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Abstract We consider multi-class multi-server queuing systems where a sub-
set of servers, called a server pool, may collaborate in serving jobs of a given
class. The pools of servers associated with different classes may overlap, so
the sharing of server resources across classes is done via a dynamic alloca-
tion policy based on a fairness criterion. We consider an asymptotic regime
where the total load increases proportionally with the system size. We show
that under limited scaling in size of server pools the stationary distribution for
activity of a fixed finite subset of servers has asymptotically a product form,
which in turn implies a concentration result for server activity. In particu-
lar, we establish a clear connection between the scaling of server pools’ size
and asymptotic independence. Further, these results are robust to the service
requirement distribution of jobs.

For large-scale cloud systems where heterogeneous pools of servers collab-
orate in serving jobs of diverse classes, a concentration in server activity indi-
cates that the overall power and network capacity that need to be provisioned
may be substantially lower than the worst case, thus reducing costs.
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1 Introduction

Modern Internet services are increasingly driven by cloud infrastructure where
thousands of collocated servers are employed in a centralized fashion to serve
user requests. An important problem in engineering such large scale systems
is the optimization and efficient use of resources. The design of such systems
is made complex by the dynamic characteristics of service demands, which
include stochastic arrivals of user requests/jobs, diversity in demand types,
and random service requirements.

System designers often adopt a pessimistic approach towards resource al-
location, in that, they aim for acceptable user-performance under extreme or
even worst-case scenarios. However, such extreme scenarios may be unlikely
(or may be made unlikely) and a pessimistic design may result in overprovi-
sioning. A basic question in this setting is: For what system configurations and
demand characteristics can we be optimistic in provisioning resources?

This paper has three key messages which we discuss below. The first mes-
sage: concentration in servers’ activity facilitates resource provisioning. As sys-
tems become large and service types become more diverse such that no single
service dominates resource usage, the load across individual servers becomes
increasingly uncorrelated. This may in turn result in concentration of servers’
activity, i.e., the distribution of the number of active servers is concentrated
around its mean. Such a result enables one to provision for the peak power
capacity to be close to the average power requirement without a significant
risk of overload. Similarly, for content delivery applications where activity of a
server is connected to the rate at which bits are downloaded from the server,
such concentration results would allow one to provision for a shared network
link with capacity close to the average traffic demand without significantly
affecting user-performance.

Existence of such a concentration result depends on the extent to which
there is diversity and independence in the load spread across the servers. To
better understand how diversity in service types impacts servers’ activity, con-
sider a system with m servers, each with service capacity µ. Let the job arrival
rate be λm and mean service requirement of jobs be ν. For stability, assume
λν < µ. We will consider systems that use resource pooling, in that the ca-
pacity of multiple servers may be pooled together as follows: if k servers are
pooled together to serve a job, the job can be served at a maximum rate of
kµ. Note, however, these resources are shared among jobs and the pools may
overlap. In this setting, consider the following two extreme cases:

Case 1: Single service type and complete resource pooling: Suppose that jobs
belong to a single service type, and that all m servers can be pooled
to serve each job. This system can be modeled as a G/G/1 queue with
arrival rate λm and load ρ = λν/µ. For a work-conserving service
policy, either all m servers are active or idle at the same time with
probability ρ and 1− ρ respectively.



Asymptotic Independence in Queueing Systems with Limited Resource Pooling 3

Case 2: Multiple service types and no resource pooling: Now, suppose that there
are m job classes. Each job class has a dedicated server. The arrivals
and service requirements of different classes are independent. Suppose
the arrival rate for each class is λ, and mean service requirement for
jobs in each class is ν. This system can be modeled as consisting of
m independent G/G/1 queues, each with load ρ = λν/µ. For queues
with work conserving service policy, at any time t each server is active
with probability ρ and the activities of different servers are indepen-
dent. By Weak Law of Large Numbers, for any ε > 0 the stationary
probability that the number of active servers exceeds (1 + ε)ρm tends
to 0 as m→∞.

