
1

Online Job Scheduling with Redundancy and
Opportunistic Checkpointing:

A Speedup-Function-Based Analysis
Huanle Xu, Member, IEEE, Gustavo de Veciana, Fellow, IEEE,

Wing Cheong Lau, Senior Member, IEEE, Kunxiao Zhou

Abstract—In a large-scale computing cluster, the job completions can be substantially delayed due to two sources of variability, namely,
variability in the job size and that in the machine service capacity. To tackle this issue, existing works have proposed various scheduling
algorithms which exploit redundancy wherein a job runs on multiple servers until the first completes. In this paper, we explore the impact
of variability in the machine service capacity and adopt a rigorous analytical approach to design scheduling algorithms using redundancy
and checkpointing. We design several online scheduling algorithms which can dynamically vary the number of redundant copies for jobs.
We also provide new theoretical performance bounds for these algorithms in terms of the overall job flowtime by introducing the notion
of a speedup function, based on which a novel potential function can be defined to enable the corresponding competitive ratio analysis.
In particular, by adopting the online primal-dual fitting approach, we prove that our SRPT+R Algorithm in a non-multitasking cluster is
(1 + ε)-speed, O(1

ε
)-competitive. We also show that our proposed Fair+R and LAPS+R(β) Algorithms for a multitasking cluster are

(4 + ε)-speed, O(1
ε
)-competitive and (2 + 2β + 2ε)-speed O(1

βε
)-competitive respectively. We demonstrate via extensive simulations

that our proposed algorithms can significantly reduce job flowtime under both the non-multitasking and multitasking modes.

Index Terms—Job Scheduling, Redundancy, Optimization, Competitive Analysis, Dual-Fitting, Potential Function

F

1 INTRODUCTION

JOB traces from large-scale computing clusters indicate
that the completion time of jobs can vary substantially

[8], [9]. This variability has two sources: variability in the job
processing requirements and variability in machine service
capacity. The job profiles in production clusters also become
increasingly diverse as small latency-sensitive jobs coexist
with large batch processing applications which take hours
to months to complete [51]. With the size of today’s com-
puting clusters continuing to grow, component failures and
resource contention have become a common phenomenon
in cloud infrastructure [25], [33]. As a result, the rate of
machine service capacity may fluctuate significantly over
the lifetime of a job. The same job may experience a far
higher response time when executed at a different time on
the same server [21]. These two dimensions of variability
make efficient job scheduling for fast response time (also
referred to as job flowtime) over large-scale computing
clusters challenging.

To tackle variability in job processing requirements, var-
ious schedulers have been proposed to provide efficient
resource sharing among heterogeneous applications. Widely
deployed schedulers to-date include the Fair scheduler [3]

• Huanle Xu and Kunxiao Zhou are with the School of Computer Science
and Network Security, Dongguan University of Technology, Dongguan,
Guangdong. E-mail: {xuhl,zhoukx}@dgut.edu.cn.

• Gustavo de Veciana is with the of Department of Electrical and Computer
Engineering, The University of Texas at Austin, Austin, TX, USA. E-
mail: gustavo@ ece.utexas.edu.

• Wing Cheong Lau is with the Department of Information Engineering,
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong. E-mail:
wclau@ie.cuhk.edu.hk.

Part of this work has been presented in IEEE Infocom 2017.

and the Capacity scheduler [2]. It is well known that the
Shortest Remaining Processing Time scheduler (SRPT) is
optimal for minimizing the overall/ average job flowtime
[19] on a single machine in the clairvoyant setting, i.e.,
when job processing times are known a priori. As such,
many works have aimed to extend SRPT scheduling to yield
efficient scheduling algorithms in the multiprocessor setting
with the objective of reducing job flowtimes for different
systems and programming frameworks [22], [35], [36], [53].
Under SRPT, job’s residual precessing times are known to
the job scheduler upon arrival and smaller jobs are given
priority. However, if only the distribution of job sizes is
known, it is shown in [4] that, Gittins index-based policy
is optimal for minimizing the expected job flowtime under
the Poission job arrivals in the single-server case. The Gittins
index depends on knowing the service already allocated to
each job and gives priority to the job with the highest index.

To deal with component failures and resource con-
tention, computing clusters are exploiting redundant ex-
ecution wherein multiple copies of the same job execute
on available machines until the first completes. With re-
dundancy, it is expected that one copy of the same job
might complete quickly to avoid long completion times.
For the Google MapReduce system, it has been shown that
redundancy can decrease the average job flowtime by 44%
[17]. Many other cloud computing systems apply simple
heuristics to use redundancy and they have proven to be ef-
fective at reducing job flowtimes via practical deployments,
e.g., [1], [7], [9], [14], [17], [31], [52].

Recently, researchers have started to investigate the ef-
fectiveness of scheduling redundant copies from a queuing
perspective [15], [21], [38], [39], [42], [45]. These works

2

assume a specific distribution of the job execution time
where jobs follow the same distribution. However, they do
not characterize the major cause leading to the variance of
the job response time, namely, whether the variance is due
to variability of job size or to variability in machine service
capacity. In fact, if there is no variability in the machine
service capacity, making multiple copies of the same job may
not help and redundancy is a waste of resource.

To overcome the aforementioned limitations, we have
developed a stochastic framework in our previous work [49]
to explore the impact of variability in the machine service
capacity. In this framework, the service capacity of each ma-
chine over time is modeled as a stationary process. To take
full advantage of redundancy, [49] allows checkpointing
[37] to preempt, migrate and perform dynamic partitioning
[43] on its running jobs. By checkpointing, we mean the
runtime system of a cluster takes a snapshot of the state
of a job in progress so that its execution can be resumed
from that point in the case of subsequent machine failure
or job preemption [10]. Upon checkpointing, the state of
the redundant copy which has made the most progress is
propagated and cloned to other copies. In other words, all
the redundant copies of a job can be brought to that most
advance state and proceed to execute from this updated
state.

A fundamental limitation of [49] is that checkpoint-
ing needs to be done periodically when a job is being
processed. Such a checkpointing mechanism would incur
large overheads when the cluster size is large while the
scheduler needs to make scheduling decisions quickly. To
tackle this limitation, in this paper, we limit the total number
of checkpointings for each job. Moreover, we only allow
checkpointing to occur on a job only if there is an arrival
to or departure from the system. As such, the resultant
algorithms are more scalable and applicable to real world
implementations.

Most previous works studying job scheduling assume
that clusters are working in the non-multitasking mode, i.e.,
each server (CPU Core) in the cluster can only serve one job
at any time. However, multitasking is a reasonable model of
current scheduling policies in CPUs, web servers, routers,
etc [16], [44], [46]. In a multitasking cluster, each server
may run multiple jobs simultaneously and jobs can share
resources with different proportions. In this paper, we will
also study scheduling algorithms, which determine check-
pointing times, the number of redundant copies between
successive checkpoints as well as the fraction of resource to
be shares in both of the multitasking and non-multitasking
settings.

Our Results
For non-multitasking clusters, we propose the SRPT+R algo-
rithm where redundancy is used only when the number of
active jobs is less than the number of servers. For clusters al-
lowing multitasking, we first design the Fair+R Algorithm,
which shares resources near equally among existing jobs,
with priority given to jobs which arrived most recently.
We then extend Fair+R Algorithm to yield the LAPS+R(β)
Algorithm, which only shares resources amongst a fixed
fraction of the active jobs. In summary, this paper makes
the following technical contributions:

• New Framework. We present the first optimization frame-
work to address the job scheduling problem with redun-
dancy, subject to limited number of checkpointing times.
Our optimization problems consider both the multitask-
ing and non-multitasking scenarios.

• New Techniques. We introduce the notion of speedup func-
tion in both the multitasking and non-multitasking cases.
Thanks to this, we develop a new dual-fitting approach to
bound the competitive performance for both SRPT+R and
Fair+R. Based on the speedup function, we also design
a novel potential function accounting for redundancy
to analyze the performance of LAPS+R(β) in the multi-
tasking setting. By changing the speedup function, one
can readily apply our dual-fitting approach as well as
the potential function analysis to other resource allocation
problems in the multi-machine setting with/ without
multitasking.

• New Results. Under our optimization framework, SRPT+R
achieves a much tighter competitive bound than other
SRPT-based redundancy algorithms under different set-
tings, e.g., [49]. Moreover, LAPS+R(β) is the first one to
address the redundancy issue among those algorithms
which work under the multitasking mode.
The rest of this paper is organized as follows. After

reviewing the related work in Section 2, we introduce our
system model and optimization framework in Section 3. In
Section 4, we present SRPT+R and its performance bound
in a non-multitasking cluster. We proceed to introduce the
design and analysis for both Fair+R and LAPS+R(β) under
the multitasking mode in Section 5. Before concluding our
work in Section 7, we conduct several numerical studies in
Section 6 to evaluate our proposed algorithms.

2 RELATED WORK

In this section, we begin by giving a brief introduction to
existing work on job schedulers. Then, we review the related
work on redundancy schemes in large-scale computing
clusters presented by priori research from the industry and
academia.

The design of job schedulers for large-scale computing
clusters is currently an active research area [12], [13], [35],
[36], [50], [53]. In particular, several works have derived
performance bounds towards minimizing the total job com-
pletion time [12], [13], [50] by formulating an approximate
linear programming problem. By contrast, [34] shows that
there is a strong lower bound on any online randomized
algorithm for the job scheduling problem on multiple unit-
speed processors with the objective of minimizing the over-
all job flowtime. Based on this lower bound, some works
extend the SRPT scheduler to design algorithms that min-
imize the overall flowtimes of jobs which may consist of
multiple small tasks with precedence constraints [35], [36],
[50], [53]. The above work was conducted in the clairvoyant
setting, i.e., the job size is known once the job arrives. For the
non-clairvoyant setting, [26], [27], [28] design several mul-
titasking algorithms under which machines are allocated
to all jobs in the system and priorities are given to jobs
which arrive most recently. All of the above studies assume
accurate knowledge of machine service capacity and hence
do not address dynamic scheduling of redundant copies for
a job.

3

Production clusters and big data computing frame-
works have adopted various approaches to use redundancy
for running jobs. The initial Google MapReduce system
launches redundant copies when a job is close to its com-
pletion [17]. Hadoop adopts another solution called LATE,
which schedules a redundant copy for a running task only if
its estimated progress rate is below certain threshold [1]. By
comparison, Microsoft Mantri [9] schedules a new copy for
a running task if its progress is slow and the total resource
consumption is expected to decrease once a new redundant
copy is made.

Researchers have proposed different schemes to take ad-
vantage of redundancy via more careful designs. For exam-
ple, [14] proposes a smart redundancy scheme to accurately
estimate the task progress rate and launch redundant copies
accordingly. The authors in [7] propose to use redundancy
for very small jobs when the extra loading is not high. As an
extension to [7], they further develops GRASS [8], which
carefully schedules redundant copies for approximation
jobs. Moreover, [41] proposes Hopper to allocate computing
slots based on the virtual job size, which is larger than the
actual size. Hopper can immediately schedule a redundant
copy once the progress rate of a task is detected to be slow.
No performance characterization has been developed for
these heuristics.

