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Abstract

A key problem for modern network designers is to characterize/model the “bursty” traffic arising in
broadband networks with a view on predicting and guaranteeing performance. In this paper we attempt
to unify several approaches ranging from histogram/interval based methods to “frequency domain” ap-
proaches by further investigating the asymptotic behavior of a multiplexer carrying a large number of
streams. This analysis reveals the salient traffic/performance relationships which should guide us in
selecting successful methods for traffic management and network dimensioning.
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1 Introduction

Efficient methods for congestion control in high-speed communication networks will be based on reasonable
characterizations for traffic flows and time scale decompositions of the network dynamics. With a view on
resolving the question of admission control, including bandwidth allocation and routing, as well as other
traffic management activities, researchers have developed several approaches to modeling traffic and predict-
ing performance. The first step towards resolving problems in traffic management on high-speed networks
is that of obtaining a reasonable description for traffic statistics that directly relates to the performance
characteristics of network elements subject to such loads. Such a characterization should

e provide a concise summary of the traffic statistics (data compression),
e translate to accurate performance predictions for network elements, and

e be easy to measure.

The most complete, albeit unwieldy, characterization of a (continuous or discrete time) stationary traffic flow
are its statistics. We will let A(0,¢] (with ¢ € R* or ¢ € N) denote the distribution for the cumulative arrivals
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(packets or work) over the time interval (0,¢]. The mean arrivals per unit time are given by u = EA(0, 1],
where in discrete time this is referenced to the time-slot interval.

Recent analytical and empirical studies have suggested a variety of approaches to capturing
traffic characteristics and queuing dynamics. In this paper we attempt to unify these approaches, starting
from an understanding of buffer asymptotics. In brief, §2.1, 2.2 review and extend recent work suggesting
that the cumulative log-moment generating function

A¢(0) :=logEexp[fA(0,t]], 6 € R,t >0,

of the arrivals over time intervals is a useful representation of the traffic which translates directly to buffer
overflow characteristics [15, 1]. We will see that two parameters 6+, t* define the “space” and time scales of
interest to determine overflow probabilities in a buffered link.

Next we consider the case where only the second order characteristics are important in deter-
mining performance, and, in particular, the key traffic properties are captured by a marginal distribution
and the covariance of the rate process. This approach recently developed by Li et. al. [13, 17, 14] has shown
to be a remarkably good modeling tool. To further study these ideas, in §2.3 we consider Gaussian processes,
where the second order characteristics completely determine A;(f) above. For such processes we show that
t* can be related to a so-called cutoff frequency w. [17] through a relationship between the variance and the
traffic rate processes’ power spectral density (PSD) developed in Appendix B.

Finally in §3 we consider various approximations. We argue that for multiplexers with a known
time scale t* of interest, only the distribution of A(0,¢*] is relevant. Predicated on knowing ¢*, interval-based
methods as suggested by [6, 16] and histogram-based methods [18] may very well achieve high utilizations.
Moreover when 6;« assumes “moderate” values, a Gaussian approximation may in fact suffice to appropri-
ately predict performance. In practice determination of the appropriate time scale ¢* depends on traffic
characteristics and desired operational constraints, and may in turn be a difficult task.

2 Characterizing packet streams and performance asymptotics

In this section we discuss large deviations and Bahadur-Rao approximations for overflow probabilities in
multiplexers supporting large numbers of streams. We briefly consider the accuracy and practical significance
of such results. Finally we consider the case of Gaussian arrivals processes where results take a particularly
simple form.

2.1 Large deviations

We begin our study by briefly discussing an asymptotic study of a multiplexer supporting a large number
N of i.i.d. streams [1, 3]. Let AN = ";", A;(—t,0] denote the aggregate arrivals over an interval of length
t. As shown in Fig. 1 resources are also scaled in N, thus we identify a buffer and capacity per stream, b, c.

Using large deviations, for large N we can estimate the probability that over a time interval of
length ¢ an amount of work A sufficient to overcome the potential service Nct and further exceed a buffer
level Nb enters the system:

P(AN > N(ct 4+ b)) ~ exp[-NA}(ct + b)),

where A (a) = supg[fa — A4(0)] [8]. For stationary and ergodic traffic the queue’s steady state distribution
is given by QV = supt>0[A£V — Nect]. Thus the steady state probability of exceeding Nb can be approximated
by

P(QN > Nb) ~ supP(AY > N(ct + b)) ~ exp[-N inf A (ct + )] (1)
t>0



——

Figure 1: Scaling for large numbers of streams.

