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Abstract—We consider a collection of distributed sensor nodes
periodically exchanging information to achieve real-time situa-
tional awareness in a communication constrained setting, e.g.,
collaborative sensing amongst vehicles to enable safety-critical
decisions. Nodes may be both consumers and producers of
sensed information. Consumers express interest in information
about particular locations, e.g., obstructed regions and/or road
intersections, whilst producers provide updates on what they are
currently able to see. Accordingly, we introduce and explore
optimizing trade-offs between the coverage and the space-time
average of the “age” of the information available to consumers.
We consider two settings that capture the fundamental character
of the problem. The first addresses selecting a subset of producers
which optimizes a weighted sum of the coverage and the average
age given that producers provide updates at a fixed rate. The
second addresses the minimization of the weighted average age
achieved by a fixed subset of producers with possibly overlapping
coverage by optimizing their update rates. The former is shown
to be submodular and thus amenable to greedy optimization while
the latter has a non-convex/non-concave cost function which is
amenable to effective optimization using tools such as the Frank-
Wolfe algorithm. Numerical results exhibit the benefits of context
dependent optimization information exchanges among obstructed
sensing nodes in a communication constrained environment.

I. INTRODUCTION

In the near future it is envisaged that there will be several
disruptions and challenges to the automotive and wireless indus-
tries. Amongst these, an intriguing and challenging one will be
the emergence of automated cars (also UAVs, robots, etc.) with
the ability to collaboratively navigate through complex environ-
ments. In order to enable such functionality, it is expected that
nodes will collaborate by sharing sensed information, e.g., cars
share their views of an obstructed environment. The aim is to
achieve a high degree of “real-time situational-awareness”, i.e.,
to detect/recognize and then effectively track dynamic objects
in their vicinity so as to enable safety critical decisions. To
that end, it is expected that vehicles will not only rely on
on-board multimodal sensing, but also share (raw or fused)
sensing information with each other, with the clear goal of
facilitating coordination. This may require the transport of
substantial volumes of data within and among cars, as well as to
the network edge and/or cloud. The optimization of information
sharing in a communication constrained system will thus be a
fundamental problem underlying such systems. The focus of this
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paper is on the modeling and analysis of this problem and its
implications in practical collaborative sensing systems.

A key step in this direction is to identify appropriate/usable
metrics to assess how well an information sharing policy is
performing. This involves at least two concerns. On the one
hand, one is interested in coverage, i.e., the fraction of the
relevant region that a set of collaborating nodes (producers) will
be able to track. On the other hand, for dynamic environments,
one is interested in the timeliness of the available information
across space, e.g., the Age of Information (AoI), when sensors
periodically share what they see. Intuitively high coverage is
achieved by ensuring that all sensors disseminate their (possibly
redundant) information to all the other relevant nodes while the
minimization of age may involve giving some well positioned
sensors/nodes a higher update rate than others or leveraging
overlaps among sensors’ coverage sets. Additionally it is of
interest to ensure consumers have a higher awareness of the
on-goings in close proximity, e.g., it is more critical for a car to
have fresh information of on-goings in its neighborhood rather
than receiving frequent updates about distant locations. Roughly
speaking optimizing the “timely coverage” for a collaboratively
sensing system requires modeling the relative value of each
sensor’s updates, e.g., in terms of all of overall coverage,
importance, and timeliness.

We focus on four major intertwined questions:
1) Can one provide a model and metrics to evaluate the time-

liness/coverage trade-offs achieved by a given information
sharing policy for a set of collaborative sensors?

2) Assuming that a fixed number of producers are sharing
information at a fixed rate regarding their possibly over-
lapping coverages, can one determine the best subset to
participate in information exchanges?

3) Assuming a subset of sensors is chosen, can one jointly op-
timize their update rates to minimize the weighted average
(space-time) age over their coverage set?

4) How do optimized information sharing policies compare
to simple policies as a function of the sensor/node density,
i.e., inherent overlap, and system communication capacity?

Related Work. A key motivating application for this work
is collaborative sensing in support of automated vehicles. The
basic idea is to facilitate real-time exchanges of sensor infor-
mation among vehicles and/or road side units to enhance their
‘situational awareness’ in obstructed and dynamic environments,
see e.g., [1]–[3]. The recent work in [4], [5] is unique in that



it uses stochastic geometry to model and analyze collaborative
sensing coverage in obstructed environments as a function of
the penetration of vehicles with sensing capabilities.

