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Abstract—We determine the asymptotic scaling for the per user
throughput in a large hybrid ad hoc network, i.e., a network with
both ad hoc nodes, which communicate with each other via shared
wireless links of capacity bits/s, and infrastructure nodes
which in addition are interconnected with each other via high
capacity links. Specifically, we consider a network model where
ad hoc nodes are randomly spatially distributed and choose to
communicate with a random destination. We identify three scaling
regimes, depending on the growth of the number of infrastructure
nodes, relative to the number of ad hoc nodes , and show the
asymptotic scaling for the per user throughput as becomes large.
We show that when log the per user throughput is
of order log and could be realized by allowing only ad
hoc communications, i.e., not deploying the infrastructure nodes
at all. Whenever log log , the order for
the per user throughput is and, thus, the total additional
bandwidth provided by infrastructure nodes is effectively
shared among ad hoc nodes. Finally, whenever log ,
the order of the per user throughput is only log , suggesting
that further investments in infrastructure nodes will not lead
to improvement in throughput. The results are shown through
an upper bound which is independent of the routing strategy,
and by constructing scenarios showing that the upper bound is
asymptotically tight.

Index Terms—Ad hoc wireless networks, capacity scaling, hy-
brid wireless networks, throughput.

I. INTRODUCTION

I N THIS paper, we investigate the per user throughput that
can be achieved in a hybrid ad hoc wireless network. The

network consists of ad hoc nodes, that can relay information
among each other via wireless links, and of infrastructure nodes,
that can communicate with ad hoc nodes in a wireless manner
but are also interconnected via independent high capacity wired
or wireless links. We shall refer to the latter as infrastructure
nodes or base stations interchangeably. There has been exten-
sive interest in studying purely ad hoc networks, for applica-
tions involving networking of military, emergency services and,
more recently, to enable the inexpensive deployment of large
numbers of networked sensors in the field [1]–[4]. Since wire-
less units are typically energy constrained and ad hoc networks
may have limited communication capacity, the addition of infra-
structure or base station nodes is a natural approach to reducing
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the energy and traffic burden on ad hoc nodes, while possibly in-
creasing the system throughput. For example, one can envisage
a hybrid ad hoc wireless network as a means to enable sharing
of information between possibly mobile sensor nodes or gath-
ering of sensed information toward query points on a wireline
network. In this case, infrastructure nodes are leveraged by ad
hoc nodes to reduce their energy burden and increase capacity.
Alternatively, one can view hybrid ad hoc network model as a
means to extend the communication coverage of wireless cel-
lular infrastructure. In this case, base stations would leverage
spatially distributed ad hoc nodes that are willing to relay infor-
mation to increase coverage and, possibly, capacity. Note that
by contrast with cellular systems in a hybrid ad hoc network
not all traffic needs to be mediated through a base station, i.e.,
wireless nodes that wish to communicate with each other might
do so directly. Thus, there are two “types” of traffic in such net-
works: that which is eventually mediated through the infrastruc-
ture nodes and that which is relayed in a purely ad hoc manner.
In this paper, we will study the per user throughput scaling laws
as the numbers of ad hoc and infrastructure nodes in a hybrid ad
hoc network grow.

Related work: Let us briefly consider what is known for
purely ad hoc networks [5]–[14]. The first key result is that
under a reasonable interference model the aggregate transport
capacity of an arbitrary network scales as bits-m/s
in the number of nodes each placed in a region with area ,
where each has capacity bits/s [6]. An arbitrary network
is one in which the placement of ad hoc nodes and traffic
loads can be selected so as to maximize the capacity. The
insight offered in [6] is that system throughput is maximized
when one minimizes the transmission power of each node
resulting in a quadratic reduction in the interference region of a
transmission.1 Minimizing the interference region permits one
to schedule as many noninterfering concurrent transmissions
as possible resulting in maximized transport capacity. The
information theoretic results in [9] suggest that this same basic
characteristic capacity scaling will continue to apply under
more general communication models with more powerful
interference cancellation techniques. In addition to the arbitrary
network model, Gupta and Kumar [6] studies a random network
model where nodes are placed at random within a given region,
and choose to communicate with random destinations. In this
context, they study the asymptotic scaling for the minimum
per user throughput, and show it to be bits/s.
This result provides a better sense of the performance seen
by individual nodes under a random traffic pattern exhibiting

1Loosely, the interference region of a transmission is the area around it,
wherein it would interfere with other nodes’ receptions.
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no spatial locality. Several follow-up papers have shown the
effect of traffic locality [7], the impact of directional antennas
on capacity [12], and how exploiting mobility might increase
the per user throughput with varying penalties in delay [10],
[13]–[15].

