
Online Channel-state Clustering And Multiuser
Capacity Learning For Wireless Scheduling

Isfar Tariq, Rajat Sen, Gustavo de Veciana and Sanjay Shakkottai
Department of Electrical and Computer Engineering

The University of Texas at Austin, USA
Email: isfartariq@gmail.com, rajat.sen@utexas.edu, gustavo@ece.utexas.edu, shakkott@mail.utexas.edu

Abstract—In this paper we propose an online algorithm for
clustering channel-states and learning the associated achievable
multiuser rates. Our motivation stems from the complexity
of multiuser scheduling. For instance, MU-MIMO scheduling
involves the selection of a user subset and associated rate selection
each time-slot for varying channel states (the vector of quantized
channels matrices for each of the users) — a complex integer
optimization problem that is different for each channel state.
Instead, our algorithm clusters the collection of channel states to
a much lower dimension, and for each cluster provides achievable
multiuser capacity trade-offs, which can be used for user and rate
selection.

Our algorithm uses a bandit approach, where it learns both
the unknown partitions of the channel-state space (channel-state
clustering) as well as the capacity region for each cluster along a
pre-specified set of directions, by observing the success/failure of
the scheduling decisions (e.g. through packet loss). We propose an
epoch-greedy learning algorithm that achieves a sub-linear regret,
given access to a class of classifying functions over the channel-
state space. Finally, we empirically validate the performance of
our algorithm through simulations.

Index Terms—Online Learning, Bandit Algorithms, Wireless
Networks, Scheduling, Capacity Region

I. INTRODUCTION

Wireless cellular networks have become increasingly more
complex to operate – the aggregate number of parameters
available for optimization at various layers can range in the
thousands (e.g. MIMO antenna weights, power levels, coding
and modulation rates, and frequency/sub-frame allocation to
users), and the choice of which depend on the channel-states
of the users1. Thus, when scheduling users (e.g. in MU-
MIMO scheduling [1]), a channel-state dependent combina-
torial optimization problem needs to be solved each time-slot,
where a subset of users need to be selected, and transmission
rates and power levels jointly determined for each of these
users from among the allowable parameters. This problem
however has a latent low-dimensionality that can be exploited,
namely that for channel-states that are “near” each other, the
optimal solution (user and rate selection) is likely to be the
same. Thus, if we cluster channel-states, and determine the
effective rate region trade-offs for each cluster, these cluster-
dependent rate regions can be used for user and rate selection,

1In a MIMO setting, the channel-state for each of the users is the channel H
matrix, and in practice the base-station would have access to an approximation
of this (e.g. quantized version).

Fig. 1: An illustrative example of the channel-state space P and the
corresponding capacity classes for n = 2 users, K = 3 capacity
classes and d = 1. {r(i)}i∈[4] are different rate vectors that can be
scheduled. The vectors {ui}i∈[2] correspond to the directions along
which we need to maximize user rates.

and thus significantly reduce the complexity of user and rate
scheduling.

However, these clusters are unlikely to be universal, meaning
that different scenarios (e.g. indoor, outdoor urban, outdoor
rural) would lead to different channel-state clusterings. Indeed,
it is further likely that the clusters will also vary with the time
of day depending on different loading/use-case scenarios. This
then, motivates an online clustering and multi-user rate region
learning approach, which is the focus of this paper.

Main Contributions: We consider a system where the
channel-state space P clusters into K (unknown) classes, with
a corresponding multiuser rate-region for each class. Our goal
is to develop online strategies that can learn clusterings of
different channel-states that have similar multiuser rate regions
along with the boundaries of these regions. Simultaneously
while learning, we need to schedule users based on the
observed channel-states to maximize the user rates along pre-
specified directions (see Figure 1(a) precise definition is given
in Section III). Our contributions are:

(i) We propose an epoch-greedy bandit algorithm for our
problem setting. The algorithm assumes access to a class
of experts/classifying functions Π̂, where an expert in Π̂ is
a mapping from the channel-state space to {0, 1}. We also
assume that the class of experts is rich enough, such that there
exists a set of functions, which when composed together can
yield a function from the channel-state space to {1, 2, ...,K}

which correctly identifies the class in which each channel-state
belongs in. Similar assumptions have been made in the realiz-
able setting in stochastic contextual bandits [2]. Our approach
achieves a balance between three objectives: (i) Class Explore-
learning the clustering of the channel-state space using the
class of experts and feedback obtained by scheduling different
rates in an exploratory manner (ii) Capacity Explore- learning
the boundaries of the capacity regions in the specified direc-
tions for the different channel-state region clusters (iii) Exploit
- finally, exploiting the knowledge learned, by scheduling the
rate vector of maximum possible magnitude in the specified
direction, that lies within the capacity region corresponding to
the channel-state observed in a time-slot.

(ii) We define a notion of cumulative regret for our problem.
The regret in our setting is the difference between the total
effective rate obtained by a learning policy in T time-slots
and the total rate obtained by a genie policy which knows
the capacity clusters and the corresponding capacity regions
and given a channel-state, always schedules the rate vector
of maximum possible magnitude in the specified direction,
which lies within the capacity region corresponding to the
channel-state. We provide a rigorous definition of regret for
our problem in Equation (4). We analyze our algorithm and
prove that it has a regret scaling of O(T 2/3 log T) at time
T .

Finally, we circle back to one of our motivations – under-
standing the channel-state-dependent capacity regions. Note
that since our algorithms focus on optimizing along a pre-
specified set of directions, the resulting capacity region that
can be constructed for each channel-state class will be an
approximation (because we can potentially miss some of the
faces of the capacity region). However, if the capacity regions
are “nice”, then the direction vectors can be designed in order
to get an almost exact estimate of the capacity regions. For
instance in [3], it has been shown that convex polytopes
formed by the intersection R half-spaces (the hyper-planes
should have rational coefficients) and for which the vertex
enumeration problem is efficient [4], can be learned with
O(poly(R, d′)) noiseless membership queries, where d′ is the
dimension of the space.

II. RELATED WORK

Over the last few decades, there has been a lot of work on
opportunistic scheduling for wireless networks. This has led
to a powerful framework of algorithms that utilize channel
feedback and the queue lengths to achieve objectives like
system stability, optimization of a utility function or average
delay [5]. In the setting of multi-user MIMO wireless networks
(MU-MIMO), scheduling algorithms need to optimize over
user selection, beamforming (antenna weight selection), power
allocations, physical layer modulation and coding parameters
[1], [6], [7]. Here, the user selection sub-problem (choosing a
subset of users for transmission from among all the possible
users) renders leads to a combinatorial explosion in complex-

ity, and several approximations have been used as guidelines
for complexity reduction [8]–[10].

We approach dimensionality reduction through online clus-
tering, and our algorithmic approach is related to the con-
textual multi-armed bandit problem [11]–[13]. The stochas-
tic contextual bandits with experts problem [2], [12], [14],
[15] is especially relevant to our problem. This problem has
been studied in the literature starting with the epoch-greedy
policy in [12] leading to the more powerful and essentially
statistically optimal policies in [2], [14], [15]. Our problem is
somewhat similar to this setting as the channel-states observed
is analogous to the context and the feedback received after
scheduling a rate vector is similar to the stochastic reward
observed after pulling an arm. We also assume access to a class
of experts that map the space of channel-states to {1, 2, ...,K},
where K is the number of capacity classes. However, it should
be noted that the feedback received in our setting is much more
challenging, as it does not provide direct information about the
capacity classes unlike the rewards received from the arms in
contextual bandits, which directly reflects the utility of that
arm under the given context. Moreover, in our problem there
is an additional task of learning the boundary of the capacity
regions, even after the clustering of the channel-state region
into K classes has been learned.

In the context of learning the capacity regions, there is a line of
related work on learning convex polytopes which are formed
by the intersection of a finite number of half-spaces, from
noiseless membership queries [3], [16]. In [3] binary search
type strategies have been used to provide efficient algorithms
for learning a class of convex polytopes that are formed by
the intersection of half-spaces defined by hyper-planes with
rational coefficients and for which the vertex enumeration
problem can be solved efficiently.

III. SYSTEM MODEL AND DEFINITIONS

We consider a discrete time scheduling system with n users
and a single scheduler. At each time t, the scheduler observes
a channel-state vector q(t) = {q1(t),q2(t), . . . ,qn(t)} where
qi(t) ∈ Qd is the channel-state for user i ∈ [n], where [n] ,
{1, 2, .., n}. The set Q can be a bounded subset of R or a
discrete alphabet set. We denote the set of all channel-state
vectors as P(= (Qd)n). At any time t we observe the channel-
state vector q from a time-invariant distribution fQ over P
(this distribution depends on the wireless channel between the
user and the base-station).

Scheduling a rate vector: Corresponding to each channel-
state, there is a unique capacity region that the system can
support. The capacity region corresponding to a channel-state
is defined as the set of all user rate vectors r ∈ Rn+ that
can be achieved with probability close to one, potentially
by time-sharing. Strictly speaking, we are really considering
the rate region, i.e., the set of user rate vectors that are
achievable using the available physical layer strategies at the
base-station (convex hull of the data rates that be generated

using the available physical layer coding/modulation/antenna-
beamforming choices), as opposed to an information-theoretic
characterization. We however use the term capacity region
instead of rate region for clarity of description.

