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Abstract We consider multiclass queueing systems where the per class service rates
depend on the network state, fairness criterion, and is constrained to be in a symmetric
polymatroid capacity region. We develop new comparison results leading to explicit
bounds on the mean service time under various fairness criteria and possibly hetero-
geneous loads. We then study large-scale systems with a growing number of service
classes n (for example, files), m = ⌈bn⌉ heterogenous servers with total service rate
ξm, and polymatroid capacity resulting from a random bipartite graph G(n) modeling
service availability (for example, placement of files across servers). This models, for
example, content delivery systems supporting pooling of server resources, i.e., parallel
servicing of a download request from multiple servers. For an appropriate asymptotic
regime, we show that the system’s capacity region is uniformly close to a symmetric
polymatroid—heterogeneity in servers’ capacity and file placement disappears. Com-
bining our comparison results and the asymptotic ‘symmetry’ in large systems, we
show that large randomly configured systems with a logarithmic number of file copies
are robust to substantial load and server heterogeneities for a class of fairness criteria.
If each class can be served by cn = ω(log n) servers, the load per class does not
exceed θn = o

(
min( n

log n , cn)
)
, mean service requirement of a job is ν, and average

server utilization is bounded by γ < 1, then for each constant δ > 1, the conditional
expectation of delay of a typical job with respect to the σ -algebra generated by G(n)

satisfies the following:
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lim
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1 Introduction

In many shared network systems, service rate is allocated to ongoing jobs based on a
fairness criterion, for example, α-fair (αF) (including max-min and proportional fair)
as well as balanced fair (BF), and other greedy criteria [26]. When the network loads
are stochastic a key open question is how the choice of fairness and network designwill
impact user perceived performance, for example, job delays, as well as the sensitivity
of performance to heterogeneity in network resources and traffic loads. Motivated by
this challenge, in this paper we take a step towards understanding these issues by
investigating performance bounds for an interesting class of stochastic networks with
symmetric polymatroid capacity under various fairness criteria.

The second question driving this paper is whether large scale systems can be
designed to be inherently robust to heterogeneity and at what cost. Specifically, we
consider centralized content delivery systems where a collection of servers deliver
a proportionally large number of files. There has been substantial recent interest
in understanding basic design questions for these systems, including, for example,
[10,14,20,24] and references therein: How should the number of file copies scale
with the demand?What kinds of hierarchical caching policies are most suitable? How
to best optimize storage/backhaul costs for unpredictable time-varying demands?

We consider a centralized systemwith several collocated servers. The replication of
files across servers is kept static.Weallow resource pooling, i.e., parallel file downloads
from multiple servers akin to peer-to-peer systems. In principle, with an appropriate
degree of storage redundancy, one can achieve much better peak service rates, exploit
diversity in service paths, produce robustness to failures, and provide better sharing
of pooled server resources. Intuitively when such systems have sufficient redundancy
they will exhibit performance which is robust to limited heterogeneity in demands and
server capacities, as well as to the fairness criterion driving resource allocation.

Some elements of content delivery infrastructure may see less pronounced hetero-
geneity in demands, for example, a centralized back end used to deliver files that are
not available at distributed sites/caches. For such a system, with sufficient redundancy,
enabling resource pooling for individual download requests could achieve scalable and
robust performance.

1.1 Our contributions and organization

The contributions of this paper are threefold, each of independent interest, and collec-
tively providing a significant step forward over what is known in the current literature.
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(a.) Performance bounds In Sects. 3, 4 we consider a class of systemswith symmetric
polymatroid capacity for which we develop several rate allocation monotonicity
properties which translate to performance comparisons amongst fairness poli-
cies, and eventually give explicit bounds on mean delays. Specifically, we show
that under homogeneous loads the mean delay achieved by greedy and αF rate
allocation, are bounded by that of BF allocation, which is computable. We then
extend this upper bound to the casewhen the load is heterogeneous but ‘majorized
by a symmetric load.’

(b.) Uniform symmetry in large systems In Sect. 5 we consider a bipartite graphwhere
nodes represent n job classes (files) and m servers with potentially heterogenous
service capacity. The graph edges capture the ability of servers to serve the jobs
in the given classes. If jobs can be concurrently served by multiple servers the
system’s service capacity region is polymatroid. We show that for appropriately
scaled large systems where the edge set is chosen at random (random file place-
ment) the capacity region is uniformly close to a symmetric polymatroid.

(c.) Performance robustness of large systems Combining these two results, in Sect.
6 we provide a simple performance bound for large-scale content delivery sys-
tems. More specifically, the performance under α-fair rate allocation for a large
system is upper-bounded by that under a system with smaller, symmetric, and
approximate capacity region. The bound exhibits performance robustness in
large systems with respect to variations in total system load, heterogeneity in
load across the classes, and heterogeneity in server capacities, for α-fair based
resource allocation.

We have deferred some technical results to the appendix. Section 7 concludes the
paper.

1.2 Related work

There is a substantial amount of related work. Yet the link between fairness in resource
allocation and job delays in stochastic networks is poorly understood. The only fair-
ness criterion for which explicit expressions or bounds are known is the Balanced
Fair rate allocation [3] which generalizes the notion of ‘insensitivity’ of the proces-
sor sharing discipline in an M/G/1 queuing system. Under balanced fairness, an
explicit expression for mean delay was obtained in [5,6] for a class of wireline net-
works, namely, those with line and tree topologies. Also, a performance bound for
arbitrary polytope capacity region and arbitrary load was provided in [1]. Similarly,
[11] developed bounds for stochastic networks where flows can be split over multiple
paths. These bounds and expressions are either too specific or too loose. Recently, [23]
developed an expression for the mean delay for systems with polymatroid capacity
and arbitrary loads under balanced fair rate allocations. Unfortunately the result has
exponential computational complexity in general. However, the symmetric case has
low complexity, a fact we use in the sequel.

Balanced fair rate allocation is defined recursively and is difficult to implement.
α-fair rate allocations [13,19] which are based on maximizing a concave sum utility
function over the system’s capacity region (this includes proportional and max-min
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fair allocations) are more amenable to implementation [12,15]. However, the only
known explicit performance results for stochastic networks under such fairness criteria
are for systems where proportional fair is equivalent to balanced fair [3,17]. In [2],
performance relationship under balanced and proportional fairness for several systems
where they are not equivalent was studied through numerical computations, and were
found to be relatively close in several scenarios.

In this paper we focus on a class of stochastic networks that can be characterized by
a polymatroid capacity region. Such systems have also been considered in [23,26]. For
example, the work in [26] shows that when such systems are symmetric with respect to
load and capacity, a greedy rate allocation is delay optimal.However, the result is brittle
to asymmetries.We providemore details on greedy and other rate allocations in Sect. 3.

In summary, when it comes to fairness criteria and stochastic network performance
there is a gap between what is implementable and what is analyzable. One of the
goals of this paper is to provide comparison results which address this gap, with
a particular focus on addressing user-performance in a large-scale content delivery
system which leverages server diversity, i.e., availability of multiple copies of a file to
serve a download request.

From a content delivery perspective, the two works closest to this paper are [24]
and [23]. Both adopt a natural model for a content delivery system based on a bipartite
graph which captures the availability of files at servers to support the file-download
requests. They show that if the graph is chosen at random and scaled appropriately
then user-performance is robust to load heterogeneity. The authors in [24] consider a
service model where each request can be served by a single server—recall we consider
systems allowing parallel download of a file from multiple servers. Resource pooling
in our servicemodel leads to a significantly improvedmean delay bound. For example,
upon availability of cn servers for each class, our delays scale as O

(
1
cn

)
. Also in our

work we are able to address the role of fairness criteria and robustness to heterogeneity
in server capacities.

Our service model via resource pooling is same as in [23]. However, our work
here is different in several respects. Firstly, in [23] the focus is on mean delays under
balanced fair resource allocation, whereas here we directly study the impact of fairness
criteria on users delays. Secondly, the system considered was by design symmetric,
whereas here we establish the asymptotic symmetry. Thirdly, in this paper we establish
new results on robustness to limited heterogeneity in file demands, server capacity and
α-fairness criteria by providing a uniform bound on delays.

2 System model

Our systemconsists of a set F of n classes. Jobs for class i ∈ F arrive as an independent
Poisson process of rate λi . Let λ = (λi : i ∈ F). Service requirements of jobs are
i.i.d. exponential with mean ν. Let ρ = (ρi : i ∈ F), where ρi = λiν is the load
associated with class i . For example, if the service requirement of a job is measured
in bits then the load for each class is measured in bits per second.

Jobs arrive to the system at total rate
∑

i∈F λi . Let uk denote the job corresponding
to the kth arrival after time t = 0. Let qi (t) denote the set of ongoing jobs of class
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i at time t , i.e., jobs which have arrived but have not completed service, and q(t) =
(qi (t) : i ∈ F). For each A ⊂ F , let qA(t) = ∪i∈Aqi (t), i.e., the set of all active
jobs whose class is in A. Let x(t) = (xi (t) : i ∈ F), where xi (t) ! |qi (t)|, i.e., x(t)
captures the number of ongoing jobs in each class.

We refer to x(t) as the state of the system at time t . Let X(t) correspond to the
random vector describing the state of the system at time t . We refer to the random
process (X(t) : t ≥ 0) as the state process. For any x(t), let Ax(t) denote the set of
active classes, i.e., the classes with at least one ongoing job.

Service model For any v ∈ qi (t), let bv(t) be the rate at which job v is served
at time t . The vector b(t) = (bv(t) : v ∈ qF (t)) represents the rates assigned to
ongoing jobs at time t . Within each class we assume that each job is allocated equal
rate, i.e., bv(t) = bu(t) for each u, v ∈ qi (t). If job v arrives at time tav and has service

requirement ηv , then it departs at time tdv such that ηv =
∫ tdv
tav

bv(t)dt . Thus, tdv − tav is
the delay for job v.

Further, let ri (x′) be the total rate at which class i jobs are served at time t when
x(t) = x′, i.e., at any time t , ri (x(t)) =

∑
v∈qi (t) bv(t). Let r(x

′) = (ri (x′) : i ∈ F).
We call the vector function r(.) the rate allocation. Note that the rate allocation at any
time t depends only on the x(t) and thus can not depend on the residual file sizes of
ongoing jobs.

Polymatroid capacity region We shall consider systems where rate allocation r(x)
for each x are constrained to be within a polymatroid capacity region C.

Definition 1 We say that C is a polymatroid if it takes the following form:

C =
{

r ≥ 0 :
∑

i∈A

ri ≤ µ(A), ∀A ⊂ F

}

,

where µ(.) is a set function which satisfies the following properties:

(1) Normalized: µ(∅) = 0.
(2) Monotonic: if A ⊂ B, µ(A) ≤ µ(B).
(3) Submodular: for all A, B ⊂ F ,

µ(A)+ µ(B) ≥ µ(A ∪ B)+ µ(A ∩ B).

The function µ(.) is called a rank function.

Polymatroids and submodular functions are well-studied in literature, see for exam-
ple, [9,21].

Definition 2 A polymatroid C is a symmetric polymatroid if its rank function µ(.)

satisfies the following property: for each A ⊂ F , we have µ(A) = h(|A|), where
h : Z+ → R+ is a non-decreasing concave function; see Fig. 1.