This argument is made rigorous in [1].

Intuitively a minimizer t* € arginf,Af(ct+ b) would correspond to a likely time scale on which
overflows occur in this system. A performance constraint on buffer overflows of the form

P(QN > Nb) ~ exp[-NAL. (ct* + b)] < exp[-N¢] (e.g., ~ 107%),

translates to
Aj(ct™ +b) = sup[f(ct”™ + b) — Ap=(0)] = Op= (ct™ +b) — Ap=(0+) > 6,
]

for the associated maximizer 6;«. In order to satisfy the QoS requirement we need that:

Ap(Bp=)+d b
c > —————— — — =: a(e,b,0). 2
o~ = alebd) 2
Notice that this is a normalized constraint depending on the resources allocated per stream and the traffic
characteristics on the appropriate time scale t*. The “space” scale parameter 6;- determines the impact (of

higher order moments, see §3) of the tail distribution of A(0,¢*] on overflows.

Example: Brownian motion model. Suppose the net input per stream is modeled by a Brownian
motion with parameters o2 and drift g — ¢ < 0, i.e. A(0,t] — ct ~ N((u — ¢)t,to?). Using the formulae in
§2.3 one finds that t* = b/(c — pu) and ;- = 2(c — u) /0. In this special case the space scale is independent
of the buffer size. Moreover (2) gives the following requirement

o2
c>pu+ 5
Recall that this is a normalized constraint, but it exhibits the role of shared buffering. We interpret this
relationship as follows: for small buffers we essentially require an infinite capacity; this is due to the fast
local variations of Brownian motion. As the buffer b increases, we can essentially get away with serving at
the mean rate, but only because we are scaling the number of streams, service rate, and buffer size together,
thus maintaining the space scale of interest 6« constant while increasing the buffer to infinity! Based on a
more refined analysis, one can find the exact invariant distribution and show how this approximation fares
versus the finite buffer queue, see e.g. [7].

2.2 Bahadur-Rao improvements

A further improvement upon the large deviations result can be obtained via Bahadur-Rao asymptotics. While
the large deviations result estimates the magnitude of the exponent, the improved asymptotics account for
possible pre-factor contributions which in this case are found to be order v N.

The Bahadur-Rao result for sums of i.i.d. random variables [8, 12] gives the following improve-
ment upon the large deviations bound considered previously:

P(AYN > N(ct 4+ b)) ~ exp[—NAJ (ct + b)),

1
atOt\/ 2rN



where 6, = argsupy[f(ct + b) — A4(0)] and o} = %At (0;). The large deviations heuristic of the previous
section suggests that there is a dominant time scale of interest ¢* whence,

P(QN > Nb) P(AN > Nlct* + b))
exp[—NAJ. (ct* +b) — log[y/2r N2 02] . (3)

X

X

The precise statement and proof of this result has been relegated to Appendix A; in general t* may not be
unique and the pre-factor may be off by a constant independent of N. However, we expect this is typically
not the case, see Remark A.1.

A further simplification gives an ad hoc approximation, which is exact for the case of Gaussian
arrivals processes. Assuming the log-moment has the required derivatives (true if arrivals are almost surely

bounded), and noting that %(99‘*) = ct* + b we have by applying Taylor’s Theorem at 6;- that
ONg= (i) 02, O?Ap (04+)
= A = Ap(0p) — Oy
0 = A4 (0) t=(0p-) — 0 5 T3 502 +R
07. 07

= —AL(ct" +b)+

+R,

where R = —9323!* % for some r € (0,60:). Thus if the remainder R is small (R = 0 for Gaussian

distributions) we then have that 2A}. (ct* + b) ~ 0707 giving the following approximation:

P(QN > Nb) ~ exp[—NA} (ct* +b) — %log[éleA; (ct™ +b)] ] 4)

Note that in (4) no further computation is needed to obtain the pre-factor since it depends on
N and the large deviations exponent. The plots in Fig. 2 show that the simple ad-hoc approximation (4) is
essentially the same as (3) and gives a marginal improvement upon the large deviations bounds (1) in [1].
In particular we base these directly on their results for superpositions of On/Off Markov fluids. For each
source, discrete-time transitions from Off to On occur with probability a, from On to Off with probability
d. When the source is On a unit of work is generated, and no work is generated in the Off state. Note that
the sources in the three superpositions range from bursty (a + d < 1) to sub-bursty (a +d > 1), see [1] for
details.

