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Abstract—MmWave based wearable networks will need to
function in various environments including possibly high density
settings, e.g., train cars. At such densities one might expect chal-
lenges in interference management and/or excessive overheads
tracking and jointly scheduling interferers. In this paper we use
simple stochastic geometric models to examine the characteristics
(number and sensitivity to motion) of “strong interferers” and
show that due to blocking they are not monotonic in user
density. Indeed, perhaps surprisingly, the most challenging setting
appears to arise at “intermediate” user densities. We then
propose a simple model to evaluate the performance of current
MAC designs based on clustering and hierarchical scheduling.
The results exhibit a performance trade-off leading to an optimal
cluster size which depends on the directionality of transmissions.
More importantly, we show that at high densities the per user
throughput is roughly constant, suggesting wearable networks
will scale well in dense scenarios.

I. INTRODUCTION

The market for wearable devices is growing quickly and
research on possible types of wearable networks is actively
being pursued [1]. In the future, users may be equipped with
multiple on body interconnected devices, some of which may
require high bandwidth, e.g., devices supporting high quality
audio/video and delivering augmented reality experiences. To
support such high data rates and operate at possibly high user
densities, millimeter wave (mm-wave) communication in the
60GHz band has been proposed and standards developed for
short-range wireless personal area networks (WPAN), e.g.,
802.11ad [2], 802.15.3c [3] and ECMA387 [4].

Signal propagation in the mm-wave band is different from
bands traditionally used for mobile wireless devices. The free
space path loss in the mm-wave band is higher, thus the trans-
mission range is short, and mm-wave transmissions experience
higher loss due to blockage. This makes the transmissions
depend mostly on the availability of a line-of-sight (LOS)
channel or strong reflected non-line-of-sight (NLOS) channel.
Further, the human body introduces a path loss of over 20dB
[5] thus movements of a user and its neighbors may greatly
change the channels. Devices operating in the mm-wave band
usually use directional transmissions and reception, thus the
antenna gain is non-uniform. As a result, the channels in
the mm-wave band are very sensitive to the environment
and user motions. These characteristics are not necessarily
shortcomings, e.g., short range, directionality and blockage can
reduce the interference seen at receivers, naturally simplifying
interference management. In this paper we focus on dense
indoor environments with possibly very high user densities and

dynamics, e.g., a crowded train car. Such a setting corresponds
to one of the extreme environments where the technology
should operate seamlessly. It is an open question if and how
the MAC protocols should adapt to work in such environments.

Another key characteristic of mm-wave wearable networks
is the possible heterogeneity of devices. Wearable devices
may have different transmission capabilities in terms of beam-
forming/directionality, computation capacity, transmit power
and energy, etc. Moreover, the traffic patterns of users/devices
may be different, some may leverage highly directional links
between smart phones and augmented reality devices while
other users may have multiple low-end devices with relatively
poor directionality. Such heterogeneity makes it challenging
to optimize MAC protocols to guarantee Quality-of-Service
(QoS) requirements for high-end applications.

The above characteristics affect MAC design in different
ways. The nature of mm-wave propagation makes it pos-
sible to achieve higher spatial reuse, but scheduling users
is challenging as the signaling can be unreliable and the
interference characteristics may change frequently. The high
density of users and user dynamics in indoor environments
suggest that the MAC protocols should coordinate among users
using limited signaling to reduce overheads. Heterogeneity
of devices may require transmissions be treated differently
and the MAC should adapt to different devices and QoS
requirements.

Contributions. In this paper, we explore the nature of mm-
wave propagation for dense wearable networks to better un-
derstand the role of interference and the need for coordination
and MAC scheduling in such environments.

We first study the characteristics, i.e., number, location and
sensitivity to motion, of “strong interferers” as seen by a
typical receiver in a dense wearable environment. The strong
interferers are those that in principle a MAC protocol would
aim to address through scheduling. We note that some work
has been done on analyzing the signal-to-interference-ratio
(SINR) distribution in dense wearable networks but the studies
mostly assume there is no scheduling or consider simple
protocols like Aloha [6][7]. Our main findings regarding the
interference environment include:

• The average number of strong interferers seen by a typical
receiver does not keep increasing with user density. In
fact it reaches a peak then starts decreasing as a result of
human body blockage.
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• In highly dense environments, most strong interferers are
actually nearby since the close neighbors essentially form
a “ring” round the user blocking more distant interferers.

