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Abstract— The transmission capacity of a wireless ad hoc
network can be defined as the maximum allowable area spectral
efficiency such that the outage probability does not exceed
some specified threshold. This work studies the improvement
in transmission capacity obtainable with successive interference
cancellation (SIC), an important receiver technique that has been
shown to achieve the capacity of several classes of multiuser
channels, but has not been carefully evaluated in the context
of an ad hoc wireless network. This paper develops closed-
form bounds for the transmission capacity of CDMA ad hoc
networks with SIC receivers, for both perfect and imperfect
interference cancellation. In addition to providing the first closed-
form capacity results for SIC in ad hoc networks (or, to our
knowledge, any type of multiuser detection), design-relevant
insights are made possible. In particular, although the capacity
gain from perfect SIC is very large, any imperfections in the
interference cancellation rapidly degrade its usefulness. More
encouragingly from a receiver complexity standpoint, due to the
geographic properties of ad hoc networks, only a few – often just
one – interfering nodes need to be cancelled in order to get the
vast majority of the available performance gain.

I. I NTRODUCTION

Understanding the performance limits of decentralized (“ad
hoc”) wireless networks is a subject of much recent work.
Due to the difficultly of directly analyzing the capacity of
an unconstrainedn node network [1], most recent work has
followed the lead of the seminal work of Gupta and Kumar
[2] and studied how the capacity scales withn under a variety
of different modelling and implementation scenarios [3], [4],
[5], [6], [7], [8].

In contrast, other recent work by Baccelli [9], [10] and the
present authors [11] adopted a stochastic geometric approach
for studying the performance of ad hoc networks, which has
the merit that insights about the performance for fixed densities
of nodes. In particular, [11] developed an analytical framework
termed thetransmission capacity, the maximum allowable
spatial densityλ of transmitters in an ad hoc network, as
a function of various parameters like transmit distance and
required signal to interference plus noise ratio (SINR), and
such that a specified outage probabilityε is met. Using this
framework, transmission capacity bounds were found for fre-
quency hopping (FH) and direct sequence (DS) CDMA (with
a matched filter receiver) with the conclusion that in contrast
to centralized networks, frequency hopping was significantly
superior in an ad hoc network. In particular, our results predict
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a performance improvement on the order ofM1− 2
α , whereM

is the spreading factor andα > 2 is the path loss exponent.
The conclusion is that it is preferable toavoid interference by
frequency hopping rather than trying tosuppressit through
random spreading. Intuitively, most outages are a result of an
interfering node close to a receiver, and due to the strength
of this interference these occurrences are better addressed
by using different channels as opposed to receivers trying to
suppress the interference.

A. Successive interference cancellation

Since outages are predominantly caused by just a few
nearby interfering users, an appealing alternative to interfer-
ence avoidance (which consumes resources such as time or
frequency slots) is interference cancellation. In fact, it is well-
known that the matched filter receiver considered in [11], while
dominant in commercial CDMA systems, is dramatically sub-
optimal in theory relative to multiuser receivers, particularly
in the presence of widely variant receiver powers [12], [13].
In general, multiuser receivers achieve a performance gain by
exploiting the structure of the multiuser interference, rather
than just treating it as wideband noise. A particularly inter-
esting type of multiuser detection is successive interference
cancellation (SIC), first suggested in [14], one form of which is
shown in Fig. 1. The key idea of SIC is that users are decoded
one after another, with the receiver cancelling interference
after each user. For example, the decoded data for the first user
is re-encoded and by using accurate channel knowledge, can
be made to very closely resemble itsreceivedsignal. Hence,
it can be subtracted out of the composite received signal, and
the second user to be decoded experiences less interference
than it otherwise would have. The process can be continued
for an arbitrary number of users.

In addition to its simplicity and amenability to implementa-
tion [15], SIC is well-justified from a theoretical point of view.
Simple successive interference cancellation implementation
with suboptimal coding was shown to nearly achieve the
Shannon capacity of multiuser AWGN channels, assuming
accurate channel estimation and a large spreading factor [16].
Other more recent work has proven that SIC with single-
user decoding in fact achieves the Shannon capacity region
boundaries for both the broadcast (downlink) and multiple
access (uplink) multiuser channel scenarios [17], [18], as well-
summarized in [19]. Quantifying SIC’s benefit in ad hoc
networks is naturally more problematic, but initial evidence
for its promise is given in [20]. Since it is well-suited to
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asynchronous signals of unequal powers [21], and has much
lower complexity than most other multiuser receivers, it ap-
pears to be a natural fit for a wireless ad hoc networks from
the standpoint of both theory and practice.

Accurately modelling and analyzing SIC in ad hoc networks
requires some nontrivial extensions from centralized networks.
For instance, it has been shown that a particular (unequal)
distribution of received powers is needed for SIC systems to
perform well, especially when the interference cancellation is
imperfect [22], [23]. Achieving such a distribution at each
receiver in an ad hoc network is impossible due to the random
spatial characteristics of the network. Related to this, to be
realistic it should be assumed that only strong signals can be
cancelled, hence at any given location in the network, only
the nearby interferers are cancellable. In order to accurately
quantify SIC’s performance in ad hoc networks, Section II will
develop a realistic (but analytically tractable) model in view
of such considerations.

B. Main Results

The principal contribution of this paper are closed-form
(and reasonably tight) bounds on the transmission capacity for
wireless ad hoc networks for imperfect successive interference
cancellation, where a residual fractionζ of the interference is
left after each stage. Results for perfect SIC are first derived
for pedagogical purposes, and naturally are the special (and
analytically simpler) case whereζ → 0. Prior results for
wireless networks without SIC are also a special case where
ζ → 1. The model and results are general enough that any
multiuser receiver structure with residual cancellation errorζ
on theK closest nodes would be covered by our analysis.

The following are key insights that can be gleaned from our
theoretical analysis :

• Most of the performance improvement obtainable through
SIC is gained by cancelling just the single transmitter
with the largest interference level; cancelling additional
transmitters may carry a negligible benefit.

• The performance improvement from SIC is very sensitive
to how effectively the interference is cancelled. Even the
residual interference of close-by interferers can often be
the dominant interference source.

• The spectral efficiency, defined as the transmission ca-
pacity normalized by the spreading factor, of DS-CDMA
with SIC may or may not be superior to FH-CDMA
without SIC, again depending upon the cancellation ef-
fectiveness.

The rest of this paper is organized as follows. Section II will
introduce the mathematical model and notation, and Section III
will review the previous main results on transmission capacity
from [11]. Sections IV and V will derive the transmission
capacity of perfect and imperfect SIC ad hoc networks, respec-
tively. Section VI presents numerical and simulation results
demonstrating the performance improvement and provides in-
terpretations of the main observed trends. The paper concludes
in Section VII.
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Fig. 1. Successive interference cancellation

II. M ATHEMATICAL MODELS

A. Wireless ad hoc network

Our model employs a homogeneous Poisson point process
(PPP)Π = {Xi, i ∈ N} on the planeR2 to represent the
locations of all nodes transmitting at some time instantt. The
PPP model for terminal positions has proven very accurate
for CDMA cellular networks, and has produced analytical
calculations for blocking probability that come within a few
percent of actual blocking rates for service providers.

In prior work [11] we considered two models:i) all
transmitters use the same transmission power,ρ, and all
transmission distances are over the same distancertx, and
ii) transmitters vary their transmission power over variable
distances to achieve a specified receive power. In that work we
demonstrated the transmission capacity scales very similarly
for both models, so for analytical simplicity we use the first
model in this paper.