When addressing real-time situational awareness, it is key that
the decision-making nodes have access to timely information.
The modeling and delivery of timely information has recently
received substantial attention, see e.g., [6], [7]. The newly
proposed metric, age of information (AoI) became popular since
it better represents the information freshness compared to the
traditional delay metric. AoI has been extensively studied in the
literature, see e.g., [8]–[10]. The work in [11] is perhaps the
closest to this paper in that it addresses the issue of optimizing
the overall AoI by carefully choosing sensors’ update rates and
allocating network resources. However, by contrast with these
works, in this paper, we model and explore the impact that
updates from multiple independent sensors will have on the AoI,
as well as trade-offs between coverage and timeliness.

Many instances of coverage and sensor selection problems,
e.g., [12] are known to have submodular characteristics which
in turn are amenable to greedy approximations, see e.g., [13].
To our knowledge, this paper is distinct from previous work
in that it introduces and addresses a new fundamental trade-
off between coverage and age of the available information for
collaborative sensing systems.

Contributions of this paper. Given a set of sensors generating
periodic updates (at possibly different rates) regarding their cov-
erage sets we define and characterize the weighted (space-time)
average age for the information exchanged. To our knowledge
this is the first work addressing the “timely coverage” for a set
of collaborative sensors.

We then explore the resource allocation and performance
trade-offs in such systems. In particular we formulate two
possible frameworks. The first captures a trade-off between
minimizing the weighted average age and maximizing coverage
of the spatial information requested by the consumers when
sensors have a fixed update rate. In this setting we study
how to select the best subset of sensors to achieve good
coverage but at the same time reduce the weighted age through
redundancy in sensor’s independent updates. We show that this
age-coverage trade-off optimization problem has a submodular
structure which allows efficient greedy optimization algorithms.
In the second setting we fix the subset of sensors, e.g., all that
are available or those selected in the first setting, which now act
as producers of information, and explore the benefits of jointly
optimizing their update rates towards minimizing the weighted
average age. When producers have non-overlapping coverage
sets, we show that their optimal update rates are proportional
to the square root of their coverage’s weight. However, more
generally, the weighted age minimization problem has a non-
convex/non-concave structure, but explore the use of the Frank-
Wolfe gradient method to show the potential benefits of joint
update rate optimization.

A numerical evaluation of the benefits of these various
approaches from the point of view of age and coverage is
conducted, exhibiting the possible advantages that resource
allocation in a collaborative sensing setting should play, partic-
ularly in congested environments with limited communication
resources.

II. SYSTEM MODEL

We shall begin by formally describing our model for a
collaborative sensing system along with the associated notation.

A. Sensor coverage sets, consumers, producers and weighting
measure

Without loss of generality we consider a set of sensors V
in a given overall region R ⊂ R2. Sensors are indexed by
their locations v ∈ V and the coverage of sensor v in a
given environment is denoted by a subset Cv ⊆ R. Given a
subset of sensors X ⊆ V , we denote X’s overall coverage by
C(X) :=

⋃
v∈X Cv.

The coverage sets for a subset of sensors X , i.e.,
(Cv, v ∈ X) induce a partition of their overall coverage set
C(X) which we denote by PX = {PXi , i = 1, ..., |PX |}. Each
subset of the partition PXi is such that each location x ∈ PXi
can be seen by the same unique subset of sensors V Xi ⊆ V ,
i.e., such that x ∈ PXi if and only if x ∈ Cv for all v ∈ V Xi .
It should be clear that if i 6= j then PXi ∩ PXj = ∅. Further it

should be clear that ∪|P
X |

i=1 P
X
i = C(X), thus we have a partition

of C(X). In fact, assuming it is nonempty, if we further include
an additional set R\C(X) corresponding to the locations which
are not covered by X , we get a partition of the overall region
R. It is also possible that the coverage sets of two or more
sensors intersect on a set of measure zero. For simplicity, and
to avoid unnecessary burdens, we assume that all elements of
the partition have non-zero measure.

Fig. 1: Three sensors observing their environments.

Fig.1 illustrates three sensors X = {v1, v2, v3} which for
simplicity have each a disc coverage set. Sensors v1 and v2 have
overlapping coverage regions. The figure also exhibits the four
subsets in the induced partition, PX = {PX1 , PX2 , PX3 , PX4 }.
The set of sensors associated with subset PX4 is V X4 = {v1, v2}.
Definition 1. (Weight measure) We let w() denote a measure
on the region R which for any measurable* set C ⊆ R, assigns
a weight w(C).

