
Performance of Peer-to-Peer Networks: Service
Capacity and Role of Resource Sharing Policies?

Xiangying Yang, Gustavo de Veciana

ECE Department, University of Texas at Austin, Austin, Texas 78712, USA

Tel: (512)731-0175 (512)471-1573 FAX: (512)471-5532

Abstract

In this paper we model and study the performance of peer-to-peer (P2P) file sharing sys-
tems in terms of their ‘service capacity’. We identify two regimes of interest: the transient
and stationary regimes. We show that in both regimes, the performance of P2P systems
exhibits a favorable scaling with the offered load. P2P systems achieve this by efficiently
leveraging the service capacity of other peers, who possibly are concurrently downloading
the same file. Therefore to improve the performance, it is important to design mechanisms
to give peers incentives for sharing/cooperation. One approach is to introduce mechanisms
for resource allocation that are ‘fair’, such that a peer’s performance improves with his
contributions. We find that some intuitive ‘fairness’ notions may unexpectedly lead to ‘un-
fair’ allocations, which do not provide the right incentives for peers. Thus, implementation
of P2P systems may want to compromise the degree of ‘fairness’ in favor of maintaining
system robustness and reducing overheads.

Key words: peer-to-peer, file sharing, service capacity, incentive, fairness

1 Introduction

Peer-to-peer (P2P) architectures for file sharing, e.g., Gnutella, Kazza, eDonkey and Bittor-
rent, among ad hoc, possibly dynamic, collections of hosts are generating an increasing fraction
of the traffic on today’s Internet and are reshaping the way new network applications are de-
signed. The idea is to have hosts participate in an application level overlay network enabling
signaling, routing, and searching among participating hosts. Once a host locates the document(s)

? Part of this work was presented at IEEE INFOCOM 2004

Email address:{yangxy,gustavo }@ece.utexas.edu (Xiangying Yang, Gustavo de
Veciana).

Preprint submitted to Elsevier Science 2 December 2004

of interest, direct connections are established to mediate their transfer. The key principle is to
allow, and, in fact, encourage participating hosts to play dual roles as servers and clients. Using
similar ideas, researchers are pursuing work on “grid computing”, which would enable not only
file sharing, but distributed content delivery, storage, and computation over overlay networks,
see e.g., [1] [2].

In this paper we model and analyze the performance associated with file transfers in these
types of networks. We study theservice capacityof P2P networks, i.e., the capability of a P2P
network to provide file download service to peers. Our study highlights the service capacity in
not only the stationary regime but, also, the transient regime – our interest in the latter is moti-
vated by the, sometimes, exceedingly bursty character of loads on such networks. Moreover, for
distributed systems built on peer collaboration, incentives to participate and share have a crucial
influence on performance. One way to give peers incentives is to introduce ‘fair’ resource allo-
cations whereby the more a peer contributes to the system, the better download performance he
can get. For example, current P2P applications mentioned above attempt to usecredit systemsto
provide incentives for peers to stay online and ‘increase’ their upload bandwidth to serve other
peers [3]. This is often done by keeping peers’ credit history, and based on their contributions
(e.g., upload volume), give them different priority in transfers or access to resources of their
peers. Such mechanisms are geared at providing incentives for peers to cooperate. As we will
see in the sequel their impact on performance may be subtle and significant. In this paper, we
will define several such notions of fairness, examine their implications on the performance and
discuss how they might be realized.

Related work and paper organization.Most research on P2P systems so far has emphasized
design, traffic measurement and workload analysis but not performance evaluation. Early work
by [4][5][6] studied traces of P2P applications like Gnutella and Napster. They focused on char-
acterizing the overall P2P system, e.g., request patterns, traffic volume, traffic categorization
and properties of shared online content as well as P2P structure and dynamics, e.g., connectiv-
ity and peer/host behaviors. Some recent research in the direction of evaluating P2P systems has
focused on performance. Peer selection schemes were evaluated in [7], where measurements are
used to optimize the selection of good peers so as to improve the overall system performance.
A few researchers have used analytical models to study the performance of P2P networks. For
example, [8] constructed a model for signaling messages in the Gnutella network and concluded
that signaling might significantly compromise performance. The work in [9] is among the first
to propose a model for a general P2P system and evaluate its performance. Their model, a closed
queuing system, provides basic insights on the stationary performance of a P2P system; among
these, the dependence of performance on parameters like the peer request rate and number of
peers in the system.

By their very nature, P2P systems are built upon peer cooperation and the importance of
ensuring peer incentives for cooperation in a P2P system has attracted much attention recently.
In [10] game theory is used to argue that selfish peers have incentives to cooperate, similar to
the situation of Prisoner’s Dilemma. In [11]n-way exchanges when peers are connected in a
ring are studied. The concept of ann-way exchange is proposed in order to facilitate sharing
among peers when mutual interests are hard to guarantee between two peers but more likely to

2

exist among a group ofn peers. In [12] a mechanism to control peer selection based on peer
contributions to the system, e.g. the more contribution the more flexibility in peer selection, is
proposed. This recent work focuses on a qualitatively study of how service policies will impact
performance. The recent work in [13] focuses on maintaining ‘fairness’ in P2P file transfers, for
which they showed a Nash equilibrium for distributed resource allocation, which is favorable
for improving peer sharing incentives, exists given the global knowledge of peer contributions
and bandwidth.

The rest of the paper is organized as follows. In Section 2 we discuss and analyze the per-
formance of a P2P system in both the transient and stationary regimes. We exhibit nice per-
formance scalability properties for such systems when they are subject to large transient, or
stationary loads, and study the sensitivity of performance to user behavior characteristics, e.g.,
cooperativeness and heterogeneity. With a view on providing users incentives to cooperate in
Section 3 we consider the role that ‘fair’ bandwidth allocations could play. This is an attempt at
investigating the subtle relationship between ‘fairness’ based credit systems and performance.
Such considerations will enable the design of efficient service policies that can help improve
service capacity. Section 4 concludes our paper.

2 Service Capacity of P2P Systems

Our P2P model.We consider an abstract model for P2P file sharing systems, which includes
the salient features of current P2P applications. We focus on peers that are sharing/downloading
a single file. In doing so we ignore the complicated interactions, e.g., bandwidth sharing among
concurrent downloads. Since our focus is on the file transfer performance, we assume each
peer has obtained other peers’ information, i.e., address and file availability, upon joining the
network, e.g., in Gnutella, this information is obtained via a limited broadcast of queries, in
eDonkey it is provided by the server a peer connects to, and in Bittorrent it is provided by the
tracker of the file. Peers may set up concurrent upload/download streams with other peers using
multisource file transmission protocol (MFTP), i.e., a peer can concurrently upload different
parts of a file to other peers while it downloads other parts from its peers. Finally peers who
finish downloads may randomly choose to leave the system or stay and continue sharing files,
in which case we refer to them as ‘seeds’. We assume for simplicity no peer leaves the system
before completing its download. These features for both the file transfer and user behaviors
directly impact system performance and will be analyzed in the sequel.

