IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. VOLUME, NO. NUMBER, MONTH YEAR 1

Transmission Capacity of Wireless Ad Hoc
Networks with Successive Interference Cancellation

Steven WeberlMember, IEEE Jeffrey G. AndrewsMember, IEEE Xiangying Yang,Member, IEEE,
Gustavo de Veciangenior Member, IEEE

Abstract—The transmission capacity of a wireless ad hoc a performance improvement on the orderdt — =, where M
ne_twork can be defined as the maximum e_tl_lowable area spectral js the spreading factor and > 2 is the path loss exponent.
efficiency such that the outage probability does not exceed 1q conclusion is that it is preferable avoid interference by

some specified threshold. This work studies the improvementf h . ther than trving it th h
in transmission capacity obtainable with successive interference requency hopping rather than trying suppressit throug

cancellation (SIC), an important receiver technique that has been !’andom spreading. Intuitively, most outages are a result of an
shown to achieve the capacity of several classes of multiuserinterfering node close to a receiver, and due to the strength
channels, but has not been carefully evaluated in the context of this interference these occurrences are better addressed

of an ad hoc wireless network. This paper develops closed- i ; ; ;
form bounds for the transmission capacity of CDMA ad hoc by using dlﬁerent channels as opposed to receivers trying to
suppress the interference.

networks with SIC receivers, for both perfect and imperfect
interference cancellation. In addition to providing the first closed-
form capacity results for SIC in ad hoc networks (or, to our L .
knowledge, any type of multiuser detection), design-relevant A- Successive interference cancellation

regis e e e, el ibo TS 9P Sice catages are predominanty caused by s a fon
ignterferencé) cancellation rapi)tljly geérad)é itspusefulness. More nearby |n_terfer|ng USers, an appealing alternative to |nt_erfer-
encouragingly from a receiver complexity standpoint, due to the €nce avoidance (which consumes resources such as time or
geographic properties of ad hoc networks, only a few — often just frequency slots) is interference cancellation. In fact, it is well-
one — interfering nodes need to be cancelled in order to get the known that the matched filter receiver considered in [11], while
vast majority of the available performance gain. dominant in commercial CDMA systems, is dramatically sub-
optimal in theory relative to multiuser receivers, particularly
in the presence of widely variant receiver powers [12], [13].
In general, multiuser receivers achieve a performance gain by

Understanding the performance limits of decentralized (*agkploiting the structure of the multiuser interference, rather
hoc”) wireless networks is a subject of much recent worlgan just treating it as wideband noise. A particularly inter-
Due to the difficultly of directly analyzing the capacity ofesting type of multiuser detection is successive interference
an unconstrainea. node network [1], most recent work hascancellation (SIC), first suggested in [14], one form of which is
followed the lead of the seminal work of Gupta and Kumaghown in Fig. 1. The key idea of SIC is that users are decoded
[2] and studied how the capacity scales withinder a variety one after another, with the receiver cancelling interference
of different modelling and implementation scenarios [3], [4hfter each user. For example, the decoded data for the first user
(5], [6], [7], [8]. is re-encoded and by using accurate channel knowledge, can

In contrast, other recent work by Baccelli [9], [10] and thge made to very closely resemble ieeivedsignal. Hence,
present authors [11] adopted a stochastic geometric approgaan be subtracted out of the composite received signal, and
for studying the performance of ad hoc networks, which hage second user to be decoded experiences less interference
the merit that insights about the performance for fixed densitigfan it otherwise would have. The process can be continued
of nodes. In particular, [11] developed an analytical frameworlsr an arbitrary number of users.
termed thetransmission capacitythe maximum allowable |y addition to its simplicity and amenability to implementa-
spatial densityA of transmitters in an ad hoc network, asjon [15], SIC is well-justified from a theoretical point of view.
a function of various parameters like transmit distance arfimple successive interference cancellation implementation
required signal to interference plus noise ratio (SINR), angith suboptimal coding was shown to nearly achieve the
such that a specified outage probabiktys met. Using this Shannon capacity of multiuser AWGN channels, assuming
framework, transmission capacity bounds were found for frgccurate channel estimation and a large spreading factor [16].
quency hopping (FH) and direct sequence (DS) CDMA (withither more recent work has proven that SIC with single-
a matched filter receiver) with the conclusion that in contragker decoding in fact achieves the Shannon capacity region
to centralized networks, frequency hopping was significantypundaries for both the broadcast (downlink) and multiple
Superior in an ad hoc network. In particular, our results prediﬁécess (up“nk) multiuser channel scenarios []_7]7 [18], as well-

Manuscript last saved: August 19, 2005 summarizgd in [19]. Quantifying SIC_’s ben_efi_t_ in aq hoc

. . X networks is naturally more problematic, but initial evidence
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asynchronous signals of unequal powers [21], and has much

lower complexity than most other multiuser receivers, it ap-

pears to be a natural fit for a wireless ad hoc networks from e _ _ b

the standpoint of both theory and practice. Signal > Linear Receiver |~ Decoder >
Accurately modelling and analyzing SIC in ad hoc networks *® ™ yw0=

requires some nontrivial extensions from centralized networks. Yo - 20

For instance, it has been shown that a particular (unequal) k= ket (t) 'g“ﬁae;;eg .| Reencode

distribution of received powers is needed for SIC systems to Estimation and modulate

perform well, especially when the interference cancellation is

imperfect [22], [23]. Achieving such a distribution at each

receiver in an ad hoc network is impossible due to the randdrg- 1. Successive interference cancellation
spatial characteristics of the network. Related to this, to be

realistic it should be assumed that only strong signals can be

cancelled, hence at any given location in the network, only Il. MATHEMATICAL MODELS
the nearby interferers are cancellable. In order to accurat@ly \wjireless ad hoc network

guantify SIC’s performance in ad hoc networks, Section Il will . )
develop a realistic (but analytically tractable) model in view Our model employs a homogeneous Poisson point process
of such considerations. (PPP)II = {X;,i € N} on the planeR? to represent the

locations of all nodes transmitting at some time instarithe
PPP model for terminal positions has proven very accurate
for CDMA cellular networks, and has produced analytical
calculations for blocking probability that come within a few

The principal contribution of this paper are closed-forrRercent of actual blocking rates for service providers.
(and reasonably tight) bounds on the transmission capacity foln prior work [11] we considered two models) all
wireless ad hoc networks for imperfect successive interfererfé@nsmitters use the same transmission povgerand all
cancellation, where a residual fractigrof the interference is transmission distances are over the same distapgeand
left after each stage. Results for perfect SIC are first derivéd transmitters vary their transmission power over variable
for pedagogical purposes, and naturally are the special (dfigtances to achieve a specified receive power. In that work we
analytically simpler) case wheré — 0. Prior results for demonstrated the transmission capacity scales very similarly
wireless networks without SIC are also a special case whé@é both models, so for analytical simplicity we use the first
¢ — 1. The model and results are general enough that af@del in this paper.
multiuser receiver structure with residual cancellation egror Our channel model considers only path loss attenuation
on the K closest nodes would be covered by our analysis. effects and ignores additional channel effects such as shad-
The following are key insights that can be gleaned from o@Wing and fast fading, which have been recently shown to
theoretical analysis : not have an especially large effect on capacity scaling [7],