For example, if w() corresponds to the area of a set, then
w(C(X)) denotes the area covered by the sensors in X , and
if normalized, w(C(X))/w(R) represents the coverage they
provide of region R. The weight measure provides a flexible
means to encode the importance of certain regions, e.g., in a
vehicular setting, road intersections may be more important
than other locations. It also provides a means to capture
the relative importance of a region from the perspective of
information sharing. Note that in general the weight measure

*For simplicity we shall suppress unnecessarily technical details, but in
principle we need w() to be measurable with respect to the sets in the σ-field
generated by the sensors coverage sets.
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could be continuous or discrete. In the latter case we envisage
that discrete locations correspond to anchor points which based
on known geometry of the environment are known to have
higher importance, e.g., intersections for incoming vehicles or
locations obstructed by other vehicles.

Without loss of generality we suppose each sensor node is
simultaneously a consumer and producer which may broadcast
timely updates regarding what it is able to see. A consumer
indicates its interest for information regarding a particular
location or region through its spatial interest measure. In turn
the sum of the consumers’ spatial interest measures, captures
the aggregate interest of consumers.
Definition 2. (Consumer’s spatial interest) A consumer v ∈ V
indicates interest in timely information about the environment
via its spatial interest measure wv() on R.
Definition 3. (Aggregated spatial interest) The aggregated
spatial interest weight w() is given by the sum of the consumers’
spatial interest measures, i.e., w() =

∑
v∈V wv() on R.

In some practical settings, a consumer’s v interest may be
limited to a smaller region, say Rv . For example, a self-
driving car with a response time of tinterest moving at a
speed s would primarily care about what is happening in a
region s · tinterest around it. Thus Rv might be modelled
as a rectangle of length 2 · s · tinterest and width typically
covering the road width. Fig.2 illustrates the coverage of a
sensor v (green region), obstructed by neighbouring vehicles
(red region behind the vehicles), as well as its rectangular
region of interest Rv . In this case, v’s spatial interest measure
would primarily be supported by the red regions. Assuming
that sensor v ’s location on the road is (xv, yv), where xv
and yv stand for the x-y coordinates of v in 2-D, and the
origin 0 is at the center of R, then Rv is defined as, Rv :=
R∩

([
−wroad

2 , wroad

2

]
×
[
xv − s · tinterest, xv + s · tinterest

])
,

where wroad denotes the width of the road.

Fig. 2: Region of interest and coverage of a consumer.

B. Network capacity, sensor updates, and age of information

We shall assume that each producer sensor v generates
periodic updates regarding its coverage set Cv at a rate rv
updates per second, i.e., the update interval is 1

rv
. The updates

are either broadcast to the other sensors or shared with a central
controller. For any subset X ⊆ V we let r(X) = (rv : v ∈ X)
denote the vector of update rates for the sensors in X . The delay
for sensor v to access the communication medium and transmit
its update is assumed to be exactly, or at most, dv . Thus if only
one sensor can access the communication medium at a time the
fraction of time sensor v holds the medium is dv over the update
interval 1/rv , i.e., dvrv . The selected update rates for a set of
sensors X must then satisfy a “capacity” constraint,∑

v∈X
dvrv ≤ 1, (1)

ensuring the medium is not overbooked. Note in practice,
depending on the character of the medium, one would require
a back off

∑
v∈X dvrv ≤ 1 − ε for some ε > 0 to ensure the

deadlines dv are met. The back off will depend on the details of
channel access and/or scheduler. For simplicity we will neglect
the ε term in the sequel.

A natural metric that captures the freshness of the received
updates is the age of information (AoI) available at the receiver.
Fig.3 exhibits the time-varying AoI at the receiver for such
a periodic update process with rate rv for which the update
transmission delay is no more than dv . In the sequel, we will
consider both average age and the probability that the age
exceeds a pre-specified threshold at a typical time from sensor
v. For example the average age is given by,

average age of sensor v = dv +
1

2rv
. (2)

To keep things simple we will assume the channel access and
update transmission delay, or possibly an upper bound on this
quantity, is the same for all sensors, i.e., dv = d for all v ∈ V .

Fig. 3: Time-varying age of information.

However since producers may be covering overlapping region
sets, consumers may be receiving, at different times, the same
update from multiple sensors, which results in a reduction in
the age of the available information at the consumer end. We
define a generic age function for such regions as follows.
Definition 4. (Age of regions with overlapping sensor updates)
Suppose the producers X are transmitting updates at rates
r(X) = (rv, v ∈ X). Recall that X induces a partition where
the locations in PXi are covered by a set of sensors V Xi . The
age of PXi depends on the update rates of these sensors, i.e.,
r(V Xi ). With a slight abuse of notation we will define an age
function which captures a proxy for the age (e.g., average or
probability of exceeding a threshold) of the set PXi as

age(PXi ) = age(r(V Xi )), (3)

with the intention of emphasizing its dependence on the associ-
ated sensors’ update rates.