Our channel model considers only path loss attenuation
effects and ignores additional channel effects such as shad-
owing and fast fading, which have been recently shown to
not have an especially large effect on capacity scaling [7],
[10]. In particular, if the (normalized tod = 1) transmit
power is ρ and the path loss exponent isα > 2 then the
received power at a distanced > 1 from the transmitter is
ρd−α. We denote the SINR threshold required for successful
transmission asβ. One additional simplification employed in
this paper relative to [11] is that here we will assume the
ambient noise power is negligibly small, which is generally
the case in any interference-limited wireless network. This
assumption is made to simplify the analysis and resulting
expressions, and is verified to be reasonable via simulation.

A beneficial consequence of the Poisson assumption is
that, by Slivnyak’s Theorem [24], the client-average outage
probability may be found by evaluating the SINR seen by a
receiver located at the origin. Intuitively, the distribution of the
point process is unaffected by the addition of a receiver at the
origin, and this receiver is “typical” in the sense that evaluating
the performance seen at the origin gives the client-average
performance over all receivers. Measuring the performance
at the origin is often termed the Palm measure, and in
keeping with standard notation we will denote probability and
expectation of functionals ofΠ evaluated at the origin byP0

and E0 respectively. Also let|Xi| denote the distance from
node i ∈ Π to the origin. With this in mind we may define



WEBER, ANDREWS, YANG, AND DE VECIANA: TRANSMISSION CAPACITY OF AD-HOC NETWORKS WITH OUTAGE CONSTRAINTS 3

the optimal contention density and the transmission capacity.

Definition 1: The optimal contention density, λε, is the
maximum spatial density of nodes that can contend for the
channel subject to the constraint that the typical outage
probability is less thanε for someε ∈ (0, 1):

λε = sup
{

λ : P0
( ρr−α

tx∑
i∈Π ρ|Xi|−α

≤ β
)
≤ ε

}
. (1)

Definition 2: Thetransmission capacity, cε, is the density of
successful transmissions resulting from the optimal contention
density, multiplied by the achievable data rateb of a typical
(i.e. average) successful (not in outage) transmission:cε =
λεb(1− ε).

Hence, the transmission capacity has units of bits per second
per Hertz per area, or area spectral efficiency. As in previous
work [11], for simplicity in this paper it is assumed henceforth
that b ≡ 1, so the focus is on quantifying the number of
successful transmissions, rather than on the data rate of those
transmissions. This is appropriate in the context of this paper
since the motivation for multiuser receivers is to increase the
number of simultaneous users. The general definition allows
other transmission or receiver schemes to increase the data
rate for a fixed number of users and be credited appropriately
in the transmission capacity framework.

B. Notation

For convenience we summarize here most of the notation
used in the paper.

a ∨ b max{a, b}
a ∧ b min{a, b}
x ∈ A \B x ∈ A, x /∈ B
b(O, r) {x : |x| ≤ r}, i.e. a ball of radiusr centered at origin
a(O, r1, r2) {x : r1 ≤ |x| ≤ r2}, i.e. an annulus betweenr1 andr2

ρ transmit power
rtx transmit distance
β target (required) SINR
ε required outage probability, i.e.P 0[SINR ≤ β] ≤ ε
α path loss exponent

y y
.
=

r−α
tx
β

is the normalized aggregate interference threshold

rs rs
.
= y−

1
α = β

1
α rtx is the “splitting radius”

K maximumand expected number of cancelled users
rsic radius around receiver that includes, on average,K interferers
ζ residual interference after cancellation, we assumeζ ∈ (0, 1)
psic specifies perfect SIC, i.e.,ζ = 0
nsic specifies no SIC, i.e.,ζ = 1

Π(λ) A Poisson Point ProcessΠ with densityλ
λu Upper bound onλ, i.e. λ ≥ λu ⇒ P 0[SINR ≤ β] ≥ ε
λl Lower bound onλ, i.e. λ ≤ λl ⇒ P 0[SINR ≤ β] ≤ ε
λC A lower bound attained with Chebychev inequality
λM A lower bound attained with Markov inequality
λε specifies that the resulting density is for someε
λr λ such thatK users are∈ b(0, rtx) on average.
λs λ such thatK users are∈ b(0, rs) on average

III. T RANSMISSION CAPACITY WITHOUTSIC

First, we give upper and lower bounds on the transmission
capacity without any interference cancellation, denoted asnsic
to mean “no SIC”. This is the special case of the results of
[11] where the spreading factorM = 1, so this theorem is
stated without proof and is given here for completeness and
to compare with the bounds derived for the SIC cases.

Theorem 1: Asε → 0, the lower and upper bounds on the
transmission capacity subject to the outage constraintε when
transmitters employ a fixed transmission powerρ for receivers
that are a fixed distancertx away are:

cε,nsic
l = (1− ε)λε,nsic

l , cε,nsic
u = (1− ε)λε,nsic

u , (2)

where the (Markov (M) and Chebychev (C)) lower and upper
bounds on the optimal contention density are:

λε,nsic
l,M =

(
1− 2

α

) ε

π
(
β

1
α rtx

)2 + O(ε2),

λε,nsic
l,C =

(
1− 1

α

) ε

π
(
β

1
α rtx

)2 + O(ε2),

λε,nsic
u =

− ln(1− ε)

π
(
β

1
α rtx

)2

Comments on Theorem 1.Several points are noteworthy:
• In order to obtain bounds on the transmission capacity for

FH and DS it suffices toi) multiply λε,nsic
l andλε,nsic

u by
M for FH andii) multiply λε,nsic

l andλε,nsic
u by M

2
α for

DS [11]. In words, FH increases the transmission capacity
linearly with M and usesM times more bandwidth,
while DS increases it asM

2
α and usesM times more

bandwidth.
• The quantityrs

.= β
1
α rtx is a minimum interference-

free radius since a necessary condition for successful
reception is that there be no transmitters inb(O, rs).
We term this the “splitting radius” since it is useful
to split the interferers into two groups: those inside
rs and those outside ofrs. The bounds illustrate that
transmission capacity has a strong connection with sphere
packing:πr2

s is the area of the disk corresponding to the
interference-free radius. Note that reducing the required
β, e.g. through spreading, reduces the interference-free
radius, thereby permitting a larger number of spheres to
be packed into the space (at the cost of lower spectral
efficiency)

• For smallε the transmission capacity grows linearly inε;
thus relaxation of the QoS requirement from1% outage
to 2% outage should double the capacity.

• The above lower bounds are obtained through the use
of the Markov and Chebychev inequalities, by bounding
the probability of the “far-field” nodes (i.e., outside of
rs) generating sufficient aggregate interference to cause
an outage at the origin. It is of interest to obtain the
tightest possible bounds on the transmission capacity, i.e.,
the greatest lower bound and the smallest upper bound.
We define thebounds ratioγ as the ratio of lower over
the upper bound, i.e.0 ≤ γ ≤ 1.
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Definition 3: The Markov and Chebychev bound ratios
for the no SIC case,γnsic

M , γnsic
C , are defined as:

γnsic
M =

λε,nsic
l,M

λε,nsic
u

, γnsic
C =

λε,nsic
l,C

λε,nsic
u

. (3)

Applying these definitions to the bounds in Theorem 1
gives:

γnsic
M = 1− 2

α , γnsic
C = 1− 1

α . (4)

Thus the use of the Chebychev inequality improves the
bound ratio by a factor ofα−1

α−2 . In general, the Chebychev
inequality gives tighter bounds but is more complicated.