, . [10]. In particular, if the (normalized tal = 1) transmit
« Most of the performance improvement obtainable throu%wer is p and the path loss exponent is > 2 then the

SIC is gained by cancelling just the single transmiti .q;eq power at a distanck > 1 from the transmitter is
with the largest interference level; cancelling additional;—« \ye denote the SINR threshold required for successful
transmitters may carry a negligible beneﬁt. .. transmission ag. One additional simplification employed in

« The performance improvement from SIC is very sensitigis haper relative to [11] is that here we will assume the
to r_'OW effectlvely the mterference_ is cancelled. Even th§mbient noise power is negligibly small, which is generally
residual _mterf_erence of close-by interferers can often bgy c55e in any interference-limited wireless network. This
the dominant mtgrference Source. . assumption is made to simplify the analysis and resulting

« The spectral efficiency, defined as the transmission g, essions, and is verified to be reasonable via simulation.

pacity normalized by the spreading factor, of DS-CDMA A beneficial consequence of the Poisson assumption is

W?th SIC may or may not' be superior to FH'CPMA at, by Slivnyak’s Theorem [24], the client-average outage
without SIC, again depending upon the cancellation e v

. obability may be found by evaluating the SINR seen by a

fectiveness. receiver located at the origin. Intuitively, the distribution of the

The rest of this paper is organized as follows. Section Il wifloint process is unaffected by the addition of a receiver at the
introduce the mathematical model and notation, and Sectiondiigin, and this receiver is “typical” in the sense that evaluating
will review the previous main results on transmission capacitiie performance seen at the origin gives the client-average
from [11]. Sections IV and V will derive the transmissiorperformance over all receivers. Measuring the performance
capacity of perfect and imperfect SIC ad hoc networks, respext- the origin is often termed the Palm measure, and in
tively. Section VI presents numerical and simulation resulieeping with standard notation we will denote probability and
demonstrating the performance improvement and provides @xpectation of functionals dfl evaluated at the origin b§°
terpretations of the main observed trends. The paper concludes E° respectively. Also let X;| denote the distance from
in Section VII. node: € II to the origin. With this in mind we may define

B. Main Results
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the optimal contention density and the transmission capacity. [1l. TRANSMISSION CAPACITY WITHOUTSIC

Definition 1: The optimal contention densify)°, is the First, we give upper and lower bounds on the transmission

maximum spatial density of nodes that can contend for tfgPacity without any interference cancellation, denoteakas

channel subject to the constraint that the typical outagﬁlmein “nthIC". Thd|§ IS fthe spe_czlal casehpf t::e result_s of
probability is less thare for somee € (0, 1): ] where the spreading factd¥f = 1, so this theorem is

stated without proof and is given here for completeness and
\e — Sup{)\ : ]P’O( Pl < ﬂ) < E}. ) to compare with the bounds derived for the SIC cases.
> ien PIXG| 7
Theorem 1: As — 0, the lower and upper bounds on the

Definition 2: Thetransmission capacitys€, is the density of ransmission capacity subiect to the outage constraihen
successful transmissions resulting from the optimal contenti%ﬁ1 pacity J 9

density, multiplied by the achievable data rétef a typical ransmitter; emplpy a fixed transmission powdor receivers
(i.e. average) successful (not in outage) transmissish= that are.a fixed d'Sta”‘?etx away gre. '
Ab(1 —e). G = (1 =A™, M= (1—e)Ay™c, (2)

u

Hence, the transmission capacity has units of bits per secomgere the (Markov (M) and Chebychev (C)) lower and upper
per Hertz per area, or area spectral efficiency. As in previofgunds on the optimal contention density are:

work [11], for simplicity in this paper it is assumed henceforth ¢, nsic 2 € 9
that b = 1, so the focus is on quantifying the number of Mu = (1 N O‘)W(ﬁiTtx)Q +0(e%),
successful transmissions, rather than on the data rate of those _ 1 .
transmissions. This is appropriate in the context of this paper ANo¢ = (1 - 7) ———— +0(),
since the motivation for multiuser receivers is to increase the 7 @/ m(Barx)

number of simultaneous users. The general definition allows ensic . —In(1—¢)

other transmission or receiver schemes to increase the data v B W(/B%Ttx)2

rate for a fixed number of users and be credited appropriately

in the transmission capacity framework. Comments on Theorem 1.Several points are noteworthy:

« Inorder to obtain bounds on the transmission capacity for
B. Notation FH and DS it suffices té) multiply A\;""*' and A$;"si¢ by
M for FH andii) multiply ;"' and A5 by M# for
DS [11]. In words, FH increases the transmission capacity
linearly with M and usesM times more bandwidth,
while DS increases it ad/> and usesM times more

For convenience we summarize here most of the notation
used in the paper.

aVb max{a, b} bandwidth.

alNb min{a, b} . . 1 . . .

sC€A\B azcAaxdB o The quantityr; = [Bary is @ minimum interference-
b(0,7) {z : |z| < r}, i.e. a ball of radius- centered at origin free radius since a necessary condition for successful
a(0,r1,r2)  {z:r1 < x| < rp}, ie an annulus between andr; reception is that there be no transmitters bifO, r).

We term this the “splitting radius” since it is useful
to split the interferers into two groups: those inside

’ g:zzm D rs and those outside of,. The bounds illustrate that
,BX target (required) SINR transmission capacity has a strong connection with sphere
€ required outage probability, i.?°[SINR < ] < e packing:7r2 is the area of the disk corresponding to the
@ path loss exponent interference-free radius. Note that reducing the required
Y y = " is the normalized aggregate interference threshold 3 e.g. through spreading, reduces the interference-free
Ts rs =y~ = Barey is the “splitting radius” radius, thereby permitting a larger number of spheres to
K maximumand expecied number of cancelled users be packed into the space (at the cost of lower spectral
Tsic radius around receiver that includes, on averdganterferers .
residual interference after cancellation, we assdre (0, 1) efficiency)
psic specifies perfect SIC, i.&,= 0 o For smalle the transmission capacity grows linearlyen
nsic specifies no SIC, i.e¢ =1 thus relaxation of the QoS requirement frd¥ outage
to 2% outage should double the capacity.

) ) ) ) « The above lower bounds are obtained through the use
1;5’\) szgfi%rl'ﬂf’do'g:;f;iimgihie?fo't[é’}NR <f>e of the Mark_qv and Chebychev inequalitigs, by bqunding
by Lower bound om\, i.e. A < A, = PO[SINR < ] < ¢ the probability of the “far-field” nodes (i.e., outside of
Ac A lower bound attained with Chebychev inequality rs) generating sufficient aggregate interference to cause
M pr(\;ivf?ésbg:;r:(itha;t?g;ﬁﬂir\:gtréel\ﬁl‘girtl;o;g|fnoerqsu:é|1tg an outage at the origin. It is of interest to obtain the
A X such thatK users arec b(0, ) on average. tightest possible bounds on the transmission capacity, i.e.,
As A such thatk users arec b(0,75) on average the greatest lower bound and the smallest upper bound.

