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Abstract—A critical requirement for automated driving sys-
tems is enabling situational awareness in dynamically changing
environments. To that end vehicles will be equipped with diverse
sensors, e.g., LIDAR, cameras, (mmWave) radar, etc. Unfortu-
nately the sensing ‘coverage’ and ‘reliability’ of a single vehicle
is limited by environmental obstructions, e.g., other vehicles,
buildings, people, objects etc. A possible solution is to adopt
collaborative sensing amongst vehicles possibly assisted by in-
frastructure. This paper introduces new models and performance
scaling analysis for vehicular collaborative sensing and network-
ing. In particular, coverage and reliability gains are quantified, as
are their dependence on the penetration of collaborative vehicles.
We also evaluate the associated communication loads in terms of
the V2V and/or V2I capacity requirements and how these depend
on penetration. Collaborative sensing is shown to greatly improve
sensing performance, e.g., improves coverage from 20% to 80%
with a 20% penetration. In scenarios with limited penetration and
enhanced reliability requirements, infrastructure can be used to
sense the environment and relay data. Once penetration is high
enough, sensing vehicles provide good coverage and data traffic
can be effectively ‘offloaded’ to V2V connectivity, making V2I
resources available to support other in-car services.

I. INTRODUCTION

In future automated driving systems, vehicles will need
to maintain real-time situational awareness in dynamically
changing environments. Despite vehicles being equipped with
multiple sensors, e.g., radar, LIDAR and cameras etc., the
sensing ‘coverage’ and ‘reliability’ of a single vehicle is
limited. Indeed such sensors typically rely on a Line-Of-Sight
(LOS) to detect and track objects, so their performance is
fragile in obstructed environments, e.g., a vehicle may have
limited visibility of what is happening several cars ahead of
it, and that information could be critical for path planning or
determining car-following distance etc. Further without access
to diverse points of view of an object, it may be difficult to
recognize what it is, e.g., a cyclist viewed only from the front
may look like a pedestrian.

To overcome this problem researchers and industry are con-
sidering enabling distributed collaborative sensing amongst
neighboring vehicles, and possibly infrastructure, e.g., Road
Side Units (RSUs) and/or base stations. The idea is to enable
automated vehicles and/or RSUs to exchange High Definition
(HD) and/or processed data to enhance situational awareness,
see e.g., [1][2]. The benefits of this approach will depend
on the penetration of collaborating vehicles/RSUs as well as
obstructions in the environment. The communication loads can

also be high and will need to be met by enabling new forms
of connectivity.

Collaborative sensing is likely to be one of key require-
ments for automated driving [2], which is one of three most
important use cases of emerging 5G systems [3]. Thus a basic
understanding of sensing performance and traffic scaling is
of great interest. This may involve substantial data rates per
vehicle, e.g., 53 Mbps, for highly automated driving, and
require low end-to-end delays, e.g., 100 ms or less depending
on the application [4]. At high vehicle densities realizing such
data exchanges via Vehicle-to-Infrastructure (V2I) resources
is not likely to be possible, e.g., there could be tens to
hundreds of vehicles sharing a base station. A possible solution
is to leverage direct data exchanges amongst vehicles. In
particular short range millimeter wave (mmWave) based LOS
Vehicle-to-Vehicle (V2V) links can support exceedingly high
data rates [5]. Unfortunately such links are also susceptible
to obstructions, and thus, not unlike collaborative sensing
itself, the capacity of such V2V networks is limited by the
penetration of vehicles with such communication capabilities
and obstructions in the environment. Thus in order to be viable
(and reliable) collaborative sensing applications will leverage a
mix of V2V and V2I connectivity, likely attempting to offload
as much traffic as possible onto the V2V network links.

The aim of this paper is to develop initial models and analy-
sis of the benefits, communication loads and requirements for
vehicular collaborative sensing and networking. We focus on
two intertwined classes of questions:
1. What are simple and tractable metrics for collaborative
sensing performance in obstructed environments? How does
performance scale in the penetration of collaborating vehicles
and density of obstructions?
2. What are the network connectivity-capacity requirements
to support collaborative sensing on V2V/V2I networks as a
function of the penetration and density of vehicles?
Note that while our focus will be on vehicular networks, other
distributed autonomous systems built on wireless systems
share similar characteristics, including, e.g., robotic or possibly
emerging aerial drone applications.

