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Abstract—Ultra densification along with the use of wider bands
at higher frequencies are likely to be key elements towards
meeting the throughput/coverage objectives of 5G wireless net-
works. In addition to increased parallelism, densification leads
to improved, but eventually bounded, benefits from proximity
of users to base stations, while resulting in increased aggregate
interference. Such networks are expected to be interference
limited, and in higher frequency regimes, the interference is
expected to become spatially variable due to the increased
sensitivity of propagation to obstructions and the proximity of
active interferers. This paper studies the characteristics of the
spatial random fields associated with interference and Shannon
capacity in ultra-dense limiting regimes. They rely on the theory
of Gaussian random fields which arise as natural limits under
densification. Our models show how densification and operation
at higher frequencies, could lead to increasingly rough temporal
variations in the interference process. This is characterized by
the Hölder exponent of the interference field. We show that these
fluctuations make it more difficult for mobile users to adapt
modulation and coding. We further study how the spatial corre-
lations in users’ rates impact backhaul dimensioning. Therefore,
this paper identifies and quantifies challenges associated with
densification in terms of the resulting unpredictability and the
correlation of interference on the achievable rates.

I. INTRODUCTION

Traffic from mobile devices has significantly increased over
the last decade mainly due to growth in the number of
smart wireless devices and bandwidth-demanding applications.
It is expected to increase 1000 fold in the next decade,
and fifth generation (5G) wireless networks should be able
to support this growth. While millimeter wave and massive
MIMO technologies have been proposed to improve spectral
efficiency and exploit wider bandwidths, it is expected that
Ultra Dense Networks (UDNs) will be a key element towards
boosting capacity and enhancing coverage with low cost and
a power-efficient infrastructure [1].

With the increases in density, the distance between the
users and their associated base stations reduces, leading to
an increase in the signal strength, but there is also an increase
in interference. Together this effectively reduces the impact
of thermal noise. Thus, ultra dense networks should be in-
terference limited networks 1. Further, for these short range
inter-site distances, the unbounded path loss models often used
in the literature are clearly no longer physically relevant as
they are singular at the origin, see for e.g., [2]. More realistic

1An argument can be made that beamforming can mitigate this in part.
Here we will assume such narrow band beamforming, if present is still broad
and focus on omnidirectional transmissions for simplicity.

and practical models would be based on bounded path loss
functions. The focus of this paper will be on studying scaling
limits for ultra dense networks for such more realistic models.

In particular, we develop a spatial characterization of the
interference and the Shannon rate fields, which in turn helps
to better understand the fundamental characteristics underlying
densification of wireless systems. For example, a major issue
underlying densification is the provisioning of shared backhaul
resources. One of the interesting questions is to study how the
backhaul capacity requirement per base station scales with
densification. Another major issue is to understand the rate
variability that mobile users would see in dense networks.
Assuming such users are able to immediately connect to the
closest or best nearby base station, their signal path should
be good, yet they will still experience variability in the inter-
ference. It is essential to study the variations in interference
over a time period, since such variability can be a challenge
to techniques such as adaptive modulation and coding which
rely on the predictability of SINR over time periods.

The aim in this paper is to study the characteristics of spatial
fields associated with ultra dense wireless networks, and link
them to such basic engineering questions.

Related Work. Cellular network performance has been ex-
tensively studied by modeling the network using stochastic
geometry [3], [4]. With the help of scaling limits for the inter-
ference, network performance has been evaluated under den-
sification for various modeling assumptions ([5], [6], [7], [8],
[9], [10]). Coverage probability and area spectral efficiency
analysis have mostly been used as the main performance
metrics. The findings are sometimes conflicting and suggest
that densification may eventually stop delivering significant
throughput gains.

Most prior work focuses on either studying the scaling limits
of the SINR at a typical location, or on two-point correlations
in interference and shadowing. [11], [12], [13]. Although, [14]
studies the scaling limit of the interference field with singular
power law path loss and Rayleigh fading, to our knowledge,
a spatial characterization of the limiting interference field for
bounded path loss models is lacking.

There is a broad body of relevant work in the field of
mathematics of shot noise and Gaussian fields. These are of
interest to this class of problems since the interference fields
in large wireless systems can be viewed as shot noise fields,
where the path loss function is equivalent to the kernel function
of the shot noise field. Further, the infinite divisibility property
of Poisson point processes allows one to establish convergence
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of the shot noise field to a Gaussian field as the intensity
increases ([15] [16]). Precise sample path properties, especially
level crossings of shot noise fields have been extensively
studied in, e.g., [17], [18], [19], [20]. General results are
known concerning the level crossings of smooth Gaussian
processes ([17], [21]). However, with closest base station
association, the interference is not a shot noise field but a
protected shot noise field. Thus, most of the results in the
literature are not directly applicable.