We define thebounds ratioy as the ratio of lower over
the upper bound, i.ed <~y < 1.
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Definition 3: The Markov and Chebychev bound ratiomterference power by a factar— ¢ for all interfering nodes

for the no SIC casey}j'“, 75, are defined as: within distancerye = ri A /2.
. €,nsic . €,nsic K —2 . .
yhsic = %7 yasic = ALL 3) Note thatrg. = ¢, for A < \. = Z2r_ =, and is decreasing

i o i in A for A\ > \.. Put simply, for low densities all the nodes
Appl){lng these definitions to the bounds in Theorem dy5ser than the desired transmitter are cancellable. For higher
gives. , , densities we can only cancel the clos&shodes (on average),

yle=1-2 qpsice—=1_1 (4)  which are insiderg. < rix.
. _ Now, let b(O,r) = {z : |z| < r} be the ball of radius
Thus the use of the Chebychev inequality improves ﬂl:%ntered at the origin, and 16O, ) = R2\ b(O,r). The

i of=1
_bound r_atlo_by af_actor =5 In gengral, the Cheby_chev ppropriate modification to Definition 1 that allows for SIC is
inequality gives tighter bounds but is more complicate s follows

Definition 5: Theoptimal contention densitfor a network
of (K,() receivers, \**¢, is the maximum spatial density
A. SIC model of nodes that can contend for the channel subject to the
B%nstraint that the typical outage probability is less than

IV. PERFECTSUCCESSIVEINTERFERENCECANCELLATION

Successive interference cancellation allows users to
decoded one at a time, and then subtracted out from tfﬁ’é somee € (0,1)
composite received signal in order to improve the performance c sic 0[P
of subsequently decoded users. In practice, this corresponds to AT = SUP{/\ P (m < ﬁ) < 6}’ ®)
decoding the strongest user first, since it will experience th
best SINR and hence be the most accurately decoded, wh
is a prerequisit_e for accurat_e interference cancellation. Mor_e’()\) =(x Z p| X5+ Z 0| X5 ™. (6)
generally, by similar reasoning, users should be decoded in JETIN(O,rie)
order of their received powers [16], [25], even though this is i i ) )
not always the preferred order from an information theoretjc '€ first term in (6) is the partially cancelled aggregate
viewpoint [19]. In an ad hoc network with a path loss Channg?terferepce at Fhe receiver from all podes lying within 'the
model, this corresponds to cancelling the interference fropfincellation radius; the seconq term is the uncancelled inter-
nodes closer to the receiver than the desired transmitter. ference _from nodes lying OL_JtS_'de that set. )

An accurate characterization of the performance gains d eWe will .break the ana_ly5|s into two parté) perfec_t S.IC
to SIC should be based on a plausible interference cancellatf§iiot€dpsic, where the interference from nodes withig,
scenario, otherwise the results can in fact be quite optimis{c cance!led entirely, _|.e.(; = 0 gnd ”). imperfect SIC.
and misleading. Particularly, an accurate model would capt notedsic, where the interference is partially cancelled, i.e.,
that a SIC-equipped receiver is able to reduce the interferer%g (0,1). Note that the casg = 1 correspo_nds to the case
power of up toK nearest interfering nodes by a factior ¢ of no SIC (Theorem 1), and was analyzed in [11].

(i.e. residual interference power @j, assuming these nodes
are closer than our desired transmitter. However, it is difficd® Main Result
to work with this exact model in a mathematical framework, The major result is a set of closed form expressions for

since it requires a characterization of the joint distribution géwer and upper bounds on the transmission capacity.
the distances of th& nodes nearest to the origin, see [26].

Instead of pursuing this exact approach, we utilize a closely-thaorem 2: As € (0,1) — 0, the lower and upper bounds

related SIC model that is more amenable to analysis. | the transmission capacity when receivers are equipped with
particular, define theancellation radius denotedr;., such perfect SIC ¢ = 0) are:

that the receiver is capable of reducing the interference power ) _ ) .

by ¢ of any and all transmitters located within distaneg P =1 —eA\P, = (1 —eAGPTC (7)
of it. The cancellation radius is chosen so that there Idre
interfering nodes falling within the radiusn average Since
the average number of points in a Poisson process of intensity \epsic In(l—¢)+ K 8)

i€TINb(O,rsic)

An upper bound on the optimal contention density is:

A falling in a circle of radius- is Arr?, we findrge = /X w(ﬁirtx)Q

It is normally only feasible to cancel the interference froMne Markov (M) lower bound on the optimal contention
those nodes whose interference power measured at the rec‘ﬂ\é‘?{sity is:

exceeds the signal power. Thus we add the requirement that

rse < Tix, I.€., Dy requiring the cancellation radius not exceed (("—22)6) ﬁ?l ;  e<2Kp
. . . . . . - - a—
the signal transmission radius we are ensuring the interference _ g(ﬁ A
power of cancelled nodes exceeds the signal power. )\lﬁ’*lfjlc = ((Q—QQ)G)E (f;i’E)Z else 9)
m(Barix
Definition 4: A(K, () SIC receiverperating in a network (1- %)% €> 6%(2
with a transmission density of is capable of reducing the “(ﬁ”tx)
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C. Comments on Theorem 2.

Based on initial inspection of these results, several points
are noteworthy:
o Compared with no SIC, perfect SIC improves the upper
bound by

€,psic
AY

K K
— =1+ ——~1+— wh 1, (10
A& msic +—ln(1—e) +€ when € <1, (10)
which is linear inK. This sensibly implies for maximum
performance, as many users should be cancelled as ag-2. Illustration of the technique to find lower and upper bounds on the
sible. contention densityA; < A < X, through the use of necessary and sufficient
o As shown in Appendix VII, the Chebychev bound caf " for outage.
be computed, but not expressed in a fully closed-form.
For brevity, only the Markov lower bound is given inye eyents parameterized by the spatial densigp that
Theorem 2 and its proof, but the Chebychev is tighter so ' ' )
is used in the numerical results section. FPUC(N) € FPS(N) € EPPC(N). (14)
« Compared with no SIC, for < ¢, perfect SIC
improves the Markov lower bound by a factor
)\e,psic
T =5 an
i 2

The probability of all three events will be nondecreasing in
A. The eventFPsic()) is the sufficient eventFPsic(}) is
the outage event, and”*“()\) is the necessary event. As
illustrated in Figure 2, lower and upper bounds on the optimal
contention density are obtainable from the probabilities of the

which is independent ofC. This implies that path loss necessary and sufficient events, provided we can solve
is a more important aspect for the lower bound — it

is preferable to have the far-field users attenuated by a AP = A TPYUFPT(N) = e,
hostile channel, since they cannot be cancelled anyway. )\lfvPSiC = {X: ]PO(FZPSiC()\)) =¢}

« The bounds for perfect SIC are very loose for snaall
is straightforward to see that

e+ K

for A. Since these equations are in general not solvable for
A, we define several different events that will help us attain

\Epsic _ +0(?) (12) bounds on\.
' (B r)’ ’ -
. ’ Definition 6:
and corresponding bound ratios: _
MBS a3 PO = Y0 >},
M _ T f52 ‘
)\Z,psic - 2 ﬁ (€_|_K)7 FESIC()\) = {Hﬂa(O,Tsjc,’l"s) # @}
)\?gﬁc (1 € psic
C _ (L-1) FY°(N) = Y\ rg) >y
)\ijsu: (a 1)ﬁ (6 + K) : f { }
Both ratios are arbitrarily close 0 ase — 0. The poor WNereY'(A) is given by Definition 5 witl{ = 0 and
bound ratio is a consequence of the fact that there is Y\ 1) = Z X (15)

no known “upper bound event” that provides a sufficient
condition for outage and also results in a tight bound. The

imperfect SIC model does not suffer from this problem'S the normalized aggregate interference by all nodes outside
of the the radiug;. V rs.

