
Optimality and Large Deviations of Queues under the pseudo-Log Rule
Opportunistic Scheduling

Bilal Sadiq and Gustavo de Veciana
Dept. of Electrical and Computer Engineering,

The University of Texas at Austin

Abstract— We consider a wireless node shared by multiple
user flows where the channel capacity available to each user
varies randomly with time. A scheduling rule in this context se-
lects which flow to serve based on the current channel state and
user queues. This involves a tradeoff between maximizing cur-
rent service rate (being opportunistic) versus balancing unequal
queues (enhancing user-diversity to enable future high capacity
opportunities). We propose a throughput-optimal scheduling
rule, called the pseudo-Log (p-Log) rule, and show that in
the case of two users, it maximizes the asymptotic exponential
decay rate of the sum-queue distribution. The proof relies
on the radial sum-rate monotonicity (RSM) property satisfied
by the p-Log rule, whereby as the queues scale up linearly,
the scheduling rule de-emphasizes queue-balancing in favor of
greedily maximizing the service rate. It also relies on refined
sample path large deviation principle recently introduced by
Stolyar to study such non-homogenous schedulers.

In a companion paper we demonstrate via further analysis
and simulations other virtues of RSM opportunistic schedulers
(in particular the Log rule) in terms of minimizing overall
mean delay, robustness to uncertainty in the traffic and channel
statistics etc. The p-Log rule is a slight modification of the Log
rule, for the sake of analytical convenience.

I. INTRODUCTION

We consider a two-queue-single-server system, where the
queues are fed by exogenous arrivals and the server– having
asynchronously time-varying capacity for each queue– can
be dynamically allocated to one queue or the other. This
models a wireless channel shared by heterogeneous users.
The asynchronously time-varying nature of server capacity
for each queue provides an opportunity to exploit favorable
server states, e.g., by scheduling the queue that currently has
a higher service rate – this is referred to as opportunistic
scheduling. An opportunistic or channel-aware scheduler,
however, may not even be stable, (i.e., keep the queues
bounded) unless it is chosen carefully, e.g., using prior
knowledge of mean arrival rates. Except in some degenerate
cases, in order to ensure stability (for all possibly stabilizable
arrival processes), an opportunistic scheduler must be both
channel- and queue-aware, and must tradeoff maximizing
current service rate versus balancing unequal queues. Note
that by balancing queues, one can enhance subsequent user
diversity, i.e., ensure more queues are non-empty, so as to
achieve higher service rates in the future. Moreover, the
performance of any scheduler depends on how this tradeoff
is made. The queue-and-channel-aware schedulers that can
achieve stability without knowledge of arrival or channel

This research was supported in part by grants AFOSR FA9550-07-1-0428
and NSF CNS-0721532.

statistics, if stability is at all feasible, are called throughput-
optimal. Examples are MaxWeight [1], Exp rule [2], and Log
rule [3].

Stability, however, is a weak form of optimality, and it
is of interest to study schedulers that are delay-optimal,
e.g., schedulers that minimize the overall average delay (per
data unit) seen by the users; or ones which minimize the
probability that either the sum-queue or the largest queue
overflows a large buffer. These schedulers are harder to
characterize for servers with time-varying capacity, but some
results are available that we briefly discuss next.

In [4] and [5] the Longest-Connected-Queue (LCQ) and
Longest-Queue-Highest-Possible-Rate (LCQHPR) schedul-
ing policies are introduced. Strong results are shown for
these policies; they stochastically minimize the max and sum
queue process, and thus also the max and sum queue tails
and mean delay. However, in addition to assuming certain
symmetry conditions on arrival and channel statistics, [4] is
limited to on-off server capacities where only a single queue
can be scheduled per time slot, and [5] assumes that the
scheduler can allocate service rates from the information the-
oretic multiuser capacity region associated with the current
channel state. In both cases, the above-mentioned tradeoff
between queue balancing and throughput maximization is
absent. Indeed in [4], all policies that pick a connected
queue result in the same service rate, whereas, in case of
[5], all policies that pick a service vector from the maximal
points of the current capacity region, i.e. points on the max-
sum-rate face, result in the same overall service rate. Thus
one can achieve the queue balancing goal, without ever
compromising service rate. Not surprisingly, in both cases
the optimal policy turns out to be greedy, in that it allocates
as much service rate as possible to the longest/longer queues.

A related server allocation problem is studied in [6]. The
paper considers minimizing mean delay in a two queue
system where each queue has a dedicated server and a third
server can be dynamically shared between them. Without
the underlying symmetry assumptions of [4] and [5], and
using a dynamic programming approach, the existence of a
monotone increasing switching curve on the state space of
queue process is shown; (recall that for a two queue system,
the switching curve under LCQ and LCQHPR policies lies
along the line where both queues are equal.)

Finally, relaxing the symmetry assumptions of [4] and [5],
[7] and [8] consider the asymptotic probability of max-queue
overflow. The server capacity in [7], though time-varying, is
identical for all users at any given time, thus the contention

