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Abstract—This paper focuses on modeling and analysis of
the temporal performance variations experienced by a mobile
user in a wireless network and its impact on system-level
design. We consider a simple stochastic geometry model: the
infrastructure nodes are Poisson distributed while the user’s
motion is the simplest possible i.e., constant velocity on a straight
line. We first characterize variations in the SNR process, and
associated downlink Shannon rate, resulting from variations in
the infrastructure geometry seen by the mobile. Specifically, by
making a connection between stochastic geometry and queueing
theory the level crossings of the SNR process are shown to
form an alternating renewal process whose distribution can
be completely characterized. For large/small SNR levels, and
associated rare events, we further derive simple distributional
(exponential) models. We then characterize the second major
contributor to variation, associated with changes in the number
of other users sharing infrastructure. Combining these two
effects, we study what are the dominant factors (infrastructure
geometry or sharing number) given mobile experiences a very
high/low shared rate.These results are then used to evaluate
and optimize the system-level Quality of Service (QoS) and
system-level capacity to support mobile users sharing wireless
infrastructure; including mobile devices streaming video which
proactively buffer content to prevent rebuffering and mobiles
which are downloading large files. Finally, we use simulation to
assess the fidelity of this model and its robustness to factors which
are presently taken into account.

Index Terms—Poisson networks, wireless, Signal-to-Noise Ra-
tio (SNR), Shannon rate, mobile user, temporal variations.

I. INTRODUCTION

The primary aim of this paper is to model and study the tem-
poral capacity variations experienced by wireless users moving
through space. These are driven by geometric variations in the
spatial and environmental relationships (associations) to the
infrastructure, the presence of other users, as well as random
fluctuations intrinsic to wireless channels, e.g., fast fading.
Our focus on temporal variability should be contrasted with
the extensive work characterizing spatial variability as seen by
randomly located users, e.g., through metrics such as coverage
probability, spatial density of throughput, 90% quantile rate,
“edge” capacity, spectral efficiency, etc. Although space and
time may be related through averages (when ergodicity holds),
the temporal characteristics of the stochastic processes mod-
eling a mobile’s capacity variations are relatively unexplored
beyond correlation analysis and of great practical interest.

Indeed, an increasing volume of data traffic is generated by
wireless devices while moving, e.g., 20-30% of cellular data
is generated during commute hours, [1]. In the future, with
increasing use of public transportation and/or the emergence

of driverless cars, this volume could grow substantially. The
Quality of Service/Experience (QoS/E) seen by such users
can be highly dependent on the capacity variations they see
as they move through space. This is particularly the case
for applications that operate over longer time scales, e.g.,
video/audio streaming, navigation/augmented reality, and real-
time services, which may not be able to smooth substantial
capacity variation through buffering, but also for the oppor-
tunistic transfers of large files over heterogeneous networks,
e.g., WIFI offloading. More broadly, increases in wireless
network capacity have been achieved through heterogeneous
network densification leveraging technologies providing differ-
ent coverage-throughput trade offs, e.g., cellular (macro, pico,
femto cells), WIFI and perhaps, in the future, mmWave access
points. Characterizing and managing the capacity variations
mobile users would see across such networks is a challenging
but important problem towards understanding the efficiency
and performance offloading/onloading based services.

Related work. There is a rich literature on modeling spatial
capacity variability in wireless infrastructure for a randomly
located users. Of particular relevance is that based on stochas-
tic geometry, which captures the effect of the variability
in base station locations, as well as the variability in the
environment through shadowing, and in the channel through
fading, see e.g. [2] for a survey on the matter. By contrast
work studying the temporal capacity variations for a user on
the move in a cellular network is limited.

There is also significant related work on Delay-Tolerant
Networks (DTN). This literature considers mobile nodes,
where the contact duration and the inter-contact time are
defined and empirically measured from real traces [3], [4] as
well as through mobility models [5]. In addition to mobility
induced inter-contact processes, [6] considers other factors
like user availability. However, this work is in the context of
opportunistic ad-hoc communication networks where a set of
mobile nodes are moving under different mobility patterns.
Our focus is on studying the continuous-parameter stochastic
process experienced by a tagged mobile user traversing a static
pattern of nodes modeling the wireless infrastructure.

There certainly is a lot of interest in studying how to design
networks to better address the needs of mobile users or to
leverage user mobility for the offloading/onloading traffic. For
example [7] studies how user mobility patterns and users per-
ceived QoS might drive the selection of macro-cell upgrades.
The work in [8] examines the effectiveness of algorithms for
optimizing offloading to a set of spatially distributed WIFI
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APs. The work in [9] evaluates how proactive knowledge of
capacity variations could be used in designing new models
for video delivery. These works exemplify applications and
engineering problems which depend critically on the temporal
capacity variability that mobile users would experience, but
do not directly address the characteristics of such processes.

Key Questions. Two primary sources of temporal variation in
a mobile’s capacity are the SNR, i.e., associated with changes
in the users geometric relationship to the infrastructure, and
the sharing number, i.e., the number of other mobiles sharing
the resource. Our goal in this paper is to study the relative
impacts these have on mobile users’ QoS/E. In this setting
several basic questions arise:

1) Characterization of the SNR process. As a mobile
user moves through a wireless network infrastructure
associating with the closest node, its SNR process and
thus associated peak rate (i.e., without accounting for
sharing) will experience peaks and valleys. What is the
intensity of peaks and valleys? Does it match the rate
of cell boundary crossings? Given an SNR threshold,
can one characterize the temporal characteristics of the
on/off level crossing process associated with being above
and below the threshold, i.e., the coverage and outage
durations?

2) Characterization of the sharing number process. As-
suming a population of other users sharing the network,
what are the characteristics of the sharing number pro-
cess seen by a mobile? If the network is shared by
heterogeneous users, i.e., static, pedestrian, and users on
public transport and/or a road system, how will this bias
what they see?

3) Smoothness of the effective rate process. How smooth
is the bit rate obtained by the mobile seen as a function
of time? How often does this rate incur discontinuities,
trend changes, large jumps or other phenomena nega-
tively impacting real time applications?

4) Characterization of rare events. Conditional on a rare
event, i.e., very poor or very good user rate, what is the
relative contribution of the user’s location vs network
congestion? Can one characterize the time scales for rare
event occurrences?

5) Applications to QoE. What are the implications of
the temporal capacity variations mobiles’ see on their
application-level QoE and system-level performance,
e.g., acceptable density of video streaming users, or
download delays of large files?

To the best of our knowledge the analysis of the SNR
and shared rate processes for Poisson wireless infrastructure
developed in this paper is new and provides a first order answer
to these basic questions. While our models are simplified
they should be viewed as a first, and necessary, step towards
characterizing temporal variability in more complex random
structures, e.g., SINR variations which in this paper are
only explored via simulation for comparison to SNR process
characteristics. Generalizations to SINR processes would be

desirable, particularly for systems operating in the interference
limited regime. Such extensions may be tractable based on
results known for shot noise fields (see [2], Volume 1), yet
are beyond the scope of this paper.

Contributions and Organization. Section II introduces the
basic model studied in this paper. We consider a tagged user
moving at a fixed velocity along a straight line through a
shared wireless network such that: (a) the access points/base
stations are a realization of a Poisson point process; (b) other
users sharing the network also form a Poisson (or possibly
Cox) point process; (c) all users associate with the closest
base station; (d) resources are shared equally with other users
sharing the network; (e) a standard distance based path loss
is used with neither shadowing nor fading. Our goal is to
characterize the shared rate process seen by the tagged user
by studying the SNR and sharing number processes.

In Section III we present our results on the SNR process,
including the intensity of peaks and valleys and, given a
SNR threshold, we provide a a complete characterization of
the on/off level crossing process as an alternating-renewal
process. Equivalently, this characterizes the durations for cov-
erage/outage events seen by the mobile. Interestingly this
is achieved by establishing a connection between the time-
varying geometry seen by the mobile user and an associated
queueing process. We then provide asymptotics for the likeli-
hood of high and low SNR, and show that, after appropriate
rescaling, the time intervals between up crossings are exponen-
tial. Which verifies the “rarity hence exponentiality” principle
[10], [11] for such events.

Section IV provides a detailed discussion of the sharing
number process, i.e., the number of other users which are
covered, i.e., meet an SNR threshold, and share infrastructure
nodes with the tagged user. The process is somewhat complex
and not independent of the SNR process; so we introduce
a simpler bounding process which is used in Section V to
characterize the shared rate process seen by our mobile. In
particular we show that rare events associated with high shared
rates, are associated with high SNR (i.e., mobile’s proximity
to base stations) with no other users sharing the resources.
Similarly low shared rates, arise when mobiles are far from the
base station, and there is a number of sharing users inversely
proportional to the low rate in question. We also provide an
asymptotic characterization for the re-scaled interarrival times
associated with upcrossings.

In Section VI we present a discussion of discrete event
simulation results which are used to assess the robustness
of this model to perturbations that were not yet taken into
account in the analysis. For example the relative impact of
variability associated with the changing geometry (proximity
of base stations) seen by a mobile versus that associated with
channel variability due to channel fades.

In Section VII we leverage our results to evaluate the
QoS experienced by mobile users in two concrete scenarios.
First we consider the delivery of streaming video to mobile
users which are able to store future video frames to prevent
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rebuffering. The primary question addressed is about the
maximal density of such users which can be supported while
ensuring that in the long term no rebuffering is required. Our
second application considers the distribution for the delays
experienced by a mobile user attempting to download a large
file. These two examples give a system-level view on the
performance that mobile users would see when downloading
large files opportunistically via some WIFI infrastructure.

Section VIII briefly discusses some important extensions of
our results to the case of heterogeneous wireless infrastructures
and the case where the locations of mobile users follow a Cox
process associated with a road network. The results show how
heterogeneous technologies impact the temporal variations in
the mobile users SNR process. The results also show how a
mobile user on a roadway is likely to see poorer performance
than a stationary or pedestrian user. Section IX concludes the
paper.

II. SYSTEM MODEL

Consider an infrastructure based wireless network consisting
of nodes e.g., base stations/Wifi hotspots, denoted through
locations on the Euclidean plane. The configuration of the
nodes is assumed to be a realization of Poisson point process
Φ = {X1, X2, ..} in R2 with intensity λ. We consider a tagged
user moving at a fixed velocity v along a straight line starting
from the origin at time t = 0. The mobile user shares the
network with other (static) users spatially distributed according
to another independent Poisson point process of intensity ξ.

All users associate with the closest infrastructure node. For
each Xi ∈ Φ one can define a set of locations which are
closer to Xi than any other point in Φ \Xi. This is a convex
polygon known as the Voronoi cell associated with Xi [2].
The collection of such cells forms a tessellation of the plane
called the Voronoi tessellation see e.g., Fig.1. Thus, all the
users located within the Voronoi cell of node Xi associate
with Xi.

