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Abstract—This paper considers the design of multiuser op-
portunistic packet schedulers for users sharing a time-varying
wireless channel from performance and robustness points of view.
For a simplified model falling in the classical Markov decision
process framework, we numerically compute and characterize
mean-delay-optimal scheduling policies. The computed policies ex-
hibit radial sum-rate monotonicity: As users’ queues grow linearly,
the scheduler allocates service in a manner that deemphasizes
the balancing of unequal queues in favor of maximizing current
system throughput (being opportunistic). This is in sharp contrast
to previously proposed throughput-optimal policies, e.g., Exp rule
and MaxWeight (with any positive exponent of queue length). In
order to meet performance and robustness objectives, we propose
a new class of policies, called the Log rule, that are radial sum-rate
monotone (RSM) and provably throughput-optimal. In fact, it
can also be shown that an RSM policy minimizes the asymptotic
probability of sum-queue overflow. We use extensive simulations
to explore various possible design objectives for opportunistic
schedulers. When users see heterogenous channels, we find that
emphasizing queue balancing, e.g., Exp rule and MaxWeight,
may excessively compromise the overall delay. Finally, we discuss
approaches to implement the proposed policies for scheduling and
resource allocation in OFDMA -based multichannel systems.

Index Terms—Delay/throughput optimality, Markov decision
process, OFDMA resource allocation, opportunistic scheduling,
radial sum-rate monotonicity (RSM).

I. INTRODUCTION

HIS paper addresses the design of scheduling policies for
T a fixed number of users sharing a wireless channel. Each
user’s data arrives to a queue as a random stream where it awaits
transmission. The wireless channel is time-varying in that the
transmission rates supported for each user vary randomly over
time. If the channel state is available, a policy can schedule
users so as to exploit favorable channels, e.g., schedule the user
that currently has the highest rate—this is referred to as op-
portunistic scheduling [1]-[3]. Our objective in this paper is
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to evaluate the design of queue-and-channel-aware schedulers
both from the point of view of performance and robustness. By
robustness, we informally mean a scheduler’s ability to perform
well for the majority of users under unpredicted/changing con-
ditions and even transient “overloads” relative to the desired
quality of service. Furthermore, if the system becomes tem-
porarily overloaded, it is desirable for an opportunistic sched-
uler to exhibit graceful degradation of service. Though there has
been a substantial amount of work on the schedulers, it is still
unclear whether scheduler design should be guided by the ob-
jectives like minimizing mean delay and the asymptotic proba-
bility of sum-queue overflow, or instead by objectives like min-
imizing the asymptotic probability of max-queue overflow. In
these considerations lies the motivation for this work and our
efforts to leverage analysis, where possible, and simulation to
reach a better understanding of this problem.

To put our work into context, we begin by summarizing
some of the key related work in this area. Among many others,
[3] considers opportunistic scheduling in a setting where users’
queues are infinitely backlogged. They identify channel-aware
opportunistic scheduling policies, which maximize the sum
throughput under various types of fairness constraints. The
missing element in this work is the impact of queueing dy-
namics. Recently, [4] showed that under a constant load,
scheduling algorithms that are oblivious to queue state will
incur an average delay that grows linearly in the number of
users, whereas the channel-and-queue aware schedulers can
achieve an average delay that is independent of the number
of users. Even before this, it was immediately recognized
that when queueing dynamics are introduced, opportunistic
scheduling policies that are solely channel-aware may not be
stable (i.e., keep the users’ queues bounded) unless the policy
is chosen carefully, e.g., using prior knowledge of mean arrival
rates [5]. For this reason, a substantial focus was placed on de-
signing schedulers that are both channel- and queue-aware and
provably throughput-optimal, i.e., ensure the queues’ stability
without any knowledge of arrival and channel statistics if indeed
stability can be achieved under any policy. Except for some
degenerate cases, such policies must tradeoff maximizing cur-
rent transmission rate (e.g., scheduling the queue with the best
channel) versus balancing unequal queues (e.g., scheduling
the longest queue). Balancing queues avoids empty queues,
which enhances the ability to exploit high channel variations
in the future. We will refer to this tradeoff many times in this
paper. Two classes of policies known to be throughput-optimal
are MaxWeight [6] (also known as Modified Largest Weighted
Work/Delay First) and Exp rule [7]. Yet, stability is a weak
form of performance optimality.

Thus, it is of interest to study opportunistic policies that are
delay-optimal—e.g., polices that minimize the overall average
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delay (per data unit) seen by the users—or policies that min-
imize the probability that either the sum-queue or the largest
queue overflows a large buffer. These polices are harder to char-
acterize for servers with time-varying capacity, but some results
are available, which we briefly discuss next.

In [8] and [9], the Longest-Connected-Queue (LCQ) and
Longest-Queue-Highest-Possible-Rate (LQHPR) policies are
introduced. Strong results are shown for these policies; they
stochastically minimize the max and sum queue process, and
thus also the max and sum queue tails and mean delay. How-
ever, in addition to assuming certain symmetry conditions on
arrival and channel statistics, [8] is limited to ON-OFF channels
where only a single user can be scheduled per time slot, and
[9] assumes that the scheduler can allocate service rates from
the current information theoretic multiuser capacity region.
In both cases, the above-mentioned tradeoff between queue
balancing and throughput maximization is absent. Indeed in
[8], all policies that pick a connected queue result in the same
transmission rate, whereas, in the case of [9], all policies that
pick a service vector from the maximal points of the current
capacity region, i.e., points on the max-sum-rate face, result in
the same overall transmission rate. Thus, one can achieve the
queue balancing goal without ever compromising throughput.
Not surprisingly, in both cases the optimal policy turns out to
be greedy in that it allocates as much service rate as possible to
the longest/longer queues.

A related server allocation problem is studied in [10]. The
paper considers minimizing themeandelayinatwo-queue system
where each queue has a dedicated server and a third server can be
dynamically shared between them. As aresult, the two queues can
be allocated servicerates froma polymatroid capacity region, thus
the objective of queue balancing can again be achieved without
compromising the total service rate. However, without the under-
lying symmetry assumptions of [8] and [9], only the existence of
a monotone increasing switching curve on the queue state space
is shown; note that the switching curve under LCQ and LQHPR
policies lies along the line where both queues are equal. For a
system with a general compact, convex, and coordinate convex
capacity region and any finite number of queues, [11] gives a
large deviations principle (LDP) for transientqueue process under
MaxWeight scheduler. This LDP can be used to compute, e.g.,
the asymptotic probability of sum-queue or max-queue overflow,
as well as the corresponding likely modes of overflow. Although
the capacity region is not changing over time, the region is such
that a scheduler must trade off maximizing total service rate with
balancingunequal queues. Therefore, thisresultisinsightfulinre-
lating the modes overflow to the tradeoff made by the MaxWeight
scheduler. A more recent work [12] gives a many-sources large
deviations result for the MaxWeight scheduler for a similar ca-
pacity region.

Finally, relaxing the symmetry assumptions of [8] and [9],
the works in [13]-[15] consider the asymptotic probability of
max-queue overflow. The server capacity in [13], though time-
varying, is identical for all users at any given time, thus the need
to trade off queue balancing versus service rate maximization
is again absent. In fact, the sum-queue process in [13] is iden-
tical for all work conserving schedulers. However, [14] and [15]
consider a server with asynchronously time-varying capacity
across users. Reference [14] studies the asymptotic probability
of max-queue overflow under MaxWeight scheduler and shows
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that as the exponent of queue length in the MaxWeight sched-
uler, o, becomes large, the asymptotic probability of max-queue
overflow under MaxWeight approaches the minimum achiev-
able under any other scheduler. A stronger result is shown in
[15], that is, the Exp rule scheduler in fact minimizes the steady-
state asymptotic probability of max-queue overflow. Indeed, the
models in [14] and [15] accurately capture a wireless channel
shared by heterogenous users and exhibit the tradeoff between
queue balancing and service rate maximization. Existence of
this tradeoff also implies that, unlike the LCQ and LQHPR poli-
cies, the asymptotic optimality of Exp rule does not translate to
minimizing the asymptotic probability of sum-queue overflow
or the mean delay. In fact, the policies that minimize mean delay
and sum-queue overflow are very different, and we believe they
are of practical interest.