P€TINB(O,rsicVTs)

D. Proof of Theorem 2. In words, FPsic()) is the outage evenfPsic()\) is the event
The idea behind the proof is to identify necessary aritiat one or more nodes lie in the annulus with ragii and

sufficient conditions for outage, calculate or bound the probs, and F}’S‘C()\) is the event that the aggregate interference

abilities of the corresponding events, and then determine tenerated by nodes outside the radiysV r; is sufficient to

spatial densities such that the probabilities of the necessaguse an outage. It is straightforward to establish that

and sufficient events equal the specified QoS paramaeiére sic sic sic sic sic

sufficient condition event we employ is the set of realizationd t (N € FPO) C (N = FITC(A) U FY ((>\1)é)

of the point processl with one or more interfering nodes , . . .o_1 . -
. It.is helpful to think of r, = y~= as the radius splitting

close enough to the receiver so that one such node along, is o P .

near-field” interferencep(O, rs), from the “far-field

. e he
capable of causing outage. The necessary condition is m?rlrf%rferenceRQ\b(O,rs). A similar approach is employed in
1] for the proof of the transmission capacity without SIC,

complex: if we have an outage it can be due to either a f

nodes near the receiver or the combination of a large num Ut with the additional degree of freedom that the near/far field
of far away nodes. Let

_ boundary was optimized over all It is shown thats = r; is
FPsic()),  FPsic()),  FPY(N) (13) the optimal splitting radius. A similar optimization could be
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performed here but the analysis becomes much more compileane. This argument holds for all partitior{s,,, ¢ ) summing
and the tractability of the model is lost. For that reason we use e. The greatest lower bound is obtained by maximizing
a fixed near/far field splitting radius, throughout this paper, AgPsic A X)/** over all feasible partitions:

wherer, is the maximum radius such that a single node at

that distance from the receiver can by itself cause an outage )\evpsw = sup { ASuPsie A )\;fvpsic}, (26)

at the receiver. Clearly (€uses) : eutep=e

PO(FPSiC())) < PO(FPiC(N)) < PO(FP™°()\)), (17) Note that the minimum of two functions is maximized by
minimizing the distance between them. If that minimum
' ' distance is zero then the minimum of the two functions is
PO(FP(XN)) < PO(FES(N)) + PO (FP(N)). (18) their value at the point of intersection.
The probabilityIP’O(F]‘?SiC()\)) = P°(Y(\,rs) > y) cannot
be computed exactly; it must be bounded. We can obtain
Ar=2 A= 7152 (19) two bounds via the Markov and Chebychev inequalities. The
- former is weaker but the resulting equations are simpler, the
B8 is stronger but the equations are more complex, so its
denvatlon is left to Appendix VII. To compute the Markov
bound we needE’[Y (),r,)]; to compute the Chebychev

and

Define two spatial transmission density thresholds:

These correspond to the densities where there are on aver,
K users inside of a radiug, andr;, respectively.
It is straightforward to see then that

Ttxs A< A bound we needE’[Y (\,rs)] and Var(Y (), 7s)). Both are
Tsic = /K else (20)  obtainable via Campbells Theorem [11], [24], which gives
A that E[>" .1 f(2)] = [g2 Af(z)va(dz) where vy(-) is the
and that >, \ <A Lebesgue measure (area). The Markov bound states that
rad 27 e @)
<rs, else . 0
=" Py < Sl @7
Upper Bound. We begin by finding the upper bound; thigt is straightforward to compute:
requires solvingP’ (FPsic) = ¢ for . The probability of one 2m g2 ) X\ <)
or more nodes lying in the annulus with radii. andr, is EO[Y (\, 7)) 52K17g Lo )C\< N
simply one minus the void probability for the set: y I S 123, (T2, /\C <)\ =k
71' > Ak
. _ _ 2 _ 2' a—
PO(FPsie())) — { L—exp{=Am(r =r2.)}, A> A, . - o (28)
0, else 22) The value of the bound at the critical points is
It is evident here why the upper bound is so weak for the psic  EY(Ae,r)] 2K 29
perfect SIC case: the upper bound event is zero fok all \;. Com = y - ﬁa —9 (29)
Unfortunately there is no other easily computable sufficient bsic EO[Y (Mg, 7)) 2K
event available. Note that the map— P°(FPsic())) is onto €M = ” =3 (30)

[0,1) and monotone increasing ik; hence a unique inverse
exists for alle > 0. Setting this expression equal toand This function is monotone increasing mand is onto|0, 1];
solving for \ yields: hence the inverse function exists. Setting the expression equal
@) to € and solving for\ gives:

o K
e = —(“In(1- o+ K) > (1+ —)
€ 7TT

- 23) e s
Lower Bound. We turn now to the lower bound. The lower 2\ 2 : s cic
bound eventF""“(, s) is the union of two eventsk’Psi¢()) Af‘iﬁf =1 ()" (?) m: SM <e< €
and F™°(\); the probability of both events is increasing in (252) . = € > i
\. Moreover, a consequence of the assumption that the node 2 (pr ) €M
positions form a Poisson process is that the two events are s bsic (31)

independent seeing as they concern disjoint region®%f It remains to maximize\ /" A AL+ P over all (e, €7) such
Fix e and consider some paf,,ef) such thate, + ey =e. thate, +¢; = e Note that)\fwpblc > )\, for all € while
If we can identify a pair()\f;wPSiC,AEff’pSic) satisfying: Aeffﬁsw < A, for all e < €y, Thus the optimum splitting
. ¢7 psic pair isey = e ande, = 0, and the corresponding minimum
PO(F, (NG P)) < ewy PU(EF(AYP)) < €5 (24)  of the two functions is\{%;°. Note thate}™y; > 1 for all
then K > 2 and alla < 4. We now find the optlmal splitting pair
PO (Fy (XS s A )\ﬁfvaiC)) <eutes=e (25) Whene > ety Note that\g P is non-linear ine and hence

€5 ,psic

e finding the pomt of intersection with /" is complicated.
Thus AgoPsie A XY P**is a valid lower bound since choosingye find a lower bound onc«-Psic by linearizing around = 0;

A < AGwpsic p )ff’psw ensures the outage probability is lesshis leaves us with the problem of maximizing the minimum
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of
. K €,
)\Z“,,pSIC 2 u
ﬂ-<ﬁé’rtx)2 7T(ﬁirtx)Q
€5 ,pSi a—2 € S
= P e 6

It is straightforward to establish the optimal splitting pair for .
the linearized\&:-Psic is:

= ((1-2)e=2K) V0, ¢ = (Ze+ 2K) AL,

(33)
where the two functions share a common value at this point
of

€,psic 2 €+ K sic
)\l:]‘\} =(1- —)7l 5, €> e‘;M. (34)
a F(ﬂ"‘ rtx)
|

V. IMPERFECTSUCCESSIVEINTERFERENCE
CANCELLATION

A. Main Result

The major result is again a set of expressions for lower ande
upper bounds on the transmission capacity, nhow generalized
for imperfect interference cancellation. Since the interference
expressions are now more complicated (sirce# 0 in
general), closed-form results are not attainable in all cases.
The expressions for the lower bound will be given in terms of
an easy optimization problem, the solution of which is trivial
for a computer.