What is the service capacity of a P2P System?P2P systems are unique in that its service is
provided by ad hoc collaborations among peers, which in turn may be heterogenous in terms
of their file availability, bandwidth and user behaviors. Since peers play dual roles as servers
and clients, the ‘service capacity’ and performance of such systems is unusual in that they
depend on the offered load, i.e., the number of participant peers. Thus, it is not straightforward
to define the ‘service capacity’ of such a system. We will view the service capacity from two
perspectives: the system’s and the users’. From the system’s perspective we will define the
following performance metric:

3

Definition 2.1 The “aggregate upload service capacity” is the overall achievable throughput
the system can offer to downloading peers interested in a given document.

As a system level measure of the resources available to serve peers, aggregate upload service
capacity accounts for the effective upload bandwidth of both seeds and downloading peers.
‘Effective’ here reflects the fact that seeds can upload at their available bandwidth while down-
loading peers may only be able to upload at a fraction of their available bandwidth because they
do not have the complete copy of the document. Now, from the users’ perspective, we shall
consider the following measure for the service capacity:

Definition 2.2 The “per peer download throughput” is the average download throughput
achieved per peer, which might be roughly estimated as the aggregated upload service capacity
normalized by the number of downloading peers.

As a performance metric from the user perspective, per peer download throughput is directly
related to the download delays users would see.

Note that since the service capacity evolves over time, in evaluating above performance
metrics, we will consider both transient and stationary regimes. The ‘transient regime’ focuses
on the system performance in response to a large burst of requests for a popular file when it
is first introduced, or due to daily variations in load. During such periods a relatively small
number of peers initially have copies of the file to serve others. However, as replication pro-
ceeds the large number of peers requesting the document can be leveraged as servers enabling
an exponential growth in the service capacity of the system until the burst of requests is served.
Once the intensity of requests stabilizes, the system might enter a ‘stationary regime’ where
the throughput performance of each peer is stable. These two phases are exhibited in the repre-
sentative trace shown on the left in Fig.1. This trace was obtained by monitoring the per peer
download throughput for a given document, in the BitTorrent P2P system [3]. The trace begins
with the addition of a new document to a P2P system, then, the solid line tracks an exponential
growth in service capacity corresponding to a transient period, and finally the dotted line cor-
responds to fluctuations in an approximately stationary regime. Note that during the ‘stationary
regime’ the request rate is only approximately stationary. Indeed, not shown in Fig.1 but pre-
sented subsequently (see the middle panel in Fig.5) are slow fluctuations in the demands, i.e.,
number of downloading peers; yet the average performance per peer is fairly stable. As will be
discussed in the sequel, during the stationary regime the service capacity tends to scale with the
demand. This example exhibits a desirable exponential growth, and subsequent self-scaling of a
P2P system’s service capacity for a given document. Although in this trace the transient period
is relatively short and may not significantly impact the downloading performance of majority
of peers, as exemplified on the right panel in Fig.1, for some document types, there is a dra-
matic fluctuation in the demands following a daily pattern, and hence the majority of peers will
experience transient performance.

The service capacity in these two regimes depends on a number of factors:

• data management:a document may be partitioned into various parts permitting concurrent
downloading from multiple peers; the granularity and placement of these is critical;

4

0 200 400 600 800 1000 1200
0

10

20

30

40

50

←Exponential Growth of Throughput

←Steady Throughput

P
er

 p
ee

r
av

g
th

ro
ug

hp
ut

 (
K

B
/s

)

Time (minute)
24 48 72

0

50

100

150

200

250

300

350

400

Time (hour)

S
ys

te
m

 d
em

an
ds

 (

of
 p

ee
rs

) Day 1← → Day 2← → Day 3← →
Seeds
downloaders

Fig. 1. Two representative traces for the BitTorrent system. On the left two-phases in the evolution of
the per peer download throughput versus time after a single document is introduced into a P2P network.
On the right a trace exhibiting a significant amount of variability in the number of servers (seeds) and
downloading peers (roughly the demands) as a function of time.

• peer selection:the mechanism whereby a peer is selected as a server may take into account
load balancing, bandwidth availability, and differentiate among peers who contribute more to
the community;

• admission, scheduling and/or bandwidth allocation policy:limiting the number of concurrent
downloaders and/or priority scheduling of service or differentiation in the bandwidth allo-
cated among peers;

• traffic dynamics:the request processes for documents along with the dynamics of how peers
stay online and/or delete documents.

These factors are interrelated in complex ways. For example, a good peer selection scheme may
favor peers that are likely to subsequently stay as servers for the document and thus contribute
to the system’s service capacity. Multi-part downloads can increase the rate at which files get
duplicated while at the same time allowing users to serve as peers for parts of the document
they have already obtained prior to completing downloads. Allowing a large number of peers
to download from one another may increase the subsequent potential service capacity for a
document but may increase delays. Our goal is to explore the interactions among some of these
factors and their impact on performance from the perspective of a P2P system’s transient and
stationary service capacity.

2.1 Transient analysis of service capacity

The purpose of our transient analysis is to investigate how quickly the service capacity of a
P2P system can catch up with a burst of demands. This is crucial since popular files are often
first introduced by a single peer, and may be subject to large bursts of requests far exceeding
the available service capacity. Thus, our goal is to ensure a document is disseminated as quickly
as possible to interested peers until the system reaches a stationary regime where the service
capacity is commensurate with demands.

5

2.1.1 Deterministic model

We consider the transient regime to be associated with a large, sayn, burst of roughly con-
current requests in a P2P system when there is initially a limited number of peers, say 1, able
and willing to serve them. As mentioned earlier this may arise when a document is first intro-
duced or for some types of files when the majority of peers experience transient performance
due to a periodic request pattern as shown in the right panel of Fig. 1.

The underlying file sharing mechanism in the transient regime is best explained based on
a deterministic model. Suppose thatn = 2k users wish to acquire a document which is ini-
tially available at one peer. Assume that each peer has a limited upload capacity, sayb bps, and
network capacity is otherwise unconstrained, i.e., download capacity is assumed to be uncon-
strained.

Fig. 2. File sharing in a P2P system.

Suppose the document has sizes bits, and a peer can only serve a document once it has
been fully downloaded. Thus to serven requestsnsbits will need to be exchanged. It should be
clear that a good strategy is to first serve one user at rateb, at which point the service capacity
grows to2b, and then have these two peers serve additional users, until then users are served.
As shown in Fig.2, under this idealized strategy, peers will complete service everyτ = s/b
seconds, at which point the number of peers that can serve the document doubles, leading to an
exponential growth of2t/τ in the number of peers available to serve the document. If the system
follows these dynamics then peers will be served by timeτ log2n = τk. Thus the ‘average’
download delayd̄ experienced by peers can be computed as follows. Letd j denote the delay
experienced by thejth peer to complete, and note that2i−kn peers complete service at time
(i +1)τ, giving an ‘average’ delay for peers in this transient regime of:

d̄ =
1
n

n

∑
j=1

d j =
k−1

∑
i=0

2i−kτ(i +1) = kτ− n−1
n

τ = τ
(

log2n− n−1
n

)≈ τ log2n.

Hence, although the system sees an initial burst ofn requests the average delay seen by peers
scales aslog2n which is favorable relative to the linear scaling ofn one would obtain for a
system with a fixed set of servers.