For a given x, we say r(x) is feasible if r(x) ∈ C; when this is true for all x, we say
that the rate allocation r(.) is feasible.We callC the capacity region of the system. Sym-
metric polymatroid capacity regions appear in several systems, for example Gaussian
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Fig. 1 Symmetric polymatroids
in two and three dimensions

symmetric multiaccess channels [26]. Further, we will see in Sect. 5 that certain types
of large content delivery systems have approximately symmetric polymatroid capacity
regions.

Polymatroid capacity regions C have a special property that for any r ∈ C, there
exists r′ ≥ r such that r′ ∈ D ! {r ∈ C : ∑i∈F ri = µ(F)} [9,21]. Also, as
evident from the definition, for any A ⊂ F the set {r ∈ C : ri = 0,∀i /∈ A} is also a
polymatroid, with a rank function which is the restriction of µ(.) to subsets of A.

Further, we let

Ĉ !
{

ρ′ ≥ 0 :
∑

i∈A

ρ′
i < µ(A), ∀A ⊂ F

}

, (1)

and will see that Ĉ is the set of loads which are stabilizable for appropriate rate
allocation policies.

Notation for ordering and majorization In the sequel we will rely on notation for
ordering and majorization which we introduce below.

Let I be a finite arbitrary index set. Consider an arbitrary vector z = (zi : i ∈ I ).
We let z[1] ≥ z[2] ≥ . . . ≥ z[|I |] denote the components of z in decreasing order. We
let |z| denote ∑i∈I |zi |. We let ei denote a vector with 1 at the i th coordinate and 0
elsewhere.

For vectors z and z′ such that zi ≤ z′i for each i ∈ I , we write z ≤ z′ and say that z
is dominated by z′.

Below we define majorization (≺) which describes how ‘balanced’ a vector is as
compared to another vector. In words, by z ≺ z′ we mean that z is ‘more balanced’
than z′ but they have the same sum. By z ≺w z′ we mean that z is ‘more balanced’
and has lower sum than z′. Similarly, by z ≺w z′ we mean that z is ‘more balanced’
and has larger sum than z′.

Definition 3 For vectors z and z′ such that |z| = |z′| and ∑k
l=1 z[l] ≤ ∑k

l=1 z
′
[l] for

each k ∈ {1, 2, . . . , |I |}, we say z is majorized by z′, and denote this by z ≺ z′.
If we have

∑k
l=1 z[l] ≤ ∑k

l=1 z
′
[l] for each k ∈ {1, 2, . . . , |I |}, we say z is weak-

majorized from below by z′, and denote this by z ≺w z′.
Similarly, if we have

∑k
l=0 z[|I |−l] ≥ ∑k

l=1 z
′
[|I |−l] for each k ∈ {0, 1, . . . , |I |−1},

we say z is weak-majorized from above by z′, and denote this by z ≺w z′.

Dominance and majorization have an associated stochastic version, defined below.
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Definition 4 Consider random vectors Z and Z′. If there exist random vectors Z̃ and
Z̃′ such that Z and Z̃ are identically distributed, Z′ and Z̃′ are identically distributed,
and Z̃′ ≤ Z̃′ almost surely, then we say that Z is stochastically dominated by Z′, and
denote this by Z̃ ≤st Z̃′.

Instead, if Z̃′ ≺w Z̃′, then we say that Z is stochastically weak-majorized from
below by Z′, and denote this by Z̃ ≺st

w Z̃′.

In the sequel it will be useful to introduce following notation. Recall, r(x) = (ri (x) :
i ∈ F) is the vector of rates allocated to various classes. We define r(k)(.) for each
k ∈ {1, . . . , n} as follows: For a given state x, let ik be the class corresponding to x[k].
Then r(k)(x) = rik (x). In words, r(k)(x) is the rate allocated to the class with the kth
largest number of ongoing jobs.

Notation for scalingConsider sequences of numbers ( fn : n ∈ N) and (gn : n ∈ N).
We say that fn = O(gn) if there exists a constant k > 0 and an integer n0 such that
for each n ≥ n0 we have fn ≤ kgn . We say that fn = ,(gn) if there exists a constant
k > 0 and an integer n0 such that for each n ≥ n0 we have fn ≥ kgn .

We say that fn = o(gn) if limn→∞
fn
gn

= 0. Similarly, we say that fn = ω(gn) if
limn→∞

gn
fn

= 0.
We say an event A happens with high probability (denoted as w.h.p.) if P(A) is

1 − o(1).
Several parts of the notation above are borrowed from [16,26] and [22].

3 Rate allocation policies: background

There are several possible rate allocation policies, each resulting in potentially different
user-perceived delays. Below, we introduce three different policies studied in the
literature, each with its own merits.

(1) Greedy rate allocation Roughly, the greedy rate allocation policy on a poly-
matroid capacity region C assigns the maximum possible rate to the largest queues
subject to the capacity constraints. We denote the greedy rate allocation by rG(.) and
define it as follows: for each state x, we let

rG(k)(x) =
{
µ ({[1], [2], . . . , [k]}) − µ ({[1], [2], . . . , [k − 1]) if k ∈ {1, 2, . . . , |Ax|},
0 otherwise.

Equivalently, the sum rate assigned to the k largest queues, namely
∑k

l=1 r
G
(l)(x), is

equal to µ ({[1], [2], . . . , [k]}). Using a quadratic Lyapunov function, one can show
that greedy rate allocation results in a stationary state process if ρ ∈ Ĉ, where Ĉ is
defined in (1). The greedy rate allocation for symmetric polymatroid capacity regions
was first studied in [26] where the following result was shown.

Proposition 1 ([26]) Suppose the capacity region C is a symmetric polymatroid and
the load ρ ∈ Ĉ is homogeneous, i.e., ρi = ρ for each i ∈ F. Then the following
statements hold:
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1. Let (XG(t) : t ≥ 0) and (X̃(t) : t ≥ 0) be state processes under the greedy
and an arbitrary feasible rate allocation, respectively. If XG(0) ≺st

w X̃(0) then
XG(t) ≺st

w X̃(t) for each t ≥ 0.
2. The mean job delay under greedy rate allocation is less than or equal to that under

any feasible rate allocation.

Unfortunately, this optimality result for symmetric systems does not provide any
explicit performance characterization or bound. Further, the result is brittle to hetero-
geneity in load or capacity.

(2) α-fair rate allocation As introduced in [19], this policy allocates rates based
on maximizing a concave sum utility function subject to the system’s capacity region.
Formally, for a given α > 0, the α-fair (αF) rate allocation rα(.) can be defined as
follows: for each state x, let

rα(x) =
{
argmaxr̂∈C

∑
i∈F

xα
i r̂1−α

i
1−α for α ∈ (0,∞)\{1},

argmaxr̂∈C
∑

i∈F xi log(r̂i ) for α = 1.
(2)

This generalizes various notions of fairness across jobs, for example, proportional
fair and max-min fair allocations are equivalent to the α-fair policy for α = 1 and
α → ∞, respectively [19]. However, for polymatroid capacity regions the following
result has been established.

Proposition 2 ([23])All α-fair rate allocations are equivalent for polymatroid capac-
ity regions.

Further, the stability result in [7] implies that the αF rate allocation results in
a stationary state process when ρ ∈ Ĉ. The α-fair rate allocation is attractive in
that it is amenable to distributed implementation [12,15] and satisfies natural axioms
for fairness [13]. Unfortunately, little is known regarding their performance under
stochastic arrivals.What has been shown is that for α-fair allocations, the performance
is sensitive to the distribution of service requirements [3]. Thus, it will be hard to make
general claims. This leads us to the balanced fair rate allocation below.

(3) Balanced fair rate allocation As introduced in [3], the balanced fair (BF) rate
allocation is ‘insensitive’, i.e., performance depends on the job service distribution
only through its mean. Further, as we will see, it is more amenable to mean delay
analysis. Formally, the balanced fair rate allocation rB(.) for a polymatroid capacity
region C can be defined as follows, see [3]: for each state x, we have

r Bi (x) =
Φ(x − ei )

Φ(x)
, ∀i ∈ F, (3)

where the functionΦ is called a balance function and is defined recursively as follows:
Φ(0) = 1, and Φ(x) = 0 ∀x s.t. xi < 0 for some i , otherwise

Φ(x) = max
A⊂F

{∑
i∈A Φ(x − ei )

µ(A)

}
. (4)
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As shown in [3], (3) ensures the property of insensitivity, while (4) ensures that r(x) for
each x lies in the capacity region, i.e., the constraints

∑
i∈A ri (x) ≤ µ(A) are satisfied

for each A. It also ensures that there exists a set B ⊂ Ax forwhich
∑

i∈B ri (x) = µ(B).
In fact, the BF allocation is the unique policy satisfying the above properties.

It was shown in [2,3] that if ρ ∈ Ĉ, the state process (XB(t) : t ≥ 0) is asymp-
totically stationary. Further, under this condition, its stationary distribution is given
by

π(x) = Φ(x)
G(ρ)

∏

i∈Ax

ρ
xi
i , where G(ρ) =

∑

x′
Φ(x′)

∏

i∈Ax ′

ρ
x ′
i

i .

The existence of such an expression for the stationary distribution makes balanced
fairness amenable to time-averaged performance analysis, a property which we will
use extensively in the sequel. While, in general, BF may result in wasteful resource
allocation, for example, BF is not Pareto efficient for certain triangle networks studied
in [3], for polymatroid capacity regions, BF has been shown to be Pareto efficient:

Proposition 3 ([23])For polymatroid capacity regions C, BF rate allocation is Pareto
efficient, i.e.,

∑
i∈Ax

r Bi (x) = µ(Ax) for each x.

Using Pareto optimality, a recursive expression for mean delay was provided in [23]
for arbitrary polymatroid capacity region and load. The expression can be significantly
simplified under symmetry, as also shown below. First, let

πk =
∑

x:|Ax|=k

π(x),

i.e., πk is the stationary probability that there are k active classes in the system. Then,
under symmetry, the following expressionwas shown to hold forπk in [23].Weprovide
a (slightly different) proof below for the sake of completion.

Proposition 4 ([23]) For a system with symmetric polymatroid capacity region, with
load ρi = ρ for each class i ∈ F, and with balanced fair rate allocation, we have

π0 =
1

1+∑n
k=1

∏k
l=1

(n−l+1)ρ
h(l)−lρ

, (5)

and for k = 1, . . . , n we have

πk =
(n − k + 1)ρ
h(k) − kρ

πk−1. (6)

Equivalently, for k = 1, . . . , n, we have

πk = π0

k∏

l=1

(n − l + 1)ρ
h(l) − lρ

. (7)
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Proof It is enough to show that for each k ≥ 1 we have

πkh(k) = (n − k + 1)ρπk−1 + kρπk . (8)

There are two ways to argue that the above expression holds: (1) using PASTA and
time reversibility, and (2) using the stationary distribution expression via the balance
function. We summarize both approaches below.

Note that πkh(k) =
∑

|x|:|Ax|=k π(x)h(k) is the total rate of departures from states
with k active classes. In reverse time these departures correspond either to (1) the
arrivals to the system which see k − 1 active classes and cause an increase in the
number of active classes, or to (2) arrivals which see k active classes and do not
cause an increase the number of active classes. Since arrivals in the reverse time
form a Poisson process, PASTA holds, and the rates of above transitions is equal to
(n − k + 1)ρπk−1 and kρπk , respectively. Thus, we get (8).