IV. PERFECTSUCCESSIVEINTERFERENCECANCELLATION

A. SIC model

Successive interference cancellation allows users to be
decoded one at a time, and then subtracted out from the
composite received signal in order to improve the performance
of subsequently decoded users. In practice, this corresponds to
decoding the strongest user first, since it will experience the
best SINR and hence be the most accurately decoded, which
is a prerequisite for accurate interference cancellation. More
generally, by similar reasoning, users should be decoded in
order of their received powers [16], [25], even though this is
not always the preferred order from an information theoretic
viewpoint [19]. In an ad hoc network with a path loss channel
model, this corresponds to cancelling the interference from
nodes closer to the receiver than the desired transmitter.

An accurate characterization of the performance gains due
to SIC should be based on a plausible interference cancellation
scenario, otherwise the results can in fact be quite optimistic
and misleading. Particularly, an accurate model would capture
that a SIC-equipped receiver is able to reduce the interference
power of up toK nearest interfering nodes by a factor1− ζ
(i.e. residual interference power ofζ), assuming these nodes
are closer than our desired transmitter. However, it is difficult
to work with this exact model in a mathematical framework,
since it requires a characterization of the joint distribution of
the distances of theK nodes nearest to the origin, see [26].

Instead of pursuing this exact approach, we utilize a closely-
related SIC model that is more amenable to analysis. In
particular, define thecancellation radius, denotedrsic, such
that the receiver is capable of reducing the interference power
by ζ of any and all transmitters located within distancersic

of it. The cancellation radius is chosen so that there areK
interfering nodes falling within the radiuson average. Since
the average number of points in a Poisson process of intensity

λ falling in a circle of radiusr is λπr2, we findrsic =
√

K
πλ .

It is normally only feasible to cancel the interference from
those nodes whose interference power measured at the receiver
exceeds the signal power. Thus we add the requirement that
rsic ≤ rtx, i.e., by requiring the cancellation radius not exceed
the signal transmission radius we are ensuring the interference
power of cancelled nodes exceeds the signal power.

Definition 4: A(K, ζ) SIC receiveroperating in a network
with a transmission density ofλ is capable of reducing the

interference power by a factor1− ζ for all interfering nodes

within distancersic = rtx ∧
√

K
πλ .

Note thatrsic = rtx for λ ≤ λr = K
π r−2

tx , and is decreasing
in λ for λ > λr. Put simply, for low densities all the nodes
closer than the desired transmitter are cancellable. For higher
densities we can only cancel the closestK nodes (on average),
which are insidersic ≤ rtx.

Now, let b(O, r) = {x : |x| ≤ r} be the ball of radiusr
centered at the origin, and let̄b(O, r) = R2 \ b(O, r). The
appropriate modification to Definition 1 that allows for SIC is
as follows.

Definition 5: Theoptimal contention densityfor a network
of (K, ζ) receivers,λε,sic, is the maximum spatial density
of nodes that can contend for the channel subject to the
constraint that the typical outage probability is less thanε
for someε ∈ (0, 1):

λε,sic = sup
{

λ : P0
(ρr−α

Y (λ)
≤ β

)
≤ ε

}
, (5)

where

Y (λ) = ζ×
∑

i∈Π∩b(O,rsic)

ρ|Xi|−α+
∑

i∈Π∩b̄(O,rsic)

ρ|Xi|−α. (6)

The first term in (6) is the partially cancelled aggregate
interference at the receiver from all nodes lying within the
cancellation radius; the second term is the uncancelled inter-
ference from nodes lying outside that set.

We will break the analysis into two parts:i) perfect SIC,
denotedpsic, where the interference from nodes withinrsic

is cancelled entirely, i.e.,ζ = 0, and ii) imperfect SIC,
denotedsic, where the interference is partially cancelled, i.e.,
ζ ∈ (0, 1). Note that the caseζ = 1 corresponds to the case
of no SIC (Theorem 1), and was analyzed in [11].

B. Main Result

The major result is a set of closed form expressions for
lower and upper bounds on the transmission capacity.

Theorem 2: Asε ∈ (0, 1) → 0, the lower and upper bounds
on the transmission capacity when receivers are equipped with
perfect SIC (ζ = 0) are:

cε,psic
l = (1− ε)λε,psic

l , cε,psic
u = (1− ε)λε,psic

u . (7)

An upper bound on the optimal contention density is:

λε,psic
u =

− ln(1− ε) + K

π
(
β

1
α rtx

)2 . (8)

The Markov (M) lower bound on the optimal contention
density is:

λε,psic
l,M =



( (α−2)ε
2

)
β

2
α
−1

π
(
β

1
α rtx

)2 ε ≤ 2K
α−2β( (α−2)ε

2

) 2
α K1− 2

α

π
(
β

1
α rtx

)2 else(
1− 2

α

)
ε+K

π
(
β

1
α rtx

)2 ε ≥ 2K
α−2

(9)
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C. Comments on Theorem 2.

Based on initial inspection of these results, several points
are noteworthy:
• Compared with no SIC, perfect SIC improves the upper

bound by

λε,psic
u

λε,nsic
u

= 1 +
K

− ln(1− ε)
≈ 1 +

K

ε
when ε � 1, (10)

which is linear inK. This sensibly implies for maximum
performance, as many users should be cancelled as pos-
sible.

• As shown in Appendix VII, the Chebychev bound can
be computed, but not expressed in a fully closed-form.
For brevity, only the Markov lower bound is given in
Theorem 2 and its proof, but the Chebychev is tighter so
is used in the numerical results section.

• Compared with no SIC, forε < εpsic
c,M , perfect SIC

improves the Markov lower bound by a factor

λε,psic
l,M

λε,nsic
l,M

=
α

2
β

2
α−1, (11)

which is independent ofK. This implies that path loss
is a more important aspect for the lower bound – it
is preferable to have the far-field users attenuated by a
hostile channel, since they cannot be cancelled anyway.

• The bounds for perfect SIC are very loose for smallε. It
is straightforward to see that

λε,psic
u =

ε + K

π
(
β

1
α rtx

)2 + O(ε2), (12)

and corresponding bound ratios:

λε,psic
l,M

λε,psic
u

=
α− 2

2
β

2
α−1

( ε

ε + K

)
,

λε,psic
l,C

λε,psic
u

= (α− 1)β2( 1
α−1)

( ε

ε + K

)
.

Both ratios are arbitrarily close to0 as ε → 0. The poor
bound ratio is a consequence of the fact that there is
no known “upper bound event” that provides a sufficient
condition for outage and also results in a tight bound. The
imperfect SIC model does not suffer from this problem.

D. Proof of Theorem 2.

The idea behind the proof is to identify necessary and
sufficient conditions for outage, calculate or bound the prob-
abilities of the corresponding events, and then determine the
spatial densities such that the probabilities of the necessary
and sufficient events equal the specified QoS parameterε. The
sufficient condition event we employ is the set of realizations
of the point processΠ with one or more interfering nodes
close enough to the receiver so that one such node alone is
capable of causing outage. The necessary condition is more
complex: if we have an outage it can be due to either a few
nodes near the receiver or the combination of a large number
of far away nodes. Let

F psic
u (λ), F psic(λ), F psic

l (λ) (13)

λ

P0(F(λ))

ε

λελεl λεu

P0(Fl(λ))

P0(Fu(λ))

Fig. 2. Illustration of the technique to find lower and upper bounds on the
contention density:λε

l ≤ λε ≤ λε
u through the use of necessary and sufficient

events for outage.

be events parameterized by the spatial densityλ so that

F psic
u (λ) ⊂ F psic(λ) ⊂ F psic

l (λ). (14)

The probability of all three events will be nondecreasing in
λ. The eventF psic

u (λ) is the sufficient event,F psic(λ) is
the outage event, andF psic

l (λ) is the necessary event. As
illustrated in Figure 2, lower and upper bounds on the optimal
contention density are obtainable from the probabilities of the
necessary and sufficient events, provided we can solve

λε,psic
u =

{
λ : P0(F psic

u (λ)) = ε
}
,

λε,psic
l =

{
λ : P0(F psic

l (λ)) = ε
}

for λ. Since these equations are in general not solvable for
λ, we define several different events that will help us attain
bounds onλ.

