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Abstract—Network slicing is a key capability for next generation
mobile networks. It enables infrastructure providers to cost effec-
tively customize logical networks over a shared infrastructure. A
critical component of network slicing is resource allocation, which
needs to ensure that slices receive the resources needed to support
their services while optimizing network efficiency. In this paper,
we propose a novel approach to slice-based resource allocation
named Guaranteed seRvice Efficient nETwork slicing (GREET). The
underlying concept is to set up a constrained resource allocation
game, where (i) slices unilaterally optimize their allocations to best
meet their (dynamic) customer loads, while (ii) constraints are
imposed to guarantee that, if they wish so, slices receive a pre-agreed
share of the network resources. The resulting game is a variation of
the well-known Fisher market, where slices are provided a budget to
contend for network resources (as in a traditional Fisher market), but
(unlike a Fisher market) prices are constrained for some resources
to ensure the desired guarantees. In this way, GREET combines the
advantages of a share-based approach (high efficiency by flexible
sharing) and reservation-based ones (which provide guarantees by
assigning a fixed amount of resources). We characterize the Nash
equilibrium, best response dynamics, and propose a practical slice
strategy with provable convergence properties. Extensive simulations
exhibit substantial improvements over network slicing state-of-the-
art benchmarks.

I. INTRODUCTION

There is consensus among the relevant industry and standardiza-
tion communities that a key element in future mobile networks is
network slicing. This technology allows the network infrastructure
to be “sliced” into logical networks, which are operated by
different entities and may be tailored to support specific mobile
services. This provides a basis for efficient infrastructure sharing
among diverse entities, such as mobile network operators relying
on a common infrastructure managed by an infrastructure provider,
or new players that use a network slice to run their business
(e.g., an automobile manufacturer providing advanced vehicular
services, or a city hall providing smart city services). In the
literature, the term tenant is often used to refer to the owner of a
network slice.

A network slice is a collection of resources and functions
that are orchestrated to support a specific service. This includes
software modules running at different locations as well as the
nodes’ computational resources, and communication resources in
the backhaul and radio network. By tailoring the orchestration
of resources and functions of each slice according to the slice’s
needs, network slicing enables tenants to share the same physical
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infrastructure while customizing the network operation according
to their market segment’s characteristics and requirements.

One of the key components underlying network slicing is
the framework for resource allocation: we need to decide how
to assign the underlying infrastructure resources to each slice
at each point in time. When taking such decisions, two major
objectives are pursued: (i) meeting the tenants’ needs specified by
slice-based Service Level Agreements (SLAs), and (ii) realizing
efficient infrastructure sharing by maximizing the overall level of
satisfaction across all slices. Recently, several efforts have been
devoted to this problem. Two different types of approaches have
emerged in the literature:
Reservation-based schemes [1]–[8] where a tenant issues a reser-
vation request with a certain periodicity or on demand. Each
request involves a given allocation for each resource in the
network (where a resource can be a base station, a cloud server
or a transmission link).
Share-based schemes [9]–[15] where a tenant does not issue
reservation requests for individual resources, but rather purchases
a share of the whole network. This share is then mapped dynami-
cally to different allocations of individual resources depending on
the tenants’ needs at each point in time.

These approaches have advantages and disadvantages.
Reservation-based schemes are in principle able to guarantee
that a slice’s requirements are met, but to be efficient, require
constant updating of the resource allocations to track changing
user loads, capacities and/or demands. The overheads of doing
so at a fine granularity can be substantial, including challenges
with maintaining state consistency to enable admission control,
modifying reservations and addressing handoffs. Indeed, these
overheads are already deemed high for basic horizontal and/or
vertical handoffs. As a result, resource allocations typically
need to be done at a coarser granularity and slower time-scales,
resulting in reduced overall efficiency and performance.

In contrast to the above, in share-based approaches a slice
is given a coarse-grained share of the network resources which
combined with a fine-grained dynamic policy can track rapid
changes in a slices’ load distributions. Indeed, as these schemes
do not involve explicit per resource reservation requests, they
can more rapidly adapt allocations to the demand variations of
network slices (see, e.g., [16]). Their main drawback, however,
is that tenants do not have a guaranteed allocation at individual
resources, and as a consequence they cannot ensure that slices’
requirements will always be met.

Key contributions: In this paper, we propose a novel approach
to resource allocation among network slices named Guaranteed
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seRvice Efficient nETwork slicing (GREET). GREET combines
the advantages of the above two approaches while avoiding their
drawbacks. The key idea is that a slice is guaranteed a given
allocation at each individual resource, as long as the slice needs
such an allocation, while the remaining resources are flexibly
and efficiently shared. In this way, GREET is able to provide
guarantees and thus meet the SLA requirement of each slice,
and at the same time it provides a flexible sharing of resources
across slices that leads to an overall optimal allocation. Our key
contributions are as follows:
• We propose the GREET slice-based resource allocation

framework, which relies on a constrained resource allocation
game where slices can unilaterally optimize their allocations
under some constraints which guarantee that slices are en-
titled to a pre-agreed amount of each individual network
resource, specified in their SLAs (Section II).

• We analyze the resulting network slicing game when slices
contend for resources to optimize their performance. We
show that the game has a Nash Equilibrium (NE) but unfortu-
nately the Best Response Dynamics (BRD) may not converge
to this equilibrium (Section III).

• We propose a GREET slice strategy for individual slices
that complements our resource allocation framework. The
proposed strategy is simple and provides a good approxi-
mation to the slice’s best response. We show conditions for
convergence with the proposed strategy (Section IV).

• We perform a simulation-based evaluation confirming that
GREET combines the best features of reservation-based and
share-based approaches, providing service guarantees while
maximizing the overall performance (Section V).

II. RESOURCE ALLOCATION APPROACH

In this section we introduce both the system model and the
resource allocation framework proposed in this paper.

A. System model

We consider a set of resources B shared by a set of slices V ,
with cardinalities B and V , respectively. B may denote a set of
base stations as well as any other sharable resource type, e.g.,
servers providing compute resources. While our analysis can be
applied to different resource types, in what follows we focus on
radio resources and refer to b ∈ B as a base station.

We assume that each network slice supports a collection of
mobile users, possibly with heterogeneous requirements, each of
which is associated with a single base station. The overall set of
users on the network is denoted by U , those supported by slice
v are denoted by Uv , those associated with base station b are
denoted by Ub, and we define Uvb := Ub ∩ Uv . The set of active
slices at base station b, corresponding to those that have at least
one user at b, is denoted by Vb (i.e., |Uvb | > 0 holds for v ∈ Vb).

The goal in this paper is to develop a mechanism to allocate
resources amongst slices. To that end, we let fvb denote the fraction
of resources at base station b allocated to slice v. We adopt
a generic formulation based on divisible resources that can be
applied to a variety of technologies. The specific resource notion

will depend on the underlying technology; for instance, in OFDM
resources refer to physical resource blocks, in FDM to bandwidth
and in TDM to the fraction of time.

The resources of a base station allocated to a slice are sub-
divided among the slice’s users at the base stations, such that
a user u ∈ Uvb receives a fraction fu of the resource, where∑
u∈Uvb

fu = fvb . With such an allocation, user u achieves a
service rate ru = fu · cu, where cu is the user’s achievable rate,
defined as the rate that the user would see if she had the entire
base station provisioned to herself. Note that cu depends on the
modulation and coding scheme selected for the user given the
current radio conditions, which accounts for noise as well as the
interference from the neighboring base stations. Following similar
analyses in the literature (see, e.g., [17]–[19]), we shall assume
that cu is fixed for each user at a given time.

The focus of this paper is on slice-based resource allocation:
our problem is to decide which fraction of the overall resources
we allocate to each slice (e.g., the number of resource blocks of
each base station). In order to translate slice-based allocations
to specific user-level allocations, the system will further need
to decide (i) which specific resources (beyond the fraction of
resources) will be assigned to each slice, and in turn, (ii) the
assignment of slice resources to active users. This corresponds to
a user-level scheduling problem which is not in the scope of this
paper, but may impact the users’ achievable rates cu (this problem
has been addressed, for instance, in [20]–[22]).