More recently, Liu et al. [11] have studied the aggregate
throughput capacity for a hybrid network model supporting
uniformly distributed traffic loads. The model assumes that
the base stations are placed on a regular grid, but the ad hoc
nodes are randomly distributed within the area of the network.
Since the goal of [11] is to bound the aggregate throughput, in
their analysis, certain users’ traffic is shut off, to favor others,
e.g., those with “local” traffic. Several additional interesting
questions follow from this work. First, their analysis is based on
partitioning bandwidth statically and in a spatially homogenous
manner for purposes of supporting ad hoc and infrastructure
communications. Thus, one might ask whether a spatially
dependent partitioning might not result in a higher aggregate
or per user throughput. Indeed, since infrastructure nodes are
wired together, they will be very desirable as a shortcut for
traffic that needs to traverse a long distance. Thus, one would
expect infrastructure nodes to become traffic hotspots. One
might then question whether allowing a larger portion of band-
width for communication with infrastructure nodes, in regions
close to such nodes, while increasing the bandwidth allocated
for ad hoc communications far away from these nodes would
not improve the system capacity. In [11], the capacities of two
natural routing strategies between ad hoc and infrastructure
nodes are studied. Thus, a second question arises as to whether
a better routing strategy, e.g., one that avoids hot spots, for
traffic to be carried in the ad hoc mode, might not be able to
achieve a better asymptotic capacity scaling.

In contrast to [11], the work of [16] considers a hybrid net-
work model where the positions of both base stations and ad hoc
nodes are randomly selected. The authors determine the asymp-
totic scaling of capacity for such a network when the number of
base stations scales linearly with the number of ad hoc nodes.
No other scaling regimes are considered.

Contributions and organization: In this paper, we resolve
some of the issues that are not treated in [11] and [16] by
proving an upper bound scaling for the per user throughput
in a random hybrid ad hoc network that is independent of the
routing strategy. This bound is shown for networks in which
infrastructure nodes are placed in any deterministic manner,
including the placement on the regular grid described in [11],
but ad hoc nodes are placed at random within a given region.
In contrast to [11] where the range of all nodes is the same
for all nodes, we allow each infrastructure node to adjust the
range for each transmission. Therefore, the model is quite
general in that it allows one to operate infrastructure nodes in
an optimal manner. In contrast to [16], we identify three scaling
regimes for the growth of the number of infrastructure nodes,

with the number of ad hoc nodes . In each of these regimes,
we demonstrate that the upper bound is tight by specifying a
particular placement for infrastructure nodes accompanied with
a scheduling and routing strategy.

Specifically, we show that whenever , the
per user throughput is of order . This is the same

as that shown for pure ad hoc networks by [6], whence, in this
regime infrastructure, nodes do not enhance the capacity scaling
for the hybrid network. Whenever
the order of the per user throughput is . Thus, in this
case, the additional aggregate bandwidth brought in by
infrastructure nodes appears to be shared by ad hoc nodes. In
fact, we demonstrate that in this regime, this scaling is achieved
by letting ad hoc nodes communicate directly via infrastructure
nodes, i.e., as would be the case in a cellular system. Thus, more
advanced routing and scheduling schemes, e.g., proposed in
[11], might achieve better leading factors, but would not change
the basic asymptotic capacity scaling for such systems. Finally,
whenever the achievable per user throughput is of
order . This implies that further investments in the in-
frastructure do not lead to improvement in the scaling of per user
throughput. In some sense, this is a result of our random uni-
form traffic model we are using rather than an intrinsic property
of the network itself. However, it is interesting to note that due
to the limited local communication capacity of ad hoc and hy-
brid networks fluctuations in traffic will lead to significant per-
formance penalties. By contrast, a wireline network with shared
but large links can often absorb such fluctuations through statis-
tical multiplexing.

The organization of the paper is as follows. In Section II, we
describe our network and traffic models, and define the feasible
throughput for a random hybrid network. In Section III, we show
an upper bound on the scaling of per user throughput which is
independent of routing. Then, in Section IV, we demonstrate
that upper bounds are in fact tight. Section V contains some
concluding remarks.

