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Abstract—We propose an online algorithm for clustering channel-
states and learning the associated achievable multiuser rates. Our
motivation stems from the complexity of multiuser scheduling.
For instance, MU-MIMO scheduling involves the selection of
a user subset and associated rate selection each time-slot for
varying channel states (the vector of quantized channels ma-
trices for each of the users) — a complex integer optimization
problem that is different for each channel state. Instead, our
algorithm clusters the collection of channel states to a much lower
dimension, and for each cluster provides achievable multiuser
capacity trade-offs, which can be used for user and rate selection.
Our algorithm uses a bandit approach, where it learns both
the unknown partitions of the channel-state space (channel-state
clustering) as well as the rate region for each cluster along a pre-
specified set of directions, by observing the success/failure of the
scheduling decisions (e.g. through packet loss). We propose an
epoch-greedy learning algorithm that achieves a sub-linear regret,
given access to a class of classifying functions over the channel-
state space. We empirically validate our approach on a high-
fidelity 5G New Radio (NR) wireless simulator developed within
AT&T Labs. We show that our epoch-greedy bandit algorithm
learns the channel-state clusters and the associated rate regions.
Further, adaptive scheduling using this learned rate-region model
(map from channel-state to the set of feasible rates) outperforms
the corresponding hand-tuned static maps in multiple settings.
Thus, we believe that auto-tuning cellular systems through
learning-assisted scheduling algorithms can significantly improve
performance in real deployments.

Index Terms—Online Learning, Bandit Algorithms, Wireless
Networks, Scheduling, Capacity Region, Auto-tuning

I. INTRODUCTION

W IRELESS cellular networks have become increasingly
more complex to operate – the aggregate number of

parameters available for optimization at various layers can
range in the thousands (e.g. MIMO antenna weights, power
levels, coding and modulation rates, and frequency/sub-frame
allocation to users), and the choice of which depend on the
channel-states of the users1. Thus, when scheduling users
(e.g. in MU-MIMO scheduling [2]), a channel-state dependent
combinatorial optimization problem needs to be solved each
time-slot, where a subset of users need to be selected, and
transmission rates and power levels jointly determined for
each of these users from among the allowable parameters.

An earlier version of this paper appeared in the Proceedings of IEEE
Infocom 2019 [1].

1In a MIMO setting, the channel-state for each of the users is the channel H
matrix, and in practice the base-station would have access to an approximation
of this (e.g. quantized version).

This problem however has a latent low-dimensionality that can
be exploited, namely that for channel-states that are “near”
each other, the optimal solution (user and rate selection) is
likely to be the same. Thus, if we cluster channel-states, and
determine the effective rate region trade-offs for each cluster,
these cluster-dependent rate regions can be used for user and
rate selection, and thus significantly reduce the complexity of
user and rate scheduling.

However, these clusters are unlikely to be universal, meaning
that different scenarios (e.g. indoor, outdoor urban, outdoor
rural) would lead to different channel-state clusterings. Indeed,
it is also likely that the clusters and associated rate-regions
will also vary with the time of day depending on different
loading/use-case scenarios. This then, motivates an online
clustering and multi-user rate region learning approach.

Such learned rate regions are useful in practice. In literature,
scheduling algorithms typically assume that they have access
to the set of available rates that are feasible for each channel-
state. For instance, MaxWeight-like rules [3] that schedule
based on the product of the queue-length and channel-rate
implicitly assume that the map from the channel-state to the
set of feasible channel rates is known, and thus solve an
optimization each time-slot (over all feasible rates) resulting
in the scheduling decision. These maps from channel-state to
feasible rates, in reality, are hand-tuned by operators based on
experiments, and these static maps are chosen such that they
are good across several deployment scenarios. Instead, our
approach of learning the feasible rate-region in each scenario,
and thus having a different map for each scenario (effectively,
an auto-tuning approach for the PHY/MAC scheduler) permits
improved performance in deployments. We refer to Simula-
tions Section VI and Section VI-D for more discussion in the
setting of the AT&T Labs cellular network simulator.

Main Contributions: The contributions in this paper are two-
fold. From a modeling and algorithm development perspective,
we develop a clustering model for the wireless downlink,
and develop an epoch-greedy bandit algorithm that learns
the clusters, the associated capacity regions and schedules
users using learned parameters to minimize regret. From a
system simulation perspective, we study the benefits of auto-
tuning cellular scheduling using such bandit learning, and
demonstrate significant benefits on a high-fidelity cellular
simulator developed by AT&T Labs.

We consider a system where the channel-state space P clusters
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Fig. 1. An illustrative example of the channel-state space P and the
corresponding capacity classes for n = 2 users, K = 3 capacity
classes and d = 1. {r(i)}i∈[4] are different rate vectors that can be
scheduled. The vectors {ui}i∈[2] correspond to the directions along
which we need to maximize user rates.

into K (unknown) classes, with a corresponding multiuser
rate-region for each class. Our goal is to develop online
strategies that can learn clusterings of different channel-
states that have similar multiuser rate regions along with the
boundaries of these regions. Simultaneously while learning,
we need to schedule users based on the observed channel-
states to maximize the user rates along pre-specified directions
(see Figure 1(a) precise definition is given in Section III). Our
contributions are:

(i) We propose an epoch-greedy bandit algorithm for our
problem setting. The algorithm assumes access to a class
of experts/classifying functions Π̂, where an expert in Π̂ is
a mapping from the channel-state space to {0, 1}. We also
assume that the class of experts is rich enough, such that there
exists a set of functions, which when composed together can
yield a function from the channel-state space to {1, 2, ...,K}
which correctly identifies the class in which each channel-state
belongs in. Similar assumptions have been made in the realiz-
able setting in stochastic contextual bandits [4]. Our approach
achieves a balance between three objectives: (i) Class Explore-
learning the clustering of the channel-state space using the
class of experts and feedback obtained by scheduling different
rates in an exploratory manner (ii) Capacity Explore- learning
the boundaries of the capacity regions in the specified direc-
tions for the different channel-state region clusters (iii) Exploit
- finally, exploiting the knowledge learned, by scheduling the
rate vector of maximum possible magnitude in the specified
direction, that lies within the capacity region corresponding to
the channel-state observed in a time-slot.

(ii) We consider a notion of cumulative regret, where the
regret in our setting is the difference between the total effective
rate obtained by a learning policy in T time-slots and the total
rate obtained by a genie policy which knows the capacity
clusters and the corresponding capacity regions and given a
channel-state, always schedules the rate vector of maximum
possible magnitude in the specified direction, which lies within
the capacity region corresponding to the channel-state. We
provide a rigorous definition of regret for our problem in
Equation (4). We analyze our algorithm and prove that it has
a regret scaling of O(T 2/3 log T ) at time T .

(iii) We perform extensive simulations on a high-fidelity

simulator – Wireless Next-Generation Simulation (WiNGS)
– developed withing AT&T Labs. WiNGS includes a fully
dynamic, event-driven system-level simulator which models
both the 5G New Radio (NR) physical layer as well as the
air interface protocols including the MAC, RLC, and PDCP
sublayers. First, we note that the epoch-greedy bandit algo-
rithm is able to learn channel-state clusters and the associated
capacity regions over a short time-scale (30 seconds or less
in our settings). Further, the associated scheduler using this
learned model is able to match and/or outperform hand-
tuned policies in multi-user MIMO settings (both with and
without out-of-cell interference). This is because a learning-
based algorithm is able to auto-tune to each specific scenario
(user locations, interference environment, etc.), whereas static
hand-tuned policies are chosen for good average performance
across many scenarios. Thus, we believe that such bandit
algorithms can play a significant role in auto-tuning wireless
cellular systems in real deployments. We refer to Section VI-D
for additional details.

Finally, we circle back to one of our motivations – under-
standing the channel-state-dependent capacity regions. Note
that since our algorithms focus on optimizing along a pre-
specified set of directions, the resulting capacity region that
can be constructed for each channel-state class will be an
approximation (because we can potentially miss some of the
faces of the capacity region). However, if the capacity regions
are “nice”, then the direction vectors can be designed in order
to get an almost exact estimate of the capacity regions. For
instance in [5], it has been shown that convex polytopes
formed by the intersection R half-spaces (the hyper-planes
should have rational coefficients) and for which the vertex
enumeration problem is efficient [6], can be learned with
O(poly(R, d′)) noiseless membership queries, where d′ is the
dimension of the space.

II. RELATED WORK

Over the last few decades, there has been a lot of work on
opportunistic scheduling for wireless networks. This has led
to a powerful framework of algorithms that utilize channel
feedback and the queue lengths to achieve objectives like
system stability, optimization of a utility function or average
delay [3]. In the setting of multi-user MIMO wireless networks
(MU-MIMO), scheduling algorithms need to optimize over
user selection, beamforming (antenna weight selection), power
allocations, physical layer modulation and coding parameters
[2], [7], [8]. Here, the user selection sub-problem (choosing a
subset of users for transmission from among all the possible
users) renders leads to a combinatorial explosion in complex-
ity, and several approximations have been used as guidelines
for complexity reduction [9]–[11].

We approach dimensionality reduction through online clus-
tering, and our algorithmic approach is related to the con-
textual multi-armed bandit problem [12]–[14]. The stochas-
tic contextual bandits with experts problem [4], [13], [15],
[16] is especially relevant to our problem. This problem has
been studied in the literature starting with the epoch-greedy
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policy in [13] leading to the more powerful and essentially
statistically optimal policies in [4], [15], [16]. Our problem is
somewhat similar to this setting as the channel-states observed
is analogous to the context and the feedback received after
scheduling a rate vector is similar to the stochastic reward
observed after pulling an arm. We also assume access to a class
of experts that map the space of channel-states to {1, 2, ...,K},
where K is the number of capacity classes. However, it should
be noted that the feedback received in our setting is much more
challenging, as it does not provide direct information about the
capacity classes unlike the rewards received from the arms in
contextual bandits, which directly reflects the utility of that
arm under the given context. Moreover, in our problem there
is an additional task of learning the boundary of the capacity
regions, even after the clustering of the channel-state region
into K classes has been learned.

In the context of learning the capacity regions, there is a line of
related work on learning convex polytopes which are formed
by the intersection of a finite number of half-spaces, from
noiseless membership queries [5], [17]. In [5] binary search
type strategies have been used to provide efficient algorithms
for learning a class of convex polytopes that are formed by
the intersection of half-spaces defined by hyper-planes with
rational coefficients and for which the vertex enumeration
problem can be solved efficiently. Finally, an earlier version
of this paper appeared in [1].