In line with standard network slicing frameworks [23], the
approach studied in this paper can be flexibly combined with
different algorithms for user-level allocations. The specific mech-
anism to assign resources to slices is the responsibility of the
infrastructure provider, which may take into account, e.g., the
latency requirements of the different slices. The sharing of the re-
sources of a slice amongst its users is up to the slice, and different
slices may run different scheduling algorithms depending on the
requirements of their users. For instance, slices with throughput-
driven services may opt for opportunistic schedulers [24]–[26]
while other slices with latency requirements may opt for delay-
sensitive schedulers [27].

Depending on its type of traffic, a slice may require different
allocations. For instance, an Ultra-Reliable Low-Latency Commu-
nication (URLLC) slice with high reliability and/or low latency
requirements may require a resource allocation much larger than
its average load, to make make sure sufficient resources are
available and/or delays are low. By contrast, a slice with enhanced
Mobile Broadband (eMBB) traffic may not require guarantees at
each individual base station, but may only need a certain average
fraction of resources over time for its users.

B. GREET: Slice-based Resource Allocation

Below, we propose a slice-based resource allocation scheme
that, on the one hand, ensures that each slice is guaranteed, as
needed, a pre-agreed fraction of the resources at each individual
base station, and, on the other hand, enables slices to contend
for spare resources. Such a division into guaranteed resources
and extra ones is in line with current sharing models for cloud
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computing [28]–[30]. In order to regulate the resources to which a
network slice is entitled, as well as the competition for the ‘excess’
resources, we rely on the different types of shares defined below.
Such shares are specified in the slices’ SLAs.

Definition 1. For each slice v, we define the following pre-agreed
static shares of the network resources.

1) We let the guaranteed share svb denote the fraction of
b’s resources guaranteed to slice v, which must satisfy∑
v∈V s

v
b ≤ 1 in order to avoid over-commitment.

2) We let ev denote the excess share which slice v can use to
contend for the spare network resources.

3) We let sv denote the slice v’s overall share, given by sv =∑
b∈B s

v
b + ev .

After being provisioned a fraction of a network resource, each
slice v has the option to sub-divide its share amongst its users.
This can be done by designating a weight wu for user u ∈ Uv .
We let wv = (wu, u ∈ Uv) denote the weight allocation of slice
v such that ‖wv‖1 ≤ sv . The set of feasible weight allocations is
given byWv := {wv : wv ∈ R|U

v|
+ and

∑
u∈Uv wu ≤ sv}. Then,

we will have lvb =
∑
u∈Uvb

wu as the slice v’s aggregate weight to
base station b, which is determined by its user weight distribution
and must satisfy that

∑
b∈B l

v
b ≤ sv . We further let lb :=

∑
v∈Vb l

v
b

denote the overall load at base station b and l−vb :=
∑
v′ 6=v l

v′

b

the overall load excluding slice v. We define ∆v
b := (lvb − svb )+

as the excess weight at base station b of slice v. The proposed
resource allocation mechanism works as follows.

Definition 2. (GREET slice-based resource allocation) We
determine the fraction of each resource b allocated to slice v,
(fvb , v ∈ V, b ∈ B), as follows. If lb ≤ 1, then

fvb =
lvb
lb
, (1)

and otherwise

fvb =


lvb , lvb < svb ,

svb +
∆v
b∑

v′∈Vb

∆v′
b

(
1−

∑
v′∈Vb

min
(
sv
′

b , l
v′

b

))
, lvb ≥ svb .

(2)

The rationale underlying the above mechanism is as follows.
If lb ≤ 1, then (1) ensures that each slice gets a fraction of
resources fvb exceeding its aggregate weight lvb at resource b. If
lb > 1, then (2) ensures that a slice whose aggregate weight at b
is less than its guaranteed share, i.e., lvb ≤ svb , receives exactly its
aggregate weight, and a slice with an aggregate weight exceeding
its guaranteed share, i.e., lvb > svb , receives its guaranteed share svb
plus a fraction of the extra resources proportional to the excess
weight ∆v

b . The extra resources here correspond to those not
allocated based on guaranteed shares. A slice can always choose
a weight allocation such that the aggregate weight at resource b,
lvb , exceeds its guaranteed share, svb , and thus this ensures that, if
it so wishes, a slice can always attain its guaranteed shares.

The above specifies the slice allocation per resource. Based on
the wu’s, the slices then allocate base stations’ resources to users
in proportion to their weights, i.e., fu = wu∑

u′∈Uv
b
wu′

fvb , where

fu is the fraction of resources of base station b allocated to user
u ∈ Uvb .

One can think of the above allocation in terms of market pricing
schemes as follows. The share sv can be understood the budget
of player v and the aggregate weight lvb as the bid that this player
places on resource b. Then, the case where lb ≤ 1 corresponds to
the well-known Fisher market [31], where the price of the resource
is set equal to the aggregate bids from slices, making allocations
proportional to the slices’ bids. GREET deviates from this when
lb ≥ 1 by modifying the ‘pricing’ as follows: for the first svb bid
of slice v on resource b, GREET sets the price to 1, to ensure that
the slice budget suffices to buy the guaranteed resource shares.
Beyond this, the remaining resources are priced higher, as driven
by the corresponding slices’ excess bids.

In summary, the proposed slice-based resource allocation
scheme is geared at ensuring a slice will, if it wishes, be able to
get its guaranteed resource shares, svb , but it also gives a slice the
flexibility to contend for excess resources, by shifting portions of
its overall share sv (both from the guaranteed and excess shares)
across the base stations, to better meet the current requirements of
the slice’s users, by aligning the slice bids with the users’ traffic.
Such a slice-based resource sharing model provides the benefit of
protection guarantees as well as the flexibility to adapt to user
demands.

III. NETWORK SLICING GAME ANALYSIS

Under the GREET resource allocation scheme, each slice must
choose how to subdivide its overall share amongst its users. Then,
the network decides how to allocate base station resources to
slices. This can be viewed as a network slicing game where,
depending on the choices of the other slices, each slice chooses
an allocation of aggregate weights to base stations that maximizes
its utility. In this section, we study the behavior of this game.

A. Slice and Network Utilities

Note that the users’ rate allocations, (ru : u ∈ U), can be
expressed as a function of the slice’s weight assignments across
the network, w = (wu : u ∈ U). Indeed, the weights determine
the slice’s resources at each base station, as well as the division
of such resources across the slice’s users within each base station.
Accordingly, in the sequel we focus the game analysis on the
weights and express the resulting user rates as ru(w).

We assume that each slice has a private utility function, denoted
by Uv , that reflects the slice’s preferences based on the needs of
its users. We suppose the slice utility is simply a sum of its users
individual utilities, Uu, i.e., Uv(w) =

∑
u∈Uv Uu(ru(w)).

Following standard utility functions [32], [33], we assume that
for some applications, a user u ∈ Uv may require a guaranteed rate
γu, hereafter referred to as the user’s minimum rate requirement.
We model the utility functions for rates above the minimum
requirement as follows:

Uu(ru(w)) =

{
φuFu(ru(w)− γu), ru(w) > γu,

−∞ otherwise,
(3)
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where Fu(·) is the utility function associated with the user, and
φu reflects the relative priority that slice v wishes to give user u,
with φu ≥ 0 and

∑
u∈Uv φu = 1.

For Fu(·), we consider the following widely accepted family
of functions, referred to as α-fair utility functions [34]:

Fu(xu) =

{
(xu)1−α

v

(1−αv) , αv 6= 1

log(xu), αv = 1,

where the αv parameter sets the level of concavity of the user
utility functions, which in turn determines the underlying resource
allocation criterion of the slice. Particularly relevant cases are
αv = 0 (maximum sum), αv = 1 (proportional fairness), αv = 2
(minimum potential delay fairness) and αv → ∞ (max-min
fairness).

Note that the above utility is flexible in that it allows slice
utilities to capture users with different types of traffic:
• Elastic traffic (γu = 0 and φu > 0): users with no

minimum rate requirements and a utility that increases with
the allocated rate, possibly with different levels of concavity
given by αv .

• Inelastic traffic (γu > 0 and φu = 0): users that have
a minimum rate requirement but do not see any utility
improvement beyond this rate.

• Rate-adaptive traffic (γu > 0 and φu > 0): users with a
minimum rate requirement which see a utility improvement if
they receive an additional rate allocation above the minimum.