• Strong interferers are most sensitive to users’ local mo-
tions at intermediate user densities.

We then revisit current approaches to MAC design for
wearable networks which leverage clustering and hierarchical
scheduling and study their performance in high density sce-
narios given the particular characteristics of mm-wave propa-
gation discussed above. Our main contributions and findings
regarding MAC and scheduling with clustering include:

• We propose a simple model to analyze the performance
of clustering and scheduling for dense wearable networks
and validate it through simulation.

• We explore the trade-offs associated with cluster size:
large clusters reduce inter-cluster interference but require
more coordination overheads and result in reduced reuse
versus small clusters.

• We study how the transmission capabilities of devices
impact the best cluster size: highly directional transmis-
sions prefer smaller cluster sizes while low directional
transmissions prefer larger clusters to mitigate interfer-
ence. MAC schedulers can and should be optimized
depending on device transmission capabilities and QoS
requirements.

• We show that the per user throughput first decreases with
user density as expected, but then remains stable and even
increases at high densities. The optimal cluster size also
remains roughly constant in dense scenarios. Our results
suggest that, perhaps surprisingly, the MAC of wearable
networks is “scalable” to high user densities.

Related work. The channel and interference characteristics
in the mm-wave band have been studied in [8] for urban
cellular network and [6][7] for indoor wearable networks. In
these works, the transmissions of users are not coordinated,
or assume simple protocols like Aloha, and the interference
from all users is summed up to analyze the SINR. In this
paper, instead, we focus on characterizing the set of users the
MAC needs to coordinate so as to identify the requirements on
the MAC. [9][10][11] study the impact of human mobility on
the channel between two fixed points through measurements
and simulations, but do not study how the set of interferers is
affected.

MAC protocols have been proposed to improve the spatial
reuse for mm-wave networks [12][13][14], but the character-
istics in dense wearable networks, i.e., the blockage of user
body and large density of devices, are not considered. The
authors of [15] propose a link scheduling protocol for mm-
wave ad hoc networks with blockage. However, the blockage
model does not consider the actual characteristics of dense
wearable networks, i.e., the parameters of channels are set
without considering the blockage model, user density and
locations of users.

Organization. In the next section, we discuss the system
model used in our paper. We then present an analysis of

the number of strong interferers and their sensitivity to local
motions in Section III. In Section IV we study the performance
of clustering in hierarchical wearable MAC protocols. We
conclude the paper in Section V.

II. SYSTEM MODEL

In this section we introduce the system model for dense
wearable networks. The devices on each user form a Personal
Basic Service Set (PBSS), coordinated by the PBSS Control
Point (PCP), e.g., the user’s smart phone. Data transmissions
only happen between the PCP and non-PCP devices of the
same PBSS. There is no access point (AP) or central controller
to coordinate or synchronize transmission across all users.
We use the channel between two PCPs to approximate the
channels between the devices in two PBSSs. PCPs are located
in the front of user body at a fixed height hdevice, see Fig. 1.
We define an interferer as a strong interferer if the interference
power, Pr, exceeds a threshold γSI, i.e., Pr > γSI, where

Pr = Pt ·Gt ·Gr · L,

Pt is the transmit power, Gt and Gr are the transmit and
receive antenna gains, and L is the path loss.

User model. Users are assumed to stand on a 2-D plane.
Walls and obstructions other than human bodies are not
considered, but we shall assume there is a ceiling at a
height hceiling. For simplicity, users’ bodies are of the same
dimension.

Consider the user located at the origin 0 with an orientation
Θ0, which is uniformly distributed on [0, 2π]. The centers of
other users, Φ = {Xi}, follow a homogeneous Poisson Point
Process (HPPP) with intensity λ, conditioning on that there is
no point on b(0, rmin). Here b(0, rmin) denotes a disc centered
at 0 with radius rmin, and rmin is the minimum distance
between users. Let Θi denote the orientation of user i, which is
assumed to be independent and identically distributed (i.i.d.)
and uniformly distributed on [0, 2π]. Φ̃ = {(Xi,Θi)} is an
independently marked point process (i.m.p.p.) and the network
is uniquely defined by Φ̃. We let φ̃ = {(xi, θi)} denote a
realization of Φ̃. We will use the location of user to represent
the user, e.g., xi for user i.