III. SYSTEM MODEL AND DEFINITIONS

We consider a discrete time scheduling system with n users
and a single scheduler. At each time t, the scheduler observes
a channel-state vector q(t) = {q1(t),q2(t), . . . ,qn(t)} where
qi(t) ∈ Qd is the channel-state for user i ∈ [n], where [n] ,
{1, 2, .., n}. The set Q can be a bounded subset of R or a
discrete alphabet set. We denote the set of all channel-state
vectors as P(= (Qd)n). At any time t we observe the channel-
state vector q from a time-invariant distribution fQ over P
(this distribution depends on the wireless channel between the
user and the base-station).

Scheduling a rate vector: Corresponding to each channel-
state, there is a unique capacity region that the system can
support. The capacity region corresponding to a channel-state
is defined as the set of all user rate vectors r ∈ Rn+ that
can be achieved with probability close to one, potentially
by time-sharing. Strictly speaking, we are really considering
the rate region, i.e., the set of user rate vectors that are
achievable using the available physical layer strategies at the
base-station (convex hull of the data rates that be generated
using the available physical layer coding/modulation/antenna-
beamforming choices), as opposed to an information-theoretic
characterization. We however use the term capacity region
instead of rate region for clarity of description.

In our subsequent discussion, when using the phrase “schedule
a rate vector r”, it means that we notify the PHY/MAC
parameter selection algorithm that r needs to be scheduled.
Then, this algorithm tries to achieve the rate r potentially by
time-sharing among various allowable physical layer rates, and

over a block of several physical layer time-slots, in which
the channel-state remains the same. Finally, at the end of
this time-share block, a notification is received which tells us
whether the requested rate r is achieved or not. Therefore, in
the subsequent discussion we use ’time-slot’ as an abstraction
for one trial by the PHY/MAC parameter selection algorithm
to achieve a rate over a block of physical layer time-slots. Note
that we use a finite length block of physical layer time-slots
to judge whether a rate r can be achieved and therefore the
notification is bound to be noisy. This noise is captured in our
noise model which is described later in this section.

Channel-state Partitions and Capacity Regions: We assume
that the channel-state space P can be partitioned into K sets
denoted by P1,P2, . . . ,PK with their corresponding unique
capacity regions C1, C2, . . . , CK respectively 2 such that for
any q ∈ Pi, the capacity region is Ci. In the case where Q is
discrete and finite, it is reasonable to assume that K � |P| =
|Q|nd. The capacity regions C1, C2, . . . , CK ⊆ C ⊂ Rn are
convex polytopes that lie in the positive quadrant. Further, for
non-negative vectors x,y, if x ≤ y (element-wise) and y ∈ Ci,
then x ∈ Ci for any i ∈ [K]. We also assume that all the
capacity regions lie inside the positive quadrant of the ball with
radius C centered at the origin, i.e Ci ⊂ B(0, C)+ for all i ∈
[K]. Here, B(0, x) = {u ∈ Rn : ‖u‖2 ≤ x} and A+ denotes
the subset of A that lies in the positive quadrant.

We provide an illustrative example in Fig. 1, with n = 2
users and K = 3 capacity classes. In our example each
user provides a one-dimensional channel-state vector, therefore
the dimensions of both P and C are two. The partitions
of the channel-state space P is shown in Fig. 1(a), which
correspond to K different capacity regions in Fig. 1(b). We
shall define an index function relating any channel-state vector
q ∈ P to the channel-state partition and the capacity region
as follows.

Definition 1 (Index function I(.)). Given a channel-state
vector q, I(q) is the index of the element of the partition
that contains q, i.e. q ∈ PI(q).

The following assumption states that channel-state’s from each
element of the partition are observed sufficiently often.

Assumption 1 (Class Probabilities). We assume that
P(I(Q) = i) > β = O

(
1
K

)
∀ i ∈ [K], where Q ∈ P is a

random variable with distribution fQ capturing variability in
the system.

Separation of Capacity Regions: We assume that the
capacity regions are sufficiently different from each other. For
instance, in Fig. 1 if C1 and C2 were almost identical to each
other, then it would be better to merge P1,P2 and treat it as
a system with K = 2. The following assumption says that
for any two capacity regions Ci, Cj a sufficient fraction of the
volume lies outside of their intersection.

2Our theoretical guarantees require the channel-state regions corresponding
to the different capacity regions be disjoint, however our algorithm can also
handle cases where the channel-state classes are not disjoint.
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Assumption 2 (Separability). We assume the capacity regions
are well separated, i.e., for all i, j ∈ [K]

d(Ci, Cj) ,
|(Ci \ Cj) ∪ (Cj \ Ci)|

|B(0, C)+|
≥ λ > 0,

where |A| denotes the volume of the set A.

Noise Model: Let Y (q, r) ∈ {0, 1} denote a random variable
modeling the observed notification when a rate r ∈ Rn
is scheduled when the observed channel-state vector is q.
Here, Y (q, r) = 1 signifies a successful transmission and
Y (q, r) = 0 signifies a failure to achieve that rate vector . The
success or failure to transmit a rate vector r under channel-
state q is assumed to be an i.i.d random variable Y (q, r) with
distribution given by

P(Y (q, r) = 1) =


1− ρ(q, r), if r ∈ CI(q),

ρ(q, r), if r ∈ B(0, C)+ \ CI(q),

0, otherwise.

where ρ(q, r) can be viewed as a noise parameter (essentially
the packet error rate) which depends on the channel-state q
and the rate r.

Assumption 3 (Noise Rate). We assume that ρ(q, r) ≤ ρ <
1/8, ∀ q, r. We further assume that for all p,q and i such
that p,q ∈ Pi, ρ(p, r) = ρ(q, r). For notational convenience,
for all q ∈ Pi, let ρi(r) , ρ(q, r) = ρI(q)(r).

Given a channel-state and the corresponding capacity region,
when r approaches the boundary of the capacity region (from
inside) the probability of successful transmission is close
to 1 but decreases slightly near the boundary. The success
probability drops significantly after r crosses the boundary
(there is a discontinuous jump in success probability at the
boundary). After crossing the boundary, ρ(q, r) decreases till
|r| = C, beyond which ρ(q, r) = 0.

Bandit Feedback and Objectives: Let U = {u1, ...,uD} be
a set of unit vectors such that ui ∈ Rn+. This set is fixed
a priori. The broad objective is to discover the maximum
possible service rates in these directions, given a particular
channel-state. Since we use ’time-slot’ as an abstraction for
a block of several physical layer time-slots where a rate
vector r is attempted to be scheduled potentially by time-
sharing. Therefore, a wide-range of direction vectors within
the capacity region can be supported.

Concurrently with the channel-state, a direction vector u is
chosen uniformly at random from the set U . The task is to
schedule a rate vector within the capacity region CI(q), of
maximum possible magnitude in the direction u. In other
words, we would ideally like to schedule a rate vector cu
such that

c(q) = arg max
d
{d|du ∈ CI(q)}.

The precise order of events at a given time-step is as fol-
lows:

• A channel-state q(t) from the distribution fQ is observed.
A direction u(t) drawn uniformly at random from U is
also specified.

• The policy optionally selects a magnitude c(q(t),u(t)) ∈
[0, C] to be scheduled in the direction u(t) and the rate
vector r(t) = c(q(t),u(t))u(t) is scheduled. On the other
hand, the policy may choose any other rate vector r(t)
that does not lie in the specified direction. In this case
the reward obtained is zero in the time-step3.

• A notification Y (q(t), r(t)) ∈ {0, 1} is then observed.

Expected Reward Function: Recall Y (q, r) is the notifica-
tion received for transmitting rate vector r when the observed
channel-state was q. Let us define the reward r(q, r,u) for
a rate vector r, channel-state q and direction vector u to be

r(q, r,u) = |r|1 {r.u = |r|}Y (q, r), (1)

where 1{} is the indicator function.

Note that for any p,q ∈ Pi, we have E[r(q, r,u)] =
E[r(p, r,u)] , E[ri(r,u)]. Therefore, we define the expected
reward function fu,i(c) for direction vector u, capacity region
Ci and magnitude c, as follows:

fu,i(c) = E[ri(cu,u)]. (2)

The function fu,i(c) is the expected rate achieved if we
schedule a rate vector cu when the channel-state observed
belongs to capacity class i. It can be evaluated as follows,

fu,i(c) =


c(1− ρi(cu)), if cu ∈ Ci,
cρi(cu), if cu ∈ B(0, C)+ \ Ci,
0, otherwise.

(3)

Since we have assumed that ρi(r) < 1
8 ∀ r therefore fu,i(c) is

a discontinuous function of c, and the discontinuity is located
at the point where a ray in the direction u meets the boundary
of Ci. We make the following assumption on the expected rate
function.

Assumption 4 (Maxima of Rate Function). Let us define

ĉu,i = arg max
c

fu,i(c)

and c∗u,i = maxc{c|cu ∈ Ci}. We assume that the noise
function ρi(r) is such that c∗u,i = ĉu,i.

This assumption basically implies that for all i ∈ [K] the
maximum of the rate function fu,i(c) is achieved at the point
where a ray in the direction u meets the boundary of Ci.

Class of Experts: We assume access to a class of binary
experts/classifiers Π̂, where each expert π̂ ∈ Π̂ is a function
mapping the space of channel-states to {0, 1} i.e π̂ : P →
{0, 1}.

Assumption 5 (Classifying Functions). Let κ be a proper
subset of [K]. Let us define the following binary function
Îκ(q) =

∑
i∈κ 1{q ∈ Pi}. We assume that the set of binary

3Note that this is a conservative estimate of the reward. In general,
there is some non-zero value in scheduling any rate vector in the capacity
region corresponding to the observed channel-state. However, our theoretical
guarantees will be under this conservative reward model, and in practice the
performance observed will only be better.



5

experts/classifiers Π̂ is such that for all κ ⊂ [K], Îκ(.) ∈ Π̂.
We further assume that the VC dimension [18] of our class of
experts is V .

The above assumption states that the binary functions from
P to {0, 1} that are induced by labeling the channel-state’s
belonging to a set κ ⊂ [K] of capacity classes as 1 and
the rest as 0, are a part of our class of experts, for all
such proper subsets κ. Consider the example exhibited in
Figure 1. Suppose κ = {1, 2}. Then, Îκ(q) divides P into
two regions P1∪P2 and P3. Note that both these regions can
be represented as the intersection of at most two half-spaces,
as the boundaries of the partitions are linear. This is true for
all such proper subsets κ. Therefore, if our class of binary
classifiers contains all the separators that are intersections of
at most two half-spaces, then Assumption 5 is valid.