Alternatively, from the definition and Proposition 3, we have

πk = π0
∑

x:|Ax|=k

Φ(x)ρ|x| = π0
∑

x:|Ax|=k

∑
i∈Ax

Φ(x − ei )

µ(Ax)
ρ|x|

= π0ρ

h(k)

∑

x:|Ax|=k

∑

i∈Ax

Φ(x − ei )ρ|x−ei |.

This can be shown to simplify to the following:

πk =
π0ρ

h(k)
(n − k + 1)

∑

x:|Ax|=k−1

Φ(x)ρ|x| + π0ρ

h(k)
k

∑

x:|Ax|=k

Φ(x)ρ|x|.

Upon simplification, we get (8). ⊓1

Now, let βk = E
[
|X|

∣∣|AX| = k
]
, i.e., βk =

∑
x:|Ax |=k |x|π(x)

πk
. There exists a surpris-

ingly simple expression for βk using which an explicit expression for the mean delay
can be obtained, as given by the following theorem.

Theorem 1 Consider a system with symmetric polymatroid capacity region, and
with load ρi = ρ for each class i ∈ F. Under balanced fair rate allocation, let
βk = E

[
|X|

∣∣|AX| = k
]
. Then, for k = 1, . . . , n we have

βk =
k∑

l=1

h(l)
h(l) − lρ

. (9)

Further, if the arrival rate for each class is equal to λ then the mean delay for jobs
under balanced fairness is given by

E[DB] = 1
λn

n∑

k=1

βkπk, (10)

where πk can be computed using (5) and (7).
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Proof We provide a proof for the expression for βk . The expression for the mean delay
then follows from Little’s law. From the definition and Proposition 3 we have

(βk − 1)πk =
∑

x:|Ax|=k

(|x| − 1)Φ(x)ρ|x| =
∑

x:|Ax|=k

(|x| − 1)

∑
i∈Ax

Φ(x − ei )

µ(Ax)
ρ|x|

= ρ

h(k)

∑

x:|Ax|=k

(|x|−1)
∑

i∈Ax

Φ(x−ei )ρ|x−ei |.

This can be shown to simplify to the following:

(βk − 1)πk =
ρ

h(k)
(n − k + 1)

∑

x:|Ax|=k−1

|x|Φ(x)ρ|x| + ρ

h(k)
k

∑

x:|Ax|=k

|x|Φ(x)ρ|x|,

which in turn gives

βk − 1 = (n − k + 1)ρπk−1

πkh(k)
βk−1 +

kρπk

πkh(k)
βk . (11)

Upon further simplification, one obtains

βk =
h(k)

h(k) − kρ
+ (n − k + 1)ρ

h(k) − kρ
πk−1

πk
βk−1 =

h(k)
h(k) − kρ

+ βk−1,

where the last equality follows from (6). From this (9) follows.
Paralleling the discussion for expression (8), (11) can also be argued directly using

PASTA and time reversibility. In this case, βk − 1 can be interpreted as the mean
number of jobs a departure leaves behind it when the system has k active classes.
Recalling the argument for (8), in reverse time, (n−k+1)ρπk−1

πkh(k)
is the fraction of arrivals

which result in k active classes by increasing the number of active classes by 1. Note
that the rate of such arrivals does not depend on the precise state of the system. Thus,
using a ‘ratio of rates’ argument, see [25], themean number of customers seen by these
arrivals is βk−1. Similarly, one can argue that the remaining fraction kρπk

πkh(k)
of arrivals

which see k active classes see a mean number of jobs as βk . Thus, the expression (11)
follows. ⊓1

In the sequel we use several other properties of balanced fairness and also of other
rate allocation policies, some of which are provided in the Appendix (Relative greed-
iness and other rate allocation properties).

4 Performance bounds

Recall that for each rate allocation policy considered in Sect. 3, namely greedy, αF, and
BF, the underlying state process is asymptotically stationary if the loadρ ∈ Ĉ. Thus, the
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corresponding mean delays of the system’s jobs are finite. In this section, we assume
that the capacity region C is symmetric, and develop explicit and easily computable
bounds on the mean delay of jobs in systems with greedy or αF rate allocation under
potentially heterogeneous load ρ within a subset of the stability region Ĉ.

Our goal here is to enable performance analysis for a general enough class of
systems so as to allow us to develop quantitative and qualitative insights for large-
scale systems prevalent today. For example, the bounds developed below will enable
us to later characterize user-performance in downloading files from heterogeneous (in
loads and service capacities) large-scale content delivery systems supporting resource
pooling.

Below we develop upper bounds for mean delay for the following three cases:

(i) Homogeneous loads:We provide an upper bound for mean delay for loads ρ ∈ Ĉ
which are homogeneous across classes with non-zero entries, i.e., if A is the set
of classes such that ρi > 0 for each i ∈ A, then ρi = ρ j for each i, j ∈ A.

(ii) Dominance bound: Consider loads ρ, ρ′ ∈ Ĉ such that ρ ≤ ρ′ and ρ′ is homoge-
neous across non-zero entries as described above. Then, we show that the system
with loadρ has lowermean delay than thatwith loadρ ′, even ifρ is heterogeneous.

(iii) Majorization bound: Consider loads ρ, ρ′ ∈ Ĉ such that ρ ≺ ρ′. Further, sup-
pose that ρ′ is homogeneous across non-zero entries as described above. Then,
we show that the system with load ρ has lower mean delay than that with
load ρ′.

Throughout this section we will assume that the mean service requirements for jobs
ν is same for each system. The bound for homogeneous loads and the majorization
bound are provided below for both αF and greedy, whereas the dominance bound is
provided for αF. Next we will also develop a lower bound for mean delay for each
rate allocation policy under arbitrary loads.

Note that using themajorization boundwe can boundmean delay for a larger subset
of heterogeneous loads as compared to the dominance bound. For example, consider
ρ = (ρ, 1

2ρ,
1
2ρ). Recall, for symmetric rank functions we have µ(A) = h(|A|) for

each A ⊂ F , where h(.) is concave. Now, if 1
3h(3) < ρ < 1

2h(2), then ρ′ = (ρ, ρ, 0)
is in Ĉ but ρ′′ = (ρ, ρ, ρ) is not. Then the majorization bound holds for ρ but the
dominance bound does not. Further, even if ρ′′ is in Ĉ, the upper bound obtained
through ρ′ may be tighter.

The bounds for each case will be obtained through coupling arguments on the
corresponding state processes, followed by an application of Little’s law.

4.1 Homogeneous loads

Consider the following set of loads:

BH ! {ρ ∈ Ĉ : ∃A ⊂ F s.t. ρi = ρ j ∀i, j ∈ A and ρi = 0 ∀i ∈ F\A}.

Since, by Proposition 1, the greedy rate allocation is delay optimal for homogeneous
loads, for each ρ ∈ BH one can immediately conclude that the performance of BF as
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obtained in Theorem 1 is an upper bound for that of greedy. Below we show that this
performance upper bound via BF also holds for αF rate allocation.

To this end, we show a coupling result for systems underαF andBF rate allocations.
In the process, we prove and use the property that αF is more greedy than BF in the
following sense: if the state process corresponding to αF is the same as or more
balanced than that of BF, then αF assigns a larger rate to bigger queues than BF. This
in turn keeps the state process for αF more balanced in the future. For a proof of the
theorem below, see Sect. 4.5.

Theorem 2 Consider a system with symmetric polymatroid capacity region and load
ρ ∈ BH , i.e., ρ is homogeneous across classes with non-zero entries. Then the follow-
ing statements hold:
1. Let (Xα(t) : t ≥ 0) and (XB(t) : t ≥ 0) be state processes under αF and BF rate

allocation. If Xα(0) ≺w XB(0) then we have Xα(t) ≺st
w XB(t) for each t ≥ 0.

2. The mean delays for systems with αF and BF rate allocation for load ρ ∈ BH
satisfy the following:

E[Dα
ρ ] ≤ E[DB

ρ ].

4.2 Dominance bound

Consider the following rate allocation property. Recall, ri (x)
xi

is the rate allocated to
each job in class i when the system is in state x.

Definition 5 (Per-job rate monotonicity) We say that a rate allocation r(.) satisfies
per-job rate monotonicity if the following holds for all states x and x′ such that x ≥ x′:
for each class i , we have ri (x)

xi
≤ ri (x′)

x ′
i
. In words, adding jobs into the system only

decreases the rate allocated to each job.

From the definition of αF, one can check that αF rate allocation satisfies per-job rate
monotonicity. This property was used in [4] to provide a comparison result for systems
where the rate allocation in one system dominates that in another system for each state
x. In contrast, we provide below a comparison result for systems with the same rate
allocation policy and capacity region, but with different loads. For such systems, we
show that the larger loads result in worse delays if the rate allocation satisfies per-job
rate monotonicity. For a proof of the theorem below, see Sect. 4.5.

Theorem 3 Consider a system with symmetric polymatroid capacity region C. Sup-
pose that the rate allocation r(.) satisfies per-job rate monotonicity. Let ρ, ρ′ ∈ Ĉ
(recall, Ĉ is the stability region) be such that ρ ≤ ρ′. Then the following statements
hold:
1. Let (X(t) : t ≥ 0) and (X′(t) : t ≥ 0) be state processes under loads ρ and ρ′. If

X(0) ≤ X′(0), then we have X(t) ≤st X′(t) for each t ≥ 0.
2. For systems with loads ρ and ρ′, the mean delays for jobs for each class i ∈ F

satisfy the following:

E
[
D(ρ)
i

]
≤ E

[
D(ρ′)
i

]
.
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The above result holds for αF since it satisfies per-job rate monotonicity. However,
one can check that the greedy rate allocation does not satisfy per-job rate monotonicity
in general. Thus, it is not clear if such a bound holds for greedy rate allocation.

Now, if ρ′ is homogeneous, then under αF rate allocation we have an explicit bound
for mean delays via Theorem 2. Thus, consider the following region:

BD !
{
ρ ∈ Ĉ : ∃ρ′ ∈ BH s.t. ρ ≤ ρ′

}
,

or equivalently,

BD !
{
ρ ∈ Ĉ : max

i
ρi <

h(k)
k

where k = |{i : ρi > 0}|
}
.

Theorem 3 implies that the mean delay under αF rate allocation for each load ρ ∈ BD
can be bounded by that for a corresponding symmetric load ρ′ ∈ BH , which in turn
has an easily computable bound. Thus, we get the following corollary.

Corollary 1 Consider a system with symmetric polymatroid capacity region and load
ρ ∈ BD. Let ρ′ = maxi ρi . Let ρ′ be such that for each i ∈ F we have ρ′

i = ρ′ if
ρi > 0 and ρ′

i = 0 if ρi = 0. Then, mean delay for a system with αF rate allocation
for load ρ satisfies the following:

E[Dα
ρ ] ≤ E[DB

ρ′ ].

4.3 Majorization bound

The theorem below generalizes the dominance bound to provide a mean delay bound
for a system with load ρ such that there exists ρ′ ∈ BH which satisfies ρ ≺ ρ′.

