
Elastic Multi-resource Network Slicing:
Can Protection Lead to Improved Performance?

Jiaxiao Zheng, Gustavo de Veciana
Dept. of Electrical and Computer Engineering, The University of Texas at Austin, TX

gustavo@ece.utexas.edu

Abstract—In order to meet the performance/privacy require-
ments of future data-intensive mobile applications, e.g., self-
driving cars, mobile data analytics, and AR/VR, service providers
are expected to draw on shared storage/computation/connectivity
resources at the network “edge”. To be cost-effective, a key
functional requirement for such infrastructure is enabling the shar-
ing of heterogeneous resources amongst tenants/service providers
supporting spatially varying and dynamic user demands. This
paper proposes a resource allocation criterion, namely, Share
Constrained Slicing (SCS), for slices allocated predefined shares
of the network’s resources, which extends traditional α−fairness
criterion, by striking a balance among inter- and intra-slice fairness
vs. overall efficiency. We show that SCS has several desirable
properties including slice-level protection, envyfreeness, and load-
driven elasticity. In practice, mobile users’ dynamics could make
the cost of implementing SCS high, so we discuss the feasibility
of using a simpler (dynamically) weighted max-min as a surrogate
resource allocation scheme. For a setting with stochastic loads and
elastic user requirements, we establish a sufficient condition for
the stability of the associated coupled network system. Finally,
and perhaps surprisingly, we show via extensive simulations that
while SCS (and/or the surrogate weighted max-min allocation)
provides inter-slice protection, they can achieve improved job delay
and/or perceived throughput, as compared to other weighted max-
min based allocation schemes whose intra-slice weight allocation is
not share-constrained, e.g., traditional max-min or discriminatory
processor sharing.

I. INTRODUCTION

Next generation networks face the challenge of supporting

data-intensive services and applications, such as self-driving

cars, infotainment, augmented/virtual reality [26], Internet of

things [6], [26], and mobile data analytics [1], [11]. In order

to accommodate the performance and privacy requirements of

such services/applications, providers are expected to draw on

shared storage/computation/connectivity resources at the net-

work “edge”. Such network systems can take advantage of

Software-Defined Networking and Network Function Virtual-

ization technologies to provision slices of shared heterogeneous

resources and network functions which are customized to ser-

vice providers’/tenants’ requirements.

The ability to support slice-based provisioning is central

to enabling service providers to take control of managing

performance of their own dynamic and mobile user populations.

This also improves the scalability by reducing the complexity

of performance management on multi-service platforms. The

ability to efficiently share network/compute resources is also

key to reducing the cost of deploying such services. By contrast

with today’s cloud computing platforms, our focus in this paper

is on provisioning slices of edge resources to meet mobile

users/devices requirements. In general, shared edge resources

will have smaller overall capacity resulting in reduced statistical

multiplexing and making efficiency critical. Perhaps as is the

case with cloud computing platforms, providers/tenants will

want to make long-term provisioning commitments enabling

predictable costs and resource availability, yet benefit, when

possible, from elastic resource allocations aligned with spatial

variations in their mobile workloads but not at the expense of

other slices. Thus a particularly desirable feature is to enable

slice-level provisioning agreements which achieve inter-slice

protection, load-driven elasticity and network efficiency.

These challenges distinguish our work from previous re-

search in areas including engineering, computer science and

economics. The standard framework used in communication

networks is utility maximization (see e.g., [28] and references

therein), which has led to the design of several transport and

scheduling mechanisms and criteria, e.g., the widely discussed

proportional fairness. When considering dynamic/stochastic net-

works, e.g., [4], [16], researchers have studied networks where

users are allocated resources based on utility maximization and

studied requirements for network stability for ‘elastic’ user

demands, e.g., file transfers. This body of work emphasizes

user-level resource allocation, without specifically accounting

for interactions among slices. Thus, it does not directly address

the requirements of network slicing.

Instead in this paper, we propose an approach, namely, Share
Constrained Slicing (SCS), wherein each slice is assigned a

share of the overall resources, and in turn, distributes its share

among its users. Then the user level resource allocation is deter-

mined by maximizing a sharing criterion. When SCS is applied

to a setting where each user only demands one resource, for

example, slices sharing wireless resources in cellular networks

[8], [9], [32], the scheme can be viewed as a Fisher market

where agents (slices), which are share (budget) constrained, bid

on network resources, see, e.g., [24], and for applications [3],

[8], [18]. However, those works do not deal with settings where

users require heterogeneous resources, and how to orchestrate

slice-level interactions on different resources is not clear yet.