In our previous work, we have developed several op-
timization frameworks to study the design of scheduling
algorithms utilizing redundancy [47], [48]. The proposed
algorithms in [47] require the knowledge of exact distribu-
tion of the task response time. We also analyze performance
bounds of the proposed algorithm which extends the SRPT
Scheduler in [48] by adopting the potential function analy-
sis. A fundamental limitation is that these resultant bounds
are not scalable as they increase linearly with the number of
machines. Recently, [20] proposes a simple model to address
both machine service variability and job size variability.
However, [20] only considers the FIFO scheduling policy
on each server to characterize the average job response time
from a queuing perspective.

Another body of research related to this paper focuses
on the study of scheduling algorithms for jobs with inter-
mediate parallelizability. In these works, e.g., [5], [11], [18],
[24], [30], jobs are parallelizable and the service rate can be
arbitrarily scaled. In particular, Samuli et al. present several
optimal scheduling policies for different capacity regions
in [5] but for the transient case only. [18] [11] and [24]
propose similar multitasking algorithms for jobs wherein
priorities are given to jobs which arrive the most recently.
These works develop competitive performance bounds with
respect to the total job flowtime by adopting potential func-
tion arguments. [30] also provides a competitive bound for
the SRPT-based parallelizable algorithm in the multitasking
setting. One limitation of [30] is that the resultant bound is
potentially very large. By contrast, this paper is motivated
by the setting where there is variability in the machine
service capacity.

For the analysis of SRPT+R algorithm in Section 4.2, and
Fair+R algorithm in 5.1, we adopt the dual fitting approach.
Dual fitting was first developed by [6], [23] and is now
widely used for the analysis of online algorithms [27], [28].
In particular, [6] and [27], [28] address linear objectives,

and use the dual-fitting approach to derive competitive
bounds for traditional scheduling algorithms without re-
dundancy. By contrast, [23] focuses on a convex objective in
the multitasking setting. By comparison, this paper includes
integer constraints associated with the non-multitasking
mode. Moreover, our setting of dual variables is novel in
the sense that it deals with the dynamical change of job
flowtime across multiple machines where other settings of
dual variables can only deal with the change of job flowtime
on one single machine.

We apply the potential function analysis to bound the
performance of LAPS+R(β) in Section 5. Potential function
is widely used to derive performance bounds with resource
augmentation for online parallel scheduling algorithms e.g.,
[18], [30]. However, since we need to deal with redundancy
and checkpointing, the design of our potential function
is totally different from that in [18] and [30] which only
address sublinear speedup.

While this paper adopts a framework similar to the one
in [49] to model machine service variability, it differs from
[49] in two major aspects. Firstly, the requirement of limiting
the the total number of checkpointings results in a very
different optimization problem which is much more difficult
to solve from the one in [49]. To tackle this challenge, in this
paper, we adopt both the dual fitting approach and potential
function analysis to make approximations and bound the
competitive performance. By contrast, [49] only applies the
potential function analysis to derive performance bounds.
Secondly, the current paper considers both the multi-tasking
mode and non-multitasking mode to design corresponding
online scheduling algorithms using redundancy. By con-
trast, the scheduling algorithms proposed in [49] can only
work under the non-multitasking mode.

3 SYSTEM MODEL

Consider a computing cluster which consists of M servers
(machines) where the servers are indexed from 1 to M .
Job j arrives to the cluster at time aj and the job arrival
process, (a1, a2, · · · , aN), is an arbitrary deterministic time
sequence. In addition, job j has a workload which requires
pj units of time to complete when processed on a machine
at unit speed. Job j completes at time cj and its flowtime
fj , is denoted by fj = cj − aj . In this paper, we focus on
minimizing the overall job flowtime, i.e.,

∑N
j=1 fj .

The service capacity of machines are assumed to be
identically distributed random processes with stationary
increments. To be specific, we let Si = (Si(t)|t ≥ 0) be
a random process where Si(t, τ) = Si(τ) − Si(t) denote
the cumulative service delivered by machine i in the interval
(t, τ]. The service capacity of a machine has unit mean speed
and a peak rate of ∆, so for all τ > t ≥ 0, we have
Si(t, τ] ≤ (τ − t) ·∆ almost surely and E

[
Si(t, τ]

]
= τ − t.

In this paper, our aim is to mitigate the impact of service
variability by (possibly) varying the number of redundant
copies with appropriate checkpointing. Checkpointing can
make the most out of the allocated resources, i.e., start the
processing of the possibly redundant copies at the most
advanced state amongst the previously executing copies.
In fact, we shall make the following assumption across the
system:

4

	

!! = !!!	 !!!	 !!!	 !! = !!
!! 	

	

!!!	 !!!	!!!	
time

Fig. 1. The service process of job j.

Assumption 1. A job j can be checkpointed only if there is an
arrival to, or departure from, the system.

Remark 1. We refer to Assumption 1 as a scalability assumption
as it limits the checkpointing overheads in the system.

Below, we will first introduce a service model where each
server can only serve one job at a time. In Section 3.2, we will
discuss a service model which supports multitasking, i.e., a
server can execute multiple jobs simultaneously.

3.1 Job processing in a Non-Multitasking Cluster
As illustrated in Fig. 1, one can view the service process
of job j in a non-multitasking cluster by dividing its ser-
vice period (from its arrival to its completion) into several
subintervals, i.e.,

{
(tk−1
j , tkj]

}
k

where tkj denotes the time
when the kth checkpointing of job j occurs. The job arrival
and completion times are also considered as checkpointing
times, i.e., t0j = aj and tLjj = cj if job j experiences (Lj + 1)

checkpoints. During in (tk−1
j , tkj], job j is running on rkj re-

dundant servers. Thus, together tj =
(
tkj
∣∣k = 0, 1, · · · , Lj

)
and rj =

(
rkj
∣∣k = 1, 2, · · · , Lj

)
capture the checkpoint

times and the scheduled redundancy for job j.
We will let g(r, t) denote the cumulative service deliv-

ered to a job on r redundant machines and checkpointed at
the end of an interval of duration t. Clearly, g(r, t) is equiv-
alent to the amount of work processed by the redundant
copy which has made the most progress. In this paper, we
make the following assumption for g(r, t):

Assumption 2. We shall model (approximate) the cumulative
service capacity under redundant execution, g(r, t), by its mean,
i.e.,

g(r, t) = E

[
max

i=1,2,··· ,r
Si(0, t]

]
. (1)

Remark 2. Assumption 2 essentially replaces the service capacity
of the system with the mean but accounts for the mean gains one
might expect when there are redundant copies executed.

The following lemmas illustrate two important proper-
ties of g(r, t):

Lemma 1. For a fixed t, {g(r, t)}r is a concave sequence, i.e.,
g(r, t)− g(r − 1, t) ≤ g(r − 1, t)− g(r − 2, t).

Proof. Let Hr(0, t] = maxi=1,2,··· ,r Si(0, t] and define
F (x, t) as the cumulative distribution function of random
variable Si(0, t] for a fixed t. Thus, we have Pr(Hr(0, t] ≤
x) = F r(x, t) and g(r, t) = E

[
Hr(t)

]
=
∫∞
0 (1−F r(x, t))dx,

which further implies that:

g(r, t)− g(r − 1, t) =

∫ ∞
0

F r−1(x, t) · (1− F (x, t))dx

≤
∫ ∞

0
F r−2(x, t) · (1− F (x, t))dx

= g(r − 1, t)− g(r − 2, t).

(2)

This completes the proof.

Lemma 1 states that the marginal increase of the mean
service capacity in the number of redundant executions is
decreasing.

Lemma 2. For all r ∈ N and r ≤M , g(r, t) ≤ min{∆t, rt}.

Proof. As shown in the proof of Lemma 1, g(r, t) =
∫∞
0 (1−

F r(x, t))dx. Therefore, it follow that:∫ ∞
0

(1− F r(x, t))dx =

∫ ∞
0

(1− F (x, t))
r−1∑
l=0

(F l(x, t))dx

≥ r
∫ ∞

0
(1− F (x, t))F r−1(x, t)dx

= r(g(r, t)− g(r − 1, t)).
(3)

which implies g(r, t) ≤ r
r−1g(r − 1, t). Hence, g(r, t) ≤

rg(1, t). Moreover, we have g(1, t) = E
[
Si(0, t]

]
= t. Thus,

we have:
g(n, t) ≤ nt. (4)

Since gi(t) = Si(0, t] ≤ ∆t, it follows that:

E

[
max

i=1,2,··· ,n

{
gi(t)

}]
≤ ∆t. (5)

The result follows from (4) and (5).

Lemma 2 states that the mean service capacity under
redundant execution can grow at most linearly in the re-
dundancy, rt, and is bounded by the peak service capacity
of any single redundant copy, ∆t.

Given Assumption 2, the last checkpoint time for job j,
t
Lj
j , is also the completion time cj and satisfies the following

equation:
Lj∑
k=1

g(rkj , t
k
j − tk−1

j) = pj . (6)

In the sequel, we shall also make use of the speedup
function, hj(tj , rj , t), defined as follows:

hj(tj , rj , t) =

g(rkj ,t

k
j−t

k−1
j)

tkj−t
k−1
j

t ∈ (tk−1
j , tkj],

0 otherwise.
(7)

The speedup function captures the speedup that redundant
execution is delivering in a checkpointing interval relative
to a job execution on a unit speed machine. (6) can be
reformulated in terms of the speedup as follows:∫ cj

aj

hj(tj , rj , τ)dτ = pj . (8)

Remark 3. Note that the speedup depends, not only on the
number of redundant copies being executed, but also, on all the
times when checkpointing occurs. In this sense, hj(tj , rj , t)
is not a causal function. However, in the following sections,
hj(tj , rj , t) will be a convenient notation to study competitive
performance bounds for our proposed algorithms.

3.2 Job processing in a Multitasking cluster
With multitasking, a server can run several jobs simultane-
ously and the service a job receives on a server is propor-
tional to the fraction of processing resource it is assigned.

We will model a cluster allowing multitasking as follows.
Comparing with the service model in Subsection 3.1, we
include another variable xkj , to characterize the fraction
of resource assigned to job j in the kth subinterval, i.e.,

5

(tk−1
j , tkj]. Here, we assume that job j shares the same

fraction of processing resource on all the machines on which
it is being executed. Let xj =

(
xkj
∣∣k = 1, 2, · · · , Lj

)
and

we define another speedup function, ĥj(tj ,xj , rj , t), as
follows:

ĥj(tj ,xj , rj , t) =

{
xkj · hj(tj , rj , t) t ∈ (tk−1

j , tkj]
0 otherwise

(9)

Paralleling (8), the completion time of job j, cj must
satisfy the following equation:∫ cj

aj

ĥj(tj ,xj , rj , τ)dτ = pj (10)

In the sequel, we will design and analyze algorithms
under both the multitasking mode and the non-multitasking
mode.

