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Abstract

A key problem for modern network designers is to characterize�model the �bursty� tra�c arising in
broadband networks with a view on predicting and guaranteeing performance� In this paper we attempt
to unify several approaches ranging from histogram�interval based methods to �frequency domain� ap�
proaches by further investigating the asymptotic behavior of a multiplexer carrying a large number of
streams� This analysis reveals the salient tra�c�performance relationships which should guide us in
selecting successful methods for tra�c management and network dimensioning�
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� Introduction

E�cient methods for congestion control in high�speed communication networks will be based on reasonable
characterizations for tra�c �ows and time scale decompositions of the network dynamics� With a view on
resolving the question of admission control� including bandwidth allocation and routing� as well as other
tra�c management activities� researchers have developed several approaches to modeling tra�c and predict�
ing performance� The �rst step towards resolving problems in tra�c management on high�speed networks
is that of obtaining a reasonable description for tra�c statistics that directly relates to the performance
characteristics of network elements subject to such loads� Such a characterization should

� provide a concise summary of the tra�c statistics �data compression��
� translate to accurate performance predictions for network elements� and
� be easy to measure�

The most complete� albeit unwieldy� characterization of a �continuous or discrete time� stationary tra�c �ow
are its statistics� We will let A��� t	 �with t � R� or t � N� denote the distribution for the cumulative arrivals
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�packets or work� over the time interval ��� t	� The mean arrivals per unit time are given by � � EA��� 
	�
where in discrete time this is referenced to the time�slot interval�

Recent analytical and empirical studies have suggested a variety of approaches to capturing
tra�c characteristics and queuing dynamics� In this paper we attempt to unify these approaches� starting
from an understanding of bu�er asymptotics� In brief� x�
� � review and extend recent work suggesting
that the cumulative log�moment generating function

�t��� �� log E exp��A��� t		� � � R� t � ��
of the arrivals over time intervals is a useful representation of the tra�c which translates directly to bu�er
over�ow characteristics �
�� 
	� We will see that two parameters �t� � t

� de�ne the �space� and time scales of
interest to determine over�ow probabilities in a bu�ered link�

Next we consider the case where only the second order characteristics are important in deter�
mining performance� and� in particular� the key tra�c properties are captured by a marginal distribution
and the covariance of the rate process� This approach recently developed by Li et� al� �
�� 
�� 
�	 has shown
to be a remarkably good modeling tool� To further study these ideas� in x�� we consider Gaussian processes�
where the second order characteristics completely determine �t��� above� For such processes we show that
t� can be related to a so�called cuto� frequency �c �
�	 through a relationship between the variance and the
tra�c rate processes� power spectral density �PSD� developed in Appendix B�

Finally in x� we consider various approximations� We argue that for multiplexers with a known
time scale t� of interest� only the distribution of A��� t�	 is relevant� Predicated on knowing t�� interval�based
methods as suggested by ��� 
�	 and histogram�based methods �
�	 may very well achieve high utilizations�
Moreover when �t� assumes �moderate� values� a Gaussian approximation may in fact su�ce to appropri�
ately predict performance� In practice determination of the appropriate time scale t� depends on tra�c
characteristics and desired operational constraints� and may in turn be a di�cult task�

� Characterizing packet streams and performance asymptotics

In this section we discuss large deviations and Bahadur�Rao approximations for over�ow probabilities in
multiplexers supporting large numbers of streams� We brie�y consider the accuracy and practical signi�cance
of such results� Finally we consider the case of Gaussian arrivals processes where results take a particularly
simple form�

��� Large deviations

We begin our study by brie�y discussing an asymptotic study of a multiplexer supporting a large number
N of i�i�d� streams �
� �	� Let AN

t �
PN

i�� Ai��t� �	 denote the aggregate arrivals over an interval of length
t� As shown in Fig� 
 resources are also scaled in N � thus we identify a bu�er and capacity per stream� b� c�

Using large deviations� for large N we can estimate the probability that over a time interval of
length t an amount of work AN

t su�cient to overcome the potential service Nct and further exceed a bu�er
level Nb enters the system�

P�AN
t � N�ct� b�� � exp��N��t �ct� b�	�

where ��t ��� � sup����� �t���	 ��	� For stationary and ergodic tra�c the queue�s steady state distribution
is given by QN � supt���A

N
t �Nct	� Thus the steady state probability of exceeding Nb can be approximated

by
P�QN � Nb� � sup

t��
P�AN

t � N�ct� b�� � exp��N inf
t��
��t �ct� b�	� �
�





Figure 
� Scaling for large numbers of streams�

This argument is made rigorous in �
	�

Intuitively a minimizer t� � arginft����t �ct� b� would correspond to a likely time scale on which
over�ows occur in this system� A performance constraint on bu�er over�ows of the form

P�QN � Nb� � exp��N��t��ct� � b�	 � exp��N�	 �e�g�� � 
�����
translates to

��t��ct
� � b� � sup

�
���ct� � b�� �t����	 � �t��ct

� � b�� �t���t�� � ��

for the associated maximizer �t� � In order to satisfy the QoS requirement we need that�

c �
�t���t�� � �

t��t�
� b

t�
�� ���c� b� ��� ��

Notice that this is a normalized constraint depending on the resources allocated per stream and the tra�c
characteristics on the appropriate time scale t�� The �space� scale parameter �t� determines the impact �of
higher order moments� see x�� of the tail distribution of A��� t�	 on over�ows�

Example� Brownian motion model� Suppose the net input per stream is modeled by a Brownian
motion with parameters �� and drift � � c 	 �� i�e� A��� t	 � ct � N��� � c�t� t���� Using the formulae in
x�� one �nds that t� � b
�c� �� and �t� � �c� ��
��� In this special case the space scale is independent
of the bu�er size� Moreover �� gives the following requirement

c � ��
���

b
�

Recall that this is a normalized constraint� but it exhibits the role of shared bu�ering� We interpret this
relationship as follows� for small bu�ers we essentially require an in�nite capacity� this is due to the fast
local variations of Brownian motion� As the bu�er b increases� we can essentially get away with serving at
the mean rate� but only because we are scaling the number of streams� service rate� and bu�er size together�
thus maintaining the space scale of interest �t� constant while increasing the bu�er to in�nity� Based on a
more re�ned analysis� one can �nd the exact invariant distribution and show how this approximation fares
versus the �nite bu�er queue� see e�g� ��	�

��� Bahadur�Rao improvements

A further improvement upon the large deviations result can be obtained via Bahadur�Rao asymptotics� While
the large deviations result estimates the magnitude of the exponent� the improved asymptotics account for
possible pre�factor contributions which in this case are found to be order

p
N �

The Bahadur�Rao result for sums of i�i�d� random variables ��� 
	 gives the following improve�
ment upon the large deviations bound considered previously�

P�AN
t � N�ct� b�� � 


�t�t
p
�N

exp��N��t �ct� b�	�

�



where �t � argsup����ct � b� � �t���	 and ��t � ��

����t��t�� The large deviations heuristic of the previous
section suggests that there is a dominant time scale of interest t� whence�

P�QN � Nb� � P�AN
t� � N �ct� � b	�

� exp��N��t��ct� � b�� log�
q
�N��t��

�
t� 	 	� ���

The precise statement and proof of this result has been relegated to Appendix A� in general t� may not be
unique and the pre�factor may be o� by a constant independent of N � However� we expect this is typically
not the case� see Remark A�
�

A further simpli�cation gives an ad hoc approximation� which is exact for the case of Gaussian
arrivals processes� Assuming the log�moment has the required derivatives �true if arrivals are almost surely

bounded�� and noting that ��t� ��t��
�� � ct� � b we have by applying Taylor�s Theorem at �t� that

� � �t���� � �t���t��� �t�
��t���t��

��
�
��t�



���t���t��

���
�R

� ���t��ct� � b� �
��t��

�
t�


�R�

where R � � ��
t�

	