Let (X(t), t ≥ 0), denote the random process where,
X(t) ∈ Φ is the closest node to the mobile user at time t.
Let (L(t), t ≥ 0) be the process denoting the distance from
the mobile user to its closest node.

We consider downlink transmissions and assume that all
nodes transmit at a fixed power p. Based on the classical
power law path loss model and in the absence of fading and
shadowing, the Signal-to-Noise Ratio (SNR) process of the
mobile user is

SNR(t) =
pL(t)−β

w
, for β > 2, t ≥ 0, (1)

where w denotes the noise power.
We will assume that the users are only served if their SNR

exceeds a given threshold γ. It follows from (1) that a user is
served if it is within a distance rγ = ( p

wγ )1/β from the closest
node. We refer to rγ as the radius of coverage. Note that a
user may hence associate with a node but not be served.

The Shannon rate process, (R(γ)(t), t ≥ 0), seen by the
mobile user is directly determined by the SNR process through
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Fig. 1: Mobile user motion in a sample of the Poisson
cellular network.

the relation:

R(γ)(t) =

{
a log (1 + SNR(t)) if L(t) ≤ rγ ,
0 otherwise,

(2)

where a is a constant depending on the available bandwidth.
We assume that each node shares its resources equally

among the users it serves (e.g. through some time sharing
scheme). We define the sharing number process (N (γ)(t), t ≥
0), where N (γ)(t) is the number of static users the node
associated with the mobile user serves provided that it is
itself served, and 0 if the mobile user is not served. In other
words, if the mobile user is served by its closest node X(t)
at time t, it shares the resources with N (γ)(t) static users.
Directly determined by the sharing number, the sharing factor
(F (γ)(t), t ≥ 0), is defined by:

F (γ)(t) =
1

1 +N (γ)(t)
. (3)

Finally, the shared rate process seen by the mobile user
(S(γ)(t), t ≥ 0), is given by

S(γ)(t) = R(γ)(t)× F (γ)(t). (4)

Our aim is to characterize this process. In the next two
sections, we first study the two underlying processes namely:
(1) the SNR process (SNR(t), t ≥ 0) and its level sets, and
(2) the Sharing number process (N (γ)(t), t ≥ 0).

In the sequel, for any stationary random process say for
e.g., (S(γ)(t), t ≥ 0), S(γ) represents a random variable with
distribution equal to the stationary distribution of this process.

A summary of the key notation is provided in the Table I.

III. CHARACTERIZATION OF THE SNR PROCESS

This section is structured as follows: we start by considering
the on-off coverage structure of the SNR process and then

3



Symbol Definition
Φ, λ Poisson point process of nodes and its intensity
ξ Intensity of mobile users
p Constant power transmitted by nodes

(X(t), t > 0) Random process denoting the closest node to the mobile
(L(t), t > 0) Random process denoting the distance to the closest node

(SNR(t), t > 0) Signal-to-Noise ratio random process
(C(γ)(t), t > 0) Signal-to-Noise ratio level crossing process
(R(γ)(t), t > 0) Shannon rate random process
(N (γ)(t), t > 0) Random process denoting the number of users sharing
(S(γ)(t), t > 0) Shared rate random process

γ Threshold on signal-to-noise ratio
rγ Radius of coverage for threshold γ

TABLE I: Table of Notation.

study in more detail the characteristics of its fluctuations. We
then analyze the scale of the inter-occurrence times of certain
rare events.

A. Analysis of the SNR Level Crossing Process
A first order question is whether the mobile is covered or

not. To that end we define the SNR level crossing process as
follows:

Definition 1. Given an SNR threshold γ, the SNR level
crossing process (C(γ)(t), t ≥ 0) is defined as C(γ)(t) =
1(SNR(t) ≥ γ) as shown in Fig 2.

Clearly this is an on-off process, where the on and off
periods correspond to the coverage and outage periods respec-
tively. The process alternates between “on” intervals of length
(B

(γ)
n , n ≥ 1) and “off” intervals of length (I

(γ)
n , n ≥ 1)

as depicted in Fig. 2. We also define the sequence of SNR
up-crossing times (T

(γ)
n , n ≥ 1) for a given threshold γ. Let

V (γ) ∼ T (γ)
n − T (γ)

n−1 be a random variable whose distribution
is that associated with up-crossing inter arrivals as illustrated
in Fig. 2.

In order to characterize the SNR level crossing process, we
establish a connection between the time-varying geometry seen
by the mobile user and an associated queueing process.

Let D(γ)(t) denote the closed disc of radius rγ centered on
the mobile user’s location at time t. This closed disc follows
the mobile user’s motion along the straight line. Let K(γ)(t) =
|Φ ∩D(γ)(t)| denote the number of nodes in the disc.

The following theorem provides a simple characterization
of (K(γ)(t), t ≥ 0) which in turn will help studying the SNR
level crossing process.

Theorem 1. The process (K(γ)(t), t ≥ 0) is equivalent to that
modeling the number of customers in an M/GI/∞ queue with
arrival rate λ(γ) = 2rγvλ and i.i.d. service times with density

fW (γ)(s) =

{
v2s

2rγ
√

4r2γ−v2s2
for s ∈ [0, 2rγ/v],

0 otherwise.
(5)
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Fig. 2: Level crossings of the SNR process as an On-Off
process (bottom) and the point process of its local maxima

χ, denoted by “o” on the x axis, together with edge
crossings, denoted by “×” (top).

Proof: The entry of a node into the closed disc D(γ)(t)
can be viewed as an arrival to the queue. The amount of time
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spent by the node in D(γ)(t) corresponds to its service time
and thus the exit from D(γ)(t) its departure from the queue.

We first show that the arrival process to the disc and thus the
queue, is Poisson. We begin by proving that the arrival process
has independent and stationary increments.The probability that
there is an arrival in the next ε seconds is the probability that
there is a node in the area A(γ)

ε = 2rγvε as depicted in Fig.
3. Since nodes are distributed according to a homogeneous
Poisson point process of intensity λ, the number of nodes in
any closed set of area b follows the Poisson distribution with
parameter λb. Thus, for any ε > 0, the increments in the arrival
process have the same distribution. Also, the number of nodes
in any two disjoint closed sets are independent. Thus, the
arrival process has independent stationary Poisson increments.
For a small value of ε, the probability that there is a single
arrival is given by λA

(γ)
ε + o(ε). Thus, the arrival process is

Poisson with rate 2rγvλ.
Every node that enters the moving closed ball stays in it for

a time that depends on its entry locations and is proportional
to the chord length as shown in Fig. 3. This corresponds to
its service time in the queue.

Since the mobile moves at constant velocity, the distribution
of the service times can be derived from the distribution of the
chord lengths. Without loss of generality suppose the mobile
moves along the x-axis, then clearly the y coordinate of a
typical node entering the disc, Y (γ) is uniform on [−rγ , rγ].
The random variable W (γ) representing the service time is
then given by:

W (γ) =
2
√
r2
γ − (Y (γ))2

v
.

The density of W (γ) is (5), and the mean service time is
E[W (γ)] =

πrγ
2v .

Thus, the process (K(γ)(t), t ≥ 0) capturing the number of
nodes in the moving disc follows the dynamics of the number
of customers in an M/GI/∞ queue with arrival rate λ(γ) =
2rγvλ and general independent service times following the
distribution of W (γ). It follows that the stationary distribution
for K(γ)(t) is Poisson with mean πr2

γλ .
Given the connection to an M/GI/∞ queueing model, the

SNR level crossing process is an alternating renewal process
defined as follows:

Definition 2. A process alternating between successive on and
off intervals is an alternating renewal process if the sequences
of on period (B

(γ)
n , n ≥ 1) and off period (I

(γ)
n , n ≥ 1) are

independent sequences of i.i.d. non-negative random variables.

Theorem 2. For all γ > 0, the SNR level crossing process,
(C(γ)(t), t ≥ 0), is an alternating-renewal process. Further, its
typical on period, B(γ), and off period, I(γ), are distributed as
the busy and idle periods of an M/GI/∞ queue with arrival
rate λ(γ) = 2rγvλ and i.i.d. service times with distribution
given in (5). Thus, I(γ) ∼ exp(2λvrγ) and the busy period
distribution can be explicitly characterized as in [12]. Also,
in the stationary regime, the probability that the SNR level
crossing process is “on” is 1− e−λπr

2
γ .

Proof: Let us consider the M/GI/∞ queue defined in
Theorem 1. The queue being empty implies that there are no
nodes closer than distance rγ from the tagged user. Thus, an
off period of the associated SNR level crossing process is
equivalent to an idle period of the queue. Similarly, the busy
period is equivalent to an on period.

Since the arrival process is Poisson, the inter arrival times
are exponential with parameter λ(γ) = 2λvrγ . Because of
the memoryless property, all the idle periods obey the same
distribution.

Let B̂(γ) denote a random variable representing the forward
recurrence time associated with the on time defined as

P(B̂(γ) > x) =
1

E[B(γ)]

∫ ∞
x

P(B(γ) > z)dz. (6)

Using the correspondence of the SNR on times with the busy
period of the M/GI/∞ queue considered, its distribution is
same as that given in Theorem 12 in the Appendix with service
time S ∼W (γ) and

ρ(γ) = 2rγvλE[W (γ)] = λπr2
γ , ν(γ) = 1− e−ρ

(γ)

. (7)

Also, the busy period B(γ) depends upon the arrivals
and service times of customers arriving after the customer
initiating the busy period which are independent of the past
arrivals. Thus the busy period B(γ) and idle period I(γ) are
independent. Hence, the SNR level crossing process form an
alternating-renewal process.

The mean of the busy period of the queue is given by [12]:

E[B(γ)] =
ν(γ)

2λvrγ(1− ν(γ))
. (8)

Thus, the probability that the SNR level crossing process is
“on” is 1− e−λπr

2
γ .

It is easy to see that all path loss functions which are
monotonic lead to an analogue of Theorem 2.
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B. Fluctuations of the SNR Process

The SNR process is pathwise continuous and has continuous
derivatives except at a countable set of times corresponding to
Voronoi cell edge crossings where the mobile sees a hand-
off and where the first derivative of the SNR process is
discontinuous.

Since the mobile is moving with a fixed velocity v, the
intensity of the cell-edge crossings is given by 4v

√
λ/π [13],

[14].
As the mobile traverses a particular cell, there is a time

where it is the closest to the associated node. The SNR process
has a local maximum at these times. Perhaps surprisingly such
maxima may happen at the edge of the cell. Let us denote the
point process of interior maxima by χ. The (time) intensity
of χ is given in the following theorem.

Theorem 3. The intensity of the point process χ of the SNR
maxima occurring in the interior of cells is v

√
λ.