Next, let us consider the benefit of multi-part downloads. Suppose the file is divided intom
chunks of identical size. Now, instead of waiting to finish downloading the whole file, as soon
as a peer finishes downloading a file chunk it can start to serve it. Intuitively, by dividing the
download process into smaller chunks, transfers can be pipelined among participating peers so
performance is significantly improved. To illustrate this idea consider the following idealized
strategy. We shall track service completions in time slots of sizes

bm = τ
m. Suppose the source of

6

the file sends Chunk 1 to a peer, Chunk 2 to another peer, and so on until it finishes delivering the
last Chunkm in slot m. Meanwhile each chunki is being duplicated in the system. To optimize
dissemination, when possible, a peer which currently has a chunk serves another that has not yet
obtained any chunk; this can be done until time slotk, at which time every peer in the system has
a chunk of the file. As shown in the left panel of Fig.3, at timek, then peers can be partitioned
into k setsAi , i = 1, . . . ,k, with |Ai |= 2k−i andAi corresponds to peers which have only received
theith chunk. Now consider the(k+1)th time slot. Suppose the peers inA1 transfer Chunk1 to
then/2 peers that have not yet received it. Meanwhile the peers inAi , i > 1, transfer chunki to
a node inA1 choosing a peer that has at this point only received Chunk 1. Hence, as shown in
the left of Fig.3, after the(k+1)th time slot, all peers have Chunk 1,n

2 peers have Chunk2 and
similarly n

2i−1 peers have chunki. Continuing this process, all chunks are eventually delivered
to all users by time slotk+m= τ

m(log2(n−1)+m). This corresponds to a reduction by a factor
of m versus the scheme without multi-part downloads. We can compute the average delayd̄(m)

A1

A2

A3

A4

Time slot k

A2

Time slot k+1
part 1 has finished

A4

A3

0

010

T6

T5
T4

1

0

11

11 111

time = t

0

T

T

T T

T

T

1

2

3

7 8

time

1

Fig. 3. (1) On the left concurrent multi-part downloads among a set ofn peers. (2) On the right branching
process model for file replication across a P2P system.

seen by peers in this multi-part download scenario as follows. Since half the peers have received
all chunks when Chunkm−1 completes duplication across all peers at time slotk+m−1 and
the rest of the peers will receive chunkm during the last time slotk+ m. The average delay

experienced by peers can be computed as follows. Letd(m)
j denote the delay for thejth peer

that completes the download, then

d̄(m) =
1
n

n

∑
j=1

d(m)
j =

1
2
((k+m−1)+(k+m))

τ
m

=
τ
m

(
log2n+

2m−1
2

)≈ τ
m

log2n.

Thus a largem, i.e., small chunk size, enables pipelining of a file transfer and increases the
growth exponent of completions by a factor ofm, leading to a factor ofm improvement in
average delay for our transient regime. In practice, however, one must also take into account
overheads associated with signaling and or coordinating chunk availability information and re-
alizing the various exchanges. Thus one would expect P2P systems with multi-part downloading
to see less aggressive gains inm.

The models in this section provide the basic intuition for the benefits of P2P systems during
the transient regime. More rigorous formulations for this type of problem are also discussed in

7

[14], where a similar scaling property of the delay time for file dissemination in the total number
of peers is obtained. Our models here is very idealized; we have assumed there is no congestion
in the system, i.e, the upload bandwidth of a peer is not shared by peers requesting different
documents, the network is not bottlenecked, and idealized scheduling and peer selection per
chunk. This motivates us to consider a stochastic model that captures the variability in serving
peers due to congestion and other aspects of real P2P systems. In particular, their departure
from the system upon completion. To this end, we propose a branching process model for a
P2P system in the transient regime. Our objective is to study the sensitivity of the exponential
growth rate to system parameters and peer behavior.

2.1.2 Branching process model

Basic branching process model.Let N(t) denote the number of peers available to serve a given
document at timet. Note that the aggregate upload service capacity for this document should
be proportional toN(t), see e.g., [9]. We assume that initially there is only one copy of the
document in the network, i.e.,N(0) = 1 with probability 1, and a large number of interested
peers. Right panel of Fig. 3 shows a typical evolution of the file sharing process assuming each
peer serves another peer one at a time. Thus, initially Peer 0 shares its file with Peer 1. Af-
ter a random service timeT0, this process completes, and Peers 0 and 1 can now serve other
peers. Peer 01 and Peer 11 now download from Peer 0 and Peer 1 respectively and complete
this process after some random timesT1 andT2 respectively. This replication process contin-
ues to evolve over time, as long as there are peers still requesting the document. Suppose the
times to realize a transfer between peersTi , i = 0,1, . . . can be modeled as independent random
variables with a common distribution, i.e.,Ti ∼ T whereFT(t) = P(T ≤ t) andE[T] = τ = 1

µ.
This distribution captures the variability in the transfer time due to congestion, heterogeneity of
upload bandwidth, round trip delays etc.

The model we have described corresponds to a standard age-dependent branching process
with a fixed family sizev = 2 at each new generation. General results for the evolution of
the mean seed population, i.e., aggregate upload service capacity of our P2P model, for the
supercritical casecan be found in Chapter IV Theorem 3A of [15]. The supercritical case refers
to the case where the branching process has mean generation size greater than one and thus
the mean population size is expected to increase over time. The following is a restatement of
the basic result for a branching process with i.i.d. family sizes whose distribution is that of the
random variableV.

Theorem 2.1 In the supercritical case, where the mean family size per generation satisfies
E[V] = v, v > 1 and a non-lattice1 distribution for the regeneration times, with cumulative
distribution functionFT(t), the expected population of an age dependent branching process for

1 A random variableX has a lattice distribution if there isa > 0 such thatPr{X ∈ {0,a,2a, . . .}} = 1.
Otherwise,X has a non-lattice distribution.

8

large timet is given by the following asymptotic result

E[N(t)]∼ δeβt , (1)

whereβ > 0 is such that
R ∞

0 ve−βxdFT(x) = 1, i.e.,dF̃(x) = ve−βxdFT(x) is a probability distri-
bution function, whose mean we denote byτ̃ and whereδ = v−1

τ̃βv .

Thus for the P2P branching model in the right panel of Fig.3 the aggregate upload service
capacity grows exponentially withβ andδ as defined in Theorem 1 and wherev = 2. Below
we will use this model to examine the impact of variability and design choices on the transient
capacity of P2P systems.

Service capacity has exponential growth under supercritical condition.As expected the
service capacity will on average increase exponentially as long as there are sufficient demands
in the system. As with the simple deterministic model considered earlier, one would expect that
the average delay to serve a large burst of demandsn would scale logarithmically inn.

In our branching process model, multi-part downloads also speed up the growth of the tran-
sient aggregate upload service capacity and reduce the average delay by a factorm, which is
analogous to the previous deterministic model. Furthermore suppose a file is partitioned into
m identical sized chunks, and the number of requesting peers is large, after a finite time each
chunk has a distinct source peer and subsequently them chunks are duplicated overm inde-
pendent branching trees. The asymptotic growth in service capacity for a given chunkN(m)(t)
is given byE[N(m)(t)] ≈ E[N(mt)] ∼ δemβt , i.e., growth rate increases fromβ to βm. Given a
burst of demandsn, the time to completen downloads is roughly1

βm ln(nm
δ). Note that while

this model is quite optimistic, it gives a good sense of how much of a gain multi-part schemes
would realize.