In our subsequent discussion, when using the phrase “schedule
a rate vector r”, it means that we notify the PHY/MAC
parameter selection algorithm that r needs to be scheduled.
Then, this algorithm tries to achieve the rate r potentially by
time-sharing among various allowable physical layer rates, and
over a block of several physical layer time-slots, in which
the channel-state remains the same. Finally, at the end of
this time-share block, a notification is received which tells us
whether the requested rate r is achieved or not. Therefore, in
the subsequent discussion we use ’time-slot’ as an abstraction
for one trial by the PHY/MAC parameter selection algorithm
to achieve a rate over a block of physical layer time-slots. Note
that we use a finite length block of physical layer time-slots
to judge whether a rate r can be achieved and therefore the
notification is bound to be noisy. This noise is captured in our
noise model which is described later in this section.

Channel-state Partitions and Capacity Regions: We assume
that the channel-state space P can be partitioned into K sets
denoted by P1,P2, . . . ,PK with their corresponding unique
capacity regions C1, C2, . . . , CK respectively 2 such that for
any q ∈ Pi, the capacity region is Ci. In the case where Q is
discrete and finite, it is reasonable to assume that K � |P| =
|Q|nd. The capacity regions C1, C2, . . . , CK ⊆ C ⊂ Rn are
convex polytopes that lie in the positive quadrant. Further, for
non-negative vectors x,y, if x ≤ y (element-wise) and y ∈ Ci,
then x ∈ Ci for any i ∈ [K]. We also assume that all the
capacity regions lie inside the positive quadrant of the ball with
radius C centered at the origin, i.e Ci ⊂ B(0, C)+ for all i ∈
[K]. Here, B(0, x) = {u ∈ Rn : ‖u‖2 ≤ x} and A+ denotes
the subset of A that lies in the positive quadrant.

We provide an illustrative example in Fig. 1, with n = 2
users and K = 3 capacity classes. In our example each
user provides a one-dimensional channel-state vector, therefore
the dimensions of both P and C are two. The partitions
of the channel-state space P is shown in Fig. 1(a), which
correspond to K different capacity regions in Fig. 1(b). We
shall define an index function relating any channel-state vector
q ∈ P to the channel-state partition and the capacity region
as follows.
Definition 1 (Index function I(.)). Given a channel-state
vector q, I(q) is the index of the element of the partition
that contains q, i.e. q ∈ PI(q).

The following assumption states that channel-state’s from each
element of the partition are observed sufficiently often.
Assumption 1 (Class Probabilities). We assume that
P(I(Q) = i) > β = O

(
1
K

)
∀ i ∈ [K], where Q ∈ P is a

2Our theoretical guarantees require the channel-state regions corresponding
to the different capacity regions be disjoint, however our algorithm can also
handle cases where the channel-state classes are not disjoint.

random variable with distribution fQ capturing variability in
the system.

Separation of Capacity Regions: We assume that the
capacity regions are sufficiently different from each other. For
instance, in Fig. 1 if C1 and C2 were almost identical to each
other, then it would be better to merge P1,P2 and treat it as
a system with K = 2. The following assumption says that
for any two capacity regions Ci, Cj a sufficient fraction of the
volume lies outside of their intersection.
Assumption 2 (Separability). We assume the capacity regions
are well separated, i.e., for all i, j ∈ [K]

d(Ci, Cj) ,
|(Ci \ Cj) ∪ (Cj \ Ci)|

|B(0, C)+| ≥ λ > 0,

where |A| denotes the volume of the set A.

Noise Model: Let Y (q, r) ∈ {0, 1} denote a random variable
modeling the observed notification when a rate r ∈ Rn
is scheduled when the observed channel-state vector is q.
Here, Y (q, r) = 1 signifies a successful transmission and
Y (q, r) = 0 signifies a failure to achieve that rate vector . The
success or failure to transmit a rate vector r under channel-
state q is assumed to be an i.i.d random variable Y (q, r) with
distribution given by

P(Y (q, r) = 1) =


1− ρ(q, r), if r ∈ CI(q),

ρ(q, r), if r ∈ B(0, C)+ \ CI(q),

0, otherwise.

where ρ(q, r) can be viewed as a noise parameter (essentially
the packet error rate) which depends on the channel-state q
and the rate r.
Assumption 3 (Noise Rate). We assume that ρ(q, r) ≤ ρ <
1/8, ∀ q, r. We further assume that for all p,q and i such
that p,q ∈ Pi, ρ(p, r) = ρ(q, r). For notational convenience,
for all q ∈ Pi, let ρi(r) , ρ(q, r) = ρI(q)(r).

Given a channel-state and the corresponding capacity region,
when r approaches the boundary of the capacity region (from
inside) the probability of successful transmission is close
to 1 but decreases slightly near the boundary. The success
probability drops significantly after r crosses the boundary
(there is a discontinuous jump in success probability at the
boundary). After crossing the boundary, ρ(q, r) decreases till
|r| = C, beyond which ρ(q, r) = 0.

Bandit Feedback and Objectives: Let U = {u1, ...,uD} be
a set of unit vectors such that ui ∈ Rn+. This set is fixed
a priori. The broad objective is to discover the maximum
possible service rates in these directions, given a particular
channel-state. Since we use ’time-slot’ as an abstraction for
a block of several physical layer time-slots where a rate
vector r is attempted to be scheduled potentially by time-
sharing. Therefore, a wide-range of direction vectors within
the capacity region can be supported.

Concurrently with the channel-state, a direction vector u is
chosen uniformly at random from the set U . The task is to

schedule a rate vector within the capacity region CI(q), of
maximum possible magnitude in the direction u. In other
words, we would ideally like to schedule a rate vector cu
such that

c(q) = arg max
d
{d|du ∈ CI(q)}.

The precise order of events at a given time-step is as fol-
lows:

• A channel-state q(t) from the distribution fQ is observed.
A direction u(t) drawn uniformly at random from U is
also specified.

• The policy optionally selects a magnitude c(q(t),u(t)) ∈
[0, C] to be scheduled in the direction u(t) and the rate
vector r(t) = c(q(t),u(t))u(t) is scheduled. On the other
hand, the policy may choose any other rate vector r(t)
that does not lie in the specified direction. In this case
the reward obtained is zero in the time-step3.

• A notification Y (q(t), r(t)) ∈ {0, 1} is then observed.

Expected Reward Function: Recall Y (q, r) is the notifica-
tion received for transmitting rate vector r when the observed
channel-state was q. Let us define the reward r(q, r,u) for
a rate vector r, channel-state q and direction vector u to be

r(q, r,u) = |r|1 {r.u = |r|}Y (q, r), (1)

where 1{} is the indicator function.

Note that for any p,q ∈ Pi, we have E[r(q, r,u)] =
E[r(p, r,u)] , E[ri(r,u)]. Therefore, we define the expected
reward function fu,i(c) for direction vector u, capacity region
Ci and magnitude c, as follows:

fu,i(c) = E[ri(cu,u)]. (2)

The function fu,i(c) is the expected rate achieved if we
schedule a rate vector cu when the channel-state observed
belongs to capacity class i. It can be evaluated as follows,

fu,i(c) =


c(1− ρi(cu)), if cu ∈ Ci,
cρi(cu), if cu ∈ B(0, C)+ \ Ci,
0, otherwise.

(3)

Since we have assumed that ρi(r) < 1
8 ∀ r therefore fu,i(c) is

a discontinuous function of c, and the discontinuity is located
at the point where a ray in the direction u meets the boundary
of Ci. We make the following assumption on the expected rate
function.
Assumption 4 (Maxima of Rate Function). Let us define

ĉu,i = arg max
c

fu,i(c)

3Note that this is a conservative estimate of the reward. In general,
there is some non-zero value in scheduling any rate vector in the capacity
region corresponding to the observed channel-state. However, our theoretical
guarantees will be under this conservative reward model, and in practice the
performance observed will only be better.

and c∗u,i = maxc{c|cu ∈ Ci}. We assume that the noise
function ρi(r) is such that c∗u,i = ĉu,i.

This assumption basically implies that for all i ∈ [K] the
maximum of the rate function fu,i(c) is achieved at the point
where a ray in the direction u meets the boundary of Ci.
Class of Experts: We assume access to a class of binary
experts/classifiers Π̂, where each expert π̂ ∈ Π̂ is a function
mapping the space of channel-states to {0, 1} i.e π̂ : P →
{0, 1}.
Assumption 5 (Classifying Functions). Let κ be a proper
subset of [K]. Let us define the following binary function
Îκ(q) =

∑
i∈κ 1{q ∈ Pi}. We assume that the set of binary

experts/classifiers Π̂ is such that for all κ ⊂ [K], Îκ(.) ∈ Π̂.
We further assume that the VC dimension [17] of our class of
experts is V .

The above assumption states that the binary functions from
P to {0, 1} that are induced by labeling the channel-state’s
belonging to a set κ ⊂ [K] of capacity classes as 1 and
the rest as 0, are a part of our class of experts, for all
such proper subsets κ. Consider the example exhibited in
Figure 1. Suppose κ = {1, 2}. Then, Îκ(q) divides P into
two regions P1∪P2 and P3. Note that both these regions can
be represented as the intersection of at most two half-spaces,
as the boundaries of the partitions are linear. This is true for
all such proper subsets κ. Therefore, if our class of binary
classifiers contains all the separators that are intersections of
at most two half-spaces, then Assumption 5 is valid.

Note that Îκ(q) for different κ’s can be composed together
to recover I(q). In the example in Figure 1, Î[2,3](q) differ-
entiates class 1 from 2, 3 and Î[3](q) separates class 3 from
the rest. Given a channel-state q, if for instance Î[3](q) = 0

and Î[2,3](q) = 1 then we can infer that I(q) = 2. Therefore,
Assumption 5 basically implies that there exists a group of
binary functions in Π̂, which when composed together can
yield the true index function. Note that this is similar to
the realizable setting in the contextual bandits with experts
problem [2], where it is assumed that the true behavior of
the system can be represented by one of the expert function.
However, finding the correct expert in an online setting is an
algorithmic challenge.