Proof is given in Appendix A.
Thus, the fraction of SNR maxima that happen in the

interior of the cell is given by π/4. In other words, 1− π
4 of

the SNR maxima seen by the mobile occur at the cell edges.

C. Rare Events

In this subsection we consider certain rare events such as
the occurrence of large SNR values. We show that the “rarity
hence exponentiality” principle [10], [11] applies here. We also
give the scales at which the inter-arrival time of high SNR is
close to an exponential. As we shall see in Section VII, these
asymptotic results can also be used for moderate values of
SNR for the parameters typically found in wireless networks.

The following theorem gives a characterization of the
asymptotic behavior of the distribution of the random variable
V (γ) corresponding to the up-crossings as γ → ∞ and as
γ → 0, which can be seen as “good” and “bad” events
respectively.

Theorem 4. For all γ > 0, the up-crossings of the SNR
level crossing process, (T

(γ)
n , n ≥ 1), constitute a renewal

process. Let V (γ) be the typical inter arrival for this process.
Let f(γ) = 2λvrγ , then

lim
γ→∞

f(γ)V (γ) d−→ exp(1).

Let g(γ) = 2λvrγe
−λπr2γ , then

lim
γ→0

g(γ)V (γ) d−→ exp(1).

Proof: The proof is given in the Appendix.
Notice that as γ → ∞, the radius of coverage rγ → 0 and
vice versa. The scale f(γ)−1 of the inter-event times of “good
events” is sub-linear in rγ when rγ tends to 0, whereas the
scale g(γ)−1 for “bad events” is exponential in the variable
r2
γ when rγ tends to infinity. Thus, the good events happen in

a sense more often than the bad events.
For bad events, as rγ tends to∞, a disc of radius rγ should

be empty whose probability is given by e−λπr
2
γ . Conversely,
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Fig. 4: Johnson-Mehl cells.

for good events, as rγ tends to 0, there should at least be a
node in the disc of radius rγ , an event whose probability is
given by 1 − e−λπr

2
γ . Thus, the difference in scale is due to

the fact that the probability of occurrence of a bad event goes
to zero with rγ tending to infinity, faster than the probability
of occurrence of good event with rγ tending to 0.

IV. SHARING NUMBER PROCESS

In contrast to the SNR or the Shannon rate process, which
take their values in the continuum, the sharing number process
takes a discrete set of values and is piece-wise constant. We
shall start by evaluating the frequency of discontinuities and
then introduce an upper-bound process to be used in the sequel.
We conclude this section with a study of rare events.

A. Discontinuities

In the sequel, we will use the following simplified notion
of a Johnson-Mehl cell, see [13].

Definition 3. Consider Φ = {Xi} the Poisson point process
of nodes on R2. For any threshold γ, the Johnson–Mehl cell
J (γ)(Xi) associated with Xi is the intersection of the Voronoi
cell of Xi w.r.t. Φ with a disc of radius rγ centered at Xi, see
Fig.4.

Thus for a fixed threshold γ, the mobile user is cov-
ered/served at time t if and only if it is within the Johnson–
Mehl cell of its associated node X(t) for the radius rγ . We
recall that:

Definition 4. The process (N (γ)(t), t ≥ 0) is defined as
the number of static users present in the Johnson-Mehl cell
J (γ)(X(t)) if the mobile is in J (γ)(X(t)) and 0 otherwise.

The process (N (γ)(t), t ≥ 0) is an N-valued piece-wise
constant process, with jumps at certain Johnson–Mehl cell
edge crossings as illustrated in Figure 5. The value it assumes
upon entering a cell is a conditionally Poisson random variable
with a parameter that depends on the area of the cell in
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question. The following theorem provides an upper bound for
the jump intensity:

Theorem 5. An upper bound for the intensity of discontinuities
of the sharing number process is the intensity of the Johnson-
Mehl cell edge crossings, which is given by:

4v
√
λ

π
(erf(
√
λπrγ − 2

√
λrγe

−λπr2γ ).

Proof: The intensity of cell edge crossings in a Johnson-
Mehl tessellation is given in [15]. Not all the cell edge
crossings lead to jumps as the number of static users can be the
same across two adjacent Johnson-Mehl cells, thus the given
intensity is an upper bound.

Given that the value of N (γ)(t) is a non-zero constant, the
time of constancy is defined as the typical amount of time it
remains at that same constant. This time of constancy is lower
bounded by the distribution of the chord length of the motion
line’s intersection with a typical Johnson–Mehl cell [15]. It is
a lower bound only since the number of static users can be
the same across two adjacent Johnson-Mehl cells.

B. Upper Bound for the Sharing Number Process

Note that the two underlying processes that are used to
define the shared rate process, namely the sharing number pro-
cess (N (γ)(t), t ≥ 0) and the SNR process (SNR(t), t ≥ 0),
are not independent as easily seen in the case where γ = 0.
For example, assume that the mobile user experiences a low
SNR, i.e., it is far from its associated node, Then the area of
the Voronoi cell is likely to be large. This in turn implies that
the mobile is more likely to share its node with a large number
of users.

Fortunately, the sharing number process admits a simple
upper bound which is independent of the SNR process. This
upper bound is defined as follows:

Definition 5. Let D(x, rγ) denote a disc of radius rγ centered
at location x. Let N̂ (γ)(t), t ≥ 0, be the number of static

users which are in the disc D(X(t), rγ) if the mobile is in
J (γ)(X(t)), and 0 otherwise.

The stochastic process (N̂ (γ)(t), t ≥ 0) enjoys most of the
structural properties of (N (γ)(t), t ≥ 0); in particular, it is
piece-wise constant and one can derive natural bounds on the
intensity of its jumps. In addition and more importantly:
• For all t ≥ 0, P(N̂ (γ)(t) ≥ N (γ)(t)) = 1, i.e., N̂ (γ)(t)

is an upper bound for the sharing number; this bound is
tight in the regime where the area of the typical Voronoi
cell ( 1

λ ) is large compared to the area of the disc of radius
rγ ;

• When the mobile user is covered, the sharing number
N̂ (γ)(t) is Poisson with parameter ξπr2

γ ;
• The stochastic processes (N̂ (γ)(t), t ≥ 0) and

(SNR(t), t ≥ 0) are independent.

V. SHARED RATE PROCESS

We recall that the shared rate is

S(γ)(t) = R(γ)(t)F (γ)(t) = R(γ)(t)
1

N (γ)(t) + 1
, (9)

with R(γ)(t) the Shannon rate defined in (2) and F (γ)(t)
the sharing factor at time t. A realization of this process is
illustrated in Figure 5. In the sequel, we use our upper bound
process on N (γ)(t) to obtain a lower bound on the shared rate:

Ŝ(γ)(t) = R(γ)(t)F̂ (γ)(t) = R(γ)(t)
1

N̂ (γ)(t) + 1
, (10)

which is now a product of two independent random variables.

A. Shared Rate Variability

The shared rate process is smooth for Lebesgue almost every
t, with a countable set of discontinuities and a countable set
of points of discontinuities of its first derivative. It is equal
to zero when the mobile is not covered. The point process
of discontinuities is upper bounded by the Johnson-Mehl cell
edge crossings (see Theorem 5). The point process of its local
maxima where the derivative is zero is the same as that of the
SNR process as given in Theorem 3.

As can be seen from (10), the variability in the mobile user’s
shared rate is driven by two processes: the Shannon rate and
the sharing factor process. It is of interest to understand their
relative contributions. To answer this question, let us consider
the variance of Ŝ(γ) which can be written using the conditional
variance formula as:

var(Ŝ(γ)) = var(R(γ))E[F̂ (γ)]2 + var(F̂ (γ))(E[(R(γ))2]).
(11)

Note that if the density of users increases, the variance of the
shared factor decreases whereas the variance of the Shannon
rate remains constant. Thus, the variance of the shared rate
varies approximately linearly with a slope equal to the second
moment of the Shannon rate. By contrast if the density of
nodes increases, the variance of both the sharing factor and
Shannon rate vary making their relative contributions more
complex.
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ξ var(S(γ)) var(F̂ (γ))
5 0.6527 0.0303
25 0.0674 0.0028
50 0.012 0.0016
75 0.0047 0.0006

100 0.0023 0.0001

TABLE II: Variance values when increasing user density.

λ var(S(γ)) var(F̂ (γ)) var(R(γ))
5 0.0438 0.0049 0.3325

25 5.1292 0.0576 03.3944
50 0.6351 0.0642 0.9607
75 01.2626 0.0723 0.6926
100 0.9682 0.0756 0.2252

TABLE III: Variance values when increasing node density.

Let us see empirically what are the contributions of the user
and node density to the variability of shared rate. For a given
node density λ = 25/π and radius of coverage rγ = 500m, by
increasing the density of static users, the variance of the shared
rate decreases linearly with the variance of the sharing factor.
Table II gives numerical values evaluated by simulations. For
a given static user density ξ = 50 and radius of coverage
of 200m, by increasing the density of nodes the variance of
both the sharing factor and Shannon rate varies. Table III gives
numerical values evaluated by simulations.

These results confirm that whereas the impact of increasing
the other users density on mobile user’s shared rate variance
is clear, the result of increasing the density of nodes is more
subtle.

B. Rare Events

Since the mobile user’s shared rate depends on two compo-
nents it is of interest to understand their relative contributions
towards the events of high/low shared rate. The proofs of the
following theorems are given in Appendix.

Theorem 6. The likelihood of the rare events associated with
high shared rates is the same (up to logarithmic equivalence)
as that for the high SNR in the sense that

lim
s→∞

−1

s
log
(
P(S(γ) > s)

)
= lim

s→∞
−1

s
log (P(log(1 + SNR) > s)) =

2

β
.

Notice that as a direct corollary of the last theorem,

lim
s→∞

−1

s
log
(
P(S(γ) > s)

)
= lim

s→∞
−1

s
log
(
P(S(γ) > s|N (γ) = 0)

)
= lim

s→∞
−1

s
log
(
P(S(γ) > s,N (γ) = 0)

)
=

2

β
.

For the rare events associated with a low shared rate, we will
consider the lower bound process (Ŝ(γ)(t), t ≥ 0):

Theorem 7. The rare events of low shared rates are predom-
inantly the same as the rare events of high sharing number
given that the mobile is at the covering cell edge, in the sense
that for some sequence {sn} such that sn log(1 + Kr−βγ ) ∈
Z ∀n and limn→∞ sn →∞:

lim
n→∞

− 1

sn log(sn)
log

(
P
(
Ŝ(γ) <

1

sn

))
= lim

n→∞
− 1

sn log(sn)
log

(
P

(
log(1 +Kr−βγ )

N̂ (γ) + 1
<

1

sn

))
= log(1 +Kr−βγ ). (12)

Theorem 8. Conditioned on a very good or bad shared rate,
the relative contribution of the mobile user’s location and the
network congestion is as follows:

lim
s→∞

P(R(γ) > s,N (γ) = 0|S(γ) > s) = 1. (13)

P(N (γ) > as log(1 + γ)− 1|0 < S(γ) < 1/s) = 1. (14)

Conditioned on a very high shared rate, the mobile user
has to be close to the associated node with no other static
users sharing its resources. On the contrary, conditioned on
the mobile being served and experiencing a very low shared
rate, it has to share its associated node with number of users
that is inversely proportional to the desired shared rate.

