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Abstract— In this paper we study sourcerouting in an ervironmentwhere
imperfect stateinformation is the norm. The uncertainty involved in several
aspectsof the routing process endersthe route choiceslessthan “optimal”.
We start by conducting an experimentthat comparesthe performance of an
“infer ence”-basedrouting schemeto that of the traditional approachbased
on delayed link state broadcast. We then resort to a set of simple models
to investigateto what extent the “crude” routing decisionsbasedon limit-
ed statistical information conform to the ideal choices. In the conventional
routing context, we identify a usefulmeasuie, the gap, which quantifies how
successfula “crude” routing decisionis likely to be. In the quality of ser
vice routing context we explore the possibility that a route choicebasedon
limited statistical information is the “most likely” path to satisfy the userre-
quirement. We alsodiscussthe role of critical points, whoserelative position
affectsthe robustnessof the routing decisionswith respectto uncertain user
requirement. Simulations establishthe existenceof gap and critical point in
a realistic setup. The impacts of theseobsewations on the effectivenessof a
simple path cachingschemeare then discussed.

|. INTRODUCTION

In orderto provideend-to-endjuality of service(QoS)guaran-
teesto usersfuture networksarelik ely to requireenhancedout-
ing mechanismslndeed current(unpinned)op-by-hop routing
is not particularlywell suitedto addres®nd-to-end QoSrequire-
mentsbecausehey dependon the characteristicof the entire
path. By contrast,source routing (or explicit routing ) might be
bettersuitedto selectpathssatisfyingusers QoS requestsput
it requiresthe availability anddistribution of a large amountof
network stateinformation,possiblyresultingin scalabilityprob-
lems.Moreover, sincethestateof thenetwork is in constanflux,
routersmay be makingdecisionsbasedon uncertainstateinfor-
mation. In particular future routing mechanismsnay usehier-
archicalaggreyationof stateand/ortopologyinformationto deal
with scalabilityissueshaturallyresultingin a lossof accurag.
By the sametoken, routersmay alsohave incompleteinforma-
tion concerningthe characteristicef the users traffic. Indeed,
sincetraffic is oftenbestmodeledasa stochastigprocessthereis
ahigh degreeof uncertaintyin specifyingtraffic via crudesource
parameterand/ormodelsandthentranslatingheseto anend-to-
endQoSguaranteeln light of thesenew challengesour goalis
to investigatg(QoS-sensitie) sourcerouting basedon uncertain
network andsourceinformation.

To understandhe characteristicof the routing problemwe
conductthefollowing idealizedrouting experiments We assume
that the userunderconsideratiorhasno knowledgeof the net-
work stateexceptfor its currenttopology Basedon the accu-
mulationof its pastrouting experience a sourcerouting engine
infersthelikelihoodof successn usingvariousroutes,anduses
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Fig. 1. Isptopology

suchinferencego selectroutes.We comparegheperformancef
sucharouteselectionschemewith mechanismshatuseinaccu-
ratestateinformation,andarguethatif the network operatesn a
“typical” regime,onecandorelatively well usingthis “inference-
based”approach.Furthermorejn orderto identify the bestin-
ferencestrategyy, we constructsereral alternatve schemedghat
“adaptively” maintainlink statesvia an exponentiallyweighted
averagingmechanismin particulay the performancedvantages
of an end-to-end strateyy over its link-by-link counterpararei-
dentified.

To further investigateissuesrelatedto uncertaintyin rout-
ing we considera “stripped-davn” model-basedramework, in
which we explicitly modeluncertaintyin the network stateby
a crudelink metric distribution. We identify a notion of “gap”
amongcandidateoutesbetweera particularsourceanddestina-
tion pair, suggestinghe existenceof the dominantroutes.These
would in turn typically be the mostlikely routesto satisfy the
users requirements. This conformsto the resultsin the Inter-
net routing study by Paxon[4] where end-to-endrouting mea-
surementindicatesthe “persistence”of the routesfollowed by
the datapaclets. Similarly we studythe robustnesf the rout-
ing decisionsto variationsin userrequestr traffic character
istics. Basedon our model we explore the notion of “critical
point”, which suggestshe fashionin which the variationsin us-
er requestamight leadto differentrouting decisions. We deem
thesenotionsusefulin thatthey provide a quantitatve measure-
mentof how robust the routing processs, and, asdiscussedn
the sequel provide goodinsightsto designrouting and/orroute
cachingmechanismsor future networks.

