assume that either the SNR is larger than � and the serving
base station opportunistically sends video-frames to the mobile
user at the constant bit rate  = A log(1+ �), or it is not and
the serving base station sends nothing. This constant bit rate
situation is that when the network does not rely on adaptive
coding/decoding. For additional motivation for this scenario,
see [10]. Thus, ⌫(r�) is the probability that the alternating
renewal process is in the “on” state as given in Corollary 1.

We further consider a fluid queue representing the tagged
mobile user’s playback buffer state. The fluid queue has frame
arrival rate 0 during off periods and rate  during on periods.
Let ⌘ denote the playback rate of the video frames by the user.
Hence, as long as the buffer is non-empty, the fluid depletion
rate of the queue is ⌘. The load factor [15] of this queue is thus
given by ⇢(�) = ⌫(r�)/⌘. In this setting the playback buffer
state is still random since the alternating on and off periods
associated with arrival process is random in nature. Let us
focus on rebuffering as the primary video QoE metric [10].
This is directly linked to the proportion of time the playback
buffer is empty.

The first natural question one can ask is whether there is a
choice of � such that the fluid queue is unstable, i.e., ensures
no rebuffering in the long term. Denote by ⇢(�) the load factor
as a function of the SNR threshold �, i.e.,

⇢(�) =
A

⌘
log(1 + �)

✓
1� e

�b

�

2/�

◆
, (12)

where b = �⇡
�
P

tx

W

� 2
� . In other words, does there exist a

� > 0 such that ⇢(�) > 1? It is easy to check that the function
⇢(�) has a unique maximum �⇤ on (0,1) which solves the
equation

�
2
�

=

�� + 1

�

�
2b

�
log(1 + �)

e
� b

�

2
�

1� e
� b

�

2
�

.

So either ⇢(�⇤
) � 1 and the queue can be made unstable

through a proper choice of �, or ⇢(�⇤
) < 1 and the queue

cannot be made unstable.
More generally, if � is such that ⇢(�) > 1, the buffer

is never empty, indicating that eventually there is no video
rebuffering, whereas if ⇢(�) < 1, the proportion of time that
the buffer is empty and the video is frozen is 1�⇢(�). Also,a
lower � limit means a lower transmission rate, but a higher
connection probability.

This basic model has two variants with direct engineering
implications which we discuss below.

Variant 1 is that where the network supports a homogeneous
Poisson process of density ⇠ of video streaming users. It is
assumed that each user has the same behavior as the tagged
user, namely moves along a straight line with uniform velocity.
In addition, by the Displacement Theorem for Poisson point

processes [3] it is guaranteed that users form a Poisson point
process of intensity ⇠ at any time.

At any given time the tagged user is served at a bit rate
A log(1 + �), it will share the base station with a random
number of users denoted by N . We approximate N Poisson
random variable with parameter ⇠E[V ⇤

], where V ⇤ denotes
the area of the intersection of Voronoi cell of a base station
with a closed ball of radius r

�

around it, conditioned on the
fact that the tagged user is within a distance r

�

from the base
station, which introduces an additional bias. We can compute
the expectation with help of integral geometry as shown in
Appendix C of [14].

Hence, due to symmetry, the rate available to the tagged
user is now approximately

⇢(�, ⇠) =

A log(1 + �)

✓
1� e

�b

�

2/�

◆

⌘
E


1

N + 1

�
, (13)

with b as above and E[1/N + 1] calculated by numerical
integration. The shapes of (12) and (13) and the optimal value
of � are illustrated in Fig. 3. Notice that for these parameters,
the optimal � increases with ⇠.

Fig. 3. Load factor of the fluid queue as a function of �.

Variant 2 is that where the fluid queue model is replaced
by its natural discrete time version, which can in particular
incorporate fading. Time is slotted with the duration of a slot
s equal to the coherence time of the channel, i.e., we assume
i.i.d. block fading with an independent fade for each slot. Then
in a time slot where the fade power is H and the distance to
the closest base station is r, either HP

tx

/(Wr�) � � and
the mobile receives at rate A log(1 + �) during s seconds,
or HP

tx

/(Wr�) < � and it receives nothing. Within this
framework, depending on the value of the fade, there are slots
where the mobile is within distance r(�) of the closest base
station and where it nevertheless does not receive frames from
its serving base station, and conversely, there are slots where
the mobile is not within distance r(�) of the closest base
station and where it receives frames from this base station.
The load factor of this queue is

⇢̃(�) =
A

⌘
log(1 + �)2⇡�

Z

r>0
e��⇡r

2

Gc

(

W�r�

P
tx

)dr,
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where Gc denotes the complementary cumulative distribution
function of the fades. The stability condition of this discrete
time queue is ⇢̃(�) < 1. The same conclusions as above hold.