Increased parallelism typically decreases the growth exponent.Most P2P applications allow
nodes to simultaneously serve a number, sayv−1, of peers interested in the same document.
Thus, in a saturated network, peers may compete for upload bandwidth or CPU resources at
other peers resulting in longer service times. As a simple model for systems allowing parallel
uploads, consider our branching process model, with a fixed family sizev > 2. Suppose the
distribution for transfer time between two peers is slowed down by a factorv−1 causing the
mean download to increase by a factor ofv− 1. On one hand, this process will have longer
regeneration times. Yet, on the other hand, each time it regenerates, a larger numberv−1 of
peers will have completed downloads and become available to serve others. Thus one might ask
whether parallel uploading leads to faster growth rates. If we consider a generation time distri-
bution defined on[c,∞), wherec > 0, and it has tail decaying exponentially (or faster) or has a
finite meanτ, one can then bound the growth exponent by studying two deterministic branching
processes with generation timec andτ, which correspond to upper and lower bounds respec-
tively. The upper bound is obvious since no generation time can be less thanc. The lower bound
is from the fact that among all distributions, the deterministic generation time gives the slowest
growth exponent given the same mean generation time [16]. Note that deterministic genera-
tion time is a lattice distribution and strictly speaking one can not use the result in Theorem
1. For a branching process with deterministic generation timeτ, one can show that the growth

9

will be E[N(t)] = v
t

(v−1)τ = e
ln(v)t
(v−1)τ , i.e., for the deterministic case,δ(d) = 1 andβ(d) = ln(v)

(v−1)τ .
Thus the growth exponentβ for the above re-scaled branching process with generation time
distribution defined on[c,∞), is bounded by ln(v)

(v−1)τ < β < ln(v)
(v−1)c and is likely to decrease in the

parallelism parameterv. Moreover, considering the overheads associated with each transfer and
non-linearities in performance degradation, whenv > 2 the actual performance with increased
parallel uploading could be worse. Thus for an application in which peers are unlikely to exit
the system, e.g., a P2P based content delivery server system, it makes sense to limit the number
of peers that a node serves concurrently in order to obtain the fastest growth in service capacity.

Parallel uploads improve transient capacity when peers are uncooperative.In practice,
peers that have completed a transfer may leave the system or delete the file. In contrast to the
above result, when peers exhibit such uncooperative behavior, parallel uploading may indeed
help achieve higher growth rates. Suppose upon completing a download, each peer deletes the
file or leaves the system with probability1−ζ. In this case one must ensure thatvζ > 1 to main-
tain the branching process in the super critical regime. Otherwise the process becomes extinct,
i.e., eventually no peers are available to serve the document, with probability 1 ifvζ < 1, see
Chapter IV of [15]. One can further show that it is no longer the case that the maximal growth
rate is achieved whenv is as small as possible. For example, assuming exponential peer to peer
transfer times, consider our peer departure model via an equivalent branching process, for which
the transfer time is exponentially distributed with mean(v−1)τ and the mean generation size
is vζ. According to Theorem 1, the growth exponentβ must be such thatdF̃(x) = ve−βxdFT(x),
i.e., for the re-scaled branching processdF̃(x) = vζ

(v−1)τe
−βx− x

(v−1)τ , is a probability distribution

function, which requires thatβ = (ζ− 1−ζ
v−1)µ and results inδ = 1+ 1−ζ

vζ−1. Left panel of Fig. 4
shows different mean growth trajectories for various choices ofv whenζ = 0.6 andµ= 1. When
v = 2, the service capacity has the smallest growth exponentβ. Whenv > 2, β increases, albeit
slowly, in v. Thus when some fraction of peers exit the system upon completion of a regenera-

0 0.5 1 1.5 2 2.5 3 3.5 4
1

2

3

4

5

6

7

8

9

time

se
rv

ic
e

ca
pa

ci
ty

v=2
v=3
v=4
v=5

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

← vζ =1

← (1−ζ)/(v−1) =0.1

Favorable operational regime

probability of staying ζ

ch
oi

ce
 o

f p
ar

al
le

l c
on

ne
ct

iv
ity

 v

Fig. 4. On the left mean growth in service capacity in a system with uncooperative peers and parallel
uploading: various choices ofv are shown forζ = 0.6 andµ= 1 fixed. On the right choice ofv to ensure
exponential growth with90%growth rate for a givenζ.

tion, allowing parallel uploads may help assure document availability and improve the overall

10

exponential growth of the system’s service capacity. On the other hand, parallel uploads increase
overheads, and for example from the left panel in Fig.4 the improvement in the growth rate is
marginal afterv = 4. Hence for design purposes it is interesting to choose only the necessary
amount of parallelism, in order to keep overheads low while achieving good service capacity.
For example, if we choose av such that90%of the highest growth rate can be achieved while
the process is still in the supercritical regime, we require both1−ζ

v−1 < 0.1 andvζ > 1. As shown
on the right panel in Fig.4, whenζ < 0.1, the choice ofv is very sensitive toζ and a peer gener-
ally needs to maintain a relatively large number of parallel uploads to ensure the system is in the
supercritical regime; onceζ > 0.1, good choices forv can be less than 10 and linearly decrease
in ζ, i.e., when peers are relatively cooperative, one need only maintain a moderate connectivity
and still leverage most of the service capacity.

In summary, the transient regime for a P2P system exhibits excellent scalability properties,
in the sense that average delays for service grow logarithmically in the burst size. In addition
further speedups can be obtained by enabling multi-part file sharing. When uncooperative peers
exist, in order to optimize the growth rate for the transient regime it may be worthwhile to have
peers serve others in parallel to ensure a sufficient number of peers remain in each generation.

2.2 Stationary regime analysis of service capacity

For some types of files, after an initial transient phase, the demand may be fairly stationary
and sustained. If this is the case it makes sense to consider performance for the stationary
regime. Below we briefly describe a model for such a regime and some empirical results. Our
goal is to analyze how parameters such as, the offered load and rate at which peers exit the
system, impact the average delay to service requests.

We shall model all peers in a P2P system which are interested in, or serving, a particular
document and assume that there is always at least one peer serving the document. Suppose new
requests follow a Poisson process with rateλ. The system’s state is a pair(x,y) ∈ N×Z+,
wherex denotes the number of peer requests currently in progress andy denotes the number of
peers that have finished downloading and remain in the system, i.e., contributing to the system’s
service capacity. We further assume that the file is partitioned into chunks, allowing multi-part
downloading, thus peers which are in the process of downloading, but already have part of a
file, can serve this part to other peers. Thus, a downloading peer also contributes to the system’s
service capacity, but its contribution is only a fractionη of that of a peer who has already
downloaded the full document. The aggregate upload service capacity in the system is thus
proportional to the effective number of servers in the system, which we denote byµ× (ηx+y),
whereµ denotes the service rate for a request at a typical seed. Each time a peer completes
downloading the document it becomes a seed in the system, but each such seed may leave the
system at rateγ. Thus, the service time for a request at a single peer and the time until a peer that
has completed a download leaves the system, are independently and exponentially distributed
with ratesµ andγ. The evolution for the state of this system can be described by a continuous

11

time Markov chain with a rate transition matrixQ over the state spaceN×Z+ given by :

q
(
(x,y),(x+1,y)

)
= λ new request;

q
(
(x,y),(x−1,y+1)

)
= µ× (ηx+y) service a peer;

q
(
(x,y),(x,y−1)

)
= γy exit system.