3.3 Competitive Performance Metrics

In this paper, we will study algorithms for scheduling,
which involves determining checkpointing times, the num-
ber of redundant copies for jobs between successive check-
points and in the multitasking setting the fraction of re-
source shares. Note that, when there is no variability in
the machine’s service capacity, our problem reduces to
job scheduling on multiple unit-speed processors with the
objective of minimizing the overall flowtime. This has been
proven to be NP-hard even when preemption and migration
are allowed and previous work [30], [32] has adopted a
resource augmentation analysis. Under such analysis, the
performance of the optimal algorithm on M unit-speed
machines is compared with that of the proposed algorithms
on M δ-speed machines where δ > 1.

The following definition characterizes the competitive
performance of an online algorithm using resource augmen-
tation.

Definition 1. [32] An online algorithm is δ-speed c-competitive
if the algorithm’s objective is within a factor of c of the optimal
solution’s objective when the algorithm is given δ resource aug-
mentation.

In this paper, we also adopt the resource augmentation
setup to bound the competitive performance of our pro-
posed algorithms. With resource augmentation, the service
capacity in each checkpointing interval under our algo-
rithms is scaled by δ. Similarly, the value of the speedup
functons, i.e., hj(tj , rj , t) and ĥj(tj ,xj , rj , t), under our
algorithms is δ times that under the optimal algorithm of
the same variables.

4 ALGORITHM DESIGN IN A NON-MULTITASKING
CLUSTER

In a non-multitasking cluster, each server can only serve
one job at any time. Before going to the details of algorithm
design, we first state the optimal problem formulation.
For ease of illustration, we let yj = (tj , rj , Lj) denote
the checkpointing trajectory of job j and y = (yj |j =
1, 2, · · · , N) that for all jobs. Moreover, let 1(A) denote

the indicator function that takes value 1 if A is true and
0 otherwise. The optimal problem formulation is as follows:

min
y

N∑
j=1

(cj − aj) (OPT)

such that (a), (b), (c), (d) are satisfied

(a) Job completion: The completion time of job j, cj , satisfies:∫ cj
aj
hj(tj , rj , t)dt = pj , ∀j.

(b) Resource constraint: The total number of redundant exe-
cutions at any time t ≥ 0 is no larger than the number
of machines, M , i.e.,

∑
j:aj≤t

∑Lj
k=1 r

k
j ·1(t ∈ (tk−1

j , tkj]) ≤
M, ∀t.

(c) Checkpoint trajectory: The number of checkpoints for
each job is between 2 and 2N since there are 2N job
arrivals and departures, i.e., Lj ∈ {1, 2, · · · , 2N − 1}. The
checkpoint times of job j, tj , satisfy: tj ∈ T

Lj+1
j where

T Lj+1
j =

{
(t0, t1, · · · , tLj) ∈ RLj+1|aj = t0 < t1 < · · · <

tLj = cj
}

. Moreover, the number of redundant copies
must be an integer, i.e., rj ∈ NLj .

(d) Checkpointing overhead constraint: Job checkpoints must
satisfy Assumption 1, i.e., for 0 ≤ k ≤ Lj , tkj ∈ {aj}j ∪
{cj}j .
Since the OPT problem is NP-Hard, we propose to

design a heuristic to schedule redundant jobs, i.e., SRPT+R,
which is a simple extension of the SRPT scheduler [19].

4.1 SRPT+R Algorithm and the performance guarantee
Let pj(t) denote the amount of the unprocessed work for job
j at time t and n(t) denote the number of active jobs at time
t. In this section, we will assume without loss of generality
that jobs have been ordered such that p1(t) ≤ p2(t) ≤ · · · ≤
pn(t)(t).

At a high level, the algorithm works as follows. When
n(t) ≥M , theM jobs with smallest pj(t), i.e., Job 1 toM are
each assigned to a server while the others wait. If n(t) < M ,
the job with the smallest pj(t), i.e., Job 1, is scheduled on
M −b Mn(t)c(n(t)−1) machines and the others are scheduled
on b Mn(t)c machines each. Here, bxc represents the largest
integer which does not exceed x.

The corresponding pseudo-code is exhibited as Algo-
rithm 1.

Our main result, characterizing the competitive perfor-
mance of SRPT+R, is given in the following theorem:

Theorem 1. SRPT+R is (1 + ε)-speed O(1
ε)-competitive with

respect to the total job flowtime.

We will prove Theorem 1 by adopting the online dual fit-
ting approach. The first step is to formulate a minimization
problem which serves as an approximation to the optimal
cost, OPT with a guarantee that the cost of the approxi-
mation is within a constant of OPT . We then formulate the
dual problem for the approximation and exploit the fact that
a feasible solution to this dual problem gives a lower bound
on its cost, which in turn is a constant times the cost of the
proposed algorithm.

Remark 4. It is worth to note that, when there is no machine
service variability, SRPT+R performs exactly the same as the
traditional SRPT algorithm on multiple machines. As a result,

6

Algorithm 1: SRPT+R Algorithm

1 while A job arrives at or departure from the system do
2 Sort the jobs in the order such that

p1(t) ≤ p2(t) ≤ · · · ≤ pn(t)(t) and count the
number of redundant copies being executed for
job j, rj ;

3 Initialize M(t) to be the set of idle machines ;
4 if n(t) < M then
5 for j = 1, 2, · · · , n(t) do
6 if j = 1 then
7 rj(t) = M − (n(t)− 1)b Mn(t)c;

8 else
9 rj(t) = b Mn(t)c;

10 Checkpoint job j and assigns its redundant
executions to rj(t) machines which are
uniformly chosen at random from
{1, 2, · · · ,M};

11 if n(t) ≥M then
12 for j = 1, 2, · · · , n(t) do
13 if j ≤M then
14 Checkpoint job j and assign it to one

machine which is uniformly chosen at
random from {1, 2, · · · ,M};

15 else
16 Checkpoint job j;

our proposed dual fitting framework can also show that SRPT is
(1 + ε)-speed, (3 + 3

ε) competitive with respect to the overall job
flowtime. When given small resource augmentation where ε ≤ 1

3 ,
our result improves the recent result in [19], which states, SRPT
on multiple identical machines is (1 + ε)-speed, 4

ε -competitive in
terms of the overall job flowtime.

4.2 Proof of Theorem 1
To prove Theorem 1, we shall first both approximate the
objective of OPT and relax Constraint (d) in OPT to obtain
the following problem P1:

min
y

N∑
j=1

∫ ∞
aj

(t− aj + 2pj)

pj
· hj(tj , rj , t)dt (P1)

s.t.
∫ ∞
aj

hj(tj , rj , t)dt ≥ pj , ∀j,

∑
j:aj≤t

Lj∑
k=1

rkj · 1(t ∈ (tk−1
j , tkj]) ≤M, ∀t,

Lj ∈ {1, 2, · · · , 2N − 1}, tj ∈ T
Lj+1
j , rj ∈ NLj , ∀j.

Let OPT denote the cost, i.e., the overall job flowtime,
achieved by an optimal scheduling policy. The following
lemma guarantees that the optimal cost of P1, denoted by
P1, is not far from OPT .

Lemma 3. P1 is upper bounded by
(
1 + 2∆

)
·OPT , i.e., P1 ≤(

1 + 2∆
)
·OPT .

Let αj and β(t) denote the Lagrangian dual variables
corresponding to the first and second constraint in P1

respectively. Define α = (αj
∣∣j = 1, 2, · · · , N) and β =

(β(t)|t ∈ R+). The Lagrangian function associated with P1
can be written as:

Φ(y,α,β) =
N∑
j=1

∫ ∞
aj

(t− aj + 2pj)

pj
· hj(tj , rj , t)dt

+

∫ ∞
0

β(t)
(∑
j:aj≤t

Lj∑
k=1

rkj 1(t ∈ (tk−1
j , tkj])−M

)
dt

−
N∑
j=1

αj
(∫ ∞

aj

hj(tj , rj , t)dt− pj
)
,

with the dual problem for P1 given by:

max
α≥0,β≥0

min
y

Φ(y,α,β) (D1)

s.t. Lj ∈ {1, 2, · · · , 2N − 1}, rj ∈ NLj , tj ∈ T
Lj+1
j .

Applying weak duality theory for continuous programs
[40], we can conclude that the optimal value to D1 is a
lower bound for P1. Moreover, the objective of D1 can be
reformulated as shown in (7).

Still it is difficult to solve D1 as it involves a mini-
mization of a complex objective function of integer val-
ued variables. However, it follows from Lemma 2 that
rkj ≥ 1(t ∈ (tk−1

j , tkj]) · hj(tj , rj , t) for all j and t ≥ aj ,
thus, we have that,
Lj∑
k=1

rkj 1(t ∈ (tk−1
j , tkj]) ≥

Lj∑
k=1

1(t ∈ (tk−1
j , tkj])hj(tj , rj , t)

= hj(tj , rj , t).

Therefore, it can be readily shown that the second term
in the R.H.S of Φ(y,α,β) in (7) is lower bounded by:∫ ∞

0

∑
j:aj≤t

[(t− aj
pj

+ 2− αj + β(t)
)
· hj(tj , rj , t)

]
dt.

As a result, for a fixed αj and β(t) such that for all t ≥ aj
t− aj
pj

+ 2− αj + β(t) ≥ 0, (8)

the minimum of Φ(y,α,β) can be attained by setting all
rj to 0 and tj = (aj , cj). In this solution, there are no
other checkpoints for job j other than the job arrival and
departure.

Therefore, restricting α and β to satisfy (8) would give
a lower bound on D1 and results in the following optimiza-
tion problem:

max
α,β

∑
j

αjpj −M
∫ ∞

0
β(t)dt (P2)

s.t. αj − β(t) ≤ t− aj
pj

+ 2, ∀j, t ≥ aj ,

αj ≥ 0, ∀j
β(t) ≥ 0, ∀t

Based on Lemma 3, we conclude that P2 ≤ P1 ≤
(
1 +

2∆
)
·OPT where P2 is the optimal cost for P2.

Next, we shall find a setting of the dual variables in P2
such that the corresponding objective is lower bounded by
O(ε) · SR under a (1 + ε)-speed resource augmentation.