Given the importance of backhauling for 5G small cell
networks, many researchers have studied centralized and dis-
tributed architectures for the backhauling gateways, see, e.g.,
[22]. Simulation results suggest that a distributed wireless
backhaul network architecture is more suitable for future 5G
networks employing massive MIMO and/or millimeter wave
communication technologies. Millimeter wave communication
has been considered as the wireless backhaul solution for
small cell networks in 5G communication systems. However,
most studies on millimeter wave backhaul technologies focus
on the design of the antenna array and radio frequency
(RF) components of transceivers, such as beamforming and
modulation schemes [23], [24]. To our knowledge, a system
level investigation of ultra-dense cellular networks backhaul
requirements such as that in this paper is novel.

Adaptive modulation and coding is a critical technique
for adapting to time varying channels resulting from, say
fading, path loss and interference, see, e.g., [25], [26] and
the references therein. Most of the work focuses on channel
quality estimation or various adaptive modulation techniques.
In this paper, we characterize the time periods over which
we can predict SINR with some success and study their
dependence on various system parameters.

Contributions. In this paper, we study basic models allowing
us to to glean some of the salient characteristics of densifica-
tion that are yet to be explored. To begin with, we establish
a scaling limit for the interference field under bounded, non-
negative and integrable path loss functions. This is then used
to approximate the interference field in dense networks by a
stationary Gaussian field which captures the underlying spatial
variations.

Since the interference field primarily depends on the dis-
tribution of the base station locations and the path loss, we
classify various existing path loss models in the literature such
as the dual slope models ([27], [28], [29]) and observe the
impact they have on the various sample path properties of the
limiting field, e.g., continuity and differentiability.

By transforming or taking functionals of the interference
field, one can study various additional properties of such
systems. In particular, with an appropriate bandwidth scaling,
we can also model the Shannon rate field as a stationary
Gaussian field. Further, relevant functions of the Shannon
rate field enable the study of the variability in the spatial
average rate, and backhaul capacity requirements for ultra
dense wireless networks.

We then study how the spatial variability of the interference
and Shannon rate fields enables a characterization of the

temporal landscape a mobile user would see. For certain path
loss models, we show the interference process is nowhere
differentiable, which implies that mobiles experience high
fluctuations in Shannon rate, which could make it difficult
to implement adaptive modulation and coding techniques. To
better understand these fluctuations, we quantify their variation
via Hölder exponents and leverage these to bound the time
scales over which adaptive modulation and coding could be
performed. Finally we provide a characterization of the level
crossing characteristics of, e.g, interference, and of rate.

Paper Organization: The paper is organized as follows.
We describe the system model and the classification of path
loss models in Section II. The convergence of the scaled
interference field to a stationary Gaussian field and its sample
path properties are gathered in Section III. The characterization
of the Shannon rate field and various functions of the field,
along with the problem of backhaul capacity dimensioning
are discussed in Section IV. In Section V, we focus on the
temporal characterization of the rate seen by a mobile user,
where we quantify the variations in the rate and study their
impact in the context of adaptive modulation coding. We then
study the mean level crossings of the process.

II. SYSTEM MODEL

Consider a cellular network where the base stations are
distributed according to a homogeneous Poisson Point Process
(PPP) � = {X1,X2, ..} in R2 of intensity �b. Let l : R2 ! R+

be a deterministic non-negative function. Consider downlink
transmissions and assume all base stations transmit at a fixed
power p. Then, the total power received from all base stations
at a location y is referred to as a shot noise field [30], given
by I�b(y) =

P
Xi2� pl(Xi � y), where y 2 R2

.

Assuming that a user associates with the closest base station,
the total interference seen by the user is given by the protected
shot noise field:

J�b(y) =
X

Xi2�\X�b
(y)

pl(Xi � y), (1)

where, X�b(y) 2 � denotes the closest base station in � to
location y. Given the interference field, one can study the SIR
field and Shannon rate field experienced by a user at a given
location. In the absence of fading and shadowing, the SIR field
(SIR�b(y), y 2 R2) is given by

SIR�b(y) =
p ⇤ l(y � X�b(y))

J�b(y)
. (2)

In the interference limited regime, the Shannon rate field,
(S�b(y), y 2 R2) can be defined from the SIR field through

S�b(y) = w log(1 + SIR�b(y)), (3)

where, w is the wireless system bandwidth.
In the sequel we will also consider a tagged user moving

at a fixed unit velocity along a straight line starting from the
origin at time t = 0. We will denote the interference and the
Shannon rate experienced by the mobile user by the stochastic
processes (J�b(t), t > 0) and (S�b(t), t > 0), respectively.
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Note that J�b and I�b correspond to spatial processes or fields
while J�b and I�b are temporal processes. Table I summarizes
the notation used in the paper.