We numerically computed the stationary distribution for this Markov chain to find mean
number of jobs, servers, and delay for this system. The left panel in Fig.5 exhibits the average
delay in the system for a range of parameters; specificallyµ = 4.0 η = 0.5 and the values of
λ andγ varied from4.0 to 12.0 and2.0 to 8.0, respectively. The average delay depends only
on the ratiosλ/µ, the offered load andγ/µ, the rate at which peers exit the system, as long as
delays are measured in the units of holding timesµ−1. As can be seen the mean delay seen by
peers in this system model may increase or decrease with the offered load depending on the rate
γ/µ at which peers exit. Not shown in the figure, is the fact that this threshold depends on the
effectivenessη of document sharing in the P2P system.

0.5

1

1.5

2

1

1.5

2

2.5

3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ/µ

Avg Delay in 1/µ

λ/µ 0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Total Throughput→

Time (minutes)

T
ot

al
 T

hr
ou

gh
pu

t (
K

B
yt

e/
se

c)

←Num of Seeds

←Num of Downloads

N
um

be
r

of
 S

ee
ds

/D
ow

nl
oa

de
rs

0

50

100

150

0 50 100 150 200 250 300
0

0.05

0.1

Offered Load

K
B

yt
e

T
ra

ns
m

is
si

on
 D

el
ay

(s
ec

)

 Running Average

Fig. 5. On the left the average delay for the Markov model withη = 0.5 for a range of system parameters.
At the middle, in the transient regime, the trace measurement for total transfer throughput (i.e., aggregate
upload service capacity), number of seeds, and downloaders associated with a file in the BT system. On
the right in the stationary regime, the trace measurement of the KByte transmission delay versus offered
load(estimated by summing over servers and downloaders associated with a given file in the BitTorrent
P2P system.

2.3 Trace Measurements

In order to validate the previous analytical results in a real P2P system, we sampled system
data on a Bittorrent(BT) network over a period of several days – see [17] for details on this
open-source project. Many aspects of BT’s architecture are captured by the models we have
been discussing. Specifically a document is introduced by a single peer which is encouraged

12

insert time file size #seeds #downloaders #finished TX vol throughput life

. 678MB 2 8 104 75.05GB 265.31KB/s 3 10:43
Table 1
Format of BT trace file

to stay in system for a long period of time, i.e., even after subsequent peers have successfully
downloaded the document. BT supports multi-part downloads with a chunk size of roughly220

bytes, allowing peers to do parallel uploading on a fairly fine granularity. A distributed credit
system in BT keeps track of upload and download volumes among peers and tries to achieve
fairness in service such that upload and download volumes are equalized.

We collected a trace of network performance reports generated by a program called BT
tracker, which has the format exhibited in Table.1. Here# seedsrefers to the number of peers
with complete replicas of a document that are currently on line;# downloadersis the number of
peers currently downloading the document;# finishedis the number of completed downloads
so far;TX vol is the cumulative data volume transferred associated with the given document;
throughputis the sum of the throughputs seen by peers currently downloading a document, i.e.,
aggregate upload service capacity; andlife is the time that has elapsed since the document was
first introduced in the system. This data is updated approximately every 5 minutes. Thus a trace
permits one to evaluate how the system capacity for an individual file evolves over time.

Transient growth in service capacity.The middle panel of Fig.5, shows the total throughput
(aggregate upload service capacity), number of seeds and number of downloads (demands) for
a representative (popular) document of size 1310 MBytes over time. We note that in the first
200 minutes or so, the number of seeds stays fixed at 1, although the total throughput increases
exponentially. This clearly exhibits the fast increase in service capacity in the initial transient
mode, which is enabled by multi-part downloading, i.e., downloading peers are making signif-
icant contributions to the service capacity. We note that at around 500 minutes the number of
seeds in the system peaks, and subsequently decreases to a steady state of roughly 20 seeds
so uncooperative peers are exiting the system quickly. Meanwhile the number of peers down-
loading the document increases in bursts from 50 to 75 to about 125. The total throughput in
the system continues increasing after an initial exponential growth although it tracks the bursty
increases in number of downloaders (e.g. the upsurge mentioned at time 500 minutes) slowly
instead of exponentially fast. This suggests that the ability of the system to leverage the dy-
namic service capacity offered by a large number of concurrently downloading peers may not
scale as effectively as it did at the start. We suspect this is due to the impact of the credit system
as discussed in the sequel. In particular it would give priority to peers that have been in the
system and downloading for quite sometime at the expense of new peers (with low credit) and
thus reduce the growth rate. This might also be due to a poor scaling of the signaling overheads
among larger number of peers.

Impact of offered load on average throughput performance.The data shown on the right of
Fig.5 corresponds to a sample of 500 files with file sizes ranging from 400MBytes to 1.1GBytes,
for which the system capacity appeared to be in the steady state, i.e., one to four days have
elapsed since these documents were introduced to the system and the service capacity and per

13

peer download throughput should be representative of their popularity/offered loads. For each
file, we plot the KByte transmission delay, i.e., inverse of the per peer download throughput
(in KByte/sec), versus the number of seeds and downloaders participating in the system. The
number of participants is roughly linear in the offered load for a each file, i.e., a proxy for
the popularity of the document. For files with less than 50 peers participating in the system,
i.e., not very popular, the performance is seen to be quite unpredictable. Intuitively, this big
variance is due to the fact that the number of peers is small and heterogeneity among peers is
reflected in differences in performance. However, for files that are very popular, the performance
improves, albeit slowly, in the number of participants. This matches our analytical results very
well, i.e., average delays might go down with the offered load as shown on the left of Fig.5.
For example, as marked on the right of Fig.5, when the number of peers is 200, the per peer
download throughput is roughly 40KBytes/sec, i.e., the delay to transmit 1Kbyte is 0.025sec and
when the number of peers is 100 the per peer download throughput is only about 25Kbyte/sec,
i.e., a delay of 0.04sec per 1Kbyte. This improvement as the number of peers grows, is less
significant when the number of peers exceeds 200.

Additional empirical data [16] suggest that a P2P system in stationary regime will likely
exhibit fairly good performance. As with the transient regime, a significant amount of the ser-
vice capacity is leveraged from peers that are concurrently downloading the file. It is, however,
useful to provide incentives for the latter to stay in the system. Indeed we note that if the rate
at which peers leave the system is low (i.e.,γ/µ is small), then documents with a high offered
load may see improved average performance versus those with lower loads, see Fig.5. This self-
scaling characteristic would in practice be highly desirable since it achieves better performance
under higher offered loads.