II. HYBRID AD HOC NETWORKS: MODEL AND NOTATION

Model for a random hybrid network: We consider a network
with ad hoc nodes, that are randomly, i.e., uniformly, placed
at locations within a disc of unit area . These
nodes are capable of transmitting and receiving bits/s via a
wireless channel. In addition, there are arbitrarily placed2

infrastructure nodes (or base stations), which are interconnected
through wired or alternative wireless links which can support as
much traffic as necessary. For simplicity, we shall assume base
stations have a capacity of bits/s to communicate with ad
hoc nodes. In contrast to ad hoc nodes, the base stations do not
generate any traffic themselves, i.e., they serve purely as infra-
structure which relays traffic on behalf of nodes in the ad hoc
network. We will assume that the channel capacity can be split
into an arbitrary number of orthogonal (noninterfering) sub-
channels each with bits/s such that . In our
model, each ad hoc or infrastructure node can then send simul-
taneously using any number of the subchannels, to any number
of receivers. However, we assume, that an ad hoc node can re-
ceive from only a single sender and cannot send and receive in
the same instant. We do not impose the latter constraints on the
infrastructure nodes, i.e., they are free to send and receive con-
currently on orthogonal channels. In the sequel, we will consider
a sequence of such networks where and grows

2For example, placed in any prespecified, but deterministic way which does
not depend on the realization of ad hoc nodes.
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according to various scalings—in most cases, we write
simply as . We will limit the cases of interest to that where

i.e., there are fewer infrastructure nodes than ad hoc
nodes.

Uniform traffic model: We assume that each ad hoc node, say
the th one at location selects a destination for its traffic as
follows. It will choose a random location on the disk and will
then choose the node among which is closest to .
We shall denote the location of the th node’s receiver by , and
let denote the length of the segment between and . For
this traffic model, it can be shown that , will be
independent and identically distributed [6]. This traffic model
exhibits no locality.

Interference model: We will adopt the protocol model for in-
terference among nodes sharing a wireless channel, see second
version in [17]. In particular, consider an ad hoc or infrastruc-
ture node located at transmitting toward another (ad hoc or
infrastructure) node located at along the subchannel and
using the range for this transmission. The transmission will
be successful at if

(1)

where is the location of any other node which is concurrently
transmitting over the subchannel , and is some param-
eter. Note, that the first condition in (1) requires that the receiver
is within the range of the sender, and the second—ensures that
the interference caused by any other concurrent transmission in
the system is limited at the receiver . We will further restrict
the protocol model to the case where ad hoc nodes employ a
common range but allow infrastructure nodes that might not be
power constrained to adjust their transmission range arbitrarily.

Per user throughput capacity: Following [11], we will extend
the definition of [6] for the feasible per user throughput to the
case of a random hybrid network with arbitrarily placed infra-
structure nodes.

Definition 1: A throughput of per node/user is
feasible if there is a placement rule for the base stations, and
a spatial and temporal scheme for scheduling transmissions
allowing buffering at intermediate nodes (if necessary), such
that each node can send bits/s on average to its
chosen destination. That is, there is , such that in
every interval every node can send
bits to its corresponding destination node.

Now, as in [6], we can define the asymptotic scaling for the
per user throughput as follows.

Definition 2: The per user throughput of a random
hybrid network is of order3 bits/s if there exist de-
terministic constants and such that

is feasible

is feasible

These two conditions can be interpreted as asymptotic lower and
upper bounds over random realizations for the locations of ad
hoc nodes and destinations of the traffic.

3We will use the asymptotic notation as discussed in [18], i.e., O(g(n)),

(g(n)), �(g(n)), and o(g(n)) and !(g(n)).

III. UPPER BOUND ON PER USER THROUGHPUT

Our upper bound on per user throughput for random hybrid
networks will draw on various results in previous work. So, we
shall start by providing a summary of several key results we will
use in this paper.

A. Background Results

It can be shown that the Protocol model for interference (1)
requires that whenever two simultaneous transmissions occur on
the same subchannel and are successfully recovered, the discs of
certain radii centered in the receivers must be disjoint [6]. Thus,
each successful transmission will necessarily occupy a portion
of a total area of the disc placing a constraint on the number of
successful receptions that can occur on a given subchannel. The
first result below is an adaptation of [6, Lemma 5.4], and pro-
vides a bound on the number of simultaneous successful trans-
missions that can occur in a pure ad hoc network.

Lemma 1: Consider a network with ad hoc nodes arbi-
trarily placed within the disc of unit area and let all the nodes
use the a common transmission range for their transmissions.
Under the Protocol Model (1) the number of successful simulta-
neous transmissions that can occur on a given subchannel
is upper bounded by

where is some constant, independent of and .
Lemma 1 also shows that the number of simultaneous trans-

missions in a pure ad hoc network will be maximized, whenever
the common transmission range is made as small as possible.
There is, however, a limit on how small this range can be while
still keeping network connectivity. This limit is identified by the
following theorem, proven in [19].