With densification and operation at higher frequencies, the
nature of the path loss changes. We shall consider path loss
functions that belong to a specific functional space. Recall that
the D1 functional space is the set of functions defined on reals
that are right continuous with left limits, also referred to as
cadlag functions. Note that the space of continuous functions
is in D1. Similarly, if T is the unit square [0, 1]2, then the
functional space D2 is the uniform closure, in the space of
all bounded functions from T to R, of the vector subspace
of simple functions which are coordinate wise D1 [31]. The
reason for this choice is that weak convergence of stochastic
processes can be studied in this functional space under the
S-topology [31]. We further classify the path loss functions in
the D2 functional space as follows:

1) Class-1 Functions : functions that are smooth, integrable
and twice differentiable i.e., l 2 C

2(R2), l 2 L
2(R2),

l
0
, l

” 2 L
1(R2). The stretched exponential path loss

function, l1(y) = e
�a1||y||4 , [32] for a constant a1, is

an example of Class-1 function.
2) Class-2 Functions : functions that are continuous, piece-

wise C
2 on R2, with discontinuities in their first deriva-

tive. Multi-slope path loss functions are examples of
Class-2 [7]:

l2(y) =

8
><

>:

1 for ||y||  r0,

a1/||y||�1 for r0 < ||y||  r1,

a2/||y||�2 for ||y|| > r1.

(4)

where, a1 and a2 are constants such that the function is
continuous.

3) Class-3 Functions : functions with discontinuities in D2.
Out-of-sight path loss models studied in [33], where
there is a sudden drop in the power due to blockages in
urban/sub-urban areas with buildings provide examples
for this class of functions. An example of such a path
loss function is:

l3(y) =

(
1 for � r0  y1 < r0,�r0  y2 < r0,

0 for otherwise.
(5)

A discussion of the approximation of radial discontinu-
ous functions by functions that belong to the D2 class
of functions is given in the Appendix A of [34].

III. SCALING LIMIT OF THE INTERFERENCE FIELD

Under our modeling assumptions we have E[I�b(0)] =
�bp

R
R2 l(y)dy < 1, so we can consider the following re-

scaling of the interference field:

Ic
�b
(y) = 1p

�b
(I�b(y)� E[I�b(0)]). (6)

It is well known that as �b ! 1, the scaled field Ic
�b

converges to a stationary Gaussian random field Îc. Given two

locations z1, z2 2 R2, the covariance kernel c(z1, z2) depends
only on the Euclidean distance t = ||z1� z2|| and is given by:

c(t) = E[Îc(zi)Îc(zj)] =
Z

R2

p
2
l(y � zi)l(y � zj)dy. (7)

Theorem 1. For bounded path loss functions in the D2

functional space as defined in [31], consider the re-scaling
of the interference field, J�b given by:

J c
�b
(y) =

1p
�b

(J�b(y)� E[J�b(0)]). (8)

Then, as �b ! 1, J c
�b

converges weakly to a stationary Gaus-
sian random field, Ĵ c. Further, in the limit the expectation of
the interference field scales with �b as

E[J�b(0)] = �b, (9)

where

 = p

Z

R2

l(y)dy. (10)

In particular, we have convergence in the sense of finite
dimensional distribution, i.e., for z1, z2, ..., zn 2 R2, the
random vector (J c

�b
(z1),J c

�b
(z2), .....J c

�b
(zn)) converges to

a centered Gaussian vector (Ĵ c(z1), Ĵ c(z2), .....Ĵ c(zn)) for
any n � 1 with covariance kernel, c(t) given by (7). In
addition, the tightness condition as given in [31] holds. Proof
is given in Appendix B of [34].

We would like to characterize the interference and the
Shannon rate fields. For this we use the above scaling to
approximate the interference field. Given the central limit
Gaussian field (Ĵ c(y), y 2 R2), for a large values of �b,
from (8), the interference field at location y, J�b(y), can be
approximated as follows:

J�b(y) ⇠
p
�bĴ c(y) + E[J�b(0)] + o(

p
�b). (11)

Since the expectation of the interference scales linearly with
�b as seen in Theorem 1, the Gaussian approximation for the
interference field Ĵ�b = (Ĵ�b(y), y 2 R2) is given by:

Ĵ�b(y) =
p
�bĴ c(y) + �b. (12)

In Appendix G of [34], we illustrate the convergence of
the interference field considering a dual-slope path-loss model
of Class-2 (4) and for �b = 104 and use the Kolmogorov-
Smirnov test (K-S test) to compare the marginal empirical
CDF with the Gaussian cumulative distribution.