Contributions. The key contributions of paper are as follows.
• We introduce a new stochastic geometric model for

collaborative sensing in obstructed environments with
associated performance metrics capturing coverage and
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reliability.
• We quantify the performance of collaborative sensing for

varying reliability requirements, vehicle/object densities
and penetrations of collaborative sensing vehicles.

• We study the performance and communication capacity
requirements of sensing and communication architectures
combining vehicles and infrastructures. revealing the crit-
ical role of infrastructure assistance in improving sensing
coverage and communication reliability especially at the
early stages of collaborative sensing with low penetration.

Related work. Vehicles can exchange real time sensor in-
formation with other vehicles/RSUs to enhance their view of
an obstructed environment [6][7][8]. Currently available com-
munication protocols, e.g., Dedicated Short-Range Commu-
nication (DSRC) and LTE, provide limited capacity for such
exchange. Various use cases and requirements for different
sensing technologies have been defined [4][9], and mmWave
technology is being considered to support the sharing of HD
sensor data [5][10]. [10] also compares different sensing and
communication technologies. The capacity of Vehicular Ad
Hoc Networks (VANET) has been studied in a variety of
works, see e.g., [11][12][13], yet these do not consider the
role of obstructions on mmWave channels. To our knowledge,
our exploration on modeling and assessing the scaling and
performance of collaborative sensing is novel, and the analysis
of the evolution of network requirements with penetration has
not been done before.

Organization. We begin by proposing a 2D model for
sensing in obstructed environments in Section II. We then
quantify the benefits that collaborative sensing would afford
in terms of sensing redundancy and coverage in Section III.
In Section IV we analyze the capacity requirements on V2V
and V2I networks. We conclude the paper in Section V.

II. MODELING COLLABORATIVE SENSING IN
OBSTRUCTED ENVIRONMENTS

We begin by introducing a simple stochastic geometric
model to study the character of collaborative sensing.

A. Obstructed Environments and Sensing Capabilities
The environment includes all objects, i.e., vehicles, pedes-

trians, buildings, etc. In some settings there may be substantial
a priori knowledge regarding the environment, e.g., static
elements that are part of previously computed HD maps [14].
While the presence of such objects is already known they still
impact collaborative sensing as they can obstruct a sensor’s
field of view, e.g., a building may obstruct a vehicle’s view
when entering an intersection. For simplicity we shall not
differentiate among static and dynamic objects, and focus on
sensing based on a snapshot in time1.

The centers of objects are located on 2-D plane according
to a Homogeneous Poisson Point Process (HPPP) Φ with
intensity λ, i.e.,

1In practice collaborative sensing system will track objects over time. Thus
taking the snapshot point of view can be considered “worst case” assumption.
Collaboration with oncoming crossroad vehicles and/or RSUs can improve
sensing but has higher demand on communication, see [15] for more details.

Φ = {Xi|Xi ∈ R2, i = N+} ∼ HPPP(λ),

where Xi is the location of object i, and N+ is the set of
positive integers. Each object, say i, has a shape modeled by
a random closed convex set denoted Ai ⊂ R2 referenced to the
origin 0 and independent of Xi. We let Ei denote the region
it occupies which is given by

Ei = {Xi} ⊕Ai =
∆ {Xi + x|x ∈ Ai},

i.e., the object’s shape Ai shifted to its location Xi, where ⊕
is the Minkowski sum, see Fig. 1a. Thus E =

∞
∪
i=1

Ei denotes
the region occupied by objects in the environment. We refer to
the region not occupied by objects, Ec = {x|x /∈ E}, as the
void space. Fig. 1b illustrates our model for the environment.

(a) Model for object i. (b) Model for environment.

Fig. 1. Model for environment based on randomly located and shaped objects.