From the previous theorem, we know that high shared rates
are predominantly the same as the event where the SNR is high
and the sharing number is zero. Thus, for a given threshold
δ for the shared rate process, we can study the asymptotic
behavior of the distribution of the inter arrival time of shared
rate up-crossings as δ →∞.

Corollary 1. Let Ẑδ denote the inter arrival time for the good
events of the lower bound process (Ŝ(γ)(t), t ≥ 0). Then

lim
δ→∞

f(rδ)e
−ξπr2γ Ẑδ → exp(1),

where f(rδ) = 2λvrδ.

Proof: The result follows from the fact that Ẑδ =∑X
i=1 V

rδ , where X is geometric random variable with param-
eter e−ξπr

2
γ and V (rδ) the typical interval time of the renewal

process of up-crossings associated with the SNR process of
threshold δ.

VI. SIMULATION AND VALIDATION

In this section we evaluate when our mathematical model
and associated asymptotic results are valid in more realistic
settings. We use simulation to study the temporal variations
of the SNR process experienced by a mobile user under
various scenarios which are are not captured by our analytical
framework. The model is challenged in various complementary
ways: e.g., by adding fading and accounting for interference
from other base stations. In each case the objective is to
determine for what parameter values of the additional feature
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our simplified mathematical model is still approximately valid,
providing robust engineering rules of thumb to predict what
mobile users will see.

In particular, we will answer the following questions:
• How quickly do the SNR level up crossings converge to

exponential asymptotics as a function of the associated
thresholds?

• Are the results obtained robust to the addition of fast
fading?

• Are there regimes where the temporal characteristics of
the SNR process are a good proxy for the SINR process,
e.g., high path loss?

We begin by introducing our simulation methodology and
the default parameters used throughout this section.

A. Simulation Methodology

We consider a user moving on a straight line (road) at a
fixed velocity of 16 m/s. The base stations are randomly placed
according to a Poisson point process with intensity λ such that
the mean coverage area per base station is that of a disc with
radius 200m. Unless otherwise specified, we consider the path
loss function given by Eq. (1) with exponent β = 4 and assume
that all base stations transmit with equal power of p = 2W.
The signal strength received by the mobile user is recomputed
every 10−2 seconds.

We calibrate the thermal noise power to the cell-edge user.
Let D be a random variable denoting the distance from a
typical user to the closest base station. Define dedge by the
relation P (D ≤ dedge) = 0.9. Since in our simulation setting

P (D ≤ d) = 1− exp(λπd2), we have dedge =
√
− ln(0.1)

πλ . If
we fix the desired SNR at the cell edge to be SNRedge this

then determines the noise power to be w =
pd−βedge

SNRedge
.

In the sequel we evaluate how quickly the convergence
to exponential studied in Theorem 4 arises. To that end we
compare the renormalized distributions obtained via simulation
to the reference exponential distribution with parameter 1,
using the Kolmogorov-Smirnov (K-S) test. The K-S test finds
the greatest discrepancy between the observed and expected
cumulative frequencies– called the “D-statistic”. This is com-
pared against the critical D-statistic for that sample size with
5% significance level. If the calculated D-statistic is less than
the critical one, we conclude that the distribution is of the
expected form, see e.g. [16].

B. Convergence of Level-crossing Asymptotics

Theorem 4 indicates that as the SNR threshold γ in dB
increases, the rescaled distribution for up-crossings of the SNR
process becomes exponential. The question is how large γ
needs to be for this result to hold. To that end we simulated
the level crossing process for various γ and computed the D-
statistic mentioned above. The empirical CDF for up-crossing
inter-arrivals rescaled by f(rγ) as introduced in the theorem
can be seen in e.g., Fig. 6. As expected we found that as the
threshold increases, the distribution becomes exponential, and

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1
 γ = 0.01
 γ=0.1
 γ=1
 γ=50
 exp(1)

Fig. 6: CDF of interarrival of up-crossings for various
thresholds.

for a threshold value of γ = 50 or more, it is exponential with
unit mean.

In practice SNR of 50 dB is not realistic for wireless users.
However, as seen from Figure 6, for moderate values of γ such
as 0.1, 1, the up-crossing inter-arrivals can be approximated
by an exponential with parameter 1/f(rγ). For γ = 1, the
empirical mean for the inter-arrival time for up-crossings is
72.4s and the asymptotic approximated mean i.e., f(rγ)−1 is
63.07s.

C. Robustness of Level-crossing Asymptotics to Fading

Next we study the effect that channel fading might have
on the level-crossing asymptotics. We consider channels with
Rayleigh fading with unit mean, so that the SNR experienced
by the tagged mobile user at a distance d from the base station
is given by Hpd−β/w, where H is a fading random variable
which is exponential with unit mean. The coherence time is
set to tc = 0.423/fd, where fd is the Doppler shift given
by fd = v

c fo where v is the vehicle velocity, c is the speed
of lights and fo = 900MHz is the operating frequency. This
gives a coherence time tc = 0.007s. Thus, fading (power)
changes every 0.007 seconds. The SNR process with fading
is illustrated in Fig. 7.

Clearly when we incorporate channel fading in the SNR
process, even when one fixes a high SNR threshold, the level-
crossing process has additional fluctuations before it goes
down again for some time, see Fig. 7. Thus to exhibit the on-
off structure and asymptotics we consider a modified process
defined as follows. After the first up-crossing, we suppress
all subsequent up crossings (if any) for an appropriate time
period, and then look for the next up-crossing taking place
after this time. We take a time period for the suppression of
up-crossings equal to twice the expected on time of 2E[B(rγ)]
[12].

In order to vary the variance while keeping the mean of
the fading at one, we now consider fading which is a mixture
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Fig. 7: SNR process in presence of fading with mean 1.
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Fig. 8: Threshold above which the inter-arrival of
up-crossing converge to exponential with parameter 1 for

different variance of fading.

of exponentials. For this process, we would expect that for
fading with mean one, if variance is small, the appropri-
ately rescaled inter-arrival distribution for up-crossings which
are not suppressed would once again asymptotically become
exponential with parameter 1. In other words we expect
geometric variations associated with base station locations to
dominate channel variations. Whereas, if the fading variance
is high, one might expect the SNR threshold required to
obtain convergence to an exponentiality to increase. Fig. 8
plots such thresholds as a function of the fading variance.
As can be seen for fading variances exceeding 8, the channel
variations dominate the geometric variations and thus up-
crossing asymptotics differ from Theorem 4.

D. Robustness of Level-crossing Asymptotics to Interference

So far we have focused on the SNR process. One might
ask to what degree the Signal-to-Interference-plus-Noise Ratio
(SINR) process, shares similar characteristics.

We first simulated the SINR process for a setting with a
high path loss exponent of β = 4 and found once again

path-loss exponent β
3.5 3.6 3.7 3.8 3.9 4

SI
N

R 
th

re
sh

ol
d 
γ

 in
 d

B

31

32

33

34

35

36

37

38

39

Fig. 9: Threshold above which the inter-arrival of
up-crossing converge to exponential with parameter 1 for

different path loss exponent.

that the rescaled distribution for the up-crossing inter-arrivals
converges to an exponential with parameter 1. The test requires
a threshold γ = 31.7dB. However, as seen above, this
asymptotic is already useful for moderate values of γ. We
then evaluated, for different path loss β, what threshold values
were needed to obtain a similar convergence. As shown by
Fig. 9, the threshold in question increases as β decreases.
Further we found that for β < 3.5, we no longer have the
desired convergence property. In summary, for high path-loss
exponents β = 3.5 − 4, the up-crossing asymptotics for the
SNR and SINR processes are similar.

VII. APPLICATIONS

In this section we consider our models to evaluate
application-level performance of mobiles in a shared wireless
network. In particular we consider two very different wireless
scenarios: (1) video streaming to mobiles sharing a cellular or
Wifi network and (2) large file downloads using Wifi.

A. Stored Video Streaming to Mobile Users

Let us consider a scenario where mobile users are viewing
stored videos which are streamed over a sequence of wireless
downlinks. The users are distributed according to a Poisson
point process of density ξ and are moving independently of
each other. Consider a policy where a mobile user is served
by a node only if the SNR experienced is greater than a
threshold γ. Thus, the nodes serve the mobile users within
the radius of coverage rγ = (p/(γw))1/β . A lower threshold
γ corresponds to a lower transmission rate (when served), a
higher probability of coverage and sharing with a large number
of other mobile users. Conversely a higher threshold implies
higher transmission rate and sharing with fewer other mobile
users. For simplicity we consider rebuffering as the primary
metric for user’s video quality of experience [9].

The playback buffer state of the tagged mobile user moving
at a fixed velocity v on a straight line, can be modeled as a fluid
queue. The arrival rate to which alternates between an average
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ergodic rate, h(γ) = E[R(γ)|SNR > γ] and zero depending
on whether the mobile is being served or not. Let η denote the
video playback rate in bits. Hence, as long as the buffer is non-
empty, the fluid depletion rate of the queue is η. Re-buffering
of the video is directly linked to the proportion of time the
playback buffer is empty, which is given by 1−ρ(γ, ξ), where
the load factor, ρ(γ, ξ), [17] of the queue is:

ρ(γ, ξ) =
ν(γ)h(γ)

η
E
[

1

N
(γ)
p + 1

]
. (15)

where ν(γ) is the probability that the alternating renewal
process associated with the arrival rate to the fluid queue is
“on”.

The first natural question one can ask is whether there is a
choice of γ such that the fluid queue is unstable, thus ensuring
no rebuffering in the long term. In other words, does there
exist a γ > 0 such that ρ(γ, ξ) > 1? Given our policy and
the metric for quality of experience, the network provider has
liberty to choose a lower value of threshold,γ, as long as the
typical mobile user in the long run experiences no rebuffering.

Now, for simplicity let us consider a constant rate κ =

a log (1 + γ)E
[

1

N
(γ)
p +1

]
instead of the average ergodic rate.