A QoS requirement on buffer overflows of the type P(QY > Nb) < exp[—N§] translates to an
adjusted operational constraint:

. 1 1 * *
c¢>a(d',e,b) where § =4 — N log[2rN#.ol] ~ 6 — N log[dm NA}. (ct* +b)].

Notice that the constraint now depends on IV and can be expressed as a simple adjustment in the target
QoS ¢ which accounts for further multiplexing effects.

This result suggests when large deviations asymptotics might give accurate estimates. In par-
ticular suppose the target QoS is exp[—Nd], and we are willing to put up with less than one (0.99) order of
magnitude error. In this case, assuming the ad-hoc approximation holds, we can show that, very roughly,
QoS requirements in the range .98 > exp[—N§] > 3.4 x 10~ can be handled via large deviations asymptotics.
Perhaps a more telling remark is the apparent tradeoff between N and § in determining the accuracy, that
is based on this discussion we might argue that for sufficiently “large” N and “small” § or vice-versa, good
approximations are obtained. These types of effects are born out by simulation [11] and indicate in part
why some performance studies using effective bandwidths give excellent results while others give rather bad
performance estimates [2, 10].

For simplicity we have only discussed the case of multiplexing N homogeneous streams. For
heterogeneous mixes of traffic, we can consider i.i.d. sources which are each a mix of the appropriate number
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Figure 2: Bahadur-Rao pre-factor corrections.



of heterogeneous streams, see [12], and the asymptotics follow immediately. Thus, qualitatively, the picture
for mixes of heterogeneous sources is quite similar to the i.i.d. case. For completeness we note a related work
[9] where a slightly different approach to approximation was taken.

2.3 Gaussian processes and frequency domain characteristics

Gaussian traffic models for the net input into a queuing system often arise as heavy traffic approximations
or aggregation limits. Herein we take the point of view that they adequately model more general overflow
characteristics, and later look at the possibility of using Gaussian processes, which are more amenable to
analysis, to approximate non-Gaussian traffic.

Suppose the underlying arrivals rate process is Gaussian. In this case A(0,t] is Gaussian and
the cumulative log-moment generating function and rate function can be computed explicitly as a function
of p =EA(0,1] and o7 = Var(A(0,t]):

2.2 _ 2
A¢(0) = ptb + 0% and Aj(ct+b) = [(65#
0%

In the sequel we will also use the fact that the variance can in turn be expressed as the filtered power spectral
density of the rate process; see (13),(14).

Fortunately for Gaussian traffic we can find revealing expressions for 6+, t*, the space-time scales
of interest in (2). In particular from (1) and assuming the minimizer ¢* is unique we write

. o} (c— )t +b
tr = argmaxbom = argmaxbom and Oy = Y (5)

where a = b/(c — p). For a Gaussian process with independent increments, i.e. 07 = to?, the maximum is
attained at t* = « (the discrete time case needs to be appropriately quantized) and is independent of the
input variance. We can also write @ = d/(1 — p) where d = b/c is to be understood as the maximum delay
permitted for packets that are successfully transmitted while p is the utilization of the buffer. The key point
then is that « is an invariant, in the sense that for fixed a we get the same overflow ¢* behavior, so we write

t*(a).

Introducing these quantities into the QoS constraint (2) gives the following simplified require-
ment:

b oz
— 20— 6
c+ pe > u+ 2 (6)

to be interpreted as a bandwidth ¢ constraint to meet the QoS d-constraint given a buffer of size b. We
can interpret b/t* as an effective increase in the capacity due to buffering traffic. Now using the alternative
representation for variance (14) for continuous time processes (or (13) in discrete time) we have that

2 +00 22 * +we
op 2sin”(wt*/2) _ 1
= /_Oo @t Saw)dw = 3 Sa(w)dw, (7)

t*2
where w, = 27 /t* corresponds to a rough cutoff frequency. This approximation assumes that due to the 1/w?
decay of the filtering function the PSD does not contribute significantly beyond the cutoff frequency, and
the gain is roughly that at DC, i.e. 1/27. In practice the effectiveness of this approximation will of course
depend on the characteristics of the PSD, i.e. it should have a well-founded low frequency component. This
approximation corresponds to allocating bandwidth based on the power in the output process from a low
pass filter with cutoff at w, [17].