Definition of Regret: The main objective is to minimize
regret when compared to a genie strategy which knows the
index function I and the capacity regions Ci’s. Let r(t) be the
rate vector selected by a policy, at time t. Then the regret of
the policy till time T is given by:

R(T) =

T∑
t=1

(
fu(t),I(q(t))(ĉu(t),I(q(t)))

−E
[
rI(q(t))(r(t),u(t))

])
(4)

where q(t),u(t) are the channel-state vector and direction vec-
tor at time t, respectively. Note, that fu(t),I(q(t))(ĉu(t),I(q(t)))
is the maximum average rate that can be achieved in the

direction u(t), by a genie policy that knows the capacity
classes and the boundaries of the capacity regions. The regret
measures the sub-optimality of the policy in question with
respect to the genie policy, in an expected sense. The goal is
to design a policy that yields R(T) that is sub-linear in T ,
for all times T large enough. This basically implies that the
policy keeps learning the system as time progresses.

IV. ALGORITHM

The algorithm is structured as an epoch-greedy strategy [12].
One key algorithmic idea is that if a rate vector r is scheduled
for several different observed channel-state’s q, then the
success notifications Y (q, r) provide useful information that
can be leveraged using the class of binary experts Π̂ to obtain
a binary classifier that separates the channel-state space P into
two regions P∗ and Pc∗ , where P∗ = {q ∈ P : r ∈ CI(q)}. A
carefully chosen set of rate points can then be used to form a
group of binary classifying functions, which when composed
together yields a mapping π : P → [K] , which is identical
to I(q) with high probability.

The algorithm starts with an initialization phase and then pro-
ceeds in epochs. In initialization phase the algorithm constructs
π by building a tree of binary classifiers which is then used to
classify the channel-state points into K different classes. This
stage is referred to as initializing classifier π. After building π,
the algorithm runs in epochs similar to epoch-greedy policies
for contextual bandits. At the beginning of each epoch, there is
a class explore stage corresponding to improving the accuracy
of classifier π. This is followed by a capacity explore stage
aimed at learning the capacity regions of the K different
channel-state partitions, in the given directions U . The last
stage in an epoch is the exploitation stage where we deduce
the correct capacity class of the observed channel-state vector
using π and then schedule the optimal rate vector according
to the current belief about the boundary of the corresponding
capacity region. An illustrative pseudo-code of our algorithm
is shown in Algorithm 1, while a more detailed pseudo-code
can be found as Algorithm 4. We will explain each of the
stages/phases in more detail in subsequent sections.

A. Initializing Classifier π

The first stage of the algorithm is to initialize the mapping
(multi-class classifier) π used to classify the different channel-
state’s into the K different classes. This mapping consists of
K − 1 binary experts from our class of experts, which are
composed together in a tree-like structure, in order to yield
the mapping π.

The detailed pseudo-code for this phase is provided as Al-
gorithm 2. In the beginning of this phase, for several time-
slots the channel-state’s are observed and stored, while not
making any scheduling decisions (for instance, the scheduler
is allowed to proceed in its default behavior). This process
is continued until we observe n0 distinct channel-state vec-
tors, which are essentially n0 distinct i.i.d random variables
sampled from fQ.

Algorithm 1 Epoch-greedy algorithm for online capacity class
learning and rate allocation

1: Initialize classifier π, by observing t0 channel-state’s,
scheduling corresponding carefully designed rate vectors
and observing the notifications. (Initializing Classifier)

2: Epoch: l = 1. Time: t = t0.
3: while t ≤ T do
4: Update the classifier π by observing channel-state q,

scheduling a carefully chosen rate point r, and using the
notification Y (q, r). This is repeated K − 1 times. (Class
explore)

5: Learn the boundaries of the K capacity regions in the
directions U , by scheduling carefully chosen rate points
and using the current π. A total of α(l) rate points are
scheduled in this part of the epoch. (Capacity explore)

6: Schedule next s(l) rate points optimally using π and
the learned boundaries. (Exploit)

7: Let t = t+K − 1 + α(l) + s(l) and l = l + 1.
8: end while

Then we begin initializing the tree-structure which is detailed
in steps 2-20 of Algorithm 2. Note that in each iteration of the
while loop in step 2 of Algorithm 2, a rate point is randomly
selected and then for the following l0 time-slots irrespective
of the channel-state observed, this rate point is scheduled. The
feedback observed helps us in building a binary classification
data-set that can be used to train a classifier π̂ ∈ Π̂ which
can differentiate all q ∈ P such that r ∈ CIq from the
rest. We assume that the classifiers are trained in step 11
using empirical risk minimization (ERM) with the 0− 1 loss
function. Therefore, we have that:

π̂i = argmin
π̂∈Π̂

1

|Si|
∑

(q,y)∈Si

1{π̂(q) 6= y}.

At any point in time, an internal node Ni in the tree stores the
triplet (π̂i, ri, Si) where π̂i is the expert obtained by ERM over
the examples {(q, y)} stored in Si which were in turn obtained
by scheduling the rate ri for l0 time-slots. A leaf of the tree
Li stores a subset of the initial n0 channel-state points. In
each iteration of the while loop, the classifier trained using the
data collected by scheduling the current randomly chosen rate
point, is only retained if it can split at least one of the current
leaf nodes in the tree reliably into two distinct partitions. This
is achieved by the check in step 14 of Algorithm 2. The while
loop continues to iterate until the tree has K − 1 internal
nodes.

In order to illustrate this phase, let us consider a system as
shown in Figure 1 with r = 2 users, such that the channel-
states can be partitioned into K = 3 classes P1, P2 and P3

with capacity regions C1, C2 and C3 respectively.

For, simplicity let r(1), .., r(4) be the first four rate points
that are randomly chosen in step 3 of Algorithm 2, in that
order (see Fig. 1). Since, r(1) is a rate point that lies in all
the capacity regions, the corresponding classifier π̂1 formed

Algorithm 2 Initializing the Classifier Tree

1: Schedule arbitrary rate vectors for the first n0 channel-
state vectors observed. Let i = 1 and form a tree T where
the root contains the n0 initial channel-state points. There
are no other nodes in the tree. Set i = 1.

2: while i < K − 1 do
3: Randomly select a rate point r.
4: Si = {}
5: for l = 1 : l0 do
6: Let q be the observed channel-state at time-step t.
7: Schedule rate r. (Class Explore)
8: Let y ∈ {0, 1} be the notification received. Add

(q, y) to Si.
9: Set t = t+ 1.

10: end for
11: Construct a binary classifier π̂i by empirical risk

minimization (ERM) over Si, over the expert set Π̂.
12: for all leaves j of T do
13: Classify the channel-state at leaf j according to the

classifier π̂i. Let nj be the number of channel-state points
at leaf j.

14: if n0β
2 < number of leaf channel-state classified as

0 < nj − n0β
2 then

15: Make leaf j into a parent of two new leaves
where the left leaf has all the channel-state’s classified as
1 and the right has all the channel-state’s classified as 0.

16: i = i+ 1
17: Break
18: end if
19: end for
20: end while

using that data collected in step 8, will classify most of the
n0 channel-state points as 1. Therefore, this will not split
the current leaf node (the root node with n0 initial channel-
state vectors) into any partitions. Hence, the classifier and the
rate point is discarded and the value of the iterator i remains
unchanged. The tree remains the same with one leaf node as
shown in Fig. 2(a)-(b).

In the next iteration of the while loop, the randomly chosen
rate point is r(2). The data collected using r(2) is used to train
a classifier π̂1, which classifies most points in class P2 as
1, while classifying most points outside of P2 as zero 4. This
point splits the n0 channel-state points in the current leaf node
into two partitions. Therefore, the classifier is retained. An
internal node N1 = {r1, π̂1, S1} is formed where r1 = r(2).
Moreover, two leaf nodes are formed where L1 is a leaf
corresponding to all the n0 channel-state vectors that are
labeled as 1 by π̂1 and L2 contains the rest. This is illustrated
in Fig. 2(c).

4Note that this is just an initialization of the classifier and moreover the
feedback received from scheduling is noisy. Therefore, the binary classifiers
trained will not be fully accurate. However, n0 and l0 are designed to be
large enough such that with high probability the tree structure is correct.

Fig. 2: Construction of a classification tree which represents
the final initial classifier π that maps P → [K] corresponding
to channel-state class structure in Fig. 1.

In the next iteration, the rate point r(3) is chosen, which will
effectively yield the same classifier as the one corresponding
to r(2). Therefore, this classifier will be insufficient to split any
of the leaves in Fig. 2(c). Thus the value of i is unchanged
and the tree remains the same as shown in Fig. 2(d).

Finally, the rate point r(4) is chosen. The classifier π̂2 cor-
responding to this point ideally distinguishes between points
lying in P1 from those outside of P1. Thus, this new classifier
can split the points in leaf L2 of the tree in Fig. 2(c), into
two nodes, as shown in Fig. 2(d). This leads us to our final
classifying tree π. Ideally (ignoring classification errors), a
channel-state point belonging to P1,P2 and P3 will land in
L3, L1 and L2 respectively.