This constant bit rate is when the network does not rely on
adaptive coding/decoding. For additional motivation for this
scenario, see [9]. The load factor ρ(γ, ξ) is given by

ρ(γ, ξ) =

a log(1 + γ)

(
1− e

−b
γ2/β

)
η

E
[

1

N
(γ)
p + 1

]
,

(16)

where b = λπ
(
p
w

) 2
β and E[1/(N

(γ)
p + 1)] can be calculated

by numerical integration as described in previous section.
It is easy to check that the function ρ(γ, ξ) has a unique

maximum γ∗ on (0,∞). A plot of (16) and the value of γ∗

are illustrated in Fig. 10. Notice that for these parameters, the
value of γ∗ increases with ξ.

For a given base station density λ and density of users ξ,
one can evaluate the SNR threshold value γ∗ for which the
load factor ρ is maximum. Fig.11 illustrates the level set curve
of ρ(γ∗, ξ) = 1 for various values of λ and ξ. In this setup,
given the video consumption rate η, it is possible to answer
questions like what is the minimum density of base stations
required to serve a certain density of users such that the video
streaming is uninterrupted for all the users.

Remark 1. In the case where there exists no threshold γ for
which the condition for no long term rebuffering is satisfied
and κ > η, the fluid queue alternates between busy and
idle period representing the periods when the video is un-
interrupted or frozen, respectively. The distribution of the
on periods B(γ) and that of the off periods I(γ) of of the
M/GI/∞ queue discussed in Section determine the distribu-
tion of the busy period Bf and that of the idle period If of
the fluid queue. When denoting by κ the constant input rate
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Fig. 10: Load factor of the fluid queue for a single user (top
curve) and for a positive density of users as a function of γ

(curves below the top curve). For the latter curves, the
number of users per base station are ξ/λ = 1, 4 and 10 from
top to bottom. Here b = 1. All functions can be multiplied

by an arbitrary positive constant when playing with a and η.
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Fig. 11: Level set curve of ρ(γ∗, ξ) = 1 for an arbitrary
positive constants a and η.

during on period and by η the constant output rate when the
queue is non-empty, the Laplace transform of Bf is given by
[18]

LBf (s) = LB(γ)(sσ + λ(σ − 1)(1− LBf (s))), (17)

where σ = κ/η > 1, and the idle period If has an exp(λ(γ))
distribution.

B. Wifi Offloading

WiFi offloading helps to improve spectrum efficiency and
reduce cellular network congestion. One version of this
scheme is to have mobile users opportunistically obtain data
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through WiFi rather than through the cellular network. Of-
floading traffic through WiFi has been shown to be an effective
way to reduce the traffic on the cellular network. WiFi is
faster and uses less energy to transmit data when there is a
connection.

Let us consider a scenario where the mobile users download
a large file from the service provider, relying on Wifi hotspots,
distributed according to a Poisson point process of intensity λ,
rather than on cellular base stations. The users are distributed
according to a Poisson point process of density ξ and are
moving independently of each other. Assume that the Wifi
hotspots have a fixed coverage area i.e., the mobile user
connects to Wifi only if it is within a certain distance r from
the hotspot. Thus, higher the density of hotspots, λ, deployed
by the provider the better the performance experienced by
mobile users that rely only on them. We consider the time
it takes to complete the download as the primary metric for
user’s quality of experience.

Consider again the case without adaptive coding/decoding
and the tagged mobile user moving on a straight line at
constant velocity v.Then, the shared rate experienced by the

mobile user is the constant κ = a log (1 + γ)E
[

1

N
(γ)
p +1

]
as

defined above. In addition, the mobile user experiences an
alternating on and off process, as characterized in Theorem 2.

Below, for the sake of mathematical simplicity, we assume
that the file size F is exponential with parameter δ and that the
mobile user starts to download the file at the beginning of an
on period. Let T be a random variable denoting the time taken
to download the file. Consider the event J = {F > κB(λ)}
and let

α = P(J) = P(F > κB(λ)) = LB(λ)(δκ). (18)

Here and below, LX(s) denotes the Laplace transform of the
non-negative random variable X at point s, and B(λ) is the
random variable representing the length of a typical on interval
seen by the mobile (see Theorem 2).

Now, define the non-negative random variables X and Y
by their c.d.f.s

P(X < x) =
1

α

∫ x

0

e−δκzfB(λ)(z)dz (19)

P(Y < y) =
1

1− α

∫ y

0

(1− e−δκz)fB(λ)(z)dz. (20)

Notice that

LX(s) =
1

α
LB(λ)(s+ δκ) (21)

LY (s) =
1

1− α
(1− LB(λ)(s+ δκ)) . (22)

The following representation of the Laplace transform of T is
an immediate corollary of the on-off structure:

Theorem 9. Consider a network of Wifi hotspots distributed
according to a Poisson point process of intensity λ and radius
of coverage r shared by mobile users distributed independently
by a Poisson point process of intensity ξ. Assuming that the

tagged mobile user starts to download the file at the beginning
of an on period, the Laplace transform of the time taken to
download a file of size F ∼ exp(δ) is given by

LT (s) =
(1− α)LY (s)

1− αLX(s) 2λvr
2λvr+s

. (23)

It is remarkable that the Laplace transform of T admits a
quite simple expression in terms of that of B(λ). Other and
more general file distributions can be handled as well when
using classical tools of Laplace transform theory. Note that this
setting also leads to interesting optimization questions such as
the optimal density of Wifi hotspots needed to be deployed
for lower expected download times.

VIII. VARIANTS

In this section, we consider two generalizations of the
previous framework: (1) we move from sharing with static
users to sharing with mobile users and (2) we move from
homogeneous to heterogeneous infrastructures

A. Sharing the Network with Mobile Users

Until here we have considered a tagged mobile user sharing
the network with static users. We now consider two scenarios:
(1) that where the other users are mobile and are initially
distributed according to a homogeneous Poisson point process
and (2) that where they are mobile but restricted to a random
road network, i.e., form a Cox process.

1) Homogeneous Poisson case: Consider the case where
other users sharing the network are initially located according
to a homogeneous Poisson point process of intensity ξ, and
subsequently exhibit arbitrary independent motion. This is a
possible model for pedestrian motion. It follows from the
displacement theorem for Poisson point processes [2] that the
other users at any time instant will remain a Poisson point
process of intensity ξ.

As considered before, the users are served only if they are
at a distance less than rγ from the closest node. Consider
a tagged mobile user moving at a fixed velocity along a
straight line. Let us define the mobile sharing number process
(N

(γ)
p (t), t ≥ 0) as the number of users sharing the node

associated with the tagged user when it is served and zero
otherwise. Thus, at any given time t, the tagged user shares
its resources with a random number of users N (γ)

p (t) which
is Poisson with a parameter depending on the area of the
Johnson-Mehl cell.

For simplicity, we define the shared rate process
(S

(γ)
c (t), t ≥ 0) as

S(γ)
c (t) =

a log (1 + γ)E
[

1

N
(γ)
p +1

]
if L(t) ≤ rγ ,

0 otherwise.
(24)

Since the distribution of the area of the Voronoi cell is
unknown, we approximate N (γ)

p to be Poisson with parameter
ξE[Ĵ (γ)], where Ĵ (γ) denotes the area of the Johnson-Mehl
cell of radius rγ , conditioned that the tagged user is within
a distance rγ from the associated node, which introduces an
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additional bias. We can compute the expectation with the help
of integral geometry as shown in Appendix F.

We found the value of the expectation using numerical in-
tegration and compared the mean number of users E[N

(γ)
p ] =

ξE[Ĵ (γ)] with the sample mean obtained from simulation for
various parameters λ, rγ . To validate the approximation of
N

(γ)
p by a Poisson random variable with parameter ξE[Ĵ (γ)],

we compared the value of E[1/(N
(γ)
p + 1)] calculated using

numerical integration with that of simulations. We found that
the calculated value of the expectation is within the 95%
confidence interval of the simulated mean.

2) Cox process: Let us consider a population model where
roads are distributed according to a Poisson line process of
intensity λr on R2 [19]. Then independently on each road,
we consider users distributed according to a stationary Poisson
point process of intensity λt. This is known as Cox process and
we denote it by Φu [19]. This model can be used to represent
a car motion in a road network.

For a line L of the line process, let us denote the orthogonal
projection of the origin O on L by (θ, r) in polar coordinates.
For θ ∈ [0, π) and r ∈ R, (θ, r) is unique. Thus, a Poisson
line process with intensity λr is the image of a Poisson point
process with the same intensity on half-cylinder [0, π)× R.

Suppose all users on the roads are moving arbitrarily
but independently from each other. Thus, at any instant the
distribution of users on a given road remains Poisson. Consider
a tagged user moving along a given road, then we have the
following theorem by [20].

Theorem 10. Φu is stationary, isotropic, with intensity πλrλt.
From the point of view of the tagged user i.e., under the Palm
distribution the point process is the union of three counting
measures: (1) the atom at O, (2) an independent λt-Poisson
point process on a line through O with a uniform independent
angle and (3) the stationary counting measure Φu.

Following our previous framework, let us define an another
sharing number process (N

(γ)
d (t), t ≥ 0) as the number of

users sharing the node associated with the tagged user when
it is served and zero otherwise.

Evaluation of the mean of N (γ)
d . Suppose the tagged user is

at the origin O. Let the associated node X(t) be at a distance
x from the origin. Let d(0, θ) be a line through the origin with
θ uniform from [0, π). From the aforementioned theorem, the
number of sharing users N (γ)

d can be split into two terms: Ns
denoting the number of sharing users from stationary Φu and
Nl denoting the number of sharing users on the line d(0, θ).

Given any convex body Z, E[Ns(Z)] is given by
πλrλtarea(Z) [21]. Let Ĵ (γ) denote the area as defined before.
Thus,

E[Ns] = πλrλtE[Ĵ (γ)],

where, E[Ĵ (γ)] is evaluated using integral geometry (see
Appendix F).

Now, let l(0, θ) denote the length of the line d(0, θ) in the
area Ĵ (γ). Then, Nl, the number of sharing users on the line

d(0, θ), is Poisson with parameter λtl(0, θ). Thus, E[Nl] =
λtE[l(0, θ)].

One can evaluate E[l(0, θ)] using integral geometry (see
Appendix G). We have,

E[N
(γ)
d ] = E[Ns] + E[Nl] = πλrλtE[Ĵ (γ)] + λtE[l(0, θ)].

(25)
Thus, the mean number of users sharing the tagged user’s
association node is larger when the users are distributed
according to a Cox process than when the users are distributed
according to a Poisson point process, assuming that both have
the same mean spatial intensity.

B. Mixture of Pedestrian and Road Network

Suppose now we have two types of users : drivers who stay
on roads, and pedestrians which are unconstrained. If pedestri-
ans are supposed to follow a Poisson point process, from their
point of view, the number of sharing users corresponds to the
sum of a stationary Poisson point process and a stationary
Poisson line process. On the other hand, from a driver’s point
of view, the number of sharing users corresponds to the same
sum, but in addition with a Poisson point process on a road
passing through the driver. Thus, the mean number of sharing
users is always greater for drivers. Thus, pedestrians are likely
to share its node with fewer users than drivers.