In the next section we shall explore the characteristics of the
age as a function of the number of sensors and their associated
update rates.
Definition 5. (Weighted age for a set of sensors) Given a weight
measure w() on R, a set of sensors X , and sensor update rates
r(X), the weighted age of the coverage set C(X) associated
with X is given by,

a(X, r(X)) :=

|PX |∑
i=1

w(PXi )age(PXi ) =

|PX |∑
i=1

w(PXi )age(r(V Xi )).
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If w() corresponds to the area, we say a(X, r(X)) is the
area weighted age of C(X). If the weighted age is divided
by w(C(X)) it will be referred to as the normalized weighted
age or the spatial age.

III. CHARACTERIZING THE AGE FUNCTION

In this section we define and characterize the properties of
two possible age functions, as introduced in Definition 4.

A. Definition and computation of the age function

We first consider two simple examples which motivate the
more general formulation. Recall that the age function depends
on a vector of update rates of sensors which see a given region.
As discussed in the previous section, if updates from only a
single sensor at rate r1 are available, then the average age,
denoted age1 depends on the scalar r1 and is given by,

age1(r1) = d+
1

2r1
.

Let A1 be a random variable denoting the age of the saw-tooth
function when viewed at a random time (see Fig. 3). Given the
saw-tooth linear age growth, it should be clear that A1 ∼ d +
1
r1
U1, where U1 ∼ Unif[0, 1]. We now define two performance

age functions, the average age, age1, and the γ-age violation,
age2, given by,

age1(r1) = E[A1] and age2(r1) = P(A1 > γ),

where γ ≥ 0 is a target age one would not wish to exceed.
Suppose there are in fact updates from two sensors covering

a given set in the partition, e.g., as shown in Fig.1. Sensors v1
and v2 are providing updates of region PX4 with transmission
delay at most d and update rates r = (r1, r2). Without loss of
generality, assume r1 ≥ r2. As shown in Fig.4, the dashed and
dotted saw-tooth curves correspond to the updates of the two
sensors. Assuming that the phases of the saw-tooth curves are
randomly distributed, it is easy to see that the average age at a
typical point in time is given by the minimum of the two curves,

age1(r) = E [min[A1, A2]] = d+
1

r1

(
1

2
− 1

6

r2
r1

)
,

where A1 ∼ d+ 1
r1
U1 and A2 ∼ d+ 1

r2
U2, and where U1, U2

are uniformly distributed and assumed to be i.i.d., and A1, A2

are the ages of the updates from Sensors 1 and 2 observed
at a random time. The reduction in age due to redundancy in
the sensors’ updates is clear. The probability of γ-age violation
shares similar properties as the average age.

Fig. 4: Age of partition PX4 is the minimum of both age functions
age(r1) and age(r2).

Definition 6. (Age functions) Consider a region observed by
n sensors generating periodic updates at rates r = (r1, . . . , rn)
and with associated transmission delays d such that d ≤ 1

ri
for

all i = 1, . . . , n. Assuming the phases of the sensors’ updates
are independent and uniformly distributed † then the average
age and γ-age violation functions of locations in the region are

age1(r) = E[A] and age2(r) = P(A ≥ γ),

where A = mini=1,...,nAi and Ai ∼ d + 1
ri
Ui and Ui ∼

Unif[0, 1] are independent of each other.
Theorem 1: (Characterization of the age functions) Con-

sider a region observed by n sensors which generate periodic
updates at rates r = (r1, . . . , rn) such that without loss of
generality, r1 ≥ r2 ≥ ... ≥ rn, then the average age function is

age1(r) = E[A] = d+

∫ d+ 1
r1

d

n∏
j=1

zj(x) dx (4)

= d+
1

r1

[
n∑
k=1

(−1)k−1
c(k, r)

k(k + 1)

1

rk1

]
,(5)

where zi(x) = 1 − ri(x − d), for i = 1, . . . , n, and where
c(k, r) = r1

[∑
i2,...,ik

ri2 · · · rik
]
, for k = 2, . . . , n, and i2 <

i3 < . . . < ik, and c(1, r) = r1. The γ-age violation function is

age2(r) = P(A ≥ γ) =


1, if 0 ≤ γ ≤ d,∏n
i=1 zi(γ), if d < γ ≤ d+ 1

r1
,

0, if d+ 1
r1
< γ.

(6)
The proof of Theorem 1 is relegated to the Appendix. As we

will see, these age functions are somewhat complex, thus we
will take some time to characterize their properties.

B. Properties of the age functions

The following further corollary characterizes two basic char-
acteristics of the age functions.