Its proof is similar to that ofTheorem2,where insteadof relative greediness between
rate allocations, we use the following balancing property satisfied by both αF and
greedy: if state x is more balanced than state x′, then the rate allocation r(.) would
provide larger rates to longer queues in state x as compared to x′, and thus balancing
it even further. For a proof of the theorem below, see Sect. 4.5.

Theorem 4 Consider a system with symmetric polymatroid capacity region C. The
rate allocation r(.) is either αF or greedy. Let ρ, ρ′ ∈ Ĉ be such that ρ ≺ ρ′ and
ρ′ ∈ BH , i.e., ρ′ is homogeneous across classes with non-zero entries. Then the
following statements hold:

1. Let (X(t) : t ≥ 0) and (X′(t) : t ≥ 0) be state processes under loads ρ and ρ′. If
X(0) ≺w X′(0), then we have X(t) ≺st

w X′(t) for each t ≥ 0.
2. The mean delays for systems with loads ρ and ρ′ satisfy the following:

E[Dρ] ≤ E[Dρ′ ].

Theorem 4 above is stronger than Theorem 3 in the sense that it only requires the
condition ρ ≺w ρ′ instead of ρ ≤ ρ′. However, it is weaker in the sense that it requires
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ρ′ to be inBH and that it gives stochastic weak-majorization of the corresponding state
processes instead of stochastic dominance.

For both rG(.) and rα(.), Theorem 4, along with Theorem 2 and Proposition 1,
allows us to bound the mean delay for any load in the following region:

BM ! {ρ ∈ Ĉ : ∃ρ′ ∈ BH s.t. ρ ≺ ρ′},

or equivalently,

BM !
{
ρ ∈ Ĉ : ∃k ≤ n s.t. max

i
ρi <

h(k)
k

and |ρ| < h(k)
}
.

Theorem 4 implies that for αF and greedy rate allocation, the mean delay for each
load ρ ∈ BM can be bounded by that for a corresponding load ρ′ ∈ BH , which in
turn has an easily computable bound through Theorem 2. Thus, we get the following
corollary.

Corollary 2 Consider a system with symmetric polymatroid capacity region and load
ρ ∈ BM. Let ρ′ = maxi∈F ρi . Let k = min{l : ρ′ ≤ h(l)

l and |ρ| ≤ h(l)}. Let A be
an arbitrary subset of F of size k and ρ′ be such that ρ′

i = ρ′ ∀i ∈ A and ρ′
i = 0

otherwise. Then, the mean delays for systems with greedy and αF rate allocations for
load ρ satisfy the following:

E[DG
ρ ] ≤ E[DB

ρ′ ], and E[Dα
ρ ] ≤ E[DB

ρ′ ].

It is easy to check that for each ρ ∈ BM the computation of the mean delay upper
bound as given by Corollary 2 has complexity O(n)when computed using Theorem 1.

4.4 Lower bound

The following proposition provides a lower bound on the mean delay for any system
with symmetric polymatroid capacity region, a feasible rate allocation policy, andwith
arbitrary loads. See Sect. 4.5 for a proof.

Proposition 5 Consider a systemwith a symmetric polymatroid capacity regionC with
rank function µ(A) = h(|A|) for each A ⊂ F, an arbitrary feasible rate allocation
policy, and with load ρ ∈ Ĉ, i.e., the system is stabilizable. Let the total arrival rate
for jobs, i.e.

∑
i∈F λi , be equal to λn. Then, the following lower bound on the mean

delay holds:

E[D] ≥ 1
λn

⎛

⎜⎝

∑n
k=1 k

|ρ|k∏k
l=1 h(l)

1+∑n
k=1

|ρ|k∏k
l=1 h(l)

⎞

⎟⎠ .
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4.5 Proofs of coupling results

Proof of Theorem 2 Consider the following lemma regarding relative greediness of
αF and BF.

Lemma 1 Consider states x and y such that x ≺w y. For each k such that∑k
l=1 x[l] =

∑k
l=1 y[l], we have

∑k
l=1 r

α
(l)(x) ≥ ∑k

l=1 r
B
(l)(y).

Roughly, this asserts that if state x is the same or more balanced than state y, then
the sum rate assigned to larger queues by αF to state x is greater than that by BF to state
y. The proof of this lemma is given in the Appendix (Relative greediness and other
rate allocation properties). Below we provide a detailed coupling argument showing
stochastic weak-majorization using this lemma.

Coupling argument Without loss of generality, assume ν = 1. Suppose Xα(0) ≺w

XB(0). Below, we couple the arrivals and departures of the processes (Xα(t) : t ≥ 0)
and (XB(t) : t ≥ 0) such that their marginal distributions remain intact andXα(t) ≺w

XB(t) almost surely for each t ≥ 0.
Let 0a be a Poisson point process with rate

∑
i∈F λi , and let 0d be Poisson point

processwith rateµ(F). The points in these processes are the times of ‘potential events’
in (XB(t) : t ≥ 0) and (Xα(t) : t ≥ 0). We use0a to couple arrivals and0d to couple
departures. For each time t ′ when a potential event occurs, let ϵt ′ be a small enough
number such that no potential event occurred in the time interval [t ′ − ϵt ′, t ′).

Coupling of arrivals For each point t ′ in 0a , do the following: Choose a random
variable Zt ′ independently and uniformly from {1, . . . , n}. Let an arrival occur in
(Xα(t) : t ≥ 0) at time t ′ in the Z th

t ′ largest queue of Xα(t ′ − ϵt ′). Ties are broken
uniformly at random. Similarly, let an arrival occur in (Xα(t) : t ≥ 0) at time t ′ in the
Z th
t ′ largest queue of X

α(t ′ − ϵt ′). Again, ties are broken uniformly at random.
Coupling of departures For each point t ′ of increment in 0d , do the follow-

ing: Choose a random variable Zt ′ independently and uniformly from the interval
(0, µ(F)]. For k such that

Zt ′ ∈
(
k−1∑

l=1

rα
(l)(X

α(t ′ − ϵt ′)),

k∑

l=1

rα
(l)(X

α(t ′ − ϵt ′))

]

,

let a departure occur in (Xα(t) : t ≥ 0) at time t ′ in the kth largest queue ofXα(t ′−ϵt ′),
with ties broken uniformly and independently at random.

Similarly, for k such that

Zt ′ ∈
(
k−1∑

l=1

r B(l)(X
B(t ′ − ϵt ′)),

k∑

l=1

r B(l)(X
B(t ′ − ϵt ′))

]

,

let a departure occur in (XB(t) : t ≥ 0) at time t ′ in the kth largest queue ofXB(t ′−ϵt ′),
with ties broken uniformly and independently at random. Note that in both cases it
is possible that no such k exists since some classes may not be active and the total
service rate may be less than µ(F). In that case, no departure occurs.
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It can be checked that the marginal distributions of (Xα(t) : t ≥ 0) and (XB(t) :
t ≥ 0) remain intact. We now show that Xα(t) ≺w XB(t) almost surely for each t .

It is easy to check that if an arrival occurred at time t ′ and if Xα(t) ≺w XB(t) for
each t < t ′, then Xα(t ′) ≺w XB(t ′) as well. We now show that the same holds for
points of 0d as well.

Suppose a potential departure occurred at t ′, and Xα(t) ≺w XB(t) for each t < t ′.
We show below that

∑k
l=1 X

α
[l](t

′) ≤ ∑k
l=1 X

B
[l](t

′) for each k. Here we use Lemma 1.
The following two cases arise.

Case 1
∑k

l=1 X
α
[l](t

′−ϵt ′) <
∑k

l=1 X
B
[l](t

′−ϵt ′). Since amaximumof one departure

occurs at time t ′ in either processes, we clearly have
∑k

l=1 X
α
[l](t

′) ≤ ∑k
l=1 X

B
[l](t

′).
Case 2

∑k
l=1 X

α
[l](t

′ − ϵt ′) =
∑k

l=1 X
B
[l](t

′ − ϵt ′). By usingXα(t − ϵt ′) ≺w XB(t −
ϵt ′) in Lemma 1 and from the definition of the coupling at time t ′, it can be shown that
if a departure occurs from any of the k largest queues inXB(t ′−ϵt ′), then it also occurs
in one of the k largest queues in Xα(t ′ − ϵt ′). Thus,

∑k
l=1 X

α
[l](t

′) ≤ ∑k
l=1 X

B
[l](t

′).
Hence, the first part of the theorem follows. The second part follows by application

of Little’s law to (|Xα(t)| : t ≥ 0) and (|XB(t)| : t ≥ 0). ⊓1

Proof of Theorem 3 Suppose X(0) ≤ X′(0). Below we couple the arrivals and depar-
tures of jobs in (X(t) : t ≥ 0) and (X′(t) : t ≥ 0) such that their marginal distributions
remain intact and X(t) ≤ X′(t) almost surely for each t ≥ 0.

Since the mean service requirement of jobs ν is same for both the systems, the
corresponding arrival rates satisfy λ ≤ λ′. For each i let 0i and 0′

i be the Poisson
arrival processes for class i in the respective systems. Let 0i be obtained by sampling
0′

i . For each class i , the arrivals in (X′(t) : t ≥ 0) at the sampled points, i.e., points
in 0i , see the average delay which is equal to the overall average delay of jobs in
0′

i for this system. Thus, the theorem follows if we couple the departures of jobs in
both the systems such that for each point in 0i , the corresponding job departure in
(X(t) : t ≥ 0) is no later than that in (X′(t) : t ≥ 0). By using the per-flow rate
monotonicity property, one can couple the service rate of these jobs at each time t so
that if such a job departs from (X′(t) : t ≥ 0) than the corresponding job departs from
(X(t) : t ≥ 0) as well, if it has not already. ⊓1

Proof of Theorem 4 The theorem can be proved in a fashion similar to that of Theo-
rem 2, except for the following changes. For notational convenience, for each time t
let λ(k)(t) and λ′

(k)(t) be the arrival rates of the kth largest queues in X(t) and X′(t),
respectively, with ties broken arbitrarily.

1. Coupling of arrivals For each point t ′ in 0a , we choose a random variable Zt ′

independently and uniformly from the interval (0, |λ|]. For each k such that

Zt ′ ∈
(
k−1∑

l=1

λ(l)(t ′ − ϵt ′),

k∑

l=1

λ(l)(t ′ − ϵt ′)

]

,
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let an arrival occur in (X(t) : t ≥ 0) at time t ′ in the kth largest queue ofX(t ′−ϵt ′).
Similarly, for each k such that

Zt ′ ∈
(
k−1∑

l=1

λ′
(l)(t

′ − ϵt ′),

k∑

l=1

λ′
(l)(t

′ − ϵt ′)

]

,

let an arrival occur in (X′(t) : t ≥ 0) at time t ′ in the kth largest queue ofX′(t ′−ϵt ′).
2. Coupling of departures Similar to that of Theorem 2, except that instead of

Lemma 1 for a proof of weak-majorization upon a potential departure, we use
the following lemma which asserts that αF and greedy provide a larger rate to
longer queues in more balanced states.

Lemma 2 Consider states x and y such that x ≺w y. For each k such that∑k
l=1 x[l] = ∑k

l=1 y[l], we have
∑k

l=1 r
α
(l)(x) ≥ ∑k

l=1 r
α
(l)(y), and also

∑k
l=1 r

G
(l)

(x) ≥ ∑k
l=1 r

G
(l)(y).