Note that Îκ(q) for different κ’s can be composed together
to recover I(q). In the example in Figure 1, Î[2,3](q) differ-
entiates class 1 from 2, 3 and Î[3](q) separates class 3 from
the rest. Given a channel-state q, if for instance Î[3](q) = 0

and Î[2,3](q) = 1 then we can infer that I(q) = 2. Therefore,
Assumption 5 basically implies that there exists a group of
binary functions in Π̂, which when composed together can
yield the true index function. Note that this is similar to
the realizable setting in the contextual bandits with experts
problem [4], where it is assumed that the true behavior of
the system can be represented by one of the expert function.
However, finding the correct expert in an online setting is an
algorithmic challenge.

Definition of Regret: The main objective is to minimize
regret when compared to a genie strategy which knows the
index function I and the capacity regions Ci’s. Let r(t) be the
rate vector selected by a policy, at time t. Then the regret of
the policy till time T is given by:

R(T ) =

T∑
t=1

(
fu(t),I(q(t))(ĉu(t),I(q(t)))

−E
[
rI(q(t))(r(t),u(t))

])
(4)

where q(t),u(t) are the channel-state vector and direction vec-
tor at time t, respectively. Note, that fu(t),I(q(t))(ĉu(t),I(q(t)))
is the maximum average rate that can be achieved in the
direction u(t), by a genie policy that knows the capacity
classes and the boundaries of the capacity regions. The regret
measures the sub-optimality of the policy in question with
respect to the genie policy, in an expected sense. The goal is
to design a policy that yields R(T ) that is sub-linear in T ,
for all times T large enough. This basically implies that the
policy keeps learning the system as time progresses.

IV. ALGORITHM

The algorithm is structured as an epoch-greedy strategy [13].
One key algorithmic idea is that if a rate vector r is scheduled
for several different observed channel-state’s q, then the
success notifications Y (q, r) provide useful information that
can be leveraged using the class of binary experts Π̂ to obtain
a binary classifier that separates the channel-state space P into

two regions P∗ and Pc∗ , where P∗ = {q ∈ P : r ∈ CI(q)}. A
carefully chosen set of rate points can then be used to form a
group of binary classifying functions, which when composed
together yields a mapping π : P → [K] , which is identical
to I(q) with high probability.

The algorithm starts with an initialization phase and then pro-
ceeds in epochs. In initialization phase the algorithm constructs
π by building a tree of binary classifiers which is then used to
classify the channel-state points into K different classes. This
stage is referred to as initializing classifier π. After building π,
the algorithm runs in epochs similar to epoch-greedy policies
for contextual bandits. At the beginning of each epoch, there is
a class explore stage corresponding to improving the accuracy
of classifier π. This is followed by a capacity explore stage
aimed at learning the capacity regions of the K different
channel-state partitions, in the given directions U . The last
stage in an epoch is the exploitation stage where we deduce
the correct capacity class of the observed channel-state vector
using π and then schedule the optimal rate vector according
to the current belief about the boundary of the corresponding
capacity region. An illustrative pseudo-code of our algorithm
is shown in Algorithm 1, while a more detailed pseudo-code
can be found as Algorithm 4. We will explain each of the
stages/phases in more detail in subsequent sections.

Algorithm 1 Epoch-greedy algorithm for online capacity class
learning and rate allocation

1: Initialize classifier π, by observing t0 channel-state’s,
scheduling corresponding carefully designed rate vectors
and observing the notifications. (Initializing Classifier)

2: Epoch: l = 1. Time: t = t0.
3: while t ≤ T do
4: Update the classifier π by observing channel-state q,

scheduling a carefully chosen rate point r, and using the
notification Y (q, r). This is repeated K − 1 times. (Class
explore)

5: Learn the boundaries of the K capacity regions in the
directions U , by scheduling carefully chosen rate points
and using the current π. A total of α(l) rate points are
scheduled in this part of the epoch. (Capacity explore)

6: Schedule next s(l) rate points optimally using π and
the learned boundaries. (Exploit)

7: Let t = t+K − 1 + α(l) + s(l) and l = l + 1.
8: end while

A. Initializing Classifier π

The first stage of the algorithm is to initialize the mapping
(multi-class classifier) π used to classify the different channel-
state’s into the K different classes. This mapping consists of
K − 1 binary experts from our class of experts, which are
composed together in a tree-like structure, in order to yield
the mapping π.

The detailed pseudo-code for this phase is provided as Al-
gorithm 2. In the beginning of this phase, for several time-
slots the channel-state’s are observed and stored, while not
making any scheduling decisions (for instance, the scheduler
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is allowed to proceed in its default behavior). This process
is continued until we observe n0 distinct channel-state vec-
tors, which are essentially n0 distinct i.i.d random variables
sampled from fQ.

Then we begin initializing the tree-structure which is detailed
in steps 2-20 of Algorithm 2. Note that in each iteration of the
while loop in step 2 of Algorithm 2, a rate point is randomly
selected and then for the following l0 time-slots irrespective
of the channel-state observed, this rate point is scheduled. The
feedback observed helps us in building a binary classification
data-set that can be used to train a classifier π̂ ∈ Π̂ which
can differentiate all q ∈ P such that r ∈ CIq from the
rest. We assume that the classifiers are trained in step 11
using empirical risk minimization (ERM) with the 0− 1 loss
function. Therefore, we have that:

π̂i = argmin
π̂∈Π̂

1

|Si|
∑

(q,y)∈Si

1{π̂(q) 6= y}.

At any point in time, an internal node Ni in the tree stores the
triplet (π̂i, ri, Si) where π̂i is the expert obtained by ERM over
the examples {(q, y)} stored in Si which were in turn obtained
by scheduling the rate ri for l0 time-slots. A leaf of the tree
Li stores a subset of the initial n0 channel-state points. In
each iteration of the while loop, the classifier trained using the
data collected by scheduling the current randomly chosen rate
point, is only retained if it can split at least one of the current
leaf nodes in the tree reliably into two distinct partitions. This
is achieved by the check in step 14 of Algorithm 2. The while
loop continues to iterate until the tree has K − 1 internal
nodes.

In order to illustrate this phase, let us consider a system as
shown in Figure 1 with r = 2 users, such that the channel-
states can be partitioned into K = 3 classes P1, P2 and P3

with capacity regions C1, C2 and C3 respectively.

For, simplicity let r(1), .., r(4) be the first four rate points
that are randomly chosen in step 3 of Algorithm 2, in that
order (see Fig. 1). Since, r(1) is a rate point that lies in all
the capacity regions, the corresponding classifier π̂1 formed
using that data collected in step 8, will classify most of the
n0 channel-state points as 1. Therefore, this will not split
the current leaf node (the root node with n0 initial channel-
state vectors) into any partitions. Hence, the classifier and the
rate point is discarded and the value of the iterator i remains
unchanged. The tree remains the same with one leaf node as
shown in Fig. 2(a)-(b).

In the next iteration of the while loop, the randomly chosen
rate point is r(2). The data collected using r(2) is used to train
a classifier π̂1, which classifies most points in class P2 as
1, while classifying most points outside of P2 as zero 4. This
point splits the n0 channel-state points in the current leaf node
into two partitions. Therefore, the classifier is retained. An
internal node N1 = {r1, π̂1, S1} is formed where r1 = r(2).

4Note that this is just an initialization of the classifier and moreover the
feedback received from scheduling is noisy. Therefore, the binary classifiers
trained will not be fully accurate. However, n0 and l0 are designed to be
large enough such that with high probability the tree structure is correct.

Algorithm 2 Initializing the Classifier Tree
1: Schedule arbitrary rate vectors for the first n0 channel-

state vectors observed. Let i = 1 and form a tree T where
the root contains the n0 initial channel-state points. There
are no other nodes in the tree.

2: while i < K − 1 do
3: Randomly select a rate point r.
4: Si = {}
5: for l = 1 : l0 do
6: Let q be the observed channel-state at time-step t.
7: Schedule rate r. (Class Explore)
8: Let y ∈ {0, 1} be the notification received. Add

(q, y) to Si.
9: Set t = t+ 1.

10: end for
11: Construct a binary classifier π̂i by empirical risk

minimization (ERM) over Si, over the expert set Π̂.
12: for all leaves j of T do
13: Classify the channel-state at leaf j according to the

classifier π̂i. Let nj be the number of channel-state points
at leaf j.

14: if n0β
2 < number of leaf channel-state classified as

0 < nj − n0β
2 then

15: Make leaf j into a parent of two new leaves
where the left leaf has all the channel-state’s classified as
1 and the right has all the channel-state’s classified as 0.

16: i = i+ 1
17: Break
18: end if
19: end for
20: end while

Moreover, two leaf nodes are formed where L1 is a leaf
corresponding to all the n0 channel-state vectors that are
labeled as 1 by π̂1 and L2 contains the rest. This is illustrated
in Fig. 2(c).

In the next iteration, the rate point r(3) is chosen, which will
effectively yield the same classifier as the one corresponding
to r(2). Therefore, this classifier will be insufficient to split any
of the leaves in Fig. 2(c). Thus the value of i is unchanged
and the tree remains the same as shown in Fig. 2(d).

Finally, the rate point r(4) is chosen. The classifier π̂2 cor-
responding to this point ideally distinguishes between points
lying in P1 from those outside of P1. Thus, this new classifier
can split the points in leaf L2 of the tree in Fig. 2(c), into
two nodes, as shown in Fig. 2(d). This leads us to our final
classifying tree π. Ideally (ignoring classification errors), a
channel-state point belonging to P1,P2 and P3 will land in
L3, L1 and L2 respectively.

The parameters n0, l0 have been chosen in order to ensure
that w.h.p a correct classifying tree is obtained. The following
lemma formalizes this claim.

Lemma 1. Let n0 ≥ 24K
β2 log

(
4 log( 1

δ )+K

δλ

)
and l0 is large
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Fig. 2. Construction of a classification tree which represents the final initial
classifier π that maps P → [K] corresponding to channel-state class structure
in Fig. 1.

enough such that 1
1−2ρ

√
V
l0

+

√
2 log

(
l20
δ

)
l0

< β
4K and l0 >√(

4 log( 1
δ )+K−1

Kλ

)
. Then with probability at least 1 − 3Kδ,

the loop in step 2 of Algorithm 2 is terminated after at most
4 log( 1

δ )+K−1

λ iterations and further a correct classifying tree
structure is obtained.

