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Abstract—This paper considers the design of opportunistic
packet schedulers for users sharing a time-varying wireless
channel from the performance and the robustness points of view.
Firstly, for a simplified model falling in the classical Markov
decision process framework where arrival and channel statistics
are known, we numerically compute and evaluate the character-
istics of mean-delay-optimal scheduling policies. The computed
policies exhibit radial sum-rate monotonicity (RSM), i.e., when
users’ queues grow linearly (i.e. scaled up by a constant), the
scheduler allocates service in a manner that de-emphasizes the
balancing of unequal queues in favor of maximizing current system
throughput (being opportunistic). This is in sharp contrast to
previously proposed policies, e.g., MaxWeight and Exp rule.
The latter, however, are throughput-optimal, in that without
knowledge of arrival/channel statistics they achieve stability if
at all feasible. To meet performance and robustness objectives,
secondly, we propose a new class of policies, called the Log
rule, that are radial sum-rate monotone and provably throughput
optimal. Our simulations for realistic wireless channels confirm
the superiority of the Log rule which achieves up to 80%
reduction in mean packet delays. However, recent asymptotic
analysis showed that Exp rule is optimal in terms of minimizing
the asymptotic probability of max-queue overflow. In turn, in a
companion paper we have shown that an RSM policy minimizes
the asymptotic probability of sum-queue overflow. Finally, we
use extensive simulations to explore the various possible design
objectives for opportunistic schedulers. When users see heteroge-
nous channels, we find that minimizing the worst asymptotic
exponent across users may excessively compromise the overall
delay. Our simulations show that only if perfectly tuned to the
load will the Exp rule achieve low homogenous tails across users.
Otherwise the Log rule achieves a 20-75% reduction in the
99th percentile for most, if not all, the users. We conclude that
for wireless environments, where precise resource allocation is
virtually impossible, the Log rule may be more desirable for its
robust and graceful degradation to unpredicted changes.

I. INTRODUCTION

This paper addresses the design of scheduling policies for a
fixed number of users sharing a wireless channel. Each user’s
data arrives to a queue as a random stream where it awaits
transmission. The wireless channel is time-varying in that the
transmission rates supported for each user vary randomly over
time. If the channel state is available, a policy can schedule
users so as to exploit favorable channels, e.g., schedule the
user which currently has the highest rate – this is referred
to as opportunistic scheduling. Our objective in this paper is
to evaluate the design of queue-and-channel-aware schedulers
both from the point of view of performance and robustness. By
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robustness we informally mean a scheduler’s ability to perform
well for the majority of users under unpredicted/changing
conditions and even transient ‘overloads’ relative to the de-
sired quality of service. Furthermore, if the system becomes
temporarily overloaded, it is desirable for an opportunistic
scheduler to exhibit graceful degradation of service. Though
there has been a substantial amount of work on the schedulers,
it is still unclear whether scheduler design should be guided by
the objectives like minimizing mean delay and the asymptotic
probability of sum-queue overflow, or instead by objectives
like minimizing the asymptotic probability of max-queue
overflow. In these considerations lies the motivation for this
work and our efforts to leverage analysis, where possible, and
simulation to reach a better understanding of this problem.

To put our work into context, we begin by summarizing
some of the key related work in this area. Among many others,
[1] considers opportunistic scheduling in a setting where users’
queues are infinitely backlogged. They identify channel-aware
opportunistic scheduling policies, which maximize the sum
throughput under various types of fairness constraints. The
missing element in this work is the impact of queueing
dynamics. Recently, [2] showed that under a constant load
scheduling algorithms that are oblivious to queue state will
incur an average delay that grows linearly in the number of
users, whereas, the channel-and-queue aware schedulers can
achieve an average delay that is independent of the number
of users. Even before this, it was immediately recognized
that, when queueing dynamics are introduced, opportunistic
scheduling policies which are solely channel-aware may not
be stable (i.e., keep the users’ queues bounded) unless the
policy is chosen carefully, e.g., using prior knowledge of mean
arrival rates. For this reason, a substantial focus was placed on
designing schedulers that are both channel- and queue-aware
and provably throughput-optimal, i.e., ensure the queues’ sta-
bility without any knowledge of arrival and channel statistics
if indeed stability can be achieved under any policy. Except for
some degenerate cases, such policies must tradeoff maximizing
current transmission rate versus balancing unequal queues.
Balancing queues, avoids empty queues, which enhances the
ability to exploit high channel variations in the future. We will
refer to this tradeoff many times in this paper. Two classes of
policies known to be throughput-optimal are MaxWeight [3]
(also known as Modified Largest Weighted Work/Delay First)
and Exp rule [4]. Yet, stability is a weak form of performance
optimality.

Thus, it is of interest to study opportunistic scheduling
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policies that are delay-optimal, e.g., polices that minimize the
overall average delay (per data unit) seen by the users; or
policies which minimize the probability that either the sum-
queue or the largest queue overflows a large buffer. These
polices are harder to characterize for servers with time-varying
capacity, but some results are available that we briefly discuss
next.

In [5] and [6] the Longest-Connected-Queue (LCQ) and
Longest-Queue-Highest-Possible-Rate (LQHPR) policies are
introduced. Strong results are shown for these policies; they
stochastically minimize the max and sum queue process, and
thus also the max and sum queue tails and mean delay. How-
ever, in addition to assuming certain symmetry conditions on
arrival and channel statistics, [5] is limited to on-off channels
where only a single user can be scheduled per time slot, and
[6] assumes that the scheduler can allocate service rates from
the current information theoretic multiuser capacity region.
In both cases, the above-mentioned tradeoff between queue
balancing and throughput maximization is absent. Indeed in
[5], all policies that pick a connected queue result in the same
transmission rate, whereas, in case of [6], all policies that
pick a service vector from the maximal points of the current
capacity region, i.e. points on the max-sum-rate face, result in
the same overall transmission rate. Thus one can achieve the
queue balancing goal, without ever compromising throughput.
Not surprisingly, in both cases the optimal policy turns out to
be greedy, in that it allocates as much service rate as possible
to the longest/longer queues.