In a related work on input-queued switches, [16] explains the
conjecture that deemphasizing queue balancing improves mean
delay of Maximum-Weight Matching algorithms.

1) Contributions: In this paper, we begin by characterizing
mean-delay optimal opportunistic schedulers for heterogenous
systems where the arrival and channel statistics are known. We
consider a simple model falling in the classical Markov deci-
sion process framework, where we can numerically compute
the optimal scheduling policy. Our first contribution is showing
through numerical computation that mean-delay optimal poli-
cies exhibit radial sum-rate monotonicity (RSM), i.e., when user
queues grow linearly (i.e., scaled up by a constant), the sched-
uler allocates service in a manner that deemphasizes the bal-
ancing of unequal queues in favor of maximizing current system
throughput (being opportunistic). This is in sharp contrast to
previously proposed policies, e.g., MaxWeight and Exp rules,
which, nevertheless, have the advantage of being throughput-
optimal. Our second contribution is to propose a new class of
policies, called the Log rule, that are radial sum-rate monotone
and provably throughput-optimal. These policies are favorable
both in terms of mean delay and robustness. Our simulations
for realistic wireless channels confirm the superiority of the Log
rule, which achieves a 20%—75% reduction in the mean packet
delay. The Log rule is proposed as a practical solution, but is not
provably mean-delay optimal. However, in a companion paper
[17], we use the approach of [15] to show that the candidate
RSM policy indeed minimizes the asymptotic probability of
sum-queue overflow.

Thus, we have at our disposal several opportunistic sched-
uling policies that are good for different objectives. The question
remains: In designing an opportunistic scheduler, should one be
guided by mean or asymptotic tail results, and should one focus
on individual worst case or overall system criteria?

As the third contribution of this paper, we use extensive sim-
ulation to attempt to gain further insight on the question and
evaluate the comparative effectiveness of various policies.

We also extend the proposed scheduling policies to mul-
tichannel systems supporting a large number of users, e.g.,
OFDMA-based WANSs such as LTE/WiMAX networks, where
bandwidth and power resources can be shared by multiple users
over a scheduling/transmission time interval. Recognizing
practical limits on the spectral granularity of channel feedback
in multichannel systems, we suggest a queue-aware convex
program formulation to realize opportunistic scheduling and
resource allocation policies.
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We make the following observations.

1) Minimizing mean delay versus asymptotic tails: Based on
simulations, we observe that when users see heterogenous
channels, policies such as Exp rule that aim to minimize
the exponential decay rate of delay distribution tail of the
worst user may excessively compromise average delay, in
some cases penalizing the tail distributions of many of
the users. Our simulations show that Log rule can achieve
better mean delays (overall and on a per-user basis) and
comparable or better distribution tails for many, if not all,
the users under reasonably high loads.

Graceful degradation: Due to the uncertain and changing
characteristics of wireless channels, precise resource allo-
cation to meet quality-of-service (QoS) requirements for
real-time or streaming flows is likely to be virtually impos-
sible. As such, a desirable design objective is for a sched-
uler to gracefully degrade. If there is a change in the envi-
ronment causing a temporary overload, then as many users
as possible should meet their QoS requirements rather than
all failing. Our simulation results show that Log rule com-
pares favorably in this regard. In a system with unpre-
dictable heterogenous channels, there will be a wider dis-
parity in the performance users see under the Log rule, but
a substantial number of users does very well. Hence, de-
pending on the QoS objective and specific character of the
change in user’s channels, one could end up with no users
seeing acceptable performance under the Exp rule while,
say, half the users meet their QoS requirement under Log
rule. Finally, we note that Log rule’s underlying goal of
minimizing mean packet delays might be a desirable ob-
jective from the point of view maximizing throughput seen
by best-effort traffic.

2) Organization of This Paper: This paper is organized as
follows. In Section II, the system model and definitions of “op-
portunistic capacity region” and “scheduling policy” are given.
Optimality criterion is defined, which is slightly more general
than mean packet delay. In Section III, a time-scale separation
argument is used to formulate the optimal policy as a numeri-
cally tractable Markov decision process. In Section IV, “radial
sum-rate monotonicity” is formally defined, and through numer-
ical computations, the optimal policy is shown to be (weakly)
RSM. By contrast, known heuristics (MaxWeight and Exp rule)
are shown to differ. In Section V, a new class of scheduling poli-
cies, called the Log rule, is proposed which is both RSM and
throughput-optimal. A large-deviations optimality result for an
RSM policy is also stated. In Section VI, extensive simulation
results are presented for an HDR-like downlink [18] to contrast
various scheduling policies and underlying design objectives.
In Section VII, implementation of the proposed schedulers for
OFDMA-based multichannel systems is discussed.
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II. SYSTEM MODEL

Consider the following continuous time model for scheduling
n users’ traffic over a shared wireless channel. Each user n €

={1,2,...,n} isassigned a queue in which packets with in-
dependent and exponentially distributed sizes arrive as a Poisson
stream with rate \,, packets/s. At any time ¢, define the (random)
vector Q(t) = (Qn(t),n € N) € 27, where Q,,(t) denotes the
number of packets in the nth queue at time ¢. The state of the

users’ wireless channels at time ¢ is modeled by random M (t),
which can take values in the finite set M = {1,2,...,m}. We
assume that for all ¢ # ¢/, the channel states M (¢) and M (¢)
are independent and have the same distribution as a random vari-
able M. Associated with each channel state m € M is a vector
r(m) = (rp(m),n € N'), where r,,(m) has the following in-
terpretation: When the channel is in state m and dedicated to
the nth user, then r,,(m) is the instantaneous service rate in
packets/second available to the nth user. We allow the channel
to be split among users at any time instant according to a sto-
chastic vector o (t) = (0,(t),n € N). Recall that a stochastic
vector has nonnegative components that sum up to 1, in which
case the service rate available to the nth user at time ¢ will be
o, (t)r, (M(t)). We follow the convention that capital letters,
e.g., Q(-) and M(-), denote a random variable, whereas small
letters, e.g., q(+) and m(+), denote a particular realization. More-
over, we will make the natural distinction between “increasing”
and “strictly increasing.”

The problem of scheduling users for service is then to choose
a vector o(t) for each time instant ¢, such that a given opti-
mality criterion is met. A scheduling policy is said to be static
state-feedback if it chooses the vector o(t) according to a fixed
rule based solely on the current system state (g(t),n(t)). More
precisely, a static state-feedback scheduling policy is defined as
a function f, which takes the system state (g(t),m(t)) at any
time ¢ into a stochastic vector o (t)

o(t) = f(q(t), m(t)). ey

Let F denote the set of static state-feedback policies. Given the
optimality criterion described next, Poisson arrivals, exponen-
tially distributed packet sizes, and i.i.d. channel state vectors,
there is no loss of generality in restricting our attention to the
policies in F.

A. Optimality Criterion

Consider a system initiated at ¢ = 0 in state Q(0) = ¢(0),
which evolves under scheduling policy f. The expected
long-run average queue for the nth user is given by

7,(f) = hm sup [Eq(o) { / Qn(T dT:| 2)

where [Ef denotes expectation under f conditional on Q(0) =
q. We deﬁne the delay-optimal scheduling policy f* as the one
that minimizes the total weighted average queue length, if it
exists, for a given weight vector w = (wy,,n € N)>0, ie.,

f* € argmin Z wnq,,(f)- 3)

6‘7:116./\/

It follows from Little’s Law that if the process (Q(t),t > 0)
is stationary, this optimality criterion minimizes the overall
(weighted) average packet delay seen by the n-users.