It is unavoidable that as automated driving technologies
are progressively introduced, only a fraction of vehicles will
be equipped with sensors and/or participate in collaborative
sensing. Thus only the subset equipped with sensors can par-
ticipate in collaborative sensing – we shall refer to such objects
as sensors. Each object has an independent probability ps of
being a sensor. Thus the locations of sensors, Φs, correspond to
an independent thinning [16] of Φ, and Φs ∼HPPP(λs) where
λs = psλ. For a sensing object i, we assume for simplicity
that there is one sensor located at the center. The sensor has
a disc shaped sensing support S0

i = b(0, Ri) ⊂ R2 referenced
to Xi, where Ri is the maximum radius of sensing, b(0, Ri)
is a disc centered at 0 with radius Ri. Sensor i can view any
location in Xi⊕S0

i if the location is not obstructed. We denote
by Si = Xi ⊕ S0

i the sensing support of sensor i 2

(a) S0
i (b) Si

Fig. 2. Sensing support of sensor i, Si = S0
i ⊕Xi.

Fig. 2 illustrates an example of a sensor’s radial sensing
support. The environment and the sensing field are thus
modeled by an Independently Marked PPP (IMPPP), Φ̃, which
associates independent marks Mi = (Ai, S

0
i ) to each object i,

i.e.,
Φ̃ =

{(
Xi,Mi

)
, i ∈ N+

}
.

The aim is to model all the objects in the environment,
including vehicles, pedestrians, motorcycles, buildings, etc.,

2Our model and results can be easily generalized, i.e., sensors not located
at centers and/or having different sensing support, or 3-D models.
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thus we use a generalized HPPP model for the objects. Note
in practice vehicles follow the lanes on roads or parking lots,
yet the analysis for such settings is similar to the simplified
setting we consider. Furthermore comparisons via simulation
of a detailed highway model validate that the proposed HPPP
model is a good approximation to study the performance of
sensing in different scenarios. Our model may also apply
to other (collaborative) sensing systems relying on wireless
communication, while the model and analysis in this paper
would focus on the unique characters of vehicular sensing,
i.e., vehicles play the role of sensor, obstruction, and objects
of interest at the same time.

B. Model for Vehicle’s Region of Interest
We shall assume each sensing vehicle is interested in in-

formation within a certain range around it – usually measured
in time, e.g., tinterest sec. The actual spatial range depends
on the vehicle’s speed s and is given by s · tinterest. We
model a sensing vehicle i’s region of interest, Di, as a
disc, b(Xi, r), centered at Xi with radius r = s · tinterest.
For a vehicle located at the center of a multi-lane road, its
region of interest can be approximated by a rectangular set
[−s · tinterest, s · tinterest] × [−wroad

2 , wroad

2 ], where wroad

denotes the width of the road.

C. Collaborative Sensing in an Obstructed Environment
Next we define a sensor’s coverage set given the environ-

ment and sensor model Φ̃ as follows – see Fig. 3.

Definition 1. (Sensor coverage set) For sensor i in the envi-
ronment and sensor model Φ̃, we let E−i = ∪

j:j ̸=i
Ej denote

the environment excluding Ei. The coverage set of sensor i,
Ci(Φ̃), is given by

Ci(Φ̃) =
{
x ∈ Si

∣∣x ∈ Ei or lXi,x ∩ E−i ⊆ {x}
}
, (1)

where ly,z denotes the closed line segment between y, z ∈ R2.
The coverage area of sensor i is the area of its coverage set
which we denote |Ci(Φ̃)|.

In the above definition, we assume that a sensor is aware of
Ei, the space its associated object occupies, i.e. no “self block-
ing”. Also lXi,x ∩ E−i ⊆ {x} verifies that the LOS channel
between the sensor at Xi and location x is not blocked by other
objects. A location x ∈ Ci(Φ̃) may be in the void space or on
the perimeter/surface of an object. In summary the coverage
set of sensor i represents the surrounding environment that it
is able to view under environmental obstructions.

Fig. 3. Coverage set of sensor i in Φ̃.