Corollary 1: (Properties of the age functions). Suppose that
r = (ri : i = 1, . . . , n), where ri = r, then the average age
function is given by,

age1(r) = d+
1

n+ 1

1

r
, (7)

and the γ-age violation function is given by,

age2(r) =


1, if 0 ≤ γ ≤ d,
(1− r(γ − d))n, if d < γ ≤ d+ 1

r ,

0, if d+ 1
r < γ.

(8)

Suppose now that r is such that r1 ≥ r2 ≥ ... ≥ rn and
let r̄ = (r̄i : i = 1, . . . , n), where r̄i = r̄ = 1

n

∑
ri. Then for

j = 1, 2, we have that

agej(r̄) ≥ agej(r) ≥ agej(nr̄). (9)

The proof of this corollary is left out of the paper for space
constraints. This corollary characterizes the decrease in the age’s
behaviour as the number n of sensors with a fixed update rate r
grows. Indeed both the average/violation age functions decrease
(as convex functions) to lower bounds d and 0 respectively.
So no matter how many sensors send updates about a location

†Coordination and optimization of phase offsets was considered impractical.
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one can not reduce the average age below the transmission
delay d. The corollary also suggests that if sensors with equal
update rates view the same location, it is preferable, in order to
minimize the age, to replace them by a single sensor and shift
the resources to it.

IV. SENSOR SELECTION: AGE-COVERAGE TRADEOFFS

In this section, we consider a setting where sensors (pro-
ducers) generate updates at the same fixed rate r to a central
observer e.g., base station which then broadcasts to consumers,
or possibly broadcast updates directly to consumers in the region
R. We assume that due to capacity constraints at most k sensors
can be active. Based on Eq. (1) and for equal transmission
delays d and fixed sensor update rate r, it should be clear that
k ≤ N ≤ b 1

rdc. The goal is to select a subset of producers which
realizes a compromise between ensuring coverage of consumers’
aggregated spatial interest while minimizing the weighted age
of the updates consumers would see.

In order to capture the trade-offs between coverage and
weighted average age , we shall modify the weighted average
age (Definition 5) resulting from selecting sensors X as follows,

bλ(X) := λw(C(X))−
|PX |∑
i=1

w(PXi )age(PXi ),

where λ is a fixed positive parameter which captures the
importance of coverage versus the weighted age.
As already specified, since at most k sensors can be selected,
our goal is to determine an optimal subset S∗ that minimizes
the above cost function, i.e.,

S∗ ∈ arg max
X⊆V

{ bλ(X) | |X| ≤ k }. (10)

Such combinatorial problems are NP hard (weighted coverage
as shown in [14]), but may satisfy submodularity properties that
make greedy approaches quite effective. The following theorem
gives such a characterization.

Theorem 2: (Characterization of weighted age) If age =
age1 and λ ≥ d + 2

3
1
r then the weighted average age function

bλ() satisfies the following properties
(Monotonicity) It is monotonically increasing, i.e., if X ⊂ Y ⊂

V then bλ(X) ≥ bλ(Y ).
(Submodularity) It is submodular, i.e., if X ⊂ Y ⊂ V and

v /∈ Y then,

bλ(X)− bλ(X ∪ {v}) ≥ bλ(Y )− bλ(Y ∪ {v}). (11)

Similarly if age = age2 and λ > 1 then the weighted γ-age
violation function aλ() is monotonic and submodular.

The proof of this theorem has been left out of the paper due
to lack of space.

Although Problem (10) is a complex combinatorial problem,
the classical greedy algorithm shown in Algorithm 1 panel
requires O(|V |k) function evaluations to determine a subset
S(k) which is 1− 1/e constant factor of the optimal [13], i.e.,

bλ(S(k)) ≥ (1− 1

e
)bλ(S?).

There are computationally less costly possibly distributed ver-
sions of the algorithm leveraging random sampling. There is a
growing line of work to design possibly distributed algorithms
with sub-linear cost which have shown to be be similarly
effective [15]–[17].

Algorithm 1: Greedy submodular optimization [13]

Let S(0) = ∅
for i=0,. . . ,k-1 do

j ← arg maxj b
λ(S(i) ∪ {j})− bλ(S(i)) ;

S(i+1) ← S(i) ∪ {j} ;
end

V. OPTIMIZATION OF SENSOR UPDATE RATES

In this section, we consider a setting where the set of active
sensors, say without loss of generality V is fixed, but their
update rates r = (rv : v ∈ V ) can be jointly optimized subject
to the communication capacity constraint Eq. (1).