7

Φ(y,α,β) =
∑
j

αjpj −M
∫ ∞

0
β(t)dt+

∫ ∞
0

∑
j:aj≤t

[
(
t− aj
pj

+ 2− αj)hj(tj , rj , t) + β(t)

Lj∑
k=1

rkj · 1(t ∈ (tk−1
j , tkj])

]
dt. (7)

Machine MMachine qMachine 1

r1 rq rM rM+1 rM+q rzM rzM+1

r1 rM+1 rzM+1 rq rM+q rzM+q rM rzM

rzM+q

Fig. 2. The scheduling process of SRPT at time aj where n(aj) = zM+
q and there are no further job arrivals after aj . Jobs are sorted based
on the remaining size, which is denoted by rj for job j, i.e., rj = pj(aj).
Jobs indexed by kM + i for some integer valued k and i are assigned
to machine i.

To achieve this, we first consider a pure SRPT scheduling
process that does not exploit job redundancy. We then use
this to motivate a setting of dual variables which feasible
for P2. Finally, we show that the objective for this setting of
dual variables is at least O(ε) times the cost of SRPT, which
is also lower bounded by O(ε) ·SR since the cost of SRPT is
no smaller than SR.

4.2.1 Setting of dual variables

Observe that SRPT+R and SRPT only differ when n(t) < M
and that when this is the case SRPT only assigns a single
machine to each active job. Since SRPT+R maintains the
same scheduling order and each job is scheduled with at
least the same number of copies as SRPT, we conclude that
the cost of SRPT, denoted by SRPT , is a lower bound for
SR, where SR denotes the overall job flowtime achieved
SRPT+R.

In this section, we let n(t) and pj(t) denote the number
of active jobs and the size of the remaining workload of job
j under SRPT respectively.

Let Θj = {k : ak ≤ aj ≤ ck}, the set of jobs that
are active when job j arrives and Aj = {k 6= j : k ∈
Θj and pk(aj) ≤ pj}, i.e., jobs whose residual processing
time upon job j’s arrival is less than job j’s processing re-
quirement. Define ρj = |Aj |, we shall set the dual variables
as follows:

αj =
1

(1 + ε)pj

ρj∑
k=1

(⌊n(aj)− k
M

⌋
−
⌊n(aj)− k − 1

M

⌋)
pk(aj)

+
1

1 + ε

(⌊n(aj)− ρj − 1

M

⌋
+ 1
)
,

(9)

where ε > 0 and

β(t) =
1

(1 + ε)M
n(t). (10)

We show in the following lemma that this setting of dual
variables is feasible.

Lemma 4. The setting of dual variables in (9) and (10) is feasible
to P2.

Proof. Since α and β are both nonnegative, it only remains
to show αj − β(t) ≤ t−aj

pj
+ 2 for all j and t ≥ aj . First, αj

can be represented as follows:

αj =

∑z
k=0 pkM+q(aj)1(kM + q ≤ ρj)

(1 + ε)pj
+

(⌊n(aj)−ρj−1
M

⌋
+ 1
)

1 + ε
.

(11)
For ease of illustration, let Ω1 and Ω2 denote the two terms
on the R.H.S of (11) respectively.

If n(aj) ≤ M , we have αj = 1
1+ε and the result follows.

Therefore, we only consider n(aj) = zM + q > M and
analyze the following three cases:

Case I: All the jobs in Θj have completed at time t. As
depicted in Fig. 2, if there are no job arrivals after time aj ,
then, jobs indexed by km + q where k is a non-negative
integer are all processed on Machine q. Since the service
capacity of Machine q is (t − aj) during (aj , t], thus, it
follows that,

t− aj ≥
1

1 + ε

z∑
k=0

pkM+q(aj). (12)

In contrast, if there are other job arrivals after time aj ,
Machine q needs to process an amount of work which
exceeds

∑z
k=0 pkM+q(aj), therefore, (12) still holds. Thus,

we have that,

t− aj
pj

− Ω1 ≥
∑z
k=0 pkM+q(aj)1(kM + q ≥ ρj + 1)

(1 + ε)pj

≥
∑z
k=0 1(kM + q ≥ ρj + 1)

1 + ε
= Ω2.

(13)

Case II: The jobs indexed from 1 to κ in Θj have
completed and κ ≤ ρj . Let κ = z1M + q1. Similar to Case I,
it follows that,

t− aj ≥
1

1 + ε

z1∑
k=0

pkM+q1(aj). (14)

In addition, the number of active jobs, n(t), is no less than
n(aj)− κ. Therefore, we have:

αj
(ii)
≤
∑z1
k=0 pkM+q1(aj) +

d
ρj−κ
M e

1+ε

(1 + ε)pj
+

(⌊n(aj)−ρj−1
M

⌋
+ 1
)

1 + ε

(iii)
≤ t− aj

pj
+

1

1 + ε
dρj − κ

M
e+

(⌊n(aj)−ρj−1
M

⌋
+ 1
)

1 + ε

≤ t− aj
pj

+
1

1 + ε

(
bn(aj)− κ

M
c+ 2

)
≤ t− aj

pj
+ β(t) + 2,

(15)

where dxe denotes the smallest integer which is no less than
x and (ii) is due to that Ω1 ≤ 1

(1+ε)pj

∑z1
k=0 pkM+q1(aj) +

1
1+ε · d

ρj−κ
M e. (iii) is due to (14).

Case III: The jobs indexed from 1 to κ in Θj have com-
pleted and κ > ρj . In this case, (14) still holds. Moreover, we

8

have that
∑z1
k=0 pkM+q1(aj) ≥ Ω1 + bκ−ρjM cpj . Therefore, it

follows that:

αj ≤
t− aj
pj

− 1

1 + ε
bκ− ρj

M
c+

1

1 + ε
dn(aj)− ρj

M
e

≤ t− aj
pj

+
1

1 + ε

(
bn(aj)− κ

M
c+ 2

)
≤ t− aj

pj
+ β(t) + 2.

(16)

Thus, we conclude that, for all the three cases above, the
constraint between αj and β(t) is well satisfied.

4.2.2 Performance bound

To bound the cost of the dual variables which are set in (9)
and (10), we first show the following lemma to quantify the
total job flowtime under SRPT in the transient case where
there are no job arrivals after time t.

Lemma 5. When there are no job arrivals after time t, the overall
remaining job flowtime under SRPT scheduling, F (t), is given
by:

F (t) =

n(t)∑
j=1

(
⌊n(t)− j

M

⌋
+ 1)pj(t). (17)

Proof. In this proof, we shall not assume resource augmen-
tation. Let fj(t) denote the remaining flowtime for job j at
time t. Thus, the job completion time, cj is equal to fj(t)+ t.
Since we have indexed jobs such that p1(t) ≤ p2(t) ≤ · · · ≤
pn(t)(t), under SRPT, it follows that c1 ≤ c2 ≤ · · · ≤ cn(t).
When n(t) ≤M , (17) follows immediately since all jobs can
be scheduled simultaneously and fj(t) is equal to pj(t).

Let us then consider the case where n(t) > M . Let n(t) =
zM + q where z ≥ 1, 0 ≤ q ≤ M − 1 and z, q are non-
negative integers. We first show that for all k such that M ≤
k ≤ n(t), the following result holds:

k∑
j=k−M+1

fj(t) =
k∑
j=1

pj(t). (18)

As illustrated in Fig. 3, at any time between t and c1, there
are (k − M) jobs waiting to be processed among those k
jobs which complete first. Hence, the accumulated waiting
time in this period is (k −M)f1(t). Similarly, at any time
between c1 and c2, there are (k −M − 1) jobs waiting to
be processed and they contribute (k −M − 1) · (c2 − c1) =
(k −M − 1) · (f2(t) − f1(t)) waiting time. Hence, the total
waiting time of the k jobs is given by:

k−M−1∑
j=0

(k −M − j) · (fj+1(t)− fj(t)) =
k−M∑
j=1

fj(t). (19)

Therefore, the total remaining flowtime for these k jobs is as
follows:

k∑
j=1

fj(t) =
k∑
j=1

pj(t) +
k−M∑
j=1

fj(t). (20)

timec1 c2 c(k-M)

(k - M)
 jobs

(k - M-1)
jobs 1 job

t

Fig. 3. The number of jobs waiting to be processed in different time
periods where k > M .

By shifting terms in (20), we have:
∑k
j=k−M+1 fj(t) =∑k

j=1 pj(t). Summing up all job flowtime, it follows that:

n(t)∑
j=1

fj(t) =

q∑
j=1

fj(t) +
z∑
k=1

kM+q∑
j=(k−1)M+q+1

fj(t)

(i)
=

q∑
j=1

pj(t) +
z∑
k=1

kM+q∑
j=1

pj(t)

=

n(t)∑
j=1

(
⌊n(t)− j

M

⌋
+ 1)pj(t),

(21)

where on the R.H.S. of (i), the first term is due to that the
flowtime of the first q jobs is equal to their remaining job size
and the second term is due to that

∑kM+q
j=(k−1)M+q+1 fj(t) =∑kM+q

j=1 pj(t). This completes the proof.

Based on Lemma 5, if job j never arrive to the system
and the subsequent jobs do not enter the system, the overall
remaining job flowtime at time aj is given by:

F
′

j (aj) =

n(aj)−1∑
k=1

(
⌊n(aj)− 1− k

M

⌋
+ 1)pk(aj). (22)

In contrast, when job j arrives and the subsequent jobs do
not arrive to the system at time aj , the overall remaining job
flowtime at time aj is as follows:

Fj(aj) =

ρj∑
k=1

(
⌊n(aj)− k

M

⌋
+ 1)pk(aj)

+
(⌊n(aj)− ρj − 1

M

⌋
+ 1
)
pj

+

n(aj)∑
k=ρj+1

(
⌊n(aj)− k

M

⌋
+ 1)pk(aj).

(23)

Therefore, one can view αj as the incremental increase of the
overall job flowtime caused by the arrival of job j by taking
the difference of (22) and (23) and then dividing by (1+ε)pj .
Since we are using a (1 + ε)-speed resource augmentation,
thus,

∑
j pjαj exactly characterizes the overall job flowtime

in SRPT, i.e.,
∑
j αjpj = SRPT .

Moreover, β(t) reflects the loading condition of the clus-
ter in our setting, thus, M

∫∞
0 β(t) = 1

1+εSRPT . Therefore,
we have

∑
j αjpj −M

∫∞
0 β(t)dt = ε

1+εSRPT .
Based on Lemma 3, we conclude that ε

1+εSR ≤
ε

1+εSRPT ≤ P2 ≤ P1 ≤
(
1 + 2∆

)
· OPT . This implies

SR ≤ O(1
ε)OPT and completes the proof of Theorem 1.