3 Fairness, incentives and their implications on performance

The previous discussion on the service capacity of P2P systems, suggests that the extent
to which peers collaborate is crucial to the performance in both the transient and stationary
regimes. Thus it is desirable to carefully devise peer incentives to collaborate, i.e., to increase
upload bandwidth, share documents that are in demand, and stay in the system longer. One
way to improve peer incentives is to reward good contributors to the system by improving their
download performance. With this in mind, we introduce a notion of ‘fairness’ for P2P systems,
which would give peers incentives to contribute. The general idea can be described as follows:
‘the more a peer uploads the better his download throughput should be’, e.g., the download
throughput a peer receives should be proportional to his upload throughput. Note that this type
of ‘reciprocal proportional fairness’ among peers can be realized by running a distributed mech-
anism to allocate resources among peers. This notion of reciprocity distinguishes our notions
of ‘fairness’ from those traditionally considered proportional fairness for resource allocation
in networks, see e.g. [18]. We believe such a ‘fairness’ notion will improve peer incentives in
particular when peers can only measure their own upload and download throughput and accord-
ingly determine their contributions to the P2P system. Indeed as mentioned in the introduction,
similar ideas have already been implemented in current P2P file sharing applications and are

14

known as ‘credit systems’. In the sequel, we investigate several notions of ‘fairness’ that fit P2P
systems. Surprisingly, some seemingly straightforward criteria have unexpected outcomes and
lead to unfair bandwidth allocation, i.e., they may not provide the right incentives to peers and
may lead to poor performance. To study this problem, we consider first a stationary regime were
all peers are saturated with demands.

3.1 Notions of fairness in stationary regime

Consider the following model for service (bandwidth) allocation. We letN denote a set of
peers with total number|N|= n andx = (xi j |i 6= j, i, j ∈N) denote the service provided by each
peer, i.e.,xi j is a measure of the allocation of resources fromi to j. For simplicity let us assume
that the access rates are such that each peer is not download constrained but has an upload
constraint captured byb = (bi |i ∈N) wherebi denotes an upload bandwidth constraint for peer
i. This constraint may be placed by the communication system or may be artificially placed by
the user. Below we will assume that peers are fully connected and share a common interest, i.e.,
place demands on each other. We let the setNi denote the neighbors of peeri, which, in the case
of fully connected nodes, would be given byNi = N\{i}.

Global proportional fairness. The first notion of fairness for P2P systems we consider is one
whereby the service, i.e., bandwidth, a peer receives from another is proportional to its own
overall contribution to the system. We shall say an allocationx is globally proportionally fairif
for all i, j ∈ N wherei 6= j it satisfies

xi j =
u j

∑k∈Ni
uk

bi where u j = ∑
i∈Nj

x ji .

The idea is to allocate outgoing bandwidth from peeri to peerj in proportion to peerj ’s overall
contribution to the system, which is denoted byu j . If there is demand from each peer, and there
are no binding download constraints thenu j = b j and it follows that

xi j =
b j

∑k∈Ni
bk

bi , and d j = ∑
i∈Nj

xi j = b j ∑
i∈Nj

[
bi

∑k∈Ni
bk

]
.

Hered j denotes theaggregate download bandwidththat j obtains. Global proportional fairness
has several desirable properties. It gives users appropriate incentives by allocating more down-
load throughput to peers who contribute more upload to the system. The globally proportionally
fair allocation is unique and gives a positive allocation to all peers. Thus, it ensures the peers
in the system are ‘fully connected’, i.e., when the system is fully loaded any two peers have
positive mutual uploads. This is likely to be beneficial to performance particularly when a high
degree of sharing and load balancing is desired due to peer heterogeneity. Unfortunately this
criterion, while appealing, requires tracking the overall contributions of all peers, which may be
hard to verify and implement in a distributed manner.

15

Peerwise proportional fairness.An alternative notion would be for peers to allocate their
upload capacity to other peers based directly on the service they receive from them. This would
only require peers to keep track of their downloads from the peers who have served them. This
is fairly straightforward to do, and to verify, in a distributed manner. We say that an allocation
x is peerwise proportionally fairif for all i, j ∈ N wherei 6= j it satisfies

xi j =
x ji

∑k∈Ni
xki

bi . (2)

Although such allocations intuitively look ‘fair’, in general they are not unique and may be,
perhaps unexpectedly, unfair. To understand the characteristics of peerwise proportionally fair
allocations, we shall consider several examples with increasing generality. First we define an
important condition that will be used in the sequel.

Definition 3.1 Considern nodes, wheren≥ 3, ordered by increasing upload bandwidthsb1≤
b2≤ . . .≤ bn. When the upload bandwidths satisfy

bn <
n−1

∑
i=1

bi , (3)

we say the peers satisfy the non-dominant condition. Note that (3) implies thatb j < ∑i 6= j bi , ∀ j ,
i.e., the upload bandwidth of any single peer does not exceed the aggregate of the others.

The non-dominant condition certainly holds when all peers have roughly the same upload band-
width, or when there are a large number of peers to compensate wide heterogeneity in the upload
bandwidth.

Fact 1 Consider the three-node case and suppose the non-dominant condition is satisfied. Then
there is aunique, strictly positiveallocation, i.e., withxi j > 0, ∀i 6= j , which is peerwise pro-
portionally fair:

x =
[
xi j

]
=

0 b1+b2−b3
2

b1+b3−b2
2

b2+b1−b3
2 0 b2+b3−b1

2
b3+b1−b2

2
b3+b2−b1

2 0

 .

Fact 1 is straightforward to show by solving the equations (2) associated with the definition of
peerwise proportional fairness and constraints. The uniqueness of positive allocations, however,
does not follow when there are more than three peers. The following theorem, proved in the
appendix, summarizes some of the characteristics of strictly positive allocations.

Theorem 3.1 Under a peerwise proportionally fair allocation which is strictly positive i.e.,
xi j > 0,∀i 6= j, the bandwidth allocation must be symmetricxi j = x ji . Conversely, symmetric
strictly positive allocations imply peerwise proportional fairness. A necessary and sufficient
condition for the existence of a convex set of strictly positive peerwise proportionally fair allo-
cations is that their upload bandwidthsbi , i = 1, . . . ,n satisfy the non-dominant condition.

16

Note that strictly positive peerwise proportionally fair allocations are thus symmetric, and will
satisfy ui = di = bi , i.e., a peer’s download bandwidth is equal to the upload bandwidth it
contributes to the system. Symmetric allocations are desirable for providing peers incentives in
P2P systems because they guarantee that a peer’s download performance is equal to its upload.
Other than the convex set of symmetric strictly positive allocations, there also exist allocations
that are not strictly positive irrespective of the non-dominant condition, i.e., for which some
of the allocations among peers are zero and thus peers are not fully connected. In this case
symmetry need not hold, and a peer’s download allocation need not be equal to its upload
contributions. For example, in the 3-node case, the following allocations are also feasible:

x =

0 b1b2
b2+b3

b1b3
b2+b3

b2 0 0

b3 0 0

 x =

0 b1 0
b2b1

b1+b3
0 b2b3

b1+b3

0 b3 0

 x =

0 0 b1

0 0 b2

b3b1
b1+b2

b3b2
b1+b2

0

Although these are peerwise fair allocations, they would not give users the right incentives and
therefore may not be desirable. For example, it is possible that a node contributing a large total
upload bandwidth only gets rewarded by a small download throughput from peers with low
upload bandwidths. Indeed, when we consider the first allocation above whereb1 < b2 + b3,
peer 1’s total download throughputd1 = b2 +b3 is larger than the summation of peer 2 and 3’s
download throughput, i.e.,d2 +d3 = b1, even if peer 1 has the smallest upload bandwidth. In a
large system peerwise proportionally fair allocations can also lead to poor connectivity or even
disconnected cliques of peers. This in turn would have a negative impact on the performance
since the ability to leverage distributed service capacity would be reduced, and a peer may in
practice have trouble finding the file or chunk it requires.