The parameters n0, l0 have been chosen in order to ensure
that w.h.p a correct classifying tree is obtained. The following
lemma formalizes this claim.
Lemma 1. Let n0 ≥ 24K

β2 log
(

2 log(1
δ)+K

δλ

)
and l0 is large

enough such that 1
1−2ρ

√
V
l0

+

√
2 log

(
l20
δ

)
l0

< β
4K and l0 >√(

2 log(1
δ)+K−1

Kλ

)
. Then with probability at least 1 − 3Kδ,

the loop in step 2 of Algorithm 2 is terminated after at most
2 log(1

δ)+K−1

λ iterations and further a correct classifying tree
structure is obtained.

B. Class explore

After the classification tree is initialized, the algorithm pro-
ceeds in epochs and the structure of the tree remains un-
changed. The first few time-slots in each epoch are dedicated
to improving the accuracy of the classifiers π̂i’s stored in the
internal nodes of the tree Ni’s. We name this part of an epoch
class explore. The class explore phase in an epoch consists of
K−1 time-steps t1, ..., tK−1. At time-step ti, let the channel-
state observed be qi. After the channel-state is observed, the
rate vector ri stored in the internal node Ni is scheduled and
a notification yi is received The data-sample (qi, yi) is added
to the set Si and π̂i is updated through ERM over the updated
set Si. This is performed for all i = 1, 2, ...,K−1. This phase

is detailed in steps 7 -14 of Algorithm 4. The basic idea is
to obtain one more training sample for each of the classifiers
stored in the internal nodes, at the beginning of each epoch,
thereby improving the classification accuracy of the global
classier π : P → [K]. The following lemma provides an upper
bound for the classification error of the global classifier π̂ at
the beginning of epoch l.
Lemma 2. At the end of the class explore phase in epoch l
with probability at least 1− (K − 1) δ

(l+l0)2 we have

P(π(Q) 6= I(Q))

≤(K − 1)

(1

1− 2ρ

)√
V

l0 + l
+

√√√√2 log
(

(l0+l)2

δ

)
l0 + l


,(K − 1)ε(l0 + l, δ),

where the probability is over the randomness in Q ∼ fQ and
the randomness in π due to the random samples in the training
set.

C. Capacity explore

In each epoch, the class explore phase is followed by a
few time-slots dedicated to capacity explore. This phase is
described as steps 16-22 in Algorithm 4. It is aimed towards
learning the boundaries of the K capacity classes in the
directions U . Note that there are K possible capacity classes
and D = |U| direction vectors to explore. In the capacity
explore phase of epoch l, for α(l, δ) time-slots we observe the
channel-state vectors, direction vectors and schedule carefully
designed rate vectors to learn the capacity region. We set

α(l, δ) = 2D
β

(
16

1−2ρ

)2

log
(
l2

δ

)
.

We initialize Ck,u[0] = 0 and Ck,u[1] = C for all k ∈ [K]
and u ∈ U at the start of the algorithm. Ck,u[0] is a lower
bound for c∗u,i and Ck,u[1] is an upper bound for c∗u,i, and
these values are updated after the capacity explore phase in
every epoch.

Algorithm 3 Capacity explore update

1: for ∀ k ∈ [K] and u ∈ U do
2: if mk,u >

1
2 then

3: Ck,u[0] =
Ck,u[0]+Ck,u[1]

2
4: else if mk,u <

1
2 then

5: Ck,u[1] =
Ck,u[0]+Ck,u[1]

2
6: end if
7: end for

Let τl,k,u be the set of time-slots in which the channel-state
q observed is such that π(q) = k and the direction vector
specified is u, in the capacity explore phase of epoch l. In all
these time-slots, the rate Ck,u[0]+Ck,u[1]

2 u is scheduled. mk,u

denotes the empirical mean of the success rates in scheduling
the above rate vectors. The lower and upper bounds Ck,u[0]
and Ck,u[1] are then updated depending on the value of mk,u

for all k,u. The update procedure is detailed in Algorithm 3,

Algorithm 4 Online rate allocation from channel-state and
service data

1: Initialize empty sets Si = {} for i ∈ [K].
2: Initialize a single node tree T where the node contains n0

different channel-state points.
3: Initialize capacity rate Ck,u[0] = 0 and Ck,u[1] = C for

all k ∈ [K] and u ∈ U .
4: Initialize classifier π using Algorithm 2.
5: Set t = t0 (time index) and l = 1 (epoch index).
6: while t ≤ T do
7: for i = 0 : K − 1 do
8: ri is the rate vector stored in node Ni.
9: Let q be the channel-state observed at time step t.

10: Schedule rate ri. (Class Explore)
11: Let y ∈ {0, 1} be the notification received. Add

(q, y) to Si.
12: Set t = t+ 1.
13: Update the classifier π̂i in Ni.
14: end for
15: Let the empirical means of success rate be mk,u = 0

for all k ∈ [K] and u ∈ U .
16: for s = 1 : α(δ, l) do
17: Observe (q,u).
18: Let k = π(q).
19: Schedule rate vector

(
Ck,u[0]+Ck,u[1]

2

)
u. (Capac-

ity Explore)
20: Update mk,u according to received notification y.
21: Set t = t+ 1.
22: end for
23: Update C and Ŝ according to Algorithm 3.
24: for s = 1 : s(l) do
25: Observe (q,u).
26: Let k = π(q).
27: Schedule rate vector Ck,u[0]u. (Exploit)
28: Let t = t+ 1.
29: end for
30: l = l + 1.
31: end while

which is similar to a traditional binary search procedure for
searching the boundary of the capacity regions in the given
directions U (see also [3]).

D. Exploitation

In every epoch, after the exploration phases, the overwhelm-
ing majority of time-slots are dedicated to exploitation. The
exploitation phase in epoch l consists of s(l) = O(

√
l) time-

slots. In each of these time-slots, a channel-state q is observed
and a direction vector u is specified. The class k = π(q) is
identified according to our current global classifier and the rate
vector Ck,u[0]u is scheduled. This phase is detailed as steps
24 - 29 in Algorithm 4.
Remark 1. Algorithm 4 satisfies our regret bound in Theo-
rem 1. However, there are few low-probability failure events
that can affect the working of the algorithm in all future time-

steps. For instance, the initial classifier tree-structure may
be incorrect, which happens with low probability as shown
in Lemma 1. Moreover, at any epoch the binary search can
take an incorrect decision, which can also happen with a very
low-probability. We can generalize the discussion to a more
robust algorithm that can detect such low-probability failure
states and correct them online. Thus, we provide a more robust
version of our algorithm in Appendix A. In our simulations in
Section VI we use the robust version of the algorithm.

V. REGRET BOUND

In this section, we provide our main theoretical result which
provides a cumulative regret bound for Algorithm 4, when
Assumptions 1-5 are satisfied.
Theorem 1. Under Assumptions 1-5, with probability at least
1−O(KDδ), Algorithm 4 achieves a regret bound of,

R(T) = O
(
T 2/3 log

(
1

δ

)(
D log T +K +

√
V
))

,

at time T .

Theorem 1 has been stated in more detail in the Appendix F,
where the explicit dependence on the various problem param-
eters has been specified.

Discussion: Theorem 1 states that the regret of Algorithm 4
scales as O(T 2/3 log T) as a function of time. The scaling is
linear with respect to the number of classes K and the number
of direction vectors D. It scales as

√
V in terms of the VC

dimension of the class of experts. For a finite class of experts
Π̂, the VC dimensions is O(logN), where N = |Π̂| is the
number of experts.

It should be noted that epoch-greedy algorithms in bandit
settings generally have a regret scaling of O(T 2/3) in the
problem independent setting, because of explicit exploration.
For instance, the epoch-greedy strategy in [12] has a similar
regret scaling for the problem of stochastic contextual bandits
with experts. However, we would like to highlight that our
problem setting is significantly more complicated than the
usual contextual bandits with experts problem, as in a con-
textual bandit setting when an arm is pulled under a context,
we get a direct feedback about the reward of that arm under
that context. However, in our problem setting when a channel-
state is observed and a rate vector is scheduled, the received
feedback only gives us a partial noisy feedback about the
possible capacity class in which the channel-state belongs. The
quality of the feedback also depends on the choice of the rate
points. Further in our problem setting, even after the capacity
classes are learned there is an additional task to recover the
boundaries of the corresponding capacity regions. Therefore,
the epoch-greedy algorithm proposed in this paper is a first
step towards analyzing this setting, and we leave the study of
algorithms with implicit exploration that can potentially yield
O(
√
T) regret bound as future work.

VI. SIMULATION RESULTS

In this section we perform empirical simulations of our algo-
rithm on synthetic data-sets with different parameter settings.
In all our simulations, we use the robust version of our
algorithm. The class of experts/classifying functions, used in
our simulations, is the K-nearest-neighbor classifier imple-
mentation in scikit-learn [18], where the number of nearest
neighbors used is determined through cross-validation. Since
our algorithm is robust, we set n0 = 1000K, l0 = 50K,
α(l, δ) = 40KD and s(l) = 200l2, in all our simulations.
The number of direction vectors in set U is kept constant at
D = 10 in all our simulations.

Synthetic System Model: We simulate our algorithm under
various regimes where the number of capacity classes (K),
the dimension of the channel-state feedback from each user
(d), the number of users (n) are set to different values. The
channel-state vectors that are in the channel-state class k ∈ [K]
are generated from a multi-variate normal distribution with
mean mk ∈ Rnd and covariance matrix Σk ∈ Rnd×nd. The
means and covariances for the different classes are randomly
generated and held fixed over the course of an experiment. We
ensure that ‖mi −mj‖2 ≥ 2(‖Σi‖2,2 +‖Σj‖2,2) for all i, j ∈
[K], where ‖M‖2,2 denotes the spectral norm of a matrix
M . Note that in our experiments the capacity classes are not
disjoint partitions, but can have overlaps with low-probability.
In our simulations, we have P(I(Q) = k) = 1/K for all
k ∈ [K], i.e. the capacity classes are equally likely. At each
time step, a capacity class is selected uniformly at random and
the channel-state vector observed is a random vector drawn
from the corresponding Gaussian distribution.