Following [9], [10], [12]–[14], [35], we define the overall
network utility as the sum of the individual slice utilities weighted
by the respective overall shares,

U(w) =
∑
v∈V

svUv(w), (4)

and the social optimal weight allocation wso as the allocation
maximizing the overall utility U(w), i.e.,

wso = argmax
w≥0

{ U(w) :
∑
u∈Uv

wu ≤ sv, ∀v ∈ V} (5)

B. Network Slicing Resource Allocation Game

Next we analyze the network slicing game resulting from the
GREET resource allocation scheme and the above slice utility. We
formally define the network slicing game as follows, where wv

denotes slice v users’ weights.

Definition 3. (Network slicing game) Suppose each slice v has
access to the guaranteed shares and the aggregate weights of the
other slices, i.e., sv

′

b , l
v′

b , v
′ ∈ V \ {v}, b ∈ B. In the network

slicing game, slice v chooses its own user weight allocation wv

in its strategic space Wv so as to maximize its utility, given that
the network uses a GREET slice-based resource allocation. This
choice is known as slice v’s Best Response (BR).

In the sequel we consider scenarios where the guaranteed shares
suffice to meet the minimal rate requirements of all users. The
underlying assumption is that a slice would provision a sufficient
share and/or perform admission control so as to limit the number
of users. We state this formally as follows:

Assumption 1. (Well dimensioned shares) The slices’ guaranteed
shares are said to be well dimensioned if they are set so as meet
or exceed the minimum rate requirements of their users at each
base station. In particular, they are such that that

∑
u∈Uvb

f
u
≤

svb for all v ∈ V and b ∈ B, where f
u

= γu
cu

is the minimum
fraction of resources required by user u to meet the minimum
rate requirement γu. When this assumption holds, we say that the
shares of all slices are well dimensioned.

A more restrictive assumption is that slices provision exactly
the guaranteed share needed to meet its users’ minimum rate
requirements.

Assumption 2. (Perfectly dimensioned shares) The slices’ guar-
anteed shares are said to be perfectly dimensions if they are set so
as to exactly cover the minimum rate requirements of their users
at each base station, i.e.,

∑
u∈Uvb

f
u

= svb for all v ∈ V and
b ∈ B. When this assumption holds, we say that the shares of all
slices are perfectly dimensioned.

The following lemma ensures that under Assumption 1 a slice’s
best response is given by the solution to a convex problem and
meets the minimum rate requirements of all its users. Thus, as long
as a slice’s guaranteed shares are well dimensioned, the proposed
scheme will meet the slice’s users requirements.

Lemma 1. When Assumption 1 holds, a slice’s Best Response
under GREET-based resource allocation is the solution to a convex
optimization problem, and the minimum rate requirements of all
the slice’s users will be satisfied.

To characterize the system, it is desirable to determine the
existence of a Nash Equilibrium (NE). The theorem below shows
that, when the slices’ shares are well dimensioned, with an
additional constraint that weights be strictly positive, e.g., greater
than δ (which can be arbitrarily small), the existence of a NE is
guaranteed.

Theorem 1. Suppose that Assumption 1 holds and that we
constrain user weights to be strictly positive, i.e., for all u ∈ U
wu ≥ δ for some δ > 0. Then, a NE exists. However, without the
strictly positive constraint on weights, a NE may not exist.

When a NE exists, it is natural to ask whether the dynamics
of slices’ unilateral best responses to each others weight allo-
cations would lead to such an equilibrium. Below, we consider
Best Response Dynamics (BRD), where slices update their Best
Response sequentially, one at a time, in a Round Robin manner.
Ideally, we would like this process to converge after a sufficiently
large number of rounds. However, the following result shows that
this need not be the case.

Theorem 2. Suppose that Assumption 1 holds and that we
constrain user weights to be positive, i.e., for all u ∈ U wu ≥ δ
for some δ > 0. Then, even though a NE exists, the Best Response
Dynamics may not converge.

The following two theorems further characterize the NE alloca-
tions of the network slicing game relative to the socially optimal
resource allocation and in terms of envy, respectively.
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Theorem 3. Consider a setting where all slices’ users are elastic
and have logarithmic utilities, i.e., α = 1. Suppose also that a NE
exists. Then, the overall utility associated with the socially optimal
weight allocations wso versus that resulting from the NE of the
network slicing game under GREET-based resource allocation,
wne, satisfy

U(wso)− U(wne) ≤ log(e)
∑
v∈V

sv

Furthermore, there exists a game instance for which this bound
is tight.

Theorem 4. Consider a setting where slices satisfy Assumption 2
and a NE exists. Further, suppose that two slices v and ṽ have
the same guaranteed and excess shares and that slice v has users
with logarithmic utilities, i.e., αv = 1. Let rne,v denote the rate
allocations to slice v’s users under the NE. Suppose slice v and
ṽ exchange the overall allocations they get at the NE and let r̃v

denote the rate allocations to users of slice v maximizing slice v’s
utility after such an exchange. Let us define the envy that slice v
has for ṽ’s allocation at the NE as

Ene(v, ṽ)
.
= Uv(r̃v)− Uv(rne,v)

Then, the following is satisfied: Ene(v, ṽ) ≤ 0.060. Furthermore,
there is a game instance where Ene(v, ṽ) ≥ 0.041.

IV. GREET SLICE STRATEGY

In addition to the equilibrium and convergence issues high-
lighted in Theorems 1 and 2, a drawback of the Best Response
algorithm analyzed in Section III is its complexity. Indeed, to
determine its best response, a slice needs to solve a convex
optimization problem. This strays from the simple algorithms,
both in terms of implementation and understanding, that get
adopted in practice and tenants tend to prefer. In this section,
we propose an alternative slice strategy to the best response,
which we refer to as the GREET weight allocation policy. This
policy complements the resource allocation mechanism proposed
in Section II, leading to the overall GREET framework consisting
of two pieces: the resource allocation mechanism and the weight
allocation policy.

A. Algorithm definition and properties

The GREET resource allocation given in Section II depends on
the aggregate weight that slices allocate at each base station. In
the following, we propose the GREET weight allocation policy to
determine how each slice allocates its weights across its users and
base stations. We first determine the weights of all the users of
the slice, and then compute the aggregate weights by summing the
weights of all the users at each base station, i.e., lvb =

∑
u∈Uvb

wu.
Under the proposed GREET weight allocation, slices decide the

weight allocations of their users based on two parameters: one that
determines the minimum allocation of a user (γu) and another
one that determines how extra resources should be prioritized
(φu). A slice first assigns each user u the weight needed to meet
its minimum rate requirement γu. Then, the slice allocates its

Algorithm 1 GREET weight allocation round for slice v

1: for user u ∈ Uv do set f
u
← γu

cu
2: for each base station b ∈ B do set fv

b
←
∑
u∈Uvb

f
u

3: for user u ∈ Uv do
4: if l−vb + fv

b
≤ 1 then set wu ←

f
u

1−fv
b

l−vb
5: else
6: if svb ≥ f

v

b
then set wu ← f

u
7: else set wu ← expression given by (6)
8: if

∑
u∈Uv wu ≤ sv then

9: for user u ∈ Uv do
10: set wu ← wu + φu

(
sv −

∑
u′∈Uv wu′

)
11: else
12: while

∑
u∈Ub wu ≤ sv do

13: select users in order of increasing wu
14: set wu ← wu

remaining share amongst its users in proportion to their priority
φu. Note that this algorithm does not require revealing each
slices’ aggregate weights to the others but only the base stations’
overall loads, which discloses very limited information about
slices’ individual weights and leads to low signaling overheads.
The algorithm is formally defined as follows.

Definition 4. (GREET Weight Allocation) Suppose that each
slice v has access to the following three aggregate values for each
base station: l−vb ,

∑
v′∈Vb\{v}∆v

b and
∑
v′∈Vb\{v}min(sv

′

b , l
v′

b ).
Then, the GREET weight allocation is given by the weight
computation determined by Algorithm 1.

Algorithm 1 realizes the basic insight presented earlier. The
slice, say v, first computes the minimum resource allocation
required to satisfy the minimum rate requirement of each user,
denoted by f

u
. These are then summed to obtain the minimum

aggregate requirement at each base station, denoted by fv
b

(see
Lines 1-2 of the algorithm).

Next, it computes the minimum weight for each user to meet
the above requirements, denoted by wu. If l−vb + fv

b
≤ 1, the

GREET resource allocation is given by (1), and slice v’s minimum
aggregate weight at base station b, lvb , should satisfy lvb

lvb+l−vb
= fv

b
.