The expected coverage area of a typical sensor is given in
the following theorem, where C0 denotes the coverage set

of a typical sensor shifted to the origin3 and A0 and S0 are
the associated shape and sensing support set referred to the
location of the object. The set S0 ∩A0 denotes the region, if
any, in the sensing support overlapping with the object, while
S0\A0 = {x|x ∈ S0, x /∈ A0} is the region in the sensing
support excluding the sensing object. Finally A denotes a
random set with the same distribution as the shape of objects
and is independent of A0. Their distributions may be different,
since the latter is conditioned on an environmental object being
a sensor, i.e., being a sensing vehicle.

Theorem 1. Under our environment and sensor model Φ̃ the
expected coverage area of a typical sensor is given by

E
[
|C0|

]
= E[|S0 ∩A0|] +E

[ ∫
S0\A0

e−λ·E[|l0,x⊕Ǎ|]dx

]
, (2)

where Ǎ = {x| − x ∈ A}.

For example if objects are modeled as discs of radius r,
i.e., A = b(0, r), with probability 1, we have that |l0,x⊕ Ǎ| =
πr2 + 2r · |x| (see [16]), so E

[
|C0|

]
is straightforward to

compute. The theorem shows how the coverage area of a single
sensor decreases in the object density λ since the probability
of sensing a given location (the term inside integral) de-
creases exponentially in λ. The proof leverages straightforward
stochastic geometric results and is included in [15].

D. Sensor Coverage Area: Numerical and Simulation Results

Below we verify the robustness of our idealized analytical
model by comparing to a simulation of vehicles on a freeway.
For the analytical model, all objects (vehicles) are modeled as
discs of radius 1.67m, roughly corresponding to the footprint
of a vehicle, and each has a sensing radius 100m. For a typical
vehicle i, we limit its region of interest and coverage set to a
rectangular centered at Xi, Di = b(Xi, 100m)∩ ([−∞,∞]×
[Xi − 12m, Xi + 12m]). This is geared at capturing the fact
that vehicles are mainly interested in sensing nearby road
and sidewalks and 12m is roughly the width of three lanes.
Simulations are based on the highway scenario specified in [9]
with 3 lanes in each direction of width 4 m each. Vehicles are
placed on each lane following a linear Matérn process [17],
i.e., randomly located but ensuring a minimum gap of 10m
among the centers of vehicles on the same lane. Vehicles are
modeled as 4.8m ×1.8m rectangles, and distance from the
center locations to the lane center are uniformly distributed
unif[−1, 1]m. The coverage area does not include the region
off the road. Fig. 4 gives an example of sensing coverage in
analytical model and highway simulation, which show similar
characteristics.

Fig. 5a exhibits analytical and simulation results for a typi-
cal vehicle’s coverage area normalized by the area of sensing
support scales versus vehicle density λ. As can be seen the
analytical and simulation results exhibit similar trends – sensor
coverage area decreases with λ due to increased obstructions
and becomes heavily limited at high vehicle densities, i.e., less

3Its distribution is formally referred to as the Palm distribution [16].
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(a) analytical model (b) highway simulation

Fig. 4. Sensing of a typical vehicle in (a) analytical model and (b) highway
simulation model. The green shapes are reference objects, the red shapes
are obstructions, light green represents sensed region, light red indicates
obstructed region.
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Fig. 5. (a) normalized coverage area of a typical vehicle. (b) collaborative
sensing redundancy of a typical vehicle.

than 20%. In an obstructed environment, collaborative sensing
will be critical to achieve better coverage and reliability for
each vehicle’s region of interest. We consider this next.

III. BENEFITS OF COLLABORATIVE SENSING

The benefits of collaborative sensing are twofold: (1) it
increases sensing redundancy/diversity leading to improved
reliability, and (2) it improves coverage and extends sensing
range. We consider two metrics for the performance of collab-
orative sensing, i.e., redundancy and coverage. In this paper
we focus on sensing void locations, i.e., where there is no
object and vehicles may move to. We can similarly study the
sensing of objects, yet the analysis and results are similar.

Sensing redundancy. We define sensing redundancy as the
number of collaborative sensing vehicles that can view a loca-
tion – higher sensing redundancy provides greater reliability
and robustness to sensor/communication link failures.