Since in this setting the set of sensors is fixed we shall modify
the weighted average age introduced in Definition 5, to be a
function solely of the sensor update rates r = (rv : v ∈ V ). We
let the weighted average age of the covered set C(V ) be,

a(r) :=

|PV |∑
i=1

w(PVi )age(r(V Vi )). (12)

In this section we will focus on the case where age = age1,
i.e., on selecting the sensor update rates so as to minimize the
weighted age which be formally stated as follows:

Problem 1: (Age minimization)

min
r
{a(r) | r ≥ 0,

∑
v∈V

drv ≤ 1}. (13)

Proposition 1: (Age minimization for sensors with disjoint
coverage) Suppose the sensor coverage sets (Cv, v ∈ V ) are
disjoint then the age minimization Problem 1 is convex and
reduces to,

min
r
{
∑
v∈V

w(Cv)(d+
1

2

1

rv
) | r ≥ 0,

∑
v∈V

drv ≤ 1},

whose optimal joint update rates r∗ are given by

r∗v =

√
w(Cv)∑

u∈V
√
w(Cu)

× 1

d
.

The proof of this proposition follows from standard convex
optimization tools and so left out. The solution reveals the first
basic insight that for sensors with disjoint coverage set, the age
minimizing rate allocation is proportional to the square-root of
the weight (e.g., area) of the coverage set each sensor is tracking.
Thus equal weight sensors, would lead to equal update rate
allocations. The general case where sensors have overlapping
coverage sets is unfortunately more complex.

Proposition 2: (Characterization of general age minimiza-
tion problem) For the general age minimization Problem 1
where coverage sets may overlap, the objective function given
in Eq. (12) is a weighted sum of a convex function and a non-
convex/non-concave function, and hence belongs to the family
of non-convex/non-concave functions.

It is easy to see this by noting that the average age of a
partition as given in Eq. (4) can be re-written as,

age1(r) = f(r) + g(r),
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where f(r) = d+ 1
2r1

and where

g(r) = −
∫ d+ 1

r1

d

z1(x)

[
1−

n∏
i=2

zi(x)

]
dx.

It is clear that f(r) is convex in r1, while g(r) is non-
convex/non-concave in r which can be proved by finding the
Hessian of the function g() with respect to r, H ∈ Rn×n,
and either showing that H has a mix of positive and negative
eigenvalues, or that yTHy, for all y ∈ Rn×1 can either be
positive or negative. Hence, g() has a saddle point. Given that
age1(r) is part of the objective function in Eq. (12), then the
latter belongs as well to the same family of functions. It should
be clear by now that in the case of a single sensor v observing
a partition and updating at a rate rv , the age of this partition
is convex in rv and given by d+ 1

rv
. But whenever more than

one sensor are observing the same partition, the nature of the
function capturing the age of this partition cannot be determined
a-priori, and hence it belongs to the family of non-convex/non-
concave functions. There exists a family of algorithms that
solves for this type of functions, from which we pick the Frank-
Wolfe algorithm which provides a (1 − 1/e) approximation
guarantee under closed convex constraints [18].

Algorithm 2: Frank-Wolfe Algorithm [19]
Let r ∈ D
for t=0,. . . ,T do

s← arg maxs∈D〈 s,∇
(
a(r(t))〉;γ := 2

t+2 ;
r(t+1) = (1− γ)r(t) + γs;

end

A fundamental goal in non-convex/non-concave optimization
is to reach a stationary point [18]. We summarize the FW
algorithm as follows. At each iteration t, the algorithm computes
the maximal step it can take in the direction of the gradient
of the function while satisfying the constraint s ∈ D, and
then moves in the direction of this maximizer. This process,
as explained in [18], intuitively makes sense since we try to
find the direction in which we can maximize the improvement
in the function value while remaining feasible. Additionally, one
key advantage of this algorithm is that it doesn’t need to project
back into the constraint set, given that it never leaves it.

VI. NUMERICAL RESULTS

We developed a simulation framework to explore the opti-
mization of coverage vs. weighted age trade-offs in collaborative
sensing applications which we present in this section.

A. Model

We shall present results for a two-way highway which we
model as a rectangular region R of length 1000 m and width
24 m (roughly corresponding to 6 lanes). Vehicles are modeled
as 4.8 m×1.8 m rectangles with omnidirectional sensors placed
in the center (rooftop). The unobstructed coverage set for each
sensor is a disc of radius r = 50 m with area πr2. The coverage
area of a sensor does not include the regions off the road, and
the only obstruction present are other vehicles blocking its field-
of-view. We assume that vehicles are randomly placed in a lane
on the road, with spacing at least 10 m between any two sensors

on the same lane. Assuming the speed of a typical vehicle is
s = 60 km/hour, and the reaction time is tinterest = 5 sec, each
sensor v is at the center of its own rectangular region of interest,
Rv with length 2 · s · tinterest ≈ 167 m and width covering
the highway’s six lanes. We assume vehicles (consumers) are
interested in tracking sensed information in all their region of
interest.