The work in [7] relaxes the symmetry assumptions con-
sidering the case with heterogenous arrivals and time-varying
capacities across users satisfy pathwise large deviation princi-
ples. Under these conditions the Exp rule is shown to minimize
the large deviation exponent for the overflow probability for
the worst case user queue. As we will see in this paper, unlike
the LCQ and LQHPR policies, when such tradeoffs need to
be made, policies that are optimal in asymptotic max queue
overflow, are not also optimal in terms of minimizing sum-
queue overflows or mean delay. In fact the policies are very
different and we believe are of practical interest.

In a related work on input-queued switches, [8] explains
the conjecture that de-emphasizing queue-balancing improves
mean delay of Maximum-Weight Matching algorithms.

Contributions: In this paper, we begin by characterizing
mean-delay optimal opportunistic schedulers for heterogenous
systems where the arrival and channel statistics are known.
We consider a simple model falling in the classical Markov
decision process framework, where we can numerically com-
pute the optimal scheduling policy. Our first contribution is
showing that mean delay optimal policies exhibit radial sum-
rate monotonicity (RSM), i.e., when user queues grow linearly
(i.e. scaled up by a constant) the scheduler allocates service
in a manner that de-emphasizes the balancing of unequal
queues in favor of maximizing current system throughput
(being opportunistic). This is in sharp contrast to previously
proposed policies, e.g., MaxWeight and Exp rules, which,
nevertheless, have the advantage of being throughput-optimal.

Our second contribution is to propose a new class of policies,
called the Log-rule, that are radial sum-rate monotone and
provably throughput optimal. These policies are favorable both
in terms of mean delay and robustness. Our simulations for a
realistic wireless channels confirm the superiority of the Log-
rule which achieves a 20-75% reduction in the mean packet
delay. The Log rule is proposed as a practical solution but is
not provably mean-delay optimal. However, in a companion
paper [9] we use the approach of [7] to show that candidate
RSM policy indeed minimizes the asymptotic probability of
sum-queue overflow.

So we have at our disposal several opportunistic scheduling
policies which are good for different objectives. The question
remains, in designing an opportunistic scheduler should one
be guided by mean or asymptotic tail results, and should one
focus on individual worst case or overall system criteria?

The third contribution of this paper, we use extensive
simulation to attempt to address these important objectives,
and evaluate the comparative effectiveness of various policies.
We make the following observations:
1. Minimizing mean delay vs asymptotic tails. Based on
simulations we observe that when users see heterogenous
channels, policies such as Exp rule that aim to minimize the
exponential decay rate of delay distribution tail of the worst
user may excessively compromise average delay, in some cases
penalizing the tail distributions of many of the users. Our
simulations show that Log rule can achieve better mean delays
(overall and on a per user basis) and comparable or better
distribution tails for many, if not all, the users under reasonably
high loads.
2. Graceful degradation. Due to the uncertain and changing
characteristics of wireless channels, precise resource allocation
to meet quality of service requirements (QoS) for real-time or
streaming flows is likely to be virtually impossible. As such,
a desirable design objective is for a scheduler to gracefully
degrade. If there is a change in the environment causing a
temporary overload, then as many users as possible should
meet their QoS requirements rather than all failing. Our sim-
ulation results show that Log-rule compares favorably in this
regard. In a system with unpredictable heterogenous channels,
there will be a wider disparity in the performance users see
under the Log rule, but a substantial number of users does
very well. Hence depending on the QoS objective and specific
character of the change in user’s channels, one could end up
with no users seeing acceptable performance under the Exp
rule while, say, half the users meet their QoS requirement
under Log rule. Finally we note that Log rule’s underlying
goal of minimizing mean packet delays might be a desirable
objective from the point of view maximizing throughput seen
by best effort traffic.

Organization of this paper: The rest of this paper is orga-
nized as follows: In Section II, we formally state our system
model and optimality criterion. In Section III, we characterize
delay-optimal schedulers using dynamic programming. Sec-
tion IV explores the properties of delay-optimal schedulers
regarding the above mentioned tradeoff, and compares them
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to known throughput-optimal polices. In Section V, we give
a new class of throughput-optimal polices that posses the
properties of delay-optimal schedulers. Section VI presents
a further discussion of scheduler design based on simulation
results comparing various scheduling polices for an HDR-like
downlink [10]. Section VII concludes this paper.

II. SYSTEM MODEL

Consider the following continuous time model for schedul-
ing n users’ traffic over a shared wireless channel. Each user
i ∈ I = {1, 2, ..., n} is assigned a queue in which packets
with independent and exponentially distributed sizes arrive as
a Poisson stream with rate λi packets/sec. At any time t, define
the (random) vector Q(t) = (Qi(t) : i ∈ I) ∈ Zn

+, where
Qi(t) denotes the number of packets in the ith queue at time
t. The state of the users’ wireless channels is modeled by
a random vector R(t) = (Ri(t) : i ∈ I) which can take
values in a finite discrete set R ⊂ [0,∞)n, where Ri(t) is the
instantaneous service rate in packets/sec available to user i if
the channel were dedicated to it at time t. The finiteness and
discreteness of set R are not needed, but assumed for the ease
of exposition. We assume that for all t 6= t′, the channel rates
R(t) and R(t′) are independent and have the same distribution
as R = (Ri : i ∈ I), where for all i ∈ I , E[Ri] < ∞. We
allow the channel to be split among flows at any time instant
according to a stochastic vector σ(t) = (σi(t) : i ∈ I)– recall
that a stochastic vector has non-negative components that sum
up to 1– in which case the service rate available to the ith

user at time t will be σi(t)Ri(t). Let q(t) and r(t) denote
realizations of Q(t) and R(t) respectively.