Channel model. We use the location of the center of a
user to approximate the location of the user’s PCP. Only
two types of channel are considered, the LOS channel and
the reflected channel over the ceiling, which we refer to
as the NLOS channel. The LOS channel follows the free
space propagation model while the path loss of the reflected
channel is determined by the free space path loss and a ceiling
reflection coefficient, Γ, which depends on incident angle and
reflection material [16].

Blockage model. We assume that the channel gain of an
interference channel is 0 if the channel is blocked by users,
including self blockage. For self blockage, we assume user’s
body would block both the LOS and NLOS channels to/from
devices behind the user as shown in Fig. 1. We say that two
users are “facing” each other if they are in the non self-block
regions of each other.
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Fig. 1. Illustration of the location of PCP and self-blockage model. The PCP
is located in front of user body at a height hdevice. The arrow indicates the
orientation of the user.

Blocking by other users can be different for LOS and NLOS
channels. Consider the channel between the user at the origin
and the user at location x, and a potential blocking user
(x′, θ′), see Fig. 2(a). We assume user x′ blocks the LOS
channel if the following two conditions are met,

sx(x
′) ∈ [0, |x|] and 0 ∈ Dx(x, θ

′),

where sx(x′) ∈ R is the projection of x′ on the unit vector
from 0 to x, |x| is the distance between x and 0, Dx(x′, θ′) ⊂
R2 is the projection of user’s cross section at height hdevice

on the vector nx, which is the vector perpendicular to the
vector from 0 to x. For blocking of the NLOS channel, we
further assume that the cross section of the user body at height
higher than the device, h ≥ hdevice, is contained in the cross
section at height hdevice. Thus x′ blocks the NLOS channel if
an additional third condition is satisfied:

hNLOS(x, sx(x
′)) ≤ h(x′,θ′)(y), ∀y ∈ Cx(x

′, θ′),

where hNLOS(x, sx(x′)) is the height of the NLOS channel
at distance sx(x′) from 0 and h(x′,θ′)(y) is the height of user
(x′, θ′) at location y, Cx(x′, θ′) ⊂ R2 is the intersection of
the cross section of user (x′, θ′) and the segment between 0
and x, see Fig. 2. This additional condition implies that if the
LOS channel is not blocked, the NLOS channel is also not
blocked.

Given Pt, Gt and Gr, let rmax be the maximum distance
of a strong interferer when the LOS channel is available, and
rreflectionmax that when the NLOS channel is not blocked but the
LOS channel is blocked. Due to reflection loss and longer
path, rreflectionmax < rmax. For |x| ∈ [rmin, rreflectionmax ], user x
is a strong interferer if the NLOS channel is not blocked; for
|x| ∈ (rreflectionmax , rmax], user x is a strong interferer if the LOS
channel is not blocked. Notice that the path loss of the NLOS
channel may not be a monotonic increasing function of |x| due
to the sensitivity of the reflection coefficient to incident angle,
thus for |x| < rreflectionmax , having an unblocked NLOS channel
is only a necessary condition for being a strong interferer in
some scenarios. The model can be easily extended to account
for these effects.

Antenna model. We assume that the antenna gain is invari-
ant to the angle between antenna direction and the vertical axis,
e.g., the same for the LOS and the NLOS channel between
two devices. The antenna gain follows a sectorized antenna
model, i.e.,

G =

{
gmain, w.p. β/2π

gside, w.p. 1− β/2π
,

(a) Blockage model for LOS channel

(b) Blockage model for NLOS channel

Fig. 2. (a) shows the conditions that user (x′, θ′) blocks the LOS channel
between 0 and x. (b) illustrate the additional condition required for NLOS
channel.

where gmain is the antenna gain of main lobe, gside is the
antenna gain out of the main lobe, β is the beamwidth on the
2-D plane users are standing.

There are many complex factors involved in mm-wave
propagation but the simple model captures the salient features
for such systems.