When it comes to sharing heterogeneous resources, a sim-

ple solution is static partitioning all resources according to a

service-level agreement, see, e.g., [20]. This offers each slice

a guaranteed allocation of the network resources thus in prin-

ciple provides ideal protection among slices. However, it falls

short from the perspective of providing load-driven elasticity

to a slice’s users, possibly resulting in either resource under-

utilization or over-booking. Other natural approaches include

full sharing [2], where users from all slices are served based on

some prioritizing disciplines without prior resource reservation.

Such schemes may not achieve slice-level protection and are

vulnerable to surging user traffic across slices.

Additionally, many resource sharing schemes have been pro-

posed for cluster computing where heterogeneous resources are

involved, including Dominant Resource Fairness (DRF) [19],

Competitive Equilibrium from Equal Income (CEEI) [23] [30]

[31], Bottleneck Max Fairness (BMF) [5], etc. These allocation

schemes are usually based on modelling joint resource demands

of individual users, but lack of the notion of slicing, thus it is

not clear how to incorporate the need to enable slice-level long-

term commitments. In these works, inter-slice protection and

elasticity of allocations have not been characterized. Further-

more, most of these works are developed under the assumption

that users are sharing a centralized pool of resources. In this

paper we focus on a settings where resources are distributed,

and mobile users are restricted to be served by proximal edge

resources.

Contributions: The novelty of our proposed approach lies

in maintaining slice-level long-term commitments defined by

shares, which can be seen as a service-level agreement, while

enabling user-level resource provisioning which is driven by

dynamic user loads. We consider a model where users possibly

require heterogeneous resources in different proportions, and

the processing rate of a user scales linearly in the amount of

resources it is allocated. Such a model captures tasks/services

which speed up in the allocated resources. This is discussed

further in the sequel.

We show that SCS can capture inter- and intra-slice fairness

separately. When viewed as a resource sharing criterion, SCS is

shown to satisfy a set of axiomatically desirable properties akin

to those in [21], and can be interpreted as achieving a tunable

trade-off among inter-slice fairness (which can be seen as a

proxy of protection), intra-slice fairness, and overall utilization.

Fairness is connected to load-driven elasticity through share con-

strained weight allocation. The merits of SCS are demonstrated

in both static and dynamic settings. In static settings, we prove a

set of desirable properties of SCS as a sharing criterion, includ-

ing slice-level protection and envyfreeness, and we demonstrate

the feasibility of using a computationally simpler (dynamically)

weighted max-min as a surrogate resource allocation scheme

for the cases where the cost of implementing SCS is excessive.

In dynamic settings, we consider the elastic traffic model with

each user as a service requirement, and leaves the system once

it is processed. We model such system as a stochastic queuing

network, and establish its stability condition. Due to lack of

space, detailed proofs are included in [33].

Finally, and perhaps surprisingly, we show via extensive sim-

ulations that while SCS provides inter-slice protection, it need

not compromise performance. We achieve improved average job

delay and/or perceived throughput, as compared with multiple

variations of traditional (weighted) max-min fair allocations but

without share-constrained weight allocation. Roughly speaking,

SCS can separate the busy-periods of different slices, thus

reduces inter-slice contention, leading to improved performance.

We validate this insight through simulations.

II. RESOURCE SHARING IN NETWORK SLICING

In this section we will briefly introduce our overall frame-

work for resource allocation to network slices, namely, Share

Constrained Slicing (SCS) where each slice manages a possibly

dynamic set of users. Specifically, we consider resource alloca-

tion driven by the maximization of an objective function geared

at achieving a trade-off between overall efficiency and fairness

[21].

Fig. 1: Example: network slicing in edge computing with

autonomous cars.

To begin, we consider the set of active users on each slice

to be fixed. Let us denote the set of slices by V , the set of

resources by R, each with a capacity normalized to 1. Each slice

v supports a set of user classes, denoted by Cv , and the total

set of user classes is defined as C := ∪v∈VCv . For simplicity,

we let v(c) denote the slice which supports class c. We let Uc

denote the set of users of class c, and the users on slice v is

denoted by Uv := ∪c∈CvUc. Also, the overall set of users is

U := ∪v∈VUv . For each user, possibly heterogeneous resources

are required to achieve a certain processing rate. Let us denote

the processing rate seen by user u by λu. We also define the

resource demand vector of user class c as dc := (drc : r ∈ R),
where drc is the fraction of resource r required by user u ∈ Uc

for a unit processing rate, i.e., to achieve λu = 1, we need to

allocate fraction d1c of the total amount of resource 1 to u, d2c
of the total amount of resource 2 to u, and so on. If a class c
user does not need a given resource r then drc = 0. Note that

if two slices support users with the same requirements, we will

distinguish them by defining two distinct user classes one for

each slice. In other words, it is possible to have more than one

user classes with exactly the same vector dc. Also, we let Rc

denote the set of resources required by users of class c, and in

turn, let the set Cr denote user classes using resource r. Among

Cr, the set of classes on slice v is Cv
r := Cr∩Cv . The number of

active users of class c at time t is denoted by a random variable

Nc(t), and that on slice v by Nv(t). Nv(t) =
∑

c∈Cv Nc(t).
Realizations of these are denoted by lower case variables nc

and nv , respectively.