Definition 6:

F psic(λ) =
{

Y (λ) > y
}

,

F psic
u (λ) =

{
Π ∩ a(O, rsic, rs) 6= ∅

}
F psic

f (λ) =
{

Y (λ, rs) > y
}

whereY (λ) is given by Definition 5 withζ = 0 and

Y (λ, rs) =
∑

i∈Π∩b̄(O,rsic∨rs)

|Xi|−α (15)

is the normalized aggregate interference by all nodes outside
of the the radiusrsic ∨ rs.

In words,F psic(λ) is the outage event,F psic
u (λ) is the event

that one or more nodes lie in the annulus with radiirsic and
rs, and F psic

f (λ) is the event that the aggregate interference
generated by nodes outside the radiusrsic ∨ rs is sufficient to
cause an outage. It is straightforward to establish that

F psic
u (λ) ⊂ F psic(λ) ⊂ F psic

l (λ) = F psic
u (λ) ∪ F psic

f (λ).
(16)

It is helpful to think of rs
.= y−

1
α as the radius splitting

the “near-field” interference,b(O, rs), from the “far-field”
interference,R2 \ b(O, rs). A similar approach is employed in
[11] for the proof of the transmission capacity without SIC,
but with the additional degree of freedom that the near/far field
boundary was optimized over alls. It is shown thats = rs is
the optimal splitting radius. A similar optimization could be
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performed here but the analysis becomes much more complex
and the tractability of the model is lost. For that reason we use
a fixed near/far field splitting radiusrs throughout this paper,
where rs is the maximum radius such that a single node at
that distance from the receiver can by itself cause an outage
at the receiver. Clearly

P0(F psic
u (λ)) ≤ P0(F psic(λ)) ≤ P0(F psic

l (λ)), (17)

and

P0(F psic
l (λ)) ≤ P0(F psic

u (λ)) + P0(F psic
f (λ)). (18)

Define two spatial transmission density thresholds:

λr = K
πr2

tx
, λs = K

πr2
s
. (19)

These correspond to the densities where there are on average
K users inside of a radiusrtx andrs, respectively.

It is straightforward to see then that

rsic =

{
rtx, λ ≤ λr√

K
πλ , else

(20)

and that

rsic

{
≥ rs, λ ≤ λs

≤ rs, else
. (21)

Upper Bound. We begin by finding the upper bound; this
requires solvingP0(F psic

u ) = ε for λ. The probability of one
or more nodes lying in the annulus with radiirsic and rs is
simply one minus the void probability for the set:

P0(F psic
u (λ)) =

{
1− exp

{
−λπ(r2

s − r2
sic)

}
, λ > λs

0, else
.

(22)
It is evident here why the upper bound is so weak for the
perfect SIC case: the upper bound event is zero for allλ ≤ λs.
Unfortunately there is no other easily computable sufficient
event available. Note that the mapλ → P0(F psic

u (λ)) is onto
[0, 1) and monotone increasing inλ; hence a unique inverse
exists for all ε > 0. Setting this expression equal toε and
solving for λ yields:

λε,psic
u =

1
πr2

s

(
− ln(1− ε) + K

)
≥

(
1 +

K

ε

) 1
πr2

s

ε + O(ε2).

(23)
Lower Bound. We turn now to the lower bound. The lower

bound eventF psic
l (λ, s) is the union of two events,F psic

u (λ)
and F psic

f (λ); the probability of both events is increasing in
λ. Moreover, a consequence of the assumption that the node
positions form a Poisson process is that the two events are
independent seeing as they concern disjoint regions ofR2.
Fix ε and consider some pair(εu, εf ) such thatεu + εf = ε.
If we can identify a pair(λεu,psic

u , λ
εf ,psic
f ) satisfying:

P0(Fu(λεu,psic
u )) ≤ εu, P0(Ff (λεf ,psic

f )) ≤ εf (24)

then
P0(Fl(λεu,psic

u ∧ λ
εf ,psic
f )) ≤ εu + εf = ε. (25)

Thusλεu,psic
u ∧ λ

εf ,psic
f is a valid lower bound since choosing

λ < λεu,psic
u ∧ λ

εf ,psic
f ensures the outage probability is less

thanε. This argument holds for all partitions(εu, εf ) summing
to ε. The greatest lower bound is obtained by maximizing
λεu,psic

u ∧ λ
εf ,psic
f over all feasible partitions:

λε,psic
l = sup

(εu,εf ) : εu+εf =ε

{
λεu,psic

u ∧ λ
εf ,psic
f

}
. (26)

Note that the minimum of two functions is maximized by
minimizing the distance between them. If that minimum
distance is zero then the minimum of the two functions is
their value at the point of intersection.

The probabilityP0(F psic
f (λ)) = P0(Y (λ, rs) > y) cannot

be computed exactly; it must be bounded. We can obtain
two bounds via the Markov and Chebychev inequalities. The
former is weaker but the resulting equations are simpler, the
latter is stronger but the equations are more complex, so its
derivation is left to Appendix VII. To compute the Markov
bound we needE0[Y (λ, rs)]; to compute the Chebychev
bound we needE0[Y (λ, rs)] and V ar(Y (λ, rs)). Both are
obtainable via Campbell’s Theorem [11], [24], which gives
that E[

∑
x∈Π f(x)] =

∫
R2 λf(x)νd(dx) where νd(·) is the

Lebesgue measure (area). The Markov bound states that

P0(F psic
f (λ)) ≤ E0[Y (λ, rs)]

y
. (27)

It is straightforward to compute:

E0[Y (λ, rs)]
y

=


2π

α−2βr2
txλ, λ ≤ λc

2
α−2K1−α

2 1
y (πλ)

α
2 , λc < λ ≤ λk

2π
α−2r2

sλ, λ > λk

.

(28)
The value of the bound at the critical points is

εpsic
c,M =

E0[Y (λc, rs)]
y

= β
2K

α− 2
(29)

εpsic
k,M =

E0[Y (λk, rs)]
y

=
2K

α− 2
. (30)

This function is monotone increasing inλ and is onto[0, 1];
hence the inverse function exists. Setting the expression equal
to ε and solving forλ gives:

λε,psic
f,M =



(
α−2

2

)
β

2
α−1 ε

π
(
β

1
α rtx

)2 , ε ≤ εpsic
c,M(

α−2
2

) 2
α

(
K
ε

)1− 2
α ε

π
(
β

1
α rtx

)2 , εpsic
c,M < ε ≤ εpsic

k,M(
α−2

2

)
ε

π
(
β

1
α rtx

)2 , ε ≥ εpsic
k,M

(31)
It remains to maximizeλεf ,psic

f,M ∧λεu,psic
u over all(εu, εf ) such

that εu + εf = ε. Note thatλεu,psic
u ≥ λs for all ε while

λ
εf ,psic
f,M ≤ λs for all ε ≤ εpsic

k,M . Thus the optimum splitting
pair is εf = ε and εu = 0, and the corresponding minimum
of the two functions isλε,psic

f,M . Note thatεpsic
k,M ≥ 1 for all

K ≥ 2 and allα ≤ 4. We now find the optimal splitting pair
whenε > εpsic

k,M . Note thatλεu,psic
u is non-linear inε and hence

finding the point of intersection withλεf ,psic
f,M is complicated.