Now, we focus on certain fundamental questions about the
Gaussian field (Ĵ c(y), y 2 R2), such as its continuity and
differentiability. Recall that for a Gaussian field, these are
determined by the mean and covariance kernel given in (7).
We leverage some well known results regarding the continuity
and differentiability of Gaussian fields as stated in the lemmas
given in Appendix C of [34]. The following theorem states the
result for the path loss functions of Class-1.
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System Parameters �b Density of base stations w System bandwidth
p Transmit power l(y) Path loss

Spatial Processes Model Gaussian Limits
Interference J�b ; J c

�b
(re-scaled) Ĵ�b ; Ĵ c (re-scaled)

Shannon rate S�b Ŝ�b

Temporal Processes Model Gaussian Limits
Interference J�b Ĵ�b ;Ĵc (re-scaled)

Shannon rate S�b Ŝ�b

TABLE I
KEY PARAMETERS AND PROCESSES.

Theorem 2. For Class-1 radial path loss functions, if for some
⌘ > 0 and all t 2 [�⌘, ⌘], the following integral in polar
coordinates

Z 2⇡

0

Z 1

0
l(r)l

0
(
p
r2 + t2 � 2rt cos(✓))

⇥
✓

t� r cos(✓)p
r2 + t2 � 2rt cos(✓)

◆
rdrd✓

(13)

is uniformly convergent, and in addition the covariance kernel
c(t), defined in (7), is convergent, then, c(t) is continuous
and twice differentiable. Thus, the limiting Gaussian field,
(Ĵ c(y), y 2 R2) is mean square and almost surely continuous
and differentiable.

The proof is given in Appendix D of [34].

-0.15 -0.1 -0.05 0 0.05 0.1
-0.15

-0.1

-0.05

0

0.05

0.1

Fig. 1. Level sets of the limiting Gaussian field, Ĵ c, of Class-1 path loss
function for different thresholds.

Note that the covariance kernel c(t) is symmetric about
t = 0 for all considered path loss functions. Thus the limiting
Gaussian fields are always mean square continuous. However
when relaxing the conditions on the path loss functions given
in the above theorem, mean square differentiability, sample
path continuity and differentiability may not hold. We illustrate
the math involved in verifying the continuity of the fields for
radial path loss functions that belong to Class-2 in Appendix
E of [34].

Figure 1 and 2 illustrate the level sets of the limiting
Gaussian field for Class-1 and Class-3 radial path loss func-
tions respectively. One can notice an increase in the spatial
variability for the discontinuous path loss functions, i.e., the
limiting Gaussian field has high fluctuations with respect

to space, which stems from the no-where differentiability
property of the field.
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Fig. 2. Level sets of the limiting Gaussian field, Ĵ c, of Class-3 path loss
function for different thresholds.

IV. SHANNON RATE FIELD AND ITS APPLICATIONS

Recall that the Shannon rate field, (S�b(y), y 2 R2), is
defined as:

S�b(y) = w log

✓
1 +

p ⇤ l(y � X�b(y))
J�b(y)

◆
. (14)

By contrast with the traditional polynomial path loss model,
for bounded path loss models, the received signal power does
not grow to infinity with densification as users get closer
to their associated base stations, but the interference keeps
growing. Thus, in this regime, the Shannon rate field decreases
to zero as the base station density grows. A regime of interest
in this setting is one where one densifies and increases the
operational bandwidth of the system. In this section, we
study this regime obtaining a Gaussian approximation for the
Shannon rate field and show its applicability in studying the
variability of the spatial average rate and cost of backhauling
in dense networks.
A. Gaussian Approximation for Shannon Rate Field

Under the bounded path loss models given in (4), as �b

tends to 1, l(y � X�b(y))tends to 1 almost surely, i.e., all
users eventually have good signal path to their closest or more
generally the best among the set of possible base stations they
can associate with. For simplicity, we then assume the signal
path loss is 1. However the interference will be high, thus we
can approximate the Shannon rate field as:

w log(1 + p/J�b(y)) ⇠
wp

J�b(y)
. (15)
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Now based on our characterization of the interference limit
as in (12) we can approximate the Shannon rate field as:

S�b(y) ⇠
wp

p
�bĴ c(y) + �b

,

where  is defined in (10).
Using a Taylor series expansion, one obtains

S�b(y) ⇠
wp

�b
� wp

p
�bĴ c(y)
2�2

b

+ o(1/�3/2
b ). (16)

Thus to compensate for the increase in interference, the
Shannon rate must be scaled by a system bandwidth w scaling
linearly in �b. We let w = a�b and define our Gaussian model
for the Shannon rate field as follows Ŝ�b = (Ŝ�b(y), y 2 R2)
where

Ŝ�b(y) =
ap


� ap

2
p
�b

Ĵ c(y), (17)

with mean the covariance kernels given by:

E[Ŝ�b(y)] = µ =
ap


,

Cov(Ŝ�b(y), Ŝ�b(x)) =
µ
2

�b
2
c(||y � x|)),

where c(.) is given in (7).
Note that the variability of the field decreases with the

intensity of base stations �b. See Appendix G of [34] for the
plot exhibiting the marginal empirical CDF of the Shannon
rate field along with that of the Gaussian approximation.