Example: The Ornstein-Uhlenbeck (OU) model reveals the basic behavior of a positively cor-
related arrival process with exponentially decaying correlations. Its characteristics are similar to bursty
superpositions of On/Off Markov sources or first order auto-regressive models. Indeed the “rate” (veloc-
ity) process is Gaussian with mean p and exponentially decaying covariance k4 (7) = v exp[—alr]|] for some
constants v,a > 0. From (14) one can show that

9 20

o; = g(at — 1+ exp[—at]). (8)

Using (5) one can compute t* numerically and obtain the following simple bounds:
. 2
a<t <a+=. (9)
a

Thus the overflow time scale for positively correlated processes will exceed that of i.i.d. arrivals, a, by no
more than twice the correlation time scale 1/a — positive correlations lead to “slower” overflows which
exploit dependencies.

Using (5) and (6) in the case of the OU model we can investigate the maximum utilization peqe
that can be achieved as a function of the loss constraint ¢ and the buffer size b in the multiplexer. Fig. 3
below exhibits the QoS vs. efficiency tradeoffs for an OU input process with parameters = 0.5, a = 1, and
v=1
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Figure 3: Efficiency versus buffer size and loss constraints.

Next we consider the impact of the traffic’s parameters v,a. Motivated by the simulations in
[13] for aggregations of On/Off sources, we consider two regimes: one in which the buffer is sufficiently
large to effectively smooth correlations and one in which it is not. Consider (8); when at*(a) < 1, we can
approximate af*(a) ~ vt*?(a). Inserting these approximations into (6) we find that the maximum utilization

is approximately given by
1

T1- ba/u+V20v/u

pmam



The right hand side is found to vary slowly once a is sufficiently small, meaning that the buffer will no longer
be effective. Numerically we can show that at*(a) < 1 when o = b/(¢ — ) < 0.1/a in which case we say
that we are in the buffer non-effective regime, see [13]. Alternatively, we find that the buffer is effective once

d>0.1%1/a,

i.e. the “maximum” delay exceeds a fraction of the correlation time scale.

Finally, what do these asymptotics tell us about the case with a single Gaussian input stream?
Suppose for example that a single (aggregate) Gaussian arrival process enters a buffer link of size b with
capacity c¢. We can represent it as a sum of N independent Gaussian processes with means and variances
which are scaled by N~!. The asymptotic results presented previously, for appropriately rescaled buffers
and bandwidth per sub-stream, shows that the overflow asymptotic is independent of N. This probability

of overflow is given by
1
P(Q >b) = exp[— A (et® + b)],
(@ 1)~ s Bl AL o 1)

where all quantities refer to the single stream entering the link.

3 Approximations for non-Gaussian processes

In general the focus of traffic modeling should lie, not in precise modeling of the traffic statistics, but rather
in capturing the “relevant” characteristics, so as to allow prediction or efficient management.

3.1 Approximating t*

The previous discussion brings to the fore the importance of estimating ¢* (or cutoff frequency) associated
with a given buffered traffic load. One approach is to simulate or monitor a buffer subject to the desired traffic
load and attempt to estimate t* based on observation of the queuing dynamics. A second approach, which
we believe will be effective, is to estimate ¢t* based on the observation of second order traffic characteristics.
That is, based on estimates for the mean and variance of A(0,¢], say fi,67, we can numerically estimate
t*(a) from (5) for a variety of possible a. Alternatively, as suggested previously, the magnitude of ¢* might
be estimated via bounds such as (9) or heuristics such as inspection of the PSD to determine an appropriate
cutoff frequency. Typically the PSD of traffic, such as VBR video, will have the majority of its power
concentrated in a well founded low frequency component [17], permitting a rough evaluation of the essential
time scales, e.g. scene changes, frame correlations, or picture blocks. Such time scales however depend on
the type of compression and nature of the media, thus teleconferencing applications have different scales
than say MPEG coded video [9].