B. Communication model

We assume that vehicles are equipped with LIDAR sensors
which sample around 1.3 million points per second with a
corresponding data rate of 4 Mbytes/sec and update rate ranging
between 5 and 30 Hz. Additionally, millimeter-wave (mmWave)
technology is used to transmit the producers’ updates. We
assume that one producer accesses the medium at a time, and
broadcasts its update to all the consumers in the system (i.e.,
all available sensors, including itself). For simplicity we assume
an operational bandwidth achieving a data rate of 1.5 Gbps. We
combine both the channel access time (∼ 1 msec) and updates’
transmission time into a single deterministic value, d, which
we compute according to the previous given values, and find
d = 4.2 msec. We further assume no transmission failures and
ignore mmWave blockage.

C. Coverage and spatial average age of the region of interest
of a typical sensor

We define the coverage of the region of interest Rv of a
typical sensor v as the overall percentage of area covered within
Rv , which combines the regions that v observes within Rv as
well as the updates it receives from active producers observing
locations in Rv , that v cannot see. The weighted average age
of a particular region in Rv is the product of the weight that
sensor v assigns to this region multiplied by the associated age
which depends on the number of producers generating updates
about this location. The spatial average age of the coverage of
a typical consumer v is the normalized weighted average age
of updates about regions in Rv received by v via collaboration
with other sensors.

We evaluate the performance of three different schemes
in terms of both the coverage and the spatial average age of
updates of a typical sensor. We assume that the system has N
available sensors. The first scheme, denoted baseline, selects all
N sensors in the region but must satisfy the lower update rate
per sensor due to the capacity constraint. One would expect
that this technique achieves the best coverage while performing
poorly in terms of the spatial average age, given that a lower
update rate is assigned per producer. The second and third
schemes employ sensor selection, where k < N producers are
selected, allowing for a higher per sensor update rates and
hence fresher and more frequent updates at the consumer side.
Specifically in the second scheme, denoted aggregated spatial
interest, the weight function is the sum of the consumers’
spatial interest which in turn is assumed to be uniform over
locations (in the region of interest of a typical consumer) that
are either obstructed or not covered. This model is intuitive in
that if many consumers share the same obstructed region, then
the weight placed there is increased, and thus producers will
be favored to cover this region in order to keep its age low.
Finally, the third scheme, denoted uniform aggregated spatial
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Fig. 5: Coverage and spatial average age of the region of interest of a typical sensor as k increases, with N = 15 sensors.
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Fig. 6: Coverage and spatial average age of the region of interest of a typical sensor as N increases, with k = 8 sensors.

interest, is not consumer oriented, but instead uses an aggregate
interest measure which is uniform over the overall region in
consideration, R. In our case, this technique will attempt to
cover as much of the highway as possible, i.e., spread the
selected sensors as much as possible on the map, while trying
to keep the unweighted spatial average age as low as possible,
which can only be achieved by enhancing producers’ coverage
overlap. This tension between spreading producers over the
map and overlapping their coverage sets is what makes this
technique interesting.

Below we verify the robustness of our aggregated spatial
interest model in achieving a good coverage-age trade-off for
a typical consumer. In Fig.5, we fix the number of available
sensors in R to N = 15 and increase the number of selected
producers, k, for both sensor selection schemes, from 1 to N.

The left subfigure of Fig. 5 clearly shows that without collab-
oration (no information sharing), the coverage of a typical sensor
is the lowest (∼ 30%), since sensors do not share information,
while the baseline achieves the highest coverage per typical
sensor since all N producers are sharing their respective updates
with each other. Interestingly, both sensor selection schemes
achieve similar coverages as k increases, which shows that the
aggregated spatial interest scheme performs well in terms of
coverage of a typical sensor’s region of interest.

