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Abstract—To enable situational awareness for automated driv-
ing in intelligent transportation systems (ITS), it is envisioned
that vehicles will be equipped with sensors, and possibly perform
collaborative sensing amongst themselves. Unfortunately such
sensing is subject to obstructions, e.g., other vehicles, and the
performance can be poor when the penetration of collaborating
vehicles is low. A possible solution is to deploy sensing and com-
munication capable infrastructure, e.g., road side units (RSUs)
and base stations (BSs), to assist collaborative sensing. This paper
explores the performance of infrastructure assisted sensing of
roads under various deployment schemes. Our analytical results
show that deploying RSUs at intersections and at even spacings is
most efficient in covering the roads while cellular based sensors
may subject to building obstructions and should be located along
roads working as RSUs. RSUs located above the vehicles can
have 100% coverage of vehicles once the communication range is
large enough to reach relevant sensors. Infrastructure provides
a second advantage in providing a dynamic view of the road
and thus better coverage over time. Such benefit from sensing
temporal diversity is shared by vehicles moving in the opposite
direction, yet collaborating with such vehicles involves more
challenging V2V communication given the high relative speed
and obstruction unless leveraging V2I relays.

I. INTRODUCTION

Automated driving is expected to be a key element in
future intelligent transportation systems (ITS). Vehicles will
be equipped with sensors, e.g., cameras and LIDARs, to sense
the dynamically changing environment around them. Sensing
by vehicles is subject to environmental obstructions, especially
neighboring vehicles. Vehicles can perform collaborative sens-
ing by exchanging sensor data with neighboring vehicles
to sense beyond obstructions. The performance relies on
the availability of neighboring collaborative sensing vehicles.
Sharing sensor data may also introduce high communication
loads which may require infrastructure relaying.

Deploying sensing and communication capable infrastruc-
ture can help enhance sensing by providing additional sensor
points of view and relaying sensor data. Indeed infrastructure
sensors can have better unobstructed view and communication
channels, e.g., sensors located above the vehicles are less
subject to obstructions, and may require less data to be
exchanged, e.g., a vehicle may only need data from several
infrastructure nodes v.s. neighboring vehicles.

Contributions. In this paper we study the factors impacting
the performance of infrastructure assisted sensing. 1) Infras-
tructure type, i.e., road side units (RSU) or cellular base station
(BS). We show that to achieve the same sensing coverage of

roads, it is better to deploy RSUs at road intersections and
along roads at even spacings. Unobstructed BSs may cover
more roads at high road densities and sensing ranges, yet BSs
off the roads may get obstructed by buildings. Cellular based
sensors should be located along roads and work like RSUs.
2) RSU deployment and capabilities. We show that RSUs
deployed above vehicles are not likely to be obstructed, but
require a long communication range or sensor data relaying
to deliver data to all vehicles requiring the data. 3) Spatio-
temporal diversity of sensing. Infrastructure assisted sensing
improves sensing diversity by providing sensor data measured
from different points of view. In addition infrastructure can
improve sensing coverage by utilizing the temporal diversity
caused by object/obstruction movement, e.g., sensors track
objects using measurements taken at different times. Collab-
orating with vehicles driving in the opposite direction also
improves sensing spatio-temporal diversity, yet such collabo-
ration may rely on high penetration of collaborative vehicles
and introduce high communication costs.

Related work. Infrastructure is considered to be an important
component to support automated driving [1][2]. Authors of [3]
propose a method to sense the environment using RSU based
cameras and vehicles’ GPS. An analysis of the performance
of infrastructure assisted sensing, e.g., sensing coverage, is
however absent. The deployment of RSUs has been studied in
[4][5][6], but these work focus on optimizing communication
performance of infrastructure.

Paper organization. In Section II we compare RSU and
cellular based sensing. In Section III we evaluate the perfor-
mance of RSU assisted collaborative sensing via simulation.
We explore the benefits of utilizing sensing temporal diversity
in Section IV and conclude the paper in Section V.