between queue-balancing and service rate-maximization is
again absent. In fact, the sum-queue process in [7] is
identical for all work conserving schedulers. However [8]
considers a server with asynchronously time-varying capacity
across users and shows that the Exp rule minimizes the
asymptotic probability of max-queue overflow. Indeed the
model in [8] accurately captures a wireless channel shared by
heterogenous users, and exhibits the tradeoff between queue-
balancing and rate-maximization. Existence of this tradeoff
also implies that, unlike the LCQ and LCQHPR policies,
the asymptotic optimality of Exp rule does not translate to
minimizing asymptotic probability of sum-queue overflow
or the mean delay. In order to minimize the asymptotic
probability of max-queue overflow, the desirable mode of
overflow is the one where all queues (or, more precise,
the set of overflowing queues, which then exclusively share
the server,) grow at the same rate and overflow at the
same time. This constraints the system throughput, while,
of course, aggressively balancing the queues across users.
In this paper we show that a radial sum-rate monotone
scheduler (see [3] or Section III for definitions of radial sum-
rate monotonicity), called the pseudo-Log rule, minimizes
the asymptotic probability of sum-queue overflow. As we
shall see, in order to minimize the asymptotic probability of
sum-queue overflow, the desirable mode of overflow is the
one where the system throughput is the highest possible and
queues may build up at different rates. Although our focus
is on overflows of the sum-queue (instead of overflows of
the max-queue as in [8]), the general proof technique in [8]
lends itself well to our problem and we rely heavily on the
results developed therein.

Organization: The rest of the chapter is organized as
follows. The system model is described in Section II. Queue-
and-channel aware schedulers of interest and the property
of radial sum-rate monotonicity are reviewed in Section III,
followed by the introduction of pseudo-Log scheduling rule
in Section IV. The three-part main result of the paper is
summarized in Section V. Some preliminary discussion and
relevant large deviation principles follow in Section VI. The
proofs for the lower and the upper bounds stated in the
main result of the paper are discussed in Section VII and
VIII respectively. After defining local fluid sample paths and
developing essential results in Section IX, the optimality of
the p-Log rule, i.e., the last part of main result is proved in
Section X.

II. SYSTEM MODEL

Consider the following problem of dynamically allocating
a time-varying server to two queues. For each i ∈ I = {1, 2},
queue i is fed by an independent arrival process (Ai(t), t =
0, 1, · · ·) that is i.i.d over t, where Ai(t) ∈ Z+ denotes
the number of packets arriving in (the beginning of) time
slot [t, t+ 1). We assume that the arrivals are bounded, i.e.,
Ai(·) ≤ C for some finite C > 0. Let A(t) = (Ai(t), i ∈
I), and λ = E[A(1)]. We use bold face, e.g. (A(t), t =
0, 1, · · ·), to mean the random process and plain font, e.g.
(A(t), t = 0, 1, · · ·), to mean a realization of the process.

The time-varying state of the server is given by an i.i.d
random process (m(t), t = 0, 1, · · ·), where m(·) ∈ M =
{1, 2, · · · ,M} for some finite M > 0 denotes the state of
the server over [t, t+ 1), and is drawn from distribution π =
(π1, · · · , πM) > 0. Associated with each server state m ∈
M is an offered service vector µm ∈ Z2

+. When in state
m over a time slot, the server can either serve at most µm1
number of packets from queue 1, or it can serve at most µm2
number of packets from queue 2. The scheduling problem
then is to allocate the server to a queue i∗(t) ∈ I for each
time slot [t, t + 1) such that a given optimality criterion is
met.

At any integer t, let the (random) vector Q(t) =(
Qi(t), i ∈ I

)
∈ Z2

+, where Qi(t) denotes the number
of packets in the ith queue at the end of time slot [t− 1, t).
Then,

Qi(t+ 1) =
(
Qi(t) + Ai(t)− µm(t)

i 11{i∗(t)=i}
)+

.

To be precise, the server state sample path (m(τ), τ ≤ t),
the queue process sample path (Q(τ), τ ≤ t), and the arrival
process sample path (A(τ), τ < t) are available to the
scheduler prior to choosing i∗(t). Revealing A(t) too has no
bearing on the results presented here. The function i∗, viewed
as a mapping from the set of system sample paths to the set
of users, is called a scheduler or scheduling policy. It is easy
to see that under a static-state feedback scheduler, i.e. one
where i∗(t) ≡ i∗

(
Q(t),m(t)

)
, process (Q(t), t = 0, 1, · · ·)

forms a discrete time Markov chain on Z2
+.

We extend the domain of all discrete time processes and
functions to continuous time: a function (originally defined
on integer times) has the same value at any real t that it takes
at btc. Then all processes and functions defined above dwell
on the space of real-valued right continuous functions with
left limits, here denoted by D. We assume that D is endowed
with the topology of uniform convergence over compact sets
(u.o.c), and the k-times product space Dk with the product
topology. Lastly, let (Ω,F , P) be the probability space that
is large enough to define all the random processes in this
paper.

Capacity region

For each server state m ∈ M, let V m denote the closed
triangle having vertices (0, 0), (0, µm2), and (µm1 , 0). Then
the expected service rates jointly offered to the two queues
under any scheduling rule (such that the expectation exists),
conditional on the server being in state m, lies in the triangle
V m. Define the capacity region Vπ as the set of expected
service rate vectors offered to the two queues under all
possible scheduling rules, then Vπ is a convex polyhedron
given by weighted Minkowski sum of regions V m, i.e.,

Vπ = π1V
1 ⊕ · · · ⊕ πMVM ,

=

{ ∑
m∈M

πmv(m) : v(m) ∈ V m, m ∈M

}
.(1)

(See Fig. 1 for a graphical illustration of capac-
ity region: the server has M = 5 states with some

Fig. 1. (Left) Capacity region for µm ∈ {(1, 4), (3, 4), (1, 1), (4, 3), (4, 1)}, depicting Minkowski addition and outer-normal vectors; (right) resulting
partitions under p-Log.

distribution π and offered service vectors µm in set
{(1, 4), (3, 4), (1, 1), (4, 3), (4, 1)}.)

We assume there exists a v ∈ Vπ such that λ < v, which
is a sufficient condition for stabilizability of queues [1].