B. Wifi-Offloading
WiFi offloading helps to improve spectrum efficiency and

reduce cellular network congestion. One version of this
scheme is to have mobile users opportunistically obtain data
through WiFi rather than through the cellular network. Of-
floading traffic through WiFi has been shown to be an effective
way to reduce the traffic on the cellular network. WiFi is
faster and typically uses less energy to transmit data when
it is available.

Here, we consider a situation where a service provider
deploys multiple WiFi hotspots as a Poisson point process of
intensity � to offload mobile traffic. The scenario features a
mobile user moving on a straight line with uniform velocity v.
This user needs to download a file from the service provider,
relying on Wifi hotspots rather than on cellular base stations.
The question of interest here is the time it takes to complete
the download.

Assume that the mobile device connects to Wifi only if it is
within a certain distance r from the hotspot. Consider again
the case without adaptive coding/decoding. Then the data rate
experienced by the mobile user is the constant  defined above.
In addition, the mobile user experiences an alternating on and
off process, as characterized in Theorem 3.

Below, for the sake of mathematical simplicity, we assume
that the file size F is exponential with parameter � and that the
mobile user starts to download the file at the beginning of an
on period. Let T denote the random time taken to download
the file. Consider the event J = {F > B(r)} and let

↵ = P (J) = P (F > B(r)
) = L

B

(r)(�). (14)

Here and below, we let L
X

(s) denote the Laplace transform
of the non-negative random variable X at point s, and B(r)

is the random variable representing the length of a typical on
interval (see Theorem 3).

Now, define the non-negative random variables X and Y
by their c.d.f.s

P (X < x) =

1

↵

Z
x

0
e��zf

B

(r)(z)dz (15)

P (Y < y) =

1

1� ↵

Z
y

0
(1� e��z

)f
B

(r)(z)dz. (16)

Notice that

L
X

(s) =

1

↵
L
B

(r)(s+ �) (17)

L
Y

(s) =

1

1� ↵
(1� L

B

(r)(s+ �)) . (18)

The following representation of the Laplace transform of T is
an immediate corollary of the on-off structure:

Theorem 5. Under the foregoing assumptions,

L
T

(s) =
(1� ↵)L

Y

(s)

1� ↵L
X

(s) 2�vr
2�vr+s

. (19)

It is remarkable that the Laplace transform of T admits a
quite simple expression in terms of that of B(r). Other and
more general file distributions can be handled as well when
using classical tools of Laplace transform theory. Note that
this setting also leads to interesting optimization questions.

V. SIMULATION RESULTS

In this section we evaluate when our mathematical model
and associated asymptotic results are valid in more realistic
settings. We use simulation to study the temporal variations
of the SNR process experienced by a mobile user under
various scenarios which are are not captured by our analytical
framework. The model is challenged in various complementary
ways: e.g., by adding fading and accounting for interference
from other base stations. In each case the objective is to
determine for what parameter values of the additional feature
our simplified mathematical model is still approximately valid,
providing robust engineering rules of thumb to predict what
mobile users will see.

In particular, we will answer the following questions:
• How quickly do the SNR level crossing asymptotics

converge as a function of the associated thresholds?
• Under what types of fast fading are our results robust?
• Are there regimes where the temporal characteristics of

the SNR process is a good proxy for the SINR process,
e.g., high path loss?

We begin by introducing our simulation methodology and
the default parameters used throughout this section.
A. Simulation Methodology

We consider a user moving on a straight line (road) at a
fixed velocity of 16 m/s. The base stations are randomly placed
according to a Poisson point process with intensity � such
that the mean coverage area per base station is that of a disc
with radius 200m. Unless otherwise specified, we consider
the path loss function given by Eq. (2) with exponent � = 4

and assume that all base stations transmit with equal power
of P

tx

= 2Watts. The signal strength received by the mobile
user is recomputed every 10

�2 seconds.
We calibrate the thermal noise power to the cell-edge user.