5 ALGORITHM DESIGN FOR MULTITASKING PRO-
CESSORS

In this section, we design scheduling algorithms for clusters
supporting multitasking. Besides checkpointing times and

9

level of redundancy, one must introduce additional vari-
ables, x = (xj : j = 1, 2, · · · , N) where xj = (xkj |k =
1, 2, · · · , Lj) are the fractions of resource shares to be al-
located to each job during checkpointing intervals. To be
specific, we first design the Fair+R Algorithm which is an
extension of the Fair Scheduler. Fair+R allows all jobs in
the cluster to (near) equally share resources in the cluster,
with priority given to those which arrive most recently. We
then generalize Fair+R to design the LAPS+R(β) algorithm,
which is an extension of LAPS (the Latest Arrival Processor
Sharing). The main idea of LAPS is to share resources only
among a certain fraction of jobs in the cluster [18]. How-
ever, the initial version of LAPS only considers the speed
scaling among different jobs, our proposed LAPS+R(β) Al-
gorithm extends this such that redundant copies of jobs can
be made dynamically. In this section, we assume without
loss of generality that jobs have been ordered such that
a1 ≤ a2 ≤ · · · ≤ an(t).

5.1 Fair+R Algorithm and the performance guarantee
Let n(t) = kM + l denote the number of jobs which are
active in the cluster at time t.

At a high level, Fair+R works as follows. When n(t) ≥
M , the kM jobs which arrive the most recently, i.e., jobs
indexed from (l+ 1) to n(t), are each assigned to one server
and gets a resource share of 1

k . Each server processes k jobs
simultaneously. By contrast, if n(t) < M , the latest arrival
job, i.e., Job n(t), is scheduled on M − b Mn(t)c(n(t) − 1)

machines and the others are each scheduled on b Mn(t)c
machines. In this case, there is no multitasking.

The corresponding pseudo-code is exhibited in the panel
named Algorithm 2. Our main result for Fair+R is given in
the following theorem:

Theorem 2. Fair+R is (4+ε)-speed O(1
ε)-competitive with re-

spect to the total job flowtime.

Algorithm 2: Fair+R Algorithm

1 while A job arrives to or departure from the system do
2 Sort the jobs in the order such that

a1 ≤ a2 ≤ · · · ≤ an(t) ;
3 Compute n(t) = kM + l;
4 if n(t) ≥M then
5 for j = l + 1, l + 2 · · · , n(t) do
6 rj(t) = 1 and xj(t) = 1/k;

7 else
8 rn(t)(t) = M − b Mn(t)c(n(t)− 1) and

xn(t)(t) = 1;
9 for j = 1, 2, · · · , n(t)− 1 do

10 rj(t) = b Mn(t)c and xj(t) = 1;

11 Checkpoint all jobs and assign job j’s redundant
executions to rj(t) machines which are uniformly
chosen at random from {1, 2, · · · ,M} with a
resource share of xj(t);

5.2 Proof of Theorem 2
Paralleling the proof of Theorem 1, we adopt the dual-fitting
approach to prove Theorem 2. Let zj = (tj ,xj , rj , Lj) and

z = (zj |j = 1, 2, · · · , N), we first formulate an approximate
optimization problem as follows:

min
z

N∑
j=1

∫ ∞
aj

1

pj
(t− aj +

pj
4

)h̃j(tj ,xj , rj , t)dt (P3)

s.t.

∫ ∞
aj

h̃j(tj ,xj , rj , t)dt ≥ pj , ∀j,∑
j:aj≤t

∑
k

xkj r
k
j · 1(t ∈ (tk−1

j , tkj]) ≤M, ∀t,

Lj ∈ {1, 2, · · · , 2N − 1}, tj ∈ T
Lj+1
j , rj ∈ NLj , ∀j.

0 < xkj ≤ 1, ∀j, 1 ≤ k ≤ Lj .

Observe that P3 and P1 differ in both the objective and
the second constraint since job j gets a resource share of
xkj r

k
j when t ∈ (tk−1

j , tkj].
The dual problem associated with P3 is similar to that of

P1 and we only need to modify the first constraint of P2 to
yield the following inequality:

αj − β(t) ≤ t− aj
pj

+
1

4
∀j; t ≥ aj . (24)

Paralleling Lemma 3, we have P4 ≤ P3 ≤
(
1 + 1

4∆
)
·OPT

where P4 and P3 are the optimal values of the dual problem
and P3 respectively.

Denote by A(t) the set which contains all jobs that are
still active in the cluster at time t under Fair+R. Thus, n(t) =
|A(t)|. We shall set αj as follows:

αj =

∫ cj

aj

αj(τ)dτ, (25)

where

αj(t) =

∑
k:ak≤aj 1(k ∈ A(t)) · 1(n(t) ≥M)h̃k(tk,xk, rk, t)

(4 + ε)Mpj

+
1(n(t) < M)h̃j(tj ,xj , rj , t)

4(4 + ε)pj
.

(26)

and the setting of β(t) is given by:

β(t) =
1

(4 + ε)M
n(t). (27)

Next, we proceed to check the feasibility of these dual
variables. Observe that αj and β(t) are nonnegative for all
j, t and thus we only need to show they satisfy (24).

Lemma 6. The dual variable settings in (25) and (27) satisfy the
constraint in (24).

Lemma 7. Under the choice of dual variables in (25) and (27),∑N
j=1 αjpj −M

∫∞
0 β(t)dt ≥ ε

16+4εFR where FR is the cost
of Fair+R.

Lemma 7 implies that FR ≤ (16+4ε)P4
ε ≤ 16+4ε

ε ·
(
1 +

1
4∆
)
· OPT = O(1

ε)OPT . This completes the proof of
Theorem 2.

5.3 LAPS+R(β) Algorithm and the performance guaran-
tee
The algorithm depends on the parameter β ∈ (0, 1). Say,
β = 1/2, then the algorithm essentially schedules the 1

2n(t)
most recently arrived jobs. If there are fewer than M such
jobs, they are each assigned an roughly equal number of

10

servers for execution without multitasking. If 1
2n(t) > M ,

each job will roughly get a share of M
1
2n(t)

on some machine.

For a given number of active jobs n(t), and parameter
β, z ∈ N, α ∈ {0, 1, · · · ,M − 1} and γ ∈ [0, 1) such that
βn(t) = zM + α+ γ.

The LAPS+R(β) Algorithm operates as follows. At time
t, if z = 0, jobs indexed from (n(t)− α) to (n(t)− 1)
are scheduled on b M

α+1c machines each, and Job n(t) is
scheduled on the remaining (M − αb M

α+1c) machines. In
this case, there is no multitasking. By contrast, if z ≥ 1,
jobs indexed from (n(t)− zM − α) to (n(t)− 1) are each
assigned a single machine and get a resource share of 1

z+1 .
And, Job n(t) is scheduled on (M −α) machines with a 1

z+1
share of its resources.

The corresponding pseudo-code is exhibited as Algo-
rithm 3 in the panel below.

Algorithm 3: LAPS+R(β) Algorithm

1 while A job arrives at or departure from the system do
2 Sort the jobs in the order such that

a1 ≥ a2 ≥ · · · ≥ an(t);
3 Compute βn(t) = zM + α+ γ where γ < 1 and

α < M ;
4 if z ≥ 1 then
5 rn(t)(t) = (M − α) and xn(t)(t) = 1

z+1 ;
6 for j = n(t)− zM − α, · · · , n(t)− 1 do
7 rj(t) = 1 and xj(t) = 1

z+1 ;

8 if z < 1 then
9 rn(t)(t) = M − αb M

α+1c and xn(t)(t) = 1;
10 for j = n(t)− α, · · · , n(t)− 1 do
11 rj(t) = b M

α+1c and xj(t) = 1;

12 for j = 1, 2, · · · , n(t)− zM − α− 1 do
13 xj(t) = rj(t) = 0;

14 Checkpoint all jobs and assign job j’s redundant
executions to rj(t) machines which are uniformly
chosen at random from {1, 2, · · · ,M} with a
resource share of xj(t);

5.3.1 Performance guarantee for LAPS+R(β) and our tech-
niques

Let OPT and LR denote the cost of the optimal schedul-
ing policy and LAPS+R(β) respectively. The main result in
this section, characterizing the competitive performance of
LAPS+R(β), is given in the following theorem:

Theorem 3. LAPS+R(β) is (2 + 2β + 2ε)-speed O(1
βε)-

competitive with respect to the total job flowtime.

The dual fitting approach fails in this setting so we adopt
the use of a potential function, which is widely used to
derive performance bounds with resource augmentation for
online parallel scheduling algorithms e.g., [18], [29]. The
main idea of this method is to find a potential function
which combines the optimal schedule and LAPS+R(β). To
be specific, let LR(t) and OPT (t) denote the accumulated
job flowtime under LAPS+R(β) with a (2 + 2β + 2ε)-speed

resource augmentation and the optimal schedule, respec-
tively. We define a potential function, Λ(t), which satisfies
the following properties:

1) Boundary Condition: Λ(0) = Λ(∞) = 0.
2) Jumps Condition: the potential function may have

jumps only when a job arrives or completes under
the LAPS+R(β) schedule, and if present, it must be
decreased.

3) Drift Condition: with a (2 + 2β + 2ε)-speed resource
augmentation, for any time t not corresponding to a
jump, and some constant c, we have that,

dΛ(t)

dt
≤ −εβ · dLR(t)

dt
+ c · dOPT (t)

dt
. (28)

By integrating 28 and accounting for the negative jump and
the boundary condition, one can see that the existence of
such a potential function guarantees that LR ≤ c

βεOPT
under a (2 + 2β + 2ε)-speed resource augmentation.

5.4 Proof of Theorem 3
To prove Theorem 3, we shall propose a potential function,
Λ(t), which satisfies all the three properties specified above.

5.4.1 Defining potential function, Λ(t)

Consider a checkpointing trajectory for job j un-
der LAPS+R(β) and the optimal schedule, denoted by
(tj ,xj , rj) and (t∗j ,x∗j , r

∗
j) respectively. Let ψ∗(t) be the jobs

that are still active at time t under the optimal scheduling
and denote by ψ(t) the set of jobs that are active under
LAPS+R(β). Thus, we have that |ψ(t)| = n(t). Further let
nj(t) denote the number of jobs which are active at time t
and arrive no later than job j under LAPS+R(β). Define the
cumulative service difference between the two schedules for
job j at time t, i.e., πj(t), as follows:

πj(t) = max
[∫ t

aj

h̃j(t
∗
j ,x
∗
j , r
∗
j , τ)dτ−

∫ t

aj

h̃j(tj ,xj , rj , τ)dτ , 0
]
,

(29)
Let δ = 2 + 2β + 2ε and define

f(nj(t)) =

{
1 βnj(t) ≤M,
M

βnj(t)
otherwise. (30)

Note that f(nj(t)) takes the minimum of 1 and M
βnj(t)

where
the latter is roughly the total resource allocated to job j
under LAPS+R(β) if nj(t) jobs were active at time t.

Our potential function is given by:

Λ(t) =
∑
j∈ψ(t)

Λj(t), (31)

where Λj(t) is the ratio between (29) and (30), i.e.,

Λj(t) =
πj(t)

δ · f(nj(t))
.

5.4.2 Changes in Λ(t) caused by job arrival and departure
Clearly, our potential function satisfies the boundary condi-
tion. Indeed, since each job is completed under LAPS+R(β),
thus, ψ(t) will eventually be empty, and Λ(0) = Λ(∞) = 0.