The problem of scheduling users for service is then to
choose a vector σ(t) for each time instant t, such that a given
optimality criterion is met. A scheduling policy is said to be
static state-feedback if it chooses the vector σ(t) according
to a fixed rule based solely on the current system state
(q(t), r(t)). More precisely, a static state-feedback scheduling
policy is defined as a function f which takes the system state
(q(t), r(t)) at any time t into a stochastic vector σ(t):

σ(t) = f(q(t), r(t)) . (1)

Let F denote the set of static state-feedback policies. Given the
optimality criterion described next, Poisson arrivals, exponen-
tially distributed packet sizes, and i.i.d. channel state vectors,
there is no loss of generality in restricting our attention to the
policies in F .

A. Optimality Criterion

Consider a system initiated at t = 0 in state Q(0) = q0

which evolves under scheduling policy f . The expected long-
run average queue for the ith user is given by,

qi(f) = lim sup
t→∞

Ef
q0

[
1
t

∫ t

0

Qi(τ)dτ

]
, (2)

where Ef
q denotes expectation under f conditional on Q(0) =

q. We define the delay-optimal scheduling policy f∗ as the one
which minimizes the total weighted average queue length, if

it exists, for a given weight vector w = (wi : i ∈ I) > 0,
i.e.,

f∗ ∈ arg min
f∈F

∑

i∈I

wiqi(f) . (3)

It follows from Little’s Law that if the process (Q(t), t ≥ 0)
is stationary, this optimality criterion minimizes the overall
(weighted) average packet delay seen by the n-users.

B. Stabilizability and Multi-User Capacity Region

Define the multi-user capacity region of a channel as
the set of longrun average service rates that can be jointly
offered to the n−users (under all possible scheduling policies).
Specifically, let Φ be the set of functions from R to the
set of stochastic vectors, i.e. Φ = {φ :

∑
j∈I φj(r) =

1 and φi(r) ≥ 0, ∀i ∈ I, ∀r ∈ R}, then the capacity region
associated with the distribution of R, denoted by C, can be
characterized as,

C = {u : 0 ≤ ui ≤ E[Riφi(R)] i ∈ I, for some φ ∈ Φ} .
(4)

The capacity region C is a convex polyhedron [0,∞)n whose
exact shape depends on the distribution of R [1]. Let Cv =
{v1,v2, ..., vL} denote the set of maximal vertices of C, where
L denotes the number of vertices. For any I ′ ⊆ I , define
C(I ′) = {u ∈ C : ui = 0, ∀i /∈ I ′}, where C(I ′) is the channel
capacity region when the channel is shared only amongst the
users in I ′.

The following (restatement of) Lemma 2.1 from [11] will
be used in the subsequent sections.

Lemma 1: Assume all queues are infinitely backlogged. For
any α = (αi : i ∈ I) ≥ 0, let β(α) ∈ C denote the vector
of average service rates seen by the queues under the policy
which serves user i at time t if,

i ∈ arg max
j∈I

{ αjrj(t) } , (5)

augmented with a tie breaking rule, then,

〈α, β(α)〉 = max
u∈C

〈α, u〉 . (6)

In fact, α is an outer normal vector to the capacity region C
at point β(α) on its boundary.

As shown in [3], the system of n-queues is stabilizable if
and only if there exists a vector µ = (µi : i ∈ I) ∈ C such
that for all i ∈ I ,

λi < µi . (7)

We assume that the system under consideration is stabilizable
which implies that the weighted sum defined in (3) is bounded
under at least one stationary policy.

III. CHARACTERIZATION OF DELAY-OPTIMAL POLICY

Consider the process (Q(t), t ≥ 0) initiated in state Q(0) =
q0 and evolving under a policy f . Then conditional on the
process being in state q, the ith queue sees an average service
rate of µi(q) given by,

µi(q) = E[ Rifi(q, R) ] . (8)
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By definition of C in (4), the average service rate vector
µ(q) = (µi(q) : i ∈ I) lies in C. We assume that over an
epoch, each queue i ∈ I is served constantly at rate µi(q),
thus the set of n queues see state-dependent service rates
chosen from C. A rigorous justification of this can be found
in [12] and relies on packet or file dynamics that are slow
relative to channel variations, where the latter can be averaged.
A similar assumption is made in [11] to obtain processor-
sharing queueing model for a slotted time system where a
packet (or file) typically takes many slots to process while
the channel can change from slot to slot. Note that strictly
speaking, it is shown in [13] that analysis under the assumption
of infinitely fast channel variations leads to optimistic flow-
level performance estimates.

Under these assumptions, the scheduling problem of finding
the right function f(q, .) for each q such that the total
(weighted) average queue length is minimized (see (3)), is
that of finding the right service rate vector µ(q) ∈ C for each
q. Using this, we re-define a scheduling policy as a function
µ : Zn

+ → C that takes a queue state vector in Zn
+ to a service

rate vector in C, where µ relates to f through (8).
Under a fixed policy µ, the process (Q(t), t ≥ 0) forms

a Markov chain on Zn
+ with state-dependent transition rates.