III. INTERFERENCE IN DENSE MM-WAVE WEARABLE
NETWORKS

In this section we study the interference environment a user
would experience in a dense mm-wave wearable network.

A. Number of Strong Interferers
We first analyze the number of strong interferers seen by

the user at 0, (0, θ0), NSI. NSI can be written as follows,

NSI =
∑

(X,Θ)∈Φ̃

f(X,Θ, Φ̃\{(X,Θ)}, 0, θ0), (1)

where f(X,Θ, Φ̃\{(X,Θ)}, X0,Θ0) is the indicator function
that user (X,Θ) is a strong interferer of user (X0,Θ0) given
the other users, Φ̃\(X,Θ).

NSI is a function of Φ̃, and this makes the distribution
of NSI hard to compute. Still the average number of strong
interferers is a good metric to capture the MAC coordination
requirements/overhead.

To compute E[NSI] we first compute the probability that the
channel between 0 and x is blocked. Denote by NLOS

B (x) a
random variable corresponding to the number of users block-
ing the LOS channel between 0 and x, NNLOS

B (x) a random
variable corresponding to the number of users blocking the
NLOS channel. Clearly NNLOS

B (x) ≤ NLOS
B (x) almost surely

according to our model. The distribution of NLOS
B (x) is given

in the following theorem.
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Fig. 3. E[NSI] for different user densities. hbody = 1.754m, hdevice = 1m,
hceiling = 2.8m, |Γ|2 = 0.2166. PBSSs work on 60GHz band and the
threshold of path loss for strong interferers is -88 dB, rmax = 10 m, and
rreflectionmax = 3.1m.

Theorem 1. If user locations follow an HPPP with den-
sity λ, NLOS

B (x) follows a Poisson distribution with mean
E[NLOS

B (x)] ≈ λ|x|E[D], where E[D] is the expected width
of a user’s cross section at hdevice. The probability that the
LOS channel is not blocked is e−E[NLOS

B (x)].

The proof of Theorem 1 is based on showing that NLOS
B (x)

is obtained from a thinned Poisson process [17] and using
Campbell’s formula [18] to get its mean. For NLOS channels,
NNLOS

B (x) also follows Poisson distribution and its mean can
be computed similarly.

Based on the above analysis and assumptions, E[NSI] can be
computed using the Reduced Campbell’s formula for i.m.p.p.
of Corollary 2.2 in [18] as follows,

E[NSI] = Pfacing

∫

R0

[
1(|x| ∈ [rmin, r

reflection
max ])·e−E[NNLOS

B (x)]

+ 1(|x| ∈ (rreflectionmax , rmax]) · e−E[NLOS
B (x)]

]
λ(dx), (2)

where Pfacing is the probability that user x and user 0 faces
each other, R0 = R2\b(0, rmin).

Numerical results. In a dense scenario, HPPP model for
users locations may not be a good model as users can not
overlap with each other and this may affect the accuracy of
our model for E[NSI]. In Fig. 3 we compare our analytical
results with simulation accounting for user not overlapping.
Users are modeled as cylinders with a diameter of 0.6m, and
we use Matérn III process [19] to model user locations in
a simulation with rmin = 0.6m. Our analytical results are
in line with the simulation, validating the accuracy of the
approximation. E[NSI] first grows with the user density, but
as user density further increases, close neighbors block the
interference from more distant users, thus E[NSI] saturates and
begins to decrease with density. Users see the largest number
of strong interferers at moderately high user densities.

Fig. 4 illustrates the distribution for the distance of strong
interferers for varying user densities. Fig. 5 shows the locations
of strong interferers in one realization of the network. As user
density increases, the strong interferers tend to concentrate
close to the receiver. When user density is very high, the
network reaches a “jamming regime”, where strong interferers

2 4 6 8 10
|x| (m)

0

0.5

1

1.5

2

2.5

PD
F

�=0.1
�=0.5
�=1.5

Fig. 4. Probability density function of LOS strong interferers as a function
of the distance to the user at 0, |x|.

(a) λ = 0.1/m2 (b) λ = 0.5/m2 (c) λ = 1.5/m2

Fig. 5. The locations of strong interferers for different densities, ignoring
self blockage. The joint red circles represent LOS interferers, green hollow
circles are NLOS interferers and blue crosses are non strong interferers. The
area shown above is 10m × 10m.

are mostly close by and block further away interferers as
shown in Fig. 5(c).