We find a lower bound onλεu,psic
u by linearizing aroundε = 0;

this leaves us with the problem of maximizing the minimum
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of

λεu,psic
u ≥ K

π
(
β

1
α rtx

)2 +
εu

π
(
β

1
α rtx

)2

λ
εf ,psic
f,M =

(α− 2
2

) εf

π
(
β

1
α rtx

)2 , ε ≥ εpsic
k,M . (32)

It is straightforward to establish the optimal splitting pair for
the linearizedλεu,psic

u is:

εu =
((

1− 2
α

)
ε− 2

αK
)
∨ 0, εf =

(
2
αε + 2

αK
)
∧ 1,

(33)
where the two functions share a common value at this point
of

λε,psic
l,M =

(
1− 2

α

) ε + K

π
(
β

1
α rtx

)2 , ε > εpsic
k,M . (34)

�

V. I MPERFECTSUCCESSIVEINTERFERENCE

CANCELLATION

A. Main Result

The major result is again a set of expressions for lower and
upper bounds on the transmission capacity, now generalized
for imperfect interference cancellation. Since the interference
expressions are now more complicated (sinceζ 6= 0 in
general), closed-form results are not attainable in all cases.
The expressions for the lower bound will be given in terms of
an easy optimization problem, the solution of which is trivial
for a computer.

Theorem 3: Letε ∈ (0, 1). As ε → 0, the lower and
upper bounds on the transmission capacity when receivers are
equipped with imperfect SIC (ζ ∈ (0, 1)) are:

cε,sic
l = (1− ε)λε,sic

l , cε,sic
u = (1− ε)λε,sic

u . (35)

The upper bound on the optimal contention density is:

λε,sic
u =



− ln(1−ε)

ζ
2
α π

(
β

1
α rtx

)2 ε ≤ 1− e−Kζ
2
α

K−ln(1−ε)

(1+ζ
2
α )π

(
β

1
α rtx

)2 else

− ln(1−ε)

π
(
β

1
α rtx

)2 ε ≥ 1− e−Kζ−
2
α

(36)

The Markov (M) lower bound on the optimal contention
density is:

λε,sic
l,M ≥ sup

(εu,εf ):εu+εf =ε

{
λεu,sic

u ∧ λ
εf ,sic
f,M

}
, (37)

where

λε,sic
f,M =


α−2

2
β

2
α

(1−ζ)β+ζβ
2
α

ε

π
(
β

1
α rtx

)2 , ε ≤ εsicc,M

see below, εsicc,M ≤ ε < εsick,M
α−2

2
ε

π
(
β

1
α rtx

)2 , ε > εsick,M

(38)
and λε,sic

f,M for εsicc,M ≤ ε < εsick,M is the unique solution forλ
satisfying equation:

2πλβ

(α− 2)r−α
tx

[
(1− ζ)

( K

πλ

)1−α
2

+ ζr2−α
tx β

2
α−1

]
= ε. (39)

The constants are given by:

εsicc,M =
[
(1− ζ)β + ζβ

2
α

]
2K
α−2 , εsick,M = 2K

α−2 (40)

B. Comments on Theorem 3.

Several observations can be made from Theorem 3.
• First, we can see that this more general theorem is

consistent with the special cases of no sic (ζ → 1)
and perfect SIC (ζ → 0) given in Theorems 1 and 2,
respectively. This can be confirmed by first noting that
the three regimes converge to a single regime in both
cases, i.e.

lim
ζ→1

1− e−Kζ
2
α = lim

ζ→1
1− e−Kζ−

2
α = 1− e−K , (41)

and then it is easy to see thatlimζ→1 λε,sic
u = λε,nsic

u as
expected. Next note that

lim
ζ→0

1− e−Kζ
2
α = 0, lim

ζ→0
1− e−Kζ−

2
α = 1, (42)

and hencelimζ→0 λε,sic
u = λε,psic

u as expected.
• The theorem above gives the lower bound obtained

through use of the Markov inequality. Again, correspond-
ing results for the case of the Chebychev inequality are
given Appendix VII. Whenζ = 0 it is straightforward
to see the expressions forλε,sic

l,M , λε,sic
l,C will reduce to

those of λε,psic
l,M , λε,psic

l,C after appropriate choice of the
optimal splitting pair(εu, εf ). Similarly, whenζ = 1 it
is straightforward to see the expressions forλε,sic

l,M , λε,sic
l,C

will reduce to those ofλε,nsic
l,M , λε,nsic

l,C after appropriate
choice of the optimal splitting pair(εu, εf ).

• The performance improvement due to SIC is very sen-
sitive to the cancellation effectiveness parameterζ as
ζ → 0, especially for smallε. Looking at the upper
bound, for example, we see that for smallε:

d

dζ
λε,sic

u ∝ −ζ−(1+ 2
α ), (43)

which means

lim
ζ→0

d

dζ
λε,sic

u = −∞. (44)

Thus our model suggests that technology improvements
which improve cancellation effectiveness may yield large
increases in the transmission capacity.

• For smallε it is straightforward to show that the bounds
are reasonably tight. In particular,

λε,sic
l,M =

(α− 2)β
2
α

2(1− ζ)β + (2ζ + α− 2)β
2
α

ε

πr2
s

+ O(ε2),

λε,sic
l,C =

α− 1
(1− ζ)β2(1− 1

α ) + ζ + α− 1
ε

πr2
s

+ O(ε2)

with corresponding bound ratios of

λε,sic
l,M

λε,sic
u

=
(α− 2)

(
βζ

) 2
α

2(1− ζ)β + (2ζ + α− 2)β
2
α

+ O(ε2),

λε,sic
l,C

λε,sic
u

=
(α− 1)ζ

2
α

(1− ζ)β2(1− 1
α ) + ζ + α− 1

+ O(ε2).
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Note that these bound ratios are0 for ζ = 0, consistent
with the poor bound ratios for perfect SIC, but(α−2)/α
and(α−1)/α respectively forζ = 1, consistent with the
ratios obtained for no SIC.

C. Proof of Theorem 3.

It was earlier shown thatr = rs is a critical radius in the
sense that it is the maximum distance a single interfering node
can be from a receiver and still generate sufficient interference
to cause an outage at that receiver. When the interference
is partially cancelled through the use of imperfect SIC with
parameterζ ∈ (0, 1) then the corresponding critical radius is
improved (decreased) toζ

1
α rs: if the partially cancelled node

is any further away it cannot by itself cause an outage. With
this in mind, we define the following three spatial density
thresholds and compute the corresponding value ofrsic:

λr = K
π r−2

tx , λs = K
π y

2
α , λl = K

π ζ−
2
α y

2
α

rsic = rtx, rsic = rs, rsic = ζ
1
α rs.

(45)

Looking at Figure 3, for each possible spatial density
of transmissionsλ we can identify the distances from the
receiver where an interfering node at that distance will by
itself generate sufficient interference to cause an outage. For
example, forλ ∈ (λs, λl) nodes at distances in the range
(0, ζ

1
α rs) generate interference that is partially cancelled but

even so sufficient to cause an outage, and nodes at distances

in the range(
√

K
λ , rs) are outside the cancellation radius but

are nonetheless sufficiently close to cause an outage.