For convenience, we shall uniformize Q(t). For any q ∈ Zn
+,

let Aiq = q + ei and Diq = (q − ei)+, where ei is the
ith standard basis element and q+ = (y : yi = max{0, qi}).
Let γ = |λ| + maxu∈C |u|, where | · | denotes L1 norm. Let
τk denote the (random) time of the kth transition of Q(t)
and τ0 = 0. Also, let Qk = Q(τ+

k ). Then under policy µ,
the process Q(t) can be viewed as having a state-independent
event rate of γ (i.e. (τk+1 − τk) ∼ exp(γ)) and transition
probabilities given by, for all i ∈ I ,

P ( Qk+1 = Aiq|Qk = q ) =
λi

γ
,

P ( Qk+1 = Diq|Qk = q ) =
µi(q)

γ
,

P ( Qk+1 = q|Qk = q ) = 1− |λ|+ |µ(q)|
γ

.

Define the cost under policy µ over [0, τk) when starting
in state q as Eµ

q [
∫ τk

0
w′Q(t)dt ] (where w′ denotes the

transpose of w), which, ignoring a constant multiplier γ−1,
can be shown to be equal to,

V µ
k (q) = Eµ

q [
k−1∑

l=0

w′Ql ] . (9)

Likewise, the average cost under policy µ, when starting in
state q, is given by,

Jµ(q) = lim sup
k→∞

1
k

V µ
k (q) . (10)

The optimality criterion given in (3) seeks to minimize this
average cost. The problem of finding the minimum aver-
age cost and an optimal policy fits the classical dynamic
programming framework (e.g. see [14]). Thus the minimum

average cost over all policies (denoted by J∗) is well defined,
independent of the starting state, and together with a bias
function h : Zn

+ → [0,∞), which is unique up to an additive
constant, satisfies Bellman’s equation, i.e., for all q ∈ Zn

+,

J∗ = min
µ

{
w′q + Eµ

[
h(Qk+1)− h(Qk) |Qk = q

]}
,

= min
u∈C

{
w′q +

n∑

i=0

λi

γ

(
h(Aiq)− h(q)

)
+

ui

γ

(
h(Diq)− h(q)

)}
. (11)

Moreover, let ∆h(q) =
(
h(q)− h(Diq) : i ∈ I

)
, and define

a policy µ∗ as,

µ∗(q) ∈ arg max
u∈C

〈u,∆h(q)〉, (12)

i.e., for each q ∈ Zn
+, the policy µ∗ picks a service rate vector

from C which achieves the minimum in (11). Then µ∗ is an
optimal policy achieving the minimum average cost J∗. If the
minimum in (12) is achieved by more than one service rate
vector, then µ∗(q) can map to any of those. The following
lemma states the optimal scheduling decisions in time (see
(1)), and follows from Lemma 1 (compare (6) and (12)):

Lemma 2: The following policy achieves the minimum av-
erage cost (see (3) and (10)): when the system is in state
(Q, R) = (q, r) (see (1)), choose a stochastic vector σ that
satisfies

σi = 1 for some i ∈ arg max
j∈I

{ ∆jh(q) rj } , (13)

where h is a bias function satisfying Bellman’s equation (11).

Lemma 2 and (12) relate the tradeoff mentioned in Section I
to the geometry of vector field ∆h associated with the bias
function. We explore this tradeoff in the next section where
we use relative value iteration (see, e.g., [15]) to numerically
compute h and J∗.

IV. RADIAL SUM-RATE MONOTONICITY: COMPARING THE
OPTIMAL POLICY WITH KNOWN HEURISTICS

In this section, we investigate how delay-optimal schedulers,
as well as throughput-optimal policies such as MaxWeight and
Exp rule, tradeoff current transmission rate versus balancing
queues. Specifically, we consider how the service rate vector
chosen by each policy changes as the queues grow proportion-
ally from a state q ∈ Zn

+ to a state θq ∈ Zn
+ for θ > 1. Note

that q and θq lie on a line in Rn
+ that passes through origin.

For any q, let Iq = {i ∈ I : qi 6= 0}. We begin by defining
an interesting property which we refer to as radial sum-rate
monotonicity.

Definition 1: Given a weight vector w, we say a scheduling
policy µ is radially sum-rate monotone with respect to vector
w if for any q and scalar θ such that θq ∈ Zn

+, the total
weighted service rate, 〈w,µ(θq)〉, is increasing function of θ,
and limθ→∞〈w,µ(θq)〉 = max(〈w, u〉 : u ∈ C(Iq)).
Hence, as the queues grow proportionally, a radially sum-
rate monotone policy allocates service rates in a manner
that de-emphasizes queue-balancing in favor of increasing the



5

0 10 20 30
0

10

20

30

q
1
 (packets)

q
2 (

p
ac

ke
ts

)

m2

m1

= 1

m2

m1

=
3

4

m2

m1

=
1

2

m2

m1

=
4

3

m2

m1

= 2

(a)

θq

q

0 10 20 30
0

10

20

30

q
1
 (packets)

q
2 (

p
ac

ke
ts

)

x2

x1

= 1

x2

x1

=
3

4

x2

x1

=
1

2

x2

x1

=
4

3
x2

x1

= 2

(b)

q

θq

Fig. 2. Curves along which the direction is held constant by the vector field
(a) m with ai = 1 ∀i ∈ I, α = 0.5, (b) x with ai = 0.1, bi = 1 ∀i ∈
I, c = 1, η = 0.5

total weighted service rate (with respect to weight vector
w). Another useful and natural property, called transition
monotonicity [16], implies that for all i ∈ I , µi(q) ≤ µi(Aiq)(
and for all j 6= i, µj(q) ≥ µj(Aiq)

)
.