B. Sensitivity of Strong Interferers
In this section we study the sensitivity of strong interferers

to users’ small local movements. The sensitivity of strong
interferers, i.e., how the set of strong interferers changes when
users move, influences the cost and benefit of tracking and
coordinating with such neighbors.

Suppose in a time interval [t, t+∆t], users make indepen-
dent small scale movements, i.e., translation ∆Xi and rotation
∆Θi. Denote by Φ̃t the network at time t. Given Φ̃t = φ̃t and
the user at 0 is (0, θ0) at t, the changes of the network are
summarized as follows:

(0, θ0) → (∆X0, θ0 +∆Θ0),

φ̃t = {(xi, θi)} → Φ̃t+∆t = {(xi +∆Xi, θi +∆Θi)}.
We assume both ∆Xi and ∆Θi are i.i.d., ∆Xi is uniformly
distributed in b(0, rmove), rmove is the maximum range of
movements, ∆Θi is uniformly distributed in [−ω,ω].

Denote by Y t
x = f(x,Θ, Φ̃t\(x,Θ), 0,Θ0) as a random

variable representing whether user x is a strong interferer at
time t, and Y t+∆t

x a random variable representing the state of
the same user at t+∆t, i.e.,

Y t+∆t
x = f(x+∆X,Θ+∆Θ, Φ̃t+∆t\(x+∆X,Θ+∆Θ),

∆X0,Θ0 +∆Θ0),

where ∆X , ∆Θ are random variables having the same dis-
tribution as ∆Xi and ∆Θi respectively, Y t

x and Y t+∆t
x ∈
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Fig. 6. (a) Sensitivity of users at different distance |x|, and (b) average
sensitivity of a typical strong interferer E[S] for different user densities.

{0, 1}. We define the sensitivity of an interferer originally
located at x for an interval of length ∆t, S(x,∆t), based
on the autocorrelation of the state of the interferer at t and
t+∆t as follows,

S(x,∆t) = Corr(Y t
x , Y

t+∆t
x ) =

Cov(Y t
x , Y

t+∆t
x )

σY t
x
· σY t+∆t

x

, (3)

where Cov(Y t
x , Y

t+∆t
x ) = E[Y t

xY
t+∆t
x ] − E[Y t

x ] E[Y
t+∆t
x ],

σY t
x

and σY t+∆t
x

are the variance of Y t
x and Y t+∆t

x , S(x,∆t) ∈
[0, 1]. If S(x,∆t) is small, the autocorrelation of the user state
is small and the channel sensitive to movements; if S(x,∆t)
is close to 1, the autocorrelation is high and the interferer is
stable. S(x,∆t) can be computed as used to obtain E[NSI] and
leveraging the simple mobility model. The details are omitted
due to space constraints.

Numerical results. We present the numerical results on the
sensitivity of LOS strong interferers for ∆t = 1s in Fig. 6. We
assume rmove is a function of λ and may decrease with user
density, i.e., rmove(λ) = min(0.23, 0.6

√
1/λπ) m, to capture

the fact that users’ local movements become limited as the
distance among users becomes smaller. The range for rotation
is 48°, i.e., ω = 24°. Fig. 6(a) exhibits the sensitivity of users
at different distances. As can be seen, distant interferers are
more sensitive to perturbations than close by interferers. This
supports the observation that close by users (interferers) will
be robust to movements and learning the interference from
close by neighbors is more reliable. Fig. 6(b) exhibits the
sensitivity of a typical strong interferer, E[S],

E[S] =
λ
∫
R2\b(0,rmin)

S(x,∆t) · PSI(x)dx

E[NSI]
,

for different user densities, where PSI(x) is the probability
that the user located at x is a strong interferer of user at
0, which can be computed based on our blockage model.
Strong interferers first become more sensitive to movements as
S(x,∆t) decreases with λ. In highly dense scenarios, strong
interferers are closer and the movements become limited,
thus the strong interferers become more robust to user local
movements.