Il. TWO EXPERIMENTS: INFERENCE vs. DELAYED STATES

To understandherole playedby thelink statesn therouting
processespeciallywhenthey involve a certaindegreeof uncer
tainty, we conductthefollowing experiment.Thesetupof theex-
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perimentahetwork is shovnin Fig. 1. Theconnection@rrive at
asourcenodeaccordingo aPoissomprocessandthedestination
is uniformly choserfrom the setof nodesexceptthesourcenode.
Theholdingtime of eachconnectioris modeledby a Paretodis-
tribution. The parametersf the simulationwere setasfollows:
link capacity= 25, connectiorarrival rate= 12 connectionper
second,averageconnectionholding time = 2 secong andthe
bandwidthrequestof eachconnectionis uniformly distributed
betweenl and3 units. We referto this asthe basecase.We in-
creasehetraffic load by multiplying the arrival ratesof the base
caseby asequencef numbersshovn onthex-axisof our plots.

We comparethe performanceof two routing strateies in
termsof theratio of erroneouslecisionsjncludingadmittedbut
blocked connectionsandfalsely rejectedconnections.The first
routing mechanisnis an “inference-based’strateyy, whereno
knowledge of the link statesis assumedavailable, except the
topologyof the network. A groupof routesis preselectedsthe
setof candidateaoutesbetweena sourcenodeanda destination
node. In particular we selectall theroutesthatare eithershort-
estor next to shortestn hopcount. During a “warm-up”phase,
connectionsomein andare setup randomlyamongthe group
of candidatgpaths establishinganinitial assessmemf the“suc-
cessprobability” of usingthesepaths.The“succesgrobability”
of usingaparticularpathis definedastheratio betweerthenum-
berof successfullyoutedconnectionwia a pathandthenumber
of attemptson usingthis path. After the “warm-up” phase the
routingmechanisnsimply selectghe pathwith highest‘success
probability”, andthe sourceroutersdynamicallymaintaintheir
estimatesof the “successprobability” via the accumulationof
their routing experiencej.e., by keepingtrack of the numberof
successeandattempts.The secondstratgy is the corventional
routing approachwith delayed state information, which makes
its decisionbasedon the availability of the resource. We plot
in Fig. 3-5the performanceeomparisorof the two stratgiesas
traffic intensityincreasesFromgraphto graph we progressrely
increasegheamountof delayinvolvedin link statebroadcast.

Fig. 3, 4 and5 summarizethe resultsof the first experiment.
We malke severalobsenationsasfollows:

1) When the delay in link state broadcastis small, i.e,, 1
second (seeFig. 3), both approacheéave very similar perfor
mance. Taking into accountthe costof adwertisemento obtain
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fresh stateinformationin termsof CPU usageand extra traffic
load, onemight arguethatinference-basedpproachs adwanta-
geous.

2) Whenthe delayis big, i.e,, > 5 second(seeFig. 4), the
inferenceapproachoutperformsthe approachwhereinaccurate
stateinformation is used. Moreover, the differencein perfor
manceincreasess the traffic intensity increases.Considering
the fact that during congestionperiodswe would like to de-
creasehe overheadassociatedavith stateinformationexchange,
aninference-basedpproachappearso be a superiorstratayy.

3) FromFig. 4 and5, we obsene thatthereis a “saturation”
point for the degreeof degradationin performancevhenusing
link-statebasedstrateyy, i.e., asthe delayincreaseghe perfor
mancedegradeshut it doesnot degradeindefinitely.