In Case 2 the servers’ activity concentrate due to independence in load,
thus facilitating resource provisioning for the large scale system. By contrast,
in Case 1 the activities of different servers are correlated due to complete
resource pooling and one may need to provision for the peak number of servers
being active. Thus, a question arises: do servers’ activity concentrate in systems
where limited resource pooling is allowed? Such systems fall in between the
above two extreme cases, in that, there may be diverse service types and
a limited amount of resource pooling which correlates instantaneous server
activities.

The second message: servers’ activity concentrate even if we allow limited
resource pooling of servers. To better understand the impact of limited resource
pooling, in this paper we consider multi-class multi-server systems where for
each job class the capacity of a unique subset of servers can be pooled to
jointly serve the class’s jobs. Furthermore the pools of servers serving different
classes may overlap, which opens up an opportunity to dynamically vary the
allocation of service capacity across job classes. We consider the case where
the service rate allocated to each class depends on the numbers of jobs across
classes, and call the corresponding policy a resource allocation policy.

Such a system can model a centralized content delivery infrastructure
where each file is replicated across multiple servers so as to address high
demands and possible reliability issues. Systems which combine multipath
transport with server diversity can support parallel downloads from multi-
ple servers, where different chunks of a file can be downloaded in parallel
from servers possibly via multiple paths. The resource allocation policy would
thus model the dynamically varying sum-rate a download job receives from its
server pool.

In this paper, we focus on Balanced Fair (BF) resource allocation, which
was introduced in [4] as a bandwidth sharing model for networks where flows
compete for the available bandwidth across network links on their pre-defined
route. Several studies have shown close structural relationship between bal-
anced fairness and proportional fairness [3, 4, 13]. Further, equivalence and
comparison results among several fairness policies in [16, 17] imply that, for
large systems employing resource pooling, the choice among fairness principles
in resource allocation and performance may be of limited significance.
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To understand the role of overlapping pools on possible concentration prop-
erties of such systems, we consider a sequence of systems where the number
of servers m grows. We allow total system load and total server capacity to
scale linearly with m. For a given m we consider server pools of fixed size
c(m), which may scale with m but as o(m). We assume that the load across
different server pools (equivalently, job classes) is homogeneous. This may be
achieved by, for example, grouping of several service types into a class so that
the overall load per group is roughly the same (see [16,17] for more discussions
on impact of heterogeneity in loads). For such a system, we show that the joint
stationary distribution of the activity of a fixed finite subset of servers takes
a product form as m→∞, which in turn implies that a WLLN holds for the
servers’ activity. In summary, as long as resource pools are of size o(m) one
will see a concentration in server activity.

The above concentration result is ‘insensitive’, in that, the dependence on
the service requirement distribution for each class is only through its mean.
This follows from our adoption of insensitive balanced fair resource alloca-
tion [4]. This brings us to the third message: one’s optimism in resource
allocation due to concentration in servers’ activity is independent of service
requirement distribution, i.e., only depends on its mean. This is analogous
to insensitivity in symmetric queueing systems where the distribution of the
number of active jobs in a system is known to be insensitive to service-time
distributions [10], although our interest is mainly in the distribution of servers’
activity for large scale coupled systems.

Relationship to prior work: Prior work which is closest in spirit to ours
is that studying the existence of a mean field regime for the super-market
queuing model [7, 14, 18]. In the super-market model the servers are coupled
through a routing policy, unlike our model where they are coupled through
a servicing policy. In the supermarket model, upon arrival of a job a random
subset of servers of size d is selected and the job is routed to the server with
the least number of jobs waiting for service. For a fixed value of d, asymptotic
independence in the number of waiting jobs for a fixed finite subset of servers
was shown in [7] for several classes of service distributions.

A mean field result for the number of waiting jobs was also shown for a
symmetric loss network model [11, 19], where upon arrival of a job (or a call
in their terminology) it is allocated to a fixed w number of servers at random.
In this work, rather than routing to one of the w servers as in supermarket
model, each job ‘locks’ resources at w servers for a random time. The maximum
number of jobs that can lock resources at a given server at any point in time is
fixed. Again, w is assumed to be constant. Further, the random locking time
is assumed exponential.