IV. PERFORMANCE OF HIERARCHICAL WEARABLE MAC
In this section, we propose a simple hierarchical MAC pro-

tocol for dense wearable networks and study its performance.

Fig. 7. Frame structure of clustering with Hierarchical Resource Reuse.

A. Hierarchical MAC for Wearable Networks
When centralized control is absent, hierarchical clustering

and scheduling work as a viable solution to coordinating the
multiple PBSSs, e.g., the distributed clustering in 802.11ad.

The hierarchical MAC consists of three parts, clustering,
channel selection and scheduling at each PBSS. The cluster
head synchronizes PBSSs in the cluster and schedules Beacon
Transmission Intervals (BTIs) for each cluster member PBSS.
Due to high user density and unstable channels, cluster head
may not schedule the data transmissions for cluster members.
Channel selection is mainly used to mitigate interference,
either the cluster head selects a channel for all members in
the cluster, or the PBSSs choose the channel to work on then
form clusters on that channel. Clustering and channel selection
help coordinate the PBSSs and are usually performed at a
slower time scale. In each PBSS, the PCP schedules the data
transmissions within the PBSS for each frame while trying to
optimize reuse in dense scenarios.

Current standards leave open the question of how to form
clusters and select channels according to the scenario. Another
major problem is that reuse might be limited, e.g., PBSSs may
not use the same slots and work in a time devision multiple
access (TDMA) like manner if they can hear others’ beacons
in 802.11ad.

For dense wearable networks, the basic principle underlying
clustering is that the channels between cluster head and cluster
members should be strong and stable. To better mitigate
inter-cluster interference through channel selection, it is also
desirable that cluster members share a similar set of strong
interferers. Based on our analysis of channels and the above
principles, a cluster shall consist of users in close proximity
and operate in a channel distinct from that of nearby clusters.

To achieve better resource reuse within the cluster and meet
the basic QoS requirements of each PBSS, we propose a
hierarchical scheduling method shown in Fig. 7. Each PBSS
is allocated a reserved slot where it has priority over the other
PBSSs. Other PBSSs may however try to contend with other
non-priority PBSSs to reuse slots if the their transmissions do
not interfere with the transmissions of the priority PBSS.

B. Modeling Achievable Reuse for Hierarchical MAC
In this section we propose a model to compute the achiev-

able reuse of clustering for dense wearable networks.
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Consider the average time that a typical PBSS can perform
a successful data transmission, denoted by Successful Trans-
mission Time (STT), as the performance metric of interest. A
PBSS interferes with another PBSS if the interference power
it causes at the receiver is above a threshold γSI. We say two
users interfere with each other if the interference power at
either user exceeds γSI. A transmission is successful if the
there is no interferer. STT is then defined as follows,

STT = fdata × paccess × psuccess,

where fdata is the fraction of time reserved for data trans-
mission, paccess is the probability that a PBSS may access the
channel and does not interfere with other PBSSs within the
same cluster, and psuccess is the probability that a transmission
is free from inter-cluster interference.

There are two types of transmissions, beacon and data
transmissions. To account for the heterogeneity of devices,
e.g., transmission capabilities and QoS requirements, we clas-
sify data transmissions of each PBSS into two categories,
primary data transmissions with higher QoS requirements and
highly directional antennas and secondary data transmissions
associated with lower QoS requirements and less directional
antennas.

Modeling clustering and channel selection. We assume
that clusters are of the same size K and share M channels.
Each cluster includes the nearest neighbors of the cluster head
and when possible each cluster chooses to operate on different
channels than closest neighboring clusters. In a typical cluster,
we model the cluster head as located at the center while the
other K − 1 cluster members are its closest neighbors.

To obtain a tractable simple model, we assume the cluster
members are uniformly distributed on a disc centered at the
cluster head with a fixed radius Rcluster, see Fig. 8. Suppose
user density on the disc is the same as λ, then the expected
number of users on the disc should be equal to the number of
cluster members, K − 1, i.e.,

λπ(R2
cluster − r2min) ≈ K − 1,

Rcluster ≈
√

K − 1

λπ
+ r2min.