Thisconcludeghefirst experiment.Letusdescribeoursecond
experiment.Thepurposeof this experiments to demonstratéhe
performancémprovementhatcanbeachiezedby inferring end-
to-end metrics,asopposedo singlelink metrics. We compare
four routing schemesThefirst two arethe sameasthe onesin
the previous experiment,namely a “dynamic” routing scheme
basedon the (delayed)stateinformationandan inferencestrat-
egy basedon succesprobability Thethird one(Inference-link)
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is an“adaptive” scheméasedntheestimatiorof thelink avail-
able bandwidth. The fourth one (Inference-end2end} alsoan
“adaptive” scheme.But ratherthanusingthe estimationof the
link bandwidth,it maintaindts estimationof the availableband-
width on the respectie routes. In particular an exponentially
weightedaveragingmechanisnis usedin the estimationproce-

dures. Whena connectionarrival comesin, Inference-end2end

selectsa pathwith the greateststimatecpathbandwidth(or re-
ject the connectionrequest) while Inference-linkcomputeshe
path metricsfrom the estimatedlink bandwidthsand makes a
routingdecisionbasedon theresultingpathmetrics.

Fig. 6 demonstratethe result. At leasttwo factscanbe ob-
senedhere:

1) The performanceof the inferenceapproachbasedon suc-
cessprobabilityis similar to that of the end-to-endavailablere-
sourcecase Intuitively, they arelooking atthe similar properties
of thenetwork thusthey yield comparableesults.

2) Thereis a noticeabledegradationin performancef werely
on eachlink itself to maintainthe estimatedavailablebandwidth
and furthermoreusethat informationto make end-to-endrout-
ing decisions.We conjecturethatthe errorin the link estimator
will manifestitself in theincorrectend-to-endoutingdecisions.

This suggestghat one should maintainestimationof the route
performanceaatherthanlink states.However, it is well known
thatthe numberof routesgrows exponentiallyasthe size of the
network increasesThis callsfor anefficientroutestatemanage-
mentschemeln thenext few sectionsve studytherobustnessf
theroutingdecisionsasthelink statesand/oruserrequestwary,
and verify the obtainedinsightsin a routing/cachingsetupvia
simulation.

Il. SENSITIVITY ANALYSIS: CONVENTIONAL AND QOS
SENSITIVE ROUTING

We considera weighteddirectedgraphG(N, £), where
is a set of nodesand £ denotesthe links amongthe nodes.
Eachlink I = (i,j) € L hasa randommetric D, repre-
senting uncertaindelay/costinformation. Let s,d € N de-
note a pair of sourceand destinationnodes,and P,; denote
the set of possiblepathsbetweens andd, wherea pathP =
((5,9)(5,5) (G, k) -+ - (1,d)) = (l,12,---1,) is anappropriately
orderedsequencef links. In the caseof additve metrics(de-
lay/cost),the goalis to determinea “shortestpath” P* between
sandd,i.e, P* € argminpepsde.

Supposehat we have only averagemetricswhencomputing
theoptimalpaths.Letd; = E[D;Janddp = ), d;. Now one
might askwhatis the probability thatthe shortespathsobtained
basedon the true (random)metricsis amongthosedetermined
usingaveragemetrics,i.e., Prob(P* € agminp.p_ dp)

We modelthedeIay/cosmetncsasGaussmmanéormanables
andassumehattherearetwo pathsbetweens andd, denotecby
Py andP,. AssumeD; ~ N(d;,o}), thenDp, ~ N(dpl,O'PI)
Dp 1~2N(dp2,ap ), wheredp, =} p. di, 0} = 2 ep,; o?,
i =

Supposelp, < dp,,thenbasednthemearnvalueswe choose
P, asthe shortestpath. What is the probability that this path
coincideswith the optimal choicebasedon therealizationof the
randommetrics?The answelis:

ProdDPﬁ S DPQ)

= Pro(Z < dr, — dp, )s
0-%31 + 0'%32 - QCW(DP17 DP2)

whereZ ~ N(0,1). Definethe“gap”betweenP; andP; as

gap P, P»)
Zlepl di — ZkePZ dp

\/EIEH UlZE + D kep, oy —2Cov(Dp,, Dp,)

Thegreatetthe“gap” is, themorelik ely we make a goodrout-
ing decisionbasedn averagedink metric.

