
1690 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 6, DECEMBER 2011
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Abstract—We study the impact of user association policies on
flow-level performance in interference-limited wireless networks.
Most research in this area has used static interference models
(neighboring base stations are always active) and resorted to
intuitive objectives such as load balancing. In this paper, we
show that this can be counterproductive in the presence of dy-
namic interference that couples the transmission rates to users
at various base stations. We propose a methodology to optimize
the performance of a class of coupled systems and apply it to
study the user association problem. We show that by properly
inducing load asymmetries, substantial performance gains can
be achieved relative to a load-balancing policy (e.g., 15 times
reduction in mean delay). We present a practical, measurement
based, interference-aware association policy that infers the degree
of interference-induced coupling and adapts to it. Systematic
simulations establish that both our optimized static and adaptive
association policies substantially outperform various dynamic
policies that can, in extreme cases, even be susceptible to Braess’s
paradox-like phenomena, i.e., an increase in the number of base
stations can lead to worse performance under greedy association
policies. Furthermore, these results are robust to changes in
file-size distributions, large-scale propagation parameters, and
spatial load distributions.

Index Terms—Best-effort traffic, flow-level performance, inter-
cell interference, semidefinite programming, user association.

I. INTRODUCTION

T HE HIGH demand for wireless capacity and the in-
creasing volume of traffic mandates the efficient use of

available radio resources. Wireless capacity can be substantially
enhanced by reusing the entire frequency spectrum at every
transmitter instead of sacrificing individual peak and overall
system capacity by partitioning it. This increased system
capacity and spectral efficiency is achieved at the expense
of increased interference. Even in the case of WLANs with
frequency reuse, high densities of users in large-scale networks
could lead to high interference due to the limited number of
orthogonal frequencies available under the present standards.
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Fig. 1. (a) User association and (b) MAC/routing functions are subject to dy-
namic coupling.

The bursty nature of traffic in typical wireless systems results
in dynamic interference that couples performance in the system
in a complex manner. For such coupled systems, stability is
fairly difficult to establish, and performance is particularly hard
to optimize. The capacity of such a system as well as the actual
performance that users perceive can be very different from that
predicted by a saturated model that assumes that transmitters
are always on; see, for example, [1]–[3]. Without having access
to good performance models, many researchers have resorted
to intuitive objectives such as load balancing across system re-
sources. In this paper, we show that such load balancing, be it
greedily done by users or across the system, may be counterpro-
ductive when there is dynamic coupling due to interference.

Let us consider some examples where dynamic coupling im-
pacts network functions. Consider the user association problem
exhibited in Fig. 1(a). Assume that the base stations (BSs) share
the same spectrum, so they interfere with each other when they
are concurrently active, which in turn reduces their transmission
capacity to users. For simplicity, assume user requests to down-
load files arrive uniformly between base stations 1 and 2. A basic
problem in such networks is to decide which base station should
serve a new user request. If both the network and traffic demands
are symmetric, one might intuitively expect that a static policy
that associates arrivals with the closest base station, i.e., the one
that delivers the strongest signal, and thus balances the offered
load would be “optimal.” Surprisingly, we will see that this is
not the case.

A second example is exhibited in Fig. 1(b), where wire-
less nodes relay traffic. Assume nodes contend at random for
a shared channel. Depending on the amount of traffic and
interference they see, one might optimize nodes’ contention
probability for the channel so as to minimize overall packet
delays. Clearly, performance here is a complex function of
the dynamic traffic loads, contention probabilities, and in-
terference seen by nodes. The third example, also shown in
the same figure, concerns routing traffic across paths that are
link/node-disjoint. Unfortunately, transmissions along the paths
may directly (or even indirectly) interfere with each other.
Should a packet flow with rate be split across the two paths,
or is it better to route traffic on a single path?
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Fig. 2. Mean file transfer delay (on a logarithmic scale) versus different load
split thresholds on mobile terminal association and mean traffic loads between
the two base stations.

The above exemplify the relevance of dynamic coupling in
optimizing network functions at various layers. In the above
cases, assuming symmetry in loads and/or the network, one
might imagine load balancing might be a good objective, but this
need not be the case. For example, it may be preferable to route
traffic on a single path so as to avoid interference across paths. In
this paper, we focus on the terminal association problem, which,
as we will see, is already fairly complex. As mentioned earlier,
when the channels and traffic load are symmetric, one might ex-
pect that associating users’ requests with the closest base station
might be a good strategy. This corresponds to splitting the load
evenly between the two base stations, i.e. placing a threshold at
the midpoint (0.5) between the two base stations. Fig. 2 shows
the simulated delay performance (explained in more detail in the
sequel) when load split between the base stations is varied from
0.5 (even division of load) to 0.1 (highly asymmetric load divi-
sion). The results show that the optimal load division depends
on the intensity of the offered load and is not balanced but sig-
nificantly asymmetric. As exhibited in the figure, where mean
delays are plotted on a logarithmic scale, the performance im-
plications can be substantial; load balancing may achieve mean
delays 15 times higher versus an optimal asymmetric split. Fur-
thermore, as we will see in the sequel, a user association policy
that tries to balance loads can, in certain cases, even result in
Braess’s paradox-like phenomena where the addition of extra
resources (base stations) can result in performance degradation.
These results are surprising and reveal the complexity and sub-
stantial impact that dynamic coupling can have in the context of
wireless networks. This motivates the need for careful analysis
that we will carry out in this paper, as well as comparisons to
more complex user and system greedy dynamic policies.

Related Work: Various dynamic policies that split load
among base stations have been proposed for different contexts.
For example, load-balancing schemes have been proposed for
the scenario where frequency reuse is used to protect against
intercell interference, and where the traffic carried by the
network is voice [4]–[6]. The objective in these works has been
to ensure that load is balanced among base stations.

This philosophy has also been used in addressing the case
of best-effort traffic. When the wireless network is subject
to spatially heterogeneous traffic loads, emphasis has been

placed on the development of schemes that try to balance
the load across base stations. Centralized schemes to jointly
balance loads and schedule packets are presented in [7]. Such
centralized schemes, however, incur excessive communication
and computational overhead. In [8], a load-balancing scheme
that requires much less coordination is considered. The scheme
tries to explicitly balance the load across base stations, taking
into consideration both the long-term rate at which users can
be served and their load. Another idea that was proposed, also
in [8], is to lower the strength of the pilot signals that heavily
loaded base stations broadcast, so as to discourage users from
joining them. A scheme that is similar in spirit is proposed
in [9], called MAC-cell breathing, which attempts to balance
the load in all base stations. The above-mentioned schemes,
however, assume implicitly that the base stations in the network
are always transmitting and thus interfering with transmissions
in their neighboring cells. The focus in these schemes is to
ensure that the load being served by different base stations
in a neighborhood is as similar as possible. In [10], the cell
geometry that results from users joining the base station that
offer the highest uplink signal to interference plus noise ratio
is studied.