C. Heterogeneous Networks

Let us consider a deployment of micro-base stations Φ̂ =
{X̂1, X̂2, ..} distributed according to some homogeneous Pois-
son process of intensity λ̂ independent of the existing macro-
base stations Φ = {X1, X2, ..}. Assume that all micro-BS
transmit at a fixed power p̂.

Let us consider a mobile user moving at a fixed velocity v
along a straight line. For a given SNR threshold γ, the mobile
is served by a micro-base station if its distance from its closest
micro-BS is less than r̂γ = (p̂/wγ)1/β . Otherwise it is served
by a macro-base station provided its distance from the closest
macro-BS is less than rγ .

Note that the SNR level crossing process as previously
defined is again an alternating renewal process which now
depends on the heterogeneous resource deployment.

Theorem 11. For heterogeneous networks with preferential
association to micro base stations, the probability that the
stationary SNR level crossing process seen by a tagged user
is “on” is 1 − e−π(λr2γ+λ̂r̂2γ). Also, the mean time for which
the process is “on” is given by

eπ(λr2γ+λ̂r̂2γ) − 1

2v(λrγ + λ̂r̂γ)
. (26)

Proof:
In order to characterize the SNR level crossing process, we

establish a connection to a Boolean model. Assume that the
mobile user is moving with unit velocity. Let B(Xi, rγ) denote
the closed ball of radius rγ centered at Xi and B(X̂i, r̂γ) a
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closed ball of radius r̂γ centered at X̂i. The union of all these
closed balls forms a Boolean model

E =

(
∪Xi∈Φ B(Xi, rγ)

)
∪
(
∪X̂i∈Φ̂ B(X̂i, r̂γ)

)
. (27)

Now, assume that E is intersected by the directed line ~l. Note
that the Boolean model under consideration has independent
convex grains and thus the intersection E ∩ ~l yields an
alternating sequence of “on” and “off” periods which are
independent. Let B(γ)

h and I(γ)
h be random variables denoting

the length of a typical on on and off periods respectively.
The distribution of the length of off period I

(γ)
h is easy

to establish using the contact distribution functions and is
exponential with parameter λ∗ [13]:

f
I
(γ)
h

(l) = λ∗e

(
−λ∗l

)
,

where, λ∗ is 2(λ+λ̂)E[R
(γ)
h ]. Here R(γ)

h is the random variable
denoting the radius of the closed ball and is given by

R
(γ)
h =

{
rγ w.p. λ

λ+λ̂

r̂γ w.p. λ̂
λ+λ̂

.
(28)

Thus, the mean off period under the assumption of unit
velocity is

E[I
(γ)
h ] =

1

λ∗
=

1

2(λrγ + λ̂r̂γ)
.

Now, in the stationary regime, the probability that the
mobile user is either within a distance r̂γ from a micro-BS
or a distance rγ from a macro-BS i.e., it’s SNR level crossing
process is “on”, is given by the volume fraction [13]:

c = 1− e(−(λ+λ̂)V̄ ), (29)

where

V̄ = E[vd(typical grain)] = πE[(R
(γ)
h )2] =

π(λr2
γ + λ̂r̂2

γ)

λ+ λ̂
.

(30)
Thus, c = 1− e−π(λr2γ+λ̂r̂2γ). The probability evaluated above
does not depend on the velocity of the mobile user and thus
holds for any constant velocity v.

The mean on period E[B
(γ)
h ] can be evaluated using the

following relation

c =
E[B

(γ)
h ]

E[B
(γ)
h ] + E[I

(γ)
h ]

,

which results in

E[B
(γ)
h ] =

eπ(λr2γ+λ̂r̂2γ) − 1

2(λrγ + λ̂r̂γ)
.

Since, the mobile user is moving with a fixed velocity v,
the mean time for which the mobile user is “on” is given by
E[B

(γ)
h ]

v .

These results provide an analytical characterization of the
impact of heterogeneous densification on the mobile user’s
temporal performance. Let us now compare the performance
improvement seen by the mobile user in a heterogeneous
network as compared to that of a homogeneous network.
The graphs in Fig. 12 and Fig. 13 illustrate the difference
in the expected on-times and volume fraction of the networks
respectively.

Fig. 12: Comparing mean-on time for heterogeneous and
homogeneous networks.

Fig. 13: Comparing volume fraction for heterogeneous and
homogeneous networks.

Notice that as micro-base stations are added, the expected
on time decreases and later increases. The initial decrease is
due to the inclusion of many relatively small length on-times
resulting from the micro-base stations in the voids of the ho-
mogeneous network. However, the volume fraction increases
monotonically with the addition of micro-base stations.
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D. Stored Video Streaming in Heterogeneous Networks

Consider a scenario as discussed before where mobile users
are viewing a video being streamed over a sequence of wireless
downlinks, but now in heterogeneous network with micro and
macro BS. In this setting once again we consider a fluid queue
representing the tagged mobile user’s playback buffer state
similar to previous section and ask whether there is a choice
of γ such that the fluid queue is unstable, i.e., ensures no
rebuffering in the long term. Let

ρ(γ, ξ) =
a log(1 + γ)P(on)

η

(
E
[

1

N
(γ)
p + 1

|on
])

. (31)

Assuming our approximation is valid, we need to find
E[ 1

N
(γ)
p +1

] in the case of heterogeneous network. Let events
G and H be that the tagged user is served by micro BS and
macro BS respectively.

E
[ 1

N
(γ)
p + 1

|on
]

=

(
E
[

1

N
(γ)
p +1

|G
]
P(G) + E

[
1

N
(γ)
p +1

|H
]
P(H)

)
P(on)

.

(32)
Since, the micro and macro base stations are distributed

independently, the mobile user experiences two independent
alternating renewal processes. Thus, in stationary regime, the
probability that mobile is served by macro BS is the product
of the probabilities that mobile is “on” period of alternating
renewal process of macro BS and in “off” period of that of
micro BS.

P(G) = 1− e−λ̂πr̂
2
γ ,

P(H) = e−λ̂πr̂
2
γ (1− e−λπr

2
γ ).

Let Ĵ (γ)
1 and Ĵ

(γ)
2 denote the area similar to that of what

we considered before. Given the mobile is served by macro
BS, we need to consider the users which are within the area
Ĵ

(γ)
1 excluding the area covered by micro BS in this area. The

area covered by the micro BS in Ĵ
(γ)
1 is approximated to be

ν(r̂γ) × E[Ĵγ1 ], where ν(r̂γ) is the volume fraction associated
with micro-BS as given by (7). Then

E
[ 1

N
(γ)
p + 1

|G
]

=
1− eξE[Ĵ

(γ)
2 ]

ξE[Ĵ
(γ)
2 ]

,

E
[ 1

N
(γ)
p + 1

|H
]

=
1− eξE[Ĵ

(γ)
1 ](λ̂πr̂2γ)

ξE[Ĵ
(γ)
1 ](λ̂πr̂2

γ)
.

For a given density of macro-BS λ, the density of micro-
BS λ̂ and the density of users ξ, we can evaluate the SNR
value γ∗ for which the load factor ρ(γ, ξ) given in (31) is
maximum. Fig.14 illustrates the optimal SNR value (γ∗) with
varying density of micro BS λ̂. Notice that the optimal gamma
value initially decreases with the density of micro-BS.

Since in our setting the micro BS have smaller transmission
power, for a given threshold γ, the radius of coverage for micro
BS is smaller than that of the macro BS .i.e., r̂γ < rγ . Since
the micro-BS are given higher preference, with an increase
in their density, the optimal threshold decreases in order to
increase their coverage. Also, the cost incurred by increasing
coverage of macro-BS is compensated by the increased density
and coverage of micro-BS till a certain density.

Density of micro base stations
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Fig. 14: γ∗ with increase in micro- BS density for a certain
fixed density of macro-BS for an arbitrary positive constants

a and η in heterogeneous case.

Fig.15 illustrates the level set curve of ρ(γ∗, ξ) = 1 for
various values of λ̂ and ξ for a given density of macro-BS λ.
Given this setup, it is possible to answer questions like what is
the minimum density of micro-base stations that needs to be
deployed by the operator to serve a certain density of users,
given the density of macro-BS λ such that the video streaming
is uninterrupted for all the users. Thus, operators can learn the
cost incurred to serve a higher density of users by deploying
micro-BS and in case the cost incurred is higher, operator
might be interested in other technologies.

Remark 2. In heterogeneous networks, the interference from
macro-BS to micro-Bs is of major concern. One can introduce
blanking, to reduce the effect of such interference i.e., assume
that with certain probability f micro-BS transmit and with
probability 1− f macro BS transmit.

Also, by considering heterogeneous networks with cellular
BS and Wi-Fi hotspots, there is no such problem of interference
since both cellular BS and Wifi hotspots operate at different
frequencies.

IX. CONCLUSION

As explained in the introduction, the analysis of temporal
variations of the shared rate experienced by a mobile user
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Fig. 15: Level set curve of ρ(γ∗, ξ) = 1 for an arbitrary
positive constants a and η in heterogeneous case.

requires the characterization of both the functional distribution
of a continuous parameter stochastic process (rate process)
constructed on a random spatial structure (e.g. the Poisson
Voronoi tessellation) and of another stochastic process (sharing
number process) constructed on a random distribution of static
users. This paper addressed the simplest question of this type
by focusing on the underlying SNR process and the sharing
number process in the absence of fading. This allowed us to
derive an exact representation of the level crossings of the
stochastic process of interest as an alternating renewal process
with a full characterization of the involved distributions and of
the asymptotic behavior of rare events. The simplicity and the
closed form nature of this mathematical picture are probably
the most important observations of the paper. We also showed
by simulation that this very simple model provides a good
representation of the salient characteristics which happen for
more complex systems, like e.g. those with fading when the
fading variance is small enough, or those based on SINR rather
than SNR when the path loss exponent is large enough. This
model is hence of potential practical use as is, in addition
to being a first glimpse at a set of new research questions.
The most challenging questions on the mathematical side are
probably (1) the understanding of the tension between the ran-
domness coming from geometry (studied in the present paper),
from sharing the network with other users (also studied in the
present paper) and that coming from propagation (only studied
by simulation here): it would be nice to analytically quantify
when one dominates the other. (2) the extension of the analysis
to SINR processes, which are our long term aim and will
require significantly more sophisticated mathematical tools
(e.g. based on functional distributions of shot noise fields),
than those used so far. On the practical side, the main future
challenges are linked to the initial motivations of this work,

namely in the prediction and optimization of the user quality
of experience. Many scenarios refining those studied can be
considered. For instance, the stationary analysis of the fluid
queue representing video streaming should be completed by a
transient analysis and by a discrete time analysis. This alone
opens an interesting and apparently unexplored connection
between stochastic geometry and queuing theory with direct
implications to wireless quality of experience.
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APPENDIX

A. Proof of Theorem 3

The SNR process is closely related to the process tracking
the distance of the mobile user to the closest node (see Eq.
(1)). Let us consider the projection z of the mobile user’s
closest node Z onto the straight line. Then, z is a point of χ
if z lies within the Voronoi cell of Z. Thus, the point process
can be characterized by the fact that given a node at a height
h from the straight line, the closed ball Bh(z) of radius h
centered at the projection point is empty of nodes. Consider
a rectangle of unit length and height 2x such that the straight
line passes through the center. Thus, from Mecke’s formula
[17], the intensity of the point process χ is

µχ = v lim
x→∞

λ2x

(∫ x

−x
e−λπh

2 1

2x
dh

)

= v lim
x→∞

√
λerf(

√
λπx) = v

√
λ.