Theorem 1: Let nodes be randomly placed on the disc of
unit area according to a uniform distribution. Assume that two
nodes are connected if the distance between them is smaller than
the “connectivity range” , where

(2)

Then, all nodes are connected in a single cluster with probability
1 as if and only if .

The next result, which we prove in Appendix I, establishes
a lower bound on the minimum range which would allow con-
nectivity in a random hybrid network where the infrastructure
nodes are placed arbitrarily.

Proposition 1: Let nodes be randomly placed on the
disc of unit area according to a uniform distribution and let

additional nodes be placed arbitrarily. Let be a
“connectivity range,” i.e. the distance within which two nodes
are assumed to be connected. Assume that is chosen
so that all nodes form a single connected cluster with
probability 1 as . Then, satisfies

if

if
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Note that Proposition 1 establishes a lower bound on the re-
quired connectivity range under different joint scalings for the
number of ad hoc and infrastructure nodes.

B. Derivation of the Upper Bound

We will define three scaling regimes for the number of infra-
structure and ad hoc nodes

i

ii and

iii (3)

Note that Regime i) corresponds to the case where
, Regime ii)—to the case where

, and Regime iii)—to the case where
. Our upper bounds on the asymptotic

scaling for the per user throughput in these three regimes are
formally stated in the following theorem.

Theorem 2: The throughput per user in a random
hybrid network under the protocol model is such that for some

independent of and , we have

is feasible

where

in Regime i)

in Regime ii)

in Regime iii)

We prove the theorem via two propositions as follows.
Proposition 2: The throughput per user, for a

random hybrid network under the Protocol model satisfies

if

if
(4)

Proof: For simplicity, we assume transmissions are
slotted, with slots of length s. By definition a throughput
is feasible if over a large period of time, say , each node
would be able to send bits over transmission slots.
Note that each node may send some (or all) of its bits using
base station infrastructure and must send the remainder in ad
hoc mode via multihop relaying. The idea of our proof is to
bound the ad hoc traffic burden on the network that nodes
would produce.

We will allow nodes to send over noninterfering subchannels
each with bandwidth such that . Since a
hybrid network consists of both nodes and base stations with
the same capability sharing these subchannels, the maximum
bits per second on the uplink to a particular base station is at
most bits/s. Since there are such base stations, the total
uplink flow in a given slot is at most bits.

Suppose that bits transmitted by node are re-
layed on uplinks to base stations during time slot . Let de-
note the time average of the fractional uplink base station burden

associated with node , i.e.,

This quantity must satisfy the following constraints:

(5)

The first constraint is due to flow conservation, i.e., the aggre-
gate uplink burden on base stations can not exceed 1/2 since
these same bits will need to be sent by base stations on down-
links. The second inequality must hold true for all nodes since
each node’s feasible throughput will at least exceed its time
average uplink burden on the base stations.

The total number of bits transmitted in “ad hoc” manner
from node to its destination within the time interval is,
thus, at least

(6)

Note, by bits sent in “ad hoc” manner we mean those which are
relayed from the source to the destination without the help of a
base station. Let be an integer indexing the the bit sent in
ad hoc manner by node and let denote the total number
of hops this bit will take to reach its destination. By summing
over all such bits that are sent over subchannel during time slot
, we obtain

performed th hop

over subch at time slot

where we denote by the number of simultaneous transmis-
sions that can occur in a hybrid network with the base stations
not participating in the relaying. Note that in this case is the
same as the number of simultaneous transmissions for a purely
ad hoc network consisting of nodes randomly and uniformly
placed within the disc . Using Lemma 1 and summing over
all the subchannels and time slots one obtains

(7)

where is the common range for all ad hoc nodes’ transmis-
sions. We define now the following quantity:

which corresponds to an estimate for the length of the path tra-
versed by bit to reach its destination, i.e., number of hops
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times radius of each ad hoc transmission. We also define the fol-
lowing per node averages:

if

if

i.e., the average distance (measured along the path) traversed by
bits carried in ad hoc manner on behalf of node during the time
interval . Thus, from (7), we have

Note, furthermore, that if then is lower bounded by
, that is the distance, measured along the straight line from the

node to its intended receiver. So, it follows that:

Next, using our lower bound (6) for , we obtain

so

(8)

By the Strong Law of Large Numbers, we have that

almost surely

where we took into account the fact that the sequence
are realizations of a sequence of independent identically dis-
tributed (i.i.d.) random variables which share the distribution of

. Since , we have that , which
combined with (8) and the constraints in (5) yields the following
upper bound for the feasible rate:

under constraints (9)

This optimization corresponds to a Knapsack problem with
linear constraints, whence it is optimal to give maximal values

’s to nodes associated with the largest weights . Since
and , it follows that only the

largest ’s out of can be accommodated—we
have relaxed the constraints by taking the ceiling function.
Let denote a permutation of the node indices such that

. Then, the upper bound will be
maximized when are set as follows:

for
otherwise

Noting that for each , , the upper bound for the per
user throughput reads

(10)

for two constants , . It is clear then that must be
chosen as small as possible, while ensuring that the nodes
and base stations will still be asymptotically connected. In-
corporating the lower bounds for identified by Proposition 1
into inequality (10), we obtain the asymptotic upper bounds on
per user throughput stated in the proposition.