Thus only symmetric peerwise proportional allocations, i.e., where the upload throughput
and download throughput between any two peers are balanced, would naturally lead to the
right peer incentives. A sufficient condition for that, according to Theorem 3.1, is to maintain
full connectivity in the system. However, in a real P2P system, full connectivity is unlikely to
hold given the huge number of peers. Without full connectivity in the system, is there still a
possibility to maintain balanced upload and download throughput between any two peers? The
following corollary proved in the appendix gives a sufficient condition for symmetric peerwise
proportional fairness under a relaxed connectivity requirement.

Corollary 3.1 Let the graphG(N,E) represent the connectivity of a P2P system in a stationary
regime, whereN is a set of all peers with|N| ≥ 3 and E is the set of links among peers such
that xi j > 0, ∀i, j ∈ N. Suppose we coverG(N,E) by fully connected subgraphsGk(Nk,Ek),
i.e.,G(N,E) =

S
k Gk(Nk,Ek) andEk = Nk×Nk. Suppose nodei’s bandwidth on a subgraphk,

denoted byb(k)
i , is such thatb(k)

i > 0 if i ∈ Nk and is zero otherwise, and∑k b(k)
i = bi . Further,

suppose that within eachGk(Nk,Ek), the non-dominant condition holds for{b(k)
i , ∀i ∈ Nk}.

Then the overall allocation to the peers must be symmetric and peerwise proportional fair, i.e.,
the throughput between any two peers is such thatxi j = x ji , andbi = di = ∑ j∈Ni

x ji , ∀i ∈ N.

17

Corollary 3.1 states that overlapping fully connected subgraphs suffices to ensure symmetric
peerwise proportionally fair allocations. This suggests a scalable approach to achieving peer-
wise fairness, which only requires peers to manage a restricted amount of connectivity, and
assuming that the non-dominant condition is true when each subgraph includes a sufficient
number of peers.

ε-peerwise proportional fairness.The above considerations still suggest these notions may not
be suitable for a robust implementation in P2P systems. Maintaining full connectivity within a
group of peers was found to be crucial, yet it can be hard in a dynamic context where peers
join and leave the system. Another issue, mentioned earlier is that a peerwise proportionally
fair allocation need not to be unique, i.e., the system does not have a stable operating state. To
avoid problems associated with peerwise proportional fairness, it may instead be preferable to
compromise the notion of peerwise proportional fairness to ensure that there exists a unique
positive solution and distributed mechanisms to reach it. A simple idea is to ensure that peers
persistently attempt exchanges with one another thereby avoiding becoming disconnected. This
strategy is used in the BitTorrent P2P system[3]. We can model this by ensuring there is a
minimal exchange among all peers, say a persistent allocation of resources which has an long
term average bandwidth usageε. With this in mind we define a bandwidth allocationx as being
ε-peerwise proportionally fairif for all i, j ∈ N wherei 6= j it satisfies:

xi, j =
x j,i + ε

∑k∈Ni
(xk,i + ε)

bi.

The existence ofε-peerwise proportionally fair allocations follows by the Brouwer fixed point
theorem in Chapter 2.6 of [19]. However showing uniqueness does not appear to be straight-
forward. Our simulations suggest that indeed such allocations are unique even whenbi are not
equal. Assuming allocations are unique and the non-dominant condition holds, we can show
the following desirable properties ofε-peerwise proportionally fair allocation. First, forε small
enough, one would expect the resulting allocation to be close to one which is strictly positive
and satisfies the peerwise proportionally fair requirement. If, however,ε is large a peer would
allocate its upload bandwidth equally among its neighbors. Second, a peer’s download through-
put di increases with its upload bandwidthbi as is the case for the globally proportionally fair
allocation. Third, depending onε, the overall bandwidth allocation will be biased, in that a peer
with limited upload bandwidth is likely to get a higher relative aggregate download through-
put versus one with a higher upload bandwidth. Clearly the system need not be exactly ‘fair’
to improve incentives, i.e., our notion of ‘fairness’ need only loosely require that ‘more up-
load results in better download performance’, and we believe this will be sufficient to improve
user incentives if we assume a user behavior is only controlled by his/her perceived download
performance with respect to his/her upload throughput.

3.2 How to improve incentives under traffic dynamics?

A practical P2P system will be dynamic with peers joining and leaving over time. This
complicates considerations on how to provide appropriate incentives. For example, what kind

18

of resource allocation is ‘fair’ when there are both new peers who just joined the system without
any upload/download history and peers that have participated in sharing for some time. Clearly
the system should not give little or no services to new peers just because they do not have
any history of sharing. Instead, it makes sense to assign relatively high priority to new peers
so that they can participate in sharing as quickly as possible and their service capacity can be
subsequently leveraged by others. Intuitively, with this approach, the overall system’s service
capacity will respond faster to bursty traffic.

In the long run, however, it makes sense to maintain fairness among peers who have par-
ticipated in sharing based on their uploading history. For example, peers can proportionally
allocate resources, e.g., based on theε-proportional fairness criteria, to others according to their
measured uploads. We believe peers should see two stages in terms of getting incentives for
sharing from a P2P system, (1) a transient phase, when they first enter the system, in which they
get high priority in downloading, and can then participate sharing as soon as possible, and (2)
a stationary phase in which ‘fairness’ is maintained based on proportional resource allocation
according to their longer term actual uploads.

An important aspect, that has not been explicitly addressed so far, is how to make peers,
in particular seeds who are not downloading other files, stay in the system. It is obvious that
the reward to a seed’s contribution can only be granted next time the peer starts downloading
a new file. Therefore, we believe that it is reasonable to associate a peer’s initial credit in the
transient regime with his upload history since a peer’s initial credit is directly associated with
his transient performance.

4 Conclusion

In summary, current P2P applications have started to implement service policies, generally
referred ascredit systems, to maintain ‘fairness’ so as to improve peer incentives to cooperate.
From our analysis of different notions of fairness and their impacts on the performance, a dis-
tributed implementation to realize fairness is not straightforward. Unexpected allocations may
result. Moreover, system dynamics further complicate the interaction between performance and
timescales on which incentives are realized. A credit system should be carefully implemented
in order to effectively leverage the service capacity of peers and do so in a manner that is consis-
tent with both transient and stationary regimes. Indeed one of the key features and advantages
of P2P systems is their ability to respond to bursty offered loads by leveraging the capacity of
ongoing downloaders. It would be undesirable for mechanisms that provide incentives for peers
to collaborate to reduce their capability to do so.

19

5 Appendix

Proof of Theorem 3.1.To show the first part of Theorem 3.1, note that given a strictly positive
solution, a peerwise proportional fairness allocation guarantees that for any nodesi, j andk,

xi j

x ji
=

xik

xki
at nodei,

xki

xik
=

xk j

x jk
at nodek, and

x jk

xk j
=

x ji

xi j
at nodej, i.e.,

xi j

x ji
=

xik

xki
=

x jk

xk j
=

x ji

xi j
.