A. The Tradeoff Under Delay-Optimal Schedulers

Since the capacity region C is a polyhedron, instead of
searching over the entire region for the maximum in (12),
it suffices to only consider the vertices of C,

µ∗(q) ∈ arg max
u∈Cv

〈u,∆h(q)〉 . (14)

Hence, the optimal policy partitions the state space Zn
+ into

at most L non-empty sets S1,S2, ...,SL, each of which is
associated with a distinct vertex, i.e. Sl = {q : µ∗(q) = vl}.
In each partition Sl, the scheduler tries to push the queue
process Qk along vector λ − vl. Fig. 1 shows the optimal
policy’s partitions of Zn

+ for a two user system with weight
vector w = (1, 1) under three different arrival vectors. The
first plot shows the hypothetical 2-user capacity region and ar-
rival vectors considered. The second plot depicts the partitions
for λ = (0.25 0.25) packets/sec. The third plot exhibits a more
pronounced radial sum-rate monotonicity when arrival rate is
increased to λ = (0.4 0.4) packets/sec, and the last plot is in-
tended to exhibit the warping effect on the partitions resulting
from asymmetric arrival rates λ = (0.4 0.25) packets/sec.

For the optimal policy to be RSM we must have that as
θ → ∞ such that θq ∈ Zn

+ and qi > 0, qj > 0, we
have ∆ih(θq)

∆jh(θq) → wi

wj
monotonically (i.e. limθ→∞∆h(θq) ∝

(wi11{qi>0} : i ∈ I)). By computing the bias function h and
the optimal scheduling policy for various arrival vectors and
capacity regions, it can easily be seen that the optimal policy
is RSM. An intuitive explanation for this is as follows: firstly,
the cost incurred per unit time in state θq for θ > 1 is more
than the cost incurred per unit time in state q; secondly, the
state θq is farther from any axis than the state q. Both these
factors suggest that a scheduler can indeed increase current
throughput and decrease emphasis on queue balancing. So
when in state θq, the optimal policy is relatively less “willing”
to compromise current throughput in order to balance unequal
queues.

Weighted Max-Rate Horn: Consider the partitions S4 and
S5, i.e. partitions corresponding to the vertices of region C that

have the largest projection along vector w. Under the optimal
policy, union of these partitions is shaped like a French horn
(referred to as weighted max-rate horn). As we shall see next,
under the Exp rule (with appropriately chosen constants), the
union of the same partitions is shaped like a funnel, rapidly
transforming into a cylinder, whereas, under MaxWeight, all
partitions are simply cones.

B. The Tradeoffs Under MaxWeight and Exp Rule

The MaxWeight and the Exp rule policies can also be
expressed in a similar form as (12). These policies replace
∆h with a suitable vector field on Zn

+ such that the system
is stable for any stabilizable λ. Hence the tradeoff under each
policy can be investigated by considering how the vector fields
change direction as queues grow proportionally.

MaxWeight policies [3] can be defined as follows: when the
system is in state (Q,R) = (q, r), choose a stochastic vector
σ that satisfies

σi = 1 for some i ∈ arg max
j∈I

{ mj(q) rj } ,

where mi(q) is the ith component of m(q) = (biq
α
i : i ∈ I),

for any fixed positive bi’s and α. Equivalently, when the queue
state is q, the policy uses a service rate vector µM (q) given
by,

µM (q) ∈ arg max
u∈Cv

〈u,m(q)〉 . (15)

Similarly, the Exp rule [4] is given by,

µX(q) = arg max
u∈Cv

〈u,x(q)〉 , (16)

where,

x(q) = (bi exp(
aiqi

c + (n−1
∑

j∈I ajqj)η
) : i ∈ I) ,

for any fixed positive ai’s, bi’s, c, and 0 < η < 1.
While both the MaxWeight and the Exp rule are transition

monotone, neither is radially sum-rate monotone. For n = 2
and extending the domain of m and x to Rn

+, Fig. 2 shows
the curves in R2

+ along which the vector fields m and x
hold their direction (curves like these form the boundaries
of partitions, called the switching curves). The vector field
m is homogeneous, hence the service rate allocation under
MaxWeight is invariant as the queues grow from state q to
state θq. By contrast, in the case of the Exp rule (with b set
to w), the total weighted service rate 〈w, µX(θq)〉 decreases
with θ and the emphasis shifts to queue-balancing, so much so
that as θ → ∞, only the longest weighted queue(s) receives
service.

V. IMPROVED THROUGHPUT-OPTIMAL POLICIES

We begin this section with a sufficiency theorem regarding
throughput-optimal policies.

Theorem 1: Let g : Rn
+ → Rn

+ be a gradient field (i.e.
g = ∇G for some G : Rn

+ → R). Moreover, suppose g is
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Fig. 1. Partitions under the optimal policy: from left to right, (a) 2-user capacity region. Remaining three figures show partitions corresponding to (b) arrival
vector λ1 = (0.25 0.25) (c) arrival vector λ2 = (0.4 0.4) (d) arrival vector λ3 = (0.4 0.25)

differentiable on Rn
+ and for all i ∈ I , g satisfies,

lim
y→∞:yi=0

gi(y)
|g(y)| = 0 , (17)

lim
y→∞

∂gi(y)/∂yi

|g(y)| = 0 , (18)

and for some ε > 0, |g(y)| > ε for all y outside a compact
subset of Rn

+, then the following policy µ̂ is throughput-
optimal: for all q ∈ Zn

+,

µ̂(q) = arg max
u∈C

〈u, g(q)〉 . (19)

Remark: The condition that g be a gradient field and
|g(y)| > ε outside a compact set, is used to establish the
existence of a potential (Lyapunov) function G such that
∇G = g. Condition (17) is needed to ensure that when
queue state vector q is large, the policy given by g is work-
conserving, i.e., it does not allocate any service rate to an
empty queue at the cost of non-empty queues. Condition (18)
is used to ensure that the Hessian of G can be dominated by
its gradient in the Taylor expansion (see proof). See Appendix
for proof.