The next proposition establishes an upper bound on the per
user throughput in a random hybrid network irrespective of the
number of infrastructure nodes in the network.

Proposition 3: The per user throughput, , for a
random hybrid network under the protocol model satisfies, for
any

(11)

Proof: We will show that with some positive probability,
that does not diminish as , there exists at least one node
which is selected as an intended receiver by senders.
The result will then follow by noting that the receiving capacity
of each node is limited by bits/s.

We first note that, by Theorem 1, the geometric graph of
nodes placed randomly within a unit area disc is asymptoti-

cally disconnected, if the connectivity radius is chosen as
to satisfy

where . Furthermore, by the proof of [19, Th. 2.1], the
probability of having at least one isolated node in
is lower bounded by some positive constant for all sufficiently
large . Thus, for all sufficiently large , with some positive
probability, there exists an ad hoc node , which has no
ad hoc neighbors within a distance .

Second, we show that with probability that does not diminish
as , the node is chosen to be an intended receiver for
as many as senders, (for some independent of ).
Recall that for each node , its intended receiver is the closest
node to a randomly a uniformly distributed location on the
disc. The node will for sure be chosen as intended receiver
for the th ad hoc node if falls within the distance
from . The ensemble average of nodes having as
their intended receiver is, thus

(12)

Next, using the Chernoff bound, we show that the deviations
from this average are negligible. Indeed, if is the actual
number of nodes having as their receiver, we have that for
any
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where we have used the inequality (12). Thus, we have that the
actual number of nodes sending to the node with probability
tending to 1 as is lower bounded by

(13)

with some independent of and .
Finally, we note that the receiving throughput capacity of

each node is bounded by bits/s whether it receives from a
base station or from ad hoc nodes. Thus, since each node sends

bits/s, the throughput must satisfy the following inequality:

Combined with (13), the previous inequality yields

and the statement of the proposition follows.
Theorem 2 combines the various scaling regimes for and
considered in Propositions 2 and 3, noting which gives the

tightest upper bound.

IV. LOWER BOUNDS ON THROUGHPUT CAPACITY

In this section, we will show the upper bounds obtained in
Theorem 2 are tight in the sense of Definition 1. We will con-
sider separately each of the three scaling regimes defined by (3).

A. Regime i)

The following corollary is an immediate consequence of
Proposition 2.

Corollary 3: If , the order given in
Theorem 2 is feasible, i.e., the throughput of a random hybrid
network is of order .

Proof: The per user throughput of a random ad hoc net-
work is of order in [6]. This matches the upper
bound in Theorem 2 for a random hybrid network, whenever

. Hence, this per user throughput is achiev-
able, and can be achieved through ad hoc communications
alone, i.e. there is no need to deploy the infrastructure nodes.

B. Regime ii)

For the regime where ,
we shall describe a placement of base stations and a routing
and scheduling strategy demonstrating that the order of the
throughput specified by Theorem is feasible.

1) Placement of Base Stations, Routing, and Sched-
uling: Next, we will construct a Voronoi tessellation of
the disc which meets certain regularity properties. The
tessellation will be associated with the placement of the infra-
structure nodes and be used to partition the disc into regions
of operation for each base station—we refer to it as the “infra-
structure” tessellation. Subsequently, we will show that there
exists a scheduling strategy where each node needs only to
communicate exclusively with its closest base station and can
realize its desired asymptotic throughput.

Fig. 1. Tessellation B induced by the placement of the base stations on the
disc.

Placement of base stations and the “infrastructure” tessella-
tion: We shall split the plane into a hexagonal tessellation
with the side of a hexagon equal to . The following fact
is proven in Appendix II.

Fact 1: The number of the hexagons in , which are
fully contained in the unit area disc , satisfies and

.
Suppose we place out of base stations into the centers

of the hexagons that are fully contained inside the disc and let
denote the Voronoi tessellation of induced by these base

stations. The remaining base stations are left out of our
construction (equivalently, those base stations can be arbitrary
placed anywhere and shut down). As shown on Fig. 1, the cells
of the tessellation coincide with the hexagons of , except
for those close to the boundary. Based on this construction, one
can show the following regularity property, see Appendix II.