In comparison, in this paper we consider a setting where a job arrives with
a random service requirement, is served jointly by a subset of servers, and
leaves the system upon completion of its service. Sojourn times of jobs thus
depend on how server resources are shared across different job-types. We allow
the number of servers that can be pooled together for serving a job to scale
with m. We also let the distribution of the service requirement be arbitrary.



Asymptotic Independence in Queueing Systems with Limited Resource Pooling 5

i1

i2
s1

s2

n(m) Classes

m Servers

i3

s3

s4

i4

i5

i6

Fig. 1: Graph G(m) = (F (m) ∪ S(m);E(m)) for m = 4 and c(m) = 2 modeling
availability of a servers S(m) to serve jobs in classes F (m).

Under these assumptions, we are able to show the existence of a mean field
only for servers’ activity, and not for the number of waiting jobs.

In terms of tools used, instead of analyzing sample paths of the underlying
stochastic processes as done in above prior work, we use the knowledge of sta-
tionary distribution of waiting jobs under balanced fair resource allocation [4].
Since its proposal in [4] as a bandwidth sharing policy for wireline network, it
has been a useful device towards analyzing user-performance in several kinds
of network models [3, 5, 6, 16,17].

Outline of the paper: In Section 2 we describe our system model. In Sec-
tion 3 we provide our main result where we show concentration in servers’
activity. In Section 4 we consider engineering implications of this result.

2 System Model

Consider a system with a set S(m) = {s1, s2, . . . , sm} of m servers. Each server
has service capacity ξ > 0. Jobs arrive into the system as an independent
Poisson process with rate λm. Job service requirements are i.i.d. with mean
ν. Let ρ = λν. We assume that ρ < ξ to ensure stability. Upon arrival of
a job, c(m) > 1 servers are chosen at random, and their capacity pooled, to
serve this job. Let F (m) represent the set of all possible pools of size c(m). Let
n(m) , |F (m)|. Thus, n(m) =

(
m
c(m)

)
.

We view the system as consisting of n(m) job classes, where arrivals for
each class occur as an independent Poisson process with rate λm/n(m). Let

ρ(m) = (ρ
(m)
i : i ∈ F (m)), where ρ

(m)
i = ρm/n(m) denotes the load associated

with class i.1 We view the association of classes with server pools via a bipartite

1 Our model may be generalized in the following ways without affecting our results:
1) The service requirement distribution may be different for each class as long as the mean



6 Virag Shah, Gustavo de Veciana

graph G(m) = (F (m)∪S(m);E(m)) where an edge e ∈ E(m) exists if it connects
a class i ∈ F (m) to a server s ∈ S(m) associated with the server pool of i, see

Fig. 1. For each class i ∈ F (m), let N
(m)
i denote its neighbors, i.e., the set of

servers available to serve jobs in class i.
Let qi(t) denote the set of ongoing jobs of class i at time t, i.e., jobs which

have arrived but have not completed service. Let x(t) = (xi(t) : i ∈ F (m)),
where xi(t) , |qi(t)|, i.e., x(t) captures the number of ongoing jobs in each
class. Let X(m)(t) be the corresponding random vector capturing the random
number of ongoing jobs in each class at time t.

For any x(t), let Ax(t) denote the set of active classes, i.e., classes with at

least one ongoing job. Further, for each s ∈ S(m), let

Y (m)
s (t) = 1{

∃i∈AX(t) s.t. s∈N(m)
i

}.
If Y

(m)
s (t) is 1 we say that the server s is active at time t.
For each v ∈ qi(t) and s ∈ S(m), let bv,s(t) be the rate at which server

s serves job v at time t. Let bv(t) be the total rate at which job v is served
at time t by the file-server system. If job v arrives at time tav and has service

requirement ηv, then it departs at time tdv such that ηv =
∫ tdv
tav
bv(t)dt.

Our service model is subject to the following assumption.

Assumption 1 Sharing of system service capacity among ongoing jobs is such
that:

1. A server s can concurrently serve multiple jobs as long as
∑
v bv,s(t) ≤ ξ

for all t.
2. Multiple servers can concurrently serve a job v at time t giving a total

service rate bv(t) =
∑
s bv,s(t).

3. The service rate bv,s(t) allocated to a job v at server s at time t depends
only on its job’s class and the numbers of ongoing jobs x(t). Thus, for each
i, the jobs in qi(t) receive equal rate at time t which depends only on x(t).