The case of dynamic traffic, with the associated bursty in-
terference, has not been extensively studied. In [11], the effect
of equalizing the load in neighboring base stations was studied
through simulation, and it was observed that load balancing did
not make much of a difference under heavy load. This problem is
also studied in [12], but under the assumption that transmissions
are orthogonal. The impact of dynamic interference was also
demonstrated in [13], wherein the problem of load balancing
in a hybrid wireless local area/wide area network was studied
using approximations proposed in [14].

The stability region of a dynamic system with interacting
servers under load balancing strategies was examined in [15].
The stability region was explicitly characterized in the case of
a two-server system, and a lower bound on the stability region
was obtained for systems with multiple servers. The stability re-
gion in the case of static load balancing policies and a class of
dynamic policies was also studied in [16]. A surprising result is
that the stability region of the system is not always maximized
by perfect load balancing across servers. While the above papers
address the question of determining the network capacity, they
do not provide insight into designing user association policies
to optimize performance perceived by users in a system serving
a load that is in the interior of the stability region. In contrast,
the focus of this paper is on designing practical user association
policies that optimize flow-level performance, i.e., the actual file
transfer delay experienced by users.

Our Contributions: In addition to unpredictable short-term
variations in the load caused by individual user arrivals and de-
partures, there are predictable long-term variations in the aggre-
gate traffic load depending on the day of week, hour of day, etc.
We present two interference-sensitive user association schemes
that attempt to optimize user perceived file transfer delays: an
optimized static scheme obtained through solving a semidefinite
optimization problem that uses prior knowledge of long-term
spatial loads and a measurement-based policy that infers the na-
ture of interference and spatial load and adapts to it. Our contri-
butions in this context include the following.
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1) We propose a methodology to optimize the performance
of wireless systems coupled through dynamic interference
and apply it to study networks with base stations distributed
on a line and on a two-dimensional plane. To our knowl-
edge, prior to this paper, no closed-form results or good ap-
proximations were available for general systems with three
or more base stations serving dynamic traffic loads.

2) For a dynamic model of the user association problem in one
dimension, we show that delay-optimal static policies are
threshold-based. Surprisingly, we find that even for a sym-
metric network, a policy that balances load can be highly
suboptimal. Moreover, we find that asymmetric policies
can improve average delays seen by users at all spatial
locations.

3) We show that an optimized static policy (asymmetric) can
substantially outperform dynamic policies that are greedy
from the user‘s or system’s points of view and achieves per-
formance close to that of a “repacking” policy. This sug-
gests that an important objective for protocol and network
design will be to achieve such asymmetries.

4) We present Interference-Sensitive, Adaptive Policy
(ISAP), a novel load association policy based on inducing
asymmetry in the load carried by base stations that uses
measurements to infer the degree of performance coupling
due to intercell interference and adapts to it.

5) We demonstrate through extensive simulations that the
proposed policies consistently outperforms conventional,
load-balancing-based approaches under both spatially
homogeneous and heterogeneous loads. These results
also show that the performance of conventional dynamic
schemes is highly dependent on the spatial load, and no
single best scheme can be identified. In certain extreme
scenarios, we show that these conventional user associ-
ation policies can even result in Braess’s paradox-like
phenomenon.

Our results exhibit the importance of understanding the im-
pact of dynamic traffic and interference in wireless networks.

Organization of Paper: The system model is described in de-
tail in Section II. The optimal static association policy is char-
acterized in Section III, while Section IV explores the impact of
asymmetric static association policies. The methodology used
to pick the optimal static policy is presented in Section V. Sim-
ulation results comparing the performance of the static policy to
various dynamic strategies are presented in Section VI. ISAP, an
adaptive policy for load allocation across interfering base sta-
tions, is presented in Section VII. Simulation results character-
izing the performance of the various policies under nonhomo-
geneous spatial loads are presented in Section VII-D. The sensi-
tivity of delay performance to file-size distributions and system
and channel parameters is considered in Section VIII, while
Section IX explores a scenario where adding resources (base sta-
tions) results in deterioration of delay performance. Section X
concludes the paper.

II. SYSTEM MODEL

In Sections III and IV, we consider two base stations, BS1 and
BS2, located a distance apart on a line, as shown in Fig. 1(a).
User requests are distributed on the line segment joining the two

base stations. We identify a user request by the distance between
the user and BS1, denoted by . The distance between
the user and BS2 is then given by . User requests arrive ac-
cording to a spatial Poisson process with mean measure ,
which is absolutely continuous with respect to the Lebesgue
measure, i.e., the rate at which user requests arrive into a set is

. We assume that each user request corresponds to a down-
link file transfer that is assumed to be exponentially distributed
with mean 1, and the position of the user remains fixed for the
duration of the transfer. Once the file transfer is completed, the
user leaves the system.

The capacity to users from their serving base station depends
on the received signal strength and the strength of the received
interference and is assumed to be monotonically increasing in
the perceived signal-to-interference-plus-noise ratio (SINR).
The base stations transmit, and thereby cause interference only
when they are serving users. We assume that the base stations
use the processor sharing mechanism to serve active users, i.e.,
the base station splits time evenly among all users currently
being served. Thus, a degree of temporal “fairness” is imposed.

We classify user association policies into static and dynamic
policies. Dynamic policies use information about the current
loads being served at the candidate base stations when deciding
the base station to which a new user is assigned. A static user
association policy is one that does not take into account the cur-
rent state of the system when making this decision. A static load
allocation policy partitions the line segment into regions
and , served by BS1 and BS2, respectively. The base sta-
tion that serves a user at location under policy is denoted by

. Thus, if , then , otherwise .
Base stations transmit at maximum power when there are active
associated users, and turn off otherwise. The signal strengths re-
ceived by a user at location from BS1 and BS2 are denoted by

and , respectively. For , we denote the worst
and best received signals in by
and . Let denote the average power
of the additive Gaussian noise.

Under a given policy , we let ,
where is the set of locations for users being served at base
stations at time . Note that since is nonatomic,
users’ locations will be distinct with probability 1. Given our as-
sumptions on arrivals and file sizes, is a Markov process
for static user association policies since, given all the users
locations, one can determine their service capacities and thus
departure rates. Note, however, that its state space is uncount-
able. By contrast, the process defined
by for is on a countable state space,
but not Markovian.

This model is similar to that of optimally routing classes
of users to nonidentical queues studied in [17], with an
infinite number of classes. However, in our case the problem
is further complicated by the fact that the queues at the base
stations are coupled (through interference) and the system is
non-work-conserving. Systems of coupled queues have been
analyzed in the past [18]–[21], but the problem is extremely
difficult. Closed-form expressions are known only in the case
of some simple work-conserving scenarios with two coupled
queues, and only asymptotic results are known for more gen-
eral cases [18]–[21]. Even the problem of characterizing the
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stability of coupled queues, which was addressed in [22], is
difficult, and one has to employ numerical methods.