B. Class explore

After the classification tree is initialized, the algorithm pro-
ceeds in epochs and the structure of the tree remains un-
changed. The first few time-slots in each epoch are dedicated
to improving the accuracy of the classifiers π̂i’s stored in the
internal nodes of the tree Ni’s. We name this part of an epoch
class explore. The class explore phase in an epoch consists of
K−1 time-steps t1, ..., tK−1. At time-step ti, let the channel-
state observed be qi. After the channel-state is observed, the
rate vector ri stored in the internal node Ni is scheduled and
a notification yi is received The data-sample (qi, yi) is added
to the set Si and π̂i is updated through ERM over the updated
set Si. This is performed for all i = 1, 2, ...,K−1. This phase
is detailed in steps 7 -14 of Algorithm 4. The basic idea is
to obtain one more training sample for each of the classifiers
stored in the internal nodes, at the beginning of each epoch,
thereby improving the classification accuracy of the global
classier π : P → [K]. The following lemma provides an upper
bound for the classification error of the global classifier π̂ at
the beginning of epoch l.

Lemma 2. At the end of the class explore phase in epoch l
with probability at least 1− (K − 1) δ

(l+l0)2 we have

P(π(Q) 6= I(Q))

≤(K − 1)

( 1

1− 2ρ

)√
V

l0 + l
+

√√√√2 log
(

(l0+l)2

δ

)
l0 + l


,(K − 1)ε(l0 + l, δ),

where the probability is over the randomness in Q ∼ fQ and
the randomness in π due to the random samples in the training
set.

C. Capacity explore

In each epoch, the class explore phase is followed by a
few time-slots dedicated to capacity explore. This phase is
described as steps 16-22 in Algorithm 4. It is aimed towards
learning the boundaries of the K capacity classes in the
directions U . Note that there are K possible capacity classes
and D = |U| direction vectors to explore. In the capacity
explore phase of epoch l, for α(l, δ) time-slots we observe the
channel-state vectors, direction vectors and schedule carefully
designed rate vectors to learn the capacity region. We set

α(l, δ) = 2D
β

(
16

1−2ρ

)2

log
(
l2

δ

)
.

We initialize Ck,u[0] = 0 and Ck,u[1] = C for all k ∈ [K]
and u ∈ U at the start of the algorithm. Ck,u[0] is a lower
bound for c∗u,i and Ck,u[1] is an upper bound for c∗u,i, and
these values are updated after the capacity explore phase in
every epoch.

Algorithm 3 Capacity explore update
1: for ∀ k ∈ [K] and u ∈ U do
2: if mk,u >

1
2 then

3: Ck,u[0] =
Ck,u[0]+Ck,u[1]

2
4: else if mk,u <

1
2 then

5: Ck,u[1] =
Ck,u[0]+Ck,u[1]

2
6: end if
7: end for

Let τl,k,u be the set of time-slots in which the channel-state
q observed is such that π(q) = k and the direction vector
specified is u, in the capacity explore phase of epoch l. In all
these time-slots, the rate Ck,u[0]+Ck,u[1]

2 u is scheduled. mk,u

denotes the empirical mean of the success rates in scheduling
the above rate vectors. The lower and upper bounds Ck,u[0]
and Ck,u[1] are then updated depending on the value of mk,u

for all k,u. The update procedure is detailed in Algorithm 3,
which is similar to a traditional binary search procedure for
searching the boundary of the capacity regions in the given
directions U (see also [5]).

D. Exploitation

In every epoch, after the exploration phases, the overwhelm-
ing majority of time-slots are dedicated to exploitation. The
exploitation phase in epoch l consists of s(l) = O(

√
l) time-

slots. In each of these time-slots, a channel-state q is observed
and a direction vector u is specified. The class k = π(q) is
identified according to our current global classifier and the rate
vector Ck,u[0]u is scheduled. This phase is detailed as steps
24 - 29 in Algorithm 4.

Remark 1. Algorithm 4 satisfies our regret bound in Theo-
rem 1. However, there are few low-probability failure events
that can affect the working of the algorithm in all future time-
steps. For instance, the initial classifier tree-structure may be
incorrect, which happens with low probability as shown in
Lemma 1. Moreover, at any epoch the binary search can take
an incorrect decision, which can also happen with a very low-
probability. We can generalize the discussion to a more robust
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Algorithm 4 Online rate allocation from channel-state and
service data

1: Initialize empty sets Si = {} for i ∈ [K].
2: Initialize a single node tree T where the node contains n0

different channel-state points.
3: Initialize capacity rate Ck,u[0] = 0 and Ck,u[1] = C for

all k ∈ [K] and u ∈ U .
4: Initialize classifier π using Algorithm 2.
5: Set t = t0 (time index) and l = 1 (epoch index).
6: while t ≤ T do
7: for i = 0 : K − 1 do
8: ri is the rate vector stored in node Ni.
9: Let q be the channel-state observed at time step t.

10: Schedule rate ri. (Class Explore)
11: Let y ∈ {0, 1} be the notification received. Add

(q, y) to Si.
12: Set t = t+ 1.
13: Update the classifier π̂i in Ni.
14: end for
15: Let the empirical means of success rate be mk,u = 0

for all k ∈ [K] and u ∈ U .
16: for s = 1 : α(δ, l) do
17: Observe (q,u).
18: Let k = π(q).
19: Schedule rate vector

(
Ck,u[0]+Ck,u[1]

2

)
u. (Capac-

ity Explore)
20: Update mk,u according to received notification y.
21: Set t = t+ 1.
22: end for
23: Update C and Ŝ according to Algorithm 3.
24: for s = 1 : s(l) do
25: Observe (q,u).
26: Let k = π(q).
27: Schedule rate vector Ck,u[0]u. (Exploit)
28: Let t = t+ 1.
29: end for
30: l = l + 1.
31: end while

algorithm that can detect such low-probability failure states
and correct them online (please see Supplementary material).
In our simulations in Section VI we use the robust version of
the algorithm.

V. REGRET BOUND

In this section, we provide our main theoretical result which
provides a cumulative regret bound for Algorithm 4, when
Assumptions 1-5 are satisfied.

Theorem 1. Under Assumptions 1-5, with probability at least
1− ξKDδ, Algorithm 4 achieves a regret bound of,

R(T ) = O
(
T 2/3 log

(
1

δ

)(
D log T +K +

√
V
))

,

at time T where ξ < 13.

Theorem 1 and its proof is available in greater detail in
the Supplementary Material of this paper, where the explicit

dependence on the various problem parameters has been
specified.

Discussion: Theorem 1 states that the regret of Algorithm 4
scales as O(T 2/3 log T ) as a function of time. The scaling is
linear with respect to the number of classes K and the number
of direction vectors D. It scales as

√
V in terms of the VC

dimension of the class of experts. For a finite class of experts
Π̂, the VC dimensions is O(logN), where N = |Π̂| is the
number of experts.

It should be noted that epoch-greedy algorithms in bandit
settings generally have a regret scaling of O(T 2/3) in the
problem independent setting, because of explicit exploration.
For instance, the epoch-greedy strategy in [13] has a similar
regret scaling for the problem of stochastic contextual bandits
with experts. However, we would like to highlight that our
problem setting is significantly more complicated than the
usual contextual bandits with experts problem, as in a con-
textual bandit setting when an arm is pulled under a context,
we get a direct feedback about the reward of that arm under
that context. However, in our problem setting when a channel-
state is observed and a rate vector is scheduled, the received
feedback only gives us a partial noisy feedback about the
possible capacity class in which the channel-state belongs. The
quality of the feedback also depends on the choice of the rate
points. Further in our problem setting, even after the capacity
classes are learned there is an additional task to recover the
boundaries of the corresponding capacity regions. Therefore,
the epoch-greedy algorithm proposed in this paper is a first
step towards analyzing this setting, and we leave the study of
algorithms with implicit exploration that can potentially yield
O(
√
T ) regret bound as future work.

VI. SIMULATION RESULTS

In this section we perform empirical simulation of our algo-
rithm on the state-of-the-art Wireless Next-Generation Simu-
lation (WiNGS) platform developed by AT&T Labs.

WiNGS includes a fully dynamic, event-driven system-level
simulator which models large-scale cellular network deploy-
ments and the L3/L2/L1 protocols layers comprising the 5G
New Radio (NR) air interface. Both planned and random
deployments of base stations is supported, with users located
indoors or outdoors generating traffic according to various
finite and full-buffer traffic models. Packets generated by
the traffic model pass through the PDCP (Packet Data Con-
vergence Protocol), RLC (Radio Link Control), and MAC
(Media Access Control) protocol sublayers where functions
including segmentation, re-transmissions, and HARQ (Hybrid
Automatic Repeat-reQuest) processes are implemented. The
wireless channel is modeled with both long-term effects (e.g.
log-normal shadowing, Line-of-Sight vs. Non Line-of-Sight
pathloss) and short-term effects (e.g. fast fading due to the
environmental scattering and user mobility). The physical layer
functionality includes transport block formation based on link
adaptation based on channel-state and ACK/NACK feedback.
Codebook and channel reciprocity-based digital beamforming
is used to generate linear precoders for both single user
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Link Manager

Macro-Scheduler

Resource Manager

MAC/PHY

CSI

CSI

User Metrics

Resource Grid

Traffic Manager

Fig. 3. Block diagram of scheduler module in WiNGS.

(SU) and multi-user MU-MIMO transmission on orthogonal
or overlapping time/frequency resources. The probability of
success for a transport block which is sent over the wireless
channel is based on the post-MMSE receiver SINR to BLER
(BLock Error Rate) mapping curves calculated from bit-
precise link-level simulation.

Figure 3 provides a block diagram of the modules relevant to
our simulations. The AT&T WiNGS scheduler runs in discrete
time steps of size 1 ms. At the start of each time step, the
traffic manager sends the set of schedulable5 users and their
user metrics to the macro-scheduler. The user metrics consist
of information such as CQI (Channel Quality Index, generated
every 10 ms), MIMO rank, NDI (New Data Indicator), set
of pairable users (users that can be co-scheduled) and their
corresponding MU-SINR, etc. A primary user is selected
from the set of schedulable users by the macro-scheduler
based on a round-robin policy. The macro-scheduler then picks
a secondary user for MU-MIMO transmission from set of
candidate pairable users. The macro-scheduler then passes the
user-pair (primary user and secondary user) and their user-
metrics to the resource manager. In the event the macro-
scheduler is unable to find a secondary user to pair with
primary user then only the primary user and its user metrics are
sent to the resource manager. Furthermore it should be noted
that for any failed MU transmission, the re-transmissions are
sent in SU mode.6

For the selected user-pair (or user), the resource manager
selects the MCS (Modulation and Coding Scheme) to be used
according to the MU-SINR (or SU-SINR). For a given user
the mapping of MU-SINR to MCS adapts according to the
success/failure of the past transmissions. After selecting the
MCS, resource manager fills the resource grid and sends it to
the MAC/PHY layer to be scheduled.