B. Stabilizability and Opportunistic Capacity Region

qu n € N,lete, € R’i denote the Zzth standard basis vector
in Ri. For eachm € M, letC,, € IR?’_;_ denote the convex hull
of origin and following n points:
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Thatis, C,, is the set of service rates that can be jointly offered to
the 7 users, conditional on the channel being in state m. Define
the opportunistic capacity region C of a channel as the set of
long-run average service rates that can be jointly offered to the
n users under all possible scheduling policies. The opportunistic
capacity region associated with the distribution of M is given by
the weighted Minkowski sum of regions C,,, i.e.,

C=PM=1)C1®--- ®&P(M =m)Cg

= { Z P(M = m)u(m) : u(m) € Cm} NG
meM

The capacity region C is a compact, convex, coordinate-convex
polyhedron in R”; whose exact shape depends on the distribution
of M[3]. Let C* = {vM), v, ... v} denote the set of max-
imal vertices of C, where [ denotes the number of vertices. For
any N/ C N, define C(N')={ueC:u, =0,Vn ¢ N},
where C(N) is the channel capacity region when the channel
is shared only among the users in /.

The following (restatement of) [19, Lemma 2.1] will be used
in the subsequent sections.

Lemma 1: Assume all queues are infinitely backlogged. For
any @ = (an,n € N) > 0, let B(e) € C denote the vector of
average service rates seen by the queues under the policy that
serves user n* at time ¢ if

n* € argma{anra (m(t))} 5)
augmented with a tie-breaking rule; then

' ). 6
Bla) € arg max{a, u) (©6)
In other words, a is an outer normal vector to the capacity re-
gion C at point B(a) on the boundary.

As shown in [6], the system of 7 queues is stabilizable if and

only if there exists a vector u = (u,,,n € N') € C such that for
alln € N

An < Up. @)

We assume that the system under consideration is stabilizable,
which implies that the weighted sum defined in (3) is bounded
under at least one stationary policy.

III. CHARACTERIZATION OF DELAY-OPTIMAL POLICY

Consider the process (Q(t),t > 0) initiated in state Q(0) =
¢(0) and evolving under a policy f. Then, conditional on the
process being in state g, the nth queue is offered an average
service rate of y,,(q) given by

tin(q) = E[rn(M) fn(q, M)] ®)

where the expectation is with respect to M . By definition of C in
(4), the average service rate vector u(q) = (pn(q),n € N) lies!
in C. We assume that over an epoch, each queue n € N is served
constantly at rate y,,(q), thus the set of n queues see state-de-
pendent service rates chosen from C. A rigorous justification of
this can be found in [20] and relies on packet or file dynamics
that are slow relative to channel variations, where the latter can

IThe map f(q,-) — p(q) € C given by (8) is surjective.
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be averaged. A similar assumption is made in [19] to obtain pro-
cessor-sharing queueing model for a slotted time system where
a packet (or file) typically takes many slots to process while the
channel can change from slot to slot. Note that strictly speaking,
it is shown in [21] that analysis under the assumption of infin-
itely fast channel variations leads to optimistic flow-level per-
formance estimates.

Under these assumptions, the scheduling problem of finding
the right function f(g, -) for each g such that the total (weighted)
average queue length is minimized [see (3)] is one of finding
the right service rate vector u(q) € C for each ¢. Using this, we
redefine a scheduling policy as a function p : Z7, — C that takes
a queue state vector in Z"} to a service rate vector in C, where
relates to f through (8).

Under a fixed policy g, the process (Q(t),¢ > 0) forms a
time-homogeneous Markov chain on Z7; with state-dependent
transition rates. For convenience, we shall uniformize Q(t). For
any q € 77, let A,q = g+ e, and D,,q = (¢ — e,) ", where
gt = (y : yn = max{0,q,}). Let v = |A| + maxyec |ul,
where | - | denotes L; norm. Let 75, denote the (random)
time of the kth transition of Q(¢) and 79 = 0. Also, let
Q. = limy|, Q(t). Then, under policy p, the process Q(¢) can
be viewed as having a state-independent event rate of y [i.e.,
(Tk+1 — Tk )~ exp(y)] and transition probabilities given by, for
alln € N

An
P(Qyy1 = A041Q, =q) = -

P(Qps1=DnqlQ, =q) = unv(q)

Al + |u(q
P(Qk+1 =q|Q,=q) =1- w )
Define the cost under policy g over [0, 7 ) when starting in
state g as Eg [ [ (w, Q(t))dt], which, ignoring a constant mul-
tiplier y~1, can be shown to be equal to

k—1

Vi(q) =Ef [Z«u, Q)

=0

(10)

Likewise, the average cost under policy p, when starting in
state g, is given by

. 1
Julq) = hlzn sup Eka‘(q).

(1)

The optimality criterion given in (3) seeks to minimize this av-
erage cost. The problem of finding the minimum average cost
and an optimal policy fits the classical dynamic programming
framework (e.g., see [22]). Thus, the minimum average cost
over all policies (denoted by J*) is well defined, independent
of the starting state, and together with a relative cost function
h: 2% — [0, 00), which is unique up to an additive constant,
satisfies Bellman’s equation, i.e., for all ¢ € 11

J* = m‘in{(w, q) + E¥[M(Qp11) — h(Qp)|Q, = ql}

min{('w./q) + Z %(h(An‘I) — h(q))

uec
neN

+ 2 (h(Dag) ~ hla) |

(12)
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Fig. 1. (a) Partitions under the optimal policy in a two-user capacity region, and partitions corresponding to (b) arrival vector A' =

A? = (0.4,0.4), and (d) arrival vector A* = (0.4,0.25).

Moreover, let Ah(q) = (h(g) — h(D,q),n € N), and define
p* as a policy that achieves the minimum in (12) for every g,
ie.,
* : Ah 13
#"(q) € arg max(u, Ah(q)) (13)
then p* is an optimal policy achieving the minimum average
cost J*. The following lemma characterizes optimal scheduling
decisions in time [see (1)] and follows from Lemma 1 by inter-
preting Ah(q) and p*(q) in (13) as a and B, respectively.
Lemma 2: The following policy achieves the minimum av-
erage cost [see (3) and (11)]: At any time when the system is
in state (Q, M) = (g,m), choose a stochastic vector o that
satisfies
on+ =1 for somen* € arg m%{Anh(q)rn(m)} (14)
ne
where h is a relative cost function satisfying Bellman’s (12).
Lemma 2 and (13) relate the tradeoff mentioned in Section I to
the geometry of vector field Ak associated with the relative cost
function. We explore this tradeoff in Section IV, where we use

relative value iteration (see, e.g., [23]) to numerically compute
h and J*.

IV. RADIAL SUM-RATE MONOTONICITY: COMPARING
THE OPTIMAL PoLICY WITH KNOWN HEURISTICS

In this section, we investigate how delay-optimal schedulers,
as well as throughput-optimal policies such as MaxWeight and
Exp rule, trade off current service rate versus balancing unequal
queues. Specifically, we consider how the service rate vector
chosen by each policy changes as the queues grow proportion-
ally from a state ¢ € Z7, to a state fq € Z’; for §>1. Note that
q and 0q lie on a radial line in R”} that passes through origin.
For any ¢, let Ng = {n € N: ¢, # 0}, i.e., the set of nonempty
queues. We begin by defining an interesting property that we
refer to as radial sum-rate monotonicity, as well as a weaker
version of this property.

Definition 1: Given a weight vector w>0, we say a sched-
uling policy p is radial sum-rate monotone with respect to
vector w if it satisfies two conditions. For any ¢ and scalar 6
such that fq € 77} :

1) the total weighted service rate (w,p(fq)) is an in-
creasing function of 6;
2) limg_oo (w, p(0q)) = maxy((w,u) : w € C(Ng)).
Moreover, we say that p is weakly RSM if it satisfies 1).

£ =
30 3¢ 5 10 qj?packgPs) 25 30 3¢

(@

10 1 20
q, ?packets)

©

(0.25,0.25), (c) arrival vector

Hence, as the queue grows proportionally, an RSM policy al-
locates service rates in a manner that deemphasizes queue bal-
ancing in favor of increasing the total weighted service rate
(with respect to weight vector w). Another useful and natural
property, called transition monotonicity [24], describes the be-
havior of a policy along an axial line, i.e., as a queue grows from
state q to a state g + fe,, for any integer >0 and n € N.