3.2 Interval-based approximations for bandwidth requirements

Once an estimate for ¢* is available, we may consider using interval-based traffic descriptors and bandwidth
allocation schemes such as [7, 18, 16, 17]. There are at least two “simple” options: 1) to approximate A(0,¢*]
by a Gaussian distribution, and 2) to allocate the peak rate on the appropriate time scale.

We argue that A(0,t*] can be for practical purposes assumed to be Gaussian if

02.6°

A (8) ~ pt*0 + +R(A), VO € (0,6)



where o7, = Var(A4(0,¢*]). This approximation follows from a Taylor expansion of A () at § = 0 and is
accurate if the remainder R depending on 6= and higher order moments of A(0,t*] is relatively small. A
rough way of establishing if such an approximation is reasonable is to consider whether 6, as given by (5),
is small (A~ < 1). If such an approximation is well founded we can use the estimates based on Gaussian
distributions, e.g. (3) or (6) to evaluate the performance of the multiplexer.

When second order approximations break down, we can resort to peak rate allocation. Starting
from the large deviations QoS requirement (2), we note that A (6) is convex and eventually increasing so
the right hand side is eventually non-decreasing in . This gives the following conservative requirement:

¢ +b/t" > Jim log Bexp[0(AO. "] _ o o). (10)

i
—00 ot*

The quantity a(oco,t*) is the sustainable peak rate over an interval of length ¢*, i.e. the supremum over rates
that can be sustained with non-zero probability; see [5] for a discussion in the case where t* — co. In
general a(co,t*) may be infinite, e.g. Gaussian distributions, however in practice traffic will have a bounded
sustainable peak rate for any time scale since there are physical bounds on the ability of a source to sustain a
maximal rate during a given period of time. Thus (10) corresponds to peak rate allocation on the appropriate
time scale with b/t* reflecting an increase in capacity due to buffering. Alternatively we can interpret (10)
as allocating the peak rate of a low-pass filtered (cutoff w.) rate process [17].

3.3 Relevance of time scale

This work substantiates the premise that traffic needs to be modeled on the appropriate time scale. By
developing methods for identifying the “relevant” time scales, we can in turn parametize traffic management
and network dimensioning so as to make them effective over a wide range of traffic statistics. We expect
that as traffic characteristics stabilize, buffer sizes and link capacities become standard, and the required
QoS constraints are determined, estimating the relevant times scales will become an easier task.

Acknowledgment: We thank N. Duffield and S.Q. Li for many interesting discussions related to this topic.

A Bahadur-Rao asymptotics

In the theorem below we will assume the following hypotheses taken from [1].
Hypothesis A.1 [1]

1. For each 6 € R, \¢(0) = t71A¢(#) and \(0) = lim;_ o M\¢(0) exist as extended real numbers.
2. X\t and X are essentially smooth.
3. There exists @ > 0 for which A\¢(9) <0 for all t € Z7.

4. At is second order differentiable in its domain Dy, .

Roughly speaking the first two permit us to use the Gartner-Ellis large deviations result. The third cor-
responds to a stability condition, i.e. more departures than arrivals on any time interval ¢. Finally, an
additional hypothesis was introduced so as to use the Bahadur-Rao result. In the theorem below we distin-
guish between the lattice case, which for example corresponds to the case where the arrivals process A(0,t]
counts fixed sized packets, and the non-lattice case.



Theorem A.1 Assuming Hypothesis A.1 and assuming A(0,t], Vt € Z™, are non-lattice random variables
then
1 < liminf cvP(QN > Nb) < limsup cyP(QY > Nb) < K.
—00

N —o00
Let T* = arginf,, + A} (ct + b) = arginf,,+tA; (c + (b/t)). In the above, K is a constant independent of N,
t* = argmin,cr.cn(t), en(t) = 00V 2N exp[NA¢(ct + b)], iy = en(t*), 0; = argsupy[f(ct + b) — A¢(6)],
and o} = %At(ﬁt) (derivative exists by Hyp. A.1.4).