II. COMPARISON OF RSU AND CELLULAR BASED
SENSING

We leverage simple stochastic geometry tools to compare
the road sensing coverage of two infrastructure sensor deploy-
ment schemes: 1) sensors on RSUs placed along roads, and
2) sensors on cellular BSs, randomly placed in space.

A. System Model

We model the road system using a Manhattan Poisson line
process (MPLP) [7] on an infinite 2D plane, see [8][9]. The
roads are modeled based on two independent homogeneous
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(a) RSU based sensing (b) Cellular based sensing

Fig. 1. Manhattan Poisson line process model for roads. (a) RSU based
sensing model, (b) Cellular (BS) based sensing model.

Poisson point processes (HPPP), Ψx,Ψy ⊂ R, along the x-
axis and y-axis respectively. At each point of Ψx (Ψy) there is
a vertical (horizontal) line corresponding to a road. We shall
initially neglect the width of the roads in this section. The
intensities of Ψx and Ψy , λvroad and λhroad, correspond to the
density of vertical and horizontal roads. The total density of
roads, and the average length of roads per unit area, are both
given by λroad = λhroad + λvroad. See Fig. 1 for example.

RSU based sensing: We will assume RSUs are distributed
along each road with intensity µrsu RSUs/m, resulting in a
spatial density λrsu = λroad ·µrsu. For simplicity we assume a
road can only be sensed by RSUs deployed along the road, i.e.,
other RSUs are obstructed. RSUs are placed above vehicles
and objects on the road and can sense all objects on the
road. The sensing support of an RSU is a line segment of
length 2 · rrsu centered at the RSU. An RSU deployed at an
intersection can sense all the roads joining at the intersection.
We consider three ways of deploying RSUs: 1) randomly
distributed, where RSUs follow HPPP(µrsu) along each road;
2) evenly spaced, RSUs are deployed along roads at an interval
1/µrsu; 3) RSUs first deployed at intersections, then randomly
deployed along roads. The optimal placement of RSUs is
beyond the scope of this work, thus we consider the above
simple approaches. Placing RSUs at intersections and/or at
even spacings would cover roads with fewest RSUs. However
in the early stage of deployments, RSUs may be placed
at busy road segments first, and subject to environmental
limitations, e.g., availability of backbone infrastructure and
RSU installation space. The deployment of RSUs may also
consider performance of communication, e.g., [4][5][6]. These
considerations may bring randomness to RSU placement, and
the HPPP model represents a “worst case” deployment with
the most randomness. RSU deployments in the real world
would likely to be a compromise of these deployment models.

Cellular based sensing: BSs are modeled as randomly
located on the 2D plane, e.g., follow an HPPP with intensity
λBS [7][10]. We assume a BS’s sensing support is a disc with
radius rBS centered at the BS, see Fig. 1b. We model BSs
as being subject to building obstructions – see the 3D model
shown in Fig. 2a. Consider a typical location, 0, on a typical
horizontal road, i.e., the x-axis. We neglect other roads and
the results for vertical roads would be similar. The locations

(a) Cellular based sensing (top view) (b) Footprint of a typical building

Fig. 2. (a) Top view of cellular based sensing model under building
obstruction (in rural area), dBS,min

road = db,min
road = dmin

road. (b) Footprint of
a typical building with shape A0 and located on the same side of road as x.

of BSs follow an HPPP(λBS) on

DBS = (−∞,∞)×
(
(−∞,−dBS,min

road ) ∪ (dBS,min
road ,∞)

)
, (1)

i.e., the minimum distance from BSs to the center of road is
dBS,min
road (e.g. width of road and sidewalk). The height of BSs

is hBS. Buildings are the only obstructions. Each building is
associated with a location Xb ∈ R2 and a 3D shape modeled
by a random cuboid parametrized by Ab = (Lb,Wb, Hb),
where Lb,Wb, Hb ∈ R+ correspond to the length, width and
height of the cuboid. The side corresponding to Lb is assumed
to be parallel to the road. The location of the building, Xb,
is at the center of the side closest to the road. See Fig. 2. We
assume the shape of buildings are independent and identically
distributed, and independent of the locations of the buildings.
The locations of buildings follow HPPP(λb) on