Note that regions V m are triangles because the server can
only be allocated to a single queue over a time slot (or equiv-
alently, the server can only be time-shared.) However, we
can relax this to allow that regions V m be arbitrary convex
polyhedrons. For example, V m can be information theoretic
polymatroids as in [5]. The optimality results presented in
this paper fall through in spite of this relaxation.

III. THROUGHPUT-OPTIMAL SCHEDULERS AND RADIAL
SUM-RATE MONOTONICITY

The throughput-optimal schedulers MaxWeight, Exp rule,
and Log rule, mentioned in the introduction, are all static
state-feedback. These schedulers can be defined as follows:
when the system is in state (Q(t),m(t)) = (Q,m), sched-
ulers MaxWeight, Exp rule, and Log rule serve a user i∗MW ,
i∗EXP , and i∗LOG respectively that is given by,

i∗MW (Q,m) ∈ arg max
i∈I

{ biQαi × µmi } ,

i∗EXP (Q,m) ∈ arg max
i∈I
{bi exp

(
aiQi

c+ (
∑
j∈I Qj)η

)
×µmi },

i∗LOG(Q,m) ∈ arg max
i∈I

{ bi log (1 + aiQi)× µmi } ,

for any fixed positive bi’s, ai’s, α, c, and 0 < η < 1, and
augmented with any fixed tie-breaking rule.

Indeed numerous throughput-optimal schedulers can be
engineered that react differently to the disparity among the
users’ queue lengths (i.e., make different tradeoffs between
service rate maximization and queue balancing), see, e.g., [9]
or Theorem 1 of [3]. A scheduler is called radial sum-rate
monotone if, as the queues scale up linearly, the scheduling
rule allocates server in a manner that de-emphasizes queue-
balancing in favor of greedily maximizing the current service
rate. More formally, let v(Q) ∈ Vπ be the vector of expected
service offered to the queues under a static state-feedback
scheduler i∗, conditional on queue state being Q, i.e.,

v(Q) =
(
E[µm

i 11{i∗(Q,m)=i}] : i ∈ I
)
,

where expectation is w.r.t (random) m drawn from distri-
bution π. Also, for any vector x, let |x| denote the sum of
its components, (and not the usual L1 norm). We say the
scheduling policy i∗ is radially sum-rate monotone if for
any Q and scalar θ such that θQ ∈ Zn+, the total expected
offered service, |v(θQ)|, is an increasing function of θ, and
limθ→∞ |v(θQ)| = max(|y| : y ∈ Vπ, yi = 0 if Qi = 0).

The Log rule described above and the pseudo-Log rule
introduced next are both radial sum-rate monotone, whereas,
the MaxWeight and the Exp rule are not (see [3]). In fact,
Exp rule is the opposite of radial sum-rate monotone, in that,
as the queues grow linearly, the Exp rule emphasizes queue-
balancing while compromising the current service rate.

IV. THE PSEUDO-LOG SCHEDULING RULE

We’ll define pseudo-Log (p-Log) scheduling rule using a
vector field h = (h1, h2) on Z2

+, the state space of queue
process: when queue is in state Q ∈ Z2

+ and the server
in state m ∈ M, then the server is allocated to queue
i∗pLog(Q,m) given by,

i∗pLog(Q,m) ∈ arg max
i∈N

hi(Q)µmi , (2)

where, in case of tie, if Q1 ≥ Q2 the channel is allocated
to queue 1, otherwise to queue 2. Since it is only the slope,
h2(Q)
h1(Q) , that determines the scheduling decision, we’ll specify
vector field using slope.

Consider the region V m, let rm denote the slope of
the outer normal to the line segment joining (0, µm2), and
(µm1 , 0), i.e., rm = µm1

µm2
, (where rm = ∞ if µm2 = 0.) Let’s

assume that channel states are sorted in ascending order of
outer normal slopes rm, i.e., r1 ≤ r2 ≤ . . . ≤ rM . Also, let
r0 = 0 and rM+1 = ∞. Let rk be the largest slope strictly
less than 1 and rl the smallest slope strictly greater than 1.

Next, we partition Z2
+ into at most M + 1 regions and

assign a constant slope to vector field h in each region. For
each m ∈ {1, · · · , k}, define partition,

Sm = {(x1, x2) ∈ Z2
+| rm−1

√
x1 ≤ x2 < rm

√
x1} , (3)

and assign h(x) a slope of rm−1+rm
2 in partition Sm (see

Fig. 1). It will be useful later to note that assigning h(x)
any slope strictly between rm−1 and rm in partition Sm
will yield the same scheduling decision as assigning h(x)

a slope of rm−1+rm
2 . The above assignment of partitions

and vector field slopes has following interpretation (see (2)):
when queue lies in any partition Sm defined so far, the server
in states {m, · · · ,M} is assigned to queue 1 and in all
remaining states to queue 2. Also, for each m ∈ {l, · · · ,M},
define a partition Sm,

Sm = {(x1, x2) ∈ Z2
+| r−1

m+1

√
x2 ≤ x1 < r−1

m

√
x2} ,

and assign h(x) a slope of
(
r−1
m+1+r

−1
m

2

)−1

in partition Sm.

Then by (2), when queue lies in any partition Sm for m ≥ l,
the server in states {1, · · · ,m} is assigned to queue 2 and in
all remaining states to queue 1. There are points in Z2

+ which
have still not been assigned to any partition; we associate
them all with partition S0, i.e.,

S0 = {(x1, x2) ∈ Z2
+| rk

√
x1 ≤ x2 ≤ (rlx1)2} ,

and assign h(x) a slope of 1 in partition S0. We’ll refer to
the horn-shaped partition S0 as max-sum rate partition.