Let D be a random variable denoting the distance from a
typical user to the closest base station. Define d

edge

by the
relation P (D  d

edge

) = 0.9. Since in our simulation setting

P (D  d) = 1�exp(�⇡d2), we have that d
edge

=

q
� ln(0.1)

⇡�

.
If we fix the desired SNR at the cell edge to be SNR

edge

this

then determines the noise power to be W =

P

tx

d

��

edge

SNR
edge

.
In the sequel we evaluate how quickly the convergence

to exponential studied in Theorem 4 arises. To that end we
compare the renormalized distributions obtained via simulation
to the reference exponential distribution with parameter 1,
using the Kolmogorov-Smirnov (K-S) test. The K-S test finds
the greatest discrepancy between the observed and expected
cumulative frequencies– called the “D-statistic”. This is com-
pared against the critical D-statistic for that sample size with
5% significance level. If the calculated D-statistic is less than
the critical one, we conclude that the distribution is of the
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Fig. 4. CDF of interarrival of up-crossings for various thresholds

expected form, see e.g. [16]. The same methodology is used
for the other core studies.
B. Convergence of Level-crossing Asymptotics

Theorem 4 indicates that as the SNR threshold � increases
the rescaled distribution for up-crossings of the SNR process
becomes exponential. The question is how large � needs to
be for this result to hold. To that end we simulated the level
crossing process for various � and computed the D-statistic
mentioned above. The empirical CDF for up-crossing inter-
arrivals rescaled by f(r

�

) as introduced in the theorem can be
seen in e.g., Fig. 4. As expected we found that as the threshold
threshold increases the distribution becomes exponential, and
for a threshold value of � = 50 or more, it is exponential with
unit mean.

In reality an SNR of 50 is not realistic for wireless users.
However, as seen from figure 4, for moderate values of � such
as 0.1, 1, the up-crossing inter-arrivals can be approximated
by an exponential with parameter 1/f(r

�

). For � = 1, the
empirical mean for the inter-arrival time for up-crossings is
72.4649s and the asymptotic approximated mean i.e., f(r

�

)

�1

is 63.0780s.
C. Robustness of Level-crossing Asymptotics to Channel Fad-
ing

Next we study the effect that channel fading might have
on the level-crossing asymptotics. We consider channels with
Rayleigh fading with unit mean, so that the SNR experienced
by the tagged mobile user at a distance d from the base station
is given by HP

tx

d��/W , where H is fading random variable
which is exponential with unit mean. The coherence time is
set to t

c

= 0.423/f
d

, where f
d

is the Doppler shift given
by f

d

=

v

c

f
o

where v is the vehicle velocity, c is the speed
of lights and f

o

= 900MHz is the operating frequency. This
gives a coherence time t

c

= 0.007s. Thus, fading (power)
changes every 0.007 seconds. The SNR process with fading
is illustrated in Fig. 5.

Clearly when we incorporate channel fading in the SNR
process, even when one fixes a high SNR threshold, the level-
crossing process will fluctuate up and down before it goes
down again for some time, see Fig. 5. Thus to recover the on-
off structure and asymptotics we consider a modified process

Fig. 5. SNR process in presence of fading with mean 1

Fig. 6. Threshold above which the inter-arrival of up-crossing converge to
exponential with parameter 1 for different variance of fading

defined as follows. After the first up-crossing, we suppress all
subsequent up crossings (if any) for an appropriate time scale,
and then look for the next up-crossing taking place after this
time. We take a time scale for the suppression of up-crossings
equal to twice the expected on time 2E[B(r)

] [13].
In order to vary the variance keeping the mean of the fading

one, we now consider fading which is a mixture of exponen-
tials. For this process, we would expect that for fading with
mean one, if variance is small, the appropriately rescaled inter-
arrival distribution for up-crossings which are not suppressed
would once again asymptotically become exponential with
parameter 1. In other words we expect the geometric variations
associated with base station locations to dominate channel
variations. Whereas, if fading variance is big, one might
expect the SNR threshold required to obtain convergence to
an exponential to increase. Fig. 6 exhibits such thresholds as
a function of the fading variance. We also see that for fading
variances exceeding 8, the channel variations dominate the
geometric variations, leading to up-crossing asymptotics which
no longer match Theorem 4.

D. Robustness of Level-crossing Asymptotics to the Inclusion
of Interference

So far we have focused on the SNR process. One might
ask to what degree the Signal-to-Interference-plus-Noise Ratio
(SINR) process, shares similar characteristics.
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Fig. 7. Threshold above which the inter-arrival of up-crossing converge to
exponential with parameter 1 for different path loss exponent

We first simulated the SINR process for a setting with a
high path loss exponent of � = 4 and found once again
that the rescaled distribution for the up-crossing inter-arrivals
converges to an exponential with parameter 1. The test re-
quires a threshold � = 31.76,. However, as seen above this
asymptotic is already useful for moderate values of �. We
then evaluated, for different path loss �, what threshold values
were needed to obtain a similar convergence. As shown by
Fig. 7, the threshold in question increases as � decreases.
Further we found that for � < 3.5, we no longer have the
desired convergence property. In summary, for high path-loss
exponents � = 3.5 � 4, the up-crossing asymptotics for the
SNR and SINR processes are similar.