Definition 2: A scheduling policy p is transition monotone if
forallm € A and q € 77, we have? j1,,(q) < p,(q +e,), and
limg_s 00 pin (g + O€r) = maxyec Unp.

Hence, as a single queue grows while others remain un-
changed, a transition monotone policy allocates more service
to the growing queue, and in the limit, only the longest queue
is scheduled (whenever it sees a nonzero channel). As a result,
asymptotically along an axial line, the total weighted service
rate decreases.

Remark 1: Radial sum-rate and transition monotonicities
both describe the above-mentioned tradeoff as q is taken to
00, however along different paths. Indeed, a policy can be
both radial sum-rate and transition monotone, in which case
the total weighted service rate will increase along radial lines,
however (asymptotically) decrease along axial lines. Moreover,
it is simple to show that a throughput-optimal policy must be
transition monotone except possibly on a compact subset of
queue state space; see, e.g., [25].

A. Tradeoff Under Delay-Optimal Schedulers

Since the capacity region C is a polyhedron, instead of
searching over the entire region for the maximum in (13), it
suffices to only consider the vertices of C

1" () € arg max(u, Ah(q)). (15)
Hence, the optimal policy partitions the state space Z7}
into at most [ nonempty decision regions S, S?...., S,
each of which is associated with a distinct vertex, i.e.,
S' = {q : n(q) = vD}. In each region S, the sched-
uler tries to push the queue process @, along vector A — v,
Fig. 1 shows the optimal policy’s partitioning of Z7} for a
two-user system with weight vector w = (1, 1) under three dif-
ferent arrival vectors. Fig. 1(a) shows the hypothetical two-user
capacity region and arrival vectors considered. Fig. 1(b) depicts
the partition for A = (0.25,0.25) packets/s. Fig. 1(c) exhibits

2By coordinate-convexity of C, it follows that for all n’ # n, we have
tin (@) 2 pinr (Ang)).
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a more pronounced radial sum-rate monotonicity when arrival
rate is increased to A = (0.4, 0.4) packets/s, and the last plot is
intended to exhibit the warping effect on the partition resulting
from asymmetric arrival rates A = (0.4,0.25) packets/s. The
boundaries between decision region are referred to as the
switching curves.

For the optimal policy to be RSM, we must have that as
# — oo such that g € Z7 and ¢ > 0, the ratio %((:qq))
monotonically converges to , and therefore

’

wn
w,

2

elim Ah(q) x (wnliq, >0, n € N) (16)
whereas for the optimal policy to be weakly RSM, we only need

that as # increases, the ratio %(9(1) monotonically gets closer
n L(0

: 9 :
to ==~ (but is not required to converge to ==-),

By computing the relative cost function » and the optimal
scheduling policy for various arrival rate vectors and capacity
regions, we observe that the optimal policies exhibit weak ra-
dial sum-rate monotonicity. An intuitive explanation of why
the delay-optimal policies exhibit weak radial sum-rate mono-
tonicity can be based on the following two observations.

1) The cost incurred per unit time in state #q for 6>1 is more

than the cost incurred per unit time in state q.

2) The state Aq is farther from any axis than the state q.
Both observations suggest that in state ¢, an optimal policy
would indeed deemphasize queue balancing in favor of in-
creasing the current total weighted service rate.

To verify if the optimal policy is RSM, we need the asymp-
totics of the relative cost function h(fq) for large 6 [see (16)],
which we cannot compute through relative value iteration.
One can however use deterministic fluid models to obtain3
limg_, oo h(:zq); see [26, Theorem 10.0.5]. Such limits can be
used to determine the asymptotic slope of the switching curves
on the state space of the fluid-scaled queue process. For details,
see Appendix A, where we solve the fluid models of some
nontrivial systems and show that, in general, the optimal policy
may not be RSM. However, for a symmetric system subject
to sufficient load, RSM policies are fluid-scale asymptotic
optimal, and therefore RSM policies and optimal policies have
similar switching curves on the state space of the fluid-scaled
queue process.

Weighted Max-Rate Horn: Consider the decision regions S*
and 8%, i.e., regions corresponding to those vertices of C that
have the largest projection along vector w. Under the optimal
policy, union of these decision regions is shaped like a French
horn (referred to as weighted max-rate horn). As we shall see
next, under the Exp rule (with appropriately chosen constants),
the union of the same partitions is shaped like a cylinder with
gradually increasing diameter, whereas under MaxWeight, all
partitions are simply cones.

B. Tradeoffs Under MaxWeight and Exp Rule

The MaxWeight and the Exp rule policies can also be ex-
pressed in a similar form as (13). These policies replace Ah
with a suitable vector field on Z7; such that the system is stable
for any stabilizable A. Hence, the tradeoff under each policy can

3Function h exhibits quadratic growth [26, Theorem 9.0.5], therefore the limit
is meaningful.
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Fig. 2. Curves along which the direction is held constant by the vector field
(@) &(-) with b, = 1V n € N, a = 0.5, and (b) (-) with a,, = 0.1,
b, =1¥neN,c=1,7=0.5.

be investigated by considering how the vector fields change di-
rection as queues grow proportionally.

MaxWeight policies [6] can be defined as follows: When the
system is in state (Q, M) = (g, m), choose a stochastic vector
o that satisfies

on+ =1 forsome n* € arg max{¢,(q) r.(m)}
neN

where £,(q) is the nth component of € (q) = (b,q%,n € N),
for any fixed positive b,,’s and «.. Equivalently, when the queue
state is g, the policy uses a service rate vector 'V (q) given by

w
' . 17
" (q) € arg max (u, £(q)) (17)

Similarly, the Exp rule [7] is given by

X
' , 18
# (q) € arg max(u, z(q)) (18)
where
UnQn
z(q) = | b, ex neN
(9) p c+ (1Y ajq)n
JEN

for any fixed positive a,,’s, b,,’s, ¢, and 0<n<1.

While both the MaxWeight and the Exp rule are transition
monotone, neither is radially sum-rate monotone. For n = 2
and extending the domain of £ and z to R’i, Fig. 2 shows the
curves in Ri_ along which the vector fields £ and = hold their
direction, i.e.,

{ : €2(a) = “constant"} {q:

)

for various values of “constant.” Curves like these form the
boundaries of the decision regions, i.e., the switching curves.
The vector field £ is homogeneous, hence the service rate al-
location under MaxWeight is invariant as the queues grow from
state q to state fq. By contrast, in the case of the Exp rule (with b
set to w), the total weighted service rate (w, u™> (fq)) decreases
with 6, and the emphasis shifts to queue -balancing, so much
so that as § — oo, only the longest weighted queue(s) receives
service.

72(q)
r1(q)

= “constant"}
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V. IMPROVED THROUGHPUT-OPTIMAL POLICIES

We begin this section with a sufficiency theorem regarding
throughput-optimal policies.

Theorem 1: Let g: R — R’} be a gradient field (i.e., g =
VG for some G: R} — R). Moreover, suppose g is differen-
tiable on R’} and for all n € N and satisfies

9n(y)
- 19
Y- =0 g(y)| 1
. Ogn(y)/Oyn
lim —2M\INTIn 20
y=o  |g(y)] 20

and for some >0, |g(y)|>e for all y outside a compact subset of
R}, then any policy ji satisfying the following, for all ¢ € Z7,
is throughput-optimal:

ii(q) € arg max(u, g(q))- @2n

Remark 2: The condition that g be a gradient field and
|g(y)|>e outside a compact set is used to establish the existence
of a potential (Lyapunov) function G such that VG = g.
Condition (19) is needed to ensure that when queue state
vector q is large, the policy given by g is work-conserving,
i.e., it does not allocate any service rate to an empty queue at
the cost of nonempty queues. Condition (20) is used to ensure
that the Hessian of G can be dominated by its gradient in the
Taylor expansion (see proof). See Appendix B for proof. See
[25] for a similar result with a slightly different system model;
it improves upon the above result by not requiring g to be a
gradient field.