Remark 1: Perhaps at the cost of clarity and expressive-
ness, a more compact definition of vector field h yielding
the same scheduling decision in every system state as the
definition above can be given as follows. Fix any x ∈ Z2

+,
let

i =
{

1, if x1 ≥ x2;
2, otherwise,

and let j denote the component not denoted by i. Define the
two components h1(x) and h2(x) as follows,

hi(x) =
√
xi ,

hj(x) = min(xj ,
√
xi) .

Now p-Log rule can be defined using this definition of vector
field, augmented with an appropriate tie-breaking rule. We
find the original definition of vector field h more useful for
exposition of arguments in the this paper.

Remark 2: Consider any non-empty partition Sm, and
pick an x ∈ Sm. Let v(x) ∈ Vπ be the vector of expected
service offered to the two queues under p-Log rule, condi-
tional on queue state being x, i.e.,

v(x) =
(
E[µm

i 11{i∗pLog(x,m)=i}] : i ∈ I
)
,

where expectation is w.r.t (random) m drawn from distribu-
tion π. Then, by (2) and Lemma 1 of [3],

v(x) ∈ arg max
v∈Vπ
〈v, h(x)〉 ,

where the argmax is necessarily unique for all x 6∈ S0.
Hence, in each non-empty partition Sm for 1 ≤ m ≤ M ,
vector v(x) is equal to a unique vertex of Vπ that has h(x)
as an outer normal vector. Moreover, in partition S0, if the
argmax above is not unique, then v(x) depends on the sign
of x1 − x2: if x1 − x2 ≥ 0, then v(x) is such that v1(x)
is the largest among all vertices achieving argmax in above;
otherwise, v(x) is such that v2(x) is the largest.

Now one can see that the similarity between the pseudo-
Log rule defined above and the Log rule defined in

[3]. In p-Log rule, switching curves are a constant times√
max(x1, x2), where the constant varies from one switch-

ing curve to the next; whereas, in the Log rule, switching
curves are (1 + max (x1, x2))η − 1 for some η ∈ [0, 1],
where η varies from one switching curve to the next. For
comparison see (3) and [3].

V. MAIN RESULT

The following three-part theorem– stating a lower bound
on the tail of overflow probability, an upper bound on the
same under p-Log rule, and the optimailty of p-Log rule–
summarizes the main results of this paper. The first part is
discussed in Section VII, the second in Section VIII (and
Appendix), while the last in Section X (after developing the
necessary results in Section IX).

Theorem 1: There exists finite T0 > 0 such that for any
scheduling rule and any t > T0, we have the following lower
bound:

lim inf
n→∞

1
n

logP
(
|Q(nt)| > n

)
≥ −J∗ .

where J∗ is defined in Section VII.
(ii) Now, consider the system under p-Log rule, then

process (Q(t), t = 0, 1, · · ·) forms an ergodic Markov chain,
and we have the following upper bound under the stationary
distribution of Markov chain Q,

lim sup
n→∞

1
n

logP
(
|Q(0)| > n

)
≤ −J∗∗ .

where J∗∗ is defined in Section VIII.
(iii) The p-Log rule minimizes the tail of the probability

of sum-queue overflow, i.e.,

J∗∗ = J∗ .

VI. FLUID-SCALED PROCESSES AND LARGE DEVIATION
PRINCIPLES

In this section, we define sequences of fluid-scaled pro-
cesses and functions, and give the Large Deviation Principle
[10] on those sequences, as needed for proving Theorem 1.
Define arrival flow F =

(
F (t) = (Fi(t), i ∈ I), t ≥ 0

)
constructed from process (A(t), t ≥ 0) like this,

Fi(t) =
bt−1c∑
k=0

Ai(k) ,

and flow G =
(
G(t) = (Gm(t), m ∈ M), t ≥ 0

)
constructed from process (m(t), t ≥ 0) like this,

Gm(t) =
bt−1c∑
k=0

11{m(k)=m} .

The set (Q,F,G), where Q = (Q(t), t ≥ 0) is the queue
sample path (under a fixed scheduling rule) corresponding
to the sample paths (F,G) and initial state Q(0), denotes a
realization of the system (Q,F ,G). For each n = 0, 1, · · ·
consider an independent and stochastically equivalent system
(Q(n),F (n),G(n)). The corresponding sequence of fluid-
scaled processes, denoted by (q(n),f (n), g(n)), is defined

as,

q(n) = (q(n)(t), t ≥ 0) =
(

1
n

Q(n)(nt), t ≥ 0
)
,

with f (n) and g(n) defined similarly.

For each i ∈ I , define for any λ ≥ 0 (the rate function of
sequence f

(n)
i (1)),

Li(λ) = sup
θ≥0

(
θλ− logE

[
eθAi(1)

])
,

with Li(·) =∞ over (−∞, 0). Also, for any vector λ ∈ R2
+,

let,
L(f) =

∑
i∈I

Li(λi) .

Define for any probability distribution γ = (γm, m ∈ M)
(the relative entropy of γ w.r.t distribution π),

L(g)(γ) =
∑
m∈M

πm log
γm
πm

.

with L(g)(·) = ∞ everywhere outside the simplex on RM+ .
Consider any functions (f, g) ∈ D2+M . For any t > 0,
if (f(0), g(0)) = 0 and (f, g) are absolutely continuous in
interval [0, t], then let,

Jt(f, g) =
∫ t

0

L(f)

(
f ′(s)

)
+ L(g)

(
g′(s)

)
ds ,

otherwise Jt(f, g) =∞. Function Jt(f, g) is called the cost
of trajectories (f, g) over time interval [0, t]. The following
is a form of Mogulsky theorem [10].