The capacity region for each channel-state class is a convex
set in the positive quadrant of Rn which is constructed as
an intersection of n hyperplanes, where n is also the number
of users in the system. The parameters of the hyperplanes
are selected randomly for each class, while also ensuring that
Assumption 2 is satisfied. The noise model of the system is
such that

ρi(cu) =


1− 0.1

(
c

c∗u,k

)
, if c ≤ c∗u,k,

0.1
(

2− c
c∗u,k

)
, if c > c∗u,k,

0, otherwise.

(5)

Results: We first plot the results for one sample path (one
run of our algorithm) for a system with K = 4 capacity
classes and n = 2 users each providing a feedback in d = 4
dimensions. The regret is plotted versus time in Fig. 3a. We
can see that the regret is clearly sub-linear. The simulations
were carried out till 2 × 105 time-slots, out of which only
about 25k time-slots were used for exploration. In Fig. 3b, we
plot the boundary points obtained at the end of the run, in
the D = 10 pre-specified directions. We can see that in only
about 25k exploration time-slots, the system effectively learns
the boundary points.

0.0 0.5 1.0 1.5 2.0

Time ×105

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
eg

re
t

×106

(a)

0.0 0.2 0.4 0.6 0.8 1.0

User 1 ×102

0.0

0.2

0.4

0.6

0.8

1.0

U
se

r
2

×102

Class 1

Class 2

Class 3

Class 4

(b)

Fig. 3: One run of our algorithm (one sample path) for a system
with n = 2 users having d = 4 dimensional feedback vectors. The
number of capacity classes is K = 4. In (a), we plot the regret as
a function of time. In (b), we plot the boundaries of the capacity
regions obtained in the D = 10 directions which were specified.

(a) (b)

Fig. 4: Variation in regret for different settings of K (number of
capapcity classes) and n (number of users). In (a), we plot the regret
of the algorithm for K = 2, 4, 6 for fixed values of n = 2, d = 4 and
D = 10. In (b), we plot the regret for n = 2, 4, 6 for fixed values of
K = 4, d = 4 and D = 10. The confidence region of one standard
deviation is shown in faded colors.

In Fig. 4a, we plot the dependence of regret on the number
of capacity classes K, when all other parameters are held
constant. All the plots are obtained by averaging over 100
simulations and the corresponding confidence regions are also
plotted. It can be seen that the regret increases almost linearly
with K, as predicted by our theoretical results.

In Fig. 4b, we plot the dependence of regret on the number
of users n, when all other parameters are held constant. All
the plots are obtained by averaging over 100 simulations and
the corresponding confidence regions are also plotted. The
effect of n on the regret is more severe as compared to
the effect due to K. This is because when the number of
users is increased the effect on the hardness is two-folds:
(i) the dimensionality of the channel-state space increases
and therefore the classification problem is harder, (ii) the
dimensions of the rate region increases and therefore the
capacity explore phase becomes more difficult.

ACKNOWLEDGEMENTS

This work was partially supported by NSF grants CNS-
1718089 and CNS-1718089, the Wireless Networking and
Communciations Group Industrial Affiliates Program, and the

the US DoT supported D-STOP Tier 1 University Transporta-
tion Center. Sanjay Shakkottai thanks researchers at AT&T
Labs (Drs. A. Ghosh, S. Akoum and T. Novlan) for valuable
discusssions and feedback on the model.

REFERENCES

[1] Y. Du and G. de Veciana, “Wireless networks without edges: Dynamic
radio resource clustering and user scheduling,” in Proc. IEEE INFO-
COM, April 2014, pp. 1–9.

[2] A. Agarwal, M. Dudı́k, S. Kale, J. Langford, and R. Schapire, “Contex-
tual bandit learning with predictable rewards,” in Artificial Intelligence
and Statistics, 2012, pp. 19–26.

[3] P. W. Goldberg and S. Kwek, “The precision of query points as a
resource for learning convex polytopes with membership queries.” in
COLT. Citeseer, 2000, pp. 225–235.

[4] D. Avis and K. Fukuda, “A pivoting algorithm for convex hulls and
vertex enumeration of arrangements and polyhedra,” Discrete & Com-
putational Geometry, vol. 8, no. 3, pp. 295–313, 1992.

[5] R. Srikant and L. Ying, Communication Networks: An Optimization,
Control, and Stochastic Networks Perspective. Cambridge University
Press, 2014.

[6] G. Wunder, M. Kasparick, A. Stolyar, and H. Viswanathan, “Self-
organizing distributed inter-cell beam coordination in cellular networks
with best effort traffic,” in Proc. 8th Intl. Symposium on Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt). IEEE,
2010, pp. 295–302.

[7] W. Yu, T. Kwon, and C. Shin, “Multicell coordination via joint schedul-
ing, beamforming, and power spectrum adaptation,” IEEE Transactions
on Wireless Communications, vol. 12, no. 7, pp. 1–14, 2013.

[8] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast
scheduling using zero-forcing beamforming,” IEEE Journal on selected
areas in communications, vol. 24, no. 3, pp. 528–541, 2006.

[9] X. Xie and X. Zhang, “Scalable user selection for mu-mimo networks,”
in INFOCOM, 2014 Proceedings IEEE. IEEE, 2014, pp. 808–816.

[10] D. Gesbert, M. Kountouris, R. W. Heath, C.-B. Chae, and T. Salzer,
“From single user to multiuser communications: Shifting the mimo
paradigm,” IEEE signal processing magazine, vol. 24, no. 5, pp. 36–
46, 2007.

[11] A. Slivkins, “Contextual bandits with similarity information,” in Pro-
ceedings of the 24th annual Conference On Learning Theory, 2011, pp.
679–702.

[12] J. Langford and T. Zhang, “The epoch-greedy algorithm for multi-
armed bandits with side information,” in Advances in neural information
processing systems, 2008, pp. 817–824.

[13] S. Bubeck, N. Cesa-Bianchi et al., “Regret analysis of stochastic and
nonstochastic multi-armed bandit problems,” Foundations and Trends R©
in Machine Learning, vol. 5, no. 1, pp. 1–122, 2012.

[14] A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. Schapire,
“Taming the monster: A fast and simple algorithm for contextual
bandits,” in Intl. Conf. on Machine Learning, 2014, pp. 1638–1646.

[15] M. Dudik, D. Hsu, S. Kale, N. Karampatziakis, J. Langford, L. Reyzin,
and T. Zhang, “Efficient optimal learning for contextual bandits,” arXiv
preprint arXiv:1106.2369, 2011.

[16] S. Kwek and L. Pitt, “Pac learning intersections of halfspaces with
membership queries,” Algorithmica, vol. 22, no. 1-2, pp. 53–75, 1998.

[17] V. N. Vapnik and A. Y. Chervonenkis, “On the uniform convergence
of relative frequencies of events to their probabilities,” in Measures of
complexity. Springer, 2015, pp. 11–30.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[19] A. K. Menon, B. van Rooyen, and N. Natarajan, “Learning from
binary labels with instance-dependent corruption,” arXiv preprint
arXiv:1605.00751, 2016.

APPENDIX A
ROBUST ALGORITHM

Algorithm 4 achieves the regret bound in Theorem 1 with high
probability. However, this algorithm has very low-probability
failure events that can disrupt the working of the algorithm
for all future time-slots. In this section, we introduce a more
robust version of our algorithm as Algorithm 5. We talk about
the changes required in each of the phases separately.

Initialization Phase: For the initialization of the classifier π
previously the classifier could fail (with low probability) if the
set of n0 initial channel-states used to build the classifier was
”bad” (it does not contain sufficient channel-state points from
a particular class). The robust algorithm fixes this issue by
reinitializing the set of n0 channel-state points for the classifier
π and rebuilding the classifier π from scratch if we are unable
to build π by testing 2 log (1

δ)+K−1

λ rate vectors. The pseudo
code for the robust initialization of the Classifier Tree is given
in Algorithm 6.

Class Explore and Reinitializing π: While the problem of
having a bad initial set of n0 channel-states is fixed by using
the robust initialization of the classification tree however the
classifier π can still be incorrect due to a wrong sub classifier
present in it. We should also note that as the epoch number
l increase our classifier misclassification error decreases. We
exploit this and reclassify the initial n0 channel-states with the
classifier at each epoch and check if the number of channel-
states all leaves are greater than n0

2β . If this condition does
not hold then we would rebuild the classifier and reinitialize
epoch number l, set Si and Ck,u. The pseudo code for the
robust algorithm is given in Algorithm 5.

The capacity explore phase for the robust algorithm is de-
scribed as steps 27-35 in Algorithm 5. It is aimed at not
only learning the boundaries of the K capacity classes in
the directions U but also correcting for wrong decisions. We
initialize Ck,u[0] = 0 and Ck,u[1] = C for all k ∈ [K]
and u ∈ U at the start of the algorithm same as previous
algorithm.