Examples: Examples of functions that satisfy the con-
ditions of Theorem 1 are £(-) with its domain extended
0 R gy) = (exp(yl).neN) for a € (0,1),
and g(y) = (log(1+1log(1+y,)),n € N), indicating
that a throughput-optimal policy can exhibit anywhere
from sublogarithmical to almost exponential sensitivity to
changes in queue lengths. Another interesting example is
9(y) = (W2 (yn +¢)*2,n € N) for a1 > @y > 0 and ¢>0,
which behave as MaxWeight with exponent «;; near the origin
in 7'} and as MaxWeight with exponent « radially far from
the origin.

A. Log Rule

In this section, we consider a class of schedulers satisfying
Theorem 1, which we refer to as the Log rule.
Definition 3: Arbitrarily fix a = (a,,n € N)>0,
b = (bp,n € N)>0, and c>1. For all y € R7, let
9"(y) = (95 (y),n € N), where g;:(y) = b, log(c + anyn).
When the system is in state (Q, M) = (g, m) [see (1)], choose
a stochastic vector o that satisfies
o, =1 forsomen® € arg max {g(@)rn(m)}. (22)
Theorem 2: The Log rule is radial sum-rate monotone w.r.t.
weight vector b (with ¢ = 1) and throughput-optimal.
Proof: First, for the throughput optimality, let u(gq) =
(u{;(q), neN ) denote the vector of service rates (under the
Log rule) seen by the queues when Q(t) = g, i.e.,

1y (q) = E [ro (M) f (g, M)] (23)

L
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q, (packets)

Fig. 3. Partitions under the Log rule witha,, = 1,b, =1V n € N,e=1.

where f L (g, m) denotes the stochastic vector chosen by the Log
rule [i.e., satisfying (22)] in state (g, m). By (22) and Lemma 1,
we have (g%(q), u*(q)) = maxycc(g"(q), ). Noting that the
functions g% and p! satisfy the conditions of Theorem 1, the
throughput-optimality of Log rule follows. To verify the radial
sum-rate monotonicity of the Log rule, we note that for any q €

_ L
27 such that 0 < @,qy < Gn'Gn, We have gﬁn(i%) T bn/bnr
as § — oo. i [ ]

With ¢ = 1 and extending the domain of g* to R%, we
note that as # — 0, we have g=(0q)/g% (0q) — angn/an qur,
i.e., close to origin in Z7, the Log rule behaves similar to
the MaxWeight with « = 1, whereas radially far away from
origin (as # — 00), g“(fq) becomes parallel to the vector
(bnly, >01,m € N), and thus the Log rule ignores queue
balancing in favor of maximizing the total weighted service
rate, (b, p~(0q)).

Fig. 3 shows the curves along which the direction of the
gradient field gL is constant; curves like these form the
switching curves and define partition of the queue state-space
into decision regions. A good choice for w, (hence b,,) is
1/E[R,], as suggested for the Exp rule in [27]. The line
{q € Z’}_: UnQn = Gp'Qn Y n,n' € N} defines the axis of the
weighted max-rate horn, whereas the magnitude of the vector a
controls the width of the horn. Increasing the magnitude of
a widens the horn and reduces the emphasis of Log rule on
balancing user queues (this is opposite to the role this parameter
plays in the Exp rule). By choosing ¢>1, the Log rule can be
made to behave similar to the Exp rule, instead of MaxWeight
with o = 1, near the origin in Z7; .

Asymptotic Probability of Sum-Queue Overflow Under the
Log Rule: Due to space limitations, we have relegated the proof
of the Log rule’s asymptotic optimality to a separate paper [17].
By leveraging the refined sample path large deviations principle,
recently introduced in [15] to study nonhomogenous schedulers
such as the Exp and the Log rules, we are able to show that for
an = 2 user system, a Log rule-like radial sum-rate mono-
tone policy [w.r.t. a given weight vector (w1, w2 )] indeed mini-
mizes the asymptotic probability of weighted-sum-queue over-
flow, i.e.,

. 1
lim sup % log P <Z wnQn(0) > k:)

k—o0 neN
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where P(-) denotes the stationary distribution of the Markov
chain @ under a stable scheduling policy.

The most-likely mode of queue overflow under an RSM
policy like the Log rule is in general quite different from the
mode under the Exp rule. Recall that the latter minimizes the
asymptotic probability of max-queue overflow [15], whereas
the former minimizes the asymptotic probability of (weighted)
sum-queue overflow.

This leads to basic questions as to which design objective is
appropriate in designing opportunistic schedulers, and whether
the asymptotic results are sufficiently accurate to dictate
which class of scheduler should be used. We consider this in
Section VI.

VI. EVALUATING OPPORTUNISTIC SCHEDULER DESIGN
OBJECTIVES—SIMULATIONS

In this section, we discuss a simulation-based evaluation of
opportunistic schedulers from various perspectives:

1) performance, including mean packet delays and 99th-
percentile delays of individual users as well the overall
system,

2) sensitivity to both scheduler parameters and channel
characteristics;

3) graceful degradation, in terms of the fraction of users
that meet QoS objectives under overloads.

Note we consider a system as overloaded if it can no longer
meet users’ QoS requirements; this might be due to a change in
the channel characteristics, mobility, etc. These perspectives are
clearly interrelated, yet for clarity we discuss them separately.

A. Simulation Model and Operational Scenarios

We choose an HDR-like wireless downlink [18] to compare
various scheduling rules, namely Log rule, MaxWeight, and Exp
rule. Performance comparisons for an HDR downlink under
Proportional Fair scheduling, MaxWeight, and Exp rule were
presented in [27] and showed the Exp rule to be superior to
the others. Note that the HDR downlink model differs from the
system model presented in Section II, however we choose this
as our simulation model to demonstrate the practical signifi-
cance of our proposed scheduling rule and allow comparison to
other simulations and theoretical work in the literature. Thus, in-
stead of i.i.d. channel, continuous time scheduling, and Poisson
arrivals with exponentially distributed packets sizes, here we
assume that channels are correlated over time, scheduling de-
cisions are made once in each time slot of duration 1.67 ms,
and each user’s packets are 1 kb and arrive as i.i.d. Bernoulli
processes.

We consider n = 12 heterogenous users connected to a
single access point. The locations of the n users are taken to be
uniformly distributed in a circular cell. The wireless link be-
tween the access point and each user is taken as an independent
Rayleigh fading channel with a Doppler frequency of 18 Hz.
Specifically, in any time slot ¢ € Z, the channel state (rate
supported by the channel) of the nth user is given by

R, (t) = BW x log, (1 + SINR,,(£)) bits/s

where BW = 800 b/s and signal-to-interference-plus-noise
ratio (SINR) is assumed to hold its value over the duration of the
time slot. During each time slot, data is transmitted to a single
user who is selected according to the scheduling policy. If user n
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TABLE I
MEAN DATA RATE SUPPORTED BY WIRELESS CHANNEL OF EACH USER
User i 1 2 3 4 5 6
E[R,] kbps | 572.8 | 392.1 | 304.6 | 250.1 | 215.1 | 187.9
User i 7 8 9 10 11 12
]E[Rn] kbps | 167.6 | 151.3 | 138.0 | 127.2 | 117.1 | 109.6

is selected in time slot ¢, then (at most) 1.67 ms x R, (t) bits
are transmitted from its queue. Table I gives the mean data rate
E[R..] in bits/second that the wireless channel of each user can
support.

LetC™ € R} denote the simplex obtained as the convex hull
of origin and the following 7 points:

That is, C™® C C is the capacity region achievable by nonop-
portunistic (but possibly channel-aware) schedulers. Let r* =
(rk,n € N') € C™ be the maximal point of C" that satisfies
ri =ry =--- = rk, then we have [18]

* d 1
r¥* = E

We present simulation results for five operational scenarios.
In the first three scenarios, users see heterogenous channels, but
have homogenous traffic with low AV medium A™) , or high
A1) packet arrival rates given by

1
1024 bits/packet
AGD = 0.98A6m)
AER) =1 g2,

-1

bits/s, n e N.