Theorem 3: Lete € (0,1). Ase — 0, the lower and
upper bounds on the transmission capacity when receivers are,
equipped with imperfect SIC € (0,1)) are:

P = (1 — A, (1—eASsc.  (35)

The upper bound on the optimal contention density is:

€,sic __
Cy =

—In(1—¢) e<1— efKC%

can(Born)
\esic — — K-m(-9 _ elge (36)
u (1+¢a)m (B rs) )
—1111(1—6)2 e>1— €_K<7E
W(ﬁgrtx)

The Markov (M) lower bound on the optimal contention
density is:

)‘li,ylsvilc 2 ( )Sup {)\Zu,sic A )‘}Z\?C}a 37)
€uyEf)i€ytEf=¢€
where
2
e 2 £ sic
2 2 P e<e€
€,sic 2 (1-QB+¢B w(ﬂinx) ’ . e, M |
Afm = see2 below el < e< el
> Tx
(38)

and /\}“jj for €59, < e < €9, is the unique solution fon
satisfying equation:
2B

(@ =2)ry

[-0(5) " raresi] =e @9
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The constants are given by:

2K
a—27

sic _ 2K

sic  __
€, M = a—2

€eM = [(1 - QB+ CB%} (40)

B. Comments on Theorem 3.
Several observations can be made from Theorem 3.

First, we can see that this more general theorem is
consistent with the special cases of no sic ¢ 1)
and perfect SIC{ — 0) given in Theorems 1 and 2,
respectively. This can be confirmed by first noting that
the three regimes converge to a single regime in both
cases, i.e.

2 _2
K — lim 1 —e %6 °
(—1

lim1—e™

=1-e¢%, (41
Ly e, (41)

and then it is easy to see tha,_; A5 = \;™° as
expected. Next note that
2 _2
lim 1 — e K¢= =0, —K¢ @ =1,

Jimy (42)

lim1l-—e
¢—0

and hencdim¢_,o \$*1¢ = ;PS¢ as expected.

The theorem above gives the lower bound obtained
through use of the Markov inequality. Again, correspond-
ing results for the case of the Chebychev inequality are
given Appendix VII. When¢ = 0 it is straightforward

to see the expressions foy "/, A;e” will reduce to
those of A["b7*°, (R after appropriate choice of the
optimal splitting pair(e,, ;). Similarly, when¢ = 1 it

is straightforward to see the expressions X, \;'¢

will reduce to those of\j}7', A7 after appropriate
choice of the optimal splitting paife,,, ).

The performance improvement due to SIC is very sen-
sitive to the cancellation effectiveness paramejeas

¢ — 0, especially for smalle. Looking at the upper
bound, for example, we see that for small

d ' 2

2 \essic o 7(1+E) 43

N o =, (43)
which means

li le,sic = — 0. 44

Jimy 7dCA“ 00 (44)

Thus our model suggests that technology improvements
which improve cancellation effectiveness may yield large
increases in the transmission capacity.

o For smalle it is straightforward to show that the bounds

are reasonably tight. In particular,

e,sic (Ot _ 2)ﬁ% € 2

>‘l,M 2 o (€7),
20 -0)B+ (20 +a—2)pa 77§

e,sic a—1 € T ( 2)

e e e N
with corresponding bound ratios of

A e )

A 20 -0+ (2(+a—2)pa

/\e,sic . %

l,(i’ _ (Oé 11)C + 0(62).
D Wi (1-0p*=3) +(+a—1



8 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. VOLUME, NO. NUMBER, MONTH YEAR

Note that these bound ratios abefor ¢ = 0, consistent The bound evaluated at the critical poirks \; gives:
with the poor bound ratios for perfect SIC, bat—2)/«

0 ( grsic _ _ _ %
and (o —1)/a respectively for = 1, consistent with the F (F“. () = 1—exp{—K( 3
ratios obtained for no SIC. PY(FJ°(N)) = 1—exp{—-K( =~} (49)
C. Proof of Theorem 3. The map\ — PO(ESic())) is onto [0,1) and monotone

increasing in); hence a unique inverse exists for alt> 0.

It was ea}rl_ler shown_thart =Ts IS a crlt!cal r§d|us ”? the getting this expression equal taand solving for\ yields:
sense that it is the maximum distance a single interfering node

can be from a receiver and still generate sufficient interference —hnl=9) < e—KC%

to cause an outage at that receiver. When the interference e Kf_ﬁg(’“f_é)

is partially cancelled through the use of imperfect SIC with u o = (4¢Eymrz else (50)
parameter; € (0,1) then the corresponding critical radius is —1In(1—¢) e>1- e*’“*%

improved (decreased) @rs: if the partially cancelled node ™3 -

is any further away it cannot by itself cause an outage. WithWe turn now to the lower bound. Define the following
this in mind, we define the following three spatial densitgvents:
thresholds and compute the corresponding values;ef

K..—2 K 2 P Definition 7:
Ae=0rt, A= Tys, A= LT ays .
T i i 45 sie(yy
Tsic = T'tx, Tsic = Ts, Tsic = C%’I“s. (45) F (/\) - {Y(/\) > y}7
Looking at Figure 3, for each possible spatial density F?iC()\) _ {Y(A,rs, 0> y}

of transmissions\ we can identify the distances from the o S

receiver where an interfering node at that distance will byhereY () is given by Definition 5 and

itself generate sufficient interference to cause an outage. For —a
. . Y )\7 s = Xi

example, forA € (\s,\;) nodes at distances in the range (A7, ) o (OZ N )C| |

(0,¢=r,) generate interference that is partially cancelled but T -

even so sufficient to cause an outage, and nodes at distances + Z | X |~

in the range(\/?, rs) are outside the cancellation radius but NB(OrsicVrs)

are nonetheless sufficiently close to cause an outage. is the normalized aggregate interference generated by all
partially cancelled nodes in the annulugO,rs,rs.) plus

A Tsic the interference generated by the uncanceled nodes outside

the radiusrg. V 7,.