Let r
(m)
i (x′) be the total rate at which class i jobs are served at time t

when x(t) = x′, i.e., at any time t, r
(m)
i (x(t)) =

∑
v∈qi(t) bv(t). Let r(m)(x) =

(r
(m)
i (x) : i ∈ F (m)). We call the vector function r(m)(.) the resource allocation.

Polymatroid Capacity Region: For a given graph G(m), it was shown that
under Assumption 1 the set of feasible rate vectors, i.e., the capacity region,
is a polymatroid, see [16]. A polytope C is a polymatroid if there exists a set
function µ : {0, 1}F → R such that

C =

{
r ≥ 0 :

∑
i∈A

ri ≤ µ(A), ∀A ⊂ F

}
,

service requirement is same for each class.
2) The arrival rate and mean service requirement may be different for each class as long as

their product (which equals to ρ
(m)
i ) is same for each class.
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and if µ(.) satisfies the following properties:
1) Normalized: µ(∅) = 0.
2) Monotonic: if A ⊂ B, µ(A) ≤ µ(B).
3) Submodular: for all A,B ⊂ F ,

µ(A) + µ(B) ≥ µ(A ∪B) + µ(A ∩B).

A function µ(.) satisfying the above properties is called a rank function. Poly-
matroids and submodular functions are well studied in the literature, see
e.g., [8, 15].

The following proposition holds under Assumption 1.

Proposition 1 ([16]) Consider graph G(m). For each A ⊂ F (m), let

µ(m)(A) , ξ
∣∣∣∪i∈AN (m)

i

∣∣∣ ,
i.e., µ(m)(A) is the maximum sum rate at which the jobs in classes belonging
to set A can be served. Further, let

C(m) ,

{
r ≥ 0 :

∑
i∈A

ri ≤ µ(m)(A), ∀A ⊂ F (m)

}
.

Then, the following statements hold:
1) µ(m)(.) is a submodular function.
2) Under Assumption 1, C(m) is the polymatroid capacity region associated
with the system.

Further, the following holds for the rank function µ(m)(.).

Proposition 2 For each k ≤ n(m), we have∑
A⊂F (m):|A|=k

µ(m)(A) = ξm

((
n(m)

k

)
−
(
n(m−1)

k

))
.

The proof of this proposition is straightforward. Notice that the term
(
n(m)

k

)
−(

n(m−1)

k

)
captures the number of subsets of F (m) of size k which are served by

a given server.
Given the capacity region C(m), there are several feasible resource alloca-

tion policies r(m)(.) which may dynamically vary the service rate of each class
r(m)(x) ∈ C(m) for each x, to achieve fairness/load-balancing objectives. For
a discussion and comparison of different resource allocation policies, see [17].
In this paper, we assume Balanced Fair resource allocation leveraging its an-
alytical tractability and insensitivity properties. Further, it serves as an ap-
proximation to proportionally fair/α-fair allocation policies on polymatroid
capacity regions [3, 4, 13]

Balanced fair resource allocation: Balanced Fairness (BF) was intro-
duced in [4] as a bandwidth allocation policy in networks to provide insensi-
tivity in stationary distribution for the number of jobs in a bandwidth sharing



8 Virag Shah, Gustavo de Veciana

network. We adopt balanced fairness to provide a resource allocation policy
for our system with capacity region C(m).

Formally, the balanced fair resource allocation for a polymatroid capacity
region can be given as follows, see [4]. Let ei be a unit vector in ith direction.
For each i ∈ F (m) and for each x we have

r
(m)
i (x) =

Φ(m)(x− ei)

Φ(m)(x)
, (1)

where the function Φ(m) is called a balance function and is defined recursively
as follows: Φ(m)(0) = 1, and Φ(m)(x) = 0 ∀x s.t. xi < 0 for some i, otherwise,

Φ(m)(x) = max
A⊂Ax

{∑
i∈A Φ

(m)(x− ei)

µ(m)(A)

}
. (2)