Suppose A(0,t] (e.g. packet arrivals), Vt € Z™ has a lattice law, i.e. for some ag, d, the random
variable (A(0,t] — ap)/d is an integer number, and d is the largest number with this property. Then we have

O d

imi * : * K0;-d
T—oxp[—0:-d] < liminf xP(QY > Nb) < limsup cyP(Q™ > Nb) < ¢

N—soo = 1 —exp[—04d]

Proof: We show the proof for the non-lattice case. The proof for the lattice-case is similar. By noting that
t—o00

Aj(ct+b) > 0and Af(ct +b) = oo, we see that infy~o Af(ct +b),t € Z™T is attained. Furthermore, 7* has
a finite number of elements K, independent of N.

Lower bound: P(QN > Nb) > P(AN > N[ct* + b]) and using the Bahadur-Rao result

lim cyP(AN > Net* +b]) = 1.
N—oo

Upper bound: P(QY > Nb) <3, o P(AY > Nlct + b]) by the union bound. Using the Bahadur-Rao result,

lim cy Y P(AY > Nlet+b) < K+ lim ¢y > P(AY > Nlet +b]).
N—o0 =0 N—o0 042 T

Since Aj. (ct* +b) < Af(ct+b) for t ¢ T*, it can be shown that limy_, ¢ P(AN > Nlct+b]) =0 for t ¢ T*.

Consider t' > max{t|t € T*}. We aim to show

lim ¢y > P(AY > Nct+1b]) = 0.

N—o0
>t
By Chernoff’s bound,

N Z P(AY > Nict+b]) < clyexp[—0ND] Z exp[—ONct + tA(0)].

t>t! ot

Since A (A) "25° A(6) (Hyp. A.1.1), and A(A) < 0 on (0,8) (Hyp. A.1.3), we can find # > 0 and € < 0 such
that A\ (f) < € for t' sufficiently large. This means that for such ¢ > #', the geometric series is summable, so
we have

¢y exp[—ON] Z exp[—ONct +tX\(0)] < cnexp[—OND Z exp[—8Nct + te]
>t >t
exp[t'(—ONc + €)]
1 —exp[—ONc + €]
00121 N exp[N (AL (ct* + b) — Oct' + b)) + t'e]
1 —exp[—6Nc+ €] '

= cjexp[—OND]

For ¢’ sufficiently large, Af.(ct* +b) < O[ct’ + b]. Now taking limits as N — oo, the result follows. ad

10



Remark A.1 Note that we would typically expect the set T* corresponding to the most likely overflow time
scales to consist of a unique point. It is relatively easy to show this is the case for traffic processes with
independent increments, or special cases such as Markov Fluids or the OU processes. We have been unable
however to obtain a reasonable set of assumptions on the traffic processes such that this is indeed the case.

The case of continuous-time processes is somewhat more involved. Note that the upper bound
from the discrete time case has been multiplied by two.

For brevity, we will use the notation W; = A; — ¢t corresponding to the net input process and
as before we denote the sum of N independent copies by W/ .

Hypothesis A.2 (See [1]) For all t > r > 0 define Wy, = SUPg<|p <y |[Wi—pr — Wil Then for all 6 € R

lim sup sup log Efexp (§W; )] = 0.
r—0 t>0

Hypothesis A.3 Fort € R we assume that |T*| is finite, that is, there are only a finite number of t* in
the set T* = arginf, A¢(ct + D).

Proof of Upper Bound in Theorem A.1 for t € R:

This argument is based on that in [1]. For any ¢ > 0 and n € N define

o 1 o
W = sup WY and N = — logE[exp (W N)]
(n—1)e<t<ne niN

and for later convenience we define
wh = sup wh.
(n—1)e<t<(n+1)e
Noting that .
W,]LV < W,]LZ + sup |W,]L\£_r,
o<|r'|<e

—wWN | <wN Wy

ne,e

by Holder’s inequality we have that for any p € (0, 1),

nAY(0) < nepAc(6/p) + (1 = p) log Biexp ("f%p) ! (11)

Using Hypothesis A.2, for any p € (0,1), we can make the second term on the right hand side of (11) as
small as we like by choosing e sufficiently small.

The goal is to show
limsup ¢y P(QN > Nb) < 2|T7.