Let us consider possible jump times. When job j arrives
to the system at time aj , πj(aj) = 0 and f(nj(t)) does not
change for all k 6= j. Therefore, we conclude that the job

11

arrival does not change the potential function Λ(t). When a
job leaves the system under LAPS+R(β), f(nj(t)) can only
increase if job j is active at time t, leading to a decrease in
Λj(t). As a consequence, the job arrival or departure does
not cause any increase in the potential function, Λ(t), thus,
the jump condition on the potential function is satisfied.

5.4.3 Changes of Λ(t) caused by job processing

Beside job arrivals and departures under LAPS+R(β), there
are no other events leading to changes in f(nj(t)) and thus
changes in Λj(t) depend only on πj(t), see definition of
Λj(t) in (31). Specifically, for all t /∈ {aj}j ∪ {cj}j , we have
that,

dΛ(t)

dt
=

∑
j∈ψ(t)

dΛj(t)

dt
=

∑
j∈ψ(t)

dπj(t)/dt

δ · f(nj(t))
,

where we let dπj(t)dt = limτ→0+
πj(t+τ)−πj(t)

τ and thus dπj(t)
dt

exists for all t ≥ 0. Moreover, we have:

dπj(t)

dt
≤ 1(j ∈ ψ∗(t))h̃j(t∗j ,x∗j , r∗j , t)

− 1(j /∈ ψ∗(t))h̃j(tj ,xj , rj , t),
(32)

indeed, either j ∈ ψ∗(t) so job j has not completed under
the optimal policy and the drift is bounded by the first term
in (32), or j /∈ ψ∗(t) and the job has completed under the
optimal policy, the difference term in (29) is positive and its
derivative is given by the the second term in (32). Therefore,
for all t /∈ {aj}j∪{cj}j , we have the following upper bound:

dΛ(t)

dt
≤

∑
j∈ψ(t)

1(j ∈ ψ∗(t))h̃j(t∗j ,x∗j , r∗j , t)
δ · f(nj(t))

−
∑
j∈ψ(t)

1(j /∈ ψ∗(t))h̃j(tj ,xj , rj , t)
δ · f(nj(t))

≤
∑

j∈ψ∗(t)

h̃j(t
∗
j ,x
∗
j , r
∗
j , t)

δ · f(nj(t))︸ ︷︷ ︸
Γ∗(t)

−
∑

j∈ψ(t)\ψ∗(t)

h̃j(tj ,xj , rj , t)

δ · f(nj(t))︸ ︷︷ ︸
Γ(t)

,

(33)

where ψ(t) \ ψ∗(t) contains all the jobs that are in ψ(t)
but not in ψ∗(t). For ease of illustration, let Γ∗(t) and Γ(t)
denote the two terms on the R.H.S. of (33). In the sequel, we
bound these two terms.

5.4.4 An upper bound of Γ∗(t)

When βnj(t) ≥ M , we have f(nj(t)) = M/βnj(t), thus,
h̃j(t

∗
j ,x
∗
j ,r
∗
j ,t)

f(nj(t))
=

h̃j(t
∗
j ,x
∗
j ,r
∗
j ,t)

M/βnj(t)
. By contrast, when βnj(t) ≤

M , it follows that f(nj(t)) = 1, so
h̃j(t

∗
j ,x
∗
j ,r
∗
j ,t)

f(nj(t))
=

h̃j(t
∗
j ,x
∗
j , r
∗
j , t), which is upper bounded by ∆ based on

Lemma 2.
Therefore, we have:

h̃j(t
∗
j ,x
∗
j , r
∗
j , t)

δf(nj(t))
≤ 1

δ

(h̃j(t∗j ,x∗j , r∗j , t)
M/βnj(t)

+ ∆
)
,

and

Γ∗(t) ≤
∑

j∈ψ∗(t)

1

δ

(h̃j(t∗j ,x∗j , r∗j , t)
M/βnj(t)

+ ∆
)

≤ ∆|ψ∗(t)|
δ

+
∑

j∈ψ∗(t)

βn(t)
h̃j(t

∗
j ,x
∗
j , r
∗
j , t)

δM

≤ ∆|ψ∗(t)|/δ + βn(t)/δ,

(34)

where the last inequality is due to∑
j∈ψ∗(t)

h̃j(t
∗
j ,x
∗
j , r
∗
j , t) ≤

∑
j∈ψ∗(t)

∑
k

xkj r
k
j ·1(t ∈ (tk−1

j , tkj]) ≤M,

for all t.

5.4.5 An upper bound of Γ(t)

First, Γ(t) ban be represented as:

Γ(t) =
∑

j∈ψ∗(t)∩ψ(t)

h̃j(tj ,xj , rj , t)

δf(nj(t))
−
∑
j∈ψ(t)

h̃j(tj ,xj , rj , t)

δf(nj(t))
.

(35)

To get an upper bound of Γ(t), we will consider two cases.
In particular, βn(t) = zM + α + γ, we consider the case
where z = 0 and that where z ≥ 1.

Case 1: Suppose z = 0, in this case, dβn(t)e ≤ M . Since
nj(t) ≤ n(t) for all 1 ≤ j ≤ n(t), it then follows that
βnj(t) ≤ M and f(nj(t)) = 1, which implies, for all j ∈
ψ∗(t) ∩ ψ(t), h̃j(tj ,xj ,rj ,t)δf(nj(t))

≤ ∆ since h̃j(tj ,xj , rj , t) ≤ δ∆
as we are using a δ-speed resource augmentation. Thus, the
first term on the R.H.S. of (35) is upper bounded by:∑
j∈ψ∗(t)∩ψ(t)

h̃j(tj ,xj , rj , t)

δf(nj(t))
≤

∑
j∈ψ∗(t)∩ψ(t)

∆ ≤ |ψ∗(t)|∆.

(36)
Consider j ∈ ψ(t) where n(t)− α ≤ j ≤ n(t) and t ∈

[tk−1
j , tkj) for some k ∈ {1, 2, · · · , Lj}. Then, the number

of redundant executions for job j, rkj ≥ b M
α+1c ≥ 1. Thus,

h̃j(tj ,xj , rj , t) ≥ δ and h̃j(tj ,xj ,rj ,t)
δf(nj(t))

≥ 1. Combining (35)
and (36), we then have:

Γ(t) ≤ ∆|ψ∗(t)| − (α+ 1) ≤ ∆|ψ∗(t)| − βn(t), (37)

Case 2: Suppose z ≥ 1, then, dβn(t)e > M and M
βn(t) ≥

1
z+1 . Similarly, we consider job j ∈ ψ(t) where n(t)− kM −
α ≤ j ≤ n(t) and t ∈ (tk−1

j , tkj]. Based on the scheduling
policy of LAPS+R(β), we have that, xkj = 1

z+1 and rkj ≥ 1.
Therefore, h̃j(tj ,xj , rj , t) is bounded by:

δ

z + 1
≤ h̃j(tj ,xj , rj , t) ≤

δ ·∆
z + 1

. (38)

Moreover, we have: min[1 , M
βnj(t)

] ≥ min[1 , M
βn(t)] ≥

1
z+1 . Therefore, it follows that:

1

z + 1
≤ min

[
1 ,

M

βnj(t)

]
≤ f(nj(t)) ≤

M

βnj(t)
. (39)

Combining (38) and (39), we have that, for all n(t)− kM −
α ≤ j ≤ n(t)− 1,

1/(z + 1)

M/βnj(t)
≤ h̃j(tj ,xj , rj , t)

δf(nj(t))
≤ ∆. (40)

12

Substituting (40) into (35), it then follows that,

Γ(t) ≤
∑

j∈ψ∗(t)∩ψ(t)

∆−
n(t)∑

j=n(t)−zM−α

1/(z + 1)

M/βnj(t)

≤ ∆|ψ∗(t)| −
βzM(n(t)− zM

2 −
α
2)

M(z + 1)

≤ ∆|ψ∗(t)| − β(
1

2
− β

4
)n(t),

(41)

where the second inequality is due to that nj(t) = j and the
last inequality is because zM + α ≤ βn(t) and z

z+1 ≥ 1/2.
Based on Case 1 and Case 2, we have: Γ(t) ≤ ∆|ψ∗(t)| −
β(1

2 −
β
4)n(t). Thus, combining (33) and (34), we have the

following upper bound for the drift, dΛ(t)
dt :

dΛ(t)

dt
≤ Γ∗(t) + Γ(t)

≤ ∆|ψ∗(t)|/δ + βn(t)/δ + ∆|ψ∗(t)| − β(
1

2
− β

4
)n(t).

=
(δ + 1)∆

δ
|ψ∗(t)|+

β(1− δ(1
2 −

β
4))

δ
n(t)

≤ (δ + 1)∆

δ
|ψ∗(t)| − εβ

2δ
n(t),

(42)

where the last inequality is due to δ = 2 + 2β + 2ε and
δ(1

2 −
β
4) ≥ 1 + ε

2 .
Based on (42), we then have that,

0 = Λ(∞)− Λ(0) ≤
∫ ∞

0

dΛ(t)

dt
dt

≤ (δ + 1)∆

δ

∫ ∞
0
|ψ∗(t)|dt− εβ

2δ

∫ ∞
0

n(t)dt

=
(δ + 1)∆

δ
OPT − εβ

2δ
LR,

(43)

where the first inequality is due to that there exist negative
jumps during the evolution of Λ(t). This completes the proof
of Theorem 3.

6 NUMERICAL STUDIES

In this section, we conduct several numerical studies to
evaluate our proposed algorithms in both the multi-tasking
and non-multi-tasking setting. As pointed out in [33], the
Gamma distribution is a good fit for the failure model of
most parallel and distributed computing systems. Therefore,
we apply the Gamma distribution to generate machine
service rates in a cluster with 100 machines over a period
which lasts 100000 units of time.

To be more specific, we categorize the service process of
each machine into two classes, namely, the Available Period
(AP) and Unavailable Period (UP). As depicted in Fig. 4,
each UP follows an AP. During an available period, the rate
of the machine service capacity is uniformly distributed in
[2, 3]. On the other hand, when the machine is processing
jobs in an unavailable period, its rate is uniformly dis-
tributed in [0, 0.3]. In addition, we apply the statistics of
the trace data collected from a computational grid platform
(see [33]) to generate a series of available and unavailable
periods for each machine independently. The length of an
AP is Gamma distributed with k = 0.34 and θ = 94.35

time

Available AvailableUnavailable Unavailable
Machine
Speed

Fig. 4. Fluctuation of machine service rates in different time periods.