Definition 2. (Sensing redundancy) Given an environment and
sensing field, Φ̃, and a subset of sensors K ⊆ Φs which are
collaborating, the sensing redundancy for a location x is the
number of sensors in K that view x, denoted by

R(Φ̃,K, x) =
∑

i:Xi∈K

1
(
x ∈ Ci(Φ̃)

)
. (3)

The expected redundancy of a location in the void space is
then given by the following theorem.
Theorem 2. Given an environment and sensing field Φ̃ and all
sensors collaborate, K = Φs, the expected redundancy given
for a typical location x in the void space is

E[R(Φ̃,Φs, x)|x /∈ E] =
ps · λ · E[|C0\A0|]

e−λ·E[|A|] , (4)
where E[|C0\A0|] is given in Eq. 2.

The proof follows from the definition of redundancy and
coverage set and is included in [15]. Fig. 5b exhibits the
expected sensing redundancy of a typical location in the void
space. As can be gleaned from our analytical results, sensing

redundancy for a location is proportional to ps so we only
exhibit results for ps = 1. At small densities sensors are not
likely to be blocked thus redundancy first increases in the
density of objects λ. However, at higher densities, the objects
obstruct each other reducing the coverage area of each sensor
and the resulting reduced sensing redundancy. The simulation
results show the expected redundancy of a random location
in the central two lanes, and exhibit similar trends as the
analysis. Overall one can conclude that collaborative sensing
will provide highest redundancy at moderate densities, i.e., this
is where in principle collaborative sensing is most reliable and
robust to sensor/communication failures.

Collaborative sensing coverage. A location in a vehicle’s
region of interest is covered by collaborative sensing if the
location can be reliably sensed, i.e., sensed by a sufficient
number of collaborating sensors. We define the collaborative
sensing coverage and reliability for a vehicle as follows.

Definition 3. (Collaborative sensing coverage and reliability)
Given an environment and sensing field Φ̃, a minimum redun-
dancy requirement γ ∈ N+ for reliable sensing of a location,
a subset of collaborating sensors, K ⊆ Φs, and sensor i’s
region of interest Di, the γ-coverage set of sensor i is the
region within its region of interest, which is sensed by at least
γ sensors in K, denoted by

Cc(Φ̃,K,Di, γ) =
∆ {

x
∣∣x ∈ Di, R(Φ̃,K, x) ≥ γ

}
. (5)

The γ-coverage of sensor i is the area of the γ-coverage set,
|Cc(Φ̃,K,Di, γ)|. The γ-coverage reliability is fraction of Di

that is reliably sensed, |Cc(Φ̃,K,Di, γ)|/|Di|.

Denote by D0 the possibly random (may depend on s)
region of interest associated with a typical sensing vehicle,
As ⊂ R2 a random set having the same distribution of
the shape of sensors. The expected 1-coverage can then be
approximated by

E
[
|Cc(Φ̃,Φ

s, D0, 1)|
]
≈

E[|D0 ∩ C0|] + E[|D0\(C0 ∩A0)|] · (1− e−λs E[|As|])

+
(
E[|D0\A0|] · e−λE[|A|] − E[|D0 ∩ C0\A0|]

)
· (1− e−E[R(Φ̃,Φs,x)|x/∈E]). (6)

This approximation is based on decomposing D0 into various
sets: D0 ∩ C0 is the set covered by the sensor. In the
region not covered by the sensor, we have D0 ∩ E\C0

the set occupied by objects and D0\(E ∪ C0) the void
space. The collaborative coverage in each set can then be
evaluated as follows, E[|D0 ∩ C0|] is area sensed by the
vehicle itself, E[|D0\(C0 ∩ A0)|] · (1 − e−λs E[|As|]) the
area of region not covered by the sensor but occupied by
other sensing vehicle bodies and sensed through collaboration,(
E[|D0\A0|]·e−λE[|A|]−E[|D0∩C0\A0|]

)
is the area of void

space not covered by the sensor and 1−e−E[R(Φ̃,Φs,x)|x/∈E] is
an approximation for the probability a void location is sensed
via collaboration assuming the redundancy of a void location
has a Poisson distribution with a mean given in Thm. 2. A
more general approximation for γ ≥ 1 coverage is in [15].
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Fig. 6. 1-coverage reliability: (a) based on analytical approximation in Eq. 6,
and (b) obtained by simulation of highway scenario.