B. Variability of the Spatial Average Rate (SAR)

Given a Gaussian field such as Ŝ�b = (Ŝ�b(y), y 2 R2),
one can now consider various relevant functions of the spatial
process. For example, below we define the spatial average rate
over a fixed region.

Definition 1. The spatial average of the Shannon rate field
Ŝ�b over a set A ⇢ R2 is defined by

X�b(A) =
1

|A|

Z

A
Ŝ�b(y)dy,

where |A| denotes the area of A.

It follows immediately from the properties of Gaussian
processes that X�b(A) is Gaussian such that

E[X�b(A)] = µ,

Var(X�b(A)) =
µ
2

2�b|A|2

Z

A

Z

A
c(||y � z||)dydz,

where,  = p
R
R2 l(y)dy.

For a fixed region A one might ask how densification will
impact variability in the spatial average rate. Our analysis
suggests the standard deviation is inversely proportional top
�b, i.e., leads to concentration in the rates users will see.

Fig 3 illustrates such decreases in variability for Class 2 and
3 path loss models. Perhaps as expected, scenarios with more
discontinuous path loss characteristics see higher variability
but still similar decays.
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Fig. 3. Standard deviation of the spatial average rate with increasing density
of base stations.

C. Backhaul Capacity Dimensioning

The cost and provisioning of backhauling resources is one
of the key issues associated with deploying dense networks.
In this subsection we shall study how densification impacts
the cost of backhauling, leveraging again functionals of our
Gaussian model for the Shannon rate field.

We consider a simple backhauling infrastructure based on
a grid tessellation, where each cell (square) is associated with
a gateway which provides backhauling for the users in its
cell. We assume that the spatial density of users the network
serves grows along with the density of base stations. We
consider this setting as one of the aims of densification is
to provide individual users high throughput which is achieved
by cell-splitting gain. Although more general models could be
considered, we shall assume that backhauling technology is
such that each gateway can handle roughly a fixed number
of users say m. Hence, as we density, the cells’ area |A�b |
decreases inversely proportional to the base station density i.e.,
|A�b | = m

�b
. We assume that neither the link from the base

station to the gateway nor the backhaul to the Internet is a
bottleneck. That is, base stations are connected to the gateway
via high capacity links, e.g., mmWave, links. Here the key
question is about the capacity that should be provisioned from
the gateway to the Internet.

There are various sources of variability which impact the
provisioning of the gateway to the Internet backhaul capacity:
(1) variability in the peak rate of users, (2) correlations
amongst users’ peak rates, (3) variability in the number of
active users, and (4) sharing of base station resources by one
or more users (which limits their peak rate).

Let us first ignore the impact of variability in the number
of users. To that end, we shall consider user locations �g

corresponding to a grid with density �u = �b. This scenario
might correspond to a deterministic deployment e.g., a video
surveillance system with a fixed set of active users. Further,
ignoring the sharing of base station resources, we model the
aggregate peak rate requirement at a typical gateway cell for a
base station density �b as: R�b(�g) =

P
Yj2�g\A�b

Ŝ�b(Yj).
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Lemma 1. The gateway capacity ⇢(�) capable of serving the
aggregate peak rate R�b(�g) with overflow probability � is
given by

⇢(�) = argmin⇢{⇢ | P(R�b(�u) � ⇢)  �}, (18)

where, ⇢(�) = µ̃ + Q
�1(�)�̃, Q�1(x) =

p
2erf�1(1 � 2x),

µ̃ = E[R�b(�g)] = µm, and �̃
2 = Var(R�b(�g)) which is

given by

µ
2
m

2�b
c(0) +

µ
2

2�b

mX

i,j=1,i 6=j

c(||g(i)�b
� g(j)�b

||),

with g(j)�b
, j = 1, . . .m corresponding to the m grid points in

the gateway’s square cell.

Proof. In our grid model, the aggregate peak rate, R�b(�g), is
the sum of m jointly Gaussian (positively correlated) random
variables associated with the grid locations �g in the gateway
cell. Thus, R�b(�u) is Gaussian (µ̃, �̃2) and the result in the
Lemma follows.

Note that the first term in the variance captures the spatial
variations in the users’ peak rate while the second term
captures correlations amongst the users peak rates. See the
Appendix F of [34] for a derivation of the above variance
formula. ⌅

Remark 1. (Variability in number of users.) We shall con-
sider the scenario where users’ locations �r correspond to
a Poisson process with intensity �u = �b, which model
variations in both the number and locations of active users.
Let R�b(�r) correspond to a random sum of random variables
corresponding to a Poisson distributed number of users in
the gateway cell, having Gaussian peak rates which are
correlated. Such a mixture of Gaussian random variables is
no longer Gaussian but is reasonably well approximated. So
we propose to approximate R�b(�r) as a Gaussian Random
variable with the same mean as R�b(�g) and with

Var(R�b(�r)) = µ
2
m+

µ
2
m

2�b
c(0)+

µ
2
�b

2

Z

A�b

Z

A�b

c(||y � z||)dydz.