AEm) =9 3p% packets/s

In words, for the medium case, a user’s arrival rate is 2.3 times
higher than that stabilizable by a nonopportunistic scheduler;
the low and the high arrival rates are respectively 2% lower and
higher than the medium. Fig. 4(a) and (b) shows performance
results under these three homogenous load scenarios; see the
caption for a detailed explanation. In the fourth scenario, the ar-
rival rate is kept low, but User 7 (see Table I) is moved to the
edge of cell, which increases the system load. Fig. 4(c) exhibits
the results for this case. For the fifth scenario, users have het-
erogenous arrival rates given by

E[R,
An = 2.35 X L]

1
T packets/s
i.e., arrival rate vector A is proportional to the mean channel rate
vector E[R] and 2.35 times higher than that stabilizable by a
nonopportunistic scheduler. Fig. 4(d) exhibits the performance
results for this case.

B. Discussion of Results and Insights

1) Performance Comparisons: As seen in Fig. 4(a) and (b)
under low traffic, Log and Exp rules are comparable and out-
perform MaxWeight. Although users see heterogenous chan-
nels, the performance they see is very similar, verifying that we
have a good choice for the scheduling policy parameters; see
Table II. However, as the traffic rate increases, there are clear
trends: The users’ and overall means are better under the Log
rule (up to 20% reduction), while the variability or spread of
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TABLE II
PARAMETERS USED FOR EACH SCHEDULING POLICY
LOG EXP MW
— _1 —_ 1 — 1
bn =gy | O =wRa | O = ER
a, =10 an = 0.05, a=1
c=10 C=1J7:05

the 99th-percentile delay across users is lower under the Exp
rule (the 99th-percentile delay spread is halved). Note, however,
that all but two users have 5%—70% better 99th-percentile delay
under the Log rule versus the Exp rule. The situation is even
more favorable to the Log rule at higher loads, where all users
experience 20%—-80% lower mean and 99th-percentile delays
versus the Exp rule (which still maintains a lower delay spread
than the Log rule). Clearly for heterogenous channels, the Exp
Rule’s strong bias toward balancing queues is excessively com-
promising the realized throughput, and eventually the mean de-
lays and tails for almost all users. Although asymptotically Exp
rule should be optimal, the pre-exponent must also be playing a
role in determining the systems performance.

2) Sensitivity: Another way to view this is that the actual
performance (not the theoretical asymptotic tail) achieved
by the Exp rule is more sensitive to the absolute values of
a.Fig. 4(a) and (b) exhibits the degeneration in the relative per-
formance of Exp versus Log rule for a set of fixed parameters
as the load is scaled up. The RSM property of the Log rule
naturally calibrates the scheduler to increased load. Similarly,
comparing the low and the medium results in Fig. 4(a) and (b)
to those in Fig. 4(c) and (d), we see the performance sensitivity
to changes in the channel or load characteristics. In both cases,
for most users, the mean and 99th-percentile delays are better
under the Log rule, and in the case of heterogenous loads,
i.e., Fig. 4(d), the delay spreads are also improved. So unless
parameters can be carefully tuned to possibly changing loads
and unpredictable channel capacities, the Log rule appears to

be a more robust scheduling policy. Intuitively, this is what one
would expect from optimizing for the overall average versus
worst-case asymptotic tail.

3) Graceful Degradation: Suppose the user flows correspond
to buffered streaming audio sessions with a QoS requirement of
99th-percentile delay below 1 s; see, e.g., [27]. Under medium
traffic [Fig. 4(b)], all users comfortably meet the QoS require-
ment for both the Log and the Exp rule. However, if User 7
moves to the cell edge [Fig. 4(c)], then under the Log rule, 9 out
of 12 users versus 6 out of 12 for Exp rule meet the QoS require-
ment. If instead, the traffic loads associated with the users were
to change, then, as shown in Fig. 4(d), all users meet the QoS
requirement under the Log rule versus only 6 out of 12 under
the Exp rule. Unless system resource is provisioned extremely
conservatively, i.e., for worst case, we can expect such scenarios
to arise, and this work suggests Log rule would provide a more
graceful degradation of service.

VII. SCHEDULING IN MULTICHANNEL SYSTEMS

This section focuses on implementation of the Log rule for
scheduling and resource allocation in OFDMA-based multi-
channel systems, e.g., WiMax, LTE. We begin by appropriately
modifying the single-channel HDR-like system model used in
the previous section to now capture an OFDMA-based mul-
tichannel system where power and bandwidth can be shared
across multiple users over a scheduling/transmission time
interval.

So far, the implied meaning of a channel state m € M has
been “a collection of quantized SNRs measured and reported by
each user.” Since we were considering a TDMA system where
the scheduled user was allocated all the resources (power and
bandwidth), we implicitly converted the SNR reported by the
nth user into the supported transmission rate 7, (m). There-
fore, the region C,,—available service rate region conditional
on channel being in state m—was given by a simplex defined
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by rates (r,,(m),n € N'). All scheduling policies considered so
far [see (15), (17), (18), and (22)] picked a vertex of the simplex
C,, or, equivalently, scheduled a single user.

However, in wideband/multichannel systems, it is unde-
sirable (and oftentimes even infeasible) to allocate all the
resources to one user over a scheduling time interval [28].
The main reasons are as follows and will be addressed by our
proposed implementation.

* Allocating all resources to one user in the presence of typ-
ically hundreds of active users will result in bursty service
with long delays between successive allocations to a user.

» The service rate region available under all possible power
and bandwidth allocations to multiple users over a sched-
uling time interval is larger than the simplex C,,, defined
above.

A. Modifications to the System Model

As in the previous section, we consider a time-slotted system.
We can capture a multichannel system by appropriately re-
defining the meaning of channel state m and associating with
it a suitable service region C,,.

* The channel state is now defined as the collection of quan-
tized SNRs reported by each user and measured at a refer-
ence power level for each resource block (RB)* group (col-
lection of a few consecutive resource blocks). We continue
to denote by M the set of all possible channel states.

» Foreach m € M, the service region C,, is the convex hull
of the service rates (in bits/time slot) that can be jointly of-
fered to the n users under all feasible resource (power and
bandwidth) allocations, conditional on the channel being
in state m.

Feasibility is determined by the system specifications and com-
putational complexity afforded, e.g., limits on the minimum and
maximum bandwidth that can be allocated to a user, and limits
on power per user and per RB; see, e.g., [29] for a formal de-
scription of the rate region C,, in terms of various feasibility
constraints. Also, we let ¢ denote the queue length vector in
number of bits rather than packets.

B. Scheduling and Resource Allocation Polices

The general channel-aware (but queue-oblivious) rate-adap-
tive scheduling and resource allocation problem for an OFDMA
system is typically defined as follows (see [28], [29], and ref-
erences therein): When the channel is in state m, allocate re-
sources to users so that the long-run average offered service rate
conditional on the channel being in state 1 solves the following
program:

maximize U(u)

subject to wu € C,, 24)
where U: R, — R is a given urility function satisfying con-
cavity, smoothness, and separability properties. An optimal
rate u* [i.e., maximizer of (24)] corresponds to an allocation of
RBs and transmit power across users. However, much like the
single-channel case, such a queue-oblivious scheduler will not
be throughput-optimal.

4Resource blocks are the smallest chunks of bandwidth that can be allocated
to a user over a scheduling time interval.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 2, APRIL 2011

Using a convex program formulation like that in (24), we shall
define the Log rule for multichannel systems as follows.

Definition 4: When the system is in state (g, m), allocate re-
sources so that the long-run average offered service rate condi-
tional on the system being in state (g, m) is given by the solution
to the following program:

minimize

h(q —u)

subject to u € C,, 25)

where hl: R7. — R is given by

3 b, ((ai + yn> l0g(¢ + anyn) — yn)

ne./\/' n

h(y) =

and the constants (a,,n € N), (b,,n € N), and c are as in the
definition of the single-channel Log rule (see Definition 3).
The function A" is convex-increasing and can be viewed as an
approximation for the relative cost function on the queue state-
space, satisfying the Bellman’s equation. Also, note that

(LL((I — u)m € N)

L J— =
Vh*(¢—0) = DL,

u=0
= —g"(q).