Fig. 7. Collaborative sensing of vehicles in a single lane with V2V + V2I
network. Vehicle uses V2I to relay data when LOS V2V links are blocked.

Fig. 6 exhibits the expected 1-coverage reliability for vary-
ing penetrations ps and vehicle densities λ. The highway sim-
ulation results show the same trends as our analytical results.
Note that Eq. 6 is an approximation of the analytical model,
which is different from our simulation of the highway scenario.
As expected, reliability increases monotonically in ps. More
importantly, collaborative sensing can greatly improve relia-
bility even with a small penetration of collaborating vehicles,
e.g., over 0.8 reliability when 20% of vehicles collaborate as
compared to 0.2 reliability without collaboration at a vehicle
density λ = 0.0175/m2. Such results indicate that it can be
beneficial to share sensor data even with only a subset of
neighboring vehicles. However to guarantee high reliability,
deploying sensing infrastructure may be necessary, especially
at low penetrations.

IV. NETWORK CAPACITY SCALING FOR COLLABORATIVE
SENSING APPLICATIONS

In this section we study the network capacity requirements
for collaborative sensing. We envisage both V2V and V2I
connectivity would be available. Vehicles would primarily use
(mmWave) LOS V2V links to share data due to the high data
rate. V2I could serve as fallback as mmWave V2V links/paths
may be blocked/unavailable, in particular when penetration
is limited during the transition from legacy systems. Below
we study how V2I and V2V capacity requirements scale with
penetration ps. Our analysis provides a comprehensive view of
a possible evolution of future network capacity requirements.

We first consider a vehicle located on a single lane road with
a penetration ps. The gap between two neighboring vehicles
is tgap. A sensing vehicle generates sensor data at rate ν, and
needs to send data to η = ⌊ tinterest

tgap
⌋ other vehicles in front and

behind it, see Fig. 7. A vehicle has LOS V2V communication
channels to the neighboring vehicles in front and back. A
non collaborating vehicle thus blocks the V2V relay path
along the chain of vehicles. If a LOS V2V relay path is not
available, we assume the reference vehicle relays data through

Fig. 8. Collaborative sensing of vehicles in a single lane using V2V + V2I,
with V2V relay assistance from vehicles in the two neighboring lanes.

the infrastructure and the receiving vehicle can then further
relay data to upstream/downstream or vehicles via available
V2V links. Let NUL and NU

DL be random variables denoting
the number of uplink and unicast downlink V2I transmissions
required by a sensing vehicle. The expected required V2I
uplink capacity cUL and V2I downlink capacity for broadcast,
cBDL, and unicast, cUDL, are given in the following theorem.

Theorem 3. Under the single lane model, the density of
vehicles is λv, each sensing vehicle generates data at rate ν
and shares with η = ⌊tinterest/tgap⌋ vehicles in front and back.
The V2I capacity requirements on a infrastructure serving the
linear road segment of length dm are given by

cUL = cBDL = ps · λv · d · E[NUL] · ν, (7)

cUDL = ps · λv · d · E[NU
DL] · ν, (8)

where
E[NUL] = 1−

( η∑
k=0

pks · (1− ps)
η−k

)2
, (9)

E[NU
DL] =

{
2(η − 1)ps(1− ps), if η ≥ 2,

0, otherwise
. (10)

The proof of is included in [15]. The above results con-
vey the average capacity requirements on V2I infrastructure.
Unfortunately a single non-collaborating vehicle can block
the V2V LOS links amongst a large number of vehicles and
result in a burst of V2I traffic especially at high penetrations,
e.g., when vehicles in front and back of the non-collaborating
vehicle are all collaborating. The required V2I capacity to
handle such bursts can thus be much higher.