Db = (−∞,∞)×
(
(−∞,−db,min

road ) ∪ (db,min
road ,∞)

)
, (2)

i.e., the minimum distance from the side of a building to the
road is db,min

road . The location 0 can be viewed by a sensor at
location x if it falls in the sensing range of the sensor and there
are no buildings obstructing the LOS sensing channel. Our
random obstruction model is roughly appropriate for sparse
suburban/rural areas where building densities are low and
buildings can be approximated as randomly distributed.

We shall examine the coverage of roads, i.e., the proportion
of roads covered by at least one sensor, under different sensor
deployment schemes given road density λroad and sensor
spatial density λrsu (and building density λb).

B. RSU Based Sensing Coverage
Randomly distributed RSUs (RSU random). On each road,

the coverage of RSUs follows a 1D Poisson Boolean process
[11]. RSUs on each road follow an HPPP with intensity
µrand
rsu = λrsu/λroad, each covering a road segment of length

2 · rrsu. It follows that the number of RSUs covering a
typical location, N rand

rsu , is Poisson with mean E[N rand
rsu ] =

µrand
rsu · (2 · rrsu). The coverage of road is thus given by

prsu,randcover (λrsu, rrsu, λroad) = P(N rand
rsu > 0) = 1−e−

λrsu
λroad

·2·rrsu .
(3)

Evenly spaced RSUs (RSU even). The distance between two
neighboring RSUs is 1

µeven
rsu

= λroad

λrsu
, thus the proportion of road

covered is easily shown to be

prsu,evencover (λrsu, rrsu, λroad) = min
{

1, 2 · rrsu ·
λrsu
λroad

}
. (4)
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RSUs at intersections along with randomly distributed RSUs
(RSU inter). In MPLP, the road intersections on a horizontal
road follow HPPP(λvroad), thus the spatial density of inter-
sections is λinter = λhroad · λvroad. If λrsu ≤ λinter, we assume
each intersection has a probability λrsu/λinter of having an
RSU and there are no RSUs off intersections. If λrsu > λinter,
each intersection has an RSU and in addition each road has
randomly distributed RSUs with linear density µrand

rsu , where
µrand
rsu is such that the total RSU spatial density is λrsu. The

coverage of horizontal roads is given in the following theorem.

Theorem 1. Under the above RSU deployment at road inter-
sections in MPLP, the coverage of horizontal roads is,

prsu,inter,hcover (λrsu, rrsu, λ
h
road, λ

v
road) ={

1− e
− λrsu

λh
road

·(2·rrsu)
, if λrsu ≤ λhroad · λvroad

1− e−µtotal
rsu ·(2·rrsu), otherwise,

, (5)

where

µtotal,h
rsu =

λrsu + (λvroad)2

λhroad + λvroad
. (6)

The proof again results from Boolean processes and is
omitted due to space limits. By symmetry, the coverage of
vertical roads is given by prsu,inter,hcover (λrsu, rrsu, λ

v
road, λ

h
road).

C. Cellular Based Sensing Coverage

Cellular coverage without obstructions (cellular unob-
structed). The 2D sensing supports of unobstructed BSs fol-
lows a simple 2D Boolean process [11], which results in a
coverage:

pBS
cover(λBS, rBS) = 1− e−λBS·π·r2BS . (7)

Cellular coverage under obstruction (cellular obstructed).
Denote by A0 = (L0,W 0, H0), where L0,W 0, H0 ∈ R+,
a typical random cuboid having the same distribution as
buildings. For a BS located at x, we denote by E(x,A0) ⊆ R2

the footprint, i.e., the region occupied reference to the location
of the building, of a typical building of shape A0 located on the
same side of the road as x, see Fig. 2b. The average number
of BSs sensing a typical location 0 is characterized in the
following theorem.