The right subfigure of Fig.5 evaluates the spatial average
age of updates about the region of interest of a typical
sensor. We additionally consider the joint optimization of the
update rate allocations across the k sensors selected using
the aggregated spatial interest technique, in order to further
minimize the spatial average age. We refer to this technique
as age minimization, shown in the solid orange curve. The age
of the region solely seen by a sensor v, within Rv , has age 0,

since v is updated about what it sees (without collaboration)
at all times. Otherwise, the spatial average age of the covered
regions within Rv is a function of the number of producers
(different from v) that see these regions. The baseline achieves
a constant age given that the number of selected sensors
is always N = 15. While the ages achieved by the other
schemes increase, since the number of producers increases,
which results in lower update rates allocated per producer,
until k = N = 15 is reached, where all ages (except for the
one achieved by age minimization) overlap. Three interesting
observations are that (1) for a small number of selected sensors
(k ≤ 5), the non-consumer oriented scheme achieves a better
age than the consumer oriented approach, since the spreading
of the weights assigned by the consumers is roughly uniform
over the map, given the nature of the model in consideration,
which gives a slight advantage to the former scheme when
the number of producers is low, (2) the consumer oriented
sensor selection technique results in an overall better age than
the non-consumer oriented scheme (for k ≥ 5), and (3) for
k = 15, the age minimization technique results in a better age
of updates per typical consumer than the baseline, with an
approximate improvement of 5 msec.

In Fig. 6, we increase the number of available consumers from
8 to 18, and fix the number of selected producers k to 8 for both
the aggregated spatial interest and uniform aggregated spatial
interest schemes. In the left subfigure of Fig. 6, both sensor
selection schemes have an overall similar coverage per typical
sensor demonstrating that the scheme based on aggregating
consumers’ spatial interests performs well in terms of coverage.
As N increases from 8 to 14, the coverages achieved by
these two schemes increase from 70% to 80% due to better
collaboration between the selected producers, but then slightly
decreases (N ≥ 14) due to more obstructions caused by the
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increasing number of available sensors. Considering the spatial
age, we clearly see that the baseline achieves the worst age
given that the number of producers increases, resulting in lower
update rates allocated per sensor. Interestingly, the overall age
performance of the consumer oriented technique is better than
the one achieved by the uniform aggregated spatial interest
scheme, which shows that the former allows for a selection of a
subset of sensors that better meets the consumers’ requirements.
Finally, we note that the improvement between the baseline and
the aggregated spatial interest is large (∼ 20 msec for N=18).

We point out that the highway scenario in consideration
slightly exhibits the advantage of using a consumer’s oriented
model, since the consumers’ interests are uniform over the
highway, due to the nature of the model, and not specific to a
particular spot on the map. A more relevant scenario should con-
sider a higher spatial correlation between the obstructed regions
of different consumers, which results in a clear improvement
in the coverage-age achieved by the aggregated spatial interest
scheme, e.g., a road intersection where many cars express their
interest in the same “unseen” (obstructed) region, or large trucks
obstructing the field-of-view of many cars.

VII. CONCLUSION AND FUTURE WORK

In this paper we have exhibited an approach to achiev-
ing trade-offs between coverage and timeliness communication
constrained collaborative sensing setting wherein spatially dis-
tributed sensor nodes can serve dual roles as producers and
consumers of sensed information. The proposed framework
allows quite a bit of flexibility in terms of capturing the
underlying characteristics of information sharing, and suggests
the development of a common platform for sharing real-time
sensor data in a context dependent manner, i.e., matching nodes’
current interest, in order to minimize situational uncertainty so
as to enhance vehicular flow and safety. A key aspect is the
design of strategies that select producers that attempt to best
meet the consumers’ coverage and age of updates requirements,
subject to communication network capacity constraints. A key
part of our future work is to make the sensor selection and
update rate optimization more scalable to robustly address
heterogeneous and dynamic environments.

VIII. APPENDIX

A. Proof of Theorem 1
Given the saw-tooth character of the time varying age per

sensor and the randomization of the update phases, the age at
a random time is given by A = minv=1,...,nAv , where Av =
d + 1

rv
Uv and Uv, for v = 1, . . . , n are i.i.d. Unif[0, 1] and

independent, and age1(r) = E[A] ,while age2(r) = P(A ≥ γ).
It is easy to see that given Av is a shifted and scaled uniform
random variable such that

P (Av > y) =


1, if 0 ≤ y ≤ d,
1− rv(y − d), if d ≤ y ≤ d+ 1

rv
,

0, if d+ 1
rv
< y,

and given that P (A > y) =
∏n
v=1 P (Av > y) , and further

given that r1 ≥ r2 ≥ . . . ≥ rn, we have

P (A ≥ y) =


1, if 0 ≤ y ≤ d,∏n
i=1 zi(y), if d < y ≤ d+ 1

r1
,

0, if d+ 1
r1
< y,

(14)

where zi(y) = 1 − ri(y − d) for i = 1, . . . , n. Thus the γ-age
violation function for γ such that d < γ ≤ d+ 1

r1
is given by,

age2(r) =

n∏
i=1

zi(γ).

We can compute the average age function as follows

age1(r) =

∫ ∞
0

P (A > y)dy = d+

∫ d+ 1
r1

d

n∏
j=1

zj(y) dy.
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