The single lane relaying scenario studied above is a worst
case, i.e., data can only be relayed by vehicles on the same
lane. One can also consider scenarios where in addition collab-
orative vehicles on either of two neighboring lanes participate
in V2V relaying. LOS links among vehicles on neighboring
lanes are less likely to be blocked, but LOS links to distant
vehicles in neighboring lanes will see larger path loss and
may experience more interference, e.g., from transmissions of
vehicles in the same lane. Thus for simplicity suppose vehicles
only communicate with the closest vehicle in a neighboring
lane and consider the simple grid connectivity model shown
in Fig. 8. Each node on the grid corresponds to a vehicle,
and each row represents a lane. Vehicles have LOS channels
to neighboring vehicles on the grid. For comparison purposes
we suppose, as before, that the reference vehicle needs to send
data to η vehicles in front and back in the same lane. Vehicles
can receive data via V2V links if there is an LOS V2V relay
path on the grid. To limit the number of hops and associated
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(b) Single lane assisted by neighbors

Fig. 9. How V2I capacity requirements, normalized by λv · d · ν, scale with
ps in (a) single lane and (b) single lane assisted by vehicles in neighbor lanes.
cUL is uplink capacity, cBDL and cUDL are downlink capacity using broadcast
and unicast. cV2V is V2V throughput per sensing vehicle normalized by the
V2V throughput at full penetration, ps = 1.

delays, we assume that a relay path can not include links in
both forward and backward directions.

Based on this model, whether vehicles in the (k + 1)th

column from the reference vehicle can receive data via V2V
links depends on whether the vehicles in the (k+1)th column
are collaborating and can get data from vehicles in the kth

column. In this setting one can again compute the expected
V2I capacity requirements to deliver data to vehicles in each
column and thus the total capacity requirements as a function
of η and ps. – a detailed analysis is included in [15].
A. Numerical Results

Fig. 9 exhibits how the V2I capacity, cUL, cBDL and cUDL,
normalized by λv · d · ν and the average V2V throughput
per sensing vehicle (normalized by cV2V at ps = 1), vary
with ps in single lane and single lane assisted by vehicles
in neighboring lanes scenarios. The results correspond to the
case where η = 5, i.e., vehicles have 10 sec prediction of the
environment (tgap = 2 sec). An increase in ps causes more
vehicles to send/receive data, but also results in improved
V2V connectivity. When ps is small, both the number of
collaborative sensing vehicles and the capacity per sensing
vehicle increase with ps, thus V2I traffic increases. At higher
penetrations, V2V connectivity improves and the V2I capacity
requirements of a sensing vehicle decreases, resulting in lower
and eventually negligible V2I traffic. Comparing the results
with and without assistance from vehicles in neighboring
lanes, we observe, as expected, that V2I traffic is smaller when
vehicles in neighboring lanes help relay data, while higher
V2V throughput is required.

In summary the V2I traffic resulting from collaborative
sensing data exchanges would be highest at intermediate pen-
etrations, e.g., ranging from 0.5 to 0.7, but eventually would
decline once most vehicles participate in both collaborative
sensing and V2V networking. This suggests an evolution path
where V2I resources are initially critical to safety-related ser-
vices like collaborative sensing, but eventually at high penetra-
tions of sensing vehicles, traffic can be effectively offloaded to
V2V network, e.g., in the single lane assisted by neighboring
lanes, cUL, c

B
DL per vehicle is less than 0.25ν if ps > 0.8,

and the infrastructure may transition to supporting non-safety-
related services, e.g., mobile high data rate entertainment and
dynamic digital map update. These results are likely robust to

improved models, yet more detailed analysis based on more
accurate V2V mmWave channel and networking models would
be needed to provide more accurate quantitative assessment.

V. CONCLUSION
Collaborative sensing can greatly improve a vehicle’s sens-

ing coverage and reliability, but suffers at low penetrations
due to, both a lack of available collaborators, and blockages
in (mmWave) V2V relaying paths. Access to V2I connectivity
will thus be important to provide communication for col-
laborative sensing when V2V relaying paths are unavailable.
At higher penetrations, the average V2I traffic is low, but
the infrastructure should still have the ability to support
traffic bursts when the V2V network becomes disconnected.
Deploying sensing capable RSUs may provide good sensing
coverage, yet sensing based only on RSUs might not provide
enough sensing redundancy while the sensing capabilities of
vehicles should clearly be leveraged. We see the eventual
combination of vehicular and RSU based collaborative sensing
as the most cost effective way to achieve high coverage and
reliability for automated driving applications.
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