A. Simulation Model

We simulate a one-dimensional network consisting of two
base stations located 500 m apart, as well as a network on a
plane consisting of three facing sectors in a hexagonal layout
of base stations with cell radius 250 m. User requests arrive ac-
cording to a Poisson process. In Section VI, we simulate a user
distribution that is spatially homogeneous. In the two-base-sta-
tion case, users are assumed to be distributed uniformly on the
line joining the two base stations, and in the three-base-station
network, users are assumed to be distributed uniformly within
the hexagon formed by the three interfering sectors. We consider
nonhomogeneous spatial load distributions in the simulation re-
sults presented in Section VII-D, and the exact load profiles sim-
ulated are described therein.

A carrier frequency of 1 GHz and a bandwidth of 10 MHz
are assumed. The maximum transmit power is restricted to
10 W. Additive white Gaussian noise with power 55 dBm
is assumed. We consider a log-distance path-loss model [23],
with path-loss exponent 2. File sizes are assumed to be expo-
nentially distributed, with mean 5 MB. The data rate at which
users are served is calculated based on the perceived SINR
using Shannon’s capacity formula. The maximum rate at which
a user can be served is capped at 54 Mb/s. The base stations
transmit at maximum power when they have active users, share
capacity across users using a processor sharing mechanism, and
turn off otherwise. The mean user perceived delay is estimated
within a relative error of 2%, at a confidence level of 95%. Note
that the sensitivity of the delay performance to the channel and
system model is examined in Section VIII, where a system
with a higher path-loss exponent and cell-edge signal-to-noise
ratio (SNR) of 10 dB is simulated.

III. OPTIMAL STATIC POLICIES

We begin by considering static association policies in the
one-dimensional, two-base-station system. Such policies are de-
fined by the service regions corresponding to each base station,
which in turn may depend on the long-term offered load .
The key result is that under our system model, the service re-
gions are contiguous and thus are defined by a single threshold
between the two base stations. The following lemma provides
a partial characterization of optimal static policies. Note at the
outset that, while this result appears straightforward, the chal-
lenge lies in the dynamic nature of the model—specifically, in
dealing with the spatial arrivals and departures, the dynamic
(on/off) nature of the interference from the neighboring base
station, and thus the coupling of delay performance between the
two base stations.

Lemma 3.1: Consider the two-base-station model defined
in Section II. For any static load allocation policy with

, with , and such that
and , the policy with

, achieves
lower (or equal) average user delay.

The insight underlying this lemma can be grasped by con-
sidering Fig. 3. It illustrates a policy that satisfies the

Fig. 3. Suboptimal load allocation policy.

lemma’s conditions if signal strength decays monotonically
with distance from the serving base station—although part of
our system model, this is not required to prove the lemma.
Policy is constructed by merely exchanging service regions

between the two base stations. The constraints on the
best- and worst-case signal strengths ensure that this exchange
is favorable for both base stations at all the associated user
locations, which implies the following straightforward fact.

Fact 3.1: Under the assumptions on and in
Lemma 3.1, and the assumption that capacity is monoton-
ically increasing in SINR, the capacity from BS1 to any user
in is greater than that to any user in under the same
interference regime, i.e., BS2 is transmitting or not. Similarly,
the capacity from BS2 to any user in is greater than that to
any user in , whether BS1 is transmitting or not.

Therefore, the exchange leaves the intensity of arrivals to BS1
and BS2 unchanged and associates users to them that can then
be served at higher capacity under the same interference regime.
This allows us to construct a spatial coupling (i.e., by associating
users in different regions) for networks under the two policies,
showing that the average queue lengths are not increased. The
details of this argument are in the Appendix and can be extended
to other service disciplines, e.g., FCFS and LCFS.

Theorem 3.1: For the two-base-station model defined in
Section III, there exists a static load allocation policy min-
imizing mean delay corresponding to a spatial threshold

such that a user at location is served by BS1 if
, and by BS2 otherwise. This can also be expressed as a

threshold on the ratio of received signal strengths from the two
base stations.

Proof sketch: Since traffic intensity measure is
nonatomic, if the service regions associated with the BS1 and
BS2 are not contiguous, one can construct regions and
satisfying Lemma 3.1. Thus, a new policy can be constructed
by exchanging regions and between the base stations’
service regions without increasing the mean delay. This ex-
change operation can be repeated as long as the service areas
are not contiguous. Thus, an optimal policy must be defined by
contiguous regions, i.e., specified by a spatial threshold. Since
the ratio of the received signal strengths is strictly decreasing or
increasing with the received signal strength (or distance) from a
base station, the policy can also be implemented as a threshold
on this ratio.

Note that optimal static load allocation policies need not nec-
essarily be unique. For example, consider the case when user
requests are distributed homogeneously on the line segment
joining the two base stations. If the optimal threshold does not
correspond to the midpoint, then by symmetry, the policies that
divide the service areas using thresholds at a distance from
BS1 and from BS2 will result in identical mean user delays.
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IV. OPTIMAL THRESHOLD TRENDS

As a consequence of Theorem 3.1, we need only consider
threshold-based static allocation policies. Fig. 2 exhibits the
simulated mean user delay for varying thresholding policies as
the (spatially homogeneous) arrival rate between the base sta-
tions increases. The policies are characterized by the fraction
of load served by BS1 with 0.5 corresponding to load balancing
and 0.1 to only 10% of the load. Due to symmetry, the delay per-
formance would be identical if the threshold were moved closer
to BS2. For each arrival rate, the optimal load split, i.e., roughly
achieving the minimum mean delay, is highlighted. We make
the following observations.

1) The location of the optimal threshold is a function of the
load on the system.

2) Except at very low loads, delay performance is improved
by moving the threshold away from the midpoint, thus in-
ducing asymmetrical loads on the two base stations.

Why does this happen? Load balancing increases parallelism,
i.e., base stations are more likely to be simultaneously active. In
our model, load balancing associates users with close-by base
stations providing them a stronger signal. Finally, it would ap-
pear that load balancing might be beneficial in terms of statis-
tical multiplexing at the two base stations. If capacity users see
were fixed, these points would provide the right insight. Yet,
when dynamic interference is present, the capacity users see
(particularly those far from either base station) can be substan-
tially reduced by interference, and the fraction of time that base
stations interfere with each other depends on the traffic and the
load allocation policy. Thus, when arrival rate is low, the prob-
ability of the base stations being simultaneously active is low;
the base stations operate in an interference-free environment,
and load balancing is roughly optimal. For higher arrival rates,
performance is strongly impacted by interference, and skewing
the load is beneficial. Intuitively, this skew reduces the utiliza-
tion of one of the base stations, say BS1, and thus the interfer-
ence it causes on BS2’s users, which reduces BS2’s utilization,
in turn benefiting BS1. However, one cannot overdo this skew,
as serving users that are far away, and thus have poor received
signal, is also detrimental. Finally, it is tempting to assume that
as load increases, base stations are always busy and the role of
dynamic coupling reduces. Yet, as can be seen, at high loads,
performance sensitivity is also high, and the gains of an optimal
asymmetric split increase further. The optimal threshold reflects
a complex tradeoff among dynamic interference, statistical mul-
tiplexing, and users’ signal strengths.