See the Appendix F of [34] for a derivation of the above
variance formula as well as an example of validation of this
approximation. The first term in the above variance captures
variability in the number of users, the second is associated with
variability in user’s peak rate while the third again captures
correlations amongst the users peak rates.

In addition to determining the required backhaul capacity
for the above two scenarios, Grid and Random, we can also
determine the capacity one would provision if one ignored
the terms in their variance corresponding to positive spatial
correlations in users peak rates. We refer to the latter as Grid-
simple and Random-simple.

We evaluated the required backhaul capacity according to
Lemma 1, for � = 0.01,�b|A�b | = m = 20 and dual

�b Class-1 Class-2 Class-3
�g 8.9% 22% 19.2%

100 �r 0.8% 8.1% 9.6%
�g 5.3% 21.2% 22.9%

300 �r 0.2% 5.6% 8.5%
�g 4.1% 19.2% 22.7%

500 �r 0.1% 4.3% 7.3%
TABLE II

slope path loss with r0 = 100m for all the above mentioned
scenarios and Fig 4 exhibits the comparison of the required
backhaul capacity with increasing density, �b. We have the
following observations:

• Since a single gateway serves approximately a fixed
number of base stations, m, the capacity can be viewed
as the required backhaul capacity per unit base station.
Thus, the cost of providing backhaul capacity decreases
with densification due to decrease in the variance of the
Shannon rate.

• As seen in Fig.4, the positive rate correlations impact
the capacity requirements differently for random and grid
users. The relative increase in the capacity ranges from
22% - 19.2% for grid users and 8.1% - 4.3% for random
users. The user variability dominates the variability due
to correlations. Thus the relative increase in the required
capacity is higher for grid users.

• The positive rate correlations also impact differently for
various path loss models and Table II states the values
of the relative increase in the required backhaul capacity
for various classes of path loss functions.

• The required capacity is higher for random users due to
the additional contribution of user variability.
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Fig. 4. Required backhaul capacity with increasing density of base stations.

V. TEMPORAL CHARACTERISTICS OF THE SHANNON RATE
PROCESS

Definition 2. Given a stationary spatial field, such as the
interference field J�b , the temporal stochastic process seen
by a mobile moving at a constant velocity, v along a straight
line, (J�b(t), t > 0) is defined as:

J�b(t) = J�b(yv(t)), (19)

where yv(t) = (vt, 0).
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Similarly, we can define the temporal Shannon rate process,
(S�b(t), t > 0). Given the fields are stationary and isotropic,
without loss of generality, we can assume that the user is
moving along the x-axis starting from the origin at time t = 0.
In a first step, consider that the mobile user is moving at a
fixed unit velocity.

Given the asymptotic characterization of the interference
and Shannon rate fields as Gaussian fields, one can asymptot-
ically characterize the above stochastic processes as stationary
Gaussian processes, (Ĵ�b(t), t > 0) and (Ŝ�b(t), t > 0).
The continuity and differentiability properties of the processes
follow immediately from those of the fields.

Note that, as the mobile moves through space, the variations
in the rate it experiences depend on the path loss functions.
For Class-1 functions, we have smooth variations in the
interference and rate i.e., differentiable processes. For Class-3
functions we have no-where differentiable processes with high
variations as illustrated in Fig 5. To analyze the high temporal
variations in the rate, we characterize them with the help of
Hölder exponents [35].
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Fig. 5. Sample path of Interference processes for various path loss functions.

A. Hölder Exponents

Definition 3. [35] A function g : R ! R has a Hölder
exponent ↵ if there exists a constant k such that for any k̂ > k

and all sufficiently small h,

|g(t+ h)� g(t)| < k̂|h|↵,

uniformly with respect to all t lying in any finite interval. We
then say that g(t) 2 H(↵, k).

The Hölder exponent, 0 < ↵ < 1, provides a measure of
local path-irregularity or roughness: sample paths exhibit more
and more variability as ↵ decreases from 1 to 0.

Lemma 2. [35] For a given stationary continuous Gaussian
process (Ĵc(t), t � 0) with covariance kernel, c(t) if, for all
sufficiently small h,

E[(Ĵc(t+ h)� Ĵ
c(t))2] = 2(c(0)� c(h))  k|h|2↵

| log |h|| , (20)

then almost surely all sample paths of Ĵ
c(t) belong to

H(↵,
p
2k/k↵), where k↵ = 2↵�1

21+2↵ . Further, the Hölder
exponent of the stochastic process as defined in [35] is ↵.