Lemma 2: For a sufficiently large , each cell of the tes-
sellation contains a disc of radius and is contained
in a disc of radius .

Routing: Suppose each node directly sends to its closest base
station via a wireless channel for routing its packets on the
uplink or receiving packets on the downlink. We assign equal
ranges

(14)

for all nodes transmitting on the uplink and let the base sta-
tions use the same range for downlink communications. The fol-
lowing is a simple consequence of Lemma 2:

Fact 2: The range is sufficient to allow each node
to communicate with its closest base station directly, i.e., in a
single hop.

Interference: We now consider interference among nodes
transmitting simultaneously. Analogously to [6], we call the
“infrastructure” cells , interfering neighbors if there
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are two points and , such that the distance along
the straight line between them, satisfies

The following lemma is an adaptation of [6, Lemma 4.3] and is
proven in Appendix IV.

Lemma 3: Let denote the number of interfering cells
for a cell , then

(15)

where depend only on . Based on a graph coloring theorem
on can show the following corollary, see [6] for details.

Corollary 4: Any cell can be guaranteed a fixed
fraction of total time to transmit without interfer-
ence. This fraction depends only on .

Scheduling policy: We split the unit of time into slots of length
units and assign one slot for each of the interfering

cells . We further split each slot into “downlink” and
“uplink” phase of equal duration so that each node within a par-
ticular cell could be transmitting toward the base sta-
tion in during the “uplink” phase and be receiving from the
base station during the “downlink” phase. In addition, within
both the “uplink” and “downlink” phases a base station services
the nodes within its Voronoi cell in a round robin fashion.

2) Remarks on the Proposed Construction: Our construc-
tion for tessellation is similar to that used in [6] and will allow
us to argue that the empirical frequencies of some events for suf-
ficiently large numbers and with high probability tend to
be 0. For example, we will be interested in the event for which a
particular cell of the “infrastructure” tessellation con-
tains a number of nodes exceeding some prespecified value. Al-
though, by construction, on average the number of nodes within
such a cell is , we still need to ensure that the
probability of a “large deviation” from the average is negligible
for large enough , .

For the set of discs on the plane, the uniform convergence of
empirical frequencies of events to the corresponding probabili-
ties has been established in [6]. Then, this convergence can be
used to argue the same for the cells with the discs-inclusion-con-
tainment properties given in Lemma 2. The next paragraph sum-
marizes the results which we will be using.

Uniform convergence of empirical frequencies to the respec-
tive probabilities for a set of discs on the plane: In what follows,
we let denote the collection of all discs of radius on the
plane. Then, the following result is proven in [6].

Proposition 4: Let the points , be i.i.d.
random points on the plane. Define the empirical frequency that
a point falls into a disc

and let . Then

(16)

whenever

This proposition follows from the uniform convergence in the
weak law of large numbers due to Vapnik and Chervonenkis,
and we refer to [6] for the proofs and references therein.

The number of ad hoc nodes contained within an infrastruc-
ture cell : Based on Proposition 4, one can show the
following lemma.

Lemma 4: Let be the number of ad hoc senders
falling within an infrastructure cell . Then, in
Regime ii), for some , which is independent of and ,
we have that as

Proof: By Lemma 2, each cell is contained in a
disc of radius . Denote the collec-
tion of discs on the plane having such a radius. Then, by Propo-
sition 4, we obtain

(17)
whenever

(18)

If we let , one can show that (18)
holds. Then, from (17)

(19)

with probability exceeding uniformly for all discs
. The result follows now from the fact that

and the fact that is the leading factor
in (19).

The number of nodes, choosing intended receivers within an
infrastructure cell : Based on Proposition 4, one can
show the following bound on the number of receivers in a given
cell.

Lemma 5: In Regime ii), the number of ad hoc nodes
that choose their intended receivers in a particular infrastructure
cell is upper bounded for some , independent of and

, as

as .
Proof: By definition of

(20)

where is the node closest to the uniformly and randomly
chosen point on that the node located at chooses to
communicate with. Note, that by Theorem 1, with probability
achieving 1 as , each node is at most away
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from a closest to it node, whenever obeys . There-
fore, the location must be at most away from .
This yields, that falls within the set , which is the
set formed by taking the union of and all the discs of radius

centered at the boundary of . Therefore,
by (20) it follows that:

where by we denoted the disc of radius
containing the cell . Applying Proposition 4 with

to the i.i.d. and the
disc , we obtain

(21)

uniformly for all and with probability approaching 1
as . The result now follows by noting that is the
leading factor in (21), whenever .