V. OPTIMIZING THE THRESHOLD

In this section, we propose an approximation methodology
for optimizing static load allocation policies for the wireless
network model in Section II, naturally extended to base sta-
tions serving a possibly higher dimensional region. A policy
partitions the service area such that base station has service
area and overall arrival rate . First, we ap-
proximate the Markovian model with uncountable state space
by one with a countable state space, i.e., we will no longer keep
track of the locations of users associated with each base station.
This involves introducing an “effective” rate for all users asso-
ciated with a base station, which depends on the busy state of

the remaining base stations. Thus, the model preserves the dy-
namic interference characteristics. Then, we use a semidefinite
programming-based approach to upper/lower-bound the perfor-
mance for this approximated model. Finally, we propose op-
timizing performance over families of static policies that can
be easily parametrized, e.g., for our one-dimensional example,
one need only determine the threshold. The subsequent sec-
tion shows that the accuracy of the proposed methodology is
excellent.

A. Countable State-Space Approximation

We let denote the number of
active users at each base station at time for our approximated
process that models the evolution of the number of users being
served by each base station. For notational simplicity, we have
suppressed its dependency on . As mentioned earlier, the ca-
pacity to a user depends on both its current location and the in-
terference profile it sees from neighboring base stations. We let

, where
denotes the status (idle or busy) or the “interference profile” of
the base stations. Note that can take possible values,
which we denote , . Let denote the ac-
tual capacity at which base station can serve a user at location

under interference profile .
A user’s sojourn time, i.e., the time that users spend in the

system, is inversely proportional to their service capacity. Thus,
the mean rate at which users in a cell can be served depends
on the steady-state distribution of users that is induced in the
cell (which differs from the distribution of arrivals). As shown
in [24], the effective service capacity of a base station is given
by the harmonic mean of the user capacities, when these are not
time-varying. In our approximate model, the effective capacity
under interference profile depends only on and is given by

the harmonic mean of the users service capacities under
weighted by the spatial distribution of arrivals to the base
station, i.e., . Since, in reality, each user does observe
different rates over the course of time depending on the activity
level of the neighboring base station, these effective capacities
are an approximation. However, users with low received signal
strength tend to be located near the cell edge and are also
typically subject to high levels of intercell interference. As a
result, the users at locations that receive comparatively low
service rates in the interference profiles without interference
also receive lower service rates under the other interference
profiles. Thus, in most cases, we expect this approximation to
be reasonable. Since files have mean size of 1, the total service
rate at base station under interference profile is given
by . We assume that the system is stable and let
denote an upper bound for the maximum service rate for any
base station.

Our approximation is given by a continuous-time Markov
process with transition rate bounded by ,
so it can be uniformized. With a slight abuse of notation, we let

denote the state for the uniformized discrete time Markov
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chain, and the associated interference profile at discrete
time-step . The transition probabilities for the uniformized
Markov chain are as follows. Suppose has associated
interference profile , i.e., , then

arrival to queue

departure from queue

no change

Note that, if it exists, the uniformized chain’s stationary distri-
bution is identical to that of the original. Also, its evolution can
be represented as a stochastic recursion

where denotes increments
in the queues. An arrival into queue at iteration is repre-
sented by , a departure by , and if the
transition corresponds to the self-loop, . Note that

and are not independent, e.g., one cannot have a
departure from an empty queue. However, they are clearly con-
ditionally independent given . For systems with this prop-
erty, bounds on the mean sum queue length (and other metrics)
can be obtained using a semidefinite programming approach;
see [25] and [26]. Bounds on the mean queue lengths in turn
translate to bounds on the mean delay via Little’s Law.

B. Determining Optimal Thresholds

As mentioned earlier, when policies can be easily parameter-
ized, one can use these bounds to optimize performance. For
our two-base-station scenario, Theorem 3.1 shows the optimal
static load allocation policy is determined by a simple threshold.
The threshold determines the arrival rate of user requests to each
base station, which can be obtained simply by integrating over
each base station’s service region. Also, the effective service
rate at each base station can be determined using the approxi-
mations described in the previous section. Thus, the transition
probabilities for the Markov chain of base station queue lengths
can be determined. So for any threshold, the semidefinite pro-
gramming approach developed in [25] and [26] can be used to
determine bounds on the mean delay, and a simple line search
can be used to determine the threshold giving the smallest lower
bound on the mean delay. In the case of the three-base-station
network considered in the sequel, we parametrize policies based
on weights associated with the base stations, as described in
Section VI-C.

Fig. 4 exhibits the computed approximate optimal thresh-
olds versus those obtained via brute force simulation for our
two-base-station model. As can be seen, both load splits (thresh-
olds) and resulting mean delay performance are very close, sup-
porting the accuracy of our optimization methodology. The op-
timization approach also provides the flexibility to address com-
plex traffic loads as well as systems with a larger number of base
stations, as we will see in the sequel.

Fig. 4. Goodness of optimized thresholds.

Fig. 5. (i) Mean delay performance and (ii) spatial delay distribution of the
optimized policy versus static load balancing.

VI. PERFORMANCE COMPARISON

A. Comparing Static Policies

Fig. 5(i) again illustrates the impact that the choice of
threshold location has on delay performance. The user dis-
tribution is spatially homogeneous, so locating the threshold
at the midpoint between the base stations corresponds to a
static load-balancing approach. As can be seen, the resultant
mean user delays are greatly decreased by choosing an optimal
threshold, particularly at moderate to high system loads. These
results match the ones obtained in [11], where the authors
found that load balancing only increased capacity in the case of
large cells where interference did not have a significant impact
and was inefficient in interference-dominated scenarios. The
intuitive explanation for this, as presented in [11] as well, is that
load balancing tends to increase the simultaneous utilization
of base stations, thus increasing interference. Also, in [16],
load-balancing schemes that maximize the stability region of
interacting servers was considered. It was found that the load
balancing did not maximize the stability region. Here, we
can see that a similar result holds from the point of view of
performance and the extent of asymmetry required to optimize
performance has been quantified. Fig. 5(ii) further exhibits the
spatial distribution of user delays under the two schemes when
the rate at which user requests arrive in the network is 1.2 per
second. Surprisingly, skewing the load toward one base station
does not result in a tradeoff where a subset of the users, e.g., at
the heavily loaded base station, experience poor performance.
Instead, under the optimal policy, the overall impact of intercell
interference is reduced such that all users, irrespective of their
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Fig. 6. Comparisons of mean delay for optimal static policy: (a) versus greedy schemes (log scale); (b) versus repacking scheme (linear scale); (c) versus greedy
system in terms of spatial delay distribution.

spatial location or perceived signal strength, see improved
performance on average.