To implement our algorithm, we have modified the default
resource manager by selecting the MCS to be scheduled for
the users according to our algorithm. We use a threshold

5Users that have data to be transmitted
6A failed MU transmission means either one or both users were unable

to decode the packet. Every failed MU transmission can cause 1 or 2 SU
re-transmissions based on if MU-transmission to one or both users was
unsuccessful.
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(c) Probability of success for
user-pair 1
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(d) Throughput per resource
block for user-pair 1

Fig. 4. Single run of our Algorithm for a system with 4 users.

value of 9
10 instead of 1

2 for mk,u in Algorithm 3 since
wireless carriers like AT&T requires probability of success to
be greater than 90% for all users (desired service requirement).
For all of our simulations, we use a robust version of our
algorithm with few modifications. Specifically, the class of
experts/classifying functions used in our simulations is the
naive Bayes implemented in MATLAB. For building the
classifier, we test 15 different MCS pairs (rate-vectors) for
l0 = 50. The value of n0 is set to be 3000 (3 sec) and during
this time we schedule according to AT&T resource manager.
For sake of clarity in results we have excluded the first n0

time steps from the results. Furthermore, the traffic model used
in all simulations is full buffer i.e. all users have data to be
transmitted at all time steps.

A. Clusters and associated capacity regions

We first plot the result for a single run of our algorithm for a
system with one base-station and n = 4 users and d = 5
direction vectors. At any time-step the direction vector is
selected uniformly at random from a set of 5 possible direction
vectors. The probability of success and the throughput per
resource block is plotted in Figure 4a and 4b respectively. For
this system, there are 6 possible user-pairs therefore it take
around 4.5 sec for the ”build classifiers” phase to complete7.
We observe that our algorithm is able to converge to optimum
within 10 sec and achieve probability of success higher then
90%. In Figure 4c and 4d we plot the probability of success
and throughput per resource block for user-pair 1 in the
system. We observe that similar to before, our algorithm is
able to learn the optimal throughput for user-pair 1 within 10
sec and achieve probability of success higher then 90%.

7The classifier will be built in 4.5 sec if all user pairs are observed with
equal probability. However, it takes more then 4.5 sec for building classifier
phase to be completed for all user-pairs since the user-pairs are selected with
different probabilities by the system.
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Fig. 5. Single cell results for our Algorithm for user-pair 1.
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Fig. 6. Achievable MCS region and Capacity region for the different cluster
of user-pair 1.

In Figure 5a, we plot the channel-state clusters determined
by our algorithm for user-pair 1. We observe that channel-
state clusters determined by our algorithm are disjoint and
cluster 1 contains better channel-states values then cluster 2.
We plot the achievable MCS values of cluster 1 in Figure 5b
where the dotted lines show the 5 different direction vectors.
The fraction of time different MCS values are scheduled and
their corresponding success rate are plotted in Figure 5c and
5d respectively. We observe that while our algorithm explores
several different MCS values for any given direction vector,
the MCS value that lies on the boundary of achievable MCS
region8 is selected most often.

In Figure 6a, we plot the achievable MCS region for the two
channel-state clusters. We observe that the achievable MCS
region belonging to cluster 2 is subset of achievable MCS
region of cluster 1 because cluster 1 contains better channel-
state values as compared to cluster 2. In Figure 6b we plot
the capacity regions of both clusters. It should be noted that
the capacity region are slightly different from achievable MCS
regions since the two users can have different probability of

8Those having a probability of success exceeding 90%.
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(d) Throughput per second

Fig. 7. Performance of different algorithms for Scenario 1 with 4 users.
Our algorithm outperforms the current state-of-art and improves the average
throughput per sec by more then 9.5%.

success for any given MCS value.

B. Single Cell

We consider a single base-station setting and analyze the
performance of our algorithm against the state of the art AT&T
scheduler. The parameter settings for the AT&T scheduler
needs to be manually optimized for every scenario which is
impractical in real deployments. Therefore, following practice
in real deployments, for the simulations we consider 3 different
parameter settings denoted as Policy 1, Policy 2 and Policy 3
respectively, where theses policies are hand-tuned to provide
good results for a majority of scenarios. For our algorithm we
have a set of d = 11 direction vectors and at every time step,
the direction vector selected by the scheduler is the direction
vector which is closest to the MCS selected by the default
AT&T scheduler9.

For this setting we first consider 3 different scenarios with
a single active base-station and n = 4 users each. These
scenarios differ in that the user locations are different (and
thus, the channel and interference environments differ). For
each scenario, we provide plot results for number of MU
transmissions, probability of success, throughput per resource
block and throughput per second.

The results for scenario 1 are shown in Figure 7. We observe
that our algorithm is able to learn the channel-state clusters and
suitable MCS values for different direction vectors within 10
seconds. Furthermore when compared to the best performing
AT&T policy (Policy 2), our algorithm is able to achieve
9.5% more throughput per second and improve the probability
of success from 90.8% to 93.6%. Table I summarizes the

9The MCS value selected by the AT&T scheduler is only used to select the
direction vector. Our algorithm determines the MCS value to be scheduled
along the selected direction vector.



11

TABLE I
PERFORMANCE OF DIFFERENT POLICIES IN SCENARIO 1 FOR LAST 30 SEC.

Epoch-
greedy

AT&T
Policy 1

AT&T
Policy 2

AT&T
Policy 3

Average number of
MU transmissions 887.7 767.8 845.9 892.6

Average probability
of success (%) 93.57 84.74 90.78 94.10

Average throughput
per resource block 1221 1184 1173 1100

Average throughput
per second (×106) 2.170 1.824 1.988 1.976
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Fig. 8. Performance of different algorithms for Scenario 2 with 4 users.
Our algorithm outperforms the current state-of-art and improves the average
throughput per sec by more then 30% .

TABLE II
PERFORMANCE OF DIFFERENT POLICIES IN SCENARIO 2 FOR LAST 30 SEC.

Epoch-
greedy

AT&T
Policy 1

AT&T
Policy 2

AT&T
Policy 3

Average number of
MU transmissions 876.0 634.0 698.5 756.8

Average probability
of success (%) 92.82 71.68 78.37 83.85

Average throughput
per resource block 1219 1172 1127 1083

Average throughput
per second (×106) 2.139 1.508 1.588 1.646

performance from 30 to 60 sec for the different algorithms
in scenario 1.

The results for the scenario 2 are shown in Figure 8. Similar
to scenario 1 our algorithm is able to learn the channel-
state clusters and optimum MCS values for different direction
vectors within 10 sec. However unlike scenario 1 the AT&T
policy which provides the best average throughput per second
is Policy 3. Once again our algorithm outperforms the best
AT&T Policy and achieves 30% more throughput per second
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(d) Throughput per second

Fig. 9. Performance of different algorithms for Scenario 3 with 4 users.
Our algorithm outperforms the current state-of-art and improves the average
throughput per sec by more then 41%.

TABLE III
PERFORMANCE OF DIFFERENT POLICIES IN SCENARIO 3 FOR LAST 30 SEC.

Epoch-
greedy

AT&T
Policy 1

AT&T
Policy 2

AT&T
Policy 3

Average number of
MU transmissions 988.2 999.7 999.9 1000

Average probability
of success (%) 99.4 100 100 100

Average throughput
per resource block 2335 1633 1435 1299

Average throughput
per second (×106) 4.615 3.265 2.869 2.597

and improve probability of success from 83.9% to 92.8%.
Table II summarizes the performance from 30 to 60 sec for
different algorithms in scenario 2.

Figure 9 provides the results for the scenario 3. Similar
to previous two scenarios, our algorithm is quickly able to
learn the channel-state clusters and optimum MCS values for
different direction vectors within 10 sec. For this scenario the
AT&T policy which provides the best average throughput per
second is Policy 1. Similar to the previous two scenarios, our
algorithm significantly outperforms Policy 1 and achieves 41%
more throughput per second while still providing probability
of success of 99.4%. Table III summarizes the performance of
different algorithms in scenario 3 for last 30 sec.

For scenario 4 we consider a single base-station with n = 7
users. The results for the scenario 4 are shown in Figure 10.
For this scenario, our algorithm takes longer time to learn the
channel-state clusters and optimum MCS values for different
direction vectors since there are 21 user-pairs in scenario 4 (as
compared to 6 for scenarios 1 − 3). However our algorithm
is able to learn optimum value of MCS for different direction
vectors within 30 sec. Among the static policies, AT&T Policy
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(d) Throughput per second

Fig. 10. Performance of different algorithms for Scenario 4 with 7 users.
Our algorithm outperforms the current state-of-art and improves the average
throughput per sec by more then 14.5%.

TABLE IV
PERFORMANCE OF DIFFERENT POLICIES IN SCENARIO 4 FOR LAST 30 SEC.

Epoch-
greedy

AT&T
Policy 1

AT&T
Policy 2

AT&T
Policy 3

Average number of
MU transmissions 908.4 829.8 886.4 926.9

Average probability
of success (%) 94.91 89.62 93.52 96.01

Average throughput
per resource block 1603 1530 1408 1287

Average throughput
per second (×106) 2.913 2.543 2.497 2.386

1 provides the best average throughput per second for scenario
4, however our algorithm is able to achieves 14.5% more
throughput per second and improve the probability of success
from 89.6% to 94.9%. Table IV summarizes the performance
of different algorithms in scenario 4 during last 30 sec.

C. Multiple cell

We now consider the multiple base-station setting and analyze
the performance of our algorithm against the state of the art
AT&T scheduler. For this setting we activate 4 base-stations
in the neighborhood of primary base-station. For the AT&T
scheduler, we have 3 new parameter setting10 denoted as
Policy 1, Policy 2 and Policy 3. For the simulations with
AT&T scheduler we use the same policy on all 5 base-
stations. For simulations with our algorithm we only run our
algorithm on primary base-station and run AT&T Policy 2 on
the 4 neighboring base-stations. In the following, we compare
the performance of primary base-station for the different
algorithms. Furthermore for our algorithm we have set of
d = 11 direction vectors, where the direction vectors are

10These policies are different from the previous policies since there is
interference from the neighboring base-stations.
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(d) Throughput per second

Fig. 11. Performance of different algorithms for Scenario 5 with 4 users
connected to primary base-station. Our algorithm outperforms the current
state-of-art and improves the average throughput per sec by more then 5%.

TABLE V
PERFORMANCE OF DIFFERENT POLICIES IN SCENARIO 5 FOR LAST 30 SEC.