Tix : We first compute the Markov bound off’(F}())):
E E°[Y (X, 75, C)]
D SR 1: --------------------------------- 27\ {C f;‘" r%rdr + fri T_aTdT:|
11 \ = VE —a o0 —a
Cay o |rmmmmm- S T S 277/\[Cfrs T rdr+f\/gr rdr}

> 2T A frio r~%rdr

> |-
o

>

<

b

— 2
=5 {(1 — Qi + ¢yt a}
Fig. 3. The cancellation radius;. versus the spatial transmission density -2
A. The near/far field separation radiusris this is also the farthest distance = 27 (1 — () (ﬁ) + Cyl—g}
that an uncanceled node can be from the receiver and still cause an outage. ‘;‘75 5 ™A
The farthest distance that a canceled node can be from the receiver and still ﬁyl_E

cause an outage &= rs. The arrows denote the annular regions around the . .
receiver where a single node could cause outage provided that node is inWfaere the three expressions hold for the intervals

near field.
A< Am A <A< A, A> A (51)
The upper bound event corresponding to Figure 3 is:

) respectively. The Markov bound is:
{IINb(O,¢ary)}

i 1 2T\ 1— 2—a 17%
FZ(N) =9 AN (b(0,¢=ro) ualO0,\/ X,r,)) ) (46) |- o Tﬁy |
{Hﬁb(O,Ts)} E [Y()\,TS,C)]/Z/: ((31";\)1/ [(1 _C)(TK)\) +Cy1—;:|
where the three cases apply for the intervals %7’5
(52)
AShs A <A A, A>N (47) " The value of the bound at the critical points is
respectively. The probability of the event is: s EY(Onra0)] ) Y
' 1 —exp{—Ar¢ar?} e = T = {( —C)5+C5“}a72
PUFEA) =4 1—exp{-Ar(1+C3)r2+ K} (48) E[Y (A, 75,0)] 2K

1 — exp{—Arr2} M= Y T a2
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TABLE | the Markov and Chebychev lower bound, the upper bound,
SIMULATION PARAMETERS (UNLESS OTHERWISE NOTED and simulation results. All plots confirm that the simulation
- results lie between the upper and lower bounds, and that the
Symbol gztshcrl'(fstfgx - Vai“e Chebychev bound is a tighter lower bound than the Markov
N Spreading fa%tor 16 bound. Naturally, the Markov and Chebychev “lower bounds”
B =3 | TargetSINR (DS-CDMA) | & on transmission capacity are thus upper bounds on outage
Ttx Transmission radius 10m probability while the “upper bound” on capacity is actually
K| Max. no. cancelable nodes| 10 a lower bound on outage probability We also observe that
¢ Cancellation effectiveness 10 . . .
. Target outage probability | 0.1 the simulation results for thectual and model simulators

are quite close, granting validity to our stochastic geometric
approximation of the actual behavior of the SIC receiver.
Perhaps the most striking trend in the plots is that the bounds
This function is monotone increasing and is onto[0, 1], for no SIC and imperfect SIC are fairly tight while the bounds
hence the inverse function exists. Setting the expression edgglperfect SIC are quite poor. As mentioned earlier, the loose

to e and solving forA gives: bounds for perfect SIC are a consequence of the fact that there
_— 52 . is no tight and simple sufficient condition for outage. It is also
_ "2 1 _0pipd (3 ) €< oM apparent that the scaling of the outage probability for perfect
A7 =1 see below cert <e<epy  SlCisfundamentally different than that of imperfect SIC, even
a=2 < . €> en s though the perfect SIC parametets & 10, = 0) are quite
2 r(Bere) ’ 53) similar to the imperfect SIC parameter& & 10,¢ = ).

It is not possible to obtain a closed form expressionxpﬁﬁ

for e, < ¢ < e, itis the unique solution to the equation:B' Optimal contention density versus outage constraint

Figure 5 shows the optimal contention densifyersus the
2w\ {( _ C)(E)k% 4 Cykg} — (54) outage constraint for the no SIC, imperfect SIC, and perfect
(. —2)y A ' SIC scenarios. For each scenario we show the Chebychev
The same comments made in the proof of Theorem 2 regard|Ae" bound, theactual simulation results, and the upper
finding the optimal splitting pair to maximize}f;f;c A AGusic bound. The dramatic dn‘ferencg bgtwgen.perfect SIC_gn.d im-
over all (e,, ¢;) such thate, + ¢; = ¢ hold here. perfect'SIC are apparent, again highlighting t.he sen3|t'|V|ty of
the optimal contention density to the cancellation effectiveness
parameter(. Also apparent is the fact that the no SIC and
imperfect SIC bounds are tight while the perfect SIC bounds
In this section we present some numerical and simulati@ie |oose. Finally, we see that the optimal contention density
results of Theorems 1 — 5. Two types of simulations wejg |inear in the outage constraiabver a wide range of values

performed: one where up to the firt nodes withinr, are of ¢, thus validating our linear approximations for small
cancelled by a factor of — ¢ and one where all hodes within

Tsic ré cancelled by a factor df — ¢. T_he former ams to C. Optimal contention density versus number of cancelable
approximate theactual SIC system, while the latter is our; o rferers
stochastic geometric approximateodel of the SIC system. ) ) _ _

The termsSimulation (actualpndSimulation (modeljre used ~ Figure 6 shows the optimal contention densityversus the

to differentiate the results from these two simulators. Boffimber of cancelable nodés for the no SIC, imperfect SIC,
have 90% confidence intervals. and perfect SIC scenarios. Of course the no SIC scenario is

Table | lists the nominal values used for the numericdfdependent of<, but also apparent is the insensitivity for the
and simulation results, which are based as closely as possifi@erfect SIC scenario. Recall thatis themaximunrmumber
on realistic parameters for a typical indoor wireless ad h@ cancelable interferers; the insensitivity can be explained
network. The target SINR of ~ 5dB assumes the existence®y the fact that fewer thai’ nodes typically lie in the disk
of error correction codes. For conciseness, we restrict diif?>tx) around a receiver at the optimal contention density.

attention to comparing performance of three representath@te that the perfect SIC results highlight how loose the
scenarios:i) no SIC (X = 0 and ¢ = 1), ii) perfect SIC bounds are for this scenario, and that the optimal contention

with K = 10 (¢ = 0), andiii) imperfect SIC withK = 10 density levels out first forkk ~ 5. Finally, note that the
and¢ = 1170_ imperfect SIC case demonstrates an improvement over no SIC

by a factor of abous.

V1. NUMERICAL AND SIMULATION RESULTS

A. Probability of outage versus transmission density

) ) . D. Optimal contention density versus path loss exponent
Figure 4 contains three plots of the outage probabjlif\)

versus the transmission densikyThe top plot shows the case Flgutrr:a |7 shows th(raaic;ptlrphal conten';u_)n dePSN?SVIeCrSU.SEh
of no SIC, the middle plot shows the case of imperfect SIHE'e path 0SS exponent for the case of impertec wi