Therefore, for a single-channel system where C,,, was a small
simplex, the single-channel Log rule [see (22)] can be viewed as
linearizing the convex program (25) using the first-order Taylor
expansion of h*(q — u) atu = 0, i.e.,

maximize (g"(q),u)
subject to wu € C,,.

Remark 3: The linearized version stated above may not be
suitable in a multichannel system because if the region C,, is a
simplex (or close to a simplex), the linearized program reduces
to picking a vertex and thus a single user (or allocating most of
the resources to a single user) even if all weighted queues a,, ¢,
are equal. As mentioned earlier, this is undesirable in a multi-
channel system. The region C,, in a multichannel system can
still be a simplex if, for instance, the users only report one ef-
fective SNR over the entire bandwidth (e.g., wideband CQI in
LTE [30]) and the power allocated per resource block is fixed
(i.e., the mapping from the reported CQI to the chosen mod-
ulation and coding scheme is fixed). Moreover, the analysis in
[31] shows that for certain symmetric ON—OFF multichannel sys-
tems, any resource allocation policy given by a linear program
will have a zero large-deviation rate function associated with the
max-queue (asymptotically in the number of users and channels
and in the small buffer regime.)

Fast computation algorithms to solve program (24) [or (25)]
for a general concave-increasing separable utility function /(")
are given in [28] and [29] (and references therein). The com-
plexity of the algorithm depends on the feasibility constraints
that define the region C,,. For example, assuming that service
rate at any SNR is equal to the Shannon’s capacity (with a
possible gap), a total power constraint, and that each resource
block group can be shared by an arbitrary number of users,
the algorithm obtained in [28] has a complexity of O(7b) per
iteration, where b is the number of resource block groups over
which the users report their measured SNR/CQI. It is reported
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that typically about 25 iterations are needed for the algorithm to
converge. For a similar system where users only report a single
effective SNR measured across the entire bandwidth (however,
the power and/or bandwidth can still be shared by multiple
users), the complexity of the algorithm reduces to O(7) per
iteration, which is the complexity of single-channel scheduling
algorithms [see (17), (18), and (22)] that pick only a single user.

See [32] for an implementation of a complete queue-and-
channel-aware scheduler for an LTE downlink and a perfor-
mance comparison through simulation of the Log and Exp
rules. The simulation results presented in [32] for a multi-
channel system agree with ones presented in this paper for a
simple single-channel system and reinforce the observations
made in Section VI-B.

VIII. CONCLUSION

This paper has made the case not only for a new class of oppor-
tunistic scheduling policies, butalso fornew metrics todesign and
evaluate such schedulers. Our conclusion is simple and, in retro-
spect, intuitive. A scheduler “optimized” for the overall system
performanceislikely tobe more robusttochangesinthetrafficand
channel statistics than the one optimized for the worst case. The
numerical results presented in this paper show that mean-delay
optimal schedulers are weakly RSM and, in some cases, even
RSM. Further asymptotic results in a companion paper show that
an RSM policy minimizes the tail of sum-queue distribution. The
proposed Log rule policy is RSM and, although not necessarily
mean-delay-optimal for a given scenario, exhibits the promised
robustness versus the Exp and MaxWeight rules. The set of pre-
sented simulations (and others not included) lends support to the
practical benefits of this new class of policies.

APPENDIX A
FLUID-SCALE ASYMPTOTIC OPTIMALITY AND RSM POLICIES

In Section IV-A, we observed that optimal policies u* for the
MDP, computed through relative value iteration for different ca-
pacity regions and arrival vectors, satisfied condition 1) in the
definition of RSM (see Definition 1). In this Appendix, we will
consider if and when RSM polices are fluid-scale asymptotic
optimal (FSAO), which is formally defined in the second sec-
tion. Roughly speaking, the asymptotic slopes of the switching
curves under p* and FSAO policies are identical.

For the MDP, we have already defined an optimal policy u*
by (12) and (13), and a representative RSM policy, namely the
Log rule p,L, by (23). Paralleling this, next, for a deterministic
fluid model, we will introduce an optimal fluid policy p™™* and
a greedy fluid policy u¥8. The two policies for the MDP are
related to the two policies for the fluid model, as shown in Fig. 5.
Using these relationships, one can show the following.

1) If u¥8 is not an optimal policy for the fluid model, then
p* does not satisfy condition 2) in the definition of RSM.
2) Otherwise, RSM policies like the Log rule are FSAO.
Furthermore, if u¥'# is the unique optimal policy for the
fluid model, then it follows that p* and p,L have sim-
ilar switching curves on the state-space of appropriately
scaled queue process.
The formal description follows. Subsequently, we will also con-
sider examples of fluid models where the greedy policy may or
may not be optimal.

Markov Decision Process Model
1

An optimal policy for MDP . An RSM policy for MDP,
(see (13)): pr* : eg., [
Relation between g£* and g££*:  Relation between £ and 479

Fluid limit of queue under g
converges to fluid trajectory

under ££79; see (31)-(33).

v Deterministic Fluid Model v
1

J*is fluid scale asymptotic
optimal; see (29).

A greedy policy for fluid
model (see (30)): LY

An optimal policy for fluid .
model (see (27),(28)): pF* !

Fig. 5. Relation between policy p* for MDP and policy g * for fluid model,
and between policy p" for MDP and policy p#™'¢ for fluid model.

A. Deterministic Fluid Model

One can associate a fluid model (see, e.g., [26] and [33]) with
the MDP defined in Section III, as follows. Let (z(t),¢t > 0)
be a deterministic continuous trajectory starting at point z(0) =
y € R} and evolving as

z(t)=y+ At — /0 u(r)dr

where the control u(-) € C and the control policy (u(t),t > 0)
is measurable and keeps z(-) in R"} . To indicate the dependence
of the trajectory on the control policy and initial condition, sub-
sequently we will write z%(¢;y) instead of (). The cost of
trajectory (z%(t;y),t > 0) in turn is given by
Tuly) = /0 (w, =" (t:y)) dt. (26)
Since A lies in the interior of C [see (7)], there exists at least
one control policy (u(t),t > 0) under which the cost is finite
for all finite starting points z(0).
If w(t) = p"(x(t)), then we will refer to p*: R7 — C as
a state-feedback control policy for the fluid model. It is shown
in [33] that there exists a state-feedback policy uf* with the
following properties.
e For any starting point y €
(z"F*(t;y)./t > 0) is absolutely continuous (and thus
differentiable a.e.) and satisfies for all regular ¢

D alt) = A~ (& (1),

R}, the trajectory

* The policy u¥™* is optimal for the fluid model. That is, for
any admissible policy (u(t),t > 0), we have

Tyr. (y) = /OOO <w7$“F*(t;y)> dt < Jy(y). @27

Moreover, any state-feedback optimal fluid policy u'* must sat-
isfy the Hamilton—Jacobi—Bellman equation (see [26, Proposi-
tion 4.3.2]), i.e., for all z € R}

™ (x) € arg lnax <VJ5F,. (z),'u,>

Lax (28)

where Cox = {fu € C:VneN, ifz, =0= u, < \,}is the
set of admissible controls in state . Subsequently we will use
(28) to test a candidate fluid policy for optimality.
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Fig. 6. Fluid model: (a) capacity region C, (b) fluid trajectory z"Fg(~; y)
starting at point y with y1 > ys.

B. Fluid-Scale Asymptotic Optimality

For each integer # > 0, consider an independent Markov
chain, (Q,(f),kzo), starting in state ¢(*)(0) = (|fyn],n €

N) € 2" and evolving under a scheduling policy p. Let Q(G) (t)
denote the fluid-scaled version of the Markov chain, i.e.,

0 1
Q' )(t) = gQ(Lzly teR,.

Then, the policy p is said to be FSAO if it satisfies the following

[331: t
[/0 <w’Q(9)(T)>dT} = Je.(y). (29)

o
Jm lm B o)

C. Relation Between p* and p**

The optimal policies p* for the MDP are FSAO; see [26, The-
orem 10.0.5 and Sec. 10.6.2].