Proposition 1: For any fixed T > 0, consider a se-
quence in n of the fluid-scaled processes (f (n), g(n)) =(
(f (n)(t), g(n)(t)), t ∈ [0, T]

)
. Then for any measurable

B ⊆ D2+M , we have,

− inf{JT (f, g)|(f, g) ∈ B◦}
≤ lim inf

n→∞

1
n

logP
(
(f (n), g(n)) ∈ B

)
≤ lim sup

n→∞

1
n

logP
(
(f (n), g(n)) ∈ B

)
≤ − inf{JT (f, g)|(f, g) ∈ B} ,

where, B◦ and B denote the interior and closure of set B
respectively.

Let u(n) = dnα e for some fixed α ∈ (0, 0.5). For
any function h ∈ D2+M , let Unh denote the piece-wise
linear function obtained by linear interpolation over samples(
h(ku(n)

n), k = 0, 1, · · ·
)
. The following upper bound was

introduced in [8] as refined Mogulsky theorem.

Proposition 2: For any fixed T > 0, consider a se-
quence in n of the fluid-scaled processes (f (n), g(n)) =(
(f (n)(t), g(n)(t)), t ∈ [0, T]

)
. Suppose, for each n there is

a fixed measurable B(n) ⊆ D2+M , that is a subset of the set
of feasible realizations of (f (n), g(n)) in [0, T]. Then,

lim sup
n→∞

1
n

logP
(
(f (n), g(n)) ∈ B(n)

)
≤ − lim inf

n→∞
inf{JT (n)Un(f, g)|(f, g) ∈ B(n)} ,

Fig. 2. The optimal capacity vector v∗(λ(b), π) is unique, whereas, vector
v∗(λ(a), π) is any point on the annotated part of max-sum-rate face of
region Vπ .

where T (n) = u(n)
n b

nT
u(n)c.

Also introduced in [8] is a notion of generalized fluid
sample path (GFSP) which we describe next. Consider a
sequence in n of realization (q(n), f (n), g(n)) such that along
some subsequence (still denoted by {n}), we have the u.o.c
convergence

(q(n), f (n), g(n))→ (q, f, g)

for some Lipschitz continuous functions (q, f, g), and the
u.o.c convergence

J
(n)

=
(
J

(n)

t , t ≥ 0
)
,

=
(
Jt(n)Un(f (n), g(n)), t ≥ 0

)
→ J =

(
J t, t ≥ 0

)
for some non-negative increasing Lipschitz continuous func-
tion J . Then following construction is called a GFSP,

ψ =
[
(q(n), f (n), g(n)), J

(n)
, n = 0, 1, · · · ; (q, f, g); J

]
.

The function J is called the refined cost function of GFSP.

VII. LOWER BOUND ON OVERFLOW PROBABILITY UNDER
ANY SCHEDULING RULE

For any distribution γ on the set M of server states, let
Vγ be the corresponding capacity region (see (1)). For any
vector λ ∈ R2

+, define a capacity vector v∗(λ, γ) given by,

v∗(λ, γ) ∈ arg max{|v| : v ≤ λ, v ∈ Vγ} . (4)

For an example, see Fig. 2 depicting v∗(λ, π) for two
hypothetical vectors λ(a) and λ(b) lying outside capacity
region Vγ . The interpretation is, if the arrival process were
to have an empirical mean λ and the server state to have
a “twisted” distribution γ, then serving queues according to
the capacity vector v∗(λ, γ) minimizes the rate of sum-queue
build-up, |λ− v∗(λ, γ)|.

Finally, define the minimum cost (per unit increase in sum-
queue) J∗,

J∗ = inf
γ,λ

L(g)(γ) + L(f)(λ)
|λ− v∗(λ, γ)|

. (5)

Sketch of Proof of Theorem 1-(i): Let (λ∗, γ∗) be a

point that achieves the minimum in (5), and let T0 =
(|λ∗ − v∗(λ∗, γ∗)|)−1. We show that regardless of the
scheduling rule, all realizations (f, g) sufficiently close to
(λ∗t, γ∗t) over interval [0, T0]– thus having cost JT0(f, g)
close to J∗– lead to overflow at time T0. See [11] for detailed
proof.

VIII. UPPER BOUND ON OVERFLOW PROBABILITY
UNDER THE P-LOG RULE

Let J∗∗ denote the lowest refined cost of a GFSP that
raises |q(t)| to 1 from the initial state q(0) = 0, i.e.,

J∗∗ = inf
t≥0

J∗∗,t , (6)

where,

J∗∗,t = inf{J t|ψ : q(0) = 0, |q(t)| ≥ 1} .

The following is a restatement of Theorem 1-(ii) in terms of
a sequence of fluid scaled queues.

Theorem 2: For each n = 1, 2, . . ., consider the system
under p-Log rule in a stationary regime. Then, the corre-
sponding sequence of fluid-scaled processes is such that,

lim sup
n→∞

1
n

logP
(
|q(n)(0)| > 1

)
≤ −J∗∗ .

Remark 3: This is the equivalent of Theorem 8.4 of [8],
and its proof too follows the same framework and uses clas-
sical Wentzel-Freidlin constructions [Fre98]. The theorem
establishes two things: firstly, that the upper bound on the
probability of overflow when starting with empty queues,
given by Stolyar’s refinement to Mogulsky’s upper bound,
indeed reduces to inf over the cost of GFSPs of interest; and
secondly, that a GFSP with the cheapest limiting trajectories
(f, g) that can raise the sum queue |q| to 1, starting with
empty queues, indeed has a cost arbitrarily close to the cost
of the cheapest trajectory starting in the stationary regime.
See [11] for proof.