λ

rsic

rtx

y−
1
α

ζ
1
αy−

1
α

λc λk λl

Fig. 3. The cancellation radiusrsic versus the spatial transmission density
λ. The near/far field separation radius isrs, this is also the farthest distance
that an uncanceled node can be from the receiver and still cause an outage.
The farthest distance that a canceled node can be from the receiver and still
cause an outage isζ

1
α rs. The arrows denote the annular regions around the

receiver where a single node could cause outage provided that node is in the
near field.

The upper bound event corresponding to Figure 3 is:

F sic
u (λ) =


{
Π ∩ b(O, ζ

1
α rs)

}{
Π ∩

(
b(O, ζ

1
α rs) ∪ a(O,

√
K
πλ , rs)

)}{
Π ∩ b(O, rs)

} (46)

where the three cases apply for the intervals

λ ≤ λs, λs < λ ≤ λl, λ > λl (47)

respectively. The probability of the event is:

P0(F sic
u (λ)) =

 1− exp
{
−λπζ

2
α r2

s

}
1− exp

{
−λπ(1 + ζ

2
α )r2

s + K
}

1− exp
{
−λπr2

s

} (48)

The bound evaluated at the critical pointsλs, λl gives:

P0(F sic
u (λs)) = 1− exp

{
−Kζ

2
α

}
P0(F sic

u (λl)) = 1− exp
{
−Kζ−

2
α

}
(49)

The map λ → P0(F sic
u (λ)) is onto [0, 1) and monotone

increasing inλ; hence a unique inverse exists for allε > 0.
Setting this expression equal toε and solving forλ yields:

λε,sic
u =


− ln(1−ε)

ζ
2
α πr2

s

ε ≤ 1− e−Kζ
2
α

K−ln(1−ε)

(1+ζ
2
α )πr2

s

else

− ln(1−ε)
πr2

s
ε ≥ 1− e−Kζ−

2
α

(50)

We turn now to the lower bound. Define the following
events:

Definition 7:

F sic(λ) =
{

Y (λ) > y
}

,

F sic
f (λ) =

{
Y (λ, rs, ζ) > y

}
whereY (λ) is given by Definition 5 and

Y (λ, rs, ζ) =
∑

Π∩a(O,rs,rsic)

ζ|Xi|−α

+
∑

Π∩b̄(O,rsic∨rs)

|Xi|−α

is the normalized aggregate interference generated by all
partially cancelled nodes in the annulusa(O, rs, rsic) plus
the interference generated by the uncanceled nodes outside
the radiusrsic ∨ rs.

We first compute the Markov bound onP0(F sic
f (λ)):

E0[Y (λ, rs, ζ)]

=


2πλ

[
ζ

∫ rtx

rs
r−αrdr +

∫∞
rtx

r−αrdr
]

2πλ
[
ζ

∫√ K
πλ

rs
r−αrdr +

∫∞√
K
πλ

r−αrdr
]

2πλ
∫∞

rs
r−αrdr

=


2πλ
α−2

[
(1− ζ)r2−α

tx + ζy1− 2
α

]
2πλ
α−2

[
(1− ζ)

(
K
πλ

)1−α
2

+ ζy1− 2
α

]
2πλ
α−2y1− 2

α

where the three expressions hold for the intervals

λ ≤ λr, λr < λ ≤ λs, λ > λs (51)

respectively. The Markov bound is:

E0[Y (λ, rs, ζ)]/y =


2πλ

(α−2)y

[
(1− ζ)r2−α

tx + ζy1− 2
α

]
2πλ

(α−2)y

[
(1− ζ)

(
K
πλ

)1−α
2

+ ζy1− 2
α

]
2πλ
α−2r2

s
(52)

The value of the bound at the critical points is

εsicc,M =
E[Y (λr, rs, ζ)]

y
=

[
(1− ζ)β + ζβ

2
α

] 2K

α− 2

εsick,M =
E[Y (λs, rs, ζ)]

y
=

2K

α− 2
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TABLE I

SIMULATION PARAMETERS (UNLESS OTHERWISE NOTED)

Symbol Description Value
α Path loss exponent 4
M Spreading factor 16

β = 3
M

TargetSINR (DS-CDMA) 3
16

rtx Transmission radius 10m
K Max. no. cancelable nodes 10
ζ Cancellation effectiveness 1

10
ε Target outage probability 0.1

This function is monotone increasing inλ and is onto[0, 1];
hence the inverse function exists. Setting the expression equal
to ε and solving forλ gives:

λε,sic
f,M =


α−2

2
β

2
α

(1−ζ)β+ζβ
2
α

ε

π
(
β

1
α rtx

)2 , ε ≤ εc,M

see below, εc,M ≤ ε < εk,M
α−2

2
ε

π
(
β

1
α rtx

)2 , ε > εk,M

(53)
It is not possible to obtain a closed form expression forλε,sic

f,M

for εsicc,M ≤ ε < εsick,M ; it is the unique solution to the equation:

2πλ

(α− 2)y

[
(1− ζ)

( K

πλ

)1−α
2

+ ζy1− 2
α

]
= ε. (54)

The same comments made in the proof of Theorem 2 regarding
finding the optimal splitting pair to maximizeλεf ,sic

f,M ∧ λεu,sic
u

over all (εu, εf ) such thatεu + εf = ε hold here.

VI. N UMERICAL AND SIMULATION RESULTS

In this section we present some numerical and simulation
results of Theorems 1 – 5. Two types of simulations were
performed: one where up to the firstK nodes withinrtx are
cancelled by a factor of1− ζ and one where all nodes within
rsic are cancelled by a factor of1 − ζ. The former aims to
approximate theactual SIC system, while the latter is our
stochastic geometric approximatemodel of the SIC system.
The termsSimulation (actual)andSimulation (model)are used
to differentiate the results from these two simulators. Both
have 90% confidence intervals.

Table I lists the nominal values used for the numerical
and simulation results, which are based as closely as possible
on realistic parameters for a typical indoor wireless ad hoc
network. The target SINR of3 ≈ 5dB assumes the existence
of error correction codes. For conciseness, we restrict our
attention to comparing performance of three representative
scenarios:i) no SIC (K = 0 and ζ = 1), ii) perfect SIC
with K = 10 (ζ = 0), and iii) imperfect SIC withK = 10
andζ = 1

10 .

A. Probability of outage versus transmission density

Figure 4 contains three plots of the outage probabilitypo(λ)
versus the transmission densityλ. The top plot shows the case
of no SIC, the middle plot shows the case of imperfect SIC
with K = 10 and ζ = 1

10 , and the bottom plot shows the
case of perfect SIC withK = 10. For each case we show

the Markov and Chebychev lower bound, the upper bound,
and simulation results. All plots confirm that the simulation
results lie between the upper and lower bounds, and that the
Chebychev bound is a tighter lower bound than the Markov
bound. Naturally, the Markov and Chebychev “lower bounds”
on transmission capacity are thus upper bounds on outage
probability while the “upper bound” on capacity is actually
a lower bound on outage probability1. We also observe that
the simulation results for theactual and model simulators
are quite close, granting validity to our stochastic geometric
approximation of the actual behavior of the SIC receiver.

Perhaps the most striking trend in the plots is that the bounds
for no SIC and imperfect SIC are fairly tight while the bounds
for perfect SIC are quite poor. As mentioned earlier, the loose
bounds for perfect SIC are a consequence of the fact that there
is no tight and simple sufficient condition for outage. It is also
apparent that the scaling of the outage probability for perfect
SIC is fundamentally different than that of imperfect SIC, even
though the perfect SIC parameters (K = 10, ζ = 0) are quite
similar to the imperfect SIC parameters (K = 10, ζ = 1

10 ).