Epoch-
greedy

AT&T
Policy 1

AT&T
Policy 2

AT&T
Policy 3

Average number of
MU transmissions 718.9 641.8 731.7 791.0

Average probability
of success (%) 93.74 86.17 94.97 98.08

Average throughput
per resource block 629.2 674.5 589.3 461.5

Average throughput
per second (×105) 9.041 8.601 8.604 7.286

selected using the same method as described for single cell
simulations.

We present results for 3 different scenarios denoted by scenario
5, scenario 6 and scenario 7 with 4, 4 and 3 users connected
to the primary base-station respectively. For all these scenar-
ios we observe that the average throughput is significantly
reduced due to inter-cell interference as compared to average
throughput for single cell scenarios.

The results for scenario 5 are shown in Figure 11. We observe
that our algorithm is able to learn the channel-state clusters
and learn optimum MCS values for different direction vectors
within 15 sec. Furthermore, the AT&T policy which provides
the best average throughput per second is Policy 2, however
our algorithm is able to achieve 5% more throughput per
second and have high probability of success of 93.74%.
Table V summarizes the performance from 30 to 60 sec for
the different algorithms in scenario 5.

The results for scenario 6 are presented in Figure 12. We
observe that similar to scenario 5, our algorithm is able to
learn the channel-state clusters and optimum MCS values
for different direction vectors within 15 sec. Furthermore our
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(d) Throughput per second

Fig. 12. Performance of different algorithms for Scenario 6 with 4 users
connected to primary base-station. Our algorithm outperforms the current
state-of-art and improves the average throughput per sec by more then 90%.

TABLE VI
PERFORMANCE OF DIFFERENT POLICIES IN SCENARIO 6 FOR LAST 30 SEC.

Epoch-
greedy

AT&T
Policy 1

AT&T
Policy 2

AT&T
Policy 3

Average number of
MU transmissions 694.0 501.6 558.9 598.5

Average probability
of success (%) 92.35 69.19 75.92 80.87

Average throughput
per resource block 548.0 385.6 331.1 290.3

Average throughput
per second (×106) 7.598 3.925 3.733 3.502

algorithm is able to achieve 90% more throughput per second
than the best performing AT&T policy while having a high
probability of success of 92.35%. Table VI summarizes the
performance from 30 to 60 sec for the different algorithms in
scenario 6.

Finally we present the results for scenario 7 in Figure 13.
Unlike scenario 5 and scenario 6 our algorithm is able to
learn the channel-state clusters and optimum MCS values
for different direction vectors within 10 sec because there
are fewer users connected to primary base-station. For this
scenario the AT&T policy which provides the best average
throughput per second is Policy 2, however our algorithm
achieves 10% more throughput per second and have a high
probability of success of 93.35%. The performance from 30 to
60 sec for the different algorithms in scenario 7 is summarized
in Table VII.

D. Summary of Results and Discussion

We observe that in all scenarios our algorithm is able to learn
the channel-state clusters and their corresponding capacity
regions in a short amount of time (10 to 15 sec for a 4 user
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Fig. 13. Performance of different algorithms for Scenario 7 with 3 users
connected to primary base-station. Our algorithm outperforms the current
state-of-art and improves the average throughput per sec by more then 10%.

TABLE VII
PERFORMANCE OF DIFFERENT POLICIES IN SCENARIO 7 FOR LAST 30 SEC.

Epoch-
greedy

AT&T
Policy 1

AT&T
Policy 2

AT&T
Policy 3

Average number of
MU transmissions 525.5 503.6 563.5 580.6

Average probability
of success (%) 93.35 88.97 97.31 99.27

Average throughput
per resource block 212.2 199.3 146.3 97.5

Average throughput
per second (×106) 2.243 2.025 1.657 1.139

system, 30 sec for a 7 user system). Furthermore for both
single cell and multi cell scenarios our algorithm is able to
match if not outperform the current state of art MU scheduling
algorithm. It should be noted that the best performing static
policy for the AT&T scheduler to maximize the throughput
per sec differs across scenarios. Further, these policies would
need to be continuously hand-tuned if one desires scenario-
specific optimal results; additionally we expect that the policy
will dynamically change as users enter and leave the system.
However, our algorithm is able to learn the correct channel-
state to MCS mapping for different user-pairs, which allows it
to match if not outperform the current state-of-art. We should
also note that even in cases like scenario 3 and scenario 6
shown in Figures 9 and 12 where all policies for the AT&T
scheduler policies failed to achieve good throughput, our al-
gorithm was able to learn the system and achieve significantly
better results.

For a practical setting, an important metric used by wire-
less carriers like AT&T is the probability of success of a
transmission, where an ideal policy should achieve more then
90% probability of success for all users. Our algorithm is
able to ensure a high probability of success within 92%
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to 95% for all scenarios. Scenario 3 is an outlier with a
high probability of success at 99.4% because the channel-
state of users is very good and we are able to transmit the
maximum value of MCS successfully with a high probability.
We achieve the desired success probability by defining the
capacity region as set of MCS values with probability of
success of more then 90% and changing the threshold value
for mk,u in Algorithm 3 to 9

10 (instead of 1
2 ) for updating the

boundary of capacity regions. Furthermore, we can achieve
a higher or lower overall probability of success of system,
by increasing or decreasing the threshold value for mk,u in
Algorithm 3. For any fixed AT&T policy the probability of
success varies significantly, and cannot be easily controlled.
By selecting a static policy (like Policy 3) having more then
90% probability of success for most scenarios, we end up
significantly lowering the throughput. Furthermore there will
still be cases like scenario 2 or scenario 6 where we have
probability of success significantly below 90%. In conclusion,
our algorithm is able to provide high throughput as well
as ensuring that the probability of success exceeds 90%,
thus meeting the desired service requirement (probability of
success) goal.
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Supplementary Material

APPENDIX A
ROBUST ALGORITHM

Algorithm 4 satisfies our regret bound in Theorem 1. However,
Algorithm 4 have few low-probability failure events that can
affect the working of the algorithm in all future time-steps.
In this section, we present robust version of our algorithm
which detects these low-probability failure events and cor-
rects them online. The pseudo-code for robust algorithm is
presented in Algorithm 5. We will discuss the changes made
by Algorithm 5 in different phases separately.

Initialization Classifier π: The initialization of classifier π
in Algorithm 2 have a low probability failure event, if the
set of n0 initial channel-states used to build the classifier
was ”bad” i.e. the set of n0 initial channel-states does not
contain sufficient channel-state points from all classes. The
robust algorithm, fixes this failure event by reinitializing the
set of n0 channel-state points for the classifier π and rebuilding
the classifier π from scratch in the event that classifier π was
unable to be built by testing 4 log ( 1

δ )+K−1

λ rate vectors. The
pseudo code for the robust initialization of the Classifier Tree
is given in Algorithm 6.

Class Explore: We can have a failure event where the classifi-
cation tree π is incorrect due to a wrong sub classifier present
in it. A wrong sub-classifier could be added to classifier π
during initialization due to non-zero misclassification error.
However, the misclassification error of the sub-classifiers (and
also classifierπ) decreases as the epoch number l increases.
Therefore in order to detect if the classifier π contains any
incorrect sub-classifier, we reclassify the initial n0 channel-
states with the classifier π at each epoch. If the number of
channel-states at any leaves node are fewer than n0

2β , we will
reinitialize the epoch number l, set Si and Ck,u and rebuild
the classifier π. The pseudo code for this phase is described
in step 7− 25 in Algorithm 5.

Capacity Explore: A low probability failure event that can
occur during any epoch, is the binary search making an incor-
rect decision. This failure event can be solved by testing the
upper and lower bounds for capacity region during the capacity
explore phase. With this approach the capacity explore will
be able to detect and correct for incorrect past decisions in
addition learning the boundaries of the K capacity classes
in the directions U . The capacity explore phase for the robust
algorithm is described as steps 26−34 in Algorithm 5.

We initialize Ck,u[0] = 0 and Ck,u[1] = C for all k ∈ [K]
and u ∈ U at the start of the algorithm (same as previ-
ous algorithm). However, we will also test the rate vectors
Ck,u[0]u and Ck,u[1]u in addition of Ck,u[0]+Ck,u[1]

2 u. Since
we using binary search to update capacity regions, the rate
vectors Ck,u[0]u and Ck,u[1]u corresponds to the capacity
region estimate for previous epochs. Therefore, by scheduling
Ck,u[0]u and Ck,u[1]u in epoch l we can detect and correct
any incorrect decision made in past epochs.

Algorithm 5 Robust online rate allocation from channel-state
and service data

1: Initialize empty sets Si = {} for i ∈ [K]
2: Initialize a single node tree T where the node contains n0

different channel-state points
3: Initialize capacity rate Ck,u[0] = 0, Ck,u[1] = C and

stage number Ŝk,n = 1 for all k ∈ [K] and u ∈ U .
4: Initialize classifier π using Algorithm 6
5: Set t = t0 (time index) and l = 1 (epoch index)
6: while t ≤ T do
7: for i = 1 : K − 1 do
8: ri is the rate vector stored in node Ni
9: Let q be the channel-state observed at time step t.

10: Schedule rate ri. (Class Explore)
11: Let y ∈ {0, 1} be the notification received. Add

(q, y) to Si.
12: Set t = t+ 1.
13: Update the classifier π̂i in Ni
14: end for
15: Reclassify the n0 channel-state points at the root of

classifier according to the updated sub classifiers.
16: for i = 1 : K do
17: if number of channel-state point that classify to

leaf i < n0

2β then
18: Reinitialize the single node tree T where the

node contains n0 different channel-state points
19: Reinitialize Si = {} for i ∈ [K]
20: Reinitialize Ck,u[0] = 0, Ck,u[1] = C and

stage number Ŝk,n = 1 for all k ∈ [K] and u ∈ U .
21: Rebuild classifier π using Algorithm 6
22: Epoch number l = 1
23: Break
24: end if
25: end for
26: Let the empirical means of success rate be mi,k,u = 0

for all i ∈ {−1, 0, 1}, k ∈ {1, 2} and u ∈ U .
27: for s = 1 : 3α(δ, l) do
28: Observe (q,u).
29: Let k = πl(q) and j = Uniform({−1, 0, 1}).
30: Schedule rate vector (Capacity Explore)(

Ck,u[0]+Ck,u[1]
2 + j ×

(
Ck,u[0]−Ck,u[1]

2

))
u.