(33)

B. Busy Period of the M/GI/∞ Queue

Theorem 12. (Makowski [12]) Consider an M/GI/∞ queue
with arrival rate λ and generic service time W . Let M
denote an N-valued random variable which is geometrically
distributed according to

P(M = l) = (1− ν)(ν)l−1, l = 1, 2, . . . (34)

with
ν = 1− e−ρ and ρ = λE[W ]. (35)

Consider the R+-valued random variable U distributed ac-
cording to

P(U ≤ u) =
1

ν
(1− e−ρP[Ŵ≤u]), u ≥ 0, (36)

where, Ŵ is the forward recurrence time associated with the
generic service time W . Let {Un, n ≥ 1} be an i.i.d. sequence
independent of the random variable M . Let B denote a typical
busy period. Then the forward recurrence time B̂ associated
with B admits the following random sum representation:

B̂ =d

M∑
i=1

Ui, (37)

where =d denotes equality in distribution.

C. Proof of Theorem 4

V (γ) is the sum of the busy period B(γ) and the idle period
I(γ) of the M/GI/∞ queue. We know that the distribution of
the idle period is exponential with parameter 2λvrγ and that
the busy period B(γ) and idle period I(γ) are independent.

The Laplace transform of the random variable V (γ) scaled
by 2λvrγ is given by

ΦV (γ)(f(γ)s) = ΦB(γ)(f(γ)s)ΦI(γ)(f(γ)s), (38)

where,

ΦI(γ)(f(γ)s) =
1

1 + s
. (39)

So, asymptotically, as rγ goes to 0 , ΦI(γ)(f(γ)s) converges
in distribution to an exponential random variable with unit
mean.

Next, we need to prove that asymptotically, the busy period
B(γ) scaled by f(γ) goes to one. Let us consider the forward
recurrence time of the busy period, B̂(γ) which is defined in
(6). Now from Theorem 2 we get,

E[e−sB̂
(γ)

] = E[e−s
∑M(γ)

i=1 U
(γ)
i ] =

(1− ν(γ))E[e−sU
(γ)

]

1− ν(γ)E[e−sU(γ) ]
.

and it follows that

E[e−sf(γ)B̂(γ)

] =
(1− ν(γ))E[e−sf(γ)U(γ)

]

1− ν(γ)E[e−sf(γ)U(γ) ]
. (40)

Now,

E[e−sf(γ)U(γ)

] =

∞∑
k=0

lk(s, rγ). (41)

with

lk(s, rγ) =
(−1)k(2λvsrγ)kE[(U (γ))k]

k!
.

Given that the support of service times W (γ) is [0, 2rγ/v],
it follows from (36) that the support of the random variable
U (γ) is also [0, 2rγ/v] and all its moments are bounded
E[(U (γ))k] < (2rγ/v)k. Thus, for all values of s, we get that
limrγ→0 lk(s, rγ) = 0.
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For all k = 2, 3.. we have that

|lk(s, rγ)| ≤
(2λvsr2

γ)k

k!
.

Therefore, for all values of s,limrγ→0

∑∞
k=2 lk(s, rγ) = 0.

Thus, Eq (41) can be written as

E[e−sf(γ)U(γ)

] = 1− s2λrγvE[U (γ)] + o(rγ),

Now, substituting into Eq (40) we have

E[e−sf(γ)B̂(γ)

] =

1− ν(γ) + 2sλvrγE[U (γ)](1− ν(γ)) + o(rγ)

1− ν(γ) + 2ν(γ)sλvrγE[U (γ)] + o(rγ)
.

(42)

From which it follows that

lim
rγ→0

E[e−sf(γ)B̂(γ)

] = 1. (43)

From [12] we have that

E[e−sf(γ)B(γ)

] = 1− sf(γ)E[B(γ)]E[e−sf(γ)B̂(γ)

], (44)

and also

E[B(γ)] =
ν(γ)

2λvrγ(1− ν(γ))
. (45)

Thus, we get

E[e−sf(γ)B(γ)

] = 1− s1− e−λπr
2
γ

e−λπr
2
γ

E[e−sf(γ)B̂(γ)

].

Using the limit in (43), we get

lim
rγ→0

E[e−sf(γ)B(γ)

] = 1. (46)

Thus, the distribution of the random variable V (γ) scaled
by f(γ) = 2λvrγ converges in distribution to an exponential
random variable with unit mean.

Now, consider a continuous function g(γ) such that
limrγ→∞ g(γ) = 0. The Laplace transform of the random
variable V (γ) scaled by g(γ) is given by

ΦV (γ)(s) = ΦB(γ)(g(γ)s)ΦI(γ)(g(γ)s), (47)

where,

ΦI(γ)(g(γ)s) =
1

1 + sg(γ)(1/2vrγλ)
. (48)

Asymptotically, as rγ goes to ∞, ΦI(γ)(g(γ)s) goes to 1.
By the same arguments as those for the up-crossing case

E[e−sg(γ)B̂(γ)

] =
(1− ν(γ))E[e−sg(γ)U(γ)

]

1− ν(γ)E[e−sg(γ)U(γ) ]
,

where,

E[e−sg(γ)U(γ)

] =

∞∑
k=0

(−1)k(2λvsrγ)k(e−ρ
(γ)

)k

k!
E[(U (γ))k].

(49)

Let mk(s, rγ) =
(−1k)(2λvsrγ)k(e−ρ

(γ)
)k−1

k! E[(U (γ))k].
The moments of the random variable U (γ) are bounded
E[(U (γ))k] < (2rγ/v)k. Thus, for all values of s, we get
that limrγ→∞mk(s, rγ) = 0, because ρ(γ) = λπr2

γ and the
exponential term (e−ρ

(γ)

)k−1 dominates. Also for k = 2, 3, ...
we have that

|mk(s, rγ)| ≤
(2λvsr2

γ)k(e−ρ
(γ)

)k−1

k!
.

Therefore for all values of s,

lim
rγ→∞

∞∑
k=2

mk(s, rγ) = 0.

Thus, Eq (49) can be written as

E[e−sf(γ)U(γ)

] = 1− se−ρ
(γ)

2vrγλE[U (γ)] + e−ρ
(γ)

o(rγ),

where, limrγ→∞ o(rγ) = 0.
From Lemma 1 we have that,limrγ→∞ 2λrγvE[U (γ)] = 1.

Putting these results together we have that

E[e−sg(γ)B̂(γ)

] =

e−ρ
(γ) − se−2ρ(γ)2vrγλE[U (γ)] + e−2ρ(γ)o(rγ)

e−ρ(γ)
[
1− e−ρ(γ)

][
s2vrγλE[U (γ)]− e−ρ(γ)o(rγ)

]
+ e−ρ(γ)

(50)

so that

lim
rγ→∞

E[e−sg(γ)B̂(γ)

] =
1

1 + s
. (51)

Now, from Eq (44) and (45) we get,

E[e−sf(γ)B(γ)

] = 1− s(1− e−λπr
2
γ )E[e−sf(γ)B̂(γ)

].

Thus from the limit in (51),limrγ→∞ E[e−sg(γ)B(γ)

] = 1
1+s .

Thus, the random variable V (γ) scaled by g(γ) =

2λvrγe
−λπr2γ converges in distribution to an exponential ran-

dom variable with unit mean.

D. Proof of Theorem 6

Let us first prove the second relation. Let K = p/w and let
D denote the distance to the closest base station. We have

P((log(1 + SNR) > s)

= P
(
KD−β > es − 1

)
= P

(
Dβ <

K

es − 1

)
= P

(
D2 <

(
K

es − 1

) 2
β

)

= 1− exp

(
−λπ

(
K

es − 1

) 2
β

)
,

where we used the fact that D2 is an exponential random
variable with parameter λπ. The result then follows from the
bound a ≥ 1− e−a ≥ a+ a2/2, for a ≥ 0.
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We now prove the first relation. Since Ŝ(γ) ≤ S(γ) ≤
log(1+SNR), in order to prove the first inequality, it is enough
to show that

lim
s→∞

−1

s
log
(
P(Ŝ(γ) > s)

)
≤ 2

β
. (52)

We have

P(Ŝ(γ) > s) = P(log(1 +KD−β) > s(1 + N̂γ)).

Hence

P(Ŝ(γ) > s)

= P
(
KD−β > exp

(
s(1 + N̂γ)

)
− 1
)

≥ P
(
KD−β > exp

(
s(1 + N̂γ)

))
= P

(
Dβ < K exp

(
−s(1 + N̂γ)

))
= P

(
D2 < K

2
β exp

(
−s 2

β
(1 + N̂γ)

))
= P

(
D2 < K

2
β e−s

2
β e−s

2
β N̂γ

)
.

Using now the fact that D2 is an exponential random variable
with parameter λπ, independent of N̂γ , we get

P(Ŝ(γ) > s)

≥ 1− E
(

exp
(
−λπK

2
β e−s

2
β e−s

2
β N̂γ

))
≥ λπK

2
β e−s

2
β exp

(
−ξπr2

γ

(
1− e−s

2
β

))(
1 + o

(
e−s

2
β

))
,

where we used again the bound 1− e−a ≥ a+ a2/2 and the
fact that N̂ (γ) is Poisson with parameter ξπr2

γ .
Taking the log, multiplying both sides by − 1

s and letting s
go to infinity gives (52)

E. Proof of Theorem 7

Let us first prove the last relation. Using Chernoff’s bound
for the Poisson random variable N̂ (γ), we get

P
(
N̂ (γ) + 1 > sn log(1 +Kr−βγ )

)
≤ e−θ

(
eθ

sn log(1 +Kr−βγ )

)s log(1+Kr−βγ )

,

with θ = ξπr2
γ , which shows that

lim
n→∞

− 1

sn log(sn)
log
(
P
(
N̂ (γ) + 1 > sn log(1 +Kr−βγ )

))
≥ log(1 +Kr−βγ ).