VI. CONCLUSION

As explained in the introduction to this paper, the analysis
of the time variations of the SNR or the SINR experienced
by a mobile user requires the characterization of the func-
tional distribution of a continuous parameter stochastic process
constructed on a random spatial structure (e.g. the Poisson
Voronoi tessellation) and is hence a challenging mathematical
question. This paper addressed the simplest question of this
type by focusing on the SNR process in the absence of fading.
This allowed us to derive an exact representation of the level
crossings of the stochastic process of interest as an alternating
renewal process with a full characterization of the involved
distributions and of their asymptotic extreme behavior. The
simplicity and the closed form nature of this mathematical
picture are probably the most important messages of the
paper. We also showed by simulation that this very special
case actually provides a quite good representation of what
happens for much more concrete scenarios, like e.g. those
with fading when the fading variance is small enough, or
those based on SINR rather than SNR when the path loss
exponent is large enough. This model is hence of potential
practical use as is, in addition to being a first glimpse at a
large field of new research questions. The most challenging
questions on the mathematical side are probably (1) the
understanding of the tension between the randomness coming
from geometry (studied in the present paper) and that coming
from propagation (only studied by simulation here): it would

be nice to analytically quantify when one dominates the other.
(2) the extension of the analysis to SINR processes, which
are the long term aim of the present paper and which will
require significantly more sophisticated mathematical tools,
e.g. based on functional distributions of shot noise fields,
than those used so far. On the practical side, the main future
challenges are linked to the initial motivations of this work,
namely in the prediction and optimization of the user quality of
experience. Many scenarios refining those studied here should
be considered. For instance, the stationary analysis of the fluid
queue representing video streaming should be completed by a
transient analysis and by a discrete time analysis. This alone
opens an interesting and apparently unexplored connection
between stochastic geometry and queuing theory with direct
implications to wireless quality of experience.
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exponential decay of intercontact times between mobile devices,” Mobile
Computing, IEEE Transactions on, vol. 9, no. 10, pp. 1377–1390, 2010.

[5] V. Conan, J. Leguay, and T. Friedman, “Characterizing pairwise inter-
contact patterns in delay tolerant networks,” in Proceedings of the 1st
international conference on Autonomic computing and communication
systems. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2007, p. 19.

[6] H. Cai and D. Y. Eun, “Toward stochastic anatomy of inter-meeting
time distribution under general mobility models,” in Proceedings of the
9th ACM international symposium on Mobile ad hoc networking and
computing. ACM, 2008, pp. 273–282.

[7] C.-H. Lee, J. Kwak et al., “Characterizing link connectivity for oppor-
tunistic mobile networking: Does mobility suffice?” in INFOCOM, 2013
Proceedings IEEE. IEEE, 2013, pp. 2076–2084.

[8] S. Mitra, S. Ranu, V. Kolar, A. Telang, A. Bhattacharya, R. Kokku, and
S. Raghavan, “Trajectory aware macro-cell planning for mobile users,”
arXiv preprint arXiv:1501.02918, 2015.

[9] H. Deng and I.-H. Hou, “Online scheduling for delayed mobile offload-
ing,” in INFOCOM, 2015 Proceedings IEEE, April 2015.

[10] Z. Lu and G. de Veciana, “Optimizing stored video delivery for mobile
networks: The value of knowing the future,” in INFOCOM, 2013
Proceedings IEEE, April 2013, pp. 2706–2714.

[11] J. Keilson, Markov chain model-rarity and exponentiality. Springer
Science & Business Media, 2012, vol. 28.

[12] D. Aldous”, ”Probability Approximations via the Poisson Clumping
Heuristic”. Springer-Verlag, 1989.

[13] A. M. Makowski, “On a random sum formula for the busy period
of the M/G/Infinity queue with applications,” DTIC Document,
Tech. Rep., 2001. [Online]. Available: http://www.researchgate.net/
publication/235086381 On a Random Sum Formula for the Busy
Period of the MGInfinity Queue With Applications

[14] P. Madadi, F. Baccelli, and G. de Veciana, “On temporal variations
in mobile user SNR with applications to perceived QoS (to
appear on arXiv).” [Online]. Available: https://www.dropbox.com/s/
2ik7vnc0w3kelr8/ext ver.pdf?dl=0

[15] F. Baccelli and P. Bremaud, Palm probabilities and Stationary Queues.
Springer Verlag, March 1987.

[16] E. W. Weisstein, “Kolmogorov-Smirnov test,” MathWorld–A Wolfram
Web Resource. [Online]. Available: http://mathworld.wolfram.com/
Kolmogorov-SmirnovTest.html

453