; _ _ 1
with K = 10 and ¢ = 10’ and the bottom plot shows the 1This is due to the fact that transmission capacity is inversely proportional
case of perfect SIC withlk = 10. For each case we showto outage probability.
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0.1 T T
perfect SIC
K=10
= 0.01 |
£
_g 0.001 merfect SIC »,;,w'v"#w‘ ) ’ 3
] % K=10,C= 0 “‘#ﬂ“».,w"‘
g .,,-,»’:“"'"ﬁd‘ e o
z S 00001 'v“"‘”a' e g
<
3 ] M v no SIC
8 i Lower bound (Chebychev) —x—
g Simulation (Actual) —*—
3 Upper Bound —=—
1e-05 -
0.01 0.1
outage constraint (epsilon)
0.001 4
Lower bound (Markov) Fig. 5. Optimal contention density versus the outage constrainfor the
Lower bound (Chebychev) —— no SIC, imperfect SIC, and perfect SIC scenarios.
imulation —x—
Upper bound —&—
0.0001 - .
0.0001 0.001 0.01 0.1
transmission density (lambda)
H
-;é) § imperfect SIC Q:%
g < 0001 F i
3 £ ,/\‘
I5) [ ] T
0.001 k! Uno SIC
Lower bound (Chebychev) ——
Lower bound (Markov) —+— ! v e
g - =
Simulation (Model) —&— 1 2 3 4 5 6 7 8 9 10
0.0001 L L pper bound —&— upper limit on number of cancellable nodes (K)
0.0001 0.001 0.01 0.1
transmission density (lambda)
1 T T o Fig. 6. Optimal contention densityx® versus the number of cancelable
f- interferersK for the no SIC, imperfect SIC, and perfect SIC scenarios.
o 1 K =10and¢ = §5. The tightness of the bounds is increasing
_ in a.. Also of interest is the fact that the Markov lower bound
3 is monotone increasing while the Chebychev lower bound
§ oo E and the upper bound are monotone decreasing. ddteal
5;” simulation results are not monotone in and in fact the
Chebychev lower bound lies above the simulation results for
0.001 ) a < 3; this illustrates a regime where the rough equivalence
of the two models does not hold.
Lower bound (Markov) —+
Lower bound (Chebychev) —<—+
Simulation (Actual) —*—+
Simulation (Model) —&—+ . i . i .
0.0001 s Upper pound 87 E. Optimal contention density versus cancellation effective-
0.0001 0.001 0.01 0.1

transmission density (lambda) HESS

Fig. 4. Outage probabilitp,(\) versus the transmission densityfor the Figure 8 ShOWS the _optlmal contention densiy versus
cases of no SIC (top), imperfect SIC wili = 10 and¢ = -L (middle), and the cancellation effectiveness parametefor the no SIC,
perfect SIC withK = 10 (bottom). All three plots show %oth the Markov imperfect SIC, and perfect SIC scenarios. Of course the no
and Chel?ychev ‘Iower bounds and the “upper” bound, as well as sumulatu@lc and perfect SIC results are independentg‘nthey are
results with confidence intervals. " . .
shown to confirm that these results are in fact special cases of
the imperfect SIC model faf = 1 and¢ = 0 respectively. The
plot is significant because it demonstrates the great sensitivity
of the optimal contention density tg for small . This

sensitivity is why there is such a difference between the
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0.1 T T T T T T T

Lower bound (éhebychev) %
Upper bound —=—

T
DS, no SIC

0.01 0.01

DS, imperfect SIC
K=10,C=—
0.8 10
DS, perfect SIC
K=10

0.001 0.001

spectral efficiency (lambda/M)

optimal contention density (lambda)

0.0001 | k! 0.0001 v \ El

Lower bound (Markov) —+—

Lower bound (Chebychev) —<—

Simulation (Actual) —*—

. 1Upper bour}d —

1 1
35 4 4.5 5
attenuation factor (alpha)

16-05 . . .
55 5 10 20 30 40 50 60

spreading factor (M)

1e-05 . L
2 25 3

Fig. 7. Optimal contention density¢ versus the path loss exponemntfor

. ( Fig. 9. Spectral efficienc\/M versus the spreading factdd for four
the imperfect SIC scenario.

scenarios: DS-CDMA with no SIC, DS-CDMA with imperfect SIC, DS-
CDMA with perfect SIC, and FH-CDMA.

optimal contention density, and hence the spectral efficiency
above that of DS-CDMA with no SIC. Perhaps surprising is
the fact that imperfect SIC offers improvements in spectral
efficiency above FH-CDMA only for small/, in this case

M < 10. The perfect SIC DS-CDMA offers improvement
above FH-CDMA for all values ofM shown. The plots
indicate that the cancellation effectiveness parameter can be
very significant in determining whether DS-CDMA with SIC
will over or under perform FH-CDMA.

perfect SIC
K=10

0.01

imperfect SIC
. K=10

0.001

optimal contention density (lambda)

U no SIC

Lower bound (Chebychev) —=—
Simulation (Actual) —%—
UppFr bound —=—

VII.
The primary contribution of this work is a tractable frame-
work for analyzing the performance improvement obtainable
Fig. 8. Optimal contention density¢ versus the cancellation effectivenesstNrough the use of successive interference cancellation in wire-
parametei for the no SIC, imperfect SIC, and perfect SIC scenarios.  less ad hoc networks. Through the use of stochastic geometric
models and analysis we are able to obtain (in most cases)
reasonably tight closed form expressions for the transmission
perfect SIC = 10,¢ = 0) results and the imperfect SICcapacity in terms of the fundamental SIC parameters, i.e., the
results with similar parametersk( = 10,( = 45). This number of cancelable nodés and the cancellation effective-
sensitivity suggests that SIC receiver designers might fip@ss¢. Our analysis and simulation results support the claims
significant performance improvements by focusing their efforiat i) performance is highly sensitive to the cancellation
on improving the cancellation effectiveness. effectiveness parameter but less sensitive to the number of
cancelable nodes, and) the spectral efficiency of DS-CDMA
with SIC is always higher than DS-CDMA without SIC, but
may not always exceed that of FH-CDMA.

CONCLUSION

0.0001 L L L
0 0.2 0.4 0.6
cancellation effectiveness (zeta)

0.8 1

F. Spectral efficiency versus spreading factor

Figure 9 shows a plot of the spectral efficiency M versus
the spreading factak/. Note that the optimal contention den-
sity A€ is increasing inM but this increase comes at the cost
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(y—EY (N rs)])2 ( —ﬁQﬁl;f)(wA)f) (A.7)
APPENDIX A: ADDENDUM TO THEOREM 2 s LA
2
(y— o yl*E}\)
In this section, the Chebychev bound for the case of perfect )
SIC is derived. where the three expressions above hold for
A< A A< A< g, A > A (A.8)

Addendum to Theorem 2: As= (0, 1) — 0, the Chebychev The value of the above bound at the critical poinfs\, is
lower bound on the optimal contention density when receivers

i i [P . KﬁQ(a _ 2)2
are equipped with perfect Sl 0) is: psic _
quipp p CE0) €e.c (@ 1)(a—2- 25K
i i i 2
)\léjgsm > sup {)\Zu,pslc A )\ef{gslc}, (A1) (psic _ K(a—2)

RO (a—1)(a—2-2K)%

(€us€f):€uter=e
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Note that the first and third expressions in the Chebychev A
bound have the form
oA !
—_— (A.9)
(y — puA)? e
for constantg, ando? independent of. Setting this equation &rc
equal toe and solving for\ yields, fory > uA: sffc"f

2 2
Y o dpy Yy 9
= u + 72/.1126 (1 11+ —e) = —026 +0(e7). (A.10)

Setting the three expressions in the Chebychev bound equal
to e and solving for\ gives:

—21..-2, (a=2)%1_-21 8(a—1) 1
2[)’ 7\—Ttx +8(a K 7Tt E(l_ 1+ (a— 2)5 )