3) The Capacity of the Scheme: The aggregate bandwidth,
available per cell of a base station, by the scheduling policy is

. Since, by Lemma 4, this bandwidth is shared
by at most nodes for sufficiently large , each node is
guaranteed a rate of

(22)

via the uplink transmissions.
Now, by Lemma 5, the number of nodes, sending to any node

within a base station cell is uniformly bounded as

and, hence, the aggregate traffic that a base station has to deliver
to the nodes in its cell does not exceed

(23)

This shows, that the aggregate downlink traffic at each base sta-
tion will be accommodated with probability approaching 1 as

if

is feasible. This, combined with (22) yields for the achievable
throughput

Thus, we have shown the following result.
Proposition 5: The throughput capacity of a random hybrid

network under the protocol model in Regime ii) is of order
.

C. Regime iii)

Note that by Proposition 5, whenever
the throughput of a random hybrid network is of order

. In the same time, by Proposition 3,
is the highest possible throughput that could be achieved with
any number of arbitrary placed base stations. We, thus conclude,
that the order of the throughput in this regime is
and it could be achieved by deploying only out of
total base stations. Thus, we have the following.

Proposition 6: The per user throughput of a random hybrid
network under the protocol model in Regime iii) is of order

.

V. CONCLUDING REMARKS

In this paper, we have investigated the asymptotic per user
throughput for a random hybrid network with arbitrarily placed
base stations and demonstrated explicit schemes achieving these
asymptotic scalings. Our results might be viewed as pessimistic,
as they confirm the conclusion of [11] (for two particular routing
strategies) that to obtain a significant improvement in capacity
for such networks infrastructure investments will need to be
high. However, taking another point of view the results are good
news since they suggest that when the number of infrastructure
nodes exceeds , ad hoc nodes will be able to effec-
tively share the spatially distributed infrastructure. In practice,
the first step toward increasing capacity in wireless networks is
to increase the capacity of infrastructure nodes. Thus, if their
number exceeds , we might expect ad hoc nodes that
are part of a hybrid network to directly see the benefits of such
investments in infrastructure. Additionally, ad hoc relaying of
information in a hybrid network can be viewed as an effective
way to leverage spatially distributed infrastructure and possibly
mobile ad hoc nodes to extend the coverage for power-con-
strained infrastructure nodes. Thus, the cost-benefit analysis of
a hybrid network should not be considered simply from the per-
spective of throughput, but also in terms of the infrastructure
cost to service a large, possibly spatially distributed customer
base.

Another concern for ad hoc network applications is energy
consumption. One might expect the addition of infrastructure
nodes to significantly reduce the average energy requirements
for transmission and relaying among ad hoc nodes by providing
a more efficient communication backbone for traffic that needs
to go a long way. In particular, for a large-scale sensor network
based on ad hoc wireless nodes and operating under fairly tight
energy constraints, the investment in extra infrastructure nodes
can pay off handsomely by allowing battery operated sensors
to operate over a longer period of time. An unfortunate issue
in this context will be the traffic hot spots and, thus, increased
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energy consumption, that ad hoc nodes in close proximity to
infrastructure nodes are likely to see. We, however, believe that
in reality, better routing and scheduling algorithms will be able
to alleviate these hot spots and increase the throughput scaling
by a multiplicative factor.

Finally, we have shown a sharp cutoff bound on the
throughput that can be achieved in a hybrid network irrespec-
tive of the number of infrastructure nodes. Our argument is
based on observing that some types of traffic fluctuations can
systematically limit the per user throughput. Although this
is a direct consequence of the random traffic model we have
adopted, it does suggest that pure ad hoc networks may have
an unfortunate characteristic. Specifically, spatial fluctuations
in traffic loads are likely to be difficult to support, unless
appropriate infrastructure and routing are provided to quickly
enable their dissipation.

APPENDIX I
PROOF OF PROPOSITION

We will first introduce a few definitions. Let de-
note the set of all possible placement rules for base
stations on the disc . Let be a particular place-
ment rule, for which denotes the position of the

th base station . Let denote
the smallest common range which ensures that ad hoc
nodes randomly placed on and base stations placed
according to , will connect into a single cluster with prob-
ability 1. Finally, let , and

, thus, is the
“connectivity range” under the “best” placement rule .