For rG(.), it is easy to verify that the lemma holds. For rα(.), it follows from
Lemma 9 in the Appendix (Relative greediness and other rate allocation properties).

Hence, the result follows. ⊓1

Proof of Proposition 5 Consider a queue where the jobs arrive as a Poisson point
process with rate λn. The buffer size is finite and equal to n. Thus, an arrival is
blocked if there are already n ongoing jobs in the queue. Service requirements of jobs
are i.i.d. exponential with rate ν. The total service rate of jobs at each time is state
dependent, as follows: if there are x̃(t) ongoing jobs in the queue at time t then the
total service rate at time t is equal to h(x̃(t)). One can check that the mean number of
jobs in a stationary regime for this system is given by

E[X̃ ] =
∑n

k=1 k
|ρ|k∏k
l=1 h(l)

1+∑n
k=1

|ρ|k∏k
l=1 h(l)

.

It is easy to check that for a given total number of ongoing jobs, the overall service
rate in the above queue is greater than or equal to that in the original system with sym-
metric polymatroid capacity region. Thus, one can couple the arrivals and departures
of the two systems such that the above queue has a lower than or equal number of
active jobs at each time as compared to the original system. The result then follows
by applying Little’s law to the original system. ⊓1

5 Large system has approximately symmetric capacity

In this sectionwe consider a large content delivery system employing resource pooling
and show that such a system not only has polymatroid capacity, but under appropriate
assumptions becomes approximately symmetric.
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Fig. 2 Graph
G(n) = (F(n) ∪ S(n); E(n))
modeling the placement of
copies of n files across
m = ⌈bn⌉ servers with finite
service capacities in a content
delivery system

i1

i2

s1

s2

µs1

µs2

n Files m Servers

i3
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s3

sm

µs3

µsm

Consider a sequence of bipartite graphs G(n) = (F (n) ∪ S(n); E (n)) where F (n) is
a set of n files, S(n) is a set of m = ⌈bn⌉ servers for some constant b, and each edge
e ∈ E (n) connecting a file i ∈ F (n) and server s ∈ S(n) implies that a copy of file i
is available at server s (see Fig. 2). For each node s ∈ S(n), let N (n)

s denote the set of
neighbors of server s, i.e., the set of files it stores and can serve. Henceforth, wherever
possible, we will avoid the use of ceiling and floor notation to avoid clutter.

We associate each file in F (n) to a class of jobs where the job corresponds to a
download request for that file. The arrival processes and service requirements for the
jobs are as described in Sect. 2, with λ(n) and ρ(n) representing the corresponding
arrival rates and loads. Further, we let the service capacity of each server s ∈ S(n) be
µs bits per second.

We allow each server s ∈ S(n) to concurrently serve the jobs with classes N (n)
s as

long as the total service rate does not exceed µs . The service rate for each job is the
sum of the rates it receives from different servers. For any A ⊂ F (n), let µ(n)(A) be
the maximum sum rate at which jobs with file-class in A could be served, i.e.,

µ(n)(A) !
∑

s∈S(n)
1{

A∩N (n)
s ̸=∅

}µs .

Clearly any rate allocation r(.) for such a system must satisfy the following con-
straints for each state x: ∀A ⊂ F (n),

∑

i∈A

ri (x) ≤ µ(n)(A).

It was shown in [22] that µ(n)(.) is submodular and that the corresponding poly-
matroid

C(n) !
{

r ≥ 0 :
∑

i∈A

ri ≤ µ(n)(A), ∀A ⊂ F (n)

}

is indeed the capacity region for such a system, i.e., each r ∈ C(n) is achievable.
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Note that C(n) will, in general, be an asymmetric polymatroid depending upon
edges E (n) and service capacities µs for each s ∈ S(n). However, we show below that
if copies of files are stored across servers at random and scaled appropriately with n
then, as n increases, a uniform law of large numbers holds where C(n) gets uniformly
close to a symmetric polymatroid, subject to the following assumptions:

Assumption 1 (Heterogeneous server capacities) S(n) is partitioned into a finite
number of groups where each group has ,(n) number of servers. Within each group,
the server capacities are homogeneous. The server capacities across groups may be
heterogeneous such that average of service capacity across servers

ξ ! 1
m

∑

s∈S(n)
µs

is independent of n.

Assumption 2 (Randomized file placement) Let (cn : n ∈ N) be a sequence such
that

cn = ω(log n).

For each file i ∈ F (n), store a copy in cn different servers chosen uniformly and
independently at random.

A randomized placement of file copies implies a random system configuration, i.e.,
a random graph which we denote by G(n) = (F (n) ∪ S(n); E (n)). Similarly, for each
s ∈ S(n), letN (n)

s denote the random set of neighbors of s, i.e., the random set of files
stored in server s. Let M (n)(.) denote the corresponding random rank function, and
µ(n)(.) a possible realization. Then, for each A ⊂ F (n), we have

M (n)(A) =
∑

s∈S(n)
1{

A∩N (n)
s ̸=∅

}µs,

where 1{
A∩N (n)

s ̸=∅
} is now a Bernoulli random variable indicating if a copy of at least

one of the files in A is placed in s. In fact, for each A ⊂ F (n) such that |A| = k, the set{
1{

A∩N (n)
s ̸=∅

} : s ∈ S(n)
}
is a set of m negatively associated Bernoulli(p(n)k ) random

variables [8] where p(n)k is the probability that a given server is assigned at least one
of the kcn copies of files in A. Since the probability that a server does not have a copy
of a file is equal to 1 − cn

m , we have

p(n)k = 1 −
(
1 − cn

m

)k
∀k = 0, 1, . . . , n.

By linearity of expectation, for each A ⊂ F (n) we have

µ̄(n)(A) ! E[M (n)(A)] = ξmp(n)|A|.
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Note that µ̄(n)(A) depends on A only through |A| and is thus symmetric. The the-
orem below shows that with high probability we can bound the random rank function
M (n)(.) uniformly over all A ⊂ F (n), from above as well as from below, with a
symmetric rank function which is close to µ̄(n)(A). See Section 5.1 for a proof.

Theorem 5 Fix ϵ independent of n such that 0 < ϵ < 1. Consider a sequence
of systems with n files and m = ⌈bn⌉ servers, where b > 0 is a constant. Under
Assumptions 1 and 2, let M (n)(.) be the corresponding random rank function. Then,
there exists a sequence (gn : n ∈ N) such that gn = ω(log n), and

P
(

∃A ⊂ F (n) s.t. M (n)(A) ≤ (1 − ϵ)µ̄(n)(A)
)

≤ e−gn ,

and

P
(

∃A ⊂ F (n) s.t. M (n)(A) ≥ (1+ ϵ)µ̄(n)(A)
)

≤ e−gn .

This result gives us the following corollary on the randomcapacity region associated
with M (n)(.) generated by random file placement. Recall, µ̄(n)(A) = E[M (n)(A)] for
all A ⊂ F (n), and let

C̄(n) !
{

r ≥ 0 :
∑

i∈A

ri ≤ µ̄(n)(A), ∀A ⊂ F (n)

}

.

Thus, C̄(n) is the (symmetric) capacity region associatedwith the average rank function
µ̄(.). Then, the following holds:

Corollary 3 Fix ϵ independent of n such that 0 < ϵ < 1. Under Assumptions 1 and
2, the random capacity region associated with G(n) is a subset of (1 + ϵ)C̄(n) and a
superset of (1 − ϵ)C̄(n) with high probability.

Further, under Assumption 1, there exists a deterministic file placement where
cn = ω(log n) copies of each file are stored across servers such that the corresponding
capacity region C(n) is a subset of (1+ ϵ)C̄(n) and a superset of (1 − ϵ)C̄(n).

5.1 Proof of Theorem 5

Here we will only show

P
(
∃A ⊂ F (n) s.t. M (n)(A) ≤ (1 − ϵ)µ̄(n)(A)

)
≤ e−gn ,

the other bound follows in similar fashion.
For now, suppose µs = ξ for each s ∈ S(n). We relax this assumption later.
We first provide a bound for P

(
M (n)(A) ≤ (1 − ϵ)µ̄(n)(A)

)
for each A ⊂ F (n).

Then, for each k = 1, 2, . . . , n, we use the union bound to obtain a uniform
bound over all sets A ⊂ F (n) such that |A| = k. The bound we provide for
P
(
M (n)(A) ≤ (1 − ϵ)µ̄(n)(A)

)
is small enough so that the above union bound is
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small too. Then, yet another use of the union bound would give us the uniform result
over all sets A ⊂ F (n).

Now, if the randomvariables
{
1{

A∩N (n)
s ̸=∅

} : s ∈ S(n)
}
were independentBernoulli

(p(n)k ), then the following two concentration results would hold [18]:
Fix k ∈ {1, . . . , n}. For each set A ⊂ F (n) such that |A| = k, we have

P
(
M (n)(A) ≤ (1 − ϵ)µ̄(n)(A)

)
≤ e− ϵ2

2 mp(n)k , (12)

and,

P
(
M (n)(A) ≤ (1 − ϵ)µ̄(n)(A)

)
≤ e

−mH
(
p(n)k (1−ϵ)||p(n)k

)

, (13)

where H(p||q) is the KL divergence between Bernoulli(p) and Bernoulli(q) random
variables, given by

H(p||q) = p log
(
p
q

)
+ (1 − p) log

(
1 − p
1 − q

)
.

However, in reality, since
{
1{

A∩N (n)
s ̸=∅

} : s ∈ S(n)
}

are negatively associated

Bernoulli(p(n)k ) random variables, the above Chernoff bounds still apply [8].
In the sequel, we will use the following two technical lemmas. Their proofs are

provided in the Appendix (Technical lemmas for proof of Theorem 5).

Lemma 3 Let a sequence (gn : n ∈ N) be such that gn = o(cn). Let δ1 < 1 be a
positive constant independent of k and n. Then, for large enough n, we have

p(n)k ≥ δ1gn
n

k ∀k ∈
{
0, 1, . . . ,

⌊
n
gn

⌋}
.

Lemma 4 There exists a positive constant δ, independent of k and n, such that

H
(
p(n)k (1 − ϵ)||p(n)k

)
≥ −δ + ϵ kcn

m .

Now, let (gn : n ∈ N) be a sequence such that gn ! (cn log n)1/2 for each n. The
following properties of gn can be easily checked:

gn = ω(log n) and gn = o(cn). (14)

We now provide a uniform bound over all sets A ⊂ F (n) such that |A| = k for each
k ∈ {1, . . . , n}, under the following two cases.

Case 1 0 ≤ k ≤ n
gn
: From Lemma 3, for each k we have

p(n)k ≥ δ1
kgn
n

,
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for a suitably chosen positive constant δ1 independent of n. In the sequel, δi for any
i ≥ 1 will be a suitably chosen positive constant independent of n.

Using the concentration result (12), for |A| = k we get

P
(
M (n)(A) ≤ (1 − ϵ)µ̄(n)(A)

)
≤ e− ϵ2

2 δ1bkgn ,

and using the union bound, we get

P
(
∃A ⊂ F (n) s.t. |A| = k and M (n)(A) ≤ (1 − ϵ)µ̄(n)(A)

)
≤ e− ϵ2

2 δ1bkgn

(
n
k

)

≤ e− ϵ2
2 δ1bkgn+k log n ≤ e−δ2kgn ,

for a constant δ2 less than ϵ2

2 δ1b.
Case 2 n

gn
< k ≤ n: In this case, we use the concentration result (13). From

Lemma 4, there exists a constant δ6 such that

P
(
M (n)(A) ≤ (1 − ϵ)µ̄(n)(A)

)
≤ e(δ6m−ϵkcn).