31: Update mj,k,u.
32: Set t = t+ 1.
33: end for
34: Update C and Ŝ according to Algorithm 7
35: l = min(Ŝ)
36: for s = 1 : s(l) do
37: Observe (q,u).
38: Let k = πl(q).
39: Schedule rate vector Ck,u[0]u. (Exploit)
40: Let t = t+ 1.
41: end for
42: l = l + 1.
43: end while
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Algorithm 6 Robust initialization of the Classifier Tree
1: Let i = 1 and form a tree T where the root contains
n0 initial channel-state points. There are no other nodes
initially.

2: Let x = 0.
3: while i < K do
4: if x > 4 log ( 1

δ )+K−1

λ then
5: Schedule arbitrary rate vectors for the next n0

channel-state vectors observed. Reinitialize i = 1, x = 0
and tree T where the root contains n0 new channel-state
points. There are no other nodes initially.

6: t = t+ n0

7: end if
8: Randomly select a capacity point r
9: Si = {}

10: for l = 1 : l0 do
11: Let q be the channel-state observed at this time-

step.
12: Schedule rate r. (Class Explore)
13: Let y ∈ {0, 1} be the notification received. Add

(q, y) to Si.
14: Set t = t+ 1.
15: end for
16: Construct a binary classifier π̂i by empirical risk

minimization (ERM) over Si, over the expert set Π̂.
17: for all leaves j of T do
18: Classify the channel-state at leaf j according to the

classifier π̂i. Let nj be the number of channel-state points
at leaf j.

19: if n0β
2 < number of leaf channel-state classified as

0 < nj − n0β
2 then

20: Make leaf j into a parent of two new leaves
where the left leaf has all the channel-state’s classified as
1 and the right has all the channel-state’s classified as 0.

21: i = i+ 1
22: Break
23: end if
24: end for
25: x = x+ 1
26: end while

For the robust algorithm, we initialize mi,k,u = 0 for all
i ∈ {−1, 0, 1}, k ∈ [K] and u ∈ U at the start of
each epoch where mi,k,u is empirical mean success rate
and i = {−1, 0, 1} corresponding to rate vectors Ck,u[1]u,
Ck,u[0]+Ck,u[1]

2 u and Ck,u[0]u respectively. In the capacity
explore phase we schedule 3α(l, δ) channel-state for epoch l.
For a given channel-state vector q and direction vector u we
use the classifier to find the class k = π(q) of the channel-state
point. We select j = Uniform({−1, 0, 1}) and transmit the
rate vector

(
Ck,u[0]+Ck,u[1]

2 + j ×
(
Ck,u[0]−Ck,u[1]

2

))
u and

update mj,k,u. We update the Ck,u[0], Ck,u[1] and Ŝk,ufor
all k ∈ [K] and u ∈ U according to Algorithm 7, which is
similar to a traditional binary search procedure.

We will modify the way epoch is computed since Algorithm 7

can detect past incorrect decisions (corresponding to previous
epochs) and correct them. The set Ŝ = {Ŝk,u}, is initialized
to be equal to epoch number for all k ∈ [K] and u ∈ U .
We update this set according to the Algorithm 7 and the new
epoch number is l = min(Ŝ).

Algorithm 7 Robust capacity explore update
1: for ∀k ∈ [K] and u ∈ U do
2: if m−1,k,u >

9
10 then

3: Ck,u[1] = 2× Ck,u[1]− Ck,u[0]
4: Ŝk,u = Ŝk,u − 1
5: else if m1,k,u <

9
10 then

6: Ck,u[0] = 2× Ck,u[0]− Ck,u[1]
7: Ŝk,u = Ŝk,u − 1
8: else if m0,k,u >

9
10 then

9: Ck,u[0] =
Ck,u[0]+Ck,u[1]

2

10: Ŝk,u = Ŝk,u + 1
11: else if m0,k,u <

9
10 then

12: Ck,u[1] =
Ck,u[0]+Ck,u[1]

2

13: Ŝk,u = Ŝk,u + 1
14: end if
15: end for

Remark 2. The Algorithm 5 is constructed for the system
model presented in section III and accounts for the low
probability failure events present in Algorithm 4. However,
under additional information such as a discrete capacity
region, further improvements can be made to the algorithm.
For instance the binary search in Algorithm 7 can be stopped
when the upper and lower bound for the capacity regions are
within a quantization step apart from each other.

Furthermore, similar adjustments can be made to the algo-
rithm in a practical setting where some assumptions presented
in section III may no longer be valid. For instance, our system
model assumes an i.i.d channel. In a practical system this
assumption may not hold, which can potentially cause failure
events in the initialization of classifier π. The probability of
these failure events can however be reduced by testing the
different rate vectors r in Algorithm 6 over interleaved time-
steps instead of consecutive time-steps.

APPENDIX B
INITIALIZATION PHASE

Before we provide the proof of Lemma 1, we state and prove
two lemmas used for proof of Lemma 1.

Lemma 3. With probability at least 1− δ, the classifier π is
constructed by testing 4 log( 1

δ )+K−1

λ different rate vectors.

Proof. A rate vector r is defined to be good if the classifier
π̂ built using it splits a leaf in the tree T . Let R be the set of
different channel-state classes at leaf L in the tree and i and
j be two channel-state classes in set R. Then a classifier π̂
constructed using a good good rate vector will partition the K
classes into set K and Kc such that i ∈ K and j ∈ Kc therefore
classifier will split the set R at leaf L. Since d(Ci, Cj) ≥
λ, ∀ i, j and the rate vectors are selected uniformly at random
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so the probability of selecting a good rate vector that can split
the set of channel-state classes R into I and J such that i ∈ I ,
j ∈ J , I ∪ J = R and I ∩ J = ø is at least λ i.e.

P(rate vector r is a ”good” rate vector)
≥P(π̂ can split leaf L that contain muliple classes)
≥P(π̂ can split the set of channel-state R at leaf L into I and J)

≥λ

It should be noted that after K−1 such splits, all the channel-
state regions can be distinguished since there will be K leaf
node and the set of channel-state classes at each leaf node is
distinct (due to construction of tree). Therefore each leaf node
corresponds to a single and unique channel-state class.

Let ri be the ith rate vector tested and let Xi be the event that
ri can potentially split some leaf in the tree T . Then Xi is a
Bernoulli random variable with mean greater or equal than λ.
Using multiplicative Chernoff bound for m > 1 we have

P

 (K−1)(m+1)
λ∑
i=1

Xi < K − 1

 < e−
m(K−1)

4 (5)

Therefore with probability11 1− δ, in 4 log( 1
δ )+K−1

λ randomly
selected rate vectors there at least K−1 good rate vectors.

For, any rate point r let us define a mapping Î(r) from P →
{0, 1} such that,

Î(r)(q) =

{
1, if r ∈ CI(q)

0, otherwise
.

Thus, if outputs observed by scheduling rate point r are used
to build a binary classifier, an ideal classifier would try to learn
the above mapping.

Lemma 4. Let π̂i be the classifying function returned by the
oracle for a training set of l0 channel-state’s for rate vector
ri. Note that Îi , Î(ri) is the ideal classification function,
that this classifier aims to approximate. Then with probability
at least 1− δ

l20
we have,

P(π̂i(Q) 6= Îi(Q)) ≤ 1

1− 2ρ

√
V

l0
+

√√√√2 log
(
l20
δ

)
l0

, ε(l0, δ),

(6)
where the probability is over the randomness in Q ∼ fQ
and the randomness in π̂i which was trained on the random
training set Ni.

Proof. Let Ni = {(q1, y1), ..., (ql0 , yl0)} be the set of
channel-state’s and observations from scheduling the point ri.
Let us first define a classification problem in the absence of
scheduling noise. Let us define a random variable Q ∼ fQ.
Let us define Y = 1

(
Îi(Q) = 1

)
. Let D be the joint

11Where δ < e−
K
4

distribution of (Q, Y ). Note that Ni contains i.i.d samples
from a distribution D, however the label for a channel-state
point q is flipped with probability ρ(q, ri). Let us name the
distribution with flipped labels by D̃. For any function π̂ ∈ Π̂,
let us define the risk with respect to D as follows:

RD(π̂) = ED [1 (π̂(q) 6= Y )] . (7)

Let π̂∗D̃ be defined as follows:

π̂∗D̃ = argmin
π̂∈Π̂

1

l0

∑
(q,y)∈Ni

1 (π̂(q) 6= y) .

A well-known result from noisy classification [19] states that
even though we minimize the above loss function over samples
drawn from the distribution D̃, the function resulting from the
minimization has good risk guarantees with respect to the non-
noisy distribution D. By Proposition 4 in [19], with at least
probability 1− δ we have:

RD(π̂∗D̃)−RD(π̂∗) ≤ 1

1− 2ρ

√
V

l0
+

√√√√2 log
(
l20
δ

)
l0

(8)

Note RD(π̂∗) = 0 by assumption. This yields the required
result.

Remark 3. Note that the above result from noisy classification
is only true if the Bayes optimal classifier is in our class of
classifying functions. This has been assumed in our experts
setting.

Proof of Lemma 1. Let E1 be the event that in the step 2
in Algorithm 2 the classifier π is built by testing at most
4 log( 1

δ )+K−1

λ different rate vectors ri i.e K − 1 of these rate
vectors are sufficient to split the channel-state region into K
correct partitions.

Let π̂i be the classifier built using the rate vector ri. Let
E2(i) be the event that the classifier π̂i satisfies Eq. (6) in
Lemma 4. Given E1 and E2(i) for all i ∈

[
4 log( 1

δ )+K−1

λ

]
, at

most 4 log( 1
δ )+K−1

λ different classifiers are constructed and for
each of the classifiers we have P(π̂i(q) 6= Îi(q)) < ε(l0, δ).