Remark 2. For a radial path loss function of Class-3, the
interference experienced by the mobile user moving with unit
velocity along a straight line is a stochastic process which is
equivalent to the number of users in a M/GI/1 queue whose
limiting processes has a Hölder exponent of 1/2. See Appendix
H of [34] for details.

For certain Class-2 and Class-3 path loss functions of
interest, we could verify that they satisfy the above condition
by numerically evaluating the covariance kernel.
B. Time Scales in Adaptive Modulation and Coding

In our environment, i.e., dense networks with the bounded
path loss functions considered here and no fading, the signal
power is asymptotically a constant, and the variability in the
Shannon rate is primarily due to variations in the interference.
In this section, we discuss ways to cope with such interference
variations in the context of adaptive modulation and coding.

Adaptive modulation and coding is a technique used to adapt
to variations in signal quality (SINR), where it dynamically
selects the best modulation and coding scheme (MCS) based
on estimates of current conditions. For simplicity, in our
model, we assume uniform binning of the Shannon rate itself
with bin size �. Let b0, b1, . . . , bn be the discrete rates
defining the bins, where bin i is associated with rate bi and
|bi� bi�1| = �. This is a simplified model, as in practice, the
range of the estimated channel state information (CSI) (e.g.,
SINR) is divided into non-uniform bins, each corresponding
to a MCS, which are then mapped to a transmission rate by a
non-linear function.

We now explore the timescales on which the adaptive
modulation and coding (AMC) should operate. Slower rate of
adaptation leads to difficulties in keeping up with the local
variations. The user may experience conditions worse than
those required for the selected rate, which should be avoided.
At the same time a significant amount of overhead is involved
in estimating the interference power and selecting a new rate.
Thus one should try to limit the rate of adaptations.

We use our model to provide an understanding of the rate of
adaptation and its dependence on various system parameters.
Assume that adaptive coding takes place periodically every
h seconds. Namely, every h seconds, the transmitter selects
a particular rate, b� 2 {b1, . . . , bn} bits/sec based on the
estimate of the instantaneous Shannon rate � at the given time.
The selected rate b� is then used for the next h seconds.

In order to cope with variations, we consider a conservative
approach where, if the current rate � belongs to bin i, then
we pick a code rate corresponding to bin (i � 1)+, i.e.,
b� = b(i�1)+ . Then we have the following theorem which
gives a way to choose h such that the chance that the selected
modulation and coding rate is fine for the next h seconds.

Theorem 3. For our adaptive modulation and coding model,
if the centered Gaussian process, (Ĵc(t), t � 0) satisfies the
condition given in Lemma 2, then for all |h|  g�b(↵, k) with:

g�b(↵, k) =

✓
�

2
p
�b

apk̂

◆1/↵

, (21)
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�b v m/s Class-2 Class-3
1 ⇠ ms ⇠ 10µ s

300 10 ⇠ 10�1 ms ⇠ µs
1 ⇠ 10�1 s ⇠ ms

1000 10 ⇠ 10�2 s ⇠ 10�1 ms

TABLE III
TIME SCALES DETERMINED BY THEOREM 3, EQUATION (23).

and k̂ any number such that k̂ >

p
2k

k↵
, where k↵ = 2↵�1

21+2↵ ,
almost surely, all the sample paths satisfy |Ŝ�b(t + h) �
Ŝ�b(t)| < �, where Ŝ�b is the Gaussian approximation of
the Shannon rate process.

Proof. For h small, from (17), |Ŝ�b(t+h)�Ŝ�b(t)| < � if and
only if |Ĵc(t+h)� Ĵ

c(t)| < �2p�b

ap . If the limiting Gaussian
interference process, Ĵc(t), satisfies the conditions of Lemma
2, then for all sufficiently small h and k̂ >

p
2k/k↵ almost

surely, all sample paths satisfy |Ĵc(t+ h)� Ĵ
c(t))| < k̂|h|↵.

Thus, for all |h|  g�b(↵, k), almost surely for all the sample
paths, |Ŝ�b(t+ h)� Ŝ�b(t)| < �. ⌅

Role of velocity. Let us now assume that the mobile user is
moving with constant velocity v instead of unit velocity. From
Definition 2, we have

|Ĵc(t+ h)� Ĵ
c(t))| = |Ĵ c(yv(t+ h))� Ĵ c(yv(t))|, (22)

where yv(t) = (vt, 0). Further, since bin size has to be in the
same order of magnitude as the Shannon rate, it makes sense
to assume that the bin size is a fraction of the mean Shannon
rate, i.e., � = 1

⌘E[S�b(0)] for some ⌘ 2 R+ e.g., ⌘ = 10.
Then, the function g�b(↵, k, v) is now given by:

g�b(↵, k) =
1

v

✓

p
�b

⌘k̂

◆1/↵

. (23)

The time period at which AMC should operate at primarily
depends on: (1) the intensity of base stations (�b), (2) the
velocity (v), and (3) the path loss models through , k̂,↵.
We study these various dependencies by considering a specific
set of values for parameters: Intensity of base stations, �b =
300, 1000 per Km2; Bandwidth, w = 900 MHz; transmitted
power, p = 1 Watt and velocity, v = from 1 to 10 m/s.