Since gn = o(cn), forn large enoughweget δ6m ≤ (ϵ/2) ncngn
.Also, for each k > n

gn
,

we have (ϵ/2) ncngn
≤ (ϵ/2)kcn . Thus, for large enough n, δ6m − ϵkcn ≤ −(ϵ/2)kcn

for each k such that n
gn

< k ≤ n, and consequently there exists a constant δ7 such that

P
(
M (n)(A) ≤ (1 − ϵ)µ̄(n)(A)

)
≤ e−δ7kcn .

By using the union bound, for large enough n we get

P
(
∃A ⊂ F (n) s.t. |A| = k and M (n)(A) ≤ (1 − ϵ)µ̄(n)(A)

)

≤ e−δ7kcn

(
n
k

)
≤ e−δ7kcn+k log n ≤ e−δ8kcn ,

for a constant δ8 less than δ7. Combining the above two cases, we can show that for
large enough n there exists a positive constant δ9 such that for each k ∈ {1, . . . , n} we
have

P
(
∃A ⊂ F (n) s.t. |A| = k and M (n)(A) ≤ (1 − ϵ)µ̄(n)(A)

)
≤ e−δ9gn .

Using the union bound again, we get

P
(
∃A ⊂ F (n) s.t. M (n)(A) ≤ (1 − ϵ)µ̄(n)(A)

)
≤ ne−δ9gn ≤ e−δ9gn+log n

≤ e−δ10gn ,
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for a constant δ10 less than δ9. Now, we relax the assumptionµs = ξ for each s ∈ S(n)

with Assumption 1. The above proof can then be used to show a similar concentration
result for individual groups. The overall result follows by linearity of expectation and
yet another use of the union bound. ⊓1

6 Performance robustness

We now combine results from Sects. 4 and 5 to exhibit performance robustness in
large-scale content delivery systems. In Sect. 5 we showed that large systems support
symmetric polymatroid capacity regions. This allows us to apply the performance
bounds developed in Sect. 4 for symmetric polymatroid capacity regions.

However, there is one more hurdle to overcome before we can apply our bounds
from Sect. 4. Recall, from Corollary 3, under Assumptions 1 and 2 the random capac-
ity region for a content delivery system contains and is contained by approximate
symmetric polymatroids with high probability. A realization of the random capacity
region may still not be symmetric. We thus need to show that if the capacity region is
bigger then the corresponding mean delay is smaller when subject to the same load.

Intuitively, larger capacity regionsmay imply larger service rates for each class, and
may thus provide better performance.Although intuitively obvious, such results are not
always straightforward. We show below that such a comparison result indeed holds
under certain monotonicity conditions for rate allocations. Consider the following
monotonicity condition.

Definition 6 (Monotonicity w.r.t. capacity region) We say that a rate allocation satis-
fies monotonicity w.r.t. capacity region if, for any state x, the rate allocation per class
for a system with a larger capacity region dominates that with a smaller one.

Further, recall per-job rate monotonicity defined in Sect. 4.2, where the rate allo-
cated to each job (viz., ri (x)xi

for jobs in class i) only decreases when an additional job
is added into the system. The following lemma can be shown to hold through a simple
coupling argument across jobs for arbitrary polymatroid capacity regions.

Lemma 5 Consider systemswith arbitrary polymatroid capacity regionsC and C̃ such
that C ⊂ C̃. Consider a rate allocation which satisfies monotonicity w.r.t. capacity
region as well as per-job rate monotonicity. Then, the mean delay for capacity region
C under arbitrary load ρ upper bounds that for capacity region C̃ under the same load.

It is easy to check that α-fair rate allocation satisfies per-job rate monotonicity
as well as monotonicity w.r.t. capacity region. Thus, Lemma 5 holds for α-fair rate
allocation. However, one can show that greedy rate allocation may not satisfy either
property for arbitrary polymatroid capacity regions. This further highlights the brittle-
ness of greedy rate allocation to asymmetries. Even for balanced fair rate allocation it
is not directly clear if the lemma holds. Thus, henceforth we will only consider α-fair
rate allocation.

Now we are indeed ready with all the tools required to exhibit robustness in large
scale systems.

123



Queueing Syst (2016) 83:361–397 385

Assumption 3 (Load Heterogeneity) We consider a sequence of systems where load
ρ(n) for each n is allowed to be within a set B(n) defined as follows: Consider a
sequence (θn : n ∈ N) such that θn = ω(1), θn = o( n

log n ), and θn = o(cn). Also, fix
a constant γ < 1 independent of n. For each n

B(n) !
{
ρ : max

i∈F (n)
ρi ≤ θn and |ρ| ≤ γ ξm

}
.

The condition |ρ| ≤ γ ξm implies that we allow load to increase linearly with
system size. Also, since θn = ω(1), the condition maxi ρi ≤ θn implies that we
allow load across servers to be increasingly heterogeneous. However, the condition
θn = o

(
min( n

log n , cn)
)
implies that peak per-class load is limited, i.e., it constrains

the heterogeneity in load allowed in the system. Further, the condition θn = o(cn)
would allow us to claim stability, and to show that the mean delay of the system tends
to 0 as n increases.

The following is the main result of this section. For a proof, see Sect. 6.2.

Theorem 6 Consider a sequence of systems with n files F (n) and m = ⌈bn⌉ servers
S(n), where b is a constant. For each n, let the total service capacity of servers be ξm,
where ξ is independent of n. S(n) is partitioned into a finite number of heterogeneous
groups, each with,(n) servers and equal per-server capacity. Suppose cn = ω(log n)
copies for each file are stored across servers at random. Let G(n) = (F (n)∪ S(n); E (n))

represent the associated random bipartite graph representing file placement across
servers.

Given a realization of G(n), let jobs for each file-class i ∈ F (n) arrive at rate λi .
Let λ(n) = (λi : i ∈ F (n)). Let the mean service requirement of jobs be ν, where ν

is independent of n. Let ρ(n) = νλ(n). Suppose that the jobs are served as per α-fair
rate allocation.

Let (θn : n ∈ N) be a sequence such that θn = o
(
min( n

log n , cn)
)
. Fix a constant

γ < 1. Let B(n) = {ρ : maxi ρi ≤ θn and |ρ| ≤ γ ξm}. Suppose that for each n we
haveρ(n) ∈ B(n). Fix a constant δ > 1. Let E[D(n)|G(n)]be the conditional expectation
of delay of a typical job with respect to the σ -algebra generated by G(n). Then, we
have

lim
n→∞ P

(
E[D(n)|G(n)] ≤ δ

ν

ξcn

1
γ
log

(
1

1 − γ

))
= 1.

6.1 Numerical validation and robustness of Theorem 6

The mean delay bound in Theorem 6 holds with high probability when the system size
n is large, and when the load heterogeneity θn is small as compared to cn . Below, we
numerically explore the impact of the system size and these parameters on performance
and our bounds. Themotivation for ourwork is, in part, that simulation of large systems
is difficult and it is desirable to reach a rough understanding of howperformance scales.
To this end, we consider systems using randomized file placement, and assume that
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Load for each class
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Fig. 3 Convergence of mean delay at different loads for symmetric systems as n increases. m = n,
cn =

⌈
log2 n

⌉
, ξ = 1, ν = 1, and δ = 1. Load is symmetric across classes

the capacity region is essentially symmetric—in our scaling regime, this is known
to happen with high probability, see Theorem 5. Symmetry of the capacity region
allows us to numerically compute the mean delay, and compare exact results to our
asymptotic bounds, for large systems.

We first consider a large system with both symmetric capacity and symmetric load
across classes. Theorem 1, along with Theorem 2, provides an upper bound for mean
delay underα-fair rate allocation. Further, Proposition 5 provides a lower bound for the
same. Figure 3 exhibits these bounds as a function of load per class for several systems
with large n, and cn =

⌈
log2 n

⌉
, and compares it with the asymptotic expression for

expected delay given in Theorem 6 (i.e., δ ν
ξcn

1
γ log

(
1

1−γ

)
) for δ = 1. As can be seen,

as n increases, both bounds converge to the asymptotic expression, for example, the
relative error of upper bound for n = 1000 and γ = 0.6 is less than 10%. Recall
that the expression in Theorem 6 is an asymptotic upper bound for δ > 1 (thus the
asymptotic expression shown in the figure for δ = 1 is the most aggressive bound one
could hope for). Thus, n needs to be as large as 1000 or more for the asymptotic upper
bound to be meaningful at medium loads.

Next we study the impact of load heterogeneity. Recall that in our model for
constrained heterogeneity we allow the peak per-class load to be at most θn while
maintaining the total system load to be less than or equal to γ ξm. Thus, the ‘worst
case’ load heterogeneity is when the total system load is equal to γ ξm and there is a
subset of classes which have load equal to θn , with the remaining classes having a load
equal to 0. An upper bound for mean delay for a system with such a worst case load
and with α-fair rate allocation can again be obtained via the expression in Theorem 1,
with load per class equal to θn but with a smaller total number of classes.

Figure 4 exhibits our mean delay upper bound obtained as above as a function of
θn , and compares it with the asymptotic bound obtained via Theorem 6 for δ = 2. For
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Fig. 4 Impact of heterogeneity θn on mean delays. m = n, cn =
⌈
log2 n

⌉
, ξ = 1, ν = 1, and γ = 0.6

n = 10000, the asymptotic bound holds as θn varies from 0.6 to up to 3.7. Note that
θn = 0.6 corresponds to a system with homogeneous load across classes. Thus, for a
large system the asymptotic bound is good as long as the peak per-class load θn is no
more than six times the per-class load of the homogeneous system.

6.2 Proof of Theorem 6

In light of Corollary 3, we consider a symmetric capacity region which, with high
probability, contains the capacity region resulting from randomized file placement.
Further, to obtain an upper bound on the mean delay for heterogeneous loads, we con-
sider a system with extremely unbalanced arrivals in that the arrival rate is maximum
for a subset of classes and negligible for others. The bound is obtained via the mean
delay expression under balanced fairness for the extremely unbalanced system.

Without loss of generality, assume δ < 1
γ . From Corollary 3 and the definitions

of C̄(n) and µ̄(n)(.), with high probability the capacity region contains the following
symmetric polymatroid:

C̃(n) !
{

r ≥ 0 :
∑

i∈A

ri ≤ h(n)(|A|), ∀A ⊂ F (n)

}

,

where

h(n)(k) ! (1/δ)ξm
(
1 −

(
1 − cn

m

)k)
∀k = 0, 1, . . . , n.

Thus, from Lemma 5 and Corollary 3, the theorem follows if we show that for a
system with (deterministic) capacity region C̃(n) and with α-fair rate allocation the
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mean delay is upper bounded by δ ν
ξcn

1
γ log

(
1

1−γ

)
for large enough n. Thus, for the

rest of the proof we will assume that the system has capacity region C̃(n) and α-fair
rate allocation, and eventually establish the mean delay bound.