It must then be true thatxi j = x ji , ∀i 6= j. Conversely, given a symmetric strictly positive alloca-
tion x, we havexi j = x ji andbi = ∑ j 6=i xi j = ∑ j 6=i x ji . With these relations, it is straightforward
to verify that a symmetric strictly positive allocation satisfies the peerwise proportional fairness
criterion in Equations 2.

To show a sufficient condition for existence of strictly positive peerwise proportional fair-
ness allocation, we will construct a peerwise proportionally fair allocation in the form of matrix
x = [xi j] step by step starting from the peer with the lowest upload bandwidthb1. We start
by constructing the first column and first row ofx, such that they are symmetric and pos-
itive, i.e., x1 j = x j1 > 0, ∀ j = 2, . . . ,n. Our goal is to ensure that after this allocation, the

remaining nodes2, . . . ,n with residual bandwidthb(1)
j = b j − x j1, j = 2, . . . ,n are still or-

dered, i.e.,b(1)
2 ≤ b(1)

3 . . . ≤ b(1)
n , and satisfy the non-dominant condition, i.e.,b(1)

n < ∑n−1
j=2 b(1)

j .
The allocation problem over the remainingn− 1 peers can then be considered. Two cases
need to be considered in our first step. First, ifbn > bn−1 + b1, we will make the follow-
ing allocation:x11 = 0, x1k = xk1 = δ, k = 2, . . . ,n−1, andx1n = xn1 = b1− (n−2)δ, where

0 < δ <
∑n−1

i=1 bi−bn

(n−1)(n−2) is small enough such that at the next step the non-dominant condition still
holds. The second case is whenbn < bn−1+b1, then we make the following allocation:x11 = 0,
x1k = xk1 = b1

n−1 − (bn−bn−1)
n−1 , k = 2, . . . ,n− 1, and x1n = xn1 = b1

n−1 + (n−2)(bn−bn−1)
n−1 . We can

continue this reduction iteratively until the problem has dimension three, where the feasibility
of each step is guaranteed by ensuringδ is selected at each step to ensure the non-dominant
condition holds. For the case of dimension three, the non-dominant condition still holds, i.e.,
b(n−3)

n < b(n−3)
n−2 + b(n−3)

n−1 , and we can use Fact 1 to make a final allocation. Therefore we have
shown that we can construct a strictly positive symmetric allocation and it satisfies the peerwise
proportional fairness.

One can construct a set of solutions based on the above approach, e.g., arbitrarily making
symmetric allocations as long as the non-dominant condition is satisfied at every step. This
solution space is indeed a convex set. Given allocationsx andx′ are both feasible strictly positive
peerwise proportionally fair allocations, we want to show thatx′′ = αx+(1−α)x′, ∀0< α < 1
is still a feasible strictly positive peer wise proportionally fair allocation. Note thatxi j = x ji > 0,
x′i j = x′ji > 0 andx′′i j = αxi j +(1−α)x′i j , ∀i 6= j. Thereforex′′i j = x′′ji > 0, i.e., the allocationx′′ is
also symmetric and all positive fori 6= j, which satisfies the definition of peerwise proportional
fairness, i.e.,x′′ is also a feasible strictly positive peer wise proportionally fair allocation.

To show that this is a necessary condition, simply consider a counter example of three
nodes with bandwidthb1, b2 andb3 andb3 > b1 + b2. There is no way to construct a strict

20

positive allocation that is symmetric. Otherwiseb3 = d3 ≤ b1 + b2 and it is a contradiction to
the conditionb3 > b1+b2. Similar argument can be easily generalized ton-node case. Therefore
the necessary condition is proved. 2

Proof of Corollary 3.1. For each fully connected subgraphGk(Nk) with the set of verticesNk,

we havex(k)
i j = x(k)

ji > 0 if i, j ∈ Nk by Theorem 3.1 since the non-dominant condition and full

connectivity hold locally inGk(Nk). If i 6∈ Nk or j 6∈ Nk, we still havex(k)
i j = x(k)

ji = 0. Since

G(N,E) is covered by
S

k Gk(Nk), ∑k x(k)
i j = xi j , ∀i 6= j. Therefore, it is straightforward to see

xi j = x ji , ∀i, j ∈ G . 2

References

[1] S. R. et. al., Maintenance-free global data storage, in: IEEE Internet Computing, pages 40–49,
September-October 2001.

[2] S. Graupner, W. Kalfa, C. Reimann, Modeling and simulation of media-on-demand services -
evaluating a digital media grid architecture, Tech. Rep. HPL-2002-192, HP Laboratories (2002).

[3] B. Cohen, Incentives build robustness in BitTorrent, in: Proceedings of Workshop on Economics of
Peer-to-Peer Systems, 2003.

[4] M. Ripeanu, I. Foster, A. Iamnitchi, Mapping the Gnutella network: properties of large-scale peer-
to-peer systems and implications for system design, IEEE Internet Computing 6 (1) (Jan.-Feb.2002)
50–57.

[5] M. Ripeanu, Peer-to-peer architecture case study: Gnutella network, in: Proceedings of First
International Conference on Peer-to-Peer Computing, pages 99–100, 2001.

[6] S. Saroiu, P. Gummadi, S. Gribble, A measurement study of peer-to-peer file sharing systems, in:
Proceedings of Multimedia Computing and Networking, San Jose, January 2002.

[7] T. E. N. et. al., Measurement-based optimization techniques for bandwidth-demanding peer-to-peer
systems, in: proceedings of IEEE INFOCOM03, San Francisco, April 2003.

[8] J. Ritter, Why Gnutella can’t scale. No, really, in: URL http://www.tch.org/gnutella.html, 2001.

[9] Z. G. et. al., Modeling peer-peer file sharing systems, in: Proceedings of IEEE INFOCOM, San
Francisco, April 2003.

[10] K. L. et. al., Incentives for cooperation in peer-to-peer networks, in: Proceedings of Workshop on
Economics of Peer-to-Peer Systems, 2003.

[11] K. Anagnostakis, M. Greenwald, Exchange-based incentive mechanisms for peer-to-peer file
sharing, in: Proceedings of 24th IEEE International Conference of Distributed Computing (ICDCS),
March 2004.

[12] A. Habib, J. Chuang, Service differentiated peer selection: an incentive mechanism for peer-to-peer
media streaming, Tech. Rep. TR-2004-2-HC, UC Berkeley (February 2004).

21

[13] R. Ma, S. Lee, D. Yau, A game theoretic approach to provide incentive and service differentiation
in P2P networks, in: Proceedings of ACE SIGMETRICS/Performance Evaluation Review, Vol. 32,
2004.

[14] J. Mundinger, R. Weber, Efficient file dissemination using peer-to-peer technology, Private
communication .

[15] K.B.Athreya, P.E.Ney, Branching processes, Springer-Verlag New York Heidelberg Berlin, 1972.

[16] X. Yang, G. de Veciana, Service capacity of peer-to-peer networks, in: Proceedings of IEEE
INFOCOM, March 2004.

[17] http://bitconjurer.org/BitTorrent/ .

[18] A. M. F.P. Kelly, D. Tan, Rate control in communication networks: shadow prices, proportional
fairness and stability, Journal of the Operational Research Society 49 (1998) 237–252.

[19] D. Bertsekas, J. Tsitsiklis, Parallel and distributed computation: numerical methods, Athena
Scientific, 1997.

22