B. Optimal contention density versus outage constraint

Figure 5 shows the optimal contention densityλε versus the
outage constraintε for the no SIC, imperfect SIC, and perfect
SIC scenarios. For each scenario we show the Chebychev
lower bound, theactual simulation results, and the upper
bound. The dramatic difference between perfect SIC and im-
perfect SIC are apparent, again highlighting the sensitivity of
the optimal contention density to the cancellation effectiveness
parameterζ. Also apparent is the fact that the no SIC and
imperfect SIC bounds are tight while the perfect SIC bounds
are loose. Finally, we see that the optimal contention density
is linear in the outage constraintε over a wide range of values
of ε, thus validating our linear approximations for smallε.

C. Optimal contention density versus number of cancelable
interferers

Figure 6 shows the optimal contention densityλε versus the
number of cancelable nodesK for the no SIC, imperfect SIC,
and perfect SIC scenarios. Of course the no SIC scenario is
independent ofK, but also apparent is the insensitivity for the
imperfect SIC scenario. Recall thatK is themaximumnumber
of cancelable interferers; the insensitivity can be explained
by the fact that fewer thanK nodes typically lie in the disk
b(O, rtx) around a receiver at the optimal contention density.
Note that the perfect SIC results highlight how loose the
bounds are for this scenario, and that the optimal contention
density levels out first forK ≈ 5. Finally, note that the
imperfect SIC case demonstrates an improvement over no SIC
by a factor of about3.

D. Optimal contention density versus path loss exponent

Figure 7 shows the optimal contention densityλε versus
the path loss exponentα for the case of imperfect SIC with

1This is due to the fact that transmission capacity is inversely proportional
to outage probability.
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Fig. 4. Outage probabilitypo(λ) versus the transmission densityλ for the
cases of no SIC (top), imperfect SIC withK = 10 andζ = 1

10
(middle), and

perfect SIC withK = 10 (bottom). All three plots show both the Markov
and Chebychev “lower” bounds and the “upper” bound, as well as simulation
results with confidence intervals.
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Fig. 5. Optimal contention densityλε versus the outage constraintε for the
no SIC, imperfect SIC, and perfect SIC scenarios.

 0.001

 0.01

 1  2  3  4  5  6  7  8  9  10

op
tim

al
 c

on
te

nt
io

n 
de

ns
ity

 (l
am

bd
a)

upper limit on number of cancellable nodes (K) 

Lower bound (Chebychev)
Simulation (Actual)

Upper bound

ζ=
1
10

no SIC

perfect SIC

imperfect SIC

Fig. 6. Optimal contention densityλε versus the number of cancelable
interferersK for the no SIC, imperfect SIC, and perfect SIC scenarios.

K = 10 andζ = 1
10 . The tightness of the bounds is increasing

in α. Also of interest is the fact that the Markov lower bound
is monotone increasing while the Chebychev lower bound
and the upper bound are monotone decreasing. Theactual
simulation results are not monotone inα, and in fact the
Chebychev lower bound lies above the simulation results for
α ≤ 3; this illustrates a regime where the rough equivalence
of the two models does not hold.

E. Optimal contention density versus cancellation effective-
ness

Figure 8 shows the optimal contention densityλε versus
the cancellation effectiveness parameterζ for the no SIC,
imperfect SIC, and perfect SIC scenarios. Of course the no
SIC and perfect SIC results are independent ofζ: they are
shown to confirm that these results are in fact special cases of
the imperfect SIC model forζ = 1 andζ = 0 respectively. The
plot is significant because it demonstrates the great sensitivity
of the optimal contention density toζ for small ζ. This
sensitivity is why there is such a difference between the
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Fig. 7. Optimal contention densityλε versus the path loss exponentα for
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Fig. 8. Optimal contention densityλε versus the cancellation effectiveness
parameterζ for the no SIC, imperfect SIC, and perfect SIC scenarios.

perfect SIC (K = 10, ζ = 0) results and the imperfect SIC
results with similar parameters (K = 10, ζ = 1

10 ). This
sensitivity suggests that SIC receiver designers might find
significant performance improvements by focusing their efforts
on improving the cancellation effectiveness.

F. Spectral efficiency versus spreading factor

Figure 9 shows a plot of the spectral efficiencyλε/M versus
the spreading factorM . Note that the optimal contention den-
sity λε is increasing inM but this increase comes at the cost
of increased resource (spectrum) utilization, hence normalizing
by M gives an indication of the efficiency measured in terms
of the spatial density per Hz. Four scenarios are shown: the
three DS-CDMA scenarios used above, i.e., no SIC, imperfect
SIC, and perfect SIC, and a FH-CDMA scenario. Note that, by
Theorem 1, FH-CDMA is linear inM and hence the spectral
efficiency is constant inM . Also, DS-CDMA with no SIC is
sub-linear inM and hence the spectral efficiency is decreasing
in M . These results are discussed at more length in [11]. As
expected the use of imperfect or perfect SIC increases the
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Fig. 9. Spectral efficiencyλε/M versus the spreading factorM for four
scenarios: DS-CDMA with no SIC, DS-CDMA with imperfect SIC, DS-
CDMA with perfect SIC, and FH-CDMA.

optimal contention density, and hence the spectral efficiency
above that of DS-CDMA with no SIC. Perhaps surprising is
the fact that imperfect SIC offers improvements in spectral
efficiency above FH-CDMA only for smallM , in this case
M ≤ 10. The perfect SIC DS-CDMA offers improvement
above FH-CDMA for all values ofM shown. The plots
indicate that the cancellation effectiveness parameter can be
very significant in determining whether DS-CDMA with SIC
will over or under perform FH-CDMA.

VII. C ONCLUSION

The primary contribution of this work is a tractable frame-
work for analyzing the performance improvement obtainable
through the use of successive interference cancellation in wire-
less ad hoc networks. Through the use of stochastic geometric
models and analysis we are able to obtain (in most cases)
reasonably tight closed form expressions for the transmission
capacity in terms of the fundamental SIC parameters, i.e., the
number of cancelable nodesK and the cancellation effective-
nessζ. Our analysis and simulation results support the claims
that i) performance is highly sensitive to the cancellation
effectiveness parameter but less sensitive to the number of
cancelable nodes, andii) the spectral efficiency of DS-CDMA
with SIC is always higher than DS-CDMA without SIC, but
may not always exceed that of FH-CDMA.
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APPENDIX A: ADDENDUM TO THEOREM 2

In this section, the Chebychev bound for the case of perfect
SIC is derived.

Addendum to Theorem 2: Asε ∈ (0, 1) → 0, the Chebychev
lower bound on the optimal contention density when receivers
are equipped with perfect SIC (ζ = 0) is:

λε,psic
l,C ≥ sup

(εu,εf ):εu+εf =ε

{
λεu,psic

u ∧ λ
εf ,psic
f,C

}
, (A.1)

where

λε,psic
f,C =


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√
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ε
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α

, (b)
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πεy
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α
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√
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α−2 ε
)
, (c)

(A.2)
where the three expressions (a), (b), (c) hold for the regimes

(a)
(
λr < λpsic

m and ε ≤ εpsic
c,C

)
or λr > λpsic

m

(b)
(
λs < λpsic

m and εpsic
c,C < ε ≤ εpsic

k,C

)
or

(
λr ≤ λpsic

m < λs and ε > εpsic
c,C

)
(c) λs < λpsic

m and ε > εpsic
k,C

respectively. The constants are given by:

λpsic
m =
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1
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α K1− 2

α y
2
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2π r−2

tx β−
2
α , α− 2− 2βKrα > 0

(A.3)
and

λr = K
π r−2

tx , λs = K
π y

2
α (A.4)

and

εpsic
c,C =

K(α− 2)2β2

(α− 1)(α− 2− 2βK)2

εpsic
k,C =

K(α− 2)2

(α− 1)(α− 2− 2K)2
.