However unlike the previous algorithm where we only tested
for Ck,u[0]+Ck,u[1]

2 u we would also test the rate vectors
Ck,u[0]u and Ck,u[1]u. This is because either Ck,u[0]u or
Ck,u[1]u corresponds to the rate vector that was tested for
epoch l−1. Therefore if a wrong update decision was made by
the binary classification error in epoch l−1 then by scheduling
this point again in epoch l we can detect and correct for the
error. At any epoch not all capacity update decision are correct
and not all of them are incorrect so determining the epoch
number for next phase is hard. In order to simplify it we
introduce a set Ŝ = {Ŝk,u} which is initialized to be equal to
epoch number for all k ∈ [K] and u ∈ U . We update this set
according to the robust capacity explore algorithm and then
the new epoch number is min(Ŝ).

So for the robust algorithm we initialize mi,k,u = 0 for all i ∈
{−1, 0, 1}, k ∈ [K] and u ∈ U at the start of each epoch where

Algorithm 5 Robust online rate allocation from channel-state
and service data

1: Initialize empty sets Si = {} for i ∈ [K]
2: Initialize a single node tree T where the node contains n0

different channel-state points
3: Initialize capacity rate Ck,u[0] = 0, Ck,u[1] = C and

stage number Ŝk,n = 1 for all k ∈ [K] and u ∈ U .
4: Initialize classifier π using Algorithm 6
5: Set t = t0 (time index) and l = 1 (epoch index)
6: while t ≤ T do
7: for i = 1 : K − 1 do
8: ri is the rate vector stored in node Ni
9: Let q be the channel-state observed at time step t.

10: Schedule rate ri. (Class Explore)
11: Let y ∈ {0, 1} be the notification received.
12: Add (q, y) to Si.
13: Set t = t+ 1.
14: Update the classifier π̂i in Ni
15: end for
16: Reclassify the n0 channel-state points at the root of

classifier according to the update sub classifiers.
17: for i = 1 : K do
18: if number of channel-state point that classify to

leaf i < n0

2β then
19: Reinitialize the single node tree T where the

node contains n0 different channel-state points
20: Reinitialize Si = {} for i ∈ [K]
21: Reinitialize Ck,u[0] = 0, Ck,u[1] = C and

stage number Ŝk,n = 1 for all k ∈ [K] and u ∈ U .
22: Rebuild classifier π using Algorithm 6
23: Epoch number l = 1
24: Break
25: end if
26: end for
27: Let the empirical means of success rate be mi,k,u = 0

for all i ∈ {−1, 0, 1}, k ∈ {1, 2} and u ∈ U .
28: for s = 1 : 3α(δ, l) do
29: Observe (q,u).
30: Let k = πl(q) and j = Uniform({−1, 0, 1}).
31: Schedule rate vector (Capacity Explore)(

Ck,u[0]+Ck,u[1]
2 + j ×

(
Ck,u[0]−Ck,u[1]

2

))
u.

32: Update mj,k,u.
33: Set t = t+ 1.
34: end for
35: Update C and Ŝ according to Algorithm 7
36: l = min(Ŝ)
37: for s = 1 : s(l) do
38: Observe (q,u).
39: Let k = πl(q).
40: Schedule rate vector Ck,u[0]u. (Exploit)
41: Let t = t+ 1.
42: end for
43: l = l + 1.
44: end while

Algorithm 6 Robust initialization of the Classifier Tree

1: Let i = 1 and for a tree T where the root contains
n0 initial channel-state points. There are no other nodes
initially.

2: x = 0
3: while i < K do
4: if x > 2 log (1

δ)+K−1

λ then
5: Reinitialize i = 1, x = 0 and tree T where the

root contains n0 new channel-state points. There are no
other nodes initially.

6: t = t+ n0

7: end if
8: Randomly select a capacity point r
9: Si = {}

10: for l = 1 : l0 do
11: Let q be the channel-state observed at this time-

step.
12: Schedule rate r. (Class Explore)
13: Let y ∈ {0, 1} be the notification received. Add

(q, y) to Si.
14: Set t = t+ 1.
15: end for
16: Construct a binary classifier π̂i by empirical risk

minimization (ERM) over Si, over the expert set Π̂.
17: for all leaves j of T do
18: Classify the channel-state points at leaf j according

to the classifier π̂i. Let nj be the number of channel-state
points at leaf j.

19: if n0β
2 < number of leaf channel-state classified as

0 < nj − n0β
2 then

20: Make leaf j into a parent of two new leaves
where the left leaf has all the channel-state’s classified as
1 and the right has all the channel-state’s classified as 0.

21: i = i+ 1
22: Break
23: end if
24: end for
25: x = x+ 1
26: end while

mi,k,u is empirical mean success rate and i = {−1, 0, 1}
corresponds to rate vector Ck,u[1]u, Ck,u[0]+Ck,u[1]

2 u and
Ck,u[0]u respectively. In the capacity explore phase we sched-
ule 3α(l, δ) channel-state for epoch l in order to check and
improve the upper or lower bound for c∗u,i at each epoch. For a
given channel-state vector q and direction vector u we use the
classifier to find the class k = π(q) of the channel-state point.
We then select j = Uniform({−1, 0, 1}) and transmit the
rate vector

(
Ck,u[0]+Ck,u[1]

2 + j ×
(
Ck,u[0]−Ck,u[1]

2

))
u and

update mj,k,u . After all 3α(l, δ) channel-state points are
transmitted we update the Ck,u[0], Ck,u[1] and Ŝk,ufor all
k ∈ [K] and u ∈ U according to Algorithm 7, which is similar
to a standard binary search procedure. The next epoch number
is then l = min(Ŝ).

Algorithm 7 Robust capacity explore update

1: for ∀k ∈ [K] and u ∈ U do
2: if m−1,k,u >

1
2 then

3: Ck,u[1] = 2× Ck,u[1]− Ck,u[0]
4: Ŝk,u = Ŝk,u − 1
5: else if m1,k,u <

1
2 then

6: Ck,u[0] = 2× Ck,u[0]− Ck,u[1]
7: Ŝk,u = Ŝk,u − 1
8: else if m0,k,u >

1
2 then

9: Ck,u[0] =
Ck,u[0]+Ck,u[1]

2

10: Ŝk,u = Ŝk,u + 1
11: else if m0,k,u <

1
2 then

12: Ck,u[1] =
Ck,u[0]+Ck,u[1]

2

13: Ŝk,u = Ŝk,u + 1
14: end if
15: end for

APPENDIX B
PROOF SKETCH

In this section, we give a brief outline of the steps leading
up to the regret bound in Theorem 1. The proof sketch is
broken down into the following subsections, corresponding to
the various phases of our algorithm.

Initialization phase: The key result for this phase has been
provided as Lemma 1. The proof of Lemma 1 uses two
subsequent Lemmas 3 and 4. In Lemma 3, we show that at
most 2 log(1

δ)+K−1

λ randomly chosen rate points need to be
tested in the while loop of Algorithm 2, in order to yield
the correct structure of the classification tree. This is because
Assumption 2 implies that there is sufficient probability of
a randomly chosen rate vector to be lying at regions that can
provide signal for separating the capacity regions. In Lemma 4,
we show that for a training sets of size l0 constructed by
scheduling rate points at the internal nodes of the tree, is
sufficient to drive the classification error at every internal node
down to ε(l0, δ), with a probability of at least 1− δ

l0
. Note that

a key step in the proof of Lemma 4 is a well-known result from
noisy classification theory [19]. This result crucially relies on
Assumption 5.

Subsequently, it can be shown that with high probability, there
are at least n0β(1− 1

2K) samples from each channel-state class
in the initial n0 channel-state points selected in Algorithm 2,
owing to Assumption 1. This is sufficient to show that even
with at most ε(l0, δ) misclassification errors at the classifiers
in the internal nodes of the tree, correct rate points are chosen
to build the tree-structure. For more details, please refer to
Appendix C.

Class explore phase: The main guarantees for the class
explore phase in an epoch has been provided in Lemma 2.
The proof of this lemma is fairly straightforward, and follows
directly from the proof of Lemma 4 used in the proof of
Lemma 1. At the end of the class explore phase in epoch

l, l+ l0 training samples have been collected in each internal
node of the tree. Therefore, the classification error for the
binary classifiers stored in each of the internal nodes of the
tree goes down to ε(l + l0, δ) with a probability of at least
1 − δ/(l + l0)2. A union bound over all the K − 1 internal
nodes yields the result.

Capacity explore stage: The next step is to analyze the
capacity explore stage in an epoch. The idea is to prove
that with high probability the binary search in Algorithm 3
succeeds in every epoch. In epoch l, we ensure that the binary
search is correct with a probability of at least 1−O(KDδ/l2).
Therefore, if the error probabilities are added up over all the
epochs, the resultant probability of error for the whole algo-
rithm till any time horizon T will be at most O(KDδ).

For the sake of intuition, let us consider a case where in
epoch l, for a particular k ∈ [K] and u ∈ U , the rate vector
(Ck,u[0] + Ck,u[1])u/2 lies inside the capacity region for
class k. Then the binary search succeeds if after the capacity
explore phase Ck,u[0] is updated to (Ck,u[0] + Ck,u[1])/2
and Ck,u[1] remains the same. Since, the value of α(l, δ) is
2D
β

(
16

1−2ρ

)2

log
(
l2

δ

)
, we can prove that with high probability

there are at least
(

16
1−2ρ

)2

log
(
l2

δ

)
time-slots in the class

explore phase of epoch l, where the capacity class observed
is k and the direction vector specified is u. The empirical
mean of the notifications received in these time-slot should
ideally be close to 1. However, there are two possible errors
that can occur in each of these time-slots: (i) the classifier π
can mistakenly predict that the capacity class is not k, (ii) the
notification received is 0 due to the noise in our system. We
prove that even with these errors, mk,u concentrates close to

1, within
(

16
1−2ρ

)2

log
(
l2

δ

)
time-steps and is greater than 1/2

with a probability of at least 1−O(1/l2). Therefore, the update
made by Algorithm 3 is correct. An union bound over all k,u
yields the desired result, which has been stated and proved
in Appendix F. Note that given the binary search is correct
in all the epochs, it is fairly straightforward to show that the
estimates of the boundaries of the capacity regions converge to
the true boundaries at a rate that is exponential in the number
of epochs l. Therefore, the regret arising from these errors
(scheduling a rate vector inside the capacity region that is away
from the true boundary) is O(1/2l), which is dominated by
the regret arising from classification error which is O(1/

√
l)

in epoch l.