As shown in [4], (1) ensures insensitivity, while (2) ensures that r(m)(x) for

each x lies in the capacity region, i.e., the constraints
∑
i∈A r

(m)
i (x) ≤ µ(m)(A)

are satisfied for each A. It also ensures that there exists a set B ⊂ Ax for which
we have

∑
i∈B r

(m)
i (x) = µ(m)(B). In fact the balanced fair resource allocation

is the unique policy satisfying the above properties.
Since ρ < ξ, one can check that ρ(m) lies in the interior of C(m). It follows

from a stability result in [4] that the process (X(m)(t) : t ∈ R) is stationary
and ergodic under balanced fair resource allocation. Further, the stationary
distribution is given by

π(m)(x) =
Φ(m)(x)

G(m)(ρ(m))

∏
i∈Ax

(
ρ
(m)
i

)xi

, (3)

where,

G(m)(ρ(m)) =
∑
x′

Φ(m)(x′)
∏
i∈Ax′

(
ρ
(m)
i

)x′i
.

Recall, ρ
(m)
i = ρm/n(m) for each i.

The existence of such an expression for stationary distribution makes bal-
anced fairness amenable to our analysis. While, in general, BF may result in
wasteful resource allocation, e.g., BF is not Pareto efficient for certain triangle
networks studied in [4], for polymatroid capacity regions BF is has been shown
to be Pareto efficient:

Proposition 3 ([16]) For polymatroid capacity regions, the balanced fair re-

source allocation is Pareto efficient, i.e.,
∑
i∈Ax

r
(m)
i (x) = µ(m)(Ax) for each

x.

Thus, the total service rate is same for all x such that Ax = A. Let

G
(m)
A (ρ(m)) ,

∑
x:Ax=A

Φ(m)(x)
∏
i∈A

(
ρ
(m)
i

)xi

.
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Then, under the stationary distribution π(m), for each A ⊂ F (m) we have

Prπ(m) (AX(m) = A) =
G

(m)
A (ρ(m))

G(m)(ρ(m))
.

Using Proposition 3 one can obtain a recursive expression for G
(m)
A (ρ) as

given below. For a proof, see [16].

Proposition 4 ([16]) Let G
(m)
∅ (ρ(m)) = 1. Then, G

(m)
A (ρ(m)) for each A ⊂

F (m) can be computed recursively as

G
(m)
A (ρ(m)) =

∑
i∈A ρ

(m)
i G

(m)
A\{i}(ρ)

µ(m)(A)−
∑
j∈A ρ

(m)
j

. (4)

3 Asymptotic independence and concentration in servers’ activity

The following lemma provides the expectation of the overall servers’ activity

Lemma 1 For a given m, if ρ < ξ then we have

Eπ(m)

[
µ(m)(AX(m))

]
= ρm, (5)

Proof By definition of µ(m)(.) and Assumption 1 we have

1

t

∫ t

0

µ(Ax(τ))dτ =
1

t

∫ t

0

∑
s

∑
v

bv,s(τ)dτ =
1

t

∫ t

0

∑
v

bv(τ)dτ

Further, by ergodicity of the system we have

Eπ(m)

[
µ(m)(AX(m))

]
=

1

t

∫ t

0

µ(AX(τ))dτ a.s.

Since service requirements of jobs are i.i.d. and the system is ergodic, for
almost every sample path the term 1

t

∫ t
0

∑
v bv(τ)dτ tends to λνm. Hence the

result holds. ut

Recall, Y
(m)
s captures the activity of server s. By Pareto optimality of the

balanced fair resource allocation for our system we have

Eπ(m)

[
µ(m)(AX(m))

]
= ξEπ(m)

 ∑
s∈S(m)

Y (m)
s

 .
By symmetry and linearity of expectation, for each s ∈ S(m) we have

Eπ(m) [Y (m)
s ] = ρ/ξ.
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Indeed, showing concentration in
∑m
l=1 Y

(m)
sl as m → ∞ is equivalent to

showing concentration in µ(m)(AX(m)) close to its mean. Further, for a given

m,
(
Y

(m)
s1 , Y

(m)
s2 , . . . , Y

(m)
sm

)
is an exchangeable vector of random variables.