Theorem 2. Under our obstruction model, the number of BSs
sensing a typical location 0, No

BS, has mean

E[No
BS] = λBS ·

∫
DBS∩b(0,rBS)

e−E[Nb(x)]dx, (8)

where

E[Nb(x)] = λb · EA0

[∣∣(l0,ρ(A0)·x ⊕ Ě(x,A0)) ∩Db

∣∣], (9)

is the expected number of buildings blocking the BS at x,
b(0, rBS) is a disc centered at 0 with radius rBS l0,ρ(A0) · x
is the line segment between 0 and ρ(A0) · x, ρ(A0) =

min(1, H
0

hBS
), ⊕ is the Minkowski sum [11], Ě(x,A0) =

{y| − y ∈ E(x,A0)}.

The proof follows by Campbell’s theorem [11] and is
omitted due to space limits. If λBS and λb are small, the
sensing channels between 0 and BSs can be approximated as
independent. No

BS then follows a Poisson distribution with the
same mean and the coverage is given by

pBS,o
cover(λBS, rBS, λb) = 1− e−E[No

BS]. (10)

Building density model. pBS,o
cover depends on λb, not λroad. In

fact building density is positively correlated with road density,
e.g., over 0.6 correlation [12], thus in this work we will use
a very simple model for building density, i.e.,

λb = c · λroad, (11)

where c is a constant such that λb = 1
400/m2 at λroad = 6 km

per km2. The actual relationship is more complicated and we
use this simple model to study the scaling of cellular coverage
qualitatively.

D. Comparisons of Different Sensor Deployment Schemes

We will focus on the MPLP model, yet analysis of other
road models, e.g., (non-random) Manhattan grid model [?],
and Poisson line process [13], would be similar. The metric
we study is the minimum sensor spatial density required to
achieve a target coverage, pmin

cover. rrsu = rBS = 200 m, and we
let λhroad = λvroad. For obstructed cellular sensing model, we
assume buildings have the same dimensions, lb = lb = 14 m,
hb = 3 m. The BS height is hBS = 15 m. dBS,min

road =

db,min
road = 10 m, i.e., the width of two 3.5 m lanes and 3 m

sidewalk. Fig. 3a illustrates the required sensor density to
achieve pmin

cover = 90% as one varies the road density, e.g.,
from sparse rural to dense urban areas. We only present result
of obstructed cellular based sensing for small road densities,
i.e., λroad ≤ 6 km / km2. In dense urban areas, the buildings
are taller and fill the city blocks separated by roads, making it
difficult for a BS to have a good LOS coverage of streets which
are one block away. For better sensing coverage, cellular based
sensors would need be located on the sides of the buildings
next to roads, which then becomes similar to our assumptions
on RSU placement. In this setting, the performance of sensing
would then be similar to that of RSUs but perhaps placed at a
larger height. Fig. 3b exhibits the required sensor density for
different pmin

cover at λroad = 6 km / km2.
Benefit of placing RSUs at intersections. Deploying RSUs

at intersections can double the coverage benefit per RSU,
i.e. coverage along two roads so the required sensor density
is reduced, see the difference between ‘RSU random’ and
‘RSU inter’ in Fig. 3a. As λroad increases, we have more
intersections to place RSUs thus the benefit keeps increasing.
At high road densities, e.g., λroad ≥ 11 km / km2, deploying
RSUs only at (some of) the intersections is enough to cover
the roads and the required RSU density is reduced by half.