Hence, the minimum weight for user u at base station b is given
by wu =

f
u

fv
b

lvb =
f
u

1−fv
b

l−vb (Line 4).

If l−vb +fv
b
> 1, the GREET resource allocation is given by (2)

and two cases need to be considered. In the first case, where the
minimum resource allocation satisfies fv

b
≤ svb , it suffices to set

lvb = fv
b

and wu = f
u

and GREET resource allocation will make
sure the requirement is met (Line 6). In the second case, where
fv
b
> svb , in order to meet the minimal rate requirements under the

GREET allocation given by (2), the minimum aggregate weight
lvb must satisfy

svb +

(lvb − svb )

(
1− svb −

∑
v′∈Vb\{v}

min
(
sv
′

b , l
v′

b

))
lvb − svb +

∑
v′∈Vb\{v}

∆v′
b

= fv
b
.
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Solving the above for lvb and allocating user weights in proportion
to f

u
gives the following minimum weights (Line 7):

wu =
f
u

fv
b

(
svb +

(fv
b
− svb )

∑
v′∈Vb\{v}∆v′

b

1− fv
b
−
∑
v′∈Vb\{v}min(sv

′
b , l

v′
b )

)
. (6)

Once we have computed the minimum weight requirement for
all users, we proceed as follows. If the slice’s overall share sv

suffices to meet the requirements of all users, we divide the
remaining share among the slice’s users proportionally to their φu
(Line 10). Otherwise, we assign weights such that we maximize
the number of users that see their minimum rate requirement met,
selecting users in order of increasing wu and providing them with
the minimum weight wu (Lines 13-14).

Theorem 5 lends support to the GREET weight allocation
algorithm. It shows that, under some relevant scenarios, this
algorithm captures the character of social optimal slice allocations.
Furthermore, in a network with many slices where the overall
share of an individual slice is very small in relative terms,
Theorem 6 shows that GREET is a good approximation to a slice’s
best response, suggesting that a slice cannot gain (substantially) by
deviating from GREET. These results thus confirm that, in addition
to being simple, GREET provides close to optimal performance
both at a global level (across the whole network) as well as locally
(for each individual slice).

Theorem 5. Suppose that all users are elastic and user utilities
are logarithmic, i.e., α = 1. Suppose GREET weight allocations
converge to an equilibrium, which we denote by GREET equilib-
rium (GE). Then, GREET provides all users with the same rate
allocation as that resulting from the socially optimal weights,
i.e., ru(wge) = ru(wso),∀u, where wso is the (not necessarily
unique) socially optimal weight allocation and wge is the weight
allocation under GREET equilibrium.

Theorem 6. Suppose that all the users of a slice are elastic, user
utilities are logarithmic (i.e., α = 1) and sv/l−vb < δ ∀b. Then,
the following holds for all users u on slice v:

wbru (w−v)

1 + δ
< wgu(w−v) < (1 + δ)wbru (w−v),

where wbr,v(w−v) = (wbru (w−v) : u ∈ Uv) is the best
response of slice v to the other slices’ weights w−v and similarly
wg,v(w−v) is slice v’s response under GREET.

Further, suppose that GREET converges to an equilibrium. Then
the resulting allocation is an ε-equilibrium with ε = log(1 + δ).

The following results shows that, in contrast to the NE alloca-
tions analyzed in Section III, the GREET allocations are envy-free.

Theorem 7. Consider a setting where slices satisfy Assumption 2
and slices’ GREET weight allocations converge to a GREET
Equilibrium (GE). Suppose two slices v and ṽ have the same
guaranteed and excess shares, and that slice v has users with
logarithmic utilities, i.e., α = 1. Let rge,v denote the rate
allocations to slice v’s users under at the GE and r̃v their rate
allocations after slices v and ṽ exchange their overall allocations

at the equilibrium. Then the envy that slice v has for ṽ’s allocation
at the GE satisifes

Ege(v, ṽ)
.
= Uv(r̃v)− Uv(rge,v) ≤ 0.

One of the main goals of the GREET resource allocation
model proposed in Section II, in combination with the GREET
weight allocation policy proposed in this section, is to provide
guarantees to different slices, so that they can in turn ensure
that the minimum rate requirements of their users are met. The
lemma below confirms that, as long as slices are well dimensioned,
GREET will achieve this goal.

Lemma 2. When Assumption 1 holds, the resource allocation
resulting from combining the GREET resource allocation model
with the GREET weight allocation policy meets all users’ mini-
mum rate requirements.

B. Convergence of the algorithm

A key desirable property for a slice-based weight allocation
policy is convergence to an equilibrium. Applying a similar
argument to that of Theorem 2, it can be shown that the GREET
weight allocation algorithm need not converge. However, below
we will show sufficient conditions for convergence.

Let w(n) be the overall weight allocation for update round n.
Our goal is to show that the weight sequence w(n) converges
when n → ∞. The following theorem provides a sufficient
condition for geometric convergence to a unique equilibrium.
According to the theorem, convergence is guaranteed as long as (i)
slice shares are well dimensioned, and (ii) the guaranteed fraction
of resources for a given slice at any base station is limited. The
second condition essentially says that there should be quite a bit of
flexibility when managing guaranteed resources, leaving sufficient
resources not committed to any slice. In practice, this may
be appropriate in networks supporting slices with elastic traffic
(which need non-committed resources), inelastic traffic (which
may require some safety margins), or combinations thereof.

Theorem 8. Suppose that Assumption 1 holds and the maximum
aggregate resource requirement per slice, fmax, satisfies

fmax := max
v∈V

max
b∈B

fv
b
<

1

2|V| − 1
. (7)

Then, if slices perform GREET-based updates of their weight allo-
cations according to Algorithm 1, either in Round Robin manner
or simultaneously, the sequence of weight vectors (w(n) : n ∈ N)
converges to a unique fixed point, denoted by w∗, irrespective of
the initial weight allocation w(0). Furthermore, the convergence
is geometric, i.e.,

max
v∈V

∑
b∈B

|lvb (n)− lv,∗b | ≤ ξ
n max
v∈V

∑
b∈B

|lvb (0)− lv,∗b | (8)

where ξ := 2(|V|−1)fmax

1−fmax
and lv,∗ corresponds to slice v’s aggre-

gate weights at the fixed point w∗. Note that (7) imposes ξ < 1.

This convergence result can be further generalized under the
asynchronous update model in continuous time [36]. Specifically,
without loss of generality, let n index the sequence of times
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(tn, n ∈ N) at which one or more slices update their weight
allocations and let N v denote the subset of those indices where
slice v performs an update. For n ∈ N v , slice v updates its
weights allocations based on possibly outdated weights for other
slices, denoted by (wv′(τvv′(n)) : v′ 6= v), where 0 ≤ τvv′(n) ≤ n
indexes the update associated with the most recent slice v′ weight
updates available to slice v prior to the nth update. As long as the
updates are performed according to the assumption below, one can
show that GREET converges under such asynchronous updates.

Assumption 3. (Asynchronous updates) We assume that asyn-
chronous updates are performed such that, for each slice v ∈ V ,
the update sequence satisfies (i) |N v| =∞, and (ii) for any subse-
quence {nk} ⊂ N v that tends to infinity, then limk→∞ τvv′(nk) =
∞, ∀v′ ∈ V .

Theorem 9. Under Assumption 1, if slices perform GREET-based
updates of their weight allocations asynchronously but satisfying
Assumption 3, and if (7) holds, then the sequence of weight
updates (w(n) : n ∈ N) converges to a unique fixed point
irrespective of the initial condition.

While the above results provide some sufficient conditions
for convergence, in the simulations performed we observed that,
beyond these sufficient conditions, the algorithm always converges
quite quickly under normal circumstances (within a few rounds).
To show this, we run GREET over two artificial network settings
with different user distributions and minimal rate requirements
leading to different ξ. The results are Illsutrated in Fig. 1, where
the ‘theoretical upperbound’ is the distance computed as the
R.H.S. of (8). We observe that the actual convergence of GREET is
geometric, but with a rate significantly greater than the theoretical
bound. Furthermore, even with a ξ > 1, GREET still converges
in a geometric manner, even though the theoretical results do not
guarantee convergence in this case. Based on this, we adopt an
approach for the GREET weight allocation algorithm where we
let the weights be updated by each slice for a number of rounds,
and stop the algorithm if it has not converged upon reaching this
number (which is set to 7 in our simulations).