In the caseof QoS sensitive routing, the goal is to choosea
paththatsatisfieghe quality of servicerequirementdy the user
s. Sinceuncertaintyis inevitablein bothroutingmetricsanduser
requestspne might wantto searchfor a paththatis mostlike-
ly to meetthe users QoSrequirementsln [2] the authorstried
to solve this problemby explicitly modelingthe probability dis-
tribution on link metrics. In this sectionwe investigateto what
extentwe cangetaway with only mean/arianceof thelink met-
rics.



Recall the Gaussiandelay/costmodel. A routing decision
basedon the meanmetrics,e.q., dp, < dp,, would selectpath
P, andmake a “correct” decisionwith probability ProiDp, <
Dp,). If the “gap” is relatively big this decisionis likely to
be correct. Now supposea userarriveswith an end-to-endde-
lay/costrequestd. If di < ds, doesit necessarilyhold that
Prob(Dp, < d) > ProlDp, < d)? Theansweris no. Con-
siderthefollowing two scenarios:

1)If dp, < d < dp,, the*averageroutingwill favor path1.
The “most likely” type stratgy will alsochoosepathl1 simply
becaus@ro(Dp, < d) > 0.5 > Pro(Dp, < d)

2)if dp, < d,dp, < d, by usingonly the meanswe cannot
selectthe “mostlikely” path. Both P; and P, couldbethe path
“mostlikely” to satisfythe delay/costonstrainid, dependingn
the tail of respectie distributions. Obsene thatif path1l is the
onechoserby the“mostlikely” stratgy, we musthave o p,dp, +
dop, < op,dp, + dop,. Hencein this casethelink metricsthat
incorporatethe secondorder statisticsmight help in identifying
the“mostlikely” path.

Justaslink metrics,the userrequestsnay alsobe considered
uncertain. We seekthe “critical” value of userrequestwhich
malkes equalthe probabilitiesthat the two pathssatisfy the re-
quirementsi.e,

ProDp, < d) = ProDp, < d)
sincethe Dp, ~ N(dyi,0%), Dp, ~ N(dz2,0%), we have

d— dioy — dyoy

g9 — 01

for oy # o05. Obviously wheno; = o5 , the “critical” point
d doesnot exist, in which casea routing decisionis constan-
t/robust to the variationsin the userrequest. As suchwe have

locateda “critical” value of the userrequestaroundwhich the
routing decisionis sensitve to the userrequest. Specifically

a shift in the userrequestfrom one side of the “critical point”

to the otherwill changethe correspondingouting decision. In

other words, the sensitvity is low when the userrequestsdo
not go acrossthe “critical point”. Obsene that asload condi-
tion (dp,,dp,,0p, ,0p,) varies,the routing decisionregarding
the sameuserrequestmay alsochange dependingon (oncea-
gain) the relative position of the userrequestand critical point
d.

IV. PATH CACHING

In the previous sectionwe usea setof crudemodelsto illus-
tratethe effect of “gap” and“critical points” on therouting pro-
cess. The modelsare not to be taken as exactly reflectingthe
network loadingcondition, but ratherintendedto provide quali-
tative insightinto thekey elementghatimpactroutingdecisions.
In this sectionwe usesimulationin arouting/caching[5gnviron-
mentto solidify theseinsightsin arealisticapplication.

A. Smulation setup

The network topology uponwhich we run the simulationis
shavn in Fig. 2. We considerQoSrouting to meetend-to-end
delay requirementsn this simulation. The routing metricsare
theavailablebandwidthon respectie links andwe usethe Guar
anteedServicemodel[6] to infer bandwidthrequirementgrom
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usersend-to-endlelayrequirementTheconnectiorrequestar-
rive accordingto a Poissorprocessandwe assumeheir holding
times are exponentially distributed. The traffic matrix is sum-
marizedin [1]. Two typesof delayrequestcomein, which we
term*“stringentrequests’and“relaxedrequests”.The “stringent
requests’teferto anend-to-endielaytoleranceof 15msec The
“relaxed requests’refer to an end-to-enddelay toleranceof 30
msec. The routing algorithmiteratesin the increasingorder of
thehop countandtriesto find thefirst pathcapableof satisfying
thedelayrequirements.