Randomly v.s. evenly spaced RSUs. If RSUs are distributed
at even spacings, there is no overlap among the sensing
supports of RSUs thus λeven,min

rsu < λrand,min
rsu . Furthermore

the sensor densities in random deployments is proportional to
− log(1 − pmin

cover) and go to infinity as pmin
cover → 1. In evenly
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Fig. 3. (a) Minimum sensor density to achieve 90% coverage at different
road densities λroad. (b) Minimum sensor density for different pmin

cover at
road density λroad = 6km per km2.

spaced deployments, the sensor density increases linearly with
pmin
cover and is bounded. Deploying RSUs at even spacings

and at intersections would in principle minimize the required
RSU density. However the distance between intersections is
not necessarily a multiple of the sensing range, thus overlap
between RSUs might be inevitable. Optimal deployment of
RSUs will thus depend on the actual road topology.

RSU based sensing v.s. cellular based sensing. If BSs are
unobstructed, the required sensor density does not scale with
λroad. Furthermore the required sensor density is proportional
to 1/r2BS in cellular based sensing while proportional to 1/rrsu
in RSU based sensing. The sensor density and associated cost
in cellular based sensing could be smaller than RSU based
sensing when road density and sensing range are high. When
BSs are subject to building obstructions, however, the required
sensor density increases with building density, which is posi-
tively correlated with road density, and cellular based sensing
thus may not be more efficient than RSU based sensing, see
‘cellular obstructed’ in Fig. 3. As we have discussed, cellular
based sensing in dense urban area may only cover the roads
surrounding the BSs and work similar to RSUs.

III. RSU ASSISTED COLLABORATIVE SENSING

In this section we use numerical simulation to evaluate
the performance of RSU assisted collaborative sensing, i.e.,
vehicles sense the surrounding environment based on sensor
data from collaborative other sensing vehicles and RSUs.

We consider a typical freeway scenario as described in [14],
see Fig. 4. There are three lanes in each direction, and the
lane width is 4 m. RSUs are distributed at even spacings,
drsu, along one side of the road. The distance from RSUs
to the side of road is droad. RSU sensing range is rrsu.
Vehicles are modeled as rectangular cuboids. Each vehicle has
an independent probability ps to be a collaborative sensing
vehicle, equipped with a sensor, e.g., LIDAR, mounted on the
central top. We refer to ps as the penetration ratio. Vehicles
have the same sensing range as RSUs. A vehicle is sensed
if any part of the vehicle is sensed. We denote by region of
interest the region a vehicle need to sense, and refer to the
objects (vehicles) overlapping with the region of interest as
objects of interest. Denote by s the velocity of vehicles, the
region of interest is the region of lanes in same direction within

Fig. 4. Collaborative sensing with infrastructure.
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Fig. 5. Object coverage for different communication ranges rcomm: 200m,
400m, and different RSU heights hrsu: 1m, 3m. ‘V2V’: sensing with
vehicles in same direction; ‘V2I’: sensing with RSUs.

range rinterest = 10·s, i.e., vehicles require a 10 sec prediction
of the lanes in the same direction – vehicles moving in the
same direction are more relevant. We further assume vehicles
collaborate with all collaborative sensing vehicles moving in
the same direction within communication range rcomm since
the communication links to these vehicles are more stable.
For collaboration with RSUs, we assume vehicles can get
sensor data from RSUs within range rcomm. Half of vehicles
are randomly selected to be sedans 4.8 m×1.8 m×1.5 m
(length × width × height), while the other half are SUVs
5 m×2 m×1.8 m. Taller vehicles may obstruct and impact the
sensing coverage of RSUs located at lower heights. Vehicles of
different height see different obstruction fields and thus have
different sensing coverage. Vehicles are randomly located in
the lanes and moving at constant speed s = 20 m / sec, the
lane density of vehicles is µvehicle = 1

2·s = 0.025 vehicles/m,
e.g., the average gap between two neighboring vehicles in the
same lane is 2 sec. The metric we use is object coverage,
i.e., the proportion of objects of interest which are sensed via
collaborative sensing.