V. PERFORMANCE EVALUATION

In this section we present a detailed performance evaluation of
GREET versus two representative slice-based resource allocation
approaches in the literature: one reservation- and the other share-
based.

A. Mobile Network Simulation Setup

Simulation model: We simulate a dense ‘small cell’ wireless de-
ployment following the IMT-Advanced evaluation guidelines [37].
The network consists of 19 base stations in a hexagonal cell
layout with an inter-site distance of 20 meters and 3 sector
antennas; thus, B corresponds to 57 sectors. Users associate
to the sector offering the strongest SINR, where the downlink
SINR between base station b and user u is modeled as in [38]:
SINRbu = PbGbu∑

k∈B\{b} PkGku+σ2 , where, following [37], the noise

σ2 is set to −104dB, the transmit power Pb is equal to 41dB and
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Fig. 1: Actual L1 norm of the distance to the fixed point under GREET
vs. the theoretical upper bound provided by Theorem 8.

the channel gain between sector b and user u, denoted by Gbu,
accounts for path loss, shadowing, fast fading and antenna gain.
The path loss is given by 36.7 log10(dbu)+22.7+26 log10(fc)dB,
where dbu denotes the current distance in meters from the user u
to sector b, and the carrier frequency fc is equal to 2.5GHz. The
antenna gain is set to 17 dBi, shadowing is updated every second
and modeled by a log-normal distribution with standard deviation
of 8dB [38]; and fast fading follows a Rayleigh distribution
depending on the mobile’s speed and the angle of incidence.
The achievable rate cu for user u at a given point in time is
based on a discrete set of modulation and coding schemes (MCS),
with the associated SINR thresholds given in [39]. This MCS
value is selected based on the average SINRbu, where channel
fast fading is averaged over a second. For user scheduling, we
assume that resource blocks are assigned to users in a round-
robin manner proportionally to the allocation determined by the
resource allocation policy under consideration. For user mobility,
we consider two different mobility patterns: Random Waypoint
model (RWP) [40], yielding roughly uniform load distributions,
and SLAW model [41], typically yielding clustered users and thus
non-uniform load distributions.

Performance metrics: Recall that our primary goal is to give
slices flexibility in meeting their users’ minimum rate require-
ments while optimizing the overall network efficiency. To assess
the effectiveness of GREET in achieving this goal, we focus on
the following two metrics:
• Outage probability P (outage): this is the probability that a

user does not meet its minimum rate requirement. In order for
a slice to provide a reliable service, this probability should
be kept below a certain threshold.

• Overall utility U : this is given by (4) and reflects the overall
performance across all slices.

State-of-the-art approaches: In order to show the advantages of
GREET, we will compare it to the following benchmarks:
• Reservation-based approach: with this approach, each slice v

reserves a local share at each base station b, denoted by ŝvb .
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Fig. 2: Comparison of GREET against the benchmark approaches in terms
of the overall Utility U and the outage probability P (outage).

The resources at each base station are then shared among
the active slices (having at least one user) in proportion
to the local shares ŝvb . This is akin to setting weights for
a Generalized Processor Sharing in a resource [42] and is
in line with the spirit of reservation-based schemes in the
literature [1]–[8].

• Share-based approach: with this approach, each slice gets a
share s̃v of the overall resources, as in [9]–[15]. Specifically,
resources at each base station are shared according to the
scheme proposed in [10], where each slice v ∈ V distributes
its share s̃v equally amongst all its active users u ∈ Uv ,
such that each user u gets a weight w̃u = s̃v/|Uv|, and then,
at each base station b ∈ B the resources are allocated in
proportion to users’ weights.

• Social optimal: this scheme corresponds to the social optimal
weight allocation wso given by (5) under GREET resource
allocation.

In order to meet the desired performance targets, the shares
employed in the above approaches are dimensioned as follows. We
consider two types of slices: (i) those which provide their users
with minimum rate requirements, which we refer to as guaranteed
service slices, and (ii) those which do not provide minimum
rate requirements, which we refer to as elastic service slices.
In GREET, for guaranteed service slices, we define a maximum
acceptable outage probability Pmax and determine the necessary
share at each base station, svb , such that P (outage) ≤ Pmax,
assuming that the number of users follow a Poisson distribution
whose mean is obtained from the simulated user traces; for these
slices, we set ev = 0. For elastic service slices, we set svb = 0 ∀b
and ev to a value that determines the mean rate provided to
elastic users. For the reservation-based approach, we set ŝvb = svb
for guaranteed service slices, to provide the same guarantees as
GREET; for elastic service slices, we set ŝvb such that (i) their sum
is equal to ev , to provide the same total share as GREET, (ii) the
sum of the ŝvb ’s at each base station does not exceed 1, to preserve
the desired service guarantees, and (iii) they are as much balanced

as possible across all base stations, within these two constraints.
Finally, for the share-based approach we set s̃v = sv for all slice
types, i.e., the same shares as GREET.

B. Comparison with state-of-the-art benchmarks
Fig. 2 exhibits the performance of GREET versus the above

benchmarks in terms of P (outage) and overall utility U for the
following scenario: (i) we have two guaranteed service and two
elastic service slices; (ii) the share of elastic service slices is
increased within the range sv ∈ [2, 19]; (iii) the minimum rate
requirement for users on the guaranteed service slices is set to
γu = 0.2 Mbps ∀u; (iv) the shares of guaranteed service slices
are dimensioned to satisfy an outage probability threshold Pmax
of 0.01; (v) for all slices, the priorities φu of all users are equal;
and, (vi) the users of the elastic service slices follow the RWP
model, leading to roughly uniform spatial loads, while the users
of the guaranteed service slices have non-uniform loads as given
by the SLAW model. Since user utilities are not defined below
the minimum rate requirements, the computation of the overall
utility only takes into account the users whose minimum rate
requirements are satisfied under all schemes.

The results show that GREET outperforms both the share- and
reservation-based approaches. While the share-based approach can
flexibly shift resources across base stations, leading to a good
overall utility, it is not able to sufficiently isolate slices from
one another, resulting in large outage probabilities, P (outage),
as the share of elastic service slices increase. By contrast, the
reservation-based approach is effective in keeping P (outage)
under control (albeit a bit above the threshold due to the approxi-
mation in the computation of svb ). However, since it relies on local
decisions, it cannot globally optimize allocations and is penalized
in terms of the overall utility. GREET achieves the best of both
worlds: it meets the service requirements, keeping P (outage) well
below the Pmax threshold, while achieving a utility that matches
that of the share-based approach. Moreover, it performs very close
to the social optimal, albeit with somewhat larger P (outage) due
to the fact that the social optimal imposes the minimum rate
requirements as constraints, forcing each slice to help the others
meeting their minimum rate requirements, while in GREET each
slice behaves ‘selfishly’.

C. Outage probability gains
One of the main observations of the experiment conducted

above is that GREET provides substantial gains in terms of outage
probability over the shared-based scheme. In order to obtain
additional insights on these gains, we analyze them for a variety
of scenarios comprising the following settings:
• Uniform: we have two guaranteed service slices and two

elastic service slices; the users’ mobility on all slices follow
the RWP model and have the same priority φu.

• Heterogeneous Aligned: the users of all slices are distributed
non-uniformly according to SLAW but they all follow the
same distribution (i.e., slices have the same hotspots).

• Heterogeneous Orthogonal: all slices are distributed accord-
ing to SLAW model but each slice follows a different
distribution (i.e., slices have different hotspots).
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Fig. 3: Gain in P (outage) over the share-based approach, measured as
the ratio of P (outage) under the share-based approach over that under
GREET.
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Fig. 4: Gain in P (outage) over the reservation-based approach, measured
as the ratio of P (outage) under the reservation-based approach over that
under GREET.

• Mixed: we have the same scenario as in Fig. 2, with the only
difference that for one of the guaranteed service slices we
have that all users are inelastic, i.e., the priority φu of all of
them is set to 0.