B. Key observations

1)“Gap”: An interestingobsenationis maderegardinghow
long aroutewill remaineffective beforeit is replacedy a better
performingroute. Herewe measurdhe percentagef admitted
connectiongrom 11 to 3 thatareroutedby theshorteshoppaths
11 — 10 — 3 and11 — 0 — 3. Asthetraffic intensitychangesthe
useof the two shortestroutesremainconsistentlyabose 80%.
The pointis thatamongthe theoreticallylarge numberof routes
betweenary source-destinatiopair just a few arelikely to be
used.SeeFig. 7.
2) “Critical point”: In light of the previousobsenation,theshort-
esthoppathsarepredominantlyusedn theconnectiorsetup.We
wouldlik e to understandhe preferencemongthe shortespaths
asa function of the link statedynamics.In Fig. 8 andFig. 9,
we plot the percentagesageof thepath1l — 10 — 3 for thead-
mitted “relaxed” and “stringent” connections.Obsene that for
both typesof connectionsthe preferencdor path1l — 10 — 3
increasessthetraffic loadintensifies.Moreover, noticethatfor
the “stringent” connectionsthe preferencdor path11 — 10 — 3
shifts from 42% (unfavorable)to 67% (favorable),while for the
“relaxed” connectionsthe preferencdor the samepathremain-
s above 50%. This suggestghe importanceof managingsep-
aratepreferredroutesfor differenttypesof connectiorrequests
betweersamepair of sourceanddestinatiomodes.

C. The Performance of the Caching Policy

The obsenationsmadepreviously regardingtheimpactof the
“gap” and“critical point” suggesthefeasibility of a goodroute
cachingscheme. To implementsucha scheme we maintaina



The Effect of Critical Point: small flows

% Path usage
o o o o
o o o =] I I3 o
ol (2] 5 ~ a1 [ a
:

o
3

o

'S

a
N

Arrival rate

Fig. 8. Pathusagerelaedconnections.

The Effect of Critical Point: big flows

10

% Path usage
o o o o
> o n o o =] 3
ol 4 1 (22] 5 ~ ul

o
IS
T

o
w
a

2 3 4 5 6 7 8
Arrival rate

Fig.9. Pathusage:stringentconnections.

The Performance of the caching scheme

10

0.91

o o o
o ~ ©
T T T

% Cached Path usage

o
3
T

0.4
1

2 3 4 5 6 7 8
Arrival rate

Fig. 10. Performanc®f Caching.

10

routecache eachconnectiorarrival is first assigned routetak-
enfrom the cache,f anentry correspondindo the userrequest
exists. The sourcerouterthenattemptsto establishthe connec-
tion by checkingthe currentlink statesalongthe chosenroute.
If the checkpassesthe connectionis setup. If the cachedoute
is not successfullyestablishedye recomputethe bestpathand
try to setup the connectionin a similar fashion. If the newly
computedpathis successfullysetup, it is cachedandreplaces
theold cachedentry. We evaluatethis cachingschemeusingthe
performancaneasuredefinedas the ratio betweenthe number
of the successfutachedpathestablishmentandthe numberof
the total successfutonnectiorestablishmentsSeeFig. 10. We
concludethatthe savingsin pathcomputatioris very significant
(morethan80%)andthesimplerulewe utilize is ableto trackthe
changingpreferencen pathpriority thatis shovn in Fig. 8 and
9. In short,this simpleseek-and-replaceache/routinggchemes
aware of “gap” and“critical point”, henceprovidesan effective
way to steertowardsoptimal routereusestratayy.

V. CONCLUSION

In summarywe believe this work shedssomenew light on
the characteristicand approacheshat might be usedto design
routing mechanismdgor broadbanchetworks. We exploredis-
suesrelatedto the delayin link-state-basedouting algorithms
andproposedninference-baserbuting scheme Thebenefitof
theinferencestratgiesis evidencedhroughexperimentsMore-
over, themerit of theend-to-endnferencemethodis established.
We analyzeda setof simple modelsof link metricsandidenti-
fied the notion of “gap” and“critical point”. Their significance
in evaluatingthe robustnes®f routing decisionsn anuncertain
ervironmentis studied. We examinedthe significanceof these
notionsin a routing/cachingscenaricandidentifiedcorrespond-
ing propertiedn arealisticconfiguration.
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