A weak convergence result for a sequence of exchangeable vectors was shown

in [1,9], which when applied to
((
Y

(m)
s1 , Y

(m)
s2 , . . . , Y

(m)
sm

)
: m ∈ N

)
implies that

1
m

∑m
l=1 Y

(m)
sl converges to a constant in probability if and only if the joint-

distribution of
(
Y

(m)
s1 , Y

(m)
s2 , . . . , Y

(m)
sk

)
for a finite k takes a product form as

m→∞. The following theorem is the first main result in this paper.

Theorem 1 Consider a sequence of systems with an increasing number of
servers m. Suppose that the total arrival rate of jobs is λm for the mth system,
and that the service capacity of each server is a constant ξ. Let load per server
ρ = λν be a constant such that ρ < ξ.

Upon arrival of a job, c(m) > 1 servers are selected at random for its service
(equivalently, its class is selected at random). Assume c(m) is o(m). Jobs share
the server resources according to the balanced fair resource allocation. For each

m, the system is stationary. Under stationary distribution, let Y
(m)
s represent

instantaneous activity of server s.
Then, the following equivalent statements hold:

(a) For any finite integer k, the random variables Y
(m)
s1 , Y

(m)
s2 , . . . , Y

(m)
sk are

asymptotically i.i.d. as m→∞.

(b) lim
m→∞

∑m
l=1 Y

(m)
sl

m
= ρ/ξ in probability.

Proof: Equivalence of (a) and (b) thus follows from Proposition 7.20 in [1].
We prove (a) below for ξ = 1 without loss of generality. Again by Proposi-
tion 7.20 in [1], it is sufficient to show that the result holds for k = 2.

Let

T (m)
s,1 , {A ⊂ F (m) : s ∈ ∪i∈AN (m)

i }

and similarly,

T (m)
s,0 , {A ⊂ F (m) : s /∈ ∪i∈AN (m)

i }

Recall the definitions of G
(m)
A (ρ(m)) and G(m)(ρ(m)). Then, for b ∈ {0, 1}, we

have

Pr
(
Y (m)
s = b

)
=

∑
x s.t. Ax∈T (m)

s,b

π(m)(x)

=
∑

A∈T (m)
s,b

G
(m)
A (ρ(m))

G(m)(ρ(m))

= (1− ρ)1{b=0} + ρ1{b=1}. (6)

Further,
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Pr
(
Y (m)
s1 = b1, Y

(m)
s2 = 0

)
=

∑
A∈T (m)

s1,b1
∩T (m)

s2,0

G
(m)
A (ρ(m))

G(m)(ρ(m))

=

∑
A∈T (m)

s1,b1
∩T (m)

s2,0
G

(m)
A (ρ(m))∑

A∈T (m)
s2,0

G
(m)
A (ρ(m))

∑
A∈T (m)

s2,0
G

(m)
A (ρ(m))

G(m)(ρ(m))

=

∑
A∈T (m)

s1,b1
∩T (m)

s2,0
G

(m)
A (ρ(m))∑

A∈T (m)
s2,0

G
(m)
A (ρ(m))

Pr
(
Y (m)
s2 = 0

)

=

∑
A∈T (m)

s1,b1
∩T (m)

s2,0
G

(m)
A (ρ(m))∑

A∈T (m)
s2,0

G
(m)
A (ρ(m))

(1− ρ) (7)

Consider the denominator
∑
A∈T (m)

s2,0
G

(m)
A (ρ(m)). By symmetry,

∑
A∈T (m)

s2,0
G

(m)
A (ρ(m)) =∑

A∈T (m)
sm,0

G
(m)
A (ρ(m)). Also for each A ∈ T (m)

sm,0
,

G
(m)
A (ρ(m)) =

∑
x:Ax=A

Φ(m)(x)
( m

n(m)
ρ
)|x|

=
∑

x:Ax=A

Φ(m)(x)

(
m− 1

n(m−1)
(m− c(m))ρ

m− 1

)|x|
,

since m−1
n(m−1)

m−c(m)

m−1 = m
n(m) .