Let π̂i be the classifier used for classifying n̂ channel-state
points (at some leaf in the classification tree), where the
channel-state points are selected at random from F according
to distribution fQ. Let Xj be the indicator random variable
that π̂i(qj) 6= Îi(qj). Then given E2(i) the probability of
misclassifying more then 2n̂ε(l0, δ) channel-state is

P(

n̂∑
j=1

Xj > 2n̂ε(l0, δ)) < e−
n̂ε(l0,δ)

3

Let Âi be the event that fewer than n0β
(
1− 1

2K

)
channel-

state point out of n0 channel-state points at the root node be-
long to channel-state class i. Then according to multiplicative
Chernoff bound

P(Âi) < e−
n0β

8K2 ∀ j ∈ [K]
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Therefore by union bound

P(∪iÂi) <
∑
i

P(Âi) < Ke−
n0β

8K2

Let E3(i, n̂) be the event that the classifier π̂i classified
n̂ points with less then 2n̂ε(l0, δ) misclassification and E4

be the event that all the channel-state classes have at least
n0c

(
1− 1

2K

)
points sampled, then

P(E3(i, n̂)|E1, E2(i)) >1− e−
n̂ε(l0,δ)

3

P(E4|E1, E2(i) ∀ i) >1−Ke−
n0β

8K2 (9)

Let E5 be the event that all the classifier π̂i ∀ i ∈[
4 log( 1

δ )+K−1

λ

]
classify n̂ channel-state points in leaf L with

less then 2n̂ε(l0, δ) misclassification for all leaves in the tree.
It should be noted that the classification tree π has at most K
leaves. Therefore

P(Ē5|E1, E2(i) ∀ i)

<P


4 log( 1

δ
)+K−1

λ⋃
i=1

⋃
leaves

Ē3(i, n̂)|E1, E2(i), E4 ∀ i


<

4 log( 1
δ
)+K−1

λ∑
i=1

∑
leaves

P(Ē3(i, n̂)|E1, E2(i), E4 ∀ i)

<

4 log( 1
δ
)+K−1

λ∑
i=1

∑
leaves

e−
n̂ε(l0,δ)

3

<K

(
4 log(1

δ ) +K − 1

λ

)
e−

n̂ε(l0,δ)
3 (10)

The above equations follow owing to the fact that at any point
the number of leaves in the tree is less than K.

Let us select l0 such that ε(l0, δ) < β
4K (i.e. l0 is large enough

so that 1
1−2ρ

√
V
l0

+

√
2 log

(
l20
δ

)
l0

< β
4K ) i.e. for classifying

n̂ points, at most n̂β
2K points are mis-classified with high

probability.

Let us suppose that event E4 and E5 hold. Since the tree has
height of at most K (as there are only K − 1 internal nodes)
which means that the channel-state points of any channel-
state class have to be classified by at most K − 1 classifiers.
As the largest value of n̂ is n0 at the root node so the
number of misclassified points of channel-state class j after
doing classification with K − 1 different classifiers is at most
n0β(K−1

2K ). Since the total number of channel-state points
for channel-state class j is at least n0β(1 − 1

2K ) so after
misclassification of n0β(K−1

2K ) points at least n0β
2 points will

be correctly classified.

Since the above statement hold for all channel-state classes
therefore a leaf j is split into two if and only if the number of
channel-state classified as 0 are more then n0β

2 and less than

nj − n0β
2 where nj are number of channel-state points at the

leaf.

Since the minimum value of n̂ is n0β
2 i.e. minimum number

of channel-state points that can be at any leaf. Therefore

P(Ē4, Ē5|E1, E2(i) ∀ i)
<P(Ē4|E1, E2(i) ∀ i) + P(Ē5|E1, E2(i) ∀ i)

<K

(
4 log( 1

δ ) +K − 1

λ

)
e−

n0β
2

24K +Ke−
n0β

8K2

<K

(
4 log(1

δ ) +K

λ

)
e−

n0β
2

24K

<Kδ for n0 ≥
24K

β2
log

(
4 log(1

δ ) +K

δλ

)
(11)

Let E6 be the event that the classifier π is successfully build
then

P(Ē6) = P(Ē4, Ē5) <Kδ + δ +

(
4 log(1

δ ) +K − 1

λ

)
δ

l20
<3Kδ (12)

since P(Ē1) = δ and P(Ē2(i)) = δ
l20

according to Lemma 3

and Lemma 4 respectively and l0 >
√(

4 log( 1
δ )+K−1

Kλ

)
.

APPENDIX C
CLASS EXPLORE PHASE

Outline of proof of lemma2. The proof is pretty straightfor-
ward. The classifier π is build using K−1 sub-classifiers each
of which is trained on l0 + l points. So by using the result of
Lemma 4 and taking union bound over all sub classifiers inside
classifier π we get the above lemma.

APPENDIX D
CAPACITY EXPLORE PHASE

The value of α(l, δ) is set to be 2D
β

(
16

1−2ρ

)2

log
(
l2

δ

)
. Let

Tu,k,l be the number of samples in step 18 of the Algorithm 4
in phase l, such that capacity class observed is k and the direc-
tion observed is u ∈ U . A simple application of multiplicative
Chernoff bound yields,

P

(
Tu,k,l ≤

(
16

1− 2ρ

)2

log

(
l2

δ

))
≤ δ

l2
.

APPENDIX E
PUTTING IT TOGETHER: REGRET BOUND

Let E7(l) be the success event in lemma 2 for phase l. Let

E8(l) be the event
{
Tu,k,l >

(
16

1−2ρ

)2

log
(
l2

δ

)}
for all k

and u. Also, recall the event E6 which is the success event in
Lemma 1.

Lemma 5. The events E7(l) and E8(l) are mutually indepen-
dent. Moreover, we have,

P (E6 ∩ (∩∞l=1(E7(l) ∩ E8(l))))

≥1−K(D + 1)

∞∑
l=1

δ

l2
− 3Kδ. (13)
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Note that mu,k are the means collected in step 20 of the algo-
rithm 4. In stage l, we name Su,k,l as a success event which
signifies whether mu,k >

1
2 when 1/2(Cu,k[0] + Cu,k[1]) is

within Ck or whether mu,k <
1
2 when 1/2(Cu,k[0] +Cu,k[1])

is outside Ck.

Lemma 6. We have,

P
(
Scu,k,l|E6 ∩ E7(l) ∩ E8(l)

)
≤ δ

l2
. (14)

This further implies that,

P (E6 ∩ (∩∞l=1(E7(l) ∩ E8(l) ∩k,u Sk,u,l)) ≥ 1− κKDδ
(15)

where κ is a suitable constant.

Proof. Consider the scheduling instances s = {1, .., α(l, δ)}.
Let s(1), ..., s(Tu,k,l) be the indices of the time-slots where
class is k and direction is u. Let dk,u be set as (Ck,u[0] +
Ck,u[1])/2 and assume that dk,u lies within Ck. We have the
following bounds,

mk,u ≥
1

Tu,k,l

Tu,k,l∑
r=1

Ys(r)1
(
πl(qs(r)) = k

)
.

Now conditioned E [mk,u|E7(l)] ≥ (1−(K−1)ε(l0+l, δ))(1−
ρ). Note that the random variables in the above summation are
i.i.d conditioned on E7(l). Therefore, by Chernoff’s bound we
have,

P (mk,u < E [mk,u|E7(l)]− γ|E7(l)) ≤ exp

(
−γ2Tu,k,l

2

)
This yields the following,

P (mk,u < (1− (K − 1)ε(l0 + l, δ))(1− 2ρ)− γ|E7(l), E8(l))

≤ exp

(
−γ2

(
8

1− 2ρ

)2

log

(
l2

δ

))
Since ε(l0 + l, δ) ≤ ε(l0, δ) ≤ β

4K ≤
1

5(K−1) , therefore setting
γ = (1− 2ρ)/8 yields the following,

P
(
mk,u <

1

2

∣∣∣E7(l), E8(l)

)
≤ δ

l2
.

Similar results hold for the case when the scheduled rate
vector lies outside the capacity region. Therefore, we have
the following:

P
(
∪k,uScu,k,l

∣∣∣E7(l), E8(l), E6

)
≤ KDδ

l2
.

Therefore,∑
l

P
(
∪k,uScu,k,l|E6

)
≤
∑
l

(
KDδ

l2
+
δ

l2
+

(K − 1)δ

(l0 + l)2

)
≤
∑
l

(
KDδ

l2
+
Kδ

l2

)
=⇒ P

(
∪k,uScu,k,l

)
≤ π2

6
K(D + 1)δ + 3Kδ.

Combining this with lemma 5 we get the following,

P
(
E6 ∩

(
∩∞l=l0(E7(l) ∩ E8(l) ∩k,u Sk,u,l

))
≥ 1−

(
π2

3
K(D + 1)δ + 6Kδ

)
≥ 1− κKDδ.

Theorem 2. With probability at least 1 − κKDδ the re-
gret of the algorithm is O

(
CT 2/3

(
K + D

β log
(
T
δ

)
+
√
V
)

+(
K2

β2

(
V + log

(
1
δ

)))( log( 1
δ )+K

λ

))
.

Proof. Let E = E6 ∩
(
∩∞l=l0(E7(l) ∩ E8(l) ∩k,u Sk,u,l

)
.

Given E, at time l we have the following:

|Ck,u[0]− c∗u,k| ≤
2C

2l
. (16)

Let us choose s(l) =
√
l. Let µ(l) be the expected regret on

the exploit slots at time l. It is easy to see that given E,

µ(l) ≤
(

(1− ε(l0 + l, δ))× 2C

2l
+ ε(l0 + l, δ)C

)
×
√
l

≤2ε(l, δ)C
√
l =

C

1− 2ρ

√
V + C

√
3 log

(
l2

δ

)

Let γ(l) be the total expected regret at phase l. Then we have
the following:

γ(l) ≤(K − 1)C + α(l, δ)C +
C

1− 2ρ

√
V + C

√
3 log

(
l2

δ

)
≤C
(
(K − 1) +

2D

β

(
16

1− 2ρ

)2

log

(
l2

δ

)
+

1

1− 2ρ

√
V +

√
3 log

(
l2

δ

))
≤C

(
(K − 1) +

997D

β
log

(
l2

δ

)
+

4

3

√
V +

√
3 log

(
l2

δ

))
(17)

since ρ ≤ 1
8 .

Let L∗ be the epoch after the end of T time-slots. It is easy
to see that L∗ ≤ T 2/3. Therefore given E, the expected regret
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for T time-slots is given by,

R(T ) ≤
L∗∑
l=0

C

(
(K − 1) +

997D

β
log

(
l2

δ

)
+

4

3

√
V +

√
3 log

(
l2

δ

))

+ n0 + l0

(
4 log( 1

δ
) +K − 1

λ

)

≤
T

2
3∑

l=0

C

K +
997D

β
log

(
T

4
3

δ

)
+

4

3

√
V +

√√√√3 log

(
T

4
3

δ

)
+

24K

β2
log

(
2 log( 1

δ
) +K

δλ

)
+ l0

(
4 log( 1

δ
) +K − 1

λ

)

≤
T

2
3∑

l=0

C

(
K +

1000D

β
log

(
T

4
3

δ

)
+

4

3

√
V

)

+
24K

β2
log

(
2 log( 1

δ
) +K

δλ

)
+ l0

(
4 log( 1

δ
) +K − 1

λ

)
=O

(
CT 2/3

(
K +

D

β
log

(
T

δ

)
+
√
V

)
+

(
K2

β2

(
V + log

(
1

δ

)))(
log( 1

δ
) +K

λ

))
(18)
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