It is clear that J∗∗ ≤ J∗ (since −J∗ was lower bound
under any scheduling rule.) To prove the optimality of p-
Log rule, we need show J∗∗ = J∗. In the following section,
we gradually develop the results needed for this proof.

IX. LOCAL FLUID SAMPLE PATH

Let us first motivate the need for a LFSP (local fluid
sample path.) For each n, define the set S(n)

m as fluid scaling
of partition Sm, i.e.,

S(n)
m = {x ∈ R2

+ : nx ∈ Sm} .

Then for the nth system, the scheduling decision at time
t depends on which set S(n)

m the queue q(n)(t) lies in. As
n → ∞, (the characteristic function of) set S(n)

0 converges
pointwise to (the characteristic function of) S(∞)

0 = {x ∈
R2

+ : x > 0}; while all other scaled partitions except S(n)
0

collapse to one of the axes. Note that this is true for any
radial sum-rate monotone scheduling rule w.r.t. weight vector
(1, 1). For the limiting trajectory q(t), while we can still

show that,

if q(t) ∈ S(∞)
0 , then

d

dt
|q(t)| = d

dt
|f(t)| − max

v∈Vγ(t)
|v|,

we lose information about service rate when q(t) hits an
axis. Hence, we define a local FSP, that has a finer than
fluid scaling, and under which partitions do not collapse.

Consider a GFSP over some interval [0, T] and fix any
τ ∈ (0, T) such that q(τ) 6= 0. Any sequence τ (n) → τ
has a subsequence along which q(n)(τ (n)) → q(τ). Set

σn =
√
q
(n)
∗ (τ (n))

/√
n, where, q(n)

∗ (·) = maxi∈I q
(n)
i (·).

Following re-scaled functions over interval [τ (n), τ (n) +
σnS], parameterized by s ∈ [0, S], are called the local fluid
sample paths:

�q
(n)
i (s) =

1
σn

(
q
(n)
i

(
τ (n) + σns

)
− q(n)

i

(
τ (n)

))
,

�q̂
(n)
i (s) =

1
σn

q
(n)
i

(
τ (n) + σns

)
,

�d
(n)(s) = �q̂

(n)
1 (s)− �q̂(n)

2 (s) ,

�f
(n)
i (s) =

1
σn

(
f

(n)
i

(
τ (n) + σns

)
− f (n)

i

(
τ (n)

))
,

�g
(n)
m (s) =

1
σn

(
g(n)
m

(
τ (n) + σns

)
− g(n)

m

(
τ (n)

))
.

Then along some subsequence in n, functions(
�q

(n), �f
(n), �g

(n)
)

converge uniformly over [0, S]
to Lipschitz continuous functions

(
�q, �f, �g

)
, whereas,

for each i ∈ I , �q̂
(n)
i either converges uniformly to a finite

Lipschitz continuous function �q̂i, or is identically equal to
∞, and function �d(n)(s) converges uniformly to a finite
Lipschitz continuous function �d, or is identically equal to
+∞ or −∞. Since q(τ) 6= 0, it must be that �q̂i =∞ for at
least one i ∈ I . Note that the local fluid queue, �q, is merely
a re-centered version of �q̂, i.e., �q̂(s) = �q(s) + �q̂(0), and
is always finite by virtue of this re-centering. Moreover,
the trajectory �q dwells in space {x ∈ R2|x ≥ −�q̂(0)},
which is at least a half-plane. Lastly, we have the following
relation between the cost of LFSP and the refined cost
sequence of GFSP over [τ (n), τ (n) +σnS] (see (9.3) of [8],)

JS(�f, �g)− J0(�f, �g) ≤ lim inf
n→∞

1
σn

(
J

(n)

τ(n)+σn
− J (n)

τ(n)

)
(7)

A. Scheduling over time scales of LFSP
Without loss of generality, suppose q1(τ) ≥ q2(τ). Then

by (3), for n large enough, the scheduling decision in interval
[τ (n), τ (n) + σnS] depends on the sign of �d(n)(s), (recall
the tie-breaking rule mentioned in the description of p-Log
rule in Section IV,) and then on the ratio,

Q2

(
nτ (n) + nσns

)
√
Q1

(
nτ (n) + nσns

) =
�q̂

(n)
2 (s)

√
q
(n)
1 (τ (n))√

q
(n)
1 (τ (n) + σns)

,

which converges to �q̂2(s) = �q2(s) + �q̂2(0) uniformly in
[0, S]. Hence, switching curves on the space of �q are now

Fig. 3. Partitions and switching curves on space of local fluid queue �q.

parallel to �q1 axis. More precisely, for each 1 ≤ m ≤ k,
define set �Sm by appropriately re-scaling the partition Sm,
i.e.,

�Sm = {(x1, x2) ∈ R2| rm−1 ≤ x2 + �q̂2(0) < rm} .

Lastly, define,

�S0 = {(x1, x2) ∈ R2| rk ≤ x2 + �q̂2(0)} .

(See Fig. 3 for graphical illustration.) Then µ(s), service
rate seen by the local fluid queue �q(s) at time s, depends on
which re-scaled partition �Sm contains �q(s). We also define
a vector field �h over the state space of �q like this: for each
m ≤ k, assign �h the same slope in set �Sm as h has in Sm.
The following Lemma– essentially relating the service rate
µ(s) to the vector field �h(�q(s))– can be derived without
much effort from the results on MaxWeight scheduler in
[1], (these results relate the service rate under MaxWeight
scheduler to the vector field defining the scheduler.)