However, it is easy to check that T (m)
sm,0

is the power set of F (m−1). Thus,

∑
A∈T (m)

sm,0

G
(m)
A (ρ(m)) =

∑
A⊂F (m−1)

∑
x:Ax=A

Φ(m−1)(x)

(
m− 1

n(m−1)
(m− c(m))ρ

m− 1

)|x|

=
∑

A⊂F (m−1)

G
(m−1)
A

(
ρ′

(m−1)
)
,

where,

ρ′
(m−1)

,

(
ρ′

(m−1)
i ,

m− 1

n(m−1)
(m− c(m))ρ

m− 1
: i ∈ F (m−1)

)
.

Thus, in turn,∑
A∈T (m)

s2,0

G
(m)
A (ρ(m)) =

∑
A⊂F (m−1)

G
(m−1)
A

(
ρ′

(m−1)
)

= G(m−1)
(
ρ′

(m−1)
)
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Using similar arguments, one can show that∑
A∈T (m)

s1,b1
∩T (m)

s2,0

G
(m)
A (ρ(m)) =

∑
A∈T (m−1)

s1,b1

G
(m−1)
A

(
ρ′

(m−1)
)

Combining above equalities, we get,

∑
A∈T (m)

s1,b1
∩T (m)

s2,0
G

(m)
A (ρ(m))∑

A∈T (m)
s2,0

G
(m)
A (ρ(m))

=

∑
A∈T (m−1)

s1,b1

G
(m−1)
A

(
ρ′

(m−1)
)

G(m−1)
(
ρ′(m−1)

)
=

(
1− (m− c(m))ρ

m− 1

)
1{b1=0} +

(m− c(m))ρ

m− 1
1{b1=1}

where the last equality follows from (6). By substituting this in (7) we get

Pr
(
Y (m)
s1 = b1, Y

(m)
s2 = 0

)
= (1− ρ)

((
1− (m− c(m))ρ

m− 1

)
1{b1=0} +

(m− c(m))ρ

m− 1
1{b1=1}

)
(8)

By using law of total probability, and taking the limit as m→∞, we get,

Pr
(
Y (m)
s1 = b1, Y

(m)
s2 = b2

)
m→∞−→

2∏
i=1

(
(1− ρ)1{bi=0} + ρ1{bi=1}

)
.

Hence the theorem holds. ut
We now illustrate the impact of increasing the values of m and c(m) on

the degree of pairwise independence of server activity by providing an explicit
expression for Pearson’s correlation coefficient for the activities of two servers
as well as the total variation distance between their joint distribution and the
associated product form distribution for finite m. Recall that for exchangeable
random variables pairwise independence is sufficient for concentration. Let σY
represent variance of random variable Y and let Cov(Y, Z) represent covari-
ance of random variables Y and Z. Using (8) we can show that the Pearson’s
correlation coefficient for the activities of two servers can be given as

ρ
Y

(m)
s1

Y
(m)
s2

,
Cov(Y

(m)
s1 , Y

(m)
s2 )

σ
Y

(m)
s1

σ
Y

(m)
s1

=
c(m)

m
.

The total variation distance between two probability measures P and P ′

on sigma algebra F on a sample space Ω is defined as

δ(P, P ′) , sup
A∈F
|P (A)− P ′(A)|.
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If Ω is finite then it can be equivalently given as

δ(P, P ′) =
1

2

∑
ω∈Ω
|P (ω)− P ′(ω)|.

Let P
Y

(m)
s

represent the distribution of Y
(m)
s and let P

Y
(m)
s1

Y
(m)
s2

represent

the joint distribution of Y
(m)
s1 and Y

(m)
s2 . Using (8) and direct computations

we can show that

δ
(
P
Y

(m)
s1

Y
(m)
s2

, P
Y

(m)
s1

P
Y

(m)
s2

)
= 2

c(m)

m
ρ(1− ρ).

We have assumed that the sizes of resource pools are homogeneous for
a given system to obtain clean results. We conjecture that if pool sizes are
heterogeneous but o(m) then with sufficient diversity (randomness) in the
choice of resource pools our concentration results will hold.

4 Engineering Implications

In previous section, we showed that the total number of active servers concen-
trates close to its mean. In this section we study its implication for provisioning
of the peak power capacity and/or of a shared network link for such large scale
systems.