Examples: Examples of functions that satisfy the conditions
of Theorem 1 are m(·) with its domain extended to Rn

+,
g(y) = (exp(yα

i ) : i ∈ I) for 0 < α < 1, and g(y) =
(log (1 + log (1 + yi)) : i ∈ I), indicating that a throughput-
optimal policy can exhibit anywhere from sub-logarithmical
to almost exponential sensitivity to changes in queue lengths.

A. The Log Rule

In this section we consider a class of schedulers satisfying
Theorem 1, which we refer to as the Log rule.

Definition 2: Arbitrarily fix a = (ai : i ∈ I) > 0, b =
(bi : i ∈ I) > 0, and c ≥ 1. For all y ∈ Rn

+, let gL(y) =
(gL

i (y) : i ∈ I), where gL
i (y) = bi log(c + aiyi). When

the system is in state (Q, R) = (q, r) (see (1)), choose a
stochastic vector σ that satisfies,

σi = 0 if i /∈ arg max
j∈I

{ gL
j (q) rj } . (20)

Theorem 2: The Log rule is radial sum-rate monotone w.r.t.
weight vector b (with c = 1) and throughput-optimal.

Proof: First the throughput optimality: let µL(q) =
(µL

i (q), i ∈ I) denote the vector of service rates (under the
Log-Rule) seen by the queues when Q(t) = q, then

µL
i (q) = E[ Rig

L
i (q,R) ] , (21)

where gL(q, r) denotes the stochastic vector chosen by the
Log-Rule (i.e. satisfying (20)) in state (q, r). By (20) and
Lemma 1, 〈gL(q), µL(q)〉 = maxu∈C〈gL(q), u〉. Moreover,
the function gL satisfies the conditions of Theorem 1, and the
throughput-optimality of the Log-Rule follows. To verify the
radial sum-rate monotonicity of the Log rule we note that for
any q ∈ Zn

+ such that 0 < aiqi < ajqj , we have gL
i (θq)

gL
j (θq)

↗ bi

bj

as θ →∞.

Note that as θ → 0, we have gL
i (θq)

gL
j (θq)

→ bi

bj
, i.e., close to

origin in Zn
+, Log rule behaves similar to MaxWeight with

α = 1, whereas, radially far away from origin (as θ → ∞),
gL(θq) becomes parallel to the vector (bi11{qi>0}, i ∈ I) and
the Log rule ignores queue-balancing in favor of maximizing
the total weighted service rate, 〈b, µL(θq).

Fig. 3 shows the curves along which the direction of the gra-
dient field gL is constant, (curves like these form the switching
curves and define partitions of the queue state-space). A good
choice for wi (hence bi) is 1/E[Ri], as suggested for the Exp
rule in [17]. The line {q ∈ Zn

+ : aiqi = ajqj ∀i, j ∈ I}
defines the axis of the weighted max-rate horn, whereas, the
magnitude of the vector a controls the width of the horn (or
convergence of the above limits.) Increasing the magnitude
of a widens the horn and reduces the emphasis of Log rule
on balancing user queues (this is opposite to the role this
parameter plays in the Exp rule). By choosing c > 1, the Log
rule can be made to behave similar to the Exp rule, instead of
MaxWeight with α = 1, near the origin in Zn

+.

Asymptotic Probability of Sum-queue Overflow under the
Log Rule: Due to space constraints we have relegated the
proof of the Log rule’s asymptotic optimality to a compan-
ion paper [9]. By leveraging the refined sample path large
deviations principle, recently introduced in [7] to study non-
homogenous schedulers like the Exp rule and the Log rule, we
are able to show that a Log-rule-like policy satisfying radial
sum-rate monotonicity (w.r.t vector (1, 1)) indeed minimizes
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the asymptotic probability of sum queue overflow, i.e.,

lim sup
n→∞

1
n

log P
(|Q(0)| > n

)
,

where P (.) denotes the stationary distribution of the Markov
chain Q under a stable scheduling policy. Leaving to basic
questions of which design objective is appropriate in designing
opportunistic schedulers, and whether the asymptotic results
are sufficiently accurate to dictate which class of scheduler
should be used. We consider these questions in the next
section.

VI. EVALUATING OPPORTUNISTIC SCHEDULER DESIGN
OBJECTIVES – SIMULATIONS

In this section we discuss a simulation-based evaluation of
opportunistic schedulers from various perspectives:

(a) performance, including mean packet delays and 99th

percentile delays of individual users as well the overall
system;

(b) sensitivity to both scheduler parameters and channel
characteristics;

(c) and graceful degradation, in terms of the fraction of
users that meet QoS objectives under overloads.

Note we consider a system as overloaded if it can no longer
meet users’ QoS requirements, this might be due to a change
in the channel characteristics, due to mobility etc. These
perspectives are clearly interrelated yet for clarity we discuss
them separately.