For the above network configurations, we vary the share sv of
elastic service slices while keeping the shares for the guaranteed
service slices fixed. Fig. 3 shows the ratio of the P (outage)
of the share-based approach over that of GREET as a function
of the overall share of elastic slices, i.e.,

∑
v∈Ve s

v , where Ve
is the set of elastic service slices. Results are given with 95%
confidence intervals but they are so small that can barely be seen.
We observe that GREET outperforms the share-based approach in
all cases, providing P (outage) values up to one order of magnitude
smaller. As expected, the gain in P (outage) grows as the the
share of elastic service slices increases; indeed, as the share-based
approach does not provide resource guarantees, it cannot control
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Fig. 5: Gain in utility over the reservation-based appraoch, measured as
the utility under GREET minus that under the reservation-based approach.

the outage probability of guaranteed service slices.
Fig. 4 further compares the performance of GREET against the

reservation-based approach in terms of P (outage), by showing the
ratio of the P (outage) of the reservation-based approach over that
of GREET. As expected, GREET offers a comparable performance
to that of the reservation-based approach, since both approaches
have been dimensioned to achieve a very small P (outage). In
particular, when overall elastic slice share is between 5 to 15,
the reservation-based approach beats GREET by a factor approxi-
mately 2, which translates to a margin in P (outage) of the order of
0.0001 in our simulation. Meanwhile, when the elastic slice share
ramps up to over 20, GREET starts to offer lower P (outage) than
the reservation-based approach in all 4 network configurations.
This is because the mismatch between RWP/SLAW model and
Poisson distribution assumed in dimensioning the share allocation
of the reservation-based approach becomes more significant. Note
that while the differences in relative terms are not necessarily
negligible, since in all cases the P (outage) values are very low,
the differences in absolute terms are indeed very small.

D. Utility gains

In order to gain additional insight on the utility gains over the
reservation-based scheme, in Fig. 5 we analyze them for the sce-
narios introduced above. Results show that GREET consistently
outperforms the reservation-based scheme across all approaches
and share configurations, achieving similar gains in terms of
overall utility in all cases. This confirms that, by providing the
ability to dynamically adjust the overall resource allocation to the
current user distribution across base stations, GREET can achieve
significant utility gains over the reservation-based approach.

Fig. 6 further compares the utility under GREET and that
under the share-based approach. We observe that the difference in
utilities are very small, which means that the share-based approach
offers a very similar performance to GREET in terms of utility.
A closer look reveals that, although the share-based approach can
adapt to dynamic user distribution very well, GREET still con-
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Fig. 6: Gain in utility over the share-based approach, measured as the
utility under GREET minus that under the share-based approach.

sistently achieves better utility under all network configurations
except for the Mixed scenario.

VI. CONCLUSIONS

GREET provides a flexible framework for managing hetero-
geneous performance requirements for network slices supporting
dynamic user populations on a shared infrastructure. It is a
practical approach that provides slices with sufficient resource
guarantees to meet their requirements, and at the same time
it allows them to unilaterally and dynamically customize their
allocations to their current users’ needs, thus achieving a good
tradeoff between isolation and overall network efficiency. We
view the GREET approach proposed here as a component of
the overall solution to network slicing. Such a solution should
include interfaces linking the resource allocation policies proposed
here to lower level resource schedulers, which may possibly be
opportunistic and delay-sensitive. Of particular interest will be
the interfaces geared at supporting ultra-high reliability and with
ultra-low latency services.

APPENDIX: PROOFS OF THE THEOREMS

Proof of Lemma 1

We first show that there exists a weight setting that meets the
minimum rate requirements of all users. As long as a fraction of
base station b equal to svb is sufficient to meet the user minimum
rate requirements, by applying an aggregate weight equal to svb
in the resource, the tenant is guaranteed to get this fraction of
resources. As this can be applied to all resources, the minimum
rate guarantees can be met for all the users of the tenant.

The optimization problem is given by the maximization of the
sum of user utilities. This is a concave function on the weights as
long as the individual user utilities are concave. As long as the
minimum rate requirements are satisfied, individual user utilities
are concave, as they are increasing concave function of a concave
function (see [43]). The set of feasible weights need to satisfy∑
u∈Uv wu ≤ sv and wu ≥ 0,∀u ∈ U , and need to be such that

the minimum rate requirements are satisfied. The latter imposes
wu/

∑
u∈Ub wu ≥ γu which yields wu − γu

∑
u∈Ub wu ≥ 0, ∀u.

As a result, the set of flexible weights is convex.

Proof of Theorem 1

We first prove the existence of a NE when wu ≥ δ. Let W be
the convex and compact set of feasible weights w satisfying (i)
wu ≥ δ, ∀u, and (ii)

∑
u∈Uv wu = sv,∀v ∈ V and let us consider

the mapping w → w̃ = Γ(w), where w̃v is the best response
of slice v to w−v . We next show that this mapping satisfies the
conditions of Kakutani’s theorem: i) Γ(w) is non-empty, ii) Γ(w)
is a convex-valued correspondence, and iii) Γ(w) has a closed
graph.

Conditions i) and ii) follow from Lemma 1. According to that
lemma, the best response of a slice to w−v is the allocation w̃v

corresponding to the solution to a convex optimization problem.
This implies that that w̃v exists and is a convex set, according to
the properties of convex optimization problems. Hence, w̃ exists
and is a convex set as well.

Condition iii) is shown by proving that w̃v is a continuous
function of w−v for all slices. Consider the set of base stations
for which: (i) lb ≤ 1, (ii) lb > 1 and fvb ≤ svb , and (iii) lb > 1 and
fvb > svb . As long as these sets do not change, w̃v can be expressed
as a continuously differentiable function of {w̃v,w−v}, and it
follows from the implicit function theorem that w̃v is a continuous
function of w−v . When some base station moves from one set to
the other, such base station satisfies the equations corresponding
to both cases, providing continuity over the transitions.

Since all the conditions of Kakutani’s theorem are satisfied, we
have that the mapping Γ has at least one fixed point, which implies
that at least one NE exists.

We now prove that wu ≥ δ does not hold, we may not have a
NE. Consider a scenario with two slices, 1 and 2, and two base
stations, a and b. Each slice has a user in each base station such
that γ1a = γ2a = 1/4 and γ1b = γ2b = 0. Furthermore, we have
φ1a = φ2a = 0, φ1b = φ2b = 1, s1

a = s2
a = 1, s1

b = s2
b = 0

and e1 = e2 = 0. In the best response, it holds w1a = w1b/3 and
w1b = w1a/3, which implies that there exists no NE.

Proof of Theorem 2

Let us consider a scenario with three slices, denoted by Slices 1,
2 and 3, and three base stations, denoted by Base Station (BS) a,
b, and c, respectively. Slice 1 has two users, one at BS a, another
at BS b, denoted by 1a and 1b, respectively. Slice 2 has two users,
one at BS b, another at BS c, denoted by 2b and 2c. Also, Slice
3 has two users at BS a and c, respectively, denoted by 3a and
3c. The share allocation is s1 = s2 = s3 = 3/4 + ε for some
δ < ε < 1/4, s1

a = s2
b = s3

c = 3/4, γ1a = γ2b = γ3c = 3/4,
γ1b = γ2c = γ3a = 0, φ1a = φ2b = φ3c = 0 and φ1b = φ2c =
φ3a = 1.

It can be seen that a NE in the above scenario is given by w1a =
w2b = w3c = 9/16 + 3ε/4 and w1b = w2c = w3a = 3/16 + ε/4.

Let us start with w3a > 1/4 and and apply the best response
starting with slice 1 followed by 2 and 3. Slice 1 takes w1a = 3/4
and w1b = ε. In turn, slice 2 selects w2b = 3ε and w2c = 3/4 −
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2ε > 1/4. This yields w3c = 3/4 and w3a = ε. We thus enter an
endless cycle where w1a, w2b and w3c alternate the values of 3/4
with 3ε.

Proof of Theorem 3
This theorem follows from Theorem 4 in [13]. In particular

when the network has only elastic users with logarithmic utili-
ties, the GREET slice-based resource allocation proposed in this
paper coincides with the resource allocation mechanism proposed
in [13]. Thus by Theorem 4 of [13] we have that

U(wso)− U(wne) ≤ log(e)
∑
v∈V

sv. (9)

Note that in [13] the weights are normalized so
∑
v∈V s

v = 1 but
such a normalization is not required under GREET and hence we
have the above result instead of U(wso) − U(wne) ≤ log(e) as
in [13].

Proof of Theorem 4
This theorem is similar to Theorem 5 in [13], except that we

need to address a setting with elastic, inelastic and rate adap-
tive users with guaranteed shares and a GREET-based resource
allocation. Under Assumption 2 and considering the excess rate
allocation to each user, i.e., those beyond the required guarantees,
we will show that our problem reduces to that in Theorem 5.