N —o00

For a fixed small enough € and large ¢' > max{t|t € T*} we can write

P(sup WY > Nb) < P(sup WY > Nb) <

t>0 n>0
SOBPWY>Nb) + > P(WY > Nb) + > P > Nb)
neTrx n>[t' /e ngT* n<[t' /€]
A B &

11



where T* ={n e N | (n—1)e <t < (n+1)e for some t € T*}. By the definition of 7* for all ¢ not within
€ of T* we have that
Aj(ct +b) > A (ct™ +b). (12)

Using an argument similar to the discrete time case one shows that for ¢’ large enough (guaran-
teeing the summability of the geometric series) and the fact that exponents decay faster than the optimal
(12) that ¢y B and ¢y C — 0 as N — oo.

The terms in ¢y A correspond to intervals containing times in 7. For each t* € 7™ will have a
neighborhood (n* — 1)e < t* < (n* + 1)e with n* € 7.*. To conclude the proof we can upper bound W2 by
sums of i.i.d. random variables, § R

WY < W + W
and apply the Bahadhur-Rao result to the latter,
en ()Y P(WN + WY, > Nb)=1 as N —» 0

where ¢y ((t*) are appropriately defined. Next we show that én ((t*) — cn(t*) as € — 0. This follows by
bounding the cumulative log moment generating function as in (11) and letting € — 0 and then p — 1. All
the terms in A have similar properties, and there are at most 2|7*| such terms, thus we have shown that
limsupy_, o cyA < 2|77 O

B Representing variance via power spectral density

This appendix discusses a representation of the variance of an arrivals process A(0,t] in terms of the power
spectral density of its rate process. This permits interpreting performance and traffic characteristics in terms
of standard frequency domain concepts.

B.1 Discrete-time processes

Let {R4(t),t € Z} be a stationary process denoting the packets (or work) arriving per time slot. Thus in
this case, A(0,¢] = Yi_, Ra(i). The covariance is given by ka(1) = E[(Ra(t) — p)(Ra(t + 7) — p)], from
which we define the transform pairs and corresponding power spectral density

1 [t

+oo
Sa(e®?) = Y ka(r)e 7 and ka(r) = o S4(e?) el dQ.

T=—00 -

The spectral density is periodic with period 27, for the frequency has been renormalized with respect to the
slot time interval. Also we can show that

A 7 gin? .
Var(A(0, 1]) = %tkA(O) £y %(t— )ka(r) = %tkA(0)+ %/_ ;smgi‘mmm)dg (13)

T=—t

using the definition of the covariance and power spectral density.

B.2 Continuous-time processes

Consider A() as a random measure on R; for random measures which are absolutely continuous with respect
to Lebesgue measure, the cumulative arrivals over intervals can be represented as A(0,t] = fot R4 (1)dr where
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{RA(t),t € R} is a stationary random process corresponding to the rate of arrival of packets (or work). We
can define k4 (1) = E[(Ra(t) — u)(Ra(t + 7) — )] to be the covariance of the arrivals rate process. In this
case we define Fourier transform pairs and corresponding power spectral density

+oo . 1 +o0 .
SA(w):/ ka(r)e™“7dr and ka(7) / Sa(w)e! dw.

. 2 J_ o

The variance of the cumulative arrivals on a time interval can then be expressed as
+t/2  p+t/2 +20 9 in2(wt/2
Var(A(0, 1)) = / / ka(r — ~)drdy = / %“‘;/)SA(w)dw (14)
—t/2 J—t/2 —0 W
by using stationarity and Parseval’s relation.

The above mentioned continuity condition is somewhat restrictive, e.g. it includes Markov fluids
and Gaussian processes with continuous sample paths but excludes point processes and white Gaussian noise.
The natural identities corresponding to such processes can be developed in a more abstract setting, see e.g.
[4, page 411].

B.3 Comments

While for stationary Gaussian processes the covariance and mean suffice to specify the traffic statistics, in
general one should use caution in using second order properties for other processes. As seen in (13), (14),
the variance of the processes is obtained by low pass filtering the PSD. As a final comment, we note that
processes with long-range correlations have a covariance function which is not absolutely summable, leading
to PSD’s having most of their power concentrated about a singularity at zero frequency.
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