B. Optimized Policy Versus Dynamic Strategies

Next, we compare the performance of the optimal static
policy versus the following three dynamic policies.

• Greedy User: Each new user joins the base station that of-
fers the highest current service rate. This requires knowl-
edge of the new user’s capacity to each base station when
the neighbor is active/idle and the number of users each is
serving.

• Greedy System: Each new user is assigned to the base sta-
tion so as to maximize the resulting current sum service
rate of the base stations. This policy is more complex than
the greedy user policy as, in addition, it requires knowl-
edge of the capacity for all ongoing users with and without
interference.

• Repacking: Each time a user arrives or leaves, the assign-
ments of all users are chosen so as to maximize sum ser-
vice rate of the base stations via a brute force search. The
overheads and complexity of such a scheme would be un-
realistically high, yet we hypothesize that it results in the
best delay performance among nonanticipative dynamic
schemes since, at any given time, it minimizes the expected
time to the next departure.

Fig. 6(a) illustrates the mean delay (logarithmic scale) for
varying traffic loads under the above-mentioned greedy policies.
Surprisingly, the optimal static policy substantially outperforms
the two greedy polices at moderate to high loads. Indeed, at high
load, the mean delay of the static policy is six times lower than
the greedy system policy, which itself is orders of magnitude
lower than the greedy user policy. As expected, the repacking
policy shown in Fig. 6(b) (linear scale) is the best, but indeed
very close to the optimal static policy.

Fig. 6(c) exhibits the spatial delay distribution under the
system-level greedy scheme versus the static policy. While the
greedy policy exhibits perhaps desirable spatially symmetric
performance, it is still the case that the optimal static policy
gives better performance to all user locations.

C. Three-Base-Station Network

The three-base-station case can be used as a building block to
develop a load allocation policy in a larger network. The number
of base stations that can potentially serve a particular user re-
quest is unlikely to be very large. A load association policy that
decides only between the three strongest base stations for each

user request seems to be a reasonable tradeoff between com-
plexity and performance. For the two-dimensional three-base-
station network described in Section II-A, the form of the op-
timal static association policy is difficult to characterize. We
compute the “optimal” static association policy within a family
of policies that can be easily parametrized.

1) Weighted Signal Strengths: The first family of policies
we consider is parametrized by base station weights. Each base
station is assigned a weight, and a user is associated with the
base station that offers the maximum weighted received signal
strength. The weight associated with one of the base stations
is set to 1, and a simple gradient descent is used to determine
weights for the remaining base stations. The semidefinite-based
programming-based bounding methodology described in [25]
and [26] is used to approximate the mean delay at each step of
the gradient descent algorithm.

If the base stations are part of a larger network, accurately
accounting for the activity levels of other neighboring base sta-
tions could be important. The proposed methodology can still
be used in such a scenario by including queues corresponding
to the neighboring base stations when the performance bounds
are computed using the semidefinite optimization. The objec-
tive function would remain the expected sum queue length at
the three sectors under consideration. Note that including addi-
tional base stations will increase the complexity of the bounding
procedure.

2) Pairwise Optimization: As an alternative to the method-
ology proposed above, we consider a family of policies where
modifying a single parameter while keeping the rest constant al-
lows the load division between two base stations to be modified
without affecting the set of users served by the other base sta-
tion. Note that the policy presented in Section VI-C-1 does not
possess this property, as changing the weight associated with
any base station potentially changes the load served by all three
base stations. This property allows the sequential optimization
of the policy parameters, and the optimal policy can be deter-
mined using a sequence of iterations where one parameter is
adjusted in each iteration. This is particularly important if addi-
tional neighboring base stations have to be taken into account.
When one of the parameters is being optimized, the only sectors
that have to be considered in the optimization are the neighbors
of the two base stations that are affected. Thus, each parameter
can be optimized while accounting for a different set of neigh-
bors. This reduces the complexity of the semidefinite program
that has to be solved to obtain the performance bounds.

The vector of received signal strengths from the three base
stations, , is projected down on to
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Fig. 7. Load division after projecting down to the two-dimensional hyperplane.

the two-dimensional hyperplane that passes through the origin
and is orthogonal to the vector (1, 1, 1). The family of static
policies that we consider divide this hyperplane into regions,
and a base station serves all users whose projected signal
strength vector falls in its region. The hyperplane is chosen
such that users with identical relative received signal strengths
from the base stations are mapped to the same point. The
projected vector, after an orthogonal transformation is given by

, where

The hyperplane is divided into three regions by three rays ex-
tending from the origin, as shown in Fig. 7. Each base station
serves the region between two rays as illustrated in the figure.
The rays are specified by the angles , , and that they subtend
with the -axis, and these angles parametrize a policy within
the family. Rotating one of the rays only exchanges load be-
tween the two base stations whose service regions adjoin the ray.
The optimal static policy is determined through a series of itera-
tions. At each iteration, one of the parameters is modified, and a
new value that improves the overall delay experienced by the set
of users served by the three base stations is chosen. Thus, each
iteration lowers the overall mean delay experienced by users in
the system, ensuring that the optimization procedure converges.

Fig. 8 exhibits the mean delay performance in a three-base-
station network. The repacking policy for this case is a hard
combinatorial problem to be solved upon each arrival/departure
and so was infeasible. The static load balancing and the greedy
user policies exhibit similar performance, i.e., overlap, while
the optimized static (asymmetric) policy exhibits substantial
performance gains. Even the greedy system policy (itself
unrealistic in practice) achieves mean delays up to 20 times
higher than the weighted signal-strength-based policy. The
projection-based policy performs significantly better than even
the weighted signal strength policy, reducing the user-perceived
mean delay further by 6–10 times at high loads. The projec-
tion-based policy is sensitive only to variations in the relative
received signal strengths that users perceive from the three
base stations, and the metric used to associate users with base
stations is no longer linearly dependent on the users’ signal

Fig. 8. Three-base-station network: Mean delay performance under the
weighted signal strength policy.

strengths. The results demonstrate that such a policy, when
optimized, taking into account the effect of coupling in the
wireless system, is indeed effective at achieving good delay
performance. The results also suggest that further gains could
be attained by a family of policies that allows more flexibility
in dividing load across base stations.

VII. INTERFERENCE-SENSITIVE, ADAPTIVE POLICY

The static policy developed in Section V requires knowledge
of the long-term traffic loads served by the wireless network.
Also, several iterations of a semidefinite optimization problem
have to be solved in order to determine the optimal thresholding
policy. Furthermore, the static policy determined through the
optimization procedure may not be robust to quickly changing
traffic loads. In this section, we present the Interference-Sensi-
tive, Adaptive Policy (ISAP) that divides load among base sta-
tions and induces asymmetry by tracking the impact of perfor-
mance coupling among base stations resulting from dynamic
intercell interference. The proposed policy requires no commu-
nication among base stations and only requires each base sta-
tion to track two simple measures of the load being served. We
compare the performance of the proposed adaptive policy with
the dynamic policies discussed earlier, as well as the optimized
static policy that is a useful benchmark.