Exploit Phase: Since the vector Ck,u[0]u is transmitted
during the exploit phase for a given value of k and u, Ck,u[0]
is used as an estimate for the true optimal magnitude of the
rate i.e c∗k,u in that direction and for that capacity class. The
difference between Ck,u[0] and c∗k,u is at most C

2l
for epoch

l, with high probability. Note that the misclassification rate is
ε(l0+l, δ) in epoch l. Moreover, the expected regret is C

2l
if the

channel-state class is identified correctly and at most c∗k,u < C
otherwise. Therefore it can be shown that the expected regret

for the exploit stage is less than 2Cε(l, δ) × s(l) where
s(l) =

√
l. It should be noted that since ε(l, δ) = O(log l√

l
)

so by choosing s(l) =
√
l we get O(log l) regret for epoch

l.

Regret Bound: For the final regret bound we observe that
the length of epoch l is K − 1 + α(l, δ) + s(l) = O(

√
l).

This implies that the number of epochs till time T , L∗

is O(T
2
3). Finally for epoch l the expected regret is at

most (K − 1 + α(l, δ) + 2ε(l, δ)s(l))C. By adding up this
regret for l = 1 to L∗ we get the required regret bound
of O

(
T 2/3 log

(
1
δ

) (
D log T +K +

√
V
))

. The final regret
bound has been stated and proved with the precise details in
Theorem 2 in the Appendix.

APPENDIX C
INITIALIZATION PHASE

Before we provide the proof of Lemma 1, we state and prove
two lemmas used for proof of Lemma 1.
Lemma 3. With probability at least 1− δ, the classifier π is
constructed by testing 2 log(1

δ)+K−1

λ different rate vectors.

Proof. A rate vector r is defined to be good if the classifier
π̂ built using it splits a leaf in the tree T . Let R be the set of
different channel-state classes at leaf L in the tree and i and
j be two channel-state classes in set R. Then a classifier π̂
constructed using a good good rate vector will partition the K
classes into set K and Kc such that i ∈ K and j ∈ Kc therefore
classifier will split the set R at leaf L. Since d(Ci, Cj) ≥
λ, ∀ i, j and the rate vectors are selected uniformly at random
so the probability of selecting a good rate vector that can split
the set of channel-state classes R into I and J such that i ∈ I ,
j ∈ J , I ∪ J = R and I ∩ J = ø is at least λ i.e.

P(rate vector r is a ”good” rate vector)
≥P(π̂ can split leaf L that contain muliple classes)
≥P(π̂ can split the set of channel-state R at leaf L into I and J)

≥λ

It should be noted that after K−1 such splits, all the channel-
state regions can be distinguished since there will be K leaf
node and the set of channel-state classes at each leaf node is
distinct (due to construction of tree). Therefore each leaf node
corresponds to a single and unique channel-state class.

Let ri be the ith rate vector tested and let Xi be the event that
ri can potentially split some leaf in the tree T . Then Xi is a
Bernoulli random variable with mean greater or equal than λ.
Using multiplicative Chernoff bound

P

 (K−1)(m+1)
λ∑
i=1

Xi < K − 1

 < e−
m(K−1)

2 (6)

Therefore with probability 1 − δ, in 2 log(1
δ)+K−1

λ randomly
selected rate vectors there at least K−1 good rate vectors.

For, any rate point r let us define a mapping Î(r) from P →
{0, 1} such that,

Î(r)(q) =

{
1, if r ∈ CI(q)

0, otherwise
.

Thus, if outputs observed by scheduling rate point r are used
to build a binary classifier, an ideal classifier would try to learn
the above mapping.
Lemma 4. Let π̂i be the classifying function returned by the
oracle for a training set of l0 channel-state’s for rate vector
ri. Note that Îi , Î(ri) is the ideal classification function,
that this classifier aims to approximate. Then with probability
at least 1− δ

l20
we have,

P(π̂i(Q) 6= Îi(Q)) ≤ 1

1− 2ρ

√
V

l0
+

√√√√2 log
(
l20
δ

)
l0

, ε(l0, δ),

(7)
where the probability is over the randomness in Q ∼ fQ
and the randomness in π̂i which was trained on the random
training set Ni.

Proof. Let Ni = {(q1, y1), ..., (ql0 , yl0)} be the set of
channel-state’s and observations from scheduling the point ri.
Let us first define a classification problem in the absence of
scheduling noise. Let us define a random variable Q ∼ fQ.
Let us define Y = 1

(
Îi(Q) = 1

)
. Let D be the joint

distribution of (Q, Y). Note that Ni contains i.i.d samples
from a distribution D, however the label for a channel-state
point q is flipped with probability ρ(q, ri). Let us name the
distribution with flipped labels by D̃. For any function π̂ ∈ Π̂,
let us define the risk with respect to D as follows:

RD(π̂) = ED [1 (π̂(q) 6= Y)] . (8)

Let π̂∗D̃ be defined as follows:

π̂∗D̃ = argmin
π̂∈Π̂

1

l0

∑
(q,y)∈Ni

1 (π̂(q) 6= y) .

A well-known result from noisy classification [19] states that
even though we minimize the above loss function over samples
drawn from the distribution D̃, the function resulting from the
minimization has good risk guarantees with respect to the non-
noisy distribution D. By Proposition 4 in [19], with at least
probability 1− δ we have:

RD(π̂∗D̃)−RD(π̂∗) ≤ 1

1− 2ρ

√
V

l0
+

√√√√2 log
(
l20
δ

)
l0

(9)

Note RD(π̂∗) = 0 by assumption. This yields the required
result.

Remark 2. Note that the above result from noisy classification
is only true if the Bayes optimal classifier is in our class of

classifying functions. This has been assumed in our experts
setting.

Proof of Lemma 1. Let E1 be the event that in the step 2
in Algorithm 2 the classifier π is built by testing at most
2 log(1

δ)+K−1

λ different rate vectors ri i.e K − 1 of these rate
vectors are sufficient to split the channel-state region into K
correct partitions.

Let π̂i be the classifier built using the rate vector ri. Let
E2(i) be the event that the classifier π̂i satisfies Eq. (7) in
Lemma 4. Given E1 and E2(i) for all i ∈

[
2 log(1

δ)+K−1

λ

]
, at

most 2 log(1
δ)+K−1

λ different classifiers are constructed and for
each of the classifiers we have P(π̂i(q) 6= Îi(q)) < ε(l0, δ).

Let π̂i be the classifier used for classifying n̂ channel-state
points (at some leaf in the classification tree), where the
channel-state points are selected at random from F according
to distribution fQ. Let Xj be the indicator random variable
that π̂i(qj) 6= Îi(qj). Then given E2(i) the probability of
misclassifying more then 2n̂ε(l0, δ) channel-state is

P(

n̂∑
j=1

Xj > 2n̂ε(l0, δ)) < e−
n̂ε(l0,δ)

3

Let Âi be the event that fewer than n0β
(
1− 1

2K

)
channel-

state point out of n0 channel-state points at the root node be-
long to channel-state class i. Then according to multiplicative
Chernoff bound

P(Âi) < e−
n0β

8K2 ∀ j ∈ [K]

Therefore by union bound

P(∪iÂi) <
∑
i

P(Âi) < Ke−
n0β

8K2

Let E3(i, n̂) be the event that the classifier π̂i classified
n̂ points with less then 2n̂ε(l0, δ) misclassification and E4

be the event that all the channel-state classes have at least
n0c

(
1− 1

2K

)
points sampled, then

P(E3(i, n̂)|E1, E2(i)) >1− e−
n̂ε(l0,δ)

3

P(E4|E1, E2(i) ∀ i) >1−Ke−
n0β

8K2 (10)

Let E5 be the event that all the classifier π̂i ∀ i ∈[
2 log(1

δ)+K−1

λ

]
classify n̂ channel-state points in leaf L with

less then 2n̂ε(l0, δ) misclassification for all leaves in the tree.

It should be noted that the classification tree π has at most K
leaves. Therefore

P(Ē5|E1, E2(i) ∀ i)

<P


2 log(1

δ
)+K−1

λ⋃
i=1

⋃
leaves

Ē3(i, n̂)|E1, E2(i), E4 ∀ i


<

2 log(1
δ
)+K−1

λ∑
i=1

∑
leaves

P(Ē3(i, n̂)|E1, E2(i), E4 ∀ i)

<

2 log(1
δ
)+K−1

λ∑
i=1

∑
leaves

e−
n̂ε(l0,δ)

3

<K

(
2 log(1

δ) +K − 1

λ

)
e−

n̂ε(l0,δ)
3 (11)

The above equations follow owing to the fact that at any point
the number of leaves in the tree is less than K.

Let us select l0 such that ε(l0, δ) < β
4K (i.e. l0 is large enough

so that 1
1−2ρ

√
V
l0

+

√
2 log

(
l20
δ

)
l0

< β
4K) i.e. for classifying

n̂ points, at most n̂β
2K points are mis-classified with high

probability.