A. Simulation Model and Operational Scenarios

We choose an HDR-like wireless downlink [10] to compare
various scheduling rules, namely Log rule, MaxWeight, and
Exp rule. Performance comparisons for an HDR downlink
under Proportional Fair scheduling, MaxWeight, and Exp rule
were presented in [17], and showed the Exp rule to be superior
to the others. Note that the HDR downlink model differs
from the system model presented in Section II, however,
we choose this as our simulation model to demonstrate the
practical significance of our proposed scheduling rule and
allow comparison with other simulations and theoretical work
in the literature. Thus, instead of i.i.d. channel, continuous time
scheduling, and Poisson arrivals with exponentially distributed
packets sizes, here we assume that channels are correlated
over time, scheduling decisions are made once in each time

User i 1 2 3 4 5 6
E[Ri] kbps 572.8 392.1 304.6 250.1 215.1 187.9

User i 7 8 9 10 11 12
E[Ri] kbps 167.6 151.3 138.0 127.2 117.1 109.6

TABLE I
MEAN DATA RATE SUPPORTED BY WIRELESS CHANNEL OF EACH USER

LOG EXP MW
bi = 1

E[Ri]
bi = 1

E[Ri]
bi = 1

E[Ri]

ai = 10 ai = 0.05, α = 1
c = 10 c = 1, η = 0.5

TABLE II
PARAMETERS USED FOR EACH SCHEDULING POLICY

slot of duration 1.67 ms, and each user’s packets are 1Kb and
arrive as i.i.d. Bernoulli processes.

We consider n = 12 heterogenous users connected to a
single access point. The locations of the n users are taken to
be uniformly distributed in a circular cell; Table I gives the
mean data rate E[Ri] in bits/sec that the wireless channel of
each user can support. Moreover, the wireless link between
the access point and each user is taken as an independent
Rayleigh fading channel with a Doppler frequency of 18 Hz.
Specifically, in any time slot t ∈ Z, the channel state (rate
supported by the channel) of ith user is given by,

Ri(t) = BW× log2 (1 + SINRi(t)) bits/sec

and SINR (signal-to-interference-plus-noise ratio) is assumed
to hold its value over the duration of the time slot. During each
time slot, data is transmitted to a single user who is selected
according to the scheduling policy. If user i is selected in time
slot t, then (at most) 1.67ms×Ri(t) bits are transmitted from
its queue.

Due to space constraints we are only able to present
simulation results for five operational scenarios. In the first
three scenarios users see heterogenous channels but have
homogenous traffic with low λ(s,l), medium λ(s,m), or high
λ(s,h) rates given by,

λ
(s,m)
i = 2.3×




n∑

j=1

1
E[Rj ]



−1

× 1
1Kb

packets/sec,

λ
(s,l)
i = 0.98× λ

(s,m)
i , λ

(s,h)
i = 1.02× λ

(s,m)
i .

In words, for the medium case a user’s arrival rate is 2.3
times higher than that is stabilizable by a non-opportunistic
scheduler; the low and the high arrival rates are respectively
2% lower and higher than the medium. Fig. 4-(a) and (b)
show performance results under these three homogenous load
scenarios – see caption for detailed explanation. In the fourth
scenario the traffic load is kept low but User 7 (see Table
I) is moved to the edge of cell, which increases the system
load. Fig. 4-(c) exhibits the results for this case. For the fifth
scenario, users have heterogenous arrival rates given by,

λi = 2.35× E[Ri]
n

× 1
1Kb

packets/sec

i.e., arrival rate vector λ is proportional to the mean channel
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Fig. 4. Simulation-based performance comparisons for three opportunistic scheduling policies, Log Rule, Exp rule and Max Weight: (a) mean delay and
(b) 99th %−tile delay for each user and overall system, under low, medium, and high symmetric loads; (c) mean and 99th %−tile delay for each user and
overall system under low symmetric traffic but when User 7 is moved to the cell edge; and (d) mean and 99th %−tile delay for users and overall system for
the asymmetric traffic . Each cross-tick on vertical line marks a user’s performance.

rate vector E[R] and 2.35 times higher than that is stabiliz-
able by a non-opportunistic scheduler. Fig. 4-(d) exhibits the
performance results for this case.

B. Discussion of Results and Insights

Performance comparisons: As seen in Fig. 4-(a) and (b)
under low traffic, Log and Exp rules are comparable and
outperform MaxWeight. Although users see heterogeneous
channels the performance they see is very similar verifying
we have a good choice for the scheduling policy parameters,
see Table II. However, as the traffic rate increases there are
clear trends: the users’ and overall means are better under
the Log rule (up to 20% reduction), while the variability or
spread of the 99th percentile delay across users is lower under
the Exp rule (the 99th percentile delay spread is halved).
Note, however, that all but two users have 5-70% better
99th percentile delay under the Log rule versus the Exp
rule. The situation is even more favorable to the Log rule at
higher loads, where all users experience 20-80% lower mean
and 99th percentile delays versus the Exp rule (which still
maintains a lower delay spread than the Log rule). Clearly for
heterogenous channels, the Exp Rule’s strong bias towards
balancing queues is excessively compromising the realized
throughput, and eventually the mean delays and tails for almost
all users. Although asymptotically Exp rule should be optimal,
the pre-exponent must also be playing a role in determining
the systems performance.
Sensitivity: Another way to view this is that the actual perfor-
mance (not the theoretical asymptotic tail) achieved by the Exp
rule is more sensitive to the absolute values of a. Fig. 4-(a) and
(b) exhibit the degeneration in the relative performance of Exp
vs Log rule for a set of fixed parameters as the load is scaled
up. The RSM property of the Log rule naturally calibrates the
scheduler to increased load. Similarly, comparing the low and