The load on the system depends not only on the rate at which
users arrive and the mean file-size requirements, but also on
their location with respect to the base stations. A load alloca-
tion policy must be sensitive to both the intensity of the load
as well as its distribution in space. The policy must be able to
distinguish between scenarios where intercell interference is re-
sponsible for causing high user delays and scenarios where user
delays are driven by high traffic loads inherent in the system.
As seen in the previous sections, in an interference-dominated
scenario, an adaptive scheme may need to create an asymmetric
division of load among base stations. Schemes where the desir-
ability of a base station depends solely on the nature of the load
supported by that base station will not possess this property.

A. Measuring the Impact of Interference

In order to estimate the effect of intercell interference, each
base station tracks and maintains estimates for the system load
and virtual load as will be described. We let denote an esti-
mate of the true system load, the current utilization of the down-
link queue of base station . This will reflect the effect of inter-
ference from neighboring base station transmissions. We let
denote an estimate of the virtual load, the base station utilization
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that would result if base station experienced no interference.
Measurements are updated in discrete time slots of length . In
any slot, the base station is either idle or transmitting to exactly
one user, say user . Slots are indexed by , corresponding
to times . The transmission rate to user in slot under the cur-
rent policy, taking into account the current activity state of the
neighboring base station(s), is denoted , and the rate to the
user in the absence of any interference is denoted . Each
base station estimates the current system load and the virtual
load resulting from the current load allocation policy as follows.

Estimating the System Load: The system load can be esti-
mated by periodically checking if there are active users associ-
ated with the base station. Each base station updates the estimate
for the system load at intervals as follows:

BS is transmitting in slot

where is a small constant determining the averaging
timescale. Note that we assume time slots are small enough that
base stations are either on or off for the entire duration of a slot.

Estimating the Virtual Load: A base station’s virtual load
is measured as the fraction of time the base station would be
actively transmitting to users if it were to serve the same traffic
in the absence of interference. The estimate for the virtual load
is updated along with the system load as follows:

where is a small constant, and the function is
defined as

BS is idle
BS is transmitting to user .

One can interpret the virtual load as follows. The virtual
system serves exactly the same user as the real system in each
slot. The virtual system transmits exactly the same number
of bits to the user as the real system by using only a fraction

of the slot. Thus, when the user in the real system
experiences interference in a slot, the slot is only partially
used in the virtual system, and the base station is idle for the
remainder of the slot.

Thus, the virtual system is not work-conserving. However,
in the case where the channel to the users is time-invariant, the
fraction of time that the base station is busy transmitting in the
virtual system is equal to the utilization of the base station under
any work-conserving policy in a hypothetical system with no in-
terference. To see this, note that one can rearrange the times at
which the users are served in the virtual system to match any
work-conserving policy. In the case of time-varying user rates,
as long as the rate is stationary and the scheduling of data
in the real system is not channel-aware, e.g., processor sharing,
and thus independent of the channel capacity under no interfer-
ence, the fraction of time the base station is busy in the virtual
system corresponds to the case of the base station in a hypo-
thetical system with no interference. Note that this is not true
in general, in the case of time-varying channels and arbitrary

scheduling disciplines. However, a similar virtual system could
hypothetically be constructed for such cases also.

Estimating the Impact of Interference: Clearly, will
always be greater than . The overall impact that intercell
interference has on base station can be measured by a function
of both and , such as or .

B. Algorithm to Determine the Serving BS

1) Two-Base-Station Scenario: We begin by considering
the two-base-station case. Suppose a request from user
arrives at slot and is to be assigned to one of base stations

. Our proposed ISAP policy is a simple weighted max-
imum rate policy, that is, the user connects to the base station

with ties broken arbitrarily. The
novelty in the policy lies in specification of time-dependent
weights , which in turn are nonlinear functions of the
current estimates for the true system and virtual traffic loads
seen at both of the base stations.

Specifically, we assume the base stations share their current
estimates , , , with the user. The user in turn assigns
a weight of 1 to the base station that currently has the lowest
system load. The other base station is assigned a weight that ex-
ceeds 1 and increases with the degree of intercell interference
experienced by the base stations. There are many possibilities
for doing this, yet in this paper we consider the following spe-
cific weight assignment:

where is a parameter that can be tuned. The weight assigned
to base station 2 is similarly computed. The idea underlying this
weight assignment is as follows. If for one or both of
the base stations, then the weight’s exponent is roughly 0, and
the base station with heavier load will have a weight that is only
slightly larger than 1. In this case, the policy reduces to a greedy
max rate policy. However, if both base stations are subject to in-
terference, then for . Thus, the weight asso-
ciated with the heavier loaded base station is quickly increasing
with the degree of interference seen by base stations’s users, and
larger than 1. In this case, the policy becomes a weighted max
rate policy with a bias toward attracting additional load to the
heavier loaded of the base stations, the type of load asymmetry
we found to be advantageous earlier in this paper. Clearly, other
suitable functions of the system and virtual loads are possible,
yet the above appears to be reasonable and work well.

2) Multi-Base-Station Scenario: The proposed policy
readily extends to the case of a network with multiple base
stations. Suppose a user arrives at time and can be associ-
ated with any one of base stations. For simplicity, assume
the possible base stations are indexed such that
they have decreasing system loads. The multiple-base-station
association policy exhibited in Algorithm 1 relies on making
pairwise comparisons among base stations starting from the
base stations that are seeing the heaviest loads. The idea is
once again to favor asymmetries in load toward base stations
that are seeing high system loads, but only if they are also
strongly coupled through interference with one of the other
base stations.
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Algorithm 1: Assigning User to One of BSs

1: Sort the base stations in decreasing order of .
2: Let
3: for to do
4:
5:
6: if then
7:
8: end if
9: end for

10: return

By assigning a weight larger than 1 to the heavily loaded base
station, ISAP induces asymmetry in the loads served. However,
the asymmetry is controlled as the policy is also sensitive to
the rate at which the users can be served by the base stations.
Note that if either base station is not affected by interference,
the weight associated to the heavily loaded base station will be
very close to 1, resulting in a policy that resembles a greedy
maximum rate policy.

C. Complexity of ISAP

The individual base stations keep track of the utilization and
virtual utilization through one update every slot. When a new
user has to be admitted into the system, the user receives the
above measures from all the candidate base stations and uses
Algorithm 1 to pick the serving base station. With base sta-
tions, the complexity of the algorithm is equivalent to sorting

values and is .

D. Performance Evaluation

We compare the delay performance of ISAP to the other dy-
namic schemes introduced in Section VI and the static policy
resulting from our approximate SDP-based optimization. The
value for the constant multiplicative factor is 3, unless noted
otherwise. This constant should be chosen to ensure that the dy-
namic range of the weights is sufficiently large.