Let us suppose that event E4 and E5 hold. Since the tree has
height of at most K (as there are only K − 1 internal nodes)
which means that the channel-state points of any channel-
state class have to be classified by at most K − 1 classifiers.
As the largest value of n̂ is n0 at the root node so the
number of misclassified points of channel-state class j after
doing classification with K − 1 different classifiers is at most
n0β(K−1

2K). Since the total number of channel-state points
for channel-state class j is at least n0β(1 − 1

2K) so after
misclassification of n0β(K−1

2K) points at least n0β
2 points will

be correctly classified.

Since the above statement hold for all channel-state classes
therefore a leaf j is split into two if and only if the number of
channel-state classified as 0 are more then n0β

2 and less than
nj − n0β

2 where nj are number of channel-state points at the
leaf.

Since the minimum value of n̂ is n0β
2 i.e. minimum number

of channel-state points that can be at any leaf. Therefore

P(Ē4, Ē5|E1, E2(i) ∀ i)
<P(Ē4|E1, E2(i) ∀ i) + P(Ē5|E1, E2(i) ∀ i)

<K

(
2 log(1

δ) +K − 1

λ

)
e−

n0β
2

24K +Ke−
n0β

8K2

<K

(
2 log(1

δ) +K

λ

)
e−

n0β
2

24K

<Kδ for n0 ≥
24K

β2
log

(
2 log(1

δ) +K

δλ

)
(12)

Let E6 be the event that the classifier π is successfully build
then

P(Ē6) = P(Ē4, Ē5) <Kδ + δ +

(
2 log(1

δ) +K − 1

λ

)
δ

l20
<3Kδ (13)

since P(Ē1) = δ and P(Ē2(i)) = δ
l20

according to Lemma 3

and Lemma 4 respectively and l0 >
√(

2 log(1
δ)+K−1

Kλ

)
.

APPENDIX D
CLASS EXPLORE PHASE

Outline of proof of lemma2. The proof is pretty straightfor-
ward. The classifier π is build using K−1 sub-classifiers each
of which is trained on l0 + l points. So by using the result of
Lemma 4 and taking union bound over all sub classifiers inside
classifier π we get the above lemma.

APPENDIX E
CAPACITY EXPLORE PHASE

The value of α(l, δ) is set to be 2D
β

(
16

1−2ρ

)2

log
(
l2

δ

)
. Let

Tu,k,l be the number of samples in step 18 of the Algorithm 4
in phase l, such that capacity class observed is k and the direc-
tion observed is u ∈ U . A simple application of multiplicative
Chernoff bound yields,

P

(
Tu,k,l ≤

(
16

1− 2ρ

)2

log

(
l2

δ

))
≤ δ

l2
.

APPENDIX F
PUTTING IT TOGETHER: REGRET BOUND

Let E7(l) be the success event in lemma 2 for phase l. Let

E8(l) be the event
{
Tu,k,l >

(
16

1−2ρ

)2

log
(
l2

δ

)}
for all k

and u. Also, recall the event E6 which is the success event in
Lemma 1.
Lemma 5. The events E7(l) and E8(l) are mutually indepen-
dent. Moreover, we have,

P (E6 ∩ (∩∞l=1(E7(l) ∩ E8(l))))

≥1−K(D + 1)

∞∑
l=1

δ

l2
− 3Kδ. (14)

Note that mu,k are the means collected in step 20 of the algo-
rithm 4. In stage l, we name Su,k,l as a success event which
signifies whether mu,k >

1
2 when 1/2(Cu,k[0] + Cu,k[1]) is

within Ck or whether mu,k <
1
2 when 1/2(Cu,k[0] +Cu,k[1])

is outside Ck.
Lemma 6. We have,

P
(
Scu,k,l|E6 ∩ E7(l) ∩ E8(l)

)
≤ δ

l2
. (15)

This further implies that,

P (E6 ∩ (∩∞l=1(E7(l) ∩ E8(l) ∩k,u Sk,u,l)) ≥ 1− κKDδ
(16)

where κ is a suitable constant.

Proof. Consider the scheduling instances s = {1, .., α(l, δ)}.
Let s(1), ..., s(Tu,k,l) be the indices of the time-slots where
class is k and direction is u. Let dk,u be set as (Ck,u[0] +
Ck,u[1])/2 and assume that dk,u lies within Ck. We have the
following bounds,

mk,u ≥
1

Tu,k,l

Tu,k,l∑
r=1

Ys(r)1
(
πl(qs(r)) = k

)
.

Now conditioned E [mk,u|E7(l)] ≥ (1−(K−1)ε(l0+l, δ))(1−
ρ). Note that the random variables in the above summation are
i.i.d conditioned on E7(l). Therefore, by Chernoff’s bound we
have,

P (mk,u < E [mk,u|E7(l)]− γ|E7(l)) ≤ exp

(
−γ2Tu,k,l

2

)
This yields the following,

P (mk,u < (1− (K − 1)ε(l0 + l, δ))(1− 2ρ)− γ|E7(l), E8(l))

≤ exp

(
−γ2

(
8

1− 2ρ

)2

log

(
l2

δ

))
Since ε(l0 + l, δ) ≤ ε(l0, δ) ≤ β

4K ≤ 1
5(K−1) , therefore setting

γ = (1− 2ρ)/8 yields the following,

P
(
mk,u <

1

2

∣∣∣E7(l), E8(l)

)
≤ δ

l2
.

Similar results hold for the case when the scheduled rate
vector lies outside the capacity region. Therefore, we have
the following:

P
(
∪k,uScu,k,l

∣∣∣E7(l), E8(l), E6

)
≤ KDδ

l2
.

Therefore,∑
l

P
(
∪k,uScu,k,l|E6

)
≤
∑
l

(
KDδ

l2
+
δ

l2
+

(K − 1)δ

(l0 + l)2

)
≤
∑
l

(
KDδ

l2
+
Kδ

l2

)
=⇒ P

(
∪k,uScu,k,l

)
≤ π2

6
K(D + 1)δ + 3Kδ.

Combining this with lemma 5 we get the following,

P
(
E6 ∩

(
∩∞l=l0(E7(l) ∩ E8(l) ∩k,u Sk,u,l

))
≥ 1−

(
π2

3
K(D + 1)δ + 6Kδ

)
≥ 1− κKDδ.

Theorem 2. With probability at least 1 − κKDδ the re-
gret of the algorithm is O

(
CT 2/3

(
K + D

β log
(
T
δ

)
+
√
V
)

+(
K2

β2

(
V + log

(
1
δ

)))(log(1
δ)+K

λ

))
.

Proof. Let E = E6 ∩
(
∩∞l=l0(E7(l) ∩ E8(l) ∩k,u Sk,u,l

)
.

Given E, at time l we have the following:

|Ck,u[0]− c∗u,k| ≤
2C

2l
. (17)

Let us choose s(l) =
√
l. Let µ(l) be the expected regret on

the exploit slots at time l. It is easy to see that given E,

µ(l) ≤
(

(1− ε(l0 + l, δ))× 2C

2l
+ ε(l0 + l, δ)C

)
×
√
l

≤2ε(l, δ)C
√
l =

C

1− 2ρ

√
V + C

√
3 log

(
l2

δ

)
Let γ(l) be the total expected regret at phase l. Then we have
the following:

γ(l) ≤(K − 1)C + α(l, δ)C +
C

1− 2ρ

√
V + C

√
3 log

(
l2

δ

)
≤C
(
(K − 1) +

2D

β

(
16

1− 2ρ

)2

log

(
l2

δ

)
+

1

1− 2ρ

√
V +

√
3 log

(
l2

δ

))
≤C

(
(K − 1) +

997D

β
log

(
l2

δ

)
+

4

3

√
V +

√
3 log

(
l2

δ

))
(18)

since ρ ≤ 1
8 .

Let L∗ be the epoch after the end of T time-slots. It is easy
to see that L∗ ≤ T 2/3. Therefore given E, the expected regret
for T time-slots is given by,

R(T) ≤
L∗∑
l=0

C

(
(K − 1) +

997D

β
log

(
l2

δ

)
+

4

3

√
V +

√
3 log

(
l2

δ

))

+ n0 + l0

(
2 log(1

δ
) +K − 1

λ

)

≤
T

2
3∑

l=0

C

K +
997D

β
log

(
T

4
3

δ

)
+

4

3

√
V +

√√√√3 log

(
T

4
3

δ

)
+

24K

β2
log

(
2 log(1

δ
) +K

δλ

)
+ l0

(
2 log(1

δ
) +K − 1

λ

)

≤
T

2
3∑

l=0

C

(
K +

1000D

β
log

(
T

4
3

δ

)
+

4

3

√
V

)

+
24K

β2
log

(
2 log(1

δ
) +K

δλ

)
+ l0

(
2 log(1

δ
) +K − 1

λ

)
=O

(
CT 2/3

(
K +

D

β
log

(
T

δ

)
+
√
V

)
+

(
K2

β2

(
V + log

(
1

δ

)))(
log(1

δ
) +K

λ

))
(19)

	Introduction
	Related Work
	System Model and Definitions
	Algorithm
	Initializing Classifier
	Class explore
	Capacity explore
	Exploitation

	Regret Bound
	Simulation Results
	References
	Appendix A: Robust Algorithm
	Appendix B: Proof Sketch
	Appendix C: Initialization Phase
	Appendix D: Class Explore Phase
	Appendix E: Capacity Explore Phase
	Appendix F: Putting it together: Regret Bound