the medium results in Fig. 4-(a) and (b) to those in Fig. 4-(c)
and Fig. 4-(d), we see the performance sensitivity to changes in
the channel or load characteristics. In both cases for most users
the mean and 99th percentile delays are better under the Log
rule and in the case of heterogenous loads, i.e. Fig. 4-(d), the
delay spreads are also improved. So unless parameters can be
carefully tuned to possibly changing loads and unpredictable
channel capacities, the Log rule appears to be a more robust
scheduling policy. Intuitively, this is what one would expect
from optimizing for the overall average versus worst case
asymptotic tail.
Graceful degradation: Suppose the user flows correspond to
buffered streaming audio sessions with a QoS requirement
of 99th percentile delay below 1 sec, see e.g., [17]. Under
medium traffic (Fig. 4-b), all users comfortably meet the QoS
requirement for both the Log and the Exp rule. However, if
User 7 moves to the cell edge (Fig. 4-c), then under the Log
rule, 9 out of 12 users versus 6 out of 12 for Exp rule meet
the QoS requirement. If instead, the traffic loads associated
with the users were to change, then as shown in Fig. 4-(d)
all users meet the QoS requirement under the Log rule versus
only 6 out of 12 under the Exp rule. Unless system resource is
provisioned extremely conservatively, i.e. for worst case, we
can expect such scenarios to arise, and this work suggests Log
rule would provide a more graceful degradation of service.

VII. CONCLUSION

This paper has made the case not only for a new class of
opportunistic scheduling policies, but also for new metrics to
design and evaluate such schedulers. Our conclusion is simple,
and in retrospect intuitive, a scheduler ‘optimized’ for the over-
all system performance is likely to be more robust to changes
in the traffic and channel statistics than the one optimized
for the worst case. The numerical results presented in this
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paper show that mean delay optimal schedulers exhibit radial
sum-rate monotonicity (RSM). Further asymptotic results in
a companion paper show that an RSM policy minimizes the
exponential decay rate of the sum-queue distribution. The
proposed Log rule policy is RSM and although not necessarily
mean delay-optimal for a given scenario, exhibits the promised
robustness vs the Exp and MaxWeight rules. The set of
presented simulations (and others not included) lend support
to the practical benefits of this new class of policies.
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APPENDIX

Proof of Theorem 1: We will use Foster’s Criterion to show
that (Qk, k ≥ 0) is positive recurrent for any stabilizable λ
(see (7)). Specifically, take a (Lyapunov) function G : Rn

+ →
R+ such that ∇G = g and G(0) = 0. Then,

Eµ̂[ G( Qk+1 )−G( Qk ) | Qk = q ]
= γ−1

∑

i∈I

λi ( G(Aiq)−G(q) ) +

γ−1
∑

i∈Iq

µ̂i(q) ( G(Diq)−G(q) ) , (22)

where, as before, Iq = {i : qi 6= 0}. Since g is differentiable,
define ġi(.) = ∂gi(.)/∂xi, ∀i ∈ I . Then G has the following
Taylor expansion for any q ∈ Zn

+,

G(Aiq)−G(q) = gi(q) +
1
2
ġi(q + αie

i) ∀i ∈ I,

G(Diq)−G(q) = −gi(q) +
1
2
ġi(q − βie

i) ∀i ∈ Iq,

for some αi ∈ [0, 1] and βi ∈ [0, 1] that depend on q. One
can rewrite (22) as follows,

Eµ̂[ G( Qk+1 )−G( Qk ) | Qk = q ]

= γ−1
∑

i∈I

λigi(q) +
γ−1

2

∑

i∈I

λiġi(q + αie
i) −

γ−1
∑

i∈Iq

µ̂i(q)gi(q) +
γ−1

2

∑

i∈Iq

µ̂i(q)ġi(q − βie
i) .

Adding and subtracting γ−1
∑

i∈I\Iq
µ̂i(q)gi(q) from the left

side of above yields,

Eµ̂[ G( Qk+1 )−G( Qk ) | Qk = q ]
= γ−1〈λ− µ̂(q), g(q)〉 + γ−1

∑

i∈I\Iq

µ̂i(q)gi(q) +

γ−1

2

∑

i∈I

λiġi(q + αie
i) +

γ−1

2

∑

i∈Iq

µ̂i(q)ġi(q − βie
i)

≤ γ−1〈λ− µ̂(q), g(q)〉 + γ−1
∑

i∈I\Iq

µ̂i(q)gi(q) +

max
{

max
{
ġi(q + αie

i) : i ∈ I
}

,

max
{
ġi(q − βie

i) : i ∈ Iq

} }
. (23)

Let u ∈ C be a service rate vector satisfying λi < ui for
all i ∈ I . Define ε1 = γ−1 mini∈I {(ui − λi)}, then clearly
ε1 > 0. Moreover, by Lemma 1, for all q ∈ Zn

+,

〈λ− µ̂(q), g(q)〉 ≤ 〈λ− u, g(q)〉 ≤ −ε1γ|g(q)|
Substituting in (23),

Eµ̂[ G( Qk+1 )−G( Qk ) | Qk = q ]
≤ − ε1|g(q)| + γ−1

∑

i∈I\Iq

µ̂i(q)gi(q) +

max
{

max
{
ġi(q + αie

i) : i ∈ I
}

,

max
{
ġi(q − βie

i) : i ∈ Iq

} }
. (24)

By using (17), when q is suitably large, gi(q) for each i ∈ I \
Iq in the second term of the above summation can be bounded
above by ε1

4 |g(q)|. Similarly, using (18), the third term of the
above summation can be bounded above by ε1

4 |g(q)|. Hence,
for q large enough, (24) becomes,

Eµ̂[ G( Qk+1 )−G( Qk ) | Qk = q ] ≤ − ε1
2
|g(q)|

Since 0 < ε < |g(q)| for all large q, the proof is complete.