0 40 80 120 160 2000
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Job flowtime

C
um

m
ul

at
iv

e
fr

ac
tio

n
of

 jo
bs

a

0 40 80 120 160 2000
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Job flowtime

C
um

ul
at

iv
e

fr
ac

tio
n

of
 jo

bs

b

LAPS+R(β = 0.2)
LAPS

SRPT+R
SRPT

Fig. 5. The comparison between algorithms with and without redun-
dancy. Panel a shows the CDF of the job flowtimes under both
SPRT+R and SRPT. Panel b shows the CDF of the job flowtimes under
LAPS+R(β) with β = 0.2 and LAPS.

where k and θ are the shape parameter and scale parameter
respectively. In contrast, the length of an UP is Gamma
distributed with k = 0.19 and θ = 39.92. We also normalize
all the distributions such that the mean service rate is one.

In all the following evaluations, we consider time is slot-
ted and the scheduling decisions are made at the beginning
of each time slot. The jobs arrive at the cluster following a
Poisson Process with rate λ and the workload of each job is
Pareto distributed as shown below.

P{pj ≤ x} =

{
1− (bx)α x ≥ b,

0 otherwise,

where b = 20 and α = 2. It can be readily shown that the
mean of the job workload is 40.

In the following simulations, we will compare the av-
erage as well as the cumulative distribution function (i.e.,
CDF) of job flowtimes for different algorithms.

6.1 Benefit of Redundancy
In this subsection, we implement scheduling algorithms
with both redundancy and no redundancy to characterize
the benefit of redundant execution. We set the job arrival
rate λ to one and depict the simulation results in Fig. 5
and Fig. 6. As shown in Fig. 5, more than 85% of jobs
can complete within 40 units of time under SRPT+R. As
a comparison, only 75% of jobs complete within 40 units
of time under the SRPT scheme. It’s worthy noting that
this result also applies to LAPS+R(β) and LAPS. Moreover,
Fig. 6 shows that, with redundancy, the average job flowtime
can be reduced by nearly 25% under all the scheduling
algorithms.

6.2 Comparison of various algorithms
We conducted a more comprehensive comparison of various
algorithms by tuning values of λ. Following the simulation
parameters configured at the beginning of Section 6, we can
readily show that, λ = 2.5 reaches the heavy traffic limit

13

0

30

60

90

120

150

180

210

A
ve

ra
ge

 jo
b

flo
w

 ti
m

e

With redundancy
Without Redundancy

SRPT Fair LAPS(β = 0.2) LAPS(β = 0.8)

Fig. 6. Average job flowtime under different scheduling algorithms with
and without redundancy.

0

50

100

150

200

250

300

350

A
ve

ra
ge

 jo
b

flo
w

tim
e

SRPT+R
LAPS+R(β = 0.8)
Fair+R

λ = 2.5λ = 2λ = 1.5λ = 1
Fig. 7. Comparison between different algorithms in terms of average job
flowtime for different λ.

above which the system is overloaded. As such, we tune
λ from 1 to 2.5 in this simulation. Observe in Fig. 7 that
the average job flowtimes under SRPT+R and Fair+R are
roughly the same under λ = 1 and λ = 1.5. However,
when λ increases, SRPT+R tends to perform much better
than both LAPS+R(β) and Fair+R. For λ = 2, the average
job flowtime under both LAPS+R(β = .8) and Fair+R is two
times that under SRPT+R. More importantly, when λ hits
the heavy traffic limit, the average job flowtime under both
LAPS+R(β) and Fair+R increases significantly in λ while it
doesn’t change much under SRPT+R. In addition, Fair+R
outperforms LAPS+R(β) when λ is below 2. Conversely, if
λ is above 2, LAPS+R(β) performs better than Fair+R.

6.3 The impact of β in LAPS+(β)

Since β has a high impact on the performance of LAPS+(β),
in this subsection, we tune the values of β to illustrate the
performance of LAPS+(β) under different settings.

We depict the comparison results under the heavy traffic
regime where λ = 2.5 in Fig. 8. It shows that, when β
decreases, the number of jobs with small flowtime (less than
200 units of time) increases. Therefore, small jobs benefit
more than large jobs under a small β as they have higher
priorities to be allocated resources in the cluster. In addition,
when β = .6, the average job flowtime attains its minimum.

As illustrated in Fig. 9, when λ = 1, almost all of the
jobs in the cluster can complete within 200 units of time
under different settings for β. When the job arrival rate is
low, the jobs with small workloads can get large fractions
of shared resource under a small value of β. In this case,
the benefit of redundancy is marginal and tuning down the
value of β does not help much for small jobs. However, in
terms of the average job flowtime, a smaller β leads to a
worse performance. The reason behind is that a large job

0 200 400 600 800 10000
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Job flowtime under LAPS+R

C
um

m
ul

at
iv

e
fr

ac
tio

n
of

 jo
bs

0.2 0.4 0.6 0.80

100

200

300

400

500

600

The value of β under LAPS+R

Th
e

av
er

ag
e

jo
b

flo
w

tim
e

β = .2
β = .4
β = .6
β = .8

Fig. 8. The job flowtime under different β in LAPS(β) when λ = 2.5.

0 40 80 120 160 200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Job flowtime under LAPS
Th

e
cu

m
ul

at
iv

e
fr

ac
tio

n
of

 jo
bs

0.2 0.4 0.6 0.8
0

20

40

60

80

100

120

140

160

The vaule of β in LAPS+R

Th
e

av
er

ag
e

jo
b

flo
w

tim
e

β = .2
β = .4
β = .6
β = .8

Fig. 9. The job flowtime under different β in LAPS+R(β) when λ = 1.

usually has a very small chance to obtain shared resource
under a small value of β in LAPS+R(β) since it takes a
long time to complete, resulting in a large flowtime. Though
the number of large jobs is small, the amount of total job
flowtime contributed but those large ones is significant.

7 CONCLUSIONS AND FUTURE DIRECTIONS

This paper is an attempt to address the impact of two
key sources of variability in parallel computing clusters:
job processing times and machine processing rate. Our
primary aim and contribution was to introduce a new
speedup function account for redundancy, and provide the
fundamental understanding on how job scheduling and
redundant execution algorithms with limited number of
checkpointings can help to mitigate the impact of variability
on job response time. As the need of delivering predictable
service on shared cluster and computing platforms grows,
approaches, such as ours, will likely be an essential element
of any possible solution. Extensions of this work to non-
clairvoyant scenarios, the case of jobs with associated task
graphs etc, are likely next steps towards developing the
foundational theory and associated algorithms to address
this problem.

REFERENCES

[1] Apache. http://hadoop.apache.org, 2013.
[2] Capacity Scheduler. http://hadoop.apache.org/docs/r1.2.1/

capacity scheduler.html, 2013.
[3] Fair Scheduler. http://hadoop.apache.org/docs/r1.2.1/fair

scheduler.html, 2013.
[4] S. Aalto, U. Ayesta, and R. Righter. On the gittins index in the

M/G/1 queue. Queuing Systems, 63(1):437–458, December 2009.
[5] S. Aalto, A. Penttinen, P. Lassila, and P. Osti. On the optimal trade-

off between SRPT and opportunistic scheduling. In Proceedings of
Sigmetrics, June 2011.

http://hadoop.apache.org
http://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html
http://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html
http://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html
http://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html

14

[6] S. Anand, N. Garg, and A. Kumar. Resource augmentation for
weighted flow-time explained by dual fitting. In Proceedings of
SODA, 2002.

[7] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Ef-
fective straggler mitigation: Attack of the clones. In NSDI, April
2013.

[8] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, and I. Stoica. Grass:
Trimming stragglers in approximation analytics. In NSDI, April
2014.

[9] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris. Reining in the outliers in MapReduce
clusters using mantri. In USENIX OSDI, Vancouver, Canada,
October 2010.

[10] G. Bronevetsky, D. Marques, and K. Pingali. Application-level
checkpointing for shared memory programs. In ASPLOS, 2004.

[11] H. L. Chan, J. Edmonds, and K. Pruhs. Speed scaling of processes
with arbitrary speedup curves on a multiprocessor. In SPAA, pages
1–10, 2009.

[12] H. Chang, M. Kodialam, R. R. Kompella, T. V. Lakshman, M. Lee,
and S. Mukherjee. Scheduling in MapReduce-like systems for fast
completion time. In Proceedings of IEEE Infocom, pages 3074–3082,
March 2011.

[13] F. Chen, M. Kodialam, and T. Lakshman. Joint scheduling of pro-
cessing and shuffle phases in MapReduce systems. In Proceedings
of IEEE Infocom, March 2012.

[14] Q. Chen, C. Liu, and Z. Xiao. Improving MapReduce performance
using smart speculative execution strategy. IEEE Transactions on
Computers, 63(4), April 2014.

[15] S. Chen, Y. Sun, U. C. Kozat, L. Huang, P. Sinha, G. Liang, X. Liu,
and N. B. Shroff. When queueing meets coding: Optimal-latency
data retrieving scheme in storage clouds. In Infocom, April 2014.

[16] S. Das, V. Narasayya, F. Li, and M. Syamala. CPU sharing
techniques for performance isolation in multi-tenant. Proceedings
of the VLDB Endowment, 7(1), September 2013.

[17] J. Dean and S. Ghemawat. MapReduce: simplified data processing
on large clusters. In Proceedings of OSDI, pages 137–150, December
2004.

[18] J. Edmonds and K. Pruhs. Scalably scheduling processes with
arbitrary speedup curves. ACM Transaction on Algorithms, 8(28),
2012.

[19] K. Fox and B. Moseley. Online scheduling on identical machines
using SRPT. In SODA, January 2011.

[20] K. Gardner, M. Harchol-Balter, and A. Scheller-Wolf. A better
model for job redundancy: Decoupling server slowdown and job
size. In IEEE MASCOTS, pages 1–10. IEEE, 2016.

[21] K. Gardner, M. Harchol-Balter, A. Scheller-Wolf, M. Velednitsky,
and S. Zbarsky. Redundancy-d: The power of d choices for
redundancy. In Operation Research, to appear, 2017.

[22] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and
A. Akella. Multi-resource packing for cluster schedulers. ACM
SIGCOMM, August 2014.

[23] A. Gupta, R. Krishnaswamy, and K. Pruhs. Online primal-dual
for non-linear optimization with applications to speed scaling. In
Proceedings of WAOA, pages 173–186, 2002.

[24] A. Gupta, B. Moseley, S. Im, and K. Pruhs. Scheduling jobs with
varying parallelizability to reduce variance. In SPAA: 22nd ACM
Symposium on Parallelism in Algorithms and Architectures, 2010.

[25] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and F. Cap-
pello. Modeling and tolerating heterogeneous failures in large
parallel system. In International Conference for High Performance
Computing, Networking, Storage and Analysis, 2011.

[26] S. Im, J. Kulkarni, and B. Moseley. Temporal fairness of round
robin: Competitive analysis for lk-norms of flow time. In SPAA,
pages 155–160, 2015.

[27] S. Im, J. Kulkarni, and K. Munagala. Competitive algorithms
from competitive equilibria: non-clairvoyant scheduling under
polyhedral constraints. In Proceedings of STOC, pages 313–322,
2014.