1) Two-Base-Station Scenario: Thus far, all the simulation
results exhibited performance under spatially homogeneous
user (load) distributions. In this section, we additionally con-
sider various spatially nonhomogeneous load profiles as shown
in Fig. 9(a)–(e). The line segment joining the two base stations
is split into four quarters, and the load distribution is varied
by varying the proportion of users in each quarter. Users in a
particular quarter are uniformly distributed within that quarter.
Load profiles 1, 2, and 4 are symmetric with respect to the
midpoint between the base stations. The users are concentrated
near the base stations in profile 2, and the impact of intercell
interference is diminished. The effective load on the network
under this profile is lighter at a fixed user arrival rate compared
to profile 4, where users are concentrated close to the midpoint
and are strongly impacted by intercell interference. The load
distribution under profiles 3 and 5 is asymmetric.

The optimized static policy and ISAP perform consistently
well under all spatial load profiles and perform as well as or
outperform all the dynamic policies. This demonstrates their

robustness to spatially heterogeneous traffic loads. Under load
profile 3, for example, they outperform all the other schemes by
a wide margin. None of the other schemes perform well under all
profiles. The proposed schemes are able to infer the nature of the
spatial load and adapt to it. Under load profiles 4 and 5, choosing
a higher value for the multiplicative constant is necessary for
the performance of ISAP to match the optimized static policy.
Thus, in order to achieve the optimal performance, ISAP has
to be parametrized depending on the load distribution. Under-
standing how to optimize is a topic for future study. However,
note that even if a nominal value is chosen for , ISAP performs
very well, even if it is not optimal.

The relative performance of the dynamic schemes can vary
dramatically with the distribution of the spatial load. The greedy
system scheme performs well under profiles 1 and 4. However,
it is the worst among the schemes under load profile 2. Since the
greedy system scheme tries to maximize the average throughput
realized by all users in the system, it might deviate from a load-
balancing policy so as to ensure that a base station stays idle.
However, since users cannot be reassigned, such decisions ad-
versely affect long-term delay performance. The static max rate
scheme performs well under load profile 2, where the effect of
interference is minimal, and under profile 4, where the spatial
load is inherently asymmetric. It performs very poorly under
the other spatial profiles.

2) Three (or More)-Base-Station Network: Fig. 9(f) exhibits
the mean delay performance that users perceive in a three-base-
station network under ISAP with set to the nominal value of
3, the projection-based static policy, and the greedy dynamic
policies. We only consider the spatially homogeneous user dis-
tribution in this case. Evaluating the performance of the various
static and dynamic policies under spatially heterogeneous user
distributions is a topic for future study. ISAP results in delay
performance that is comparable to the projection-based static
policy. Both policies perform significantly better than the dy-
namic policies. An alternative way to compare the performance
of the policies is through the extra traffic that can be supported
while maintaining mean user perceived delay under a particular
threshold. For example, consider a threshold of 1 s for the user
to be able to download the requested file, with average file size
being 5 MB. We observe that the greedy system policy is able to
support an intensity of arrivals up to 10% more than the greedy
user policy, while the proposed policy ISAP as well as the pro-
jection-based optimized static policy support a further increase
of 50% over even the greedy system policy. The results indi-
cate that ISAP performs well even in a multiple-base-station
network.

VIII. PERFORMANCE SENSITIVITY

Channel Model: We use parameters that model cellular base
stations in an urban environment. We simulate a system con-
sisting of two base stations 2800 m apart and compare the per-
formance of the schemes presented earlier using a path-loss ex-
ponent 3.5 and a cell-edge signal-to-noise ratio of 10 dB. The
data rate at which users are served is calculated using Shannon’s
capacity formula, after a 6-dB backoff is applied to the per-
ceived SINR. Fig. 10 shows the simulated delay performance
when load split between the base stations is varied from 0.5
(even division of load) to 0.1, similar to Fig. 2. The results
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Fig. 9. ISAP: Delay performance. (a) Spatial load profile 1. (b) Spatial load profile 2. (c) Spatial load profile 3. (d) Spatial load profile 4. (e) Spatial load profile 5.
(f) Three base stations: homogeneous load.

Fig. 10. Optimal load split thresholds.

again show that the optimal load division depends on the in-
tensity of the offered load and is not balanced, but significantly
asymmetric. Fig. 11 compares the delay performance of the
optimized static policy and ISAP to the dynamic schemes de-
scribed earlier. The proposed schemes significantly outperform
the dynamic schemes. The mean delay under the greedy system
scheme, for example, is over 50 times the mean delay under the
optimized static scheme at high loads. These results demonstrate
that the performance trends observed earlier do not depend on
the particular parameters chosen for the propagation model, but

Fig. 11. Sensitivity to channel model.

hold for more realistic ones as well, and are a consequence of
the dynamics introduced by intercell interference.

Long-Tailed File-Size Distributions: In the process of deter-
mining the optimized static threshold, we still assume that file
sizes are exponentially distributed. We assume that the users’
file-size requirements are log-normally distributed with mean
5 MB, and variance . The performance of the var-
ious schemes under a spatially homogeneous user distribution
is shown in Fig. 12. The relative performance of the different



RENGARAJAN AND DE VECIANA: PRACTICAL ADAPTIVE USER ASSOCIATION POLICIES FOR WIRELESS SYSTEMS 1701

Fig. 12. Sensitivity to file-size distribution.

schemes is very similar to the case of exponential file sizes.
While the insensitivity of mean queue length to file-size dis-
tribution under processor sharing is a well-known result in the
case of a single queue, the results indicate that mean delay might
not be significantly impacted by file-size distribution even in a
system with interacting servers. The optimized static policy and
the policy developed, ISAP, result in the best performance. The
optimization procedure and the proposed adaptive policy appear
to be robust to variations in the distribution of users’ file-size
requirements.

IX. BRAESS’S PARADOX-LIKE PHENOMENON

Generally, we expect that the addition of resources in the form
of extra base stations would only result in improved user perfor-
mance. Even in an interference-dominated scenario, an optimal
user association policy could, in the worst case, ensure that no
users are assigned to the additional base station resulting in no
change in performance. Here, we present a scenario where the
addition of a fourth base station results in worse user perfor-
mance on average under some user association disciplines. This
can be viewed as a type of Braess’s paradox [27] for an infra-
structure-based wireless network.

Scenario Under Consideration: We consider a service area
that is a circle of radius 100 m that is served by three base sta-
tions that are distributed evenly around the circumference (the
solid base stations in the inset in Fig. 13). We investigate the
effect on user-perceived delay performance of adding a fourth
base station (the dashed BS in Fig. 13) at the center of the circle.
Note that the base station at the center is located at a position
that is proximate to the users that are farthest away from the
three original base stations. We simulate a nonhomogeneous
spatial user distribution. Half of the user arrivals are distributed
homogeneously within the service area, while the rest are re-
stricted to arrive uniformly within a ring of width 4 m located
halfway between the center of the service area and the edge.
While the scenario considered here might not be representative
of real-world conditions, the results serve to demonstrate the
counterintuitive nature of the user association problem in the
highly coupled, nonlinear, interference-dominated setting and
emphasize the importance of carefully designing a policy that
accounts for these factors.