Lemma 1: (See Lemma 9.1 of [8]) For any LFSP, for
almost all s ∈ [0, S], the following derivatives exist and are
finite.

λ(s) =
d

ds
�f(s) ,

γ(s) =
d

ds
�g(s) ,

d

ds
�q(s) = λ(s)− µ(s) ,

for some,

µ(s) ∈ arg max
v∈Vγ(s)

〈�h(�q(s)), v〉 . (8)

Remark 4: Under the definition of �h (or originally h),
argmax in (8) is necessarily unique unless �q(s) ∈ �S0.
Even in case �q(s) ∈ �S0, the service rate µ(s) can still be
uniquely identified by further considering the sign of �d(s):
if �d(s) ≥ 0, µ(s) is such µ1(s) is largest among all points
achieving max in (8); similarly, if �d(s) < 0, µ(s) is such
that µ2(s) is the largest.
Points in [0, S] where the above derivatives exist– and they
exist a.e.– are called regular. The following lemma shows that
any interesting GFSP contains a similar cost LFSP. It serves
the same purpose for the problem at hand as the result in
Section 11 of [8] does for the max-queue overflow problem.
See [11] for proof.

Lemma 2: Suppose a GFSP ψ is given that satisfies

q(0) = 0, |q(T)| = 1 for some T > 0 and has a cost
JT < ∞. Then, for an arbitrarily small ε > 0, an LFSP(
�q, �q̂, �d, �f, �g

)
over an arbitrarily large interval [0, S]

can be constructed from the elements of ψ, such that,

|�q(S)| − |�q(0)| ≥ θS , (9)

for some θ > 0 (independent of ε), and cost (per unit increase
in sum queue) of this LFSP is bounded above by JT + ε,
i.e.,

JS(�f, �g)− J0(�f, �g)
|�q(S)| − |�q(0)|

≤ JT + ε . (10)

X. PROOF OF THEOREM 1-(III): OPTIMALITY OF THE
P-LOG RULE

Recall that to prove optimality of p-Log rule (Theorem
1-(iii)), we need show J∗∗ ≥ J∗. We’ll do this by showing
that assuming J∗∗ < J∗ leads to a contradiction (with the
definition of J∗.)

Suppose J∗∗ < J∗, then by definition of J∗∗ in (6), there
exists a GFSP ψ satisfying q(0) = 0, |q(T)| = 1 for some
finite T > 0, and having a cost JT < J∗. Then by Lemma 2,
we can construct an LFSP

(
�q, �q̂, �d, �f, �g

)
satisfying (9)

and (10) for an ε small enough so that J∗∗∗ ≡ JT + ε < J∗.
Without loss of generality, suppose �q̂1 = ∞, (and all

switching curves on the space of �q are parallel to �q1 axis.)
Let S1 and S2 respectively be the first and the last time in
[0, S] such that the trajectory �q2(s) ≤ −�q̂2(0) + rk, with
S1 = S2 = S if �q2(s) never hits [−�q̂2(0),−�q̂2(0) + rk].
Note that trajectory �q(s) lies in �S0 in (0, S1) and (S2, S).
Then one of the following must be true over interval [0, S1]
(similarly [S2, S]):

(a) |�q(0)| < |�q(S1)| and the cost per unit increase in
sum-queue over the interval [0, S1] is less than J∗∗∗,
i.e.

JS1(�f, �g)− J0(�f, �g)
|�q(S1)| − |�q(0)|

≤ J∗∗∗ .

(b) |�q(0)| < |�q(S1)| and the cost per unit increase in
sum-queue over the interval [0, S1] is strictly greater
than J∗∗∗, i.e.

JS1(�f, �g)− J0(�f, �g)
|�q(S1)| − |�q(0)|

> J∗∗∗ .

(c) |q(0)| ≥ |q(S1)| .

If (a) is true for either one of the intervals (suppose its true
for [0, S1],) proceed like this: define vectors γ̂, λ̂, and µ̂ as
the average channel distribution, arrival rate, and service rate
respectively over [0, S1], i.e.,(

γ̂, λ̂, µ̂
)

=
1
S1

∫ S1

0

(
g′(s), f ′(s), µ(s)

)
ds,

By Lemma 1 and the fact that (�q(s) : 0 < s < S1) lies in
�S0, we have µ(s) ∈ arg maxv∈Vγ(s) |v|. This and the lin-
earity of µ(s) in γ(s) (see (1)) implies µ̂ ∈ arg maxv∈Vγ̂ |v|.
Then,

|�q(S1)| − |q(0)| =
(
|λ̂| − |µ̂|

)
S1 ,

≤ |λ̂− v∗(λ̂, γ̂)|S1 , (11)

where v∗(λ̂, γ̂) is as defined in (4). Finally,

J∗ > J∗∗∗ ≥ JS1(�f, �g)− J0(�f, �g)
|�q(S1)| − |�q(0)|

,

≥

(
L(f)(λ̂) + L(g)(γ̂)

)
S1

|�q(S1)| − |�q(0)|
,

≥
L(f)(λ̂) + L(g)(γ̂)

|λ̂− v∗(λ̂, γ̂)|
,

where the first inequality follows from the assumption that
(a) is true, the second from convexity of rate functions, and
the last one from (11). However, by the definition of J∗ in
(5), the RHS of last inequality cannot be less than J∗, hence
giving the contradiction we needed.