Note that since C̃(n) is monotonic in cn , it is sufficient to assume that cn = o( n
log n )

since, if it is not, we can set cn to be equal to
√

n
log n θn and all the assumptions still

hold. Thus, henceforth we assume that

cn = o
(

n
log n

)
.

Let ξ ′ ! ξ/δ. Also let γ ′ ! δγ . Thus, we get

h(n)(k) = ξ ′m
(
1 −

(
1 − cn

m

)k)
∀k = 0, 1, . . . , n.

Since γ ξm < ξ ′m and θn = o(cn), one can check that B(n) is a subset of C̃(n) for
large enough n, and we get stability.

Now we consider a case where certain classes have maximum load (i.e., θn) and
the rest have load 0, while ensuring that the overall system load is still approximately
γm.

Let tn !
⌈

γ ′ξ ′m
θn

⌉
. Let A(n) be an arbitrary subset of F (n) such that |A(n)| = tn . Let

ρ̂(n) = (ρ̂
(n)
i : i ∈ F (n)) where ρ̂

(n)
i = θn if i ∈ A(n) and 0 otherwise. Then, it is easy

to show that for each n we have

B(n) ⊂
{
ρ : ρ ≺w ρ̂(n)

}
.

Thus, from Theorem 4, it is sufficient to show that the bound on mean delay holds
for balanced fair rate allocation under the load ρ(n) = ρ̂(n).

Henceforth, we assume BF rate allocation and let the load ρ(n) = ρ̂(n). For each n,
we invoke Proposition 4 and Theorem 1 with ρ replaced by θn and n replaced by tn ,
to obtain an expression for π

(n)
k and β

(n)
k , and eventually mean delay. We first show

below concentration for π
(n)
k using Proposition 4.

Below we refrain from using ceiling and floor to avoid cluttering.

Theorem 7 Consider a systemwith capacity region C̃(n) andwith the load vector ρ̂(n).
Under balanced fair rate allocation, π (n)

k , which represents the stationary probability
that k classes are active in the system, satisfies the following concentration result. For
any positive constants ϵ > 1 and ϵ′ < 1 independent of n, there exists a constant
δ̃ < 1 such that for large enough n we have

ϵb log( 1
1−γ ′ )

n
cn∑

k=ϵ′b log( 1
1−γ ′ )

n
cn

π
(n)
k ≥ 1 − δ̃

m
cn . (15)
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Proof From Proposition 4 for k = 1, . . . , tn we have

π
(n)
k = (tn − k + 1)θn

h(n)(k) − kθn
π
(n)
k−1. (16)

Fix a constant δ11 independent of n such that 0 < δ11 < 1. Let

k(n)↓ = m
cn

log
(

1
1 − γ ′δ11

)
.

Then, one can check that h(n)(k(n)↓ ) ≤ γ ′δ11ξ ′m.

In fact, we have h(n)(k) ≤ γ ′δ11ξ ′m, ∀k ≤ k(n)↓ . Using (16), for each k ≤ k(n)↓ we
have

π
(n)
k ≥ (tn − k + 1)θn

γ ′δ11ξ ′m − kθn
π
(n)
k−1 ≥

tnθn − (k(n)↓ − 1)θn
γ ′δ11ξ ′m

π
(n)
k−1 =

γ ′ξ ′m − o(n)
γ ′δ11ξ ′m

π
(n)
k−1

≥ 1
δ12

π
(n)
k−1,

for a positive constant δ12 such that δ11 < δ12 < 1, and large enough n.
Equivalently, π (n)

k ≤ δ12π
(n)
k+1 ∀k < k(n)↓ .

Fix a positive constant ϵ1 < 1. Then, for all k < ϵ1k
(n)
↓ we have

π
(n)
k ≤ δ

(1−ϵ1)k
(n)
↓

12 π
(n)

k(n)↓
.

Now, fix a constant δ13 independent of n such that γ ′ < δ13 < 1 and let

k(n)↑ = m
cn

log
(

1
1 − γ ′/δ13

)
.

Then, one can check that
h(n)(k(n)↑ )

ξ ′m → γ ′/δ13 as n → ∞. Thus, for some constant

δ′
13 such that δ13 < δ′

13 < 1, we have h(n)(k(n)↑ ) ≥ γ ′ξ ′m/δ′
13. In fact, for all k ≥ k(n)↑

we have h(n)(k) ≥ γ ′ξ ′m/δ′
13.

Now, for large enough n, γ ′ξ ′m/δ′
13 ≥ γ ′ξ ′m + θn ≥ (tn + 1)θn .

Thus, for large enough n, we have h(n)(k) − kθn ≥ (tn − k + 1)θn ∀k ≥ k(n)↑ , or
equivalently from (16),

π
(n)
k ≤ π

(n)
k−1 ∀k ≥ k(n)↑ . (17)
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In fact, for a fixed positive constant ϵ2 > 1, for all k such that k(n)↑ ≤ k ≤ ϵ2k
(n)
↑

we have

π
(n)
k ≤ (tn − k + 1)θn

γ ′ξ ′m/δ′
13 − kθn

π
(n)
k−1 ≤ tnθn

γ ′ξ ′m/δ′
13 − ϵ2k

(n)
↑ θn

π
(n)
k−1

≤ γ ′ξ ′m
γ ′ξ ′m/δ′

13 − o(n)
π
(n)
k−1 ≤ δ14π

(n)
k−1,

for a positive constant δ14 such that δ′
13 < δ14 < 1, and for large enough n. Thus,

π
(n)

ϵ2k
(n)
↑

≤ δ
(ϵ2−1)k(n)↑
14 π

(n)

k(n)↑
for large enough n. Further, using (17) we get

π
(n)
k ≤ δ

(ϵ2−1)k(n)↑
14 π

(n)

k(n)↑
∀k > ϵ2k

(n)
↑ .

Thus, we get

1 =
tn∑

k=0

π
(n)
k =

ϵ1k
(n)
↓ −1∑

k=0

πk +
ϵ2k

(n)
↑∑

k=ϵ1k
(n)
↓

π
(n)
k +

tn∑

ϵ2k
(n)
↑ +1

π
(n)
k

≤ (ϵ1k
(n)
↓ )δ

(1−ϵ1)k
(n)
↓

12 +
ϵ2k

(n)
↑∑

k=ϵ1k
(n)
↓

π
(n)
k +

(
tn − ϵ2k

(n)
↑
)

δ
(ϵ2−1)k(n)↑
14

≤ nδ
(1−ϵ1)k

(n)
↓

12 + nδ
(ϵ2−1)k(n)↑
14 +

ϵ2k
(n)
↑∑

k=ϵ1k
(n)
↓

π
(n)
k

= δ
δ15

m
cn

−logδ12
n

12 + δ
δ17

m
cn

−logδ14
n

14 +
ϵ2k

(n)
↑∑

k=ϵ1k
(n)
↓

π
(n)
k ,

for suitably chosen positive constants δ15 and δ17. Thus, the concentration follows by
noting that ϵ1, ϵ2, δ11, and δ13 can be chosen arbitrarily close to 1. ⊓1

We now provide a bound for β
(n)
k . From (9), for k = 1, . . . , tn we have

β
(n)
k =

k∑

l=1

h(n)(l)
h(n)(l) − lθn

=
k∑

l=1

1

1 − lθn
h(n)(l)

. (18)

Using gn = θn
γ ′ξ ′b inLemma3,wegeth(n)(k) = ξ ′bnp(n)k ≥ δ18

γ ′ kθn for large enough
n and some constant δ18 such that γ ′ < δ18 < 1. From (18), for each k = 1, . . . , tn ,
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for large enough n we have

β
(n)
k ≤ δ19k

for some constant δ19 which is greater than 1.
The above bound for β

(n)
k is somewhat loose, especially for lower values of k.

Recall, the concentration result, namely Theorem 7, implies that the number of active
classes is smaller than ϵb log( 1

1−γ ′ )
n
cn

with high probability. The bound on β
(n)
k can

be further improved for the smaller values of k as follows.
Suppose h(n)(.) is a continuous function, i.e., h(n)(t) = ξ ′m

(
1 − e− tcn

m

)
for

each t ∈ R+. Then, by concavity of h(n)(t) and noting that h(n)(0) = 0, we get
h(n)(t)

t ≥ d
dt h

(n)(t). Further, by concavity, for each k ≤ ϵb log( 1
1−γ ′ )

n
cn

we have
h(n)(k)

k ≥ d
dt h

(n)(t)
∣∣∣
t=k

≥ d
dt h

(n)(t)
∣∣∣
t=b log( 1

1−γ ′ )
n
cn

= ξ ′cn(1 − γ ′)−ϵ .

From (18), for k = 1, . . . , ϵb log( 1
1−γ ′ )

n
cn
, we have

β
(n)
k ≤

k∑

l=1

1

1 − θn
ξ ′cn(1−γ ′)−ϵ

= k
1

1 − o(1)
.

We are now ready to bound mean delay. For large enough n, we have

tnθn
ν

E[D(n)] =
tn∑

k=1

β
(n)
k π

(n)
k =

ϵb log( 1
1−γ ′ )

n
cn∑

k=1

β
(n)
k π

(n)
k +

tn∑

k=ϵ′b log( 1
1−γ ′ )

n
cn

+1

β
(n)
k π

(n)
k

≤
ϵb log( 1

1−γ ′ )
n
cn∑

k=1

k
1

1 − o(1)
π
(n)
k +

tn∑

k=ϵ′b log( 1
1−γ ′ )

n
cn

+1

δ19kπ
(n)
k

≤ ϵb log
(

1
1 − γ ′

)
n
cn

1
1 − o(1)

+ δ19tn δ̃
m
cn .

The theorem thus follows from the definition of tn , γ ′ and ξ ′, and the fact that ϵ, δ,
and δ̃ were chosen arbitrarily. ⊓1

7 Conclusions

Our main conclusions address both practical and theoretical aspects associated with
such systems. We show that an infrastructure which allows a user to download in
parallel from a pool of servers can achieve scalable performance under limited hetero-
geneity in file demands. Some elements of content delivery infrastructure such as a
centralized back end which handles cache misses at distributed sites may see less pro-
nounced heterogeneity in demands.Our results suggest that pooling of server resources
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is a scalable approach towards delivering content for such centralized systems without
requiring complex caching strategies internally.

On the theoretical side we have established: (1) basic new results linking fairness in
resource allocation to delays and (2) the asymptotic symmetry of randomly configured
large-scale systems with heterogenous components. Together these results suggest
large systems might eventually be robust to heterogeneity and fairness criterion.

Appendix

Relative greediness and other rate allocation properties

Below, we provide a proof of Lemma 1 which asserts that αF is more greedy than BF.
Along the way, we develop several other properties of the rate allocation policies.

The proof of Lemma 1 stems from the properties (1) and (2) below on per-job rate
assignment for αF and BF.

(1.) αF gives the most balanced per-job rate allocation This property follows from
the fact that αF is equivalent to max-min fair rate allocation; see Proposition 2.
Formally,

Lemma 6 Let bα represent a vector of rates assigned to a set of flows under αF rate
allocation. Let b̃ be the rates assigned to the same set of flows under any other feasible
rate allocation. Then, bα ≺w b̃, i.e., weak majorization from above.