Fig. 13 exhibits the percentage reduction in mean user-per-
ceived file transfer delay when a base station is added to the
center of the service area under each of the user association
policies discussed in this paper. The max rate and greedy user
policies demonstrate a significant increase in the mean delays
when the extra base station is added. In the case of the greedy

Fig. 13. Evaluating changes in performance from adding a fourth base station.

user policy, mean delays are more than doubled, while under the
max rate policy, mean delays increase by more than 20% at high
user arrival rates. These policies do not explicitly account for
the effects of interference and can make decisions that result in
an overall increase in the level of intercell interference resulting
in poor performance. Under the greedy system policy, user per-
formance slightly worsens at low user arrival rates, but shows
marginal improvement at the highest system loads. Under ISAP,
user performance does improve. Mean delays are observed to
be lower by about 10% at low user arrival rates, with further
improvement as system load increases. This demonstrates that
the addition of an extra base station can indeed improve perfor-
mance even in this interference-dominated setting if appropriate
user association policies are used. Note that once again ISAP
outperforms the other user association polices when only three
base stations are used, and the gap between policies increases
as a result of this phenomenon.

X. CONCLUSION

We considered a user–base station association problem in
wireless networks serving dynamic loads and thus coupled
through interference and proposed a methodology to bound
and optimize performance of such systems. For the one- and
two-dimensional models considered, the performance gain
from optimized static policies is substantial, even outper-
forming natural greedy user and system dynamic policies.
The load-balancing static policy was shown to be very poor,
showing that the critical aspect is inducing asymmetry in the
load, even when the network and loads are symmetric. We pre-
sented a novel interference-sensitive, adaptive user association
policy for multi-base-station networks. Our simulation results
demonstrated that our proposed policies perform consistently
well under all spatial loads and are robust to variations in
file-size distributions and large-scale propagation parameters.
The performance of the conventional dynamic policies was
found to vary dramatically with the load distribution, and no
one policy performed consistently well. This paper suggests the
possibility that substantial gains might be achieved if network
functions (see, e.g., Section I) coupled through interference (or
otherwise) are optimized for dynamic loads.

APPENDIX

The following definitions provide a characterization of the
stochastic ordering relationship between two processes and will
be used in the proof of Lemma 3.1.
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Definition 10.1 [28]: Let , and let
denote the components of arranged in descending order

if

The vector is then said to be weakly majorized by .
Definition 10.2 [29]: Let , be random vectors taking

values in . is stochastically weak-majorized by , written
, if there exist random vectors and taking values

in with the same probability laws as and , respectively,
with a.s.

Proof of Lemma 3.1: We will demonstrate that the
policy , which is obtained from by exchanging service
regions and between the base stations, obtains a lower
(or equal) mean delay; see Section III. This is shown by con-
structing a pair of coupled processes and , such
that

and (1)

and such that and . It fol-
lows that associated queue-length processes and
satisfy similar properties with containment replaced with an in-
equality. By standard arguments, see [29], this construction suf-
fices to show that is stochastically weak-majorized by

. As , this implies achieves a lower (or equal)
mean queue length, and thus, by Little’s Law, a lower (or equal)
mean delay.

Note that the arrival rates associated with the exchanged ser-
vice regions are equal so the arrival rate to each base station
under the two policies are the same, i.e.,

and . We couple arrivals of the
two processes and , as generated by a common
Poisson process with intensity For convenience, we
index user requests based on arrival times (including those in the
system at ), i.e., 1, 2, . While arrival times for users to
the two systems are identical, their locations may not be, whence
we let and denote the locations of the th request under
policy and , respectively.

Suppose , then let be the capacity
to the user under policy at time taking into ac-
count the state of the neighboring base station. Since
users share capacity via processor sharing, effective ser-
vice rate to users at locations and under the two
policies is given by and

. Thus, the departure rate of
users from BS1 under policy is given by

We define the overall departure rates , , and
analogously.

Let so (1) holds at time . Our con-
struction will be such that if (1) holds at some time , then it is
satisfied after the next arrival/departure while maintaining mar-
ginal dynamics that are consistent with systems associated with
policies and . Although the two systems see the same

overall arrival rates, they may see different overall departure
rates. In our construction, we let

denote the current rate of events for the coupled processes and
allow fictitious events to ensure the marginal system processes
have the correct dynamics. Let the time at which the next event
occurs be , and be a realization of a random variable , which
is uniformly distributed on . The coupled process events
are constructed as follows.

Arrivals: If , the next event is an arrival, say
of user , to BS1 under both policies. We let random vari-
ables and denote the position of this user under
policies and , respectively. The distribution is
given by , for a measurable set

. The position of the user under policy is iden-
tical, except if . In this case, the user’s location
falls within with a distribution

, where . The states of the
processes are updated accordingly. If ,
the next event is an arrival to BS2 under both policies, with
the user’s location generated analogously to the above. In
either case, arrivals to BS1 or BS2 occurs simultaneously
for both policies, so (1) holds at time . Also, under the
above construction, the spatial distribution of Poisson ar-
rivals is maintained.
Departures: If

, the event is a potential departure
from BS1. Consider any user such that .
Since (1) holds, user is also in the system under
policy , i.e., . Since (1) holds, there are
only three cases to consider.
1) : BS2 is idle under both poli-

cies. If , . Otherwise,
and , so Fact 3.1 implies

.

2) , : BS2 is transmitting under
both policies, and, as in the previous case, we can argue
that .

3) , : In this case, users in BS1
see no interference under policy , while they see in-
terference from BS2 under policy . Combining our
conclusion in case 1 with the fact that the data rate at
which users can be served is an increasing function of
the received signal-to-interference-plus-noise ratio, we
see that .

Also, by assumption , thus
. This permits us to couple user ’s departure such

that if it leaves under policy , it also leaves under policy . To
see this, consider Fig. 14, where has been subdivided
based on the arrival rates and service rates of the users in the
system under the two policies. If a user is present in both sys-
tems, then a set of length for policy is contained
within one of length for policy . If the user has al-
ready left the system under policy , the corresponding set for
policy can be arranged arbitrarily (need not be contiguous)
within . Unused intervals correspond to dummy events.
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Fig. 14. Example coupling construction for arrivals/departures based on real-
ization of .

Which departures (if any) occur for the two systems depends
on which sets contain . However, clearly a departure of user
from BS1 under policy results in the same under policy
unless it has already left the system, and (1) still holds at time .
If , the event is a poten-
tial departure from BS2 and is treated analogously to departures
from BS1.

Since relationship (1) holds after any future event, by induc-
tion the relationship holds for all times in the future. It immedi-
ately follows that

Thus, we have shown that is stochastically weak-ma-
jorized by . As , this implies achieves a lower
(or equal) mean queue length, and thus, by Little’s Law, a lower
(or equal) mean delay.
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