The converse inequality follows from the bound

P
(
N̂ (γ) + 1 > sn log(1 +Kr−βγ )

)
≥ e−θ θ

k

k!
,

with k = sn log(1 + Kr−βγ ) and Stirling’s bound on the
Gamma function.

𝑂

𝑋#

𝑄𝑢
𝛼

𝑥

𝑓(𝛼, 𝑥)

𝑢, + 𝑥, − 2𝑢𝑥 cos𝛼

Fig. 17: Tagged user at origin, its serving base station Xj at
distance x and a point Q at a distance u along with discs

Bx(0) and Bz(Q).

Let us now prove the first relation. We have

P
(
Ŝ(γ) <

1

sn

)
=

∫ r2γ

0

e−λπvP
(
N̂ (γ) + 1 > sn log

(
1 +Kv−

β
2

))
dv.

For sn large enough,

P
(
Ŝ(γ) <

1

sn

)
≤ P

(
N̂ (γ) + 1 > sn log

(
1 +Kr

− β2
γ

))∫ r2γ

0

e−λπvdv,

which allows one to conclude that

lim
n→∞

− 1

sn log(sn)
log

(
P
(
Ŝ(γ) <

1

sn

))
≥ log(1 +Kr−βγ ).

The upper bound follows from the inequality:

P
(
Ŝ(γ) <

1

sn

)
=

∞∑
l=0

e−θ
θl

l!
P

(
D2 >

(
K

e
l+1
s − 1

) 2
β

)

≥ e−θ
θk

k!
P

(
D2 >

(
K

e
k+1
s − 1

) 2
β

)
where k = sn log(1 +Kr−βγ ).

F. Integral Geometry I

Consider a tagged user at the origin, and let the serving
BS Xj be at a distance x from the origin. Let Q denote a
point a distance u from the origin. We need to consider all
points Q that are within a distance r from the serving BS
Xj i.e., z = |XjQ| =

√
u2 + x2 − 2uxcos(α) < r, where

α = ∠XjOQ as shown in Figure 8.
Let Bx(0), Bz(Q) be two discs with centers at the origin

and Q, and radii x and XjQ, respectively.
The conditional probability that a point at distance u from

origin is within the Voronoi cell of the BS serving the user
at the origin given it is at a distance x is the probability that
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there is no other BS in the area of disc Bz(Q) excluding the
area of Bx(0). Then the conditional expectation is:

E[V ∗|D = x] =

2

∫ π

0

∫ xcos(α)+
√
r2−x2sin(α)

0

e(−λl(Bz(Q)−Bx(0)))ududα,

(53)

where, D is a random variable denoting the distance to the
closest BS.Thus,

E[V ∗] =

∫ r

0

E[V ∗|D = x]
fD(x)∫ r

0
fD(y)dy

dx

=

∫ r
0
E[V ∗|D = x]2λπxe−λπx

2

dx

1− e−λπr2

=
1

1− e−λπr2
∫ r

0

2

∫ π

0

∫ x cos(α)+
√
r2−x2 sin(α)

0

e(−λl(Bz(Q)−Bx(0)))ududα2λπxe−λπx
2

dx

=
1

1− e−λπr2
4λπ

∫ r

0

∫ π

0

∫ x cos(α)+
√
r2−x2 sin(α)

0

e(−λl(Bx(0)∪Bz(Q)))uxdudαdx. (54)

The last equality is because l(Bx(0)) = πr2 and l(Bx(0)∪
Bz(Q)) = ux sin(α) + (π− α)x2 + (π− f(α, x))(u2 + x2 −
2ux cos(α)) with cos(f(α, x)) = u−x cos(α)√

u2+x2−2ux cos(α)
.

G. Integral Geometry II

Let us consider a point U at a distance u from the origin on
the line d(0, θ) as shown in the figure. Then, the probability
that the point is in the Voronoi cell of the BS Xj is given by
e−λl(C(u,θ)), where l(C(u, θ)) is the area of the shaded region
in the figure. The conditional expectation is:

E[l(0, θ)|D = x] =

1

π

∫ π

0

∫ x cos(θ)+
√
r2−x2 sin(θ)

0

e(−λl(C(u,θ)))dudθ,

(55)

where, D is the random variable denoting the distance to the
closest BS.

Let Bx(0), Bz(U) be two discs with centers at the origin
and U , and radii x and XjU , respectively. Thus,

x

O
x x𝑋"

𝑈
𝑢

𝑥

𝜃

𝑑 0, 𝜃

Fig. 18: The tagged user at the origin, its serving base
station Xj at distance x and a point U at a distance u on the

line d(0, θ).

E[l(0, θ)] =

∫ r

0

E[l(0, θ)|D = x]
fR(x)∫ r

0
fD(y)dy

dx

=

∫ r
0
E[l(0, θ)|D = x]2λπxe−λπx

2

dx

1− e−λπr2

=
1

π(1− e−λπr2)

∫ r

0

∫ π

0

∫ xcos(θ)+
√
r2−x2sin(θ)

0

e(−λl(C(u,θ)))dudθ2λπxe−λπx
2

dx

=
1

π(1− e−λπr2)
2λπ

∫ r

0

∫ π

0

∫ xcos(θ)+
√
r2−x2sin(θ)

0

e(−λl(Bx(0)∪Bz(U)))xdudθdx. (56)

The last equality is because l(Bx(0)) = πr2 and l(Bx(0) ∪
Bz(U)) = ux sin(θ) + (π − θ)x2 + (π − f(θ, x))(u2 + x2 −
2uxcos(θ)) with cos(f(θ, x)) = u−x cos(θ)√

u2+x2−2ux cos(θ)
.

H. Proof of Theorem 11

Proof: Let Z be a geometric random variable given by:

P (Z = l) = (1− α)αl. (57)

Then, the random variable T representing the time taken to
download the file is the geometric sum of independent random
variables given by

T =

Z∑
i=0

(Xi + I(γ) + Y. (58)

Thus, the Laplace transform of T is

LT (s) =
[
(1− α) + (1− α)αLX(s)LI(γ)(s) + ..

]
LY (s)

=
(1− α)LY (s)

1− αLX(s)LI(γ)(s)
=

(1− α)LY (s)

1− αLX(s) 2λvr
2λvr+s

.
(59)

The last equality follows from the fact that the I(γ) is
exponential with parameter 2λvr.
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Lemma 1. For a R+ -valued random variable U (γ) defined
by (36) and service time distribution by (5). We have the
following limit:

lim
rγ→∞

2λrγvE[U (γ)] = 1.

From Equations (7) and (36):

P [U (γ) > u] =
e−ρ

(γ)

ν(γ)
(eρ

(γ)P [Ŵ (γ)>u] − 1), u ≥ 0, (60)

and

E[U (γ)] =

∫ 2rγ/v

0

P [U (γ) > u]du

=
e−ρ

(γ)

ν(γ)

∫ 2rγ/v

0

(eρ
(γ)P [Ŵ (γ)>u] − 1)du.

(61)

Thus,

E[U (γ)] =
e−ρ

(γ)

ν(γ)

(∫ 2r/v

0

eρ
(γ)P [Ŵ (γ)>u]du− 2rγ

v

)
. (62)

Since Ŵ (γ) is the forward recurrence time associated with
the service time W (γ) defined in (6),

P(Ŵ (γ) > u) =
1

E[W (γ)]

∫ ∞
u

P(W (γ) > t)dt,

where, E[W (γ)] = ρ(γ)

2rγvλ
from (7) and P(W (γ) > t) =

1/2rγ
√

4r2
γ − v2t2 from (5).

Thus,

E[U (γ)] =
e−ρ

(γ)

ν(γ)

(∫ 2rγ
v

0

eλv
∫ 2rγ

v
u

√
4r2γ−v2t2dtdu− 2rγ

v

)

=
e−ρ

(γ)

ν(γ)

(∫ 2rγ
v

0

eλ
∫ 2rγ
u

√
4r2γ−x2dxdu− 2rγ

v

)

=
1

ν(γ)

(∫ 2rγ
v

0

e
−λ( 1

2u
√

4r2γ−v2u2+2r2γarctan( uv√
4r2γ−v2u2

)

du

− e−λπr
2
γ

2rγ
v

)

=
1

1− e−λπr2γ

(
rγ
v

∫ 2

0

e−λr
2
γq(z)dz − 2e−λπr

2
γrγ

v

)
. (63)

The second equality is by the change of variables vt = x and
the last equality is by the change of variables z = uv/rγ and
q(z) = 1

2z
√

4− z2 + 2arctan( z√
4−z2 ).

Now, from Equation (63) we have,

lim
rγ→∞

E[U (γ)] ∼ rγ
v

∫ 2

0

e−λr
2
γq(z)dz.

Now, the integral rγ
v

∫ 2

0
e−λr

2
γq(z) and rγ

v

∫ 2

0
e−λr

2
γ2zdz are

asymptotically equal as rγ goes to ∞.
The asymptotic equality of the two functions as rγ goes to

∞ means, that the relative error of the approximate equality
goes to 0 as rγ goes to ∞ i.e.,

lim
rγ→∞

∫ 2

0
e−λr

2
γq(z) − e−λr

2
γ2zdz∫ 2

0
e−λr

2
γ2z

= 0.

With the help of the Taylor series expansion, we get that

lim
rγ→∞

∫ C/r2γ
0

e−λr
2
γq(z) − e−λr

2
γ2zdz∫ 2

0
e−λr

2
γ2z

= 0,

for some constant C.
Thus, we need to prove that

lim
rγ→∞

∫ 2

C/r2γ
e−λr

2
γq(z) − e−λr

2
γ2zdz∫ 2

0
e−λr

2
γ2z

= 0.

Now let us observe the function h(z) = e−λr
2
γq(z)−e−λr

2
γ2z .

The derivative of the function h(z) is

h′(z) =
(
−
√

4− z2e−λr
2
γq(z) + 2e−λr

2
γ2z
)
r2
γ

= e−λr
2
γ2zr2

γ

[
2−

√
4− z2e−λr

2[q(z)−2z]

]
.

(64)

Thus by substituting z = C/r2
γ and using the Taylor series

expansion of [q(z)− 2z] and
√

4− z2 , we get

lim
rγ→∞

h′(C/r2
γ) = e−2Cλz[o(rγ)] = 0.

The derivative of function h(z) is 0 for z = C/r2
γ as rγ

goes to ∞ i.e., the function h(z) has a local maximum at
C/r2

γ for some constant C and it can be observed that it is
decreasing for C = 3.

Therefore, the function h(z) is a decreasing function from
3/r2

γ to 2 and the area under its curve has an upper bound
that goes to 0.

Thus, the two integrals are asymptotically equal as rγ goes
to ∞, which implies that E[U (γ)] ∼ 1

2vrγλ
as rγ goes to ∞.
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