[28] S. Im, J. Kulkarni, K. Munagala, and K. Pruhs. Selfishmigrate:
A scalable algorithm for non-clairvoyantly scheduling heteroge-
neous processors. In Proceedings of FOCS, pages 531–540, 2014.

[29] S. Im, B. Moseley, and K. P. an dEric Torng. Competitively
scheduling tasks with intermediate parallelizability. In Proceedings
of SPAA, June 2014.

[30] S. Im, B. Moseley, K. Pruhs, and E. Torng. Competitively schedul-
ing tasks with intermediate parallelizability. In Proceedings of
SPAA, June 2014.

[31] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: dis-
tributed data-parallel programs from sequential building blocks.
In Proceeding of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems, March 2007.

[32] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as
clairvoyance. In Proceedings of FOCS, October 1995.

[33] D. Kondo, B. Javadi, A. Iosup, and D. Epema. The failure trace
archive: Enabling comparative analysis of failures in diverse dis-
tributed systems. In CCGrid, pages 398–407, 2010.

[34] S. Leonardia and D. Raz. Approximating total flow time on
parallel machines. Journal of Computer and System Sciences, 73(6),
September 2007.

[35] M. Lin, L. Zhang, A. Wierman, and J. Tan. Joint optimization
of overlapping phases in MapReduce. In Proceedings of IFIP
Performance, September 2013.

[36] B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlos. On scheduling
in map-reduce and flow-shops. In Proceedings of SPAA, pages 289–
298, June 2011.

[37] J. Pruyne and M. Livny. Managing checkpoints for parallel
programs. In Workshop on Job Scheduling Strategies for Parallel
Processing, pages 140–154. Springer, 1996.

[38] Z. Qiu and J. F. Pérez. Assessing the impact of concurrent
replication with canceling in parallel jobs. In MASCOTS, 2014.

[39] Z. Qiu and J. F. Pérez. Enhancing reliability and response times
via replication in computing clusters. In Infocom, April 2015.

[40] T. W. Reiland. Optimality conditions and duality in continuous
programming I. convex programs and a theorem of the alternative.
Journal of Mathematical Analysis and Applications, 77(1):297 – 325,
1980.

[41] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu. Hopper:
Decentralized speculation-aware cluster scheduling at scale. In
Sigcomm, August 2015.

[42] N. Shah, K. Lee, and K. Ramchandran. When do redundant
requests reduce latency? In Annual Allerton Conference on Com-
munication, Control, and Computing, Oct 2013.

[43] M. S. Squillante. On the benefits and limitations of dynamic par-
titioning in parallel computer systems. In Job Scheduling Strategies
for Parallel Processing, pages 219–238. Springer-Verlag, 1995.

[44] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and
C. Plaxton. A proportional share resource allocation algorithm
for real-time, time-shared systems. In RTSS, pages 288 – 299, 1996.

[45] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and
S. Shenker. Low latency via redundancy. In CoNEXT, 2013.

[46] A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed
scaling in processor sharing systems: Optimality and robustness.
Performance Evaluation, pages 601–622, December 2012.

[47] H. Xu and W. C. Lau. Optimization for speculative execution of
multiple jobs in a MapReduce-like cluster. In IEEE Infocom, April
2015.

[48] H. Xu and W. C. Lau. Task-cloning algorithms in a MapReduce
cluster with competitive performance bounds. In IEEE ICDCS,
June 2015.

[49] H. Xu, W. C. Lau, Z. Yang, G. de Veciana, and H. Hou. Mitigating
service variability in mapreduce clusters via task cloning: A com-
petitive analysis. In IEEE Transactions on Parallel and Distributed
Systems, http://ieeexplore.ieee.org/document/7890998, 2017.

[50] Y. Yuan, D. Wang, and J. Liu. Joint scheduling of MapReduce jobs
with servers: Performance bounds and experiments. In Proceedings
of IEEE Infocom, April 2014.

[51] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized streams: fault-tolerant streaming computation at scale.
In SOSP, pages 423–438, 2013.

[52] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica. Im-
proving MapReduce performance in heterogeneous environments.
In Proceeding of OSDI, December 2008.

[53] Y. Zheng, N. Shroff, and P. Sinha. A new analytical technique for
designing provably efficient MapReduce schedulers. In Proceed-
ings of IEEE Infocom, Turin, Italy, April 2013.

APPENDIX A
PROOF OF LEMMA 3

Proof. Consider an optimal solution to OPT, y∗, whose
corresponding job completion time for job j is denoted by

http://ieeexplore.ieee.org/document/7890998

15

c∗j . Thus, for all j = 1, 2, · · · , N , y∗ and c∗j satisfy:∫ c∗j

aj

hj(t
∗
j , r
∗
j , t)dt = pj . (44)

Moreover, it follows that hj(t∗j , r
∗
j , t) = 0 for all t ≥ c∗j , thus,

we have that: ∫ ∞
aj

hj(t
∗
j , r
∗
j , t)dt = pj , (45)

and it follows that:∫ ∞
aj

1

pj
(t− aj)hj(t∗j , r∗j , t)dt =

∫ c∗j

aj

1

pj
(t− aj)hj(t∗j , r∗j , t)dt

≤
∫ c∗j

aj

1

pj
(c∗j − aj)hj(t∗j , r∗j , t)dt = c∗j − aj .

(46)

Following Lemma 2, it can be readily shown that
hj(t

∗
j , r
∗
j , t) ≤ ∆. Therefore, we have:

pj =

∫ c∗i

aj

hj(t
∗
j , r
∗
j , t)dt ≤ ∆(c∗j − aj). (47)

Combining (46) and (47), we have:∫ ∞
aj

(t− aj + 2pj)

pj
· hj(t∗j , r∗j , t)dt ≤ (1 + 2∆)(c∗j − aj).

Since the optimal solution to OPT must be feasible for P1, it
follows that:

P1 ≤
N∑
j=1

∫ ∞
aj

(t− aj + 2pj)

pj
· hj(t∗j , r∗j , t)dt

≤ (1 + 2∆)
N∑
j=1

(c∗j − aj) = (1 + 2∆)OPT.

(48)

This completes the proof.

APPENDIX B
PROOF OF LEMMA 6
Proof. First, we have:

1

4(4 + ε)pj

∫ cj

aj

1(n(t) < M) · h̃j(tj ,xj , rj , t)dt

≤ 1

4(4 + ε)pj

∫ cj

aj

h̃j(tj ,xj , rj , t)dt =
1

4
.

(49)

Next, we proceed to show the following result holds.∫ cj
aj

∑
k:ak≤aj 1(j ∈ A(τ)) · 1(n(τ) ≥M)h̃k(tk,xk, rk, τ)dτ

(4 + ε)Mpj

≤ t− aj
pj

+
1

(4 + ε)M
n(t).

(50)

To achieve this, we divide the job set Ψj = {k : ak ≤ aj}
into two separate sets: Ψ1

j = {k : ck ≤ t} ∩ Ψj and Ψ2
j =

{k : ck > t} ∩Ψj . For the first set, we have:∫ cj
aj

∑
k:k∈Ψ1

j
1(k ∈ A(τ)) · 1(n(τ) ≥M) · h̃k(tk,xk, rk, τ)dτ

M

≤

∫ t
aj

∑
k:k∈Ψ1

j
1(k ∈ A(τ)) · 1(n(τ) ≥M) · h̃k(tk,xk, rk, τ)dτ

M
.

(51)

Based on the scheduling principle of Fair+R, it follows
that:∑

k

1k∈A(t) · 1n(t)≥M · h̃k(tk,xk, rk, t) ≤ (4 + ε)M. (52)

Therefore, the L.H.S of (51) is upper bounded by
(4 + ε)(t− aj). For all jobs in Ψ2

j , we have:∫ cj

aj

∑
k:k∈Ψ2

j

1(k ∈ A(τ)) · 1(n(τ) ≥M) · h̃k(tk,xk, rk, τ)dτ

=
∑

k:k∈Ψ2
j

∫ ck

aj

1(k ∈ A(τ)) · 1(n(τ) ≥M) · h̃k(tk,xk, rk, τ)dτ

(ii)
≤

∑
k:ak≤t≤ck≤cj

pj ≤ n(t)pj ,

(53)

where (ii) is due to that, for any job who arrives before j,
its amount of work processed between the range [aj , ck] is
upper bounded by pj .

Combining all inequalities above, the lemma immedi-
ately follows. This completes the proof.

APPENDIX C
PROOF OF LEMMA 7
Proof. First, it can be readily shown that:

M

∫ ∞
0

β(t)dt =
1

4 + ε
n(t)dt =

RF

4 + ε
. (54)

Next, we proceed to show
∑N
j=1 αj ≥ RF

4 . To achieve
this, we consider the following two cases:

Case I: n(t) ≥ M . In this case, it’s easy to verify that
αj(t) = 0 for j ≤ l and αj(t) = j−l

kMpj
for l < j < n(t).

Therefore, it follows that:

N∑
j=1

αj(t)pj =

n(t)∑
j=l+1

j − l
kM

=
kM + 1

2
≥ n(t)

4
(55)

Case II: n(t) < M . In this case, we have:
h̃j(tj ,xj , rj , t) ≥ 4 + ε since we are using a resource aug-
mentation of (4 + ε)-speed. Hence, the following equation
holds:

N∑
j=1

αj(t)pj ≥
1

4

n(t)∑
j=1

1(n(t) < M) =
n(t)

4
. (56)

As such, we have:

N∑
j=1

αjpj =
N∑
j=1

∫ cj

aj

αj(τ)pjdτ =

∫ ∞
0

N∑
j=1

αj(τ)pjdτ

≥ 1

4

∫ ∞
0

n(τ)dτ =
RF

4
.

(57)

The result follows combining (54) and (57). This completes
the proof.

	Introduction
	Related Work
	System Model
	Job processing in a Non-Multitasking Cluster
	Job processing in a Multitasking cluster
	Competitive Performance Metrics

	Algorithm Design in a Non-Multitasking Cluster
	SRPT+R Algorithm and the performance guarantee
	Proof of Theorem 1
	Setting of dual variables
	Performance bound

	Algorithm Design for Multitasking Processors
	Fair+R Algorithm and the performance guarantee
	Proof of Theorem 2
	LAPS+R() Algorithm and the performance guarantee
	Performance guarantee for LAPS+R() and our techniques

	Proof of Theorem 3
	Defining potential function, (t)
	Changes in (t) caused by job arrival and departure
	Changes of (t) caused by job processing
	An upper bound of * (t)
	An upper bound of (t)

	Numerical Studies
	Benefit of Redundancy
	Comparison of various algorithms
	The impact of in LAPS+()

	Conclusions and Future Directions
	References
	Appendix A: Proof of Lemma 3
	Appendix B: Proof of Lemma 6
	Appendix C: Proof of Lemma 7