We prove the proposition by contradiction. In particular, con-
sider the two scaling regimes

Regime i

Regime ii

and suppose, in contradiction to the statement of the proposition,
that the sequence is such that

in Regime i

in Regime ii (24)

We let , for , denote discs of ra-
dius centered at . Let

denote the subset of that is covered by
such discs. Clearly, any ad hoc node that belongs to
cannot reach any base station in a single hop. Such nodes would
have to connect to other ad hoc nodes in their vicinity. How-
ever, we will show next, that under the assumptions in (24), the
region contains ad hoc nodes isolated from any
other ad hoc nodes, with positive probability for all sufficiently
large and .

Let denote the event that there exists an ad hoc node
within that has no ad hoc neighbor within a dis-
tance from it. Let , for a fixed .

It is easy to check that in both Regime i) and ii), we have that
given by (24) scales as . Thus, we have that

for all sufficiently large
and . Now, note that, by [19, Th. 2.1], we have that, for

all sufficiently large , with positive probability that is indepen-
dent of , there exists at least one ad hoc node in which has
no ad hoc neighbors within the distance from it. Noting
that, by the assumptions, (24) the area of scales in both
Regime i) and Regime ii) as , the proof of [19, Th. 2.1]
can be straightforwardly adapted to yield the same conclusion
for the nodes within . Thus, with positive proba-
bility independent of and , for all sufficiently large and

there exist ad hoc nodes within that have no ad
hoc nodes within the distance and, hence, also within the
distance . We, thus, arrive at a contradiction since we
assumed that is sufficient to ensure that all nodes are
connected.

APPENDIX II
PROOF OF FACT 1

Since the area of each hexagon is , there are at most
hexagons fully contained within the

unit area disc, from which the first statement follows.
We now introduce a coordinate system on the disc, so

that the origin is at the center of . Consider points on a
regular grid with the coordinates ,

. Each of those points is
within a distance of at least away from the boundary
of the disc. Then, for each point there must be a hexagon

out of that is fully contained within , with its center
within the distance of at most from . Notice that

, since otherwise, the points and
would have to be within the distance of at most . Now,
since all are disjoint, the number of them is at least

, but then , which
proves the second statement of the lemma.

APPENDIX III
PROOF OF LEMMA 2

We first show that each cell contains a disc of radius
. We can view the hexagonal tessellation of as

being induced by the seeds placed at the center of each hexagon.
By construction, the tessellation is formed by eliminating
some of the seeds of . Since a Voronoi cell of a seed is an
intersection of the half spaces associated with points closer to
that seed, it follows that this intersection will contain the cor-
responding hexagon of when some seeds are eliminated.
Now, a hexagon of side contains a disc of radius
and, hence, the first property stated in the lemma holds.

Now, let us show that second statement of the lemma, i.e.,
that each cell is contained in a disc of radius .
This will be true if we can prove that each point on the disc
is within the distance from one of the base stations. For

and (the hexagon is fully contained
within the disc), this is obvious since then the distance to the
base station centered at the center of the hexagon is at most

.
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Fig. 2. H has a neighbor H fully contained within the disc D.

Fig. 3. H has a neighbor H fully contained within the disc D.

Now, consider the case such that ,
and . (The hexagon is not fully contained within the
disc.) In that case, for sufficiently large , the boundary of
has to cross the boundary of in at most two points and .
( might coincide with , when the circle touches the hexagon
at its vertex.)

and belong to nonadjacent edges of . In this case,
for a sufficiently large , there is a hexagon fully contained
within and sharing with an edge (see Fig. 2). Since the
distance from to the center of is at most and the
distance between the centers of and is , the point

is within the distance of from one of the base stations.
and belong to adjacent edges of . There are two cases

to consider, one is depicted in Fig. 3, and the other—in Fig. 4. In
the former case, for a sufficiently large there is still a hexagon

sharing and edge with , thus, the statement of the
lemma holds.

Fig. 4. Any point P 2 H \ D (shaded region) is within distance of 3=
p
m

from the center of H , that is fully contained in D.

In the case of Fig. 4, any point within the intersection
is also contained within the set (defined on the picture) for a
sufficiently large . For that , it is easy to see that there is
an fully contained within , with its center located
within the distance of from the center of . Now, since
falls in the ball drawn from the center of with radius ,
we get that the lemma holds for this case too.

APPENDIX IV
PROOF OF LEMMA 3

It is clear that the nodes using a particular base station are
located within the range from this base station. A node will
interfere with another node belonging to a cell using
the infrastructure communications only if the distance between
them is at most . Since the diameters of and
are bounded by , the cell , and all its interfering neighbors

are located within a common disc of radius

Since each cell of contains a disc of radius by
construction, will have at most

interfering neighbors.
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