Channel selection is geared at ensuring neighboring clusters
operate on different channels and thus effectively forms an
inter-cluster interference protection region, see Fig. 8. An
idealized protection area is modeled as a disc centered at the
cluster head with a radius Rprotect, where there are no inter-
cluster interferers. Assume the fraction of clusters operating
on each channel is equal, and the number of users in the
protection area of each cluster is the same. We further assume
the protection areas of clusters on the same channel are non-
overlapping, then on average there should be M ·K users in the
protection area. Suppose these users are uniformly distributed
on the protection area with density λ, then we have under our
idealized model,

λπ(R2
protect − r2min) ≈ M ·K − 1,

Fig. 8. Model of clustering and channel selection. Red circles represent users
working on the same channel.

Rprotect ≈
√

M ·K − 1

λπ
+ r2min.

We shall assume users outside the protection area can be
modeled as following a HPPP with density λ and operating
on a given channel with probability 1/M . All PBSSs outside
the protection region work independently.

Modeling scheduling. We assume there is at most one
transmission in each PBSS in each slot. Let Tframe denote
the length of a cluster shared frame and Tbeacon denote the
length of one BTI. The cluster head reserves exactly K
BTIs in Tframe thus the proportion of data reserved for data
transmission is given by

fdata =
Tdata

Tframe
=

Tframe −K · Tbeacon

Tframe
.

In each BTI, exactly one PCP will transmit its beacon and
the other devices will attempt to receive the beacon using
omni-directional receive mode. The PBSSs are full-buffer and
schedule primary transmissions a proportion ρprimary ∈ [0, 1]
of slots for data transmission and schedule secondary trans-
missions for the remaining ρsecondary = 1− ρprimary slots.

We consider two types of scheduling within clusters: TDMA
and Hierarchical Resource Reuse (HRR). In TDMA schedul-
ing, PBSSs share the slots equally within the cluster and the
fraction of time that a PBSS can access the channel in a frame
is given by,

pTDMA
access = fdata/K.

A PBSS schedules primary transmissions in ρprimaryfdata/K
slots, and secondary transmissions in the rest (1 −
ρprimary)fdata/K slots.

In HRR, each PBSS is allocated 1/K of the slots where
it is priority PBSS, i.e., having higher priority in scheduling.
A PBSS first schedules primary transmissions in the reserved
slots and schedules other transmissions by reusing slots al-
located to other PBSSs. If ρprimary ≤ 1/K, the PBSS also
schedules secondary transmissions in the allocated slots. Other
PBSSs will try to reuse the slots if they do not interfere with
the priority PBSS owning the slot. The probability that a PBSS
can reuse a given slot is approximated by

preuseaccess ≈ (1− pprioritySI ) · 1

1 + E[N reuse
intra−cluster]

,
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TABLE I
THE PARAMETERS USED FOR MAC ANALYSIS

Parameter Value
Frequency 60 GHz

M 4
λ 1 user/m2

Pt (primary) 10 dBm
Pt (secondary) 4 dBm

γSI -78 dBm
gmain (β = 60°) 5 dB
gside (β = 60°) -5 dB
gmain (β = 24°) 10 dB
gside (β = 24°) -10 dB

Tframe 100 ms
Tbeacon 2 ms

where pprioritySI is the probability that the typical PBSS in-
terferes with the priority PBSS considering the channel path
loss and antenna gain, N reuse

intra−cluster is number of non-priority
PBSSs in the cluster, which do not interfere with the priority
PBSS and contend with the typical PBSS to reuse the slot.

Denote by Ninter−cluster the number of inter-cluster inter-
fering PBSSs. The activities of inter-cluster interferers are
assumed to be mutually independent thus Ninter−cluster fol-
lows a Poisson distribution and the probability of a successful
transmission is approximated as follows,

psuccess = e−E[Ninter−cluster].

The distribution of Ninter−cluster is related to the transmission
patterns of interfering PBSSs, which in turn depends on the
location of PBSSs within the cluster. We use the transmission
pattern of a user

√
2
2 Rcluster away from the cluster head as the

typical transmission pattern and all inter-cluster PBSSs have
the same transmission pattern.

C. Numerical Results and Discussion
In this section, we present the achievable STT of a repre-

sentative user which is located between the center and the
edge of the cluster at a distance

√
2
2 Rcluster to the center.