Fig. 5 exhibits how object coverage of a sensing vehicle
scales with the penetration of collaborative vehicles. RSUs
are evenly distributed at even spacings drsu = 400 m and the
sensing range of RSUs and vehicles are 200 m. The RSUs
cover the whole road without gap when there is no obstruction.
The sensing by a single vehicle is not satisfactory, e.g., 65%
object coverage without collaboration (0 penetration). The
object coverage increases with the penetration ratio, yet the
coverage is still limited at low penetrations, i.e., the early
stage of automated driving. Collaborative sensing with RSUs
provides 100% coverage of objects of interest when RSUs
are located above vehicles and the communication range is
long enough, i.e., vehicles can receive all relevant sensor
data if rcomm ≥ rinterest + rsensor, see ‘V2V + V2I r =
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‘Opposite’ with vehicles moving in the opposite direction.

400 m h = 3 m’. We also examine the impact of other factors
of RSU deployment, e.g., distance to roadside, the sensing
range of RSUs and vehicles, RSU density, etc. Numerical
results show these factors have little impact once RSUs are
located higher than vehicles, cover the whole road, and have
enough communication range.

IV. SPATIO-TEMPORAL DIVERSITY IN COLLABORATIVE
SENSING

In the previous section we study how collaborative sensing
improves coverage for a snapshot of the environment by
providing spatial diversity in sensing, i.e., sensor data for
locations and objects from different points of view. In addition,
collaborative sensing can improve sensing performance via
utilizing temporal diversity in sensing. Objects in the envi-
ronment are moving thus the environment is dynamic, e.g.,
vehicles’ regions of interest, blockage fields, and the sensor
coverage sets are varying with time. Sensor data measured at
different time provides possibly different information regard-
ing the environment, thus sensors can utilize temporal diversity
for sensing and tracking of objects in the environment.

Sensors can track the states of objects in the environment,
e.g., locations, velocity, acceleration, etc, and thus have a good
estimate of the objects even when the sensing of the objects is
obstructed for some time. For simplicity we assume an object
is tracked by a sensor at t if the object has been sensed in
time interval [t− τ, t], where τ is the maximum time window
for reliable tracking without new sensor data. Vehicles in the
same direction may provide little temporal diversity as they
may move at similar. We consider collaboration with relative
mobile sensors: RSUs and/or vehicles in the opposite direction.
We use the same simulation assumptions as Section III.

Fig. 6 illustrates the object coverage reliability of collabora-
tive sensing for different collaboration schemes and different
τ . The communication range is rcomm = 500 m, enough to
communicate with all relevant sensors, and hrsu = 1 m, i.e.,
RSUs are subject to vehicles’ obstruction. Such assumption on
hrsu is mainly used to make the sensors subject to obstructions
to study the impact of temporal diversity. Sensing coverage
increases with tracking window τ , showing temporal diversity
can be utilized to improve sensing. Vehicles in the opposite
direction may provide more spatial diversity than RSUs, i.e.,

more collaborative vehicles than RSUs, yet this rely on the
penetration ratio and may introduce higher traffic loads. Even
if RSUs are subject to obstructions, RSUs utilizing temporal
diversity alone can already provide a relative high coverage,
e.g., over 95% coverage without collaborating with other
vehicles (0 penetration). At the early stage of automated driv-
ing, collaborative vehicles in the opposite direction may not
present and communication can be costly, while RSUs assisted
sensing, possibly utilizing temporal diversity in sensing, can
effectively improve sensing coverage.

V. CONCLUSION

In this paper we show that carefully deployed sensing
capable infrastructure has good coverage of roads, and can ef-
fectively help vehicles to sense beyond obstructions. However,
this would require deployment of sensing and communication
capable RSUs regularly along the roads and at intersections, as
enabling sensing at existing cellular infrastructure may suffer
from obstructions. Furthermore, to share sensor data with all
relevant vehicles, long range and high rate V2I/V2V (relay)
links are required. One may consider enabling infrastructure
to relay sensor data generated by vehicles and infrastructure
with neighboring infrastructure via (mmWave) backhaul.
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