€,psic __ -, =
)\fc (221(1 gﬂ%_,'_Kzﬂ%)a

21 (@—2)%1, 21 / 8(a—1) €ec
042 ﬂ_ya + 8(0(—1);ya€(1 L+ a—2 ?
(A11)
The condition thaty > E°[Y(\,r)] can be expressed as
A < Apsic where APSi© is the unique density such that A
E[Y (APsi€ r,)] = y. Straightforward algebra yields:
2wrtxﬁ_ oa—2-20K <0
Ao = ¢ L(az2) K17;y3 else
0‘27T2rt;2 —57 a—2—-20Kr*>0
(A.12) R
Note that the Chebychev bound is monotone increasing for - : —> A
A < APsic monotone decreasing fox > AP and has a Mt he M
singularity atAj7'e. Inverting the bound requires a Carefutﬁg 10. Three possibilities for the three transmission densitigshs, ABS™®.
analysis of when each of the three conditions occur: The Chebychev bound is a convex increasing function Xor< AP

inversion of the function requires a careful analysis of the cases when each
psic psic psic
Ar S A SATE A SARE S A, AR S A <A of the three inverse expressions for the bound are appropriate.

he VAN

T (A.13)
Looking at Figure 10, it is apparent that the appropriate
expression for the inverse depends on hdgiposition relative APPENDIX B: ADDENDUM TO THEOREM 3
to epsm and epSlC as well as\Psic’s position relative to\, and ) )
i parucular the three expressions above hold for In this appendix, the Chebychev bound for the general case
of imperfect interference cancellation is derived.
(a) ()\ < AP ande < epsg) or \, > APsic
(b) ()\ < APSi© and 6rmc <e< epew) Addendum to Theorem 3: Lete (0,1) andy = % As
e — 0, the Chebychev lower bound on the optimal contention
()\ < APsie < A ande > epsm) density when receivers are equipped with imperfect Q1€ (
0,1)) is:
(c) As < APSC ande > epblc (0.1))
respectively. ] o> sup {A;“’Sic AXY ’CS‘C}. (B.1)

It remains to maX|m|Zt=/\€f"”IC A X&Psic over all (e, €r) (Cuses)icutes=e
such thate, + €y = e Note that although the expressmn%here are three ex
are quite messy the actual algorithm to find the optimal paif, (c): given by
is quite simple: find the splittinge,,, ;) summing toe that

pressions fr&ij;SlC which we label (a), (b),

a—1 € 2
minimizes the distance | | TR Savi prom +0(€?), (a)
|)\€f ,psic )\Zmpsu:|7 (A.14) )\?SCIIC _ see below (b)
’ € 2
where the optimal splitting pair is found by finding the inter- (a— 1)ﬂ([3énx)2 +0(e%), (©)
section of the two functions for the cases when the minimum (B.2)

distance is zero. For those cases where the two functions do pt (b) )\6 Sie s the unique solution to the equation:
intersect then the optimal pair is trivial: the smaller function

getse and the larger function gets This can be easily done T [(1 — C)(%)lﬂ + Cy2(1—é)])\

on a computer; we will study this algorithm in the numerical ;s =¢ (B3)

results section. n (y 21— O)(£) T 4+ gylf%])\)
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These three expressions (a), (b), (c) hold for the regimes

(a) ()\T < M ande < efjfc) or A, > \Sic
(b) (As <A andelt < e < 6% )

or (A < X < A, ande > €%
(¢) s < M€ ande > eSlC

respectively. The constants are given by:

a2 4—2-2K((1— ) <0
) amrt ((-0pptcat) (1=Q)B+¢6%)
A =< see below else
a=2 a—2—2K >0
QﬂT?xﬁE
(B.4)
where \%i¢ is given by the unique solution of the equation
2w K\1-3% 1-2|
“la-o(5) T+wti =y @9
whena —2—2K ((1-¢)8+¢A%) > 0anda—2—2K <0,
and
A= Er22 N = Eys (B.6)
and
K(a=2)*((1- 08 + ¢5%)
Gc7 = 3 3
(a=1)((a—2) —2K((1 = OB+ (B%))
sic K(OL B 2)2
€.c —

(a —1)(a—2—-2K)%

Proof of Addendum to Theorem 3: The variance of the
far-field interference is again found by Campbell’'s Theorem:

Var(Y (A, 7s,¢))
27\ [C [rrm2erdr + [ r—hrdr]
= ooy E e
2N [ 2 dr

j[u —OrE Gy
- ) @le-o(s)”

awj y2(1=3)
where the three expressions hold for the intervals
A< A A< A< Ay, A>
respectively. The Chebychev bound is:
E°TY (A, 7, Q)

PO(FF(N))

rdr + f\o/ozA rfzardr}

2(%5)]

“ + CyQ(lfé)]

(B.7)
foy >

Var(Y(\rs,C))
PR
[(1 O)r? 2 Za +Cy 2(17i)}/\
2
( = [(1—4)7’35‘1-&-(111*%])\)
— ﬁ[(lfg)(%)1*a+<y2(l—é)})\
= (y_
%yz(l’%b\

2 [0-0(%) Frat 2]y
2
i yl’%k)

where the three expressions hold for the same three intervals
as above. The value of the bound at the critical points is

Var(Y (Ar,7s,¢))

sic

T y-EY (A )
B Kla—2?2((1= )8 +¢p%)
(a—l)((a—Q)—2K((1—C)5+Cﬁ%))2
6?% _ Var(Y(As,rs,C))

(v = E°[Y (A, 75, Q)
K(a —2)?
(a —1)(a—2—2K)%
Setting the three expressions in the Chebychev bound equal
to € and solving for\ yields rather unwieldy expressions. The
first and third cases are in the form of (A.9); for simplicity we
employ the solution given in the right side of (A.10) which is
obtained by linearizing i arounde = 0. Applying this result
to the first and third cases above we find:
a—1 € 2
(1*052(17é)+C W(ﬂénx)z + O(C )
see below

(a— 1)#(5%767“()2 + O(€?)

NG = (B.8)

The second case, as was also true for the Markov bound,
cannot be put in closed form. It is given by the unique solution
of the equation:

S0 -0E) " PP
1_a 2
(v- 5[0 -0 F + i)

As was discussed in the proof of Theorem 2, the condition
thaty > E°[Y' (), rs, ()] can be expressed as< \si¢ where
Asic is the unique density such tha[y (Asic, rs,g)] =
Straightforward algebra yields:

= €.

(B.9)

- La—2-2K((1-C)B+CA%) <0
; 2t (1-0)p+¢h %) (1-¢)B+¢6%)
Am = { see below else
o= a—2—9K >0
27rrfx[3a
(B.10)
where X$i¢ is given by the unique solution of the equation
27\ 1-g -
sl _O< VR B CEEY

whena —2—2K ((1-¢)8+¢6%) > 0 anda —2—2K < 0.
Again referring to Figure 10, it is apparent that the appropriate
expression for the inverse depends on beglposition relative
to e;‘% and ¢}, as well as);\’s position relative to\, and

.In partlcular the three expressions above hold for

(a) (AT < XSi¢ ande < ej‘b) or A, > \Sic

) (A< Xrandelt <e<d)  (B12)
(/\ <A < g ande > €3¢ )

(¢) s < A ande > eS“’ (B.13)

respectively. |
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€f,sic

It remains to maximize\/ 5" AAG*' over all (e, €5) such
thate, + ¢; = e. The same comments apply here that were
made for selecting the optimal splitting pair for the Markov
bound: finding the optimal pair is trivial for a computer,
whereas the corresponding expressions for the optimal are both
messy and don't necessarily provide any insight.
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