Let wne denote weight allocation at the NE and lneb and lne,vb

the overall load and the aggregate weight of slice v at base station
b. Consider a user u of slice v in base station b. The rate rneu
of user u at the NE under a GREET-based resource allocation
satisfies one of the two following cases.

First, if the load at base station b satisfies lneb ≤ 1 the rate of a
user u at this base station is given by

rneu =
wneu
lneb

cu.

Note from (3) that slice utility depends on rneu −γu. We define the
excess rate and the excess weight allocation to user u as qneu

.
=

rneu −γu and mne
u

.
= wneu −lneb γu/cu, respectively, where lneb γu/cu

is the weight that user u needs in order to meet its minimal rate
requirement γu when the load at b is lneb . With this notation, we
have that

qneu =
mne
u

lneb
cu.

Second, if the load at base station b satisfies lneb > 1, then the
guaranteed share svb is exactly what is needed to meet its users rate
requirements at b (given that v is perfectly dimensioned). Thus,
the excess rate of user u corresponds to the second term in (2),
i.e.,

qneu =
mne
u∑

v′∈Vb ∆ne,v′

b

(
1−

∑
v′∈Vb

min[sv
′

b , l
ne,v′

b ]

)
cu

where the excess weight of user u is now given by mne
u = wu −

γu/cu. If we define ĉu
.
= cu(1 −

∑
v′∈Vb min[sv

′

b , l
ne,v′

b ]) and
l̂neb

.
=
∑
v′∈Vb ∆ne,v′

b , the above can be rewritten as

qneu =
mne
u

l̂neb
ĉu

Putting together the above two cases, the excess weights for
users u on slice v are given by mne

u = wu−min[lneb γu/cu, γu/cu]
and satisfy: ∑

u∈Uv
mne
u = sv −

∑
u∈Uv

min

[
lneb γu
cu

,
γu
cu

]
.

Now recall that in this theorem we consider two slices v
and ṽ which have the same guaranteed and overall network
shares and which exchange the resource allocations they achieved
under the NE. We shall denote the rate and weight that a user
u on slice v would receive under such an exchange by r̃u
and w̃u, respectively. We shall only consider the cases where
w̃u ≥ min[lneb γu/cu, γu/cu], as otherwise slice v would not meet
its users’ rate requirements after the exchange with ṽ.

Note that the weight allocations after the exchange, w̃, see base
stations loads lne, so we can express the rates that the users of
slice v after the exchange with ṽ as follows. First, if lneb ≤ 1, we
have

q̃u =
m̃u

lneb
cu

where q̃u and m̃u are the excess rate and weight of user u after v
and ṽ exchange resource allocations. Second, when lneb > 1, we
have that

q̃u =
m̃u

l̂neb
ĉu,

where the m̃u for users on slice v must satisfy∑
u∈Uv

m̃u = sv −
∑
u∈Uv

min

[
lneb γu
cu

,
γu
cu

]
. (10)

Note that expressions for the excess rates and constraints on
the excess weights mne and m̃ are the same as if all the users
of slice v where elastic. Indeed, at a base station where when
lneb ≤ 1, the resource allocation criterion akin to one where all
users were elastic users. Similarly, when lneb > 1, we obtain the
same expressions by taking ĉu and l̂neb instead of cu and lneb . The
constraints on

∑
u∈Uv m

ne
u and

∑
u∈Uv m̃u are also equivalent to

the case with elastic users, substituting the overall share sv by the
following expression: sv −

∑
u∈Uv min[lbγu/cu, γu/cu].

Thus, by considering excess rates and weights, this makes the
problem equivalent to the one where all users are elastic. Further,
since slice v users are assumed to have logarithmic utilities, the
envy associated with slice v and ṽ resource exchange at the NE
can be established via the result in Theorem 5 of [13], which
proves this theorem.

Proof of Theorem 5

The utility of the network depends on the users’ rates ru.
Since there is a direct mapping between the fraction of resources
assigned to each user and its rate, we can express utility as a
function of the fractions fu ∀u, i.e., U(f). When there is only
elastic traffic in the network, the total utility is given by

U(f) =
∑
u∈U

sv(u)φu log(fucu)
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subject to ∑
u∈Ub

fu = 1 ∀b,

where v(u) is the slice user u belongs to.
The problem of maximizing the total utility subject to the above

constraint is solved by Lemma 5.1 of [44], leading to

fu =
sv(u)φu∑

u′∈Ub(u) s
v(u′)φu′

(11)

where b(u) is the base station user u is associated with.
The above optimization did not impose the constraint on the

weights of a slice,
∑
u∈Uv wu ≤ sv , and hence in principle rep-

resents an upper bound on the total utility of the socially optimal
allocation. However, the weights resulting from the optimization
satisfy this constraint, which means that the allocation of (11) is
the socially optimal allocation.

Note that the allocation of (11) coincides with the allocation
resulting from GREET. Indeed, when all users are elastic GREET
simply sets the share fractions proportionally to the φu values,
while forcing that all share fractions add up to the slice’s share sv .

Proof of Theorem 6

Let us consider the best response and the GREET response
of slice v when other slices and associated users choose a weight
allocation w−v leading to per-base station overall load vector l−v .
The best response to l−v is the weight allocation that maximizes
slice V ’s utility, and the GREET response is the result of applying
the GREET weight allocation algorithm.

When there is only elastic traffic in the network, the weight
allocation to a user u on slice v under the best response to l−v is
given by [13],

wbru (l−v) = sv
φu

l−v
b(u)

lbr,v
b(u)

(l−v)+l−v
b(u)∑

u′∈Uv φu′
l−v
b(u′)

lbr,v
b(u′)(l

−v)+l−v
b(u′)

where b(u) denotes the base station serving user u.
Under elastic traffic, the GREET weight allocation algorithm

simply sets the weights proportionally to the φu values, leading
to the following GREET response:

wgu(l−v) = sv
φu∑

u′∈Uv φu′

Noting that lbr,vb (l−v)/l−vb ≤ sv/l−vb < δ, we have that

wbru (l−v) = sv
φu

l−v
b(u)

lbr,v
b(u)

(l−v)+l−v
b(u)∑

u′∈Uv φu′
l−v
b(u′)

lbr,v
b(u′)(l

−v)+l−v
b(u′)

> sv
φu

l−v
b(u)

lbr,v
b(u)

(l−v)+l−v
b(u)∑

u′∈Uv φu′
> sv

φu∑
u′∈Uv φu′

(
1

1 + δ

)
= wgu(l−v)

(
1

1 + δ

)

and similarly we have that

wbru (l−v) = sv
φu

l−v
b(u)

lbr,v
b(u)

(l−v)+l−v
b(u)∑

u′∈Uv φu′
l−v
b(u′)

lbr,v
b(u′)(l

−v)+l−v
b(u′)

< sv
φu∑

u′∈Uv φu′
l−v
b(u′)

lbr,v
b(u′)(l

−v)+l−v
b(u′)

≤ sv φu∑
u′∈Uv φu′

(1 + δ) = wgu(l−v) (1 + δ)

To show that the GREET equilibrium corresponds to an ε-
equilibrium we proceed as follows. Let f br,vb (l−v) be the fraction
of resources obtained by slice v at base station b in the best
response to l−v , and let fg,vb (l−v) be the fraction of resources
for the GREET response.

It follows that

f br,vb (l−v) =
lbr,vb (l−v)

l−vb + lbr,vb (l−v)
.

Given that the above is a monotonic increasing function in
lbr,vb (l−v) and we have that lbr,vb (l−v) ≤ lg,vb (l−v)(1 + δ), it
follows that

f br,vb (l−v) ≤
lg,vb (l−v)(1 + δ)

l−vb + lg,vb (l−v)(1 + δ)

<
lg,vb (l−v)(1 + δ)

l−vb + lg,vb (l−v)
= (1 + δ)fg,vb (l−v).

Both in the best response and the GREET response, the fvb
resources at base station b are shared among the users of slice
v at that base station proportionally to their φu’s. Note that the
above holds for any setting of the other slices l−v .

In the argument below we will abuse notation to denote the
utility of slice v as a function of the weights of v and those of
the users of other slices as Uv(wv, l−v). Suppose that we have
reached a GREET equilibrium (GE), with weights wge, and that
slice v deviates to take the best response to the base station loads
uner GE, lge,−v . Then, we have the following:

Uv(wbr,v, lge,−v) =
∑
u∈Uv

φu log(f br,vu (lge,−v)cu)

<
∑
u∈Uv

φu log((1 + δ)fge,vu (lge,−v)cu)

= Uv(wge,v, lge,−v) + ε

where ε .
=
∑
u∈Uv φu log(1 + δ) = log(1 + δ).