We assume the secondary transmissions use omni-directional
antenna and low transmit power while primary transmissions
use directional antenna with β = 60°, ρprimary = 0.5. The
parameters used are listed in Table I.

We begin by comparing our analytical model with simula-
tion in Fig. 9. In our simulation, the locations of users follow a
Matérn III process [19], i.e., users can not overlap each other.
The blockage from other users follows the probabilistic model
based on distance while self-blockage and antenna gain are
calculated based on user locations and orientations and antenna
directions. Users are first clustered using Affinity Propagation
(AP) [20] based on a similarity metric between two users i
and j, which is simply defined as the inverse squared distance,
i.e., d−2

ij , where dij is the distance between user i and j. After
clustering, the cluster heads hop among channels, attempting
to minimize the sum similarity to inter-cluster PBSSs that are
on the same channel. Channel selection is performed for a
fixed number of rounds at which point cluster heads stop
sselecting channels. After clustering and channel selection,

each cluster schedules users either using TDMA or HRR. In
HRR, each non-priority PBSS is assigned a random reuse-
priority, and a non-priority PBSS user can reuse the channel
if it does not interfere with the prioirty PBSS, nor other non-
priority PBSSs which have higher reuse priority and do not
interfere with the priority PBSS. As shown in Fig. 9, the
simulation results for this more realistic network model, e.g.,
with real clusters, channel selection and scheduling, are in
accordance with our simplified analytical model.

Trade-offs associated with cluster size. Fig. 9 exhibits how
the STT changes with cluster size. STT first increases with
cluster size, then saturates and decreases, indicating that while
large clusters may provide good inter-cluster interference
mitigation, they increase the contention between users within
a cluster as well as signaling overheads thus may reduce the
spatial reuse.
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(a) STT in TDMA
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(b) STT in HRR

Fig. 9. Total STT (T.), STT of primary transmissions (P.) and STT of
secondary transmissions (S.) in TDMA and HRR for different cluster sizes.

Impact of transmission capability of devices. Fig. 10
compare the STT when users have different beamwidths β
for primary transmissions. As might be expected, the optimal
cluster size maximizing STT is smaller when the transmissions
are more directional. Results suggest that highly directional de-
vices are less dependent on clustering to mitigate interference,
thus users with highly directional devices may favor small
clusters or be better off not joining clusters at all.

Optimal cluster size v.s. user density. In Fig. 11 we show
how the cluster size maximizing the sum STT of primary and
secondary transmissions changes with user density. When user
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Fig. 10. Comparison of STT for networks with different beamwidths β for
primary transmissions.
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Fig. 11. Cluster size that maximizes STT for different user densities.
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Fig. 12. STT in different user densities for different MAC protocols:
Cluster+HRR, Cluster+TDMA and optimal Aloha.

density is high, the optimal cluster size does not change very
much, indicating that the optimal cluster size is pretty robust to
user density. However, as we have discussed, the transmission
capabilities of users influence the optimal cluster size.

STT v.s. user density. In Fig. 12 we compare the STT
for different MAC protocols and user densities. At each user
density, the cluster size is chosen as the one that maximizes
the STT. For Aloha, we assume users select channels randomly
and the access probability is optimized to maximize the total
STT. We observe that clustering and reuse provide moderate
gains in STT, partly due to beacon overheads. The STT of
users remains constant with user densities, indicating that the
per user throughput scales with user density at high densities.
Combined with observation that optimal cluster size is robust,
we can see that MAC is scalable in dense wearable networks.
Our result here is different from the existing scaling results
on ad hoc networks in that the transmit power and the signal
strength do not change with density.

V. CONCLUSION

Our analysis of character of interference and MAC perfor-
mance in dense mm-wave wearable networks suggests such
networks might be quite viable. Blockage and directionality
help limit the number of strong interferers to a few that are
close by and stable. For a relative stationary network, clus-
tering with resource reuse is a viable solution to coordinating
PBSS transmissions. An ideal cluster protocol should be able
to adapt to user transmission capabilities and QoS require-
ments. More importantly, the overhead and performance of
MAC scale well at high densities. In fact when designing
and evaluating a MAC, one may want to focus on the most

challenging scenario at which one has a moderate density of
users.
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