D. Relation Between RSM Policy for MDP and Greedy Policy
for Fluid Model

For ease of exposition, we assume that the capacity region C
and vectors A and w are such that the arg maxycc, (w,u) is
unique for all z € IR’}_. Let us define a policy p¥8 that is greedy
with respect to the weight vector w. More precisely, u8 is given
as follows: For any z € R, we have

uF8(x) = arg max (w,u). (30)

ueCy
For example, for any £>0, the control u"8(z) is equal to the
(weighted) max-sum-rate vertex arg maxqyec (w, u).

Next, we describe the relation between the RSM policy and
the greedy policy. For each integer 6>0, consider an indepen-
dent Markov chain, Q,(f), k> 0), starting in state ¢(*)(0) =
([0yn],n € N) € 27} and evolving under an RSM policy. The
analysis in [17, Lemmas 1-3] and [34] shows that under an RSM
policy like the Log rule u", we have the following uniform con-
vergence over compact sets along some subsequence {6, }:

(@ ).t 2 0) — ().t = 0)

where the fluid-limit (g(t), t > 0) with g(0) = y satisfies

d

790 =2~ argurencaq);)<w7u>- @30
Subsequently, we will write (g(¢;y),t > 0) to explicitly indi-
cate the starting point of the fluid-limit trajectory. By comparing
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(30) and (31), we have that the fluid limit under the RSM policy
and the fluid trajectory under the greedy policy are identical, i.e.,

2 (ty) = a(t:y),

While the proof in [17] and [34] is rather lengthy, the following
observation captures the intuition: Recall the weighted max-rate
horn described in Section IV-A; for any point of the fluid-limit
trajectory in the interior of R” , i.e., g(¢)>0, the unscaled queue

t>0. (32)

ng(ej)(t) for large enough 6; lies in the weighted max-rate
horn.
Lastly, we have the following convergence in the mean:

L
lim lim E#

e g0 (o) {/Ot <w,Q(9)(T)> dr}

- / " tw.g(riy)) dr
= JEFg (y)

Main Result: See Fig. 5 and recall the relation between p*
and p* and between p and u¥8. Suppose that for a given fluid
model, the greedy policy u''® is optimal, i.e., JEF” ()= J‘ng ().
Then, it follows from (29) and (33) that p,L is FSAO. Further-
more, suppose u¥'8 is the unique (a.e.) optimal policy. Then,
since p* is also FSAO, the fluid limit (g(¢; -), ¢ > 0) of the queue
process under p* (if the limit exists) and under u" will be iden-
tical and, in turn, identical to the deterministic fluid trajectory

(33)

(z"Fg (t;-),t > 0). In other words, the switching curves under

w* and pl on the state-space of fluid-scaled queue will be iden-
tical and, in turn, identical to the switching curves under the
greedy policy uF#. Next, we show through a representative ex-
ample that if X is not too small, then p¥8 is indeed the unique
optimal policy for the fluid model.

To simplify the exposition, we restrict the system to n = 2
users, weight vector w = (1,1), and a capacity region C €
R’} depicted in Fig. 6(a). That is, C has a unique max-sum-
rate vertex (a,a), with the two adjacent vertices (a1, az) and
(a2, a1) satisfying aq 4+ a2 <2a. Let the point QO, b) be such that
the line segment joining points (a, a) and (0, b) passes through
vertex (a1, az). Then, the region C intercepts with the two axes
at points (b,0) and (0, b) for some b € (a,b). The remaining
shape of C is unspecified and can be anything (as long as C re-
mains convex).

Consider any symmetric vector A in the shaded region of C
in Fig. 6, i.e., Ay = Ay € [ag2,a). Fig. 6 depicts the trajec-
tory (z"pg (t;y),t > 0) starting from some point >0 such that

y1>1y2. The trajectory evolves as follows: If o t;y)>0, then
J y

d Fg
pE N oy
dtz (t;y) = A — (a,a)

and if m'l‘pg (t;y) > O,I’Z‘Fg (t;y) = 0, then

d ,re

E:c" (t;y) = A= (c(A2), A2)

where ¢(\2) is the first coordinate of the point (¢(A2), A2) on the
boundary of C. Then, for any starting point y such that y; > ¥,
it is easy to show that

Y1Y2
a — )\2 '

_ (’!/1 - y2)2
s 0) = Sy - 1)
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Note that J s, (+) is homogenous, i.e., Jyx, (0y) = 0%, (y),
and so V.J i, (y) VJIEFg (fy). Now we are ready to test the
policy u® for optimality using (28). Let s denote the slope
of the outer-normal to the facet joining the vertex (a,a) and
(a1,a2)of C,ie., s = 22—=; see Fig. 6. It can be shown that for
any y>0 such that y; >, the slope of gradient VJEFE. (y) lies
in (s,1], i.e.,

Va J,}:Fg (y)

VT (4) € (s,1]
whereas, on the x1-axis, the slope is equal to s. Then, by (28),
we have that p® is the unique optimal policy. In fact, along the
lines of [35], one can show that u¥ is the optimal policy for
any A, not necessarily symmetric, that lies in the shaded region
of C. Therefore, for the corresponding MDP with A, C, and w
as described above, p,L is FSAO and has same switching curves
on the state-space of fluid-scaled queue as those of p*.
However, it can also be shown that for any A<(az, as), the
policy u''® is not optimal for the fluid model. That is, there exist
states = € R}, for which J 1., (z)>J . (z). It follows from (29)
and (33) that RSM policies like 1" will not be FSAO. Since the
optimal policies pu* are FSAO, they cannot be RSM.

APPENDIX B
PROOF OF THEOREM 1

We will use Foster’s Criterion to show that (@, k > 0) is
positive-recurrent for any stabilizable A [see (7)]. Specifically,
take a (Lyapunov) function G: R’} — R, such that VG = g
and G(0) = 0. Then

(34)

where, as before, ./\/q = {n: g, # 0}. Since g is differentiable,
define §,,() = 9gn(-)/02,, Y n € N. Then, G has the fol-
lowing Taylor expansion for any g € Z7; :

G(Anq) — G(q) = gn(q) + %gn(q +ane,) VneN
G(Dng) - G(q) = — gn(g) + %gn(q ~fues)  YmeN

for some «, € [0, 1] and 3,, € [0, 1] that depend on g. One can
rewrite (34) as follows:

E*[G(Qis1) — G(Q1)IQ) = d]
= 771( Z )‘ngn(q) + % Z )‘ngn(q + Olnen)

neN neN

= > fm(@)gn(q)

nGNq

+ % Z ﬂn(q)gn(q - ﬂnen)> .

neNq

Adding and subtracting v~' 35, A\ Ny fin(q)gn(q) from the
left side of the above yields
E*[G(Qus) — G(Qu)IQ = d]

=7 ' A - i), 9@+ D fin(@)gn(a)

771
neN
7—1
TLENq

Y im(@)gnlg)

<y NN - (). 9(9) + 77

+ max { max {g,(q+ a,e,) :n € N},

mnax{gn(q—ﬂnen) 'n E/\/q} } (35)
Let u € C be a service rate vector satisfying A, <u,, for all
n € N. Define ¢; = vy~ min,en {(un — An)}, then clearly
€1 > 0. Moreover, by Lemma 1, for all g € Z’}_

(A= i(q),9(q)) < (A—u,g(q)) < —e17[g(q)]-

Substituting in (35)

E*[G(Qrs1) — G(Q1)|Q) = g

<—alg@+77" Y in(g)gnlq)
nGN\Iq

+ max{max {gn(q + ane,) :n € N},

max {gn(q — Bnen) in € ./\/q} } (36)
By using (19), when g is suitably large, g,,(q) foreachn € A\
./\/q in the second term of the above summation can be bounded
above by “{g(q)|. Similarly, using (20), the third term of the
above summation can be bounded above by - |g(q)|. Hence,
for g large enough, (36) becomes

EXG(Qusn) — G(QW)IQ = a < —lg(q)]-

Since 0<e<|g(q)| for all large g, the proof is complete.
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