This model captures the services/applications where tasks

speed up with more allocated resources, e.g., a file download is

faster when allocated more communication resources, or a com-

putational task that can be parallelized, e.g., typical MapReduce

jobs [17], and mobile data analytics when additional compute

resources are available [11]. For more complex applications

involving different types of stages, the stages associated with

massive data processing might be parallelizable, making it

possible to accelerate processing by allocating more resources.

For example, in mobile cloud gaming [27], the most time-

consuming and resource-demanding stage is usually the cloud

rendering where a computing cluster renders the frames of the

game. The rendering procedure can be accelerated by allocating

more GPUs, and thus, can be viewed as a quantized version of

our model.

Example: Let us consider an example where there are

two autonomous vehicle service operators, say Slice 1 and

Slice 2, coexisting in the same area, and supported by two

edge computing nodes equipped with fronthaul connectivity

2

��������User
Resource

1 2 3 4 5 Rate

user 1 0.4 0.4 0 0 0 λ1 = 0.4
user 2 0.3 0 0 0.5 0.5 λ2 = 0.5
user 3 0.3 0 0 0.5 0.5 λ3 = 0.5

TABLE I: Example resource allocation

and computational resources (e.g., edge GPUs), as shown in

Fig. 1. Both nodes are connected to the same backhaul node.

Different resources at different locations are indexed as in the

figure. There are 3 vehicles (users) in this area, each of which

corresponds to a user class. Users 1 and 2 are on Slice 1, and

User 3 is on Slice 2, respectively. Each autonomous vehicle can

run either of two applications. User 1 is conducting simple file

transfer, with the resource demand vector d1 = (1, 1, 0, 0, 0),
meaning that User 1’s application involves only connectivity

resources, and to achieve a unit transmission rate for User 1,

the system needs to allocate all the connectivity resources at

both Node 1 and the backhaul. Meanwhile, Users 2 and 3 are

performing mobile data analytics, with demand vectors d2 =
d3 = (0.6, 0, 0, 1, 1), meaning that to achieve a unit processing

rate for Users 2 or 3, the system needs to allocate 60% of the

backhaul resource, all the fronthaul resource, together with all

the computational resource at Node 2. Then, for example, if the

resource allocation is as given in Table I, the system can achieve

user service/processing rates given by λ1 = 0.4, λ2 = λ3 = 0.5.

Next, we introduce the concept of network share and how it

impact the weights across users.

Definition 1. Share-constrained weight allocation (SCWA):
Given a vector of slice shares s := (sv ≥ 0 : v ∈ V), each
slice v is assigned a positive share sv , representing the fraction
of overall resources to be committed to slice v. In turn, it
distributes its share sv across its users Uv , yielding a weight
allocation to users w := (wu ≥ 0 : u ∈ U) such that for each
slice v, ∑

u∈Uv

wu = sv. (1)

Without loss of generality, we assume
∑

v∈V sv = 1. If we

denote the aggregate weight of the users in each class c by

qc :=
∑

u∈Uc
wu, and the weight allocation across user classes

by q = (qc : c ∈ C), thus Eq. (1) implies
∑

c∈Cv qc = sv .

Furthermore, we denote the intra-slice weight allocation (across

user classes) by qv := (qc : c ∈ Cv). As a result, a slice can

increase its users’ weights by increasing its share. Also, note

that if the number of users on a slice surges without increasing

the associated share, on average each of its users will be given

less weight. Two examples of SCWA are as follows.

1) Equal intra-class weight allocation, where user weights

are the same within a user class, i.e., wu = qc
nc

, for u ∈ Uc

with
∑

c∈Cv qc = sv . In this paper, we assume this always

holds true.

2) Equal intra-slice weight allocation, where user weights

are the same across the slice, i.e., wu = sv
nv , for u ∈ Uv .

As a result, qc =
sv(c)nc

nv(c) . One can see that equal intra-

slice allocation is a further special case of equal intra-class

allocation. When each user only demands one resource,

such an allocation emerges naturally as the social optimal

of a Fisher market, and Nash equilibrium when slices ex-

hibit (price-taking) strategic behavior in optimizing their

own utility, see [7].

Next we discuss how to map weights to rate allocations. Let

us denote the user rate allocation by λ := (λu : u ∈ U). The

aggregated rate allocation across user classes is denoted by φ =
(φc : c ∈ C), where φc := ncλu, u ∈ Uc, due to equal intra-

class weight allocation. For each slice v, the intra-slice rate

allocation is φv := (φc : c ∈ Cv). The rate allocation across

slices is γ := (γv :=