Several modern systems are designed so that the power usage of a server is
low when it is inactive [2,12]. Thus, the total instantaneous power draw in such
systems is an increasing function of the total number of active servers. Thus, a
concentration in servers’ activity implies that the peak power draw is unlikely
to be significantly away from the mean power consumption. This allows one to
reduce infrastructure costs by provisioning for a peak power capacity which is
close to the average power requirement without a significant risk of overload.

Similarly, for centralized content delivery systems where the servers are
collocated and are connected to the users via a shared network link, see Fig. 2,
a concentration in servers’ activity facilitates provisioning of the network link.
In such systems, the total number of active servers is proportional to the overall
network traffic volume. Intuitively, Theorem 1 implies that if the bandwidth
of the shared network link is greater than (1 + ε)ρm, the link may cease to
become a bottleneck as m becomes large. Below, we make this intuition more
precise.

Consider a content delivery system where the bandwidth the shared net-
work link is β(m). Thus, the maximum sum-rate at which bits may be down-
loaded from the servers is β(m). In this section we assume that if upon arrival
of a job the service capacity µ(m)

(
AX̂(m)(t)

)
exceeds β(m) then the job is

blocked, where X̂(m)(t) represents the number of jobs in the modified system.

Thus, X̂(m)(t) is restricted to remain within the following set:

A(m) ,
{

x : µ(m)(Ax) ≤ β(m)
}
.
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server s1

server s2

server sm Users

Shared network link

Fig. 2: A centralized content delivery system where collocated servers are con-
nected to users via a shared network link.

For such a system, the stationary distribution X̂(m), namely π̂(m)(.), is
a truncated version of π(m)(.) (see (3) for definition of π(m)(.)). Indeed this
follows since π(m)(.) satisfies detailed balance conditions, see [10]. Thus, π̂(m)(.)
can be given as follows: for each x,

π̂(m)(x) =
π(m)(x)1{x∈A(m)}∑

x∈A(m) π(m)(x)
. (9)

A class i arrival gets blocked if it sees a state x in the following set:

Bi , {x ∈ A(m) : x + ei /∈ A(m)}.

By PASTA, the probability that a class i arrival gets blocked is given by:

p
(m)
i =

∑
x∈Bi

π̂(m)(x).

Let

B , {x ∈ A(m) : µ(m)(Ax) > β(m) − c(m)}

and note that for each i we have Bi ⊂ B. It follows that

p
(m)
i ≤

∑
x∈B

π̂(m)(x).

Now, suppose that β(m) scales as (1 + ε)ρm for some ε > 0. Then, from
Theorem 1, the denominator in (9), namely

∑
x∈A(m) π(m)(x), tends to 1 as

m → ∞. Thus, the impact of truncation by network capacity becomes negli-
gible as the system becomes large. More formally, the theorem below follows
by noting that c(m) is o(m).
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Theorem 2 Consider a sequence of content delivery systems as in Theorem 1.
Further suppose that the servers are connected to the users via a shared network
link of bandwidth β(m) = (1 + ε)ρm for some ε > 0. Suppose if upon arrival of
a job the aggregate service capacity µ(m)(AX(m)) exceeds β(m) then the job is
blocked.

For each m, the system is stationary. Under stationary distribution, let

Ŷ
(m)
s represent the instantaneous activity of server s. Let p

(m)
i be the probability

that a class i job is blocked. Then, the following statements hold:

(a) lim
m→∞

sup
i
p
(m)
i → 0.

(b) lim
m→∞

∑m
l=1 Ŷ

(m)
sl

m
= E

[
Ŷ (m)
s1

]
in probability.

5 Conclusions

The aim of in this paper was to further our understanding of server dynamics
in large scale systems which explicitly leverage resource pools, and the related
resource allocation problems. There is a scope of improving these results on
at least two fronts:

1. We use a weak law of large numbers for a triangular array of exchangeable
variables to show concentration in server activity. The concentration may
be made more precise by using central limit theorems for such random
variables (see Corollary 20.10 in [1]).

2. For content delivery systems, we studied the impact of a shared network
link for a case where the link bandwidth is O(m) greater than the average
traffic demand. One may strengthen this result by considering cases where
the link bandwidth is closer to or lower than the average traffic demand.
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