Proof of Theorem 7
Let rge,v be the allocation to users of slice v under the GREET

equilibrium and r̃v be the utility maximizing rate allocation when
slice v and ṽ exchange the allocations at the GREET equilibrium.
To show envy-freeness we need to show that Uv(rge,v) ≥ Uv(r̃v),

Following the development of Theorem 4, Uv(rge) can be
expressed as follows:

Uv(rge) =
∑

u∈Uv,1
φu log

(
mge
u

lgeb
cu

)
+
∑

u∈Uv,2
φu log

(
mge
u

l̂geb
ĉu

)
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where mge
u = wgeu − min[lgeb γu/cu, γu/cu] is the excess weight

allocation to user u under GREET equilibrium, Uv,1 is the set of
users of slice v at base stations where lgeb ≤ 1 and Uv,2 is the
set of users of slice v at base stations for where lgeb > 1. The
quantities l̂geb , and ĉu are defined as in the proof of Theorem 4.

In order to characterize the user rate allocations that slice v
would obtain with slice ṽ’s resources, we shall find the split of
the aggregate weight of ṽ at each base station b to users u ∈ Uvb
of slice v that maximizes the utility of slice v. We let w̃v denote
this weight allocation, m̃v the excess weights and r̃v the resulting
rates.

Following the development of Theorem 4 and using the assump-
tion that slice v has logarithmic utilities, Uv(r̃) can be expressed
as follows:

Uv(r̃) =
∑

u∈Uv,1
φu log

(
m̃u

lgeb
cu

)
+
∑

u∈Uv,2
φu log

(
m̃u

l̂geb
ĉu

)
Let us consider the m̃u values for u ∈ Uv that maximize

Uv(r̃v)− Uv(rge,v) subject to the constraint given by (10). One
can simplify Uv(r̃v)− Uv(rge,v) as follows

Uv(r̃v)− Uv(rge,v) =

=
∑

u∈Uv,1
φu log

(m̃u

lgeb
cu
)

+
∑

u∈Uv,2
φu log

(m̃u

l̂geb
ĉu
)

−
∑

u∈Uv,1
φu log

(mge
u

lgeb
cu
)

+
∑

u∈Uv,2
φu log

(mge
u

l̂geb
ĉu
)

=
∑

u∈Uv,1
φu log

(
m̃ucu

)
+
∑

u∈Uv,2
φu log

(
m̃uĉu

)
−
∑

u∈Uv,1
φu log

(
mge
u cu

)
+
∑

u∈Uv,2
φu log

(
mge
u ĉu

)
Since the mge

u values are fixed, the above optimization is
equivalent to finding the m̃u values that maximize∑

u∈Uv,1
φu log

(
m̃ucu

)
+
∑

u∈Uv,2
φu log

(
m̃uĉu

)
subject to ∑

u∈Uv
m̃u = sv −

∑
u∈Uv

min

[
lgeb γu
cu

,
γu
cu

]
.

By solving the associated convex optimization problem, one
can show that the optimum m̃u values satisfy

m̃u =
φu∑

u′∈Uv φu′

(
sv −

∑
u∈Uv

min

(
lgeb γu
cu

,
γu
cu

))
.

This in turn coincides to with the GREET allocation at the
equilibrium, i.e., mge

u . Indeed, GREET first provides the share
fraction needed by all users to satisfy the rate requirements and
then distributes the remaining share proportional to φu, which is
exactly what the above expression does. This implies that for the
above m̃u values it holds Uv(r̃v)−Uv(rge,v) = 0 and hence slice
v has no envy for the resources allocated to slice ṽ at a GREET
equilibrium.

Proof of Lemma 2

By construction, the GREET weight allocation algorithms allo-
cates to each user the necessary weight to meet its minimum rate
requirement.

Proof of Theorem 8

We show convergence by showing that Algorithm 1 is a con-
traction mapping. Specifically, consider two sequences slice-based
weight allocations denoted (l(n) : n ∈ N) and (̃l(n) : n ∈ N),
where l(n) := (lvb (n) : v ∈ V, b ∈ B) and l̃(n) := (l̃vb (n) :
v ∈ V, b ∈ B), corresponding to two initial weight allocations
denoted denoted l(0), l̃(0) where at each step each slice performs
its GREET weight allocation in response to that of the others
in the previous step. We will establish that regardless the initial
conditions, the following holds:

max
v∈V

∑
b∈B

|lvb (n)− l̃vb (n)| ≤ ξmax
v∈V

∑
b∈B

|lvb (n− 1)− l̃vb (n− 1)|

which suffices to establish convergence as long as ξ < 1.
We let l(n) := (lvb (n) : v ∈ V, b ∈ B) denote the minimal slice

weight allocations required by slice v at base station b based on
the weight allocations in the previous round, i.e., l(n− 1). Under
Assumption 1, only Lines 4 and 5 in Algorithm 1 will be in effect,
so

lvb (n) =


fv
b

1−fv
b

l−vb (n− 1), l−vb (n− 1) + fv
b
≤ 1,

fv
b
, l−vb (n− 1) + fv

b
> 1.

(12)

Again under Assumption 1, the weight allocations for each slice
and base station in response to the others l(n) is given by Line
21 in Algorithm 1, i.e., lvb (n) = lvb (n) + φvb

(
sv −

∑
b′∈B l

v
b′(n)

)
where φvb =

∑
u∈Uvb

φu. Note that two particular cases are as
follows: (i) if a slice v has solely inelastic users, we have φvb = 0
and thus lvb (n) = lvb (n); and (ii) if a slice has solely elastic users,
then lvb′(n) = 0 for all b′ ∈ B and lvb (n) = φvbs

v . We define l̃(n)
in the same way as l(n), based on l̃(n).

Next consider the difference between the two weight allocation
sequences. Using the Triangle inequality, we obtain

|lvb (n)− l̃vb (n)| ≤ |lvb (n)− l̃
v

b (n)|+ φbv
∑
b′∈B

|lvb′(n)− l̃
v

b′(n)|.

Noting that (12) is a concave function with slope no greater
than

fv
b

1−fv
b

and again using the Triangle inequality, we have that

|lvb (n)− l̃
v

b (n)| ≤
fv
b

1− fv
b

|l−vb (n− 1)− l̃−vb (n− 1)|

≤
fv
b

1− fv
b

∑
v′ 6=v

|lv
′

b (n− 1)− l̃v
′

b (n− 1)|.

Thus, after one round of share updates, we have the following
bound:

|lvb (n)− l̃vb (n)| ≤
fv
b

1− fv
b

∑
v′ 6=v

∣∣∣lv′b (n− 1)− l̃v
′

b (n− 1)
∣∣∣



14

+φvb
∑
b′∈B

fv
b′

1− fv
b′

∑
v′ 6=v

∣∣∣lv′b′ (n− 1)− l̃v
′

b′ (n− 1)
∣∣∣ . (13)

This in turn leads to the following bound on l(n)− l̃(n):

max
v∈V

∑
b∈B

|lvb (n)− l̃vb (n)|

≤ max
v∈V

∑
b∈B

 fv
b

1− fv
b

∑
v′ 6=v

|lv
′

b (n− 1)− l̃v
′

b (n− 1)|

+ φvb
∑
b′∈B

fv
b′

1− fv
b′

∑
v′ 6=v

|lv
′

b′ (n− 1)− l̃v
′

b′ (n− 1)|


≤ 2(|V| − 1)fmax

1− fmax
max
v∈V

∑
b∈B

|lvb (n− 1)− l̃vb (n− 1)|,

where we have used the bound fmax and that
∑
b∈B φ

v
b = 1 unless

slice v is inelastic in which case it equals 0. If (7) holds, we have
that the weight allocation updates get closer. It follows by Propo-
sition 1.1 in Chapter 3 of [36] that under simultaneous updates
one has geometric convergence to the fixed point. Similarly, under
round-robin updates, geometric convergence follows as a result of
Proposition 1.4 in Chapter 3 of [36].

Proof of Theorem 9

This follows directly from the proof of Theorem 8 and Propo-
sition 2.1 in Chapter 6 of [36].
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