Further, we consider the dual slope path loss function
of Class-2 and a discontinuous path loss function. We then
numerically estimate the Hölder exponents to be 1 and 0.5
with constant values k of 5 and 50 respectively. Then, for
k̂ =

p
2k

k↵
, the function g�b(↵, k) is given in Table III.

From the numerical evaluation and (23), we have the
following observations:

• We get a lower rate of adaptation when increasing the
density of base stations, �b, since the variance of the
process decreases as studied in the previous section. The
magnitude of the rate is due to the fact that function g in
(23) is polynomial in �b which is in per Km2.

• Increasing the velocity increases the rate of adaptation.
For the same set of parameters, if one considers unit
velocity we have that g�b(↵, k) ⇠ ms for Class-2 path
loss models.

Time Scale 10µs 1 ms 10�1s
Class-2 0.07 0.09 0.21
Class-3 0.12 0.26 0.5

TABLE IV
FRACTION OF TIME PERIODS IN ERROR.

• Higher variability in the Shannon rate, i.e., lower values
of ↵ in case of discontinuous path loss models, leads to
higher rates of adaptation.

Table III illustrates the time scales determined by Theorem
3, equation (23), at which adaptive modulation and coding
should operate for the above mentioned network parameters.
We validated this result with the help of simulations, by
considering uniform binning of a fixed bin size � of the
Shannon rate seen by a user moving at a constant velocity
v = 1 m/s with �b = 300 and the network parameters
as above. We considered three different time scales, 10µs,
1ms and 10�1s, for adaptive modulation and evaluated the
fraction of the time periods that are in error when applying
the technique defined above. The simulation values are in
agreement with our numerical result given by the Hölder
exponent analysis, since the fraction of error is considerably
lower for Class-2 path loss functions at 1ms and for Class-3
path loss functions at 10µs as can be seen in Table IV. The
fraction of error is higher if one considers time scales greater
than the values determined by (23).

Thus, this provides an understanding of how h scales with
different system parameters like the environment through the
path loss l(r), density of base stations, �b and velocity v.
C. Level-crossings of the Scaled Interference Process

In this subsection, we study the expected number of up-
crossings in an interval of the stationary differentiable Gaus-
sian process (Ĵc(t), t � 0). We assume that this process is a.s
differentiable. This also gives the expected up-crossings for
the approximated interference, (Ĵ�b(t), t � 0) and Shannon
rate processes, (Ŝ�b(t), t � 0).

Given a threshold u, define the number of up-crossings in
an interval [0, T ] as N

+
u [0, T ] = #{t 2 [0, T ] : Ĵ

c(t) =

u, Ĵ
c
0
(t) > 0}. Then, the Rice formula for the expected

number of upcrossings in the interval is given by ([36])

E[N+
u [0, T ]] =

p
!2Te

�u2/(2c(0))

2⇡
p

c(0)
, (24)

where !2 is the second spectral moment. Since the Gaussian
process is mean square differentiable, the second spectral
moment is given by !2 = �c

00
(0).

Using simulations, we estimated the expected number of
up-crossings in an interval for various sample paths of the
scaled interference process, Jc

�b
(t). The aim is to compare this

with the above result for the limiting Gaussian process. Thus,
we evaluated Rice formula by calculating the second spectral
moment numerically. The simulated mean value is within a 5
percent error margin from the numerically value. Thus, one
can expect to use the results for the limiting Gaussian process
to work for the original processes. We can also characterize
the coverage and outage times i.e., the level crossings of the
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approximated Gaussian Shannon rate process, (Ŝ�b(t), t � 0)
and its asymptotics using the existing results as in [36], [37].

VI. CONCLUSION

By properly rescaling the interference and Shannon rate
fields we have characterized their corresponding limiting
Gaussian fields in ultra dense settings. This opens the opportu-
nity to apply the rich set of tools and results for Gaussian fields
to study dense wireless networks. Their characteristics depend
primarily on the path loss. By taking functions of these fields,
one can also shed light on fundamental engineering questions
in ultra dense networks such as (1) the role of spatial correla-
tions on backhaul dimensioning and (2) the characteristics of
temporal variations mobile users would see and their impact on
adaptive modulation and coding. Overall this provides a new
approach for the assessment of the fundamental characteristics
of densification.
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