Now, if (a) is not true for both intervals [0, S1] and [S2, S],
then we must have, for arbitrarily small ε1 > ε,

JS2(�f, �g)− JS1(�f, �g)
|�q(S2)| − |�q(S1)|

≤ J∗∗∗ ,

and, for some fixed θ1 > 0,

JS2(�f, �g)− JS1(�f, �g) ≥ θ1S ,
|�q(S2)| − |�q(S1)| ≥ θ1S ,

S2 − S1 ≥ θ1S.

Both the terminal values, �q2(S1) and �q2(S2), lie within the
bounded interval [−�q̂2(0),−�q̂2(0) + rk]. Any such LFSP
can be extended from the interval [S1, S2] to a longer interval
[S1, S

′
2], so that �q2(S′2) = �q2(S1). Moreover, it can be done

in such a way that the increments JS′2(�f, �g)− JS2(�f, �g)
and |�q(S′2)|− |�q(S2)| are uniformly bounded on the termi-
nal values �q2(S1) and �q2(S2). Finally, constant S can be
chosen large enough such that,

�q2(S1) = �q2(S′2), |�q(S′2)| > |�q(S1)| ,

and for some ε4 > 0,

JS′2(�f, �g)− JS1(�f, �g)
|�q(S′2)| − |�q(S1)|

< J∗ − ε4 . (12)

Set b0 = −�q̂2(s); for each 1 ≤ m ≤ k, choose a
bm ∈ [−�q̂2(s)+rm−1,−�q̂2(s)+rm] such that the counting
measure of set {s ∈ [0, S′2] : �q(s) = bm} is finite; lastly,
choose a bk+1 <∞ large enough that �q2(s) < bm+1, (such
{bm} exist since �q is Lipschitz.) For each 1 ≤ m ≤ k + 1,
define set Bm = {s ∈ [S1, S

′
2] : bm−1 ≤ �q2(s) ≤ bm}.

Then for all m ∈ {1, 2, ..., k + 1},∫
Bm

�q
′
2(s) ds = 0 . (13)

Moreover, there exists a set Bm such that,∫
Bm

|�q′(s)| ds > 0 ,

and,

∫
Bm

(
L(f)

(
�f
′(s)
)

+ L(g)

(
�g
′(s)
))

ds∫
Bm
|�q′(s)| ds

≤ J∗ − ε4 ,

otherwise (12) will not hold. Define λ̂, γ̂, and µ̂ as,(
λ̂, γ̂, µ̂

)
=

1
ν(Bm)

∫
Bm

(
�f
′(s), �g′(s), µ(s)

)
ds .

Since set Bm intersects with at most two adjacent partitions
�S(·), the service vector µ̂ is a convex combination of at
most two adjacent vertices of capacity region Vγ̂ (see (8).)
Therefore, µ̂ is necessarily a maximal element of Vγ̂ . This
together with the fact λ̂2 = µ̂2, (which follows from (13),)
we get µ̂ = arg minv∈Vγ̂ |(λ̂− v)+| = v∗(λ̂, γ̂). Then,∫

Bm

|�q′(s)| ds = |λ̂− v∗(λ̂, γ̂)| ν(Bm) .

Finally,

J∗ − ε4 ≥

∫
Bm

(
L(f)

(
�f
′(s)
)

+ L(g)

(
�g
′(s)
))

ds∫
Bm
|�q′(s)| ds

,

≥
L(f)(λ̂) + L(g)(γ̂)

|λ̂− v∗(λ̂, γ̂)|
.

By the definition of J∗, the RHS of last inequality cannot be
less than J∗, hence giving the contradiction we needed.

REFERENCES

[1] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar,
and P. Whiting, “Scheduling in a queuing system with asynchronously
varying service rates,” Probab. Eng. Inf. Sci., vol. 18, no. 2, pp. 191–
217, 2004.

[2] S. Shakkottai and A. Stolyar, “Scheduling for multiple flows sharing a
time-varying channel: The Exponential Rule,” American Mathematical
Society Translations, Series 2, vol. 207, 2002.

[3] B. Sadiq, S. J. Baek, and G. de Veciana, “Delay-optimal opportunistic
scheduling and approximations: the Log rule,” Submitted.

[4] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel
queues with randomly varying connectivity,” IEEE Trans. Inf. Theory,
vol. 39, no. 2, pp. 466–478, Mar 1993.

[5] E. M. Yeh and A. S. Cohen, “Delay optimal rate allocation in
multiaccess fading communications,” in Proceedings of the Allerton
Conference on Communication, Control, and Computing, 2004, pp.
140–149.

[6] B. Hajek, “Optimal control of two interacting service stations,” Au-
tomatic Control, IEEE Transactions on, vol. 29, no. 6, pp. 491–499,
Jun 1984.

[7] D. Bertsimas, I. Paschalidis, and J. Tsitsiklis, “Asymptotic buffer
overflow probabilities in multiclass multiplexers: an optimal control
approach,” Automatic Control, IEEE Transactions on, vol. 43, no. 3,
pp. 315–335, Mar 1998.

[8] A. L. Stolyar, “Large deviations of queues sharing a randomly time-
varying server,” Queueing Syst. Theory Appl., vol. 59, no. 1, pp. 1–35,
2008.

[9] C. Zhou and G. Wunder, “General stability conditions in wireless
broadcast channels,” in Forty-Sixth Annual Allerton Conference on
Communication, Control, and Computing, Sep 2008.

[10] A. Dembo and O. Zeitouni, Large deviations techniques and applica-
tions, 2nd ed. Springer, 1998.

[11] B. Sadiq and G. de Veciana, “Optimality and large deviations
of queues under the psuedo-Log rule scheduling,” Technical
Report, 2008. [Online]. Available: www.ece.utexas.edu/∼gustavo/
logruleoptimality.pdf