Proof of Addendum to Theorem 2: The variance of the far-
field interference is again found by Campbell’s Theorem:

V ar(Y (λ, rs)) =


π

α−1r
2(1−α)
tx λ, λ ≤ λr

1
α−1K1−α(πλ)α, λr < λ ≤ λs

π
α−1y2(1− 1

α )λ, λ > λs

(A.5)
Chebychev’s inequality yields: fory > E0[Y (λ, rs)]:

P0(Y (λ, rs) > y) ≤ V ar(Y (λ, rs))
(y − E0[Y (λ, rs)])2

. (A.6)

Substituting the expressions for the mean and variance:

V ar(Y (λ, rs))
(y − E0[Y (λ, rs)])2

=
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(A.7)

where the three expressions above hold for

λ ≤ λr, λr < λ ≤ λs, λ > λs. (A.8)

The value of the above bound at the critical pointsλr, λs is

εpsic
c,C =

Kβ2(α− 2)2

(α− 1)(α− 2− 2βK)2

εpsic
k,C =

K(α− 2)2

(α− 1)(α− 2− 2K)2
.
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Note that the first and third expressions in the Chebychev
bound have the form

σ2λ

(y − µλ)2
, (A.9)

for constantsµ andσ2 independent ofλ. Setting this equation
equal toε and solving forλ yields, for y > µλ:

λ =
y

µ
+

σ2

2µ2ε

(
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√
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σ2
ε
)

=
y2

σ2
ε + O(ε2). (A.10)

Setting the three expressions in the Chebychev bound equal
to ε and solving forλ gives:
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f,C =
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(A.11)
The condition thaty > E0[Y (λ, rs)] can be expressed as
λ < λpsic

m where λpsic
m is the unique density such that

E0[Y (λpsic
m , rs)] = y. Straightforward algebra yields:

λpsic
m =


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2
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(A.12)
Note that the Chebychev bound is monotone increasing for
λ < λpsic

m , monotone decreasing forλ > λpsic
m and has a

singularity at λpsic
m . Inverting the bound requires a careful

analysis of when each of the three conditions occur:

λr ≤ λs ≤ λpsic
m , λr ≤ λpsic

m ≤ λs, λpsic
m ≤ λr ≤ λs.

(A.13)
Looking at Figure 10, it is apparent that the appropriate
expression for the inverse depends on bothε’s position relative
to εpsic

c,C andεpsic
k,C as well asλpsic

m ’s position relative toλr and
λs. In particular, the three expressions above hold for

(a)
(
λr < λpsic

m and ε ≤ εpsic
c,C

)
or λr > λpsic

m

(b)
(
λs < λpsic

m and εpsic
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k,C

)
or

(
λr ≤ λpsic

m < λs and ε > εpsic
c,C

)
(c) λs < λpsic

m and ε > εpsic
k,C

respectively. �
It remains to maximizeλεf ,psic

f,M ∧ λεu,psic
u over all (εu, εf )

such thatεu + εf = ε. Note that although the expressions
are quite messy the actual algorithm to find the optimal pair
is quite simple: find the splitting(εu, εf ) summing toε that
minimizes the distance∣∣λεf ,psic

f,M − λεu,psic
u

∣∣, (A.14)

where the optimal splitting pair is found by finding the inter-
section of the two functions for the cases when the minimum
distance is zero. For those cases where the two functions do not
intersect then the optimal pair is trivial: the smaller function
getsε and the larger function gets0. This can be easily done
on a computer; we will study this algorithm in the numerical
results section. �

λ
λpsicmλc λk

εpsicc,C

εpsick,C

λ
λpsicmλc λk

εpsicc,C

λ
λpsicm λc λk

1

1

1

Fig. 10. Three possibilities for the three transmission densities:λr, λs, λpsic
m .

The Chebychev bound is a convex increasing function forλ < λpsic
m ;

inversion of the function requires a careful analysis of the cases when each
of the three inverse expressions for the bound are appropriate.

APPENDIX B: ADDENDUM TO THEOREM 3

In this appendix, the Chebychev bound for the general case
of imperfect interference cancellation is derived.

Addendum to Theorem 3: Letε ∈ (0, 1) and y = r−α
tx
β . As

ε → 0, the Chebychev lower bound on the optimal contention
density when receivers are equipped with imperfect SIC (ζ ∈
(0, 1)) is:

λε,sic
l,C ≥ sup

(εu,εf ):εu+εf =ε

{
λεu,sic

u ∧ λ
εf ,sic
f,C

}
. (B.1)

There are three expressions forλε,sic
f,C , which we label (a), (b),

and (c): given by
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(B.2)
For (b) λε,sic

f,C is the unique solution to the equation:
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These three expressions (a), (b), (c) hold for the regimes
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)
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and
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Proof of Addendum to Theorem 3: The variance of the
far-field interference is again found by Campbell’s Theorem:
V ar(Y (λ, rs, ζ))

=
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where the three expressions hold for the intervals

λ ≤ λr, λr < λ ≤ λs, λ > λs (B.7)

respectively. The Chebychev bound is: fory >
E0[Y (λ, rs, ζ)]:

P0(F sic
f (λ)) ≤ V ar(Y (λ, rs, ζ))(
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where the three expressions hold for the same three intervals
as above. The value of the bound at the critical points is

εsicc,C =
V ar(Y (λr, rs, ζ))(
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Setting the three expressions in the Chebychev bound equal
to ε and solving forλ yields rather unwieldy expressions. The
first and third cases are in the form of (A.9); for simplicity we
employ the solution given in the right side of (A.10) which is
obtained by linearizing inε aroundε = 0. Applying this result
to the first and third cases above we find:
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see below
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(B.8)

The second case, as was also true for the Markov bound,
cannot be put in closed form. It is given by the unique solution
of the equation:
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As was discussed in the proof of Theorem 2, the condition
that y > E0[Y (λ, rs, ζ)] can be expressed asλ < λsic

m where
λsic

m is the unique density such thatE0[Y (λsic
m , rs, ζ)] = y.

Straightforward algebra yields:
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whereλsic

m is given by the unique solution of the equation
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whenα−2−2K
(
(1− ζ)β + ζβ

2
α

)
≥ 0 andα−2−2K ≤ 0.

Again referring to Figure 10, it is apparent that the appropriate
expression for the inverse depends on bothε’s position relative
to εsicc,C and εsick,C as well asλsic

m ’s position relative toλr and
λs. In particular, the three expressions above hold for

(a)
(
λr < λsic

m and ε ≤ εsicc,C

)
or λr > λsic

m

(b)
(
λs < λsic

m and εsicc,C < ε ≤ εsick,C

)
(B.12)

or
(
λr ≤ λsic

m < λs and ε > εsicc,C

)
(c) λs < λsic

m and ε > εsick,C (B.13)

respectively. �
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It remains to maximizeλεf ,sic
f,C ∧λεu,sic

u over all(εu, εf ) such
that εu + εf = ε. The same comments apply here that were
made for selecting the optimal splitting pair for the Markov
bound: finding the optimal pair is trivial for a computer,
whereas the corresponding expressions for the optimal are both
messy and don’t necessarily provide any insight.