���t� �r�

��� for some r � ��� �t��� Thus if the remainder R is small �R � � for Gaussian
distributions� we then have that ��t��ct

� � b� � ��t��
�
t� giving the following approximation�

P�QN � Nb� � exp��N��t��ct� � b�� 


log���N��t��ct

� � b�	 	 ���

Note that in ��� no further computation is needed to obtain the pre�factor since it depends on
N and the large deviations exponent� The plots in Fig�  show that the simple ad�hoc approximation ��� is
essentially the same as ��� and gives a marginal improvement upon the large deviations bounds �
� in �
	�
In particular we base these directly on their results for superpositions of On�O� Markov �uids� For each
source� discrete�time transitions from O� to On occur with probability a� from On to O� with probability
d� When the source is On a unit of work is generated� and no work is generated in the O� state� Note that
the sources in the three superpositions range from bursty �a � d 	 
� to sub�bursty �a � d � 
�� see �
	 for
details�

A QoS requirement on bu�er over�ows of the type P�QN � Nb� � exp��N�	 translates to an
adjusted operational constraint�

c � ������ c� b� where �� � � � 


N
log��N��t��

�
t� 	 � � � 


N
log���N��t��ct

� � b�	�

Notice that the constraint now depends on N and can be expressed as a simple adjustment in the target
QoS � which accounts for further multiplexing e�ects�

This result suggests when large deviations asymptotics might give accurate estimates� In par�
ticular suppose the target QoS is exp��N�	� and we are willing to put up with less than one ������ order of
magnitude error� In this case� assuming the ad�hoc approximation holds� we can show that� very roughly�
QoS requirements in the range ��� � exp��N�	 � ����
��� can be handled via large deviations asymptotics�
Perhaps a more telling remark is the apparent tradeo� between N and � in determining the accuracy� that
is based on this discussion we might argue that for su�ciently �large� N and �small� � or vice�versa� good
approximations are obtained� These types of e�ects are born out by simulation �

	 and indicate in part
why some performance studies using e�ective bandwidths give excellent results while others give rather bad
performance estimates �� 
�	�

For simplicity we have only discussed the case of multiplexing N homogeneous streams� For
heterogeneous mixes of tra�c� we can consider i�i�d� sources which are each a mix of the appropriate number

�
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of heterogeneous streams� see �
	� and the asymptotics follow immediately� Thus� qualitatively� the picture
for mixes of heterogeneous sources is quite similar to the i�i�d� case� For completeness we note a related work
��	 where a slightly di�erent approach to approximation was taken�

��� Gaussian processes and frequency domain characteristics

Gaussian tra�c models for the net input into a queuing system often arise as heavy tra�c approximations
or aggregation limits� Herein we take the point of view that they adequately model more general over�ow
characteristics� and later look at the possibility of using Gaussian processes� which are more amenable to
analysis� to approximate non�Gaussian tra�c�

Suppose the underlying arrivals rate process is Gaussian� In this case A��� t	 is Gaussian and
the cumulative log�moment generating function and rate function can be computed explicitly as a function
of � � EA��� 
	 and ��t � Var�A��� t	��

�t��� � �t� �
����t


and ��t �ct� b� �
��c� ��t� b	�

��t
�

In the sequel we will also use the fact that the variance can in turn be expressed as the �ltered power spectral
density of the rate process� see �
����
���

Fortunately for Gaussian tra�c we can �nd revealing expressions for �t� � t
�� the space�time scales

of interest in ��� In particular from �
� and assuming the minimizer t� is unique we write

t� � argmaxt��
��t

��c� ��t� b	�
� argmaxt��

��t
�t� �	�

and �t� �
�c� ��t� � b

��t�
���

where � � b
�c � ��� For a Gaussian process with independent increments� i�e� ��t � t��� the maximum is
attained at t� � � �the discrete time case needs to be appropriately quantized� and is independent of the
input variance� We can also write � � d
�
� � where d � b
c is to be understood as the maximum delay
permitted for packets that are successfully transmitted while  is the utilization of the bu�er� The key point
then is that � is an invariant� in the sense that for �xed � we get the same over�ow t� behavior� so we write
t�����

Introducing these quantities into the QoS constraint �� gives the following simpli�ed require�
ment�

c�
b

t�
� ��

r
�
��t�

t��
���

to be interpreted as a bandwidth c constraint to meet the QoS ��constraint given a bu�er of size b� We
can interpret b
t� as an e�ective increase in the capacity due to bu�ering tra�c� Now using the alternative
representation for variance �
�� for continuous time processes �or �
�� in discrete time� we have that

��t�

t��
�

Z ��

��

 sin���t�
�

���t���
SA���d� �




�

Z ��c

��c

SA���d�� ���

where �c � �
t
� corresponds to a rough cuto� frequency� This approximation assumes that due to the 

��

decay of the �ltering function the PSD does not contribute signi�cantly beyond the cuto� frequency� and
the gain is roughly that at DC� i�e� 

�� In practice the e�ectiveness of this approximation will of course
depend on the characteristics of the PSD� i�e� it should have a well�founded low frequency component� This
approximation corresponds to allocating bandwidth based on the power in the output process from a low
pass �lter with cuto� at �c �
�	�

�



Example� The Ornstein�Uhlenbeck �OU� model reveals the basic behavior of a positively cor�
related arrival process with exponentially decaying correlations� Its characteristics are similar to bursty
superpositions of On�O� Markov sources or �rst order auto�regressive models� Indeed the �rate� �veloc�
ity� process is Gaussian with mean � and exponentially decaying covariance kA��� � v exp��aj� j	 for some
constants v� a � �� From �
�� one can show that

��t �
v

a�
�at� 
 � exp��at	�� ���

Using ��� one can compute t� numerically and obtain the following simple bounds�

� � t� � ��


a
� ���

Thus the over�ow time scale for positively correlated processes will exceed that of i�i�d� arrivals� �� by no
more than twice the correlation time scale 

a  positive correlations lead to �slower� over�ows which
exploit dependencies�

Using ��� and ��� in the case of the OU model we can investigate the maximum utilization max

that can be achieved as a function of the loss constraint � and the bu�er size b in the multiplexer� Fig� �
below exhibits the QoS vs� e�ciency tradeo�s for an OU input process with parameters � � ���� a � 
� and
v � 
�
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Figure �� E�ciency versus bu�er size and loss constraints�

Next we consider the impact of the tra�c�s parameters v� a� Motivated by the simulations in
�
�	 for aggregations of On�O� sources� we consider two regimes� one in which the bu�er is su�ciently
large to e�ectively smooth correlations and one in which it is not� Consider ���� when at���� 	 
� we can
approximate ��t���� � vt������ Inserting these approximations into ��� we �nd that the maximum utilization
is approximately given by

max � 



� ba
��
p
�v
�

�

�



The right hand side is found to vary slowly once a is su�ciently small� meaning that the bu�er will no longer
be e�ective� Numerically we can show that at���� 	 
 when � � b
�c � �� 	 ��

a in which case we say
that we are in the bu�er non�e�ective regime� see �
�	� Alternatively� we �nd that the bu�er is e�ective once

d � ��
 � 

a�

i�e� the �maximum� delay exceeds a fraction of the correlation time scale�

Finally� what do these asymptotics tell us about the case with a single Gaussian input stream!
Suppose for example that a single �aggregate� Gaussian arrival process enters a bu�er link of size b with
capacity c� We can represent it as a sum of N independent Gaussian processes with means and variances
which are scaled by N��� The asymptotic results presented previously� for appropriately rescaled bu�ers
and bandwidth per sub�stream� shows that the over�ow asymptotic is independent of N � This probability
of over�ow is given by

P�Q � b� � 
p
����t��ct

� � b�
exp����t��ct� � b�	�

where all quantities refer to the single stream entering the link�

� Approximations for non�Gaussian processes

In general the focus of tra�c modeling should lie� not in precise modeling of the tra�c statistics� but rather
in capturing the �relevant� characteristics� so as to allow prediction or e�cient management�

��� Approximating t
�

The previous discussion brings to the fore the importance of estimating t� �or cuto� frequency� associated
with a given bu�ered tra�c load� One approach is to simulate or monitor a bu�er subject to the desired tra�c
load and attempt to estimate t� based on observation of the queuing dynamics� A second approach� which
we believe will be e�ective� is to estimate t� based on the observation of second order tra�c characteristics�
That is� based on estimates for the mean and variance of A��� t	� say ��� ���t � we can numerically estimate
t���� from ��� for a variety of possible �� Alternatively� as suggested previously� the magnitude of t� might
be estimated via bounds such as ��� or heuristics such as inspection of the PSD to determine an appropriate
cuto� frequency� Typically the PSD of tra�c� such as VBR video� will have the majority of its power
concentrated in a well founded low frequency component �
�	� permitting a rough evaluation of the essential
time scales� e�g� scene changes� frame correlations� or picture blocks� Such time scales however depend on
the type of compression and nature of the media� thus teleconferencing applications have di�erent scales
than say MPEG coded video ��	�

��� Interval�based approximations for bandwidth requirements

Once an estimate for t� is available� we may consider using interval�based tra�c descriptors and bandwidth
allocation schemes such as ��� 
�� 
�� 
�	� There are at least two �simple� options� 
� to approximate A��� t�	
by a Gaussian distribution� and � to allocate the peak rate on the appropriate time scale�

We argue that A��� t�	 can be for practical purposes assumed to be Gaussian if

�t���� � �t�� �
��t��

�


�R���� 	� � ��� �t��

�



where ��t� � Var�A��� t
�	�� This approximation follows from a Taylor expansion of �t���� at � � � and is

accurate if the remainder R depending on �t� and higher order moments of A��� t
�	 is relatively small� A

rough way of establishing if such an approximation is reasonable is to consider whether �t� � as given by ����
is small ��t� 	 
�� If such an approximation is well founded we can use the estimates based on Gaussian
distributions� e�g� ��� or ��� to evaluate the performance of the multiplexer�

When second order approximations break down� we can resort to peak rate allocation� Starting
from the large deviations QoS requirement ��� we note that �t���� is convex and eventually increasing so
the right hand side is eventually non�decreasing in �� This gives the following conservative requirement�

c� b
t� � lim
���

log E exp���A��� t�		

�t�
� ��
� t��� �
��

The quantity ��
� t�� is the sustainable peak rate over an interval of length t�� i�e� the supremum over rates
that can be sustained with non�zero probability� see ��	 for a discussion in the case where t� � 
� In
general ��
� t�� may be in�nite� e�g� Gaussian distributions� however in practice tra�c will have a bounded
sustainable peak rate for any time scale since there are physical bounds on the ability of a source to sustain a
maximal rate during a given period of time� Thus �
�� corresponds to peak rate allocation on the appropriate
time scale with b
t� re�ecting an increase in capacity due to bu�ering� Alternatively we can interpret �
��
as allocating the peak rate of a low�pass �ltered �cuto� �c� rate process �
�	�

��� Relevance of time scale

This work substantiates the premise that tra�c needs to be modeled on the appropriate time scale� By
developing methods for identifying the �relevant� time scales� we can in turn parametize tra�c management
and network dimensioning so as to make them e�ective over a wide range of tra�c statistics� We expect
that as tra�c characteristics stabilize� bu�er sizes and link capacities become standard� and the required
QoS constraints are determined� estimating the relevant times scales will become an easier task�

Acknowledgment� We thank N� Du�eld and S�Q� Li for many interesting discussions related to this topic�

A Bahadur�Rao asymptotics

In the theorem below we will assume the following hypotheses taken from �
	�

Hypothesis A�� �
	

�� For each � � R� �t��� � t���t��� and ���� � limt�� �t��� exist as extended real numbers�

�� �t and � are essentially smooth�

�� There exists � � � for which �t��� 	 � for all t � Z��

�� �t is second order di�erentiable in its domain D�t �

Roughly speaking the �rst two permit us to use the G"artner�Ellis large deviations result� The third cor�
responds to a stability condition� i�e� more departures than arrivals on any time interval t� Finally� an
additional hypothesis was introduced so as to use the Bahadur�Rao result� In the theorem below we distin�
guish between the lattice case� which for example corresponds to the case where the arrivals process A��� t	
counts �xed sized packets� and the non�lattice case�

�



Theorem A�� Assuming Hypothesis A�� and assuming A��� t	� 	t � Z
�� are non�lattice random variables

then

 � lim inf

N��
c�NP�Q

N � Nb� � lim sup
N��

c�NP�Q
N � Nb� � K�

Let T � � arginft�Z���t �ct� b� � arginft�Z�t�
�
t �c� �b
t��� In the above� K is a constant independent of N �

t� � argmint�T �cN �t�� cN �t� � �t�t
p
�N exp�N�t�ct � b�	� c�N � cN �t

��� �t � argsup����ct � b� � �t���	�
and ��t �

��

����t��t� 	derivative exists by Hyp� A����
�

Suppose A��� t	 	e�g� packet arrivals
� 	t � Z� has a lattice law� i�e� for some a�� d� the random
variable �A��� t	� a��
d is an integer number� and d is the largest number with this property� Then we have

�t�d


� exp���t�d	 � lim infN��
c�NP�Q

N � Nb� � lim sup
N��

c�NP�Q
N � Nb� � K�t�d


� exp���t�d	 �

Proof� We show the proof for the non�lattice case� The proof for the lattice�case is similar� By noting that

��t �ct� b� � � and ��t �ct� b� t��� 
� we see that inft�� ��t �ct� b�� t � Z� is attained� Furthermore� T � has
a �nite number of elements K� independent of N �

Lower bound� P�QN � Nb� � P�AN
t� � N �ct� � b	� and using the Bahadur�Rao result

lim
N��

c�NP�A
N
t� � N �ct� � b	� � 
�

Upper bound� P�QN � Nb� �Pt�� P�A
N
t � N �ct� b	� by the union bound� Using the Bahadur�Rao result�

lim
N��

c�N
X
t��

P�AN
t � N �ct� b	� � K � lim

N��
c�N

X
t���t��T �

P�AN
t � N �ct� b	��

Since ��t��ct
��b� 	 ��t �ct�b� for t �� T �� it can be shown that limN�� c�NP�A

N
t � N �ct�b	� � � for t �� T ��

Consider t� � maxftjt � T �g� We aim to show

lim
N��

c�N
X
t�t�

P�AN
t � N �ct� b	� � ��

By Cherno��s bound�

c�N
X
t�t�

P�AN
t � N �ct� b	� � c�N exp���Nb	

X
t�t�

exp���Nct� t�t���	�

Since �t���
t��� ���� �Hyp� A�
�
�� and ���� 	 � on ��� �� �Hyp� A�
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that �t��� 	 � for t� su�ciently large� This means that for such t � t�� the geometric series is summable� so
we have

c�N exp���Nb	
X
t�t�

exp���Nct� t�t���	 � c�N exp���Nb	
X
t�t�

exp���Nct� t�	

� c�N exp���Nb	
exp�t����Nc� ��	


� exp���Nc� �	

�
�t��t�

p
�N exp�N���t��ct

� � b�� ��ct� � b	� � t��	


� exp���Nc� �	
�

For t� su�ciently large� ��t��ct
� � b� 	 ��ct� � b	� Now taking limits as N �
� the result follows� �
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Remark A�� Note that we would typically expect the set T � corresponding to the most likely over�ow time
scales to consist of a unique point� It is relatively easy to show this is the case for tra�c processes with
independent increments� or special cases such as Markov Fluids or the OU processes� We have been unable
however to obtain a reasonable set of assumptions on the tra�c processes such that this is indeed the case�

The case of continuous�time processes is somewhat more involved� Note that the upper bound
from the discrete time case has been multiplied by two�

For brevity� we will use the notation Wt � At � ct corresponding to the net input process and
as before we denote the sum of N independent copies by WN

t �

Hypothesis A�� �See �
	� For all t � r � � de�ne #Wt�r � sup��jr�j�r jWt�r� �Wtj� Then for all � � R
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log E �exp�� #Wt�r�	 � ��

Hypothesis A�� For t � R we assume that jT �j is �nite� that is� there are only a �nite number of t� in
the set T � � arginft���t�ct� b��

Proof of Upper Bound in Theorem A�� for t � R�
This argument is based on that in �
	� For any � � � and n � N de�ne
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and for later convenience we de�ne
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by H"older�s inequality we have that for any p � ��� 
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Using Hypothesis A�� for any p � ��� 
�� we can make the second term on the right hand side of �

� as
small as we like by choosing � su�ciently small�

The goal is to show
lim sup
N��
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For a �xed small enough � and large t� � maxftjt � T �g we can write
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where T �� � fn � N j �n� 
�� 	 t 	 �n�
�� for some t � T �g� By the de�nition of T � for all t not within
� of T � we have that

��t �ct� b� � ��t��ct
� � b�� �
�

Using an argument similar to the discrete time case one shows that for t� large enough �guaran�
teeing the summability of the geometric series� and the fact that exponents decay faster than the optimal
�
� that c�NB and c

�
NC � � as N �
�

The terms in c�NA correspond to intervals containing times in T �� For each t� � T � will have a
neighborhood �n� � 
�� 	 t� 	 �n� � 
�� with n� � T �� � To conclude the proof we can upper bound $WN

n� by
sums of i�i�d� random variables�
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and apply the Bahadhur�Rao result to the latter�
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where $cN���t
�� are appropriately de�ned� Next we show that $cN���t

�� � cN �t
�� as � � �� This follows by

bounding the cumulative log moment generating function as in �

� and letting �� � and then p� 
� All
the terms in A have similar properties� and there are at most jT �j such terms� thus we have shown that
lim supN�� c�NA � jT �j� �

B Representing variance via power spectral density

This appendix discusses a representation of the variance of an arrivals process A��� t	 in terms of the power
spectral density of its rate process� This permits interpreting performance and tra�c characteristics in terms
of standard frequency domain concepts�

B�� Discrete�time processes

Let fRA�t�� t � Zg be a stationary process denoting the packets �or work� arriving per time slot� Thus in
this case� A��� t	 �

Pt
i��RA�i�� The covariance is given by kA��� � E ��RA �t� � ���RA�t � �� � ��	� from

which we de�ne the transform pairs and corresponding power spectral density
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The spectral density is periodic with period �� for the frequency has been renormalized with respect to the
slot time interval� Also we can show that
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using the de�nition of the covariance and power spectral density�

B�� Continuous�time processes

Consider A�� as a random measure on R� for random measures which are absolutely continuous with respect

to Lebesgue measure� the cumulative arrivals over intervals can be represented as A��� t	 �
R t
� RA���d� where






fRA�t�� t � Rg is a stationary random process corresponding to the rate of arrival of packets �or work�� We
can de�ne kA��� � E ��RA �t� � ���RA�t � �� � ��	 to be the covariance of the arrivals rate process� In this
case we de�ne Fourier transform pairs and corresponding power spectral density
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The variance of the cumulative arrivals on a time interval can then be expressed as
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by using stationarity and Parseval�s relation�

The above mentioned continuity condition is somewhat restrictive� e�g� it includes Markov �uids
and Gaussian processes with continuous sample paths but excludes point processes and white Gaussian noise�
The natural identities corresponding to such processes can be developed in a more abstract setting� see e�g�
��� page �

	�

B�� Comments

While for stationary Gaussian processes the covariance and mean su�ce to specify the tra�c statistics� in
general one should use caution in using second order properties for other processes� As seen in �
��� �
���
the variance of the processes is obtained by low pass �ltering the PSD� As a �nal comment� we note that
processes with long�range correlations have a covariance function which is not absolutely summable� leading
to PSD�s having most of their power concentrated about a singularity at zero frequency�
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