
1

Mitigating Service Variability in
MapReduce Clusters via Task Cloning:

A Competitive Analysis
Huanle Xu, Wing Cheong Lau, Senior Member, IEEE

Zhibo Yang, Student Member, IEEE, Gustavo de Veciana, Fellow, IEEE, Hanxu Hou

Abstract—Measurement traces from real-world production environment show that the execution time of tasks within a MapReduce job
varies widely due to the variability in machine service capacity. This variability issue makes efficient job scheduling over large-scale
MapReduce clusters extremely challenging. To tackle this problem, we adopt the task cloning approach to mitigate the effect of machine
variability and design corresponding scheduling algorithms so as to minimize the overall job flowtime in different scenarios. For offline
scheduling where all jobs arrive at the same time, we design an O(1)-competitive algorithm, which gives priorities to jobs with small
effective workload. We then extend this offline algorithm to yield the so-called Smallest Remaining Effective Workload based β-fraction
Sharing plus Cloning algorithm (SREW+C(β)) for the online case. We also show that SREW+C(β) is (1 + 2β + ε)-speed O(1

βε
)-

competitive with respect to the sum of job flowtime within a cluster. We demonstrate via trace-driven simulations that SREW+C(β) can
significantly reduce the overall job flowtime by cutting down the elapsed time of small jobs substantially. In particular, SREW+C(β)
reduces the total job flowtime by 14%, 10% and 11% respectively when comparing to Mantri, Dolly and Grass.

Index Terms—MapReduce, job Scheduling, cloning, job flowtime, competitive performance ratio

F

1 INTRODUCTION

MApReduce [10] and its open-source realization via
Hadoop [1] have emerged as the defacto framework

to support large-scale parallel/distributed processing and
data analytics. Under the MapReduce framework, the over-
all computation of a job is decomposed into two separate
phases, namely, the Map phase and the Reduce phase.
Within each phase, many relatively small tasks are executed
in parallel across a large number of machines within the
MapReduce cluster. The MapReduce computational model
also requires that the Reduce phase of a job cannot begin
until all the tasks within its Map phase have been com-
pleted. A key feature of catalyzing the widespread adoption
of MapReduce framework is the ability to transparently deal
with the challenges of executing these tasks in a distributed
setting. One of such fundamental challenges is the ma-
chine service variability caused by partial or intermittent
machine failures, localized resource bottleneck(s) or con-
gested network connections [9], [37]. It has been pointed
out in [15] that the service/failure model of most parallel
and distributed computing systems follows the Gamma
distribution. Such a machine variability can easily lead to
stragglers, i.e., tasks that are unfortunately assigned to ma-

• Huanle Xu is with the College of Computer Science and Technology,
Dongguan University of Technology. E-mail: xuhl@dgut.edu.cn.

• Wing Cheong Lau and Zhibo Yang are with the Department of Information
Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong
Kong. E-mail: {wclau,yz014}@ie.cuhk.edu.hk.

• Gustavo de Veciana is with the Department of Electrical and Computer
Engineering, The University of Texas at Austin, Austin, TX, US. E-mail:
gustavo@ece.utexas.edu.

• Hanxu Hou is with the College of Electronic Engineering, Dongguan
University of Technology. E-mail: houhx@dgut.edu.cn.

Part of this work has been presented in IEEE ICDCS 2015.

chines suffering from an extremely low processing capacity.
Measurement traces from the real-world production envi-
ronment [5] indicate that stragglers lead to a large variation
in execution times among tasks in the same job phase and
delay job completion substantially.

The dominant technique to mitigate variability in task
execution times is via redundant execution: a strategy which
preventively or reactively handles long running tasks by
automatically launching redundant copies of a task on
alternative machines. With redundancy, it is expected that
one of the copies of the same task may complete quickly to
avoid long task/job completion times. There are two main
classes of redundancy approaches proposed in the litera-
ture, namely, the Cloning approach [3] and the Straggler-
Detection-based one [1], [5], [9], [18], [37]. Under the Cloning
approach, extra copies of a task are scheduled with the
initial task in parallel and the one which finishes first is used
for the subsequent computation. For the Straggler-Detection
based approach, the progress of each task is monitored by
the system and backup copies are launched when a straggler
is detected. While existing redundant execution strategies
have been proven to be efficient via practical implemen-
tations, most of them are designed based on rudimentary
heuristics. There is a lack of systematic analysis or reference
study on how well or suboptimal these schemes are when
compared to the theoretical limits of various performance
metrics such as the job flowtime, which is a common metric
to be optimized in the scheduling literature, e.g., [7], [8], [22],
[24], [30], [35], [38] and in production clusters, e.g., [3]–[5].

To take a more systematic approach for the design
of redundancy schemes, previous works in the literature
including [32]–[34] have proposed several optimization-
based schemes. However, in [32] and [34], the precedence

2

combine job
redundancy

approach
machine

speed
competitive

ratio
Algorithm minimize scheduling and

task redundancy
SREW(β)

∑N
j=1 fj

√
cloning 1 + 2β + ε O(1

βε)

SCA [34]
∑N
j=1(fj + γcostj)

√
cloning

Not
Applicable No Bound

ESE [34]
∑N
j=1(fj + γcostj)

√
speculative execution

Mantri [5]
Not

Applicable

× speculative execution
Dolly [3] × cloning
Grass [4] × speculative execution

Hopper [28]
√

speculative execution
LAPS [11]

∑N
j=1 fj

Not
Applicable

no 1 + β + ε O(1
βε)

WLAPS+E [12]
∑N
j=1(fj + γcostj) no 1 + ε O(1

ε2)

WLAPS [14]
∑N
j=1 f

2
j no 2 + ε O(1

βε)

Intermediate ∑N
j=1 fj no 1 O(1) · 41/(1−α)

-SRPT [16] · logP

Fig. 1. Comparison between SREW(β) and other different algorithms where fj denotes the job flowtime and costj denotes the job computation
cost. The last four algorithms do not adopt task redundancy and consider each job consists of only one task. Moreover, the competitive ratio for the
last algorithm, i.e., Intermediate-SRPT contains two factors, logP and 41/(1−α), where P is the ratio between the largest and the smallest job size
and α is the parallelizability level.

constraints between the two phases in the MapReduce
framework are ignored and the knowledge of the complete
distribution of task execution time is needed a priori. [33]
has overcome these limitations, but it does not directly take
into consideration whether the variability in task execution
time is due to the variability in task sizes or in machine
processing speed. In fact, if there is no variability in machine
service capacity, scheduling multiple copies of the same task
may not help at all and redundancy is a waste of resource.

To tackle the aforementioned problems, in this paper,
we explicitly model the precedence between the Map and
Reduce phase. More importantly, we build a time-slotted
stochastic framework to explore the variability in machine
service capacity using task cloning. We also study the
relationship between the variation in task execution time
and machine service capacity. Our primary goal is to de-
sign scheduling algorithms which can adapt the number of
cloned copies so as to minimize the overall job flowtime.

Our objective yields a stochastic scheduling problem
which turns out to be more difficult than the NP-Hard
scheduling problem presented in [38]. Therefore, we resort
to the use of approximate algorithms in both the offline
and online setting. Under our proposed algorithms, the
scheduler only needs to know the first and second moment
of the task execution time in advance. For the analysis
of the online algorithm, we assume task preemption and
resource augmentation [19], which are necessary to derive
non-trivial lower bounds for the parallel scheduling on
multiple machines. To summarize, this paper has made the
following technical contributions:

• To the best of our knowledge, this paper is the first one
to model the impact of service variability of computing
nodes within a cluster and cast the dynamic scheduling
problem into a stochastic optimization problem that aims
at finding a cloning scheme to minimize the overall job
flowtime (Section 2).

• This paper investigates the design of redundancy algo-
rithms that achieve competitive performance bounds by
taking an analytical approach with mathematical vigor.

Under the transient scheduling setting [2], we design the
Smallest Effective Workload (SEW) algorithm which gives
higher priorities to jobs with the smallest effective work-
load. We prove in Section 3 that SEW is O(1)-competitive
with respect to the expected overall job flowtime. To
support online job scheduling, we extend the SEW al-
gorithm to yield the SREW+C(β) algorithm in Section 4.
By constructing a novel potential function, we prove that
SREW+C(β) is (1 + 2β + ε)-speed O(1

βε)-competitive in
terms of overall job flowtime.

• We conduct extensive trace-driven simulations to demon-
strate that SREW+C(β) can reduce the average job flow-
time by more than 10% when comparing to state-of-the-
art scheduling schemes(Section 5).
Fig. 1 summarizes the contributions of SREW(β) by

comparing its properties to other scheduling algorithms.

2 SYSTEM MODEL AND PROBLEM FORMULATION

Consider a MapReduce Cluster which consists of M ma-
chines indexed from 1 to M . A machine could represent
a processor, a CPU core or a virtual machine. Consider a
time-slotted system where job j arrives at the cluster at the
end of a time slot, denoted by aj . The job arrival process,
(a1, a2, · · · , aN) is an arbitrary deterministic time sequence.
Upon arrival, job j joins a global queue managed by a
scheduler, waiting to be scheduled at the beginning of some
time slot. Moreover, job j consists of mj map tasks and
rj reduce tasks where the task sets are denoted by Mj =
{Tm,1j , Tm,2j , · · · , Tm,mjj } and Rj = {T r,1j , T r,2j , · · · , T r,rjj }
respectively.

Each machine can only hold one map or reduce task at
any time. We model the service process on each machine as
follows: the service capacity of machines in a time slot is
assumed to be identically distributed random variables. To
be specific, let Xi(t) denote the amount of service delivered
in slot t by machine i. The service capacity of a machine has
a unit mean with variance σ2 and a peak value of ∆. Thus,
for all i ∈ {1, 2, · · · ,M} and t ≥ 1, we have Xi(t) ≤ ∆

3

TABLE 1
The notations of the scheduling parameters

Notations Corresponding meaning

T z,ij the ith map/ reduce task of job j with
Tm,ij for map task; T r,ij for reduce task

aj arrival time of job j
Φj the time when job j completes its work
Ψj the flowtime of job j
Xi(t) the service capacity of machine i in time slot t

∆ the peak value of machine service capacity
pzj the amount of work for the map/ reduce task in job j
Ezj the mean of the execution time for a task in job j
σzj the SD of the execution time for a task in job j
M total number of machines in the cluster
Cz,ij the time when the ith map/ reduce task

in job j completes
Sz,i,kj the start time of the kth cloned copy for task T z,ij
Θz,i,kj the execution time of the kth cloned copy for task

T z,ij without preemption
P z,ij service time of the ith task in job j without

preemption and cloning
dz,ij total number of copies made for task T z,ij

without preemption
dz,ij (t) the number of copies made for task T z,ij

with preemption in time slot t
V z,ij (t) the set of machines which are running

a copy of task T z,ij in time slot t
W z,i
j (t) the amount of work processed in slot t for task T z,ij
Wj(t) the total amount of work processed in slot t for job j

Υj the volume of effective workload of job j
Υj(t) the remaining effective workload of job j in slot t
ψs(t) the set of active jobs in the cluster in time slot t

almost surely and E[Xi(t)] = 1, Var[Xi(t)] = σ2. Table 1
summarizes all the notations in this model.

2.1 Job service process
For ease of presentation, throughout this paper, we use z ∈
{m, r} to denote the map- or reduce-related statements for
all the tasks: when z is used, it is set to either m or r. A task
in job j requires pzj time slots to complete when processed
on a machine at unit speed. For simplicity, we consider each
task completes its work at the end of a time slot.

We adopt task cloning to tackle machine variability so as
to reduce task/job execution time. We generalize the task
cloning approach in [3] to yield a more flexible version
where the cloned copies within a task can be scheduled at
different times. Without loss of generality, consider the kth
copy of task T z,ij is run on machine l. Without preemption,
the execution time of the kth copy, Θz,i,k

j satisfies:

Θz,i,k
j = min

{
τ :

Sz,i,kj +τ−1∑
t=Sz,i,kj

Xl(t) ≥ pzj
}
, (1)

where Sz,i,kj denotes the time when the kth copy is
launched. Observe from (1) that, the random variable Θz,i,k

j

defines a stopping time. Applying Wald’s Equation [21], it
follows that:

E[Θz,i,k
j]E[Xl(t)] = pzj . (2)

Let Ezj denote the mean of the execution time for task T z,ij
without cloning. According to (2), for all z ∈ {m, r} and
i ∈ {1, 2, · · · , zj}, we have:

E[Θz,i,k
j] = Ezj = pzj . (3)

We explore the relationship between the variance of Θz,i,k
j

and σ2 by applying the result from [20]. Specifically, when
pzj →∞, we have:

Var[Θz,i,k
j] = (σzj)2 = (pzj +

1

2
)σ2 +O(1),

where σzj denotes the standard deviation of the task execu-
tion time without cloning.

Assumption 1. For all j ∈ {1, 2, · · · , N} and z ∈ {m, r}, Ezj
and σzj are known to the scheduler a priori when job j arrives at
the cluster.

Denote by Cz,ij the completion time of task T z,ij . Since a
job completes when all its reduce tasks finish, the comple-
tion time of job j, denoted by Φj , is given by:

Φj = max
i∈{1,2,··· ,rj}

Cr,ij . (4)

The flowtime of job j is denoted by Ψj = Φj − aj .

2.2 Problem formulation without preemption
In this section, we will formulate an optimization problem
for the case where preemption is not used. When there are
dz,ij copies launched for task T z,ij , the task completion time
Cz,ij satisfies:

Cz,ij = min
k∈{1,2,··· ,dz,ij }

(Sz,i,kj + Θz,i,k
j). (5)

Denote by Sz,ij = (Sz,i,kj |k = 1, 2, · · · , dz,ij) the vector of
start time of the dz,ij copies of the i-th (map or reduce) task

of job j as decided by the scheduler. αzj =
(
dz,ij ,Sz,ij |i =

1, 2, · · · , zj
)

therefore characterizes the number of cloned
copies and the scheduling time of each copy of all tasks in
job j. Let αz =

(
αzj
∣∣j = 1, 2, · · · , N

)
be the scheduling

trajectory of all jobs. The problem of minimizing the overall
job flowtime, i.e.,

∑N
j=1 Ψj , by determining (αm,αr), can

be formulated as the following optimization problem (P1) :

min
(αm,αr)

N∑
j=1

E[Φj − aj] (P1)

s.t. Sm,i,kj ≥ aj , ∀j, 1 ≤ i ≤ mj , 1 ≤ k ≤ dm,ij ,

Sr,i,kj ≥ max
1≤l≤mj

Cm,lj , ∀j, 1 ≤ i ≤ rj , 1 ≤ k ≤ dr,ij ,

N∑
j=1

mj∑
i=1

dm,ij∑
k=1

1(t−Θm,i,k
j < Sm,i,kj ≤ t) = M(t), ∀t,

N∑
j=1

rj∑
i=1

dr,ij∑
k=1

1(t−Θr,i,k
j < Sr,i,kj ≤ t) = R(t), ∀t,

M(t) +R(t) ≤M, ∀t,

where Θc,i,k
j , Φj and Cc,i,kj are given by (1), (4) and (5)

respectively. Here, 1(A) denotes the indicator function that
takes value 1 ifA is true and 0 otherwise. The first constraint
corresponds to the fact that a map task as well as its
cloned copies can only start after the job arrives. The second
constraint states that a reduce task can start processing
only after all map tasks of the same job have finished. The
subsequent equations specify the cluster capacity constraint,

4

namely, the total number of tasks (including their copies)
executed at any time should be no more than M .

Remark 1. When task cloning is not used and there is no
variation in machine processing capacity, i.e., the task execution
time is a deterministic number rather than a random variable,
the scheduling problem in our model reduces to the optimization
problem presented in [38], which has been proven to be NP-
Hard even for the special offline case where all the jobs arrive
the cluster at the same time. The stochastic optimization problem
P1 is therefore NP-Hard and we resort to the use of approximation
algorithms to tackle it.

Worse still, previous work (e.g., [6]) shows that it is impossible
to achieve any “reasonable” approximation for the overall job
flowtime in the non-preemptive case of online scheduling with
single-task jobs over multiple machines. Therefore, we shall design
scheduling algorithms which allow task preemption so as to
achieve competitive performance ratios of small values. This also
enables us to derive non-trivial bounds on the performance of the
corresponding algorithms.

2.3 Task Service Process and Problem formulation with
preemption
In a cluster allowing preemption, the scheduler can preempt
a running task and subsequently resume it. To make use
of the already completed work and take full advantage of
cloning, at the end of each time slot, we also use oppor-
tunistic checkpointing [26], [29], which is a valuable tool in
practical parallel systems to preempt its active jobs. Upon
checkpointing, the state of the redundant copy which has
made the most progress is propagated and cloned to other
copies. Therefore, all the redundant copies can be in the
same state and continue their execution based on the new
state after checkpointing.

Let V z,ij (t) be the set of machines which are running a
copy of T z,ij at time slot t and let dz,ij (t) be the cardinality of
V z,ij (t), i.e., |V z,ij (t)|. Moreover, denote by W z,i

j (t) the vol-
ume of work processed at time slot t. With checkpointing,
W z,i
j (t) is given by:

W z,i
j (t) = max

k∈V z,ij (t)
Xk(t), (6)

and the task completion time Cz,ij , satisfies:
Cz,ij∑

t=aj+1

W z,i
j (t) = pzj . (7)

Further define V z
j (t) = (V z,ij (t)|i = 1, 2, · · · , zj) and

V z(t) = (V z
j (t)|j = 1, 2, · · · , N) to characterize the

scheduling decisions of all jobs at time t. Let ξz =(
V z(t)

∣∣t ∈ N
+
)

be the scheduling trajectory of all jobs
over time. In this paper, we aim to minimize the overall
job flowtime by determining (ξm, ξr), which yields the
optimization problem P2, as shown below:

min
(ξm,ξr)

N∑
j=1

E[Φj − aj] (P2)

s.t. V z1,i1j1
(t)
⋂
V z2,i2j2

(t) = ∅, ∀(j1, i1, z1) 6= (j2, i2, z2),⋃
1≤j≤N,1≤i≤zj ,z∈{m,r}

V z,ij (t) ⊂ {1, 2, · · · ,M}, ∀t ∈ N+,

V r,ij (t) = ∅,∀1 ≤ j ≤ N, 1 ≤ i ≤ rj , t ≤ max
1≤i≤mj

Cm,ij ,

where W z,i
j (t) is given by (6) and satisfies (7). The first

constraint states that a machine can only hold one task at
any time. The second constraint corresponds to the cluster
capacity. The third constraint states that a reduce task can
only start after all map tasks of the same job have finished.

2.4 Competitive Performance Analysis
In this paper, we will study both offline and online al-
gorithms for P2. This involves the determination of the
number of cloned copies for each task at any time slot. In
particular, we shall use the following metric to evaluate the
performance of our proposed offline algorithm.

Definition 1. An algorithm is c-competitive if the algorithm’s
objective is within a factor of c of the optimal solution’s objective.

It has been shown in [19] that no online algorithm can
achieve a constant competitive performance bound for the
total flowtime of jobs sharing multiple machines even for
the simple case of one-task-per-job. As such, previous work
[17], [19] has adopted a resource augmentation analysis.
Under such analysis, the performance of the optimal al-
gorithm on M unit-speed machines is compared with that
of the proposed algorithms on M δ-speed machines where
δ > 1. The following definition characterizes the compet-
itive performance of an online algorithm using resource
augmentation argument.

Definition 2. [19] An online algorithm is δ-speed, c-competitive
if the algorithm’s objective is within a factor of c of the optimal
solution’s objective when the algorithm is given δ resource aug-
mentation.

In this paper, we also adopt the resource augmentation
argument to bound the competitive performance of the
proposed online algorithm. With resource augmentation,
the service capacity in any time slot under our algorithms
is scaled by δ. In other words, the value of Xi(t) for all
i ∈ {1, 2, · · · ,M} and t ∈ N+ is δ times that under the
optimal algorithm of the same variables.

3 TRANSIENT SCHEDULING [2]: ALL JOBS AR-
RIVE AT THE CLUSTER AT THE SAME TIME

Before designing the online algorithm, in this section, we
consider a special case of offline scheduling, namely, the
so-called transient scheduling setting where all the jobs
enter into the system at the same time. In particular, we
consider that aj = 0 for all j ∈ {1, 2, · · · , N}. Although
this setting is simple, the offline algorithm presented in the
sequel provides good insights for us to design an online
algorithm.

In this section, we assume without loss of generality
that jobs have been ordered such that (m1E

m
1 + r1E

r
1) ≤

(m2E
m
2 + r2E

r
2) ≤ · · · ≤ (mNE

m
N + rNE

r
N).

3.1 A lower bound for the optimal scheduling algorithm
Under the transient scheduling setting, we shall first give a
lower bound for the overall job flowtime achieved by any
deterministic scheduling algorithm with task cloning. To
achieve this, we consider an optimal scheduling algorithm,
Aold and a particular time slot t.

5

From (6), we have:

W z,i
j (t) = max

k∈V z,ij (t)
Xk(t) ≤ ∆,

which implies that, a task can be processed at a rate of at
most ∆. Therefore, job j requires at least

Emj +Erj
∆ units of

time to complete. As such, a first lower bound for the total
job flowtime achieved by Aold, is given by:

N∑
j=1

E[Φj] ≥
N∑
j=1

Emj + Erj
∆

. (8)

Following (6), the total amount of work processed at time
slot t for task T z,ij under Aold, is upper bounded by:

W z,i
j (t) = max

k∈V z,ij (t)
Xk(t) ≤

∑
k∈V z,ij (t)

Xk(t). (9)

Thus, the total amount of work processed for job j at time
slot t, Wj(t), is upper bounded by:

Wj(t) ≤
mj∑
i=1

∑
k∈Vm,ij (t)

Xk(t) +

rj∑
i=1

∑
k∈V r,ij (t)

Xk(t). (10)

Summing up Wj(t) over all j, it follows that, the total
amount of work processed for all jobs is upper bounded
by the system capacity, i.e.,

N∑
j=1

Wj(t) ≤
M∑
i=1

Xi(t), (11)

We then simulate a new system and a new scheduling
algorithm Anew as follows: the system has one single ma-
chine whose processing capacity is

∑M
i=1Xi(t) at the t th

time slot. Moreover, the t th time slot is further divided into
several small time periods where the jth period has a length
of Wj(t)∑N

j=1Wj(t)
. Under Anew, the jth period is fully dedicated

to job j for processing at a rate of
∑M
i=1Xi(t). Based on

(11), one can see that the volume of work processed in the
simulated system for each job will not be smaller than that
in the original system. Therefore, we can use the overall job
flowtime achieved by Anew in the new system as a lower
bound for the overall job flowtime achieved by Aold.

Theorem 1. In the simulated system, the expected value of the
overall job flowtime is lower bounded by:

N∑
j=1

E[Φj] ≥
∑N
j=1(N + 1− j)(mjE

m
j + rjE

r
j)

M
.

Proof. Assume that the completion times of all jobs are
ordered such that Φl1 ≤ Φl2 ≤ · · · ≤ ΦlN where
{l1, l2, · · · , lN} is a permutation of {1, 2, · · · , N}. Denote
by χj the total time spent by the simulated system serving
job j.

Consider the first completed k jobs where 1 ≤ k ≤ N . At
any time between 0 and Φl1 , there are (k−1) jobs waiting to
be processed among those k jobs. Hence, the accumulated
waiting time in this period is (k − 1)Φl1 . Similarly, at any
time between Φl1 and Φl2 , there are (k − 2) jobs waiting to
be processed and they contribute (k− 2) · (Φl2 −Φl1) to the

total waiting time. Hence, the overall waiting time of the k
jobs is given by:

k−1∑
j=1

(k − j) · (Φlj − Φlj−1
) =

k−1∑
j=1

Φlj . (12)

Since a job flowtime consists of two parts, namely, the wait-
ing time and the processing time, the overall job flowtime
for these k jobs is characterized by:

k∑
j=1

Φlj =
k−1∑
j=1

Φlj +
k∑
j=1

χlj . (13)

By shifting terms in (13), we get: Φlk =
∑k
j=1 χlj . Summing

up all job flowtime, it follows that:
N∑
j=1

Φlj =
N∑
k=1

k∑
j=1

χlj =
N∑
j=1

(N + 1− j)χlj . (14)

Taking expectation on both sides of (14), we have:
N∑
j=1

E[Φlj] =
N∑
j=1

(N + 1− j)E[χlj]. (15)

Applying an argument similar to that for (2) and (3) yields:

E[χlj] =
mljE

m
lj

+ rljE
r
lj

M
, (16)

since job lj has at least (mljE
m
lj

+ rljE
r
lj

) amount of work
to process in the simulated system. Substitute (16) into (15)
and rearrange the inequality, we have:

N∑
j=1

E[Φlj] =
1

M

N∑
j=1

(N + 1− j)(mljE
m
lj + rljE

r
lj)

≥ 1

M

N∑
j=1

(N + 1− j)(mjE
m
j + rjE

r
j).

(17)

This completes the proof of Theorem 1.

Theorem 1 gives another lower bound for the expected
value of the overall job flowtime. Thus, one can get a tighter
lower bound for

∑N
j=1E[Φj] by combining (8) and (17), i.e.,

N∑
j=1

E[Φj] ≥ max
{∑N

j=1(Emj + Erj)

∆
,

∑N
j=1(N + 1− j)(mjE

m
j + rjE

r
j)

M

}
.

(18)

Remark 2. In (17), the equality can be attained by letting lj = j,
i.e., the jobs are completed in the order which is the same as the
increasing order of (mjE

m
j + rjE

r
j). This motivates us to design

scheduling algorithms based on the total amount of workload for
each job and give priorities to small ones. Such a scheduling
principle is similar to SRPT (Shortest remaining processing time),
which schedules jobs of a single task on one machine and gives
priorities to jobs with the shortest processing time [25].

3.2 An approximate algorithm for transient scheduling
Following up on Remark 2, we extend the SRPT scheduler
to design an approximate algorithm, named SEW (Smallest
Effective Workload) under the transient scheduling setting.

Similar to the SRPT principle, the main idea of SEW is
to give scheduling priorities to jobs with small workloads.
However, to guarantee system performance in the worst

6

case, we also consider the variance of task execution time.
Specifically, we define a total effective workload, Υj , for
job j, which incorporates the standard deviation of task
execution time by multiplying with a factor λ. To be more
specific,

Υj = mj · (Emj + λσmj) + rj · (Erj + λσrj). (19)

The rationale of including σzj in Υj is that tasks with large
variation in execution times may prolong the completion
of other tasks and jobs substantially, and thus should be
scheduled later. Nevertheless, it still remains a problem to
choose the value of λ and we shall tackle this issue in
Section 5.

After computing Υj , SEW then schedules jobs with
smaller effective workload before those with larger ones.
In addition, we divide the machines into two groups of the
same size, namely, the map group and reduce group, which
are responsible for running map tasks and reduce tasks
respectively. At the beginning of each time slot, whenever a
machine in the map group is available, say, machine i, SEW
randomly chooses one unscheduled map task from the pool
of not-yet-finished jobs, or the set of active jobs that have
the smallest value of Υj and assign it to machine i for pro-
cessing. If all jobs are scheduled and yet some tasks are not
finished, then we randomly choose from those unfinished
tasks and clone each to a free machine. Only when the map
phase finishes can SEW begin to schedule reduce tasks on
machines in the reduce group. The scheduling process for
the reduce tasks is completely the same as that for the map
tasks. Algorithm 1 shows the pseudo-code of this algorithm.

3.3 Performance guarantee for SEW

We first define for job j, Aj , which is the accumulated
effective workload of those jobs whose effective workload
is no larger than Υj . In other words, Aj is given by:

Aj =
∑

i:Υi≤Υj

Υi. (20)

We then give the following theorems to bound the worst
case job flowtime with a certain confidence level and to
characterize the competitive performance of SEW.

Theorem 2. With a probability of at least λ8

(1+λ2)4 , Φj is no more
than (Emj + Erj + λσmj + λσrj + 2Aj/M).

Proof. To prove this theorem, we first show the following
two lemmas:

Lemma 1. With probability of at least λ2

1+λ2 , the machines in the
map group are busy processing the jobs whose effective workload
is at most Υj during the time interval (0,Ψj−Emj −λσmj] where
Ψj = maxi∈{1,2,··· ,mj} C

m,i
j .

Denote by P z,ij the total time spent by the cluster serving
task T z,ij under SEW. Without loss of generality, let Tm,1j be
the last map task to finish in job j. Based on the scheduling
principle of SEW, all the machines in the map group must
be busy processing jobs whose effective workload is at most
Υj during the time interval (0,Ψj − Pm,1j].

Algorithm 1: SEW algorithm for the transient schedul-
ing

Input: The jobs associated with Ezj and σzj ;
Output: Machine assignments for the unscheduled/

unfinished tasks at the current time slot.
1 Divide the machines into two groups:
M1 = {1, 2, · · · , M2 } and
M2 = {M2 + 1, M2 + 2, · · · ,M};

2 Initialize the job set Ξ1 = Ξ2 = {1, 2, · · · , N};
3 Sort the jobs in Ξ1 and Ξ2 based on the increasing

order of Υj ;
4 if a machine in M1 is available then
5 Choose the first job j from Ξ1;
6 Choose one task from all the unscheduled map

tasks of job j uniformly at random and assign it
to this machine;

7 if job j has no unscheduled map task then
8 Ξ1 = Ξ1 − {j};
9 if Ξ1 = ∅ ∧ some tasks are not finished then

10 Choose one task from the unfinished map
tasks uniformly at random and clone a new
copy for it on this machine;

11 if a machine in M2 is available then
12 Choose the first job j from Ξ2;
13 if all the map tasks in job j have finished then
14 Choose one task from all the unscheduled

reduce tasks of job j uniformly at random and
assign it to this machine;

15 if job j has no unscheduled reduce task then
16 Ξ2 = Ξ2 − {j};
17 if Ξ2 = ∅ ∧ some tasks are not finished then
18 Choose one task from the unfinished

reduce tasks uniformly at random and
clone a new copy for it on this machine;

Applying Chebyshev inequality [23], the event of
Pm,1j ≤ Emj + λσmj happens with probability of at least:

Pr{Pm,1j ≤ Emj + λσmj } = 1− Pr{Pm,1j − Emj ≥ λσmj }

≥ 1− 1

1 + λ2
=

λ2

1 + λ2
.

This completes the proof of Lemma 1.

Lemma 2. With probability of at least λ2

1+λ2 , the machines in the
reduce group are busy processing the jobs whose effective workload
is at most Υj during the time interval (Ψj ,Φj − Erj − λσrj].

The proof of Lemma 2 is the same as that of Lemma 1
and we omit it here.

Define a random variableWm
j , which is the total amount

of time spent by the cluster for serving the map tasks of
jobs whose effective workload is at most Υj . The mean and
variance of Wm

j are given by:

E[Wm
j] =

∑
i:Υi≤Υj

mi · Emi . (21)

7

Var[Wm
j] =

∑
i:Υi≤Υj

mi · (σmi)2. (22)

Let Amj =
∑
i:Υi≤Υj

mj · (Emj + λσmj). Using Chebyshev
inequality, the probability that Wm

j is no less than Amj is
upper bounded by:

Pr
{
Wm
j ≥ Asj

}
= Pr

{
Wm
j −E[Wj] ≥ λ

∑
i:Υi≤Υj

miσ
m
i

}
≤ Pr

{
Wm
j −E[Wj] ≥ λ

√ ∑
i:Υi≤Υj

mi(σmi)2
}

≤ 1

1 + λ2
.

Let Pj be the event that the machines in the map group
is busy processing the work of Wm

j during the interval
(0,Ψj−Emj −λσmj]. Denote byQj the event thatWm

j ≤ Amj .
On the one hand, we have:

Pr{Pj ∩Qj} = Pr{Pj} · Pr{Qj} ≥
λ4

(1 + λ2)2
,

since Pj and Qj are independent. On the other hand, when
both Pj and Qj happen, it follows that:

M/2 · (Ψj − Emj − λσmj) ≤ Amj ,

because there are M/2 machines in the map group. We
therefore conclude that, Ψj ≤ Emj + λσmj + 2Amj /M holds
with probability of at least λ4

(1+λ2)2 .
LetArj =

∑
i:Υi≤Υj

rj ·(Erj +λσrj). Using the same argu-
ment as above, it follows that, Φj−Ψj ≤ Erj +λσrj +2Arj/M
holds with probability of at least λ4

(1+λ2)2 . Therefore, with

probability of at least λ8

(1+λ2)4 , Φj is upper bounded by:

Φj ≤ Emj + λσmj + Erj + λσrj + 2Amj /M + 2Arj/M

= Emj + Erj + λ(σmj + σrj) +
2Aj
M

.
(23)

This completes the proof of Theorem 2.

Theorem 3. SEW(λ = 0) is O(1)-competitive for the expected
value of the overall job flowtime.

Proof. let Tm,1j be the last reduce task to finished in job j.
Using the arguments similar to the proof in Theorem 2, we
have:

Φj ≤ Pm,1j +P r,1j +
2
∑
i:Υi≤Υj

(
∑mi
k=1 P

m,k
i +

∑ri
k=1 P

r,k
i)

M
.

(24)
Taking expectation on both sides of (24), it follows that:

E[Φj] ≤ Emj + Erj +
2
∑
i:Υi≤Υj

(miE
m
i + riE

r
i)

M
.

Summing up all job flowtime, we have:

N∑
j=1

E[Φj] ≤
N∑
j=1

(Emj + Erj)

+
2
∑N
j=1

∑
i:Υi≤Υj

(miE
m
i + riE

r
i)

M
.

When λ = 0, this implies that:

N∑
j=1

E[Φj] ≤
N∑
j=1

(Emj + Erj)

+
2
∑N
j=1(N + 1− j)(mjE

m
j + rjE

r
j)

M
.

Let OPT and TS denote the expected value of the overall
job flowtime achieved by the optimal algorithm and SEW
respectively. Using the lower bound results from (18), we
have:

TS

OPT
≤

∑N
j=1(Emj + Erj) +

2
∑N
j=1(N+1−j)(mjEmj +rjE

r
j)

M

max{
∑N
j=1(Emj +Erj)

∆ ,
∑N
j=1(N+1−j)(mjEmj +rjErj)

M }

≤
∑N
j=1(Emj + Erj)∑N
j=1(Emj +Erj)

∆

+ 2 ≤ ∆ + 2.

This completes the proof.

Note that, when the variance of machine processing
capacity is negligible, the peak rate ∆, is the same as the
mean value, i.e., ∆ = 1. In this case, TS

OPT ≤ 3, which
implies that, SEW is a 3-competitive algorithm with respect
to the total job flowtime.

4 ONLINE SCHEDULING WITH CLONING
We present an approximate algorithm in this section for the
online scheduling case where different jobs arrive at the
cluster over time. We shall also derive a competitive per-
formance bound for the proposed algorithm using resource
augmentation arguments.

4.1 Smallest remaining effective workload based ma-
chine sharing principle
Extending the transient scheduling setting in Section 3, we
design an online scheduling algorithm to allow the number
of cloned copies of tasks to vary dynamically. We call this
online algorithm the Smallest Remaining Effective Workload
based β-fraction Sharing plus Cloning (SREW+C(β)).

The algorithm depends on the system parameter β ∈
(0, 1). At a high level, SREW+C(β) works as follows: At
the beginning of each time slot, the scheduler computes a
priority for every active job. Jobs with the highest priority
share the machines equally while satisfying the following
condition:

of running jobs
of not-yet finished jobs

= β.

When β is set to 1, the scheduler reduces to Fair Scheduler in
Hadoop [1]. When β is close to 0, the scheduler is the same
as the FIFO scheduler. By tuning the value of β, we could
obtain a scheduler that best fits a cluster. In addition, this
β-fraction sharing principle yields a bounded competitive
ratio as presented in the subsequent sections.

Let ψs(t) be the set of active jobs at the beginning of time
slot t. Denote by mj(t) and rj(t) the number of unfinished
map and reduce tasks in job j respectively. The remaining
effective workload of job j at time slot t is then characterized
by:

Υj(t) = mj(t) · (Emj + λσmj) + rj(t) · (Erj + λσrj). (25)

8

The scheduler computes Υj(t) for each job in ψs(t) and
guarantees that jobs with smaller Υj(t) have higher priority
to be scheduled. Let ψsj (t) denote the set of jobs whose
remaining effective workload is greater than or equal to that
of job j at time slot t. Further define gj(t) as follows:

gj(t) =

M

β|ψs(t)| |ψsj (t)| − 1 ≥ (1− β)|ψs(t)|,
0 |ψsj (t)| < (1− β)|ψs(t)|,

(|ψsj (t)|−(1−β)|ψs(t)|)·M
β|ψs(t)| otherwise.

To simplify the analysis, we assume gj(t) is an integer. As
such, job j is allocated gj(t) machines at time slot t under
SREW+C(β).

After the number of machines is allocated for each job,
the scheduler chooses appropriate tasks of the active jobs
to schedule and make cloning decisions. Moreover, the
scheduler begins to launch reduce tasks only after all the
map tasks have completed. Take job j for example, let uzj (t)
be the number of unscheduled tasks of job j at the beginning
of time slot t. Further define oj(t) to characterize the number
of machines which are still running the tasks of job j at time
t. When uzj (t) > 0, the scheduler will launch b gj(t)−oj(t)uzj (t) c or

d gj(t)−oj(t)uzj (t) e copies of each unscheduled task on available
machines such that the total number of newly launched
copies for job j is exactly (gj(t) − oj(t)). Here, bxc and
dxe represent the largest integer which does not exceed x
and the smallest integer that is above x respectively. On the
contrary, if uzj (t) = 0, (gj(t)− oj(t)) machines are assigned
to existing running tasks in job j to make cloned copies.
Algorithm 2 shows the pseudo-code of SREW+C(β).

4.2 Performance guarantee for SREW+C(β) with re-
source augmentation
In this section, we use resource augmentation argument
to bound the competitive performance of the SREW+C(β)
algorithm with respect to the expected value of the total
job flowtime. To achieve this, we first make the following
assumption:

Assumption 2. We shall model (approximate) the service capac-
ity under cloning, W z,i

j (t), by its mean, i.e.,

W z,i
j (t) = ω(|V z,ij (t)|) = E

[
max

k∈V z,ij (t)
Xk(t)

]
. (26)

Remark 3. Assumption 2 essentially replaces the service capacity
of the system with the mean but accounts for the average gains one
might expect with task cloning.

Lemma 3. {ω(d)}d∈N is a concave sequence, i.e., ω(d)−ω(d−
1) ≤ ω(d− 1)− ω(d− 2).

Proof. For a fixed t, let FXi(t)(x) and FHd(t)(x) denote the
cumulative density function of Xi(t) and Hd(t) respectively
where Hd(t) = maxk∈V z,ij (t)Xk(t) and d = |V z,ij (t)|.
Note that FHd(t)(x) = F dXi(t)(x). We then have: ω(d) =

E
[
Hd(t)

]
=
∫∞
0 (1− F dXi(t)(x))dx, which implies that,

ω(d)− ω(d− 1) =

∫ ∞
0

F d−1
Xi(t)

(x) · (1− FXi(t)(x))dx

≤
∫ ∞

0
F d−2
Xi(t)

(x) · (1− FXi(t)(x))dx

= ω(d− 1)− ω(d− 2).

Algorithm 2: SREW+C(β) Algorithm Design for On-
line Scheduling

1 At the beginning of time slot t, update ψs(t), the set
of jobs which still have unfinished tasks;

2 Compute Υj(t) for each j ∈ ψs(t) based on (25) and
sort the jobs in ψs(t) according to the increasing
order of Υj(t);

3 for each job j ∈ ψs(t) do
4 Compute gj(t), the number of machines allocated

to job j based on the β-fraction sharing principle;
5 Update uzj (t) and oj(t);
6 if oj(t) > gj(t) then
7 Preempt (oj(t)− gj(t)) running copies of job j

uniformly at random;
8 else if gj(t) == 0 then
9 continue;

10 else
11 if uzj (t) > 0 then
12 Launch b gj(t)−oj(t)uzj (t) c or d gj(t)−oj(t)uzj (t) e copies

for each unscheduled task in the Map/
Reduce phase such that the total number
of newly launched copies is exactly
(gj(t)− oj(t));

13 else
14 Launch b gj(t)−oj(t)zj(t)

c or d gj(t)−oj(t)zj(t)
e cloned

copies for each running task on idle
machines such that the total number of
newly launched cloned copies is
(gj(t)− oj(t)).

This completes the proof.

Our main result that characterizes the competitive per-
formance of SREW+C(β) is given by the following theorem:

Theorem 4. The algorithm SREW+C(β) is (1 + 2β + ε)-speed
O(1

βε)-competitive with respect to the overall job flowtime when
λ = 0 and β < min{MN , 1

2}.

We adopt the use of a potential function to prove The-
orem 4. The key step of this method is to construct a
proper function which combines the optimal schedule and
SREW+C(β). Let SR and OPT be the overall job flow-
time under SREW+C(β) and the optimal scheduling policy
respectively. We define a potential function, Λ(t), whose
evolution involves job arrivals as well as task processing.
Λ(t) should satisfy the following three properties:
• Boundary Conditions: Λ(0) = Λ(∞) = 0.
• Job arrival: there exists a constant c1 such that, the overall

increase in Λ(t) caused by a job arrival is upper bounded
by c1 ·OPT .

• Task processing: there exist some constant c2 and c3 such
that, with a factor of (1 + 2β + ε) resource augmentation,
the overall increase in Λ(t) caused by the task processing
is upper bounded by (c2 ·OPT − c3βε · SR).

By summing up all increases in the potential function while
accounting for the boundary conditions, one can see that
the existence of such a potential function guarantees that

9

SR ≤ c1+c2
c3
· 1
βε ·OPT under a (1 + 2β + ε)-speed resource

augmentation.

4.3 Proof of Theorem 4
Before going into the details of the proof, we first define a
new function, $: R≥0 → R≥0 to extend the domain of ω.
Specifically, for any x ∈ [a, a+ 1) where a ∈ N, we let

$(x) = ω(a) + (ω(a+ 1)− ω(a))(x− a).

The following lemmas illustrate two important properties of
$.

Lemma 4. $ is an increasing and concave function.

Proof. To prove this lemma, it suffices to show that, for any
x ∈ [a, a+ 1) and any y ∈ R≥0, it follows that,

$(y) ≤ $(x) + ($(a+ 1)−$(a))(y − x), (27)

Consider y ∈ [b, b + 1) where b ∈ N. Suppose y ≥ x. Based
on the definition of $, we have:

$(y) = $(b) + ($(b+ 1)−$(b))(y − b)
≤ $(b) + ($(a+ 1)−$(a))(y − b).

(28)

Inferred from Lemma 3 that

$(b) =
b−1∑
k=a

($(k + 1)− ($(k)) +$(a)

≤ (b− a)($(a+ 1)− ($(a)) +$(a).

(29)

Substitute (29) into (28) to yield:

$(y) ≤ $(a) + ($(a+ 1)−$(a))(y − a)

= $(x) + ($(a+ 1)−$(a))(y − x).

For the case where y < x, we can repeat the similar process
to show that (27) holds. This completes the proof.

Lemma 5. $(a)
a ≥ $(b)

b for any b ≥ a > 0.

Proof. Since $ is a continuous and concave function, it
follows that, $(ξx + (1 − ξ)y) ≥ ξ$(x) + (1 − ξ)$(y)
for any x, y ∈ R≥0 and ξ ∈ [0, 1]. Specifically, consider
the case when x = 0, y = b and ξ = 1 − a

b , we have:
$(a) ≥ (1− a

b)$(0) + a
b$(b) ≥ a

b$(b). This completes the
proof.

4.3.1 Constructing potential function Λ(t)

Let δ = (1 + 2β + ε) and ρ(x) = δ$(x) for all x ∈ R≥0.
Denote by γz,ij (t) the number of machines allocated to task
T z,ij at time slot t under the optimal scheduling policy. Since
we are using a resource augmentation of δ−speed under
SREW+C, for all j ∈ {1, 2, · · · , N} and i ∈ {1, 2, · · · , zj}, it
follows that:

∞∑
τ=aj+1

ρ(dz,ij (τ)) =
∞∑

τ=aj+1

$(γz,ij (τ)) = pzj . (30)

Let ψ∗(t) be the set of jobs that are still active at the
beginning of time slot t under the optimal scheduling policy.
Thus, SR and OPT are given by:

SR =
∞∑
t=1

|ψs(t)| and OPT =
∞∑
t=1

|ψ∗(t)|. (31)

Denote by πz,ij (t) the cumulative service difference be-
tween the two schedules for task T z,ij at time slot t. We
have:

πz,ij (t) = max
[t∑
τ=aj+1

$(γz,ij (τ))−
t∑

τ=aj+1

ρ(dz,ij (τ)) , 0
]
,

(32)
Substitute (30) into (32), we have:

πz,ij (0) = πz,ij (∞) = 0. (33)

Define a potential function Λ(t) as follows:

Λ(t) =
N∑
j=1

mj∑
i=1

πm,ij (t)

$(M
β|ψsj (t)|)

+
N∑
j=1

rj∑
i=1

πr,ij (t)

$(M
β|ψsj (t)|)

. (34)

For ease of presentation, we shall use
∑zj
i=1 to represent

(
∑mj
i=1 +

∑rj
i=1) in the sequel. Based on (33), we have:

Λ(0) = Λ(∞) = 0.

With the boundary conditions satisfied, we shall focus on
the evolution of the potential function, which is given by:

Λ(t)− Λ(t− 1) =
N∑
j=1

zj∑
i=1

πz,ij (t)

$(M
β|ψsj (t)|)

−
N∑
j=1

zj∑
i=1

πz,ij (t− 1)

$(M
β|ψsj (t−1)|)

=
N∑
j=1

zj∑
i=1

πz,ij (t)

$(M
β|ψsj (t)|)

−
N∑
j=1

zj∑
i=1

πz,ij (t− 1)

$(M
β|ψsj (t)|)︸ ︷︷ ︸

P(t)

+
N∑
j=1

zj∑
i=1

πz,ij (t− 1)

$(M
β|ψsj (t)|)

−
N∑
j=1

zj∑
i=1

πz,ij (t− 1)

$(M
β|ψsj (t−1)|)︸ ︷︷ ︸

J (t)

.

(35)

Notice from (35) that the evolution of Λ(t) includes two
parts, namely, P(t) and J (t). P(t) denotes the changes
caused by the task processing while J (t) denotes the
changes caused by job arrivals or departures. In the sequel,
we shall derive bounds for P(t) and J (t) separately.

4.3.2 Changes in Λ(t) caused by job arrivals and job de-
partures
In (35), J (t) can be reformulated as:

J (t) =
N∑
j=1

zj∑
i=1

(πz,ij (t− 1)

$(M
β|ψsj (t)|)

−
πz,ij (t− 1)

$(M
β|ψsj (t−1)|)

)
. (36)

According to the SREW+C(β) scheduling with λ = 0, a
job in ψsj (t) can not leave the system before job j. Therefore,
we have, for any j and t,

|ψsj (t)| ≥ |ψsj (t− 1)|,

which implies that, $(M
β|ψsj (t−1)|) ≥ $(M

β|ψsj (t)|) and

J (t) =
N∑
j=1

zj∑
i=1

πz,ij (t− 1)
(
$(M

β|ψsj (t−1)|)−$(M
β|ψsj (t)|)

)
$(M

β|ψsj (t−1)|)$(M
β|ψsj (t)|)

(i)
≤

N∑
j=1

zj∑
i=1

πz,ij (t− 1)
(
$(

M

β|ψsj (t− 1)|
)−$(

M

β|ψsj (t)|
)
)

(ii)
≤

N∑
j=1

zj∑
i=1

pzj

(
$(

M

β|ψsj (t− 1)|
)−$(

M

β|ψsj (t)|
)
)
,

10

where (i) is due to the fact that$(M
β|ψsj (t−1)|) and$(M

β|ψsj (t)|)

are not smaller than one since β ≤ M
N . (ii) is because of the

fact that πz,ij (t− 1) ≤ pzj . Therefore, we have:

∞∑
t=1

J (t) ≤
∞∑
t=1

N∑
j=1

zj∑
i=1

pzj ($(
M

β|ψsj (t− 1)|
)−$(

M

β|ψsj (t)|
))

=
N∑
j=1

zj∑
i=1

pzj

∞∑
t=aj+1

(
$(

M

β|ψsj (t)|
)−$(

M

β|ψsj (t+ 1)|
)
)

≤
N∑
j=1

zj∑
i=1

pzj$(
M

β|ψsj (aj + 1)|
) ≤ ∆

N∑
j=1

zj∑
i=1

pzj .

Since the flowtime of job j is lower bounded by
∑zj
i=1 p

z
j/M

under the optimal policy, it follows that:
∞∑
t=1

J (t) ≤M∆ ·OPT. (37)

4.3.3 Changes in Λ(t) caused by task processing
Similar to (36), P(t) can be reformulated as:

P(t) =
N∑
j=1

zj∑
i=1

πz,ij (t)− πz,ij (t− 1)

$(M
β|ψsj (t)|)

. (38)

Let Ωs(t) and Ω∗(t) be the set which contains all the tasks
that have not yet finished under SREW+C and the optimal
schedule respectively. It follows that:

πz,ij (t)− πz,ij (t− 1)

≤ 1(T z,ij ∈ Ω∗(t))$(γz,ij (t))

+1(T z,ij /∈ Ω∗(t))($(γz,ij (t))− ρ(dz,ij (t))) (39)

= $(γz,ij (t))− 1(T z,ij /∈ Ω∗(t))ρ(dz,ij (t)). (40)

When T z,ij ∈ Ω∗(t), task T z,ij has not completed under the
optimal policy and the drift is bounded by the first term in
(39). When T z,ij /∈ Ω∗(t), it means task T z,ij has completed
under the optimal policy. As such, the difference term in (32)
is positive and its drift is given by the the second term in
(39). Substitute (40) into (38), we have:

P(t) ≤
N∑
j=1

zj∑
i=1

$(γz,ij (t))

$(M
β|ψsj (t)|)︸ ︷︷ ︸

P1(t)

−
N∑
j=1

zj∑
i=1

1(T z,ij /∈ Ω∗(t))ρ(dz,ij (t))

$(M
β|ψsj (t)|)︸ ︷︷ ︸

P2(t)

.

(41)

To bound the first term in P(t), i.e., P1(t), we will
consider the following two cases:

Case 1: When γz,ij (t)) ≤ M
β|ψsj (t)| , it follows that:

$(γz,ij (t))

$(M
β|ψsj (t)|)

≤ 1(γz,ij (t) ≥ 1).

Case 2: When γz,ij (t)) > M
β|ψsj (t)| , we apply Lemma 5 to

yield:

$(γz,ij (t))

$(M
β|ψsj (t)|)

≤
γz,ij (t)

M/(β|ψsj (t)|)
≤
γz,ij (t)β|ψs(t)|

M
.

Combining Case 1 and Case 2,
$(γz,ij (t))

$(M
β|ψs

j
(t)|)

is upper bounded

by
(
1(γz,ij (t) ≥ 1) +

γz,ij (t)β|ψs(t)|
M

)
. Therefore, P1(t) is

bounded by:

P1(t) ≤
N∑
j=1

zj∑
i=1

1(γz,ij (t) ≥ 1) +
N∑
j=1

zj∑
i=1

γz,ij (t)β|ψs(t)|
M

(iii)
≤ M + β|ψs(t)| ≤M |ψ∗(t)|+ β|ψs(t)|,

(42)

where (iii) is due to the fact that
∑N
j=1

∑zj
i=1 γ

z,i
j (t) ≤M.

Now, it remains to bound the second term, P2(t). Note
that, dz,ij (t) ≤ M

β|ψsj (t)| , applying Lemma 5, we have:

ρ(dz,ij (t))

$(M
β|ψsj (t)|)

≥ δ ·
dz,ij (t)

M/(β|ψsj (t)|)
,

which implies:

P2(t) ≤ −δ
N∑
j=1

zj∑
i=1

1(T z,ij /∈ Ω∗(t)) · dz,ij (t)

M/(β|ψsj (t)|)

= −δβ
N∑
j=1

zj∑
i=1

dz,ij (t) · |ψsj (t)|
M

+ δ
N∑
j=1

zj∑
i=1

1(T z,ij ∈ Ω∗(t)) · dz,ij (t)

M/(β|ψsj (t)|)
.

(43)

Based on the scheduling principle of SREW+C(β), we have:

dz,ij (t)|ψsj (t)| ≥ (1− β) · dz,ij (t)|ψs(t)|. (44)

and for all j ∈ {1, 2, · · · , N},
zj∑
i=1

1(T z,ij ∈ Ω∗(t))dz,ij (t) ≤ 1(j ∈ ψ∗(t))M/(β|ψs(t)|)

≤ 1(j ∈ ψ∗(t))M/(β|ψsj (t)|).
(45)

Substitute (44) and (45) into (43), it follows that:

P2(t) ≤ −δβ(1− β)|ψs(t)|
N∑
j=1

zj∑
i=1

dz,ij (t)

M

+ δ
N∑
j=1

1(j ∈ ψ∗(t))

= −δβ(1− β)|ψs(t)|+ δ|ψ∗(t)|.

(46)

Combine (42) and (46), P(t) is bounded by:

P(t) ≤ (M + δ)|ψ∗(t)| − β(δ(1− β)− 1)|ψs(t)|

≤ (M + δ)|ψ∗(t)| − βε

2
|ψs(t)|,

where the last inequality is due to the fact that δ = (1+2β+
ε) and δ(1− β) ≥ ε

2 since β < 1
2 . Summing up all P(t) over

t, we have:
∞∑
t=1

P(t) ≤ (M + δ)OPT − βε

2
SR. (47)

11

Finally, combine (35), (37) and (47), we have:

0 = Λ(∞)− Λ(0) =
∞∑
t=1

(Λ(t)− Λ(t− 1))

≤ (M + δ +M∆)OPT − βε

2
SR.

(48)

(48) implies that SR ≤ 2(M+δ+M∆)
βε OPT , which completes

the proof of Theorem 4.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the
SREW+C(β) algorithm via extensive simulations driven by
Google cluster-usage traces [27]. The traces contain the
information of job submission and the completion time of
Google services on a cluster with 11,000 servers. It also
includes the number of tasks in each job as well as the
duration of each task without preemption. From the traces,
we extract the statistics of jobs during a 28-hour period as
shown in Table 2. We also exclude the unfinished jobs as
well as those which have specific constraints on machine
attributes. All the experiments are conducted on a PC with
a 2.6GHz Intel i5 Dual-core CPU.

Simulation Methodology: Based on the trace data, we
estimate the first and second moment of the task service
time for each job, which are used as a priori information
under the SREW+C(β) algorithm. Once a cloned copy is
scheduled, we set the service time of this copy to be the
same as that of a task which is randomly chosen from all
the tasks in the same job. We repeat the same simulation
for each of the following evaluations ten times and take the
average to obtain the final results.

Baseline Algorithms: We use the following four algo-
rithms as the baselines for comparison with the SREW+C(β)
algorithm:
• Microsoft Mantri’s Speculative Execution Scheme: The

speculative execution scheme of Mantri [5] has been
demonstrated to be better than straggler mitigation
schemes in Hadoop [1] , Dryad [18] , MapReduce [10]
and LATE [37] (Refer to Section 6.1 in [5]). In Mantri,
the system estimates the remaining time to finish, trem,
for each task and predicts tnew, the required service time
of a relaunched copy of the task. A speculative copy is
launched when the probability Pr(trem > c+1

c tnew) is
above a certain threshold (default value = 0.25) where c is
the number of copies of the task currently running.

• Dolly: Dolly is proposed by AMPLab in [3] to mitigate
stragglers via cloning small jobs. Dolly adopts a simple
policy of admission control to perform cloning with an
allotted resource budget. When the total number of clones
in the cluster is under a configurable fraction (β) of the
total capacity of the cluster and a utilization threshold (τ),
cloning will be applied following a simple computation
based on limiting the probability that a job straggles.
Under Dolly, all the tasks within a job will have the same
number of clones.

• Grass: Grass is another straggler mitigation scheme pro-
posed by AMPLab in [4] to trim stragglers for approx-
imation jobs which require only a subset of tasks to
finish based on job completion deadline or some error

TABLE 2
Google trace data statistics

Trace duration (seconds) 102767
Average number of tasks per job 123.8

Minimum task duration (seconds) 13.5
Maximum task duration (seconds) 22919.3
Average task duration (seconds) 1246.7

bound(s) of the computational results of the job. Grass
combines two different strategies to launch speculative
copies for stragglers, namely, the Greedy Speculative (GS)
scheduling and the Resource Aware Speculative (RAS)
scheduling. The point of switching from RAS to GS de-
pends on the values of deadline/error bound, prediction
accuracy and cluster utilization. To make a fair compar-
ison between Grass and SREW+C(β), we adopt Grass’s
policy for handling error-bound jobs as the baseline and
set the error bound to zero1.

• Smart Cloning Algorithm (SCA): SCA is a cloning algo-
rithm which is proposed in [32], [34]. At the beginning of
each time slot, SCA first chooses which task to schedule
and then performs a convex optimization to determine the
number of copies assigned for each task. Under SCA, all
the cloned copies are launched in parallel at the same time
on available machines. SCA has been demonstrated to be
able to reduce the elapsed time of small jobs substantially.
However, SCA needs to estimate the distribution of the
task service time and the estimation accuracy can have a
high impact on the system performance.
Implementation of SREW+C(β): Since the four baseline

algorithms mentioned above do not support preemption
and checkpointing, we modify SREW+C(β) to yield a non-
preempted version for fair comparison. Specifically, we re-
move Line 7 in Algorithm 2 to allow a job to occupy all the
machines which are still running their tasks at the begin-
ning of each time slot. As such, under the non-preempted
algorithm, the number of machines allocated to a job may
exceed the quota it deserves based on the sharing principle.

Performance Metric: We compare the average job flow-
time as well as the overall distribution of job flowtime
among all of the aforementioned algorithms.

5.1 The impact of different parameters under
SREW+C(β)

In this subsection, we run the job traces on 11,000 machines
and tune the parameters β and λ to evaluate the average job
flowtime under SREW+C(β).

To evaluate the impact of β on system performance,
we set the variance coefficient, i.e., λ, to zero and evaluate
the resultant job flowtime achieved by SREW+C(β) using
different datasets. We extract three hour-long traces from the
original Google trace as the testing datasets. As illustrated
in Fig. 2(a), when β = 0.7, which corresponds to the
scheduling of more than half of the active jobs with the
smallest effective workload in each time slot, the average job
flowtime attains its minimum under all these three datasets.

1. Since the details of learning the Switching Point from RAS to GS
are not clearly explained in [4], we determine the Switching Point only
based on the values of job sizes.

12

0 1 2 3 4 5 6737
739
741
743
745
747
749
751
753
755
757

Av
er

ag
e

jo
b

flo
w

tim
e

(s
ec

on
ds

)

(b)

1 2 3 4 5 6 7 8 9800

805

810

815

820

825

830

835

840
Av

er
ag

e
jo

b
flo

w
tim

e
(s

ec
on

ds
)

(a)

The value of β (× 10−1)

Dataset 1
Dataset 2
Dataset 3

The value of λ

Fig. 2. The average job flowtime under the SREW+C(β) algorithm with
different β and λ.

It is worth noting that, when β is above 0.6, the average job
flowtime does not vary much.

In addition, we set β = 0.7 and tune the value of λ to
evaluate the impact of the variance coefficient in (25) on
the average job flowtime using the whole Google traces.
As implied from Section 3.3, a larger λ provides a worst
case performance guarantee for the job flowtime with a
higher probability at the expense of a larger average job
flowtime. To better demonstrate this argument, we depict
the statistics of ten simulations under a fixed λ in Fig. 2(b).
It shows that, when λ = 0, the average job flowtime attains
its minimum, while, the results fluctuate heavily between
different simulations. When λ = 1, 5 or 6, the results are
more stable across different simulations. Therefore, one can
choose an appropriate λ by considering the trade-off be-
tween the average performance and the fluctuation impacts.

In the subsequent simulations, we shall choose β = 0.7
and λ = 1 for the SREW+C(β) algorithm.

5.2 The impact of M

In this part, we scale out different number of machines in the
cluster to show its impact on the average job flowtime. Ob-
serve from Fig. 3(a) that the average job flowtime decreases
as the number of machines in the cluster increases. When M
is less than 7000, the average job flowtime reduces almost
linearly as M increases. However, the average job flowtime
does not decrease much when M increases beyond 10000.

5.3 The impact of the length of scheduling intervals

In this part, we evaluate the cluster performance by tun-
ing the length of a scheduling interval, i.e., the length of
each time slot. As one may expect, with short scheduling
intervals, SREW+C(β) makes fast scheduling decisions and
thus may reduce the job delay. Results in Fig. 3(b) show
that the average job flowtime does increase with the length
of scheduling intervals. Moreover, when the length of a
scheduling interval is 5 seconds, our implementation of
SREW+C(β) only takes 5 milliseconds to make schedul-
ing decisions in each interval under our simulator. Given
such negligible scheduling latency/overhead, we there-
fore choose the scheduling interval to be 5 seconds for
SREW+C(β).

4 5 6 7 8 9 10 11 12
750

800

850

900

950

1000

1050

1100

Numbe of machines in che cluster (× 103)

Av
er

ag
e

jo
b

flo
wt

im
e

(s
ec

on
ds

)

(a)

5 10 15 20 25 30740
742
744
746
748
750
752
754
756
758
760

The length of scheduling intervals (seconds)

Av
er

ag
e

jo
b

flo
wt

im
e

(s
ec

on
ds

)

(b)

Fig. 3. The average job flowtime under the SREW+C(β) algorithm with
different M and lengths of scheduling intervals.

5.4 Comparison against baseline algorithms
With the parameters set above, we proceed to compare the
performance of SREW+C(β) with the other four baseline
schemes, namely, Mantri, Dolly, Grass and SCA, in a cluster
with 11,000 machines. As illustrated in Table 3, the average
job flowtime under SREW+C(β) is 742 seconds while that of
the baseline schemes varies between 811 to 860 seconds. In
other words, SREW+C(β) reduces the overall job flowtime
by 9% comparing to SCA and 14% comparing to Mantri.
When comparing to the state of the art schemes from AM-
PLab, SREW+C(β) still reduces the overall job flowtime by
more than 10%.

To make a more comprehensive comparison between dif-
ferent algorithms, we also plot the CDF of the job flowtime
in Fig. 4 and Fig. 5. As shown in Fig. 4(a), SREW+C(β)
achieves the best performance for small jobs: Nearly 63%
jobs complete within 300 seconds while only 56% and
53% jobs complete within 300 seconds under SCA and
Mantri respectively. This means SREW+C(β) can reduce
the flowtime of small jobs substantially. One can see that
SREW+C(β) also achieves the best performance for large
jobs. For instance, about 90% jobs can complete within 1500
seconds under SREW+C(β). By contrast, only 88% and 87%
jobs can complete within such time-span under SCA and
Mantri respectively.

As shown in Fig. 5(a), for small jobs which take less than
300 seconds to complete, SREW+C(β) performs similar to
Dolly but much better than Grass in terms of job flowtime.
Fig. 5(b) shows the results for those jobs which take more
than 300 seconds to complete. Observe that SREW+C(β)
is better than both Grass and Dolly for reducing the job
flowtime of large jobs. This is mainly due to two advantages
of SREW+C(β) over Dolly and Grass: Firstly, SREW+C(β)
makes clones for jobs dynamically according to current clus-
ter utilization and thus can help to reduce the flowtime for
almost all jobs. Secondly, SREW+C(β) makes clones based
on the remaining effective job workload which serves as a
good metric to combine both task service time and machine
service variability. As such, SREW+C(β) can jointly consider
job scheduling and task cloning in order to optimize job
response performance and mitigate the impact of stragglers.

Interestingly, Grass is slightly better than Dolly in reduc-
ing the flowtime of large jobs. This is because Dolly prefers
to clone small jobs while Grass makes speculative copies

13

0 50 100 150 200 250 3000

0.07

0.14

0.21

0.28

0.35

0.42

0.49

0.56

0.63

Job flowtime (seconds)

Cu
m

ul
at

ive
 fr

ac
tio

n
of

 jo
bs

(a)

300 600 900 1200 15000.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Job flowtime (seconds)
Cu

m
ul

at
ive

 fr
ac

tio
n

of
 jo

bs

(b)

SREW+C(β)
SCA
Mantri

SREW+C(β)
SCA
Mantri

Fig. 4. The cumulative distribution of job flowtime under SREW+C(β),
SCA and Mantri.

0 50 100 150 200 250 3000

0.07

0.14

0.21

0.28

0.35

0.42

0.49

0.56

0.63

Job flowtime (seconds)

C
um

ul
at

iv
e

fra
ct

io
n

of
 jo

bs

(a)

300 600 900 1200 15000.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Job flowtime (seconds)

C
um

ul
at

iv
e

fra
ct

io
n

of
 jo

bs

(b)

Dolly
Grass
SREW+C(β)

Dolly
Grass
SREW+C(β)

Fig. 5. The cumulative distribution of job flowtime under SREW+C(β),
Grass and Dolly.

at the granularity of task (rather than job) and does not
distinguish between small jobs and large jobs.

We proceed to compare the complexity of SREW+C(β)
and that of the four baseline schemes. At the beginning of
each scheduling interval, SCA needs to perform a convex
optimization for making scheduling decisions. This may
incur substantial scheduling latency and thus overhead.
Mantri and Grass require the monitoring of the progress
of each running task, which results in extra system in-
strumentation and measurement overheads. By contrast,
SREW+C(β) makes scheduling decisions only based on the
remaining effective workload, which can be readily com-
puted. Dolly can also be implemented with small over-
head since it makes clones for jobs following a simple
computation. In summary, the implementation complexity
and scheduling latency/overheads of SREW+C(β) are much
lower than those of SCA, Mantri and Grass.

6 RELATED WORK

The straggler problem was first identified in the origi-
nal MapReduce paper [10]. Since then, various Straggler-
Detection-based redundancy schemes [5], [9], [18], [37] have
been proposed to tackle the problem. These solutions mainly
focus on timely identification of stragglers and accurate
prediction of the runtime of tasks. By contrast, Anantha-
narayanan et al. designed GRASS [4] which carefully adopts
the detection approach to trim stragglers for approximation

TABLE 3
Average job flowtime under different algorithms

Algorithms Average job flowtime (seconds)
SREW+C(β) 742

SCA 811
Grass 838
Dolly 828

Mantri 860

jobs. GRASS also provides a unified solution for normal
jobs. One fundamental limitation of the detection approach
is that it may not be responsive enough for short tasks as
one needs to wait for the collection of enough samples while
monitoring the progress of tasks.

To avoid the extra delay caused by straggler detection,
cloning approach was proposed in [3]. Dolly has been
shown to outperform many existing straggler-detection-
based approach including Mantri and LATE [37]. This also
motivates us to adopt the cloning approach in this paper.
Dolly relies on cloning very small job in a greedy manner to
mitigate the straggler-effect and is based on simple heuris-
tics. As a comparison, we develop a stochastic optimization
framework to determine if cloning is needed for each job.

Recently, Ren et al. proposed Hopper [28] to jointly
design task redundancy algorithm with job scheduling strat-
egy. Hopper can immediately schedule a redundant copy
once the progress rate of a task is detected to be slow.
Nevertheless, Hopper does not provide any competitive
performance guarantee and has several drawbacks that can
degrade the cluster performance. Firstly, Hopper is non-
work-conserving since its scheduler may keep a computing
slot idle as a reservation for a future straggler while other
tasks already queue up for computation slots. Secondly, the
virtual job size is computed based on the number of tasks
only without considering the task service time. By contrast,
our scheduler is work-conserving and allocates machines to
jobs based on the effective workload which also accounts
for the effect of task service times. More importantly, our
algorithms provide competitive performance bound under
both offline and online settings. Readers may refer to Fig. 1
for a detailed comparison.

The design of job scheduling algorithms for MapReduce
clusters has been an active research area lately. In particular,
[7], [35] and [8] derived performance bounds for minimizing
the total job completion time instead of job flowtime. Tan et
al. designed the Coupling scheduler in [30], which mitigates
the starvation problem caused by reduce tasks in large
jobs. The SRPT scheduler has been studied extensively in
traditional parallel scheduling literature. Moreover, SRPT
has been proven to be (1 + ε)-speed 4

ε -competitive for
total job flowtime on multiple identical machines under the
single-task-per-job case [13]. It is therefore not surprising to
see follow-up work, e.g. [22], [24] and [38] which extend
the SRPT scheduler to minimize the total job flowtime in
MapReduce-like systems. However, all of these studies ([7],
[8], [22], [24], [30], [35], [38]) assume accurate knowledge
of task durations and hence do not support extra copies of
running tasks to be scheduled dynamically.

In our online algorithm design, we use the method
of machine sharing among different jobs. The principle of

14

machine sharing is motivated by the work in [11], [12], [14]
where machines are shared among the latest jobs arriving
at the cluster (i.e., LAPS). One difference of SREW+C(β) is
that it shares the machines among jobs with the smallest
remaining workload. Moreover, SREW+C(β) also performs
cloning for the tasks according to machine availability.

Potential function analysis is a widely adopted approach
for deriving bounds for competitive performance ratio of
online scheduling schemes with resource augmentation.
Representative works include [11], [12] and [16]. In this
paper, we also take the potential function analysis approach.
However, task-cloning considerations require us to design a
new potential function which is quite different from the ones
used by the existing works. In particular, our new poten-
tial function incorporates the smallest-remaining-workload
scheduling mechanism while considering task cloning. In
contrast, the potential functions defined in [11], [12], [16]
are based on the latest-arrival-first scheduling principle.

7 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we mitigate the challenge of variability in ma-
chine service capacity in a MapReduce cluster by combining
task cloning and job scheduling. Our primary goal and con-
tribution are to design both offline and online scheduling al-
gorithms with competitive performance bounds, and to ad-
vance the modeling techniques for stochastic job scheduling
with machine variability. Our proposed algorithms can be
readily implemented in form of extensions of open-source
frameworks like MapReduce/Hadoop YARN [31]. As fu-
ture work, we plan to extend our scheduling algorithms
for MapReduce jobs to other parallel computational frame-
works which support more general multi-stage task depen-
dencies, e.g., Spark [36]. We will also design approximate
algorithms with competitive performance bounds for job
scheduling with service variability and multi-dimensional
resource requirements.

REFERENCES

[1] Apache. http://hadoop.apache.org, 2013.
[2] S. Aalto, A. Penttinen, P. Lassila, and P. Osti. On the optimal trade-

off between SRPT and opportunistic scheduling. In SIGMETRICS,
2011.

[3] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Ef-
fective straggler mitigation: Attack of the clones. In NSDI, April
2013.

[4] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica, A. Wier-
man, and M. Yu. Grass: Trimming stragglers in approximation
analytics. In NSDI, April 2014.

[5] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoic, Y. Lu,
B. Saha, and E. Harris. Reining in the outliers in MapReduce
clusters using mantri. In OSDI, October 2010.

[6] N. Avrahami and Y. Azar. Minimizing total flow time and total
completion time with immediate dispatching. In SPAA, 2003.

[7] H. Chang, M. Kodialam, R. R. Kompella, T. V. Lakshman, M. Lee,
and S. Mukherjee. Scheduling in MapReduce-like systems for fast
completion time. In Proceedings of IEEE Infocom, March 2011.

[8] F. Chen, M. Kodialam, and T. Lakshman. Joint scheduling of pro-
cessing and shuffle phases in MapReduce systems. In Proceedings
of IEEE Infocom, March 2012.

[9] Q. Chen, C. Liu, and Z. Xiao. Improving MapReduce performance
using smart speculative execution strategy. IEEE Transactions on
Computers, PP(99), January 2013.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified data processing
on large clusters. In OSDI, December 2004.

[11] J. Edmonds and K. Pruhs. Scalably scheduling processes with
arbitrary speedup curves. In SODA, January 2009.

[12] K. Fox, S. Im, and B. Moseley. Energy efficient scheduling of
parallelizable jobs. In SODA, January 2013.

[13] K. Fox and B. Moseley. Online scheduling on identical machines
using SRPT. In SODA, January 2011.

[14] A. Gupta, S. Im, R. Krishnaswamy, B. Moseley, and K. Pruhs.
Scheduling jobs with varying parallelizability to reduce variance.
In SPAA, June 2010.

[15] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer, and
F. Cappello. Modeling and tolerating heterogeneous failures in
large parallel system. In SC, 2011.

[16] S. Im, B. Moseley, and K. P. an dEric Torng. Competitively
scheduling tasks with intermediate parallelizability. In SPAA, June
2014.

[17] S. Im, B. Moseley, K. Pruhs, and E. Torng. Competitively schedul-
ing tasks with intermediate parallelizability. In SPAA, June 2014.

[18] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: dis-
tributed data-parallel programs from sequential building blocks.
In Eurosys, March 2007.

[19] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as
clairvoyance. In Proceedings of FOCS, October 1995.

[20] R. Keener. A note on the variance of a stopping time. The Annals
of Statistics, 15:1709–1712, 1987.

[21] G. F. Lawler. Introduction to Stochastic Processes, Second Edition.
Chapman and Hall/CRC, 2006.

[22] M. Lin, L. Zhang, A. Wierman, and J. Tan. Joint optimization of
overlapping phases in MapReduce. In IFIP Performance, 2013.

[23] M. Mitzenmacher and E. Upfal. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University
Press, January 2005.

[24] B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlos. On scheduling
in Map-Reduce and flow-shops. In SPAA, June 2011.

[25] M. L. Pinedo. Theory, Algorithms, and Systems. Springer Publishing
Company, 2008.

[26] J. Pruyne and M. Livny. Managing checkpoints for parallel
programs. In Workshop on Job Scheduling Strategies for Parallel
Processing, pages 140–154. Springer, 1996.

[27] C. Reiss, J. Wilkes, and J. L. Hellerstein. Google cluster-usage
traces. http://code.google.com/p/googleclusterdata, May 2011.

[28] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu. Hopper:
Decentralized speculation-aware cluster scheduling at scale. In
Sigcomm, August 2015.

[29] M. S. Squillante. On the benefits and limitations of dynamic par-
titioning in parallel computer systems. In Job Scheduling Strategies
for Parallel Processing, pages 219–238. Springer-Verlag, 1995.

[30] J. Tan, X. Meng, and L. Zhang. Delay tails in MapReduce schedul-
ing. In SIGMETRICS, June 2012.

[31] V. K. Vavilapalli, A. C. Murthy, C. Douglas, and M. S. Agarwal.
Apache Hadoop YARN: yet another resource negotiator. In SOCC,
October 2013.

[32] H. Xu and W. C. Lau. Optimization for speculative execution in a
MapReduce-like cluster. In Proceedings of Infocom, April 2015.

[33] H. Xu and W. C. Lau. Task-cloning algorithms in a MapReduce
cluster with competitive performance bounds. In ICDCS, June
2015.

[34] H. Xu and W. C. Lau. Optimization for speculative execution
in big data processing clusters. IEEE Transactions on Parallel and
Distributed Systems, doi:10.1109/TPDS.2016.2564962(1), 2016.

[35] Y. Yuan, D. Wang, and J. Liu. Joint scheduling of MapReduce
jobs with servers: Performance bounds and experiments. In IEEE
Infocom, 2014.

[36] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica. Spark: Cluster computing with working sets. In Proceedings of
the 2Nd USENIX Conference on Hot Topics in Cloud Computing, 2010.

[37] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica. Im-
proving Mapreduce performance in heterogeneous environments.
In OSDI, December 2008.

[38] Y. Zheng, N. Shroff, and P. Sinha. A new analytical technique for
designing provably efficient MapReduce schedulers. In Proceed-
ings of IEEE Infocom, April 2013.

http://hadoop.apache.org
http://code.google.com/p/googleclusterdata

15

Huanle Xu received his BSc(Eng) degree from
the Department of Information Engineering,
Shanghai Jiao Tong University (SJTU) in 2012
and his Ph.D. degree from the Department of
Information Engineering, The Chinese University
of Hong Kong (CUHK) in 2016. His primary re-
search interests focus on Job Scheduling and
Resource Allocation in Cloud Computing, De-
centralized social networks, Parallel Graph Al-
gorithms and Machine Learning. Huanle is also
interested in designing wonderful algorithms for

real applications and practical systems using mathematical tools.

Wing Cheong Lau is currently an Associate
Professor in the Department of Information Engi-
neering and the Director of the Mobile Technolo-
gies Center at The Chinese University of Hong
Kong. Wing received his BSc(Eng) degree from
The University of Hong Kong and MS and PhD
degrees in Electrical and Computer Engineering
from The University of Texas at Austin. From
1997 to 2004, he was a Member of the Technical
Staff of the Performance Analysis Department at
Bell Laboratories in Holmdel, New Jersey, where

he conducted research in networking systems design and performance
analysis. Wing joined Qualcomm, San Diego, California, in 2004 as
a Senior Staff Member conducting research on Mobility Management
Protocols for the Next Generation Wireless Packet Data Networks. He
also contributed actively to the standardization of such protocols in the
Internet Engineering Task Force (IETF) and 3GPP2. Wing is a Senior
Member of IEEE and a member of ACM and Tau Beta Pi. He is/has been
a Technical Program Committee Member of various international con-
ferences, including ACM Sigmetrics, MobiHoc, IEEE Infocom, SECON,
ICC, Globecom, WCNC, VTC and ITC. He also served as the Guest
Editor for the Special Issue on High-Speed Network Security of the
IEEE Journal of Selected Areas in Communications (JSAC). Wing holds
18 US patents with a few more pending. He has published more than
100 scientific papers in premier international journals and conferences.
Wings recent research interests include Online Social Network Security
and Privacy, Resource Allocation for Big Data Processing Systems, as
well as the design and analysis of algorithms for Decentralized Online
Social Networks.

Zhibo Yang is currently a Research Assis-
tant at Department of Information Engineering,
The Chinese University of Hong Kong. His re-
search interests include computer vision, ma-
chine learning and big data processing. He is
also passionate about bringing AI technologies
into real products and applications. He got his
MPhil degree from the same department under
the supervision of Prof. W.C. Lau and Prof. C.C.
Loy in fall 2016. Before that, he obtained his
bachelor degree at software engineering from

Harbin Institute of Technology in 2014.

Gustavo de Veciana (S’88-M’94-SM’01-F’09)
received his B.S., M.S, and Ph.D. in electri-
cal engineering from the University of California
at Berkeley in 1987, 1990, and 1993 respec-
tively, and joined the Department of Electrical
and Computer Engineering where he is cur-
rently a Cullen Trust Professor of Engineering.
He served as the Director and Associate Director
of the Wireless Networking and Communications
Group (WNCG) at the University of Texas at
Austin, from 2003-2007. His research focuses

on the analysis and design of communication and computing networks;
data-driven decision-making in man-machine systems, and applied
probability and queueing theory. Dr. de Veciana served as editor and
is currently serving as editor-at-large for the IEEE/ACM Transactions
on Networking. He was the recipient of a National Science Foundation
CAREER Award 1996 and a co-recipient of five best paper awards
including: IEEE William McCalla Best ICCAD Paper Award for 2000,
Best Paper in ACM TODAES Jan 2002-2004, Best Paper in ITC 2010,
Best Paper in ACM MSWIM 2010, and Best Paper IEEE INFOCOM
2014. In 2009 he was designated IEEE Fellow for his contributions to the
analysis and design of communication networks. He currently serves on
the board of trustees of IMDEA Networks Madrid.

Hanxu Hou received the B.Eng. degree in In-
formation Security from Xidian University, Xian,
China, in 2010, and Ph.D. degrees in the Dept.
of Information Engineering from The Chinese
University of Hong Kong in 2015 and School
of Electronic and Computer Engineering, Peking
University Shenzhen Graduate School. He is
now an Assistant Professor of Dongguan Univer-
sity of Technology. His research interests include
erasure coding, coding for distributed storage
systems and resource allocation in Cloud Com-

puting.

	Introduction
	System Model and Problem Formulation
	Job service process
	Problem formulation without preemption
	Task Service Process and Problem formulation with preemption
	Competitive Performance Analysis

	Transient Scheduling transientschedulingoptimal: All jobs arrive at the cluster at the same time
	A lower bound for the optimal scheduling algorithm
	An approximate algorithm for transient scheduling
	Performance guarantee for SEW

	Online scheduling with cloning
	Smallest remaining effective workload based machine sharing principle
	Performance guarantee for SREW+C() with resource augmentation
	Proof of Theorem 4
	Constructing potential function (t)
	Changes in (t) caused by job arrivals and job departures
	Changes in (t) caused by task processing

	Performance Evaluation
	The impact of different parameters under SREW+C()
	The impact of M
	The impact of the length of scheduling intervals
	Comparison against baseline algorithms

	Related work
	Conclusions and Future Directions
	References
	Biographies
	Huanle Xu
	Wing Cheong Lau
	Zhibo Yang
	Gustavo de Veciana
	Hanxu Hou