Proof Let the set of flows be qAx . It is easy to show that bα is the unique solution to
the following optimization problem:

maximize sign(1 − α)
∑

u∈qAx
b̂1−α
u ,

subject to
∑

u∈qA
b̂u ≤ µ(A), ∀A ⊂ Ax,

b̂u ≥ 0, ∀u ∈ qF .

Also, since b̃ is feasible, it satisfies the constraints of the above problem. The result
then follows by noting that the objective function of the above problem is monotonic
and Schur-concave in (b̂u : u ∈ qAx) [13,16]. ⊓1

(2.) In αF and BF, longest queues have smallest per-job rates For αF, this property
again follows from the fact that it is equivalent to max-min fair, and that the
capacity region is convex and symmetric. For BF, the proof for this property is
given in Appendix (In BF, longest queues have smallest per-job rates). Formally,

Lemma 7 αF and BF rate allocations satisfy the following property for any state x:
if xi > x j then

ri (x)
xi

≤ r j (x)
x j

.
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Proof Below we prove the lemma for αF rate allocation. For a proof of this lemma
for BF rate allocation, see the Appendix (In BF, longest queues have smallest per-job
rates).

Let bα = (bα
u : u ∈ qAx) represent the rates assigned to ongoing flows under αF

rate allocation in state x. Suppose xi > x j , but
rα
i (x)
xi

>
rα
j (x)
x j

. Then, for each u′ ∈ qi

and v′ ∈ q j , we have bα
u′ > bα

v′ . Let b̃ = (b̃u : u ∈ qAx), where b̃u = bα
u for each

u ∈ qAx\{i, j} and b̃u = rα
i (x)+rα

j (x)
xi+x j

for each u ∈ q{i, j}. It can be checked that b̃u is

feasible and that b̃ ≺w bα . This contradicts Lemma 6. Hence the result. ⊓1

Now, let us study what the above properties imply for per-class rate allocation.
Consider a state x. Lemma 7 above implies that the most disadvantaged jobs are the
ones which belong to longest queues for both BF and αF. This, along with Lemma 7,
implies that αF provides larger rate to longest queues. Thus, we get the following
property:

(3.) αF provides a larger rate to longest queues compared to BF Formally, this prop-
erty can be stated as follows:

Lemma 8 For any state x, we have
∑k

l=1 r
α
(l)(x) ≥ ∑k

l=1 r
B
(l)(x) for each k ∈

{1, 2, . . . , n}.

Proof Let u1, u2, . . . , ux[1] be the flows in the class corresponding to x[1]. Similarly,
for each k ∈ {2, . . . , n}, let u∑k−1

l=1 x[l]+1, . . . , u∑k
l=1 x[l]

be the flows in the class cor-
responding to x[k]. From Lemma 7, under both BF and αF rate allocation we have
bu1 ≤ bu2 ≤ . . . ≤ bu|x | . Thus, it is enough to show that bα ≺w bB . However, this
follows from Lemma 6. ⊓1

Now, we focus on αF and study how it allocates rates across classes for states x and
y such that x ≺ y. Intuitively, jobs in longer queues in state y are more constrained
than those in x. Again using the fact that αF is equivalent to max-min fair, the most
constrained jobs in state y have smaller rate than those in state x. By monotonicity of
αF, this holds even when x ≺w y. When translated to per-class rate allocation in states
x and y, this argument leads us to the following property:

(4.) αF provides a larger rate to longer queues in more balanced states Formally,
this property can be stated as follows:

Lemma 9 Consider states x and y such that x ≺w y. For each k such that∑k
l=1 x[l] =

∑k
l=1 y[l], we have

∑k
l=1 r

α
(l)(x) ≥ ∑k

l=1 r
α
(l)(y).

Proof Due to monotonicity of rα(y) with respect to components of y, it is enough to
show the result for the case where x ≺ y. Assume x ≺ y. Let u1, u2, . . . , ux[1] be the
flows in the class corresponding to x[1]. Similarly, let u∑k−1

l=1 x[l]+1, . . . , u∑k
l=1 x[l]

be the
flows in the class corresponding to x[k] for each k ∈ {2, . . . , n}. Let the corresponding
rates assigned to flows under αF rate allocation be given by b(x). Using Lemma 7, we
have bu1 ≤ bu2 ≤ . . . ≤ bu|x| . Similarly, let v1, v2, . . . , v|y| be the flows corresponding
to state y and construct the corresponding b(y).
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One can check that b̃(x) = (b̃(x)uk : k ∈ {1, 2, . . . , |x|}), where b̃(x)uk = b(y)vk for each
k ≤ |x|, is feasible under state x as well. Thus, from Lemma 6, we have b(x) ≺w b̃(x).
From this, the result follows. ⊓1

Finally, we are ready to study relative greediness of αF and BF.

(5.) αF is more greedy than BF We now prove Lemma 1. Consider states x and y
such that x ≺w y. From Lemma 9 we have

∑k
l=1 r

α
(l)(x) ≥ ∑k

l=1 r
α
(l)(y), and

from Lemma 8 we have
∑k

l=1 r
α
(l)(y) ≥ ∑k

l=1 r
B
(l)(y). Hence, Lemma 1 holds.

In BF, longest queues have smallest per-job rates

Lemma 10 For any state x, if xi > x j then
r Bi (x)
xi

≤ r Bj (x)
x j

.

Proof Using the definition of balanced fairness, we have
r Bi (x)
r Bj (x)

= Φ(x−ei )
Φ(x−e j )

. Thus, we

need to show that Φ(x−ei )
Φ(x−e j )

≤ xi
x j
. It is thus sufficient to prove that Φ(x+ei )

Φ(x+e j )
≥ x j+1

xi+1
holds for each x since the result follows when x is replaced with x − ei − e j .

We show below that Φ(x+ei )
Φ(x+e j )

≥ x j+1
xi+1 holds for each x.

Fix i, j ∈ F . By symmetry of balanced fairness and the capacity region, the result
holds for each x such that xi = x j . We show that the result holds for each x such that
xi ≥ x j using induction on |x|. We will use the following recursive expression for
Φ(.) which we get from the definition of balanced fair and Proposition 3: For each
state x, we have

Φ(x) =
∑

i ′∈Ax
Φ(x − ei ′)

µ(Ax)
. (19)

The result clearly holds for the base case of |x| = 0. Assume that the result holds
for all states x′ such that |x′| < |x|. We prove that the result holds for the state x under
each of the following two possible cases for x:
Case 1 Ax+ei ! Ax+e j : This case is possible only if xi > 0 and x j = 0. Thus,
µ(Ax+ei ) ≤ µ(Ax+e j ). Using (19), we get

Φ(x + ei )
Φ(x + e j )

≥
Φ(x)+∑

i ′∈Ax\{i} Φ(x + ei − ei ′)

Φ(x)+ Φ(x + e j − ei )+
∑

i ′∈Ax\{i} Φ(x + e j − ei ′)
.

Using the induction hypothesis, we have Φ(x+ei−ei ′ )
Φ(x+e j−ei ′ )

≥ x j+1
xi+1 for each i ′ ∈ Ax\{i}.

Thus, using the fact that a1+a2
b1+b2

≥ x
y if ak

bk
≥ x

y for each k ∈ {1, 2}, the result follows
if we show that Φ(x)

Φ(x)+Φ(x+e j−ei )
≥ x j+1

xi+1 . This in turn follows since x j = 0 and
Φ(x)

Φ(x+e j−ei )
≥ 1

xi
holds by the induction hypothesis.

Case 2 Ax+ei = Ax+e j : Again using (19), we get

Φ(x + ei )
Φ(x + e j )

=
Φ(x)+ Φ(x + ei − e j )+

∑
i ′∈Ax\{i, j} Φ(x + ei − ei ′)

Φ(x)+ Φ(x + e j − ei )+
∑

i ′∈Ax\{i, j} Φ(x + e j − ei ′)
.
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Again, using the induction hypothesis we have Φ(x+ei−ei ′ )
Φ(x+e j−ei ′ )

≥ x j+1
xi+1 for each i ′ ∈

Ax\{i, j}. Thus, we only need to show that Φ(x)+Φ(x+ei−e j )
Φ(x)+Φ(x+e j−ei )

≥ x j+1
xi+1 . We show this

below.
By the induction hypothesis, we have Φ(x+ei−e j )

Φ(x) ≥ x j
xi+1 and Φ(x)

Φ(x+e j−ei )
≥ x j+1

xi
.

Thus, we get

Φ(x)+ Φ(x + ei − e j )
Φ(x)+ Φ(x + e j − ei )

=
1+ Φ(x+ei−e j )

Φ(x)

1+ Φ(x+e j−ei )
Φ(x)

≥
1+ x j

xi+1

1+ x j+1
xi

= x j + 1
xi + 1

.

Hence, the result. ⊓1

Technical lemmas for proof of Theorem 5

Lemma 3 Let a sequence (gn : n ∈ N) be such that gn = o(cn). Let δ1 < 1 be a
positive constant independent of k and n. Then, for large enough n, we have

p(n)k ≥ δ1gn
n

k ∀k ∈
{
0, 1, . . . ,

⌊
n
gn

⌋}
.

Proof Consider a sequence of functions
(
f (n)(.)

)
n≥1 where, for each n,

f (n)(t) = 1 − (1 − cn/(bn))t for each t ∈ R+. Then,

f (n) (n/gn) = 1 − (1 − cn/(bn))
n
gn

n→∞−→ 1.

Thus, there exists an integer n′ such that f (n) (n/gn) ≥ δ1 for all n ≥ n′. Also,
f (n)(0) = 0 for each n. Using concavity of f (n)(.), for each n ≥ n′ we have

f (n) (t) ≥ f (n) (n/gn)
(n/gn)

t, ∀t s.t. 0 ≤ t ≤ n/gn .

Hence, the lemma. ⊓1
Lemma 4 There exists a positive constant δ, independent of k and n, such that
H
(
p(n)k (1 − ϵ)||p(n)k

)
≥ −δ + ϵ kcn

m .

Proof From the definition,

H
(
p(n)k (1 − ϵ)||p(n)k

)
= p(n)k (1 − ϵ) log(1 − ϵ)

+(1 − p(n)k (1 − ϵ)) log

(
1 − p(n)k (1 − ϵ)

1 − p(n)k

)

.

Here, the term p(n)k (1−ϵ) log(1−ϵ),while negative, is greater than (1−ϵ) log(1−ϵ),

a constant. Similarly, the term (1− p(n)k (1−ϵ)) log
(
1 − p(n)k (1 − ϵ)

)
is negative, but

can be upper-bounded by a constant as follows:
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(1− p(n)k (1−ϵ)) log
(
1− p(n)k (1−ϵ)

)
≥ log

(
1 − p(n)k (1 − ϵ)

)
≥ log(1 − (1 − ϵ))

= log.

Thus, we have

H
(
p(n)k (1 − ϵ)||p(n)k

)
≥ −δ + (1 − p(n)k (1 − ϵ)) log

(
1

1 − p(n)k

)

≥ −δ + (1 − (1 − ϵ)) log

(
1

1 − p(n)k

)

= −δ + ϵ log

(
1

1 − p(n)k

)

≥ −δ+ϵ
kcn
m

,

where in the last inequality we used the fact that 1 − p(n)k ≤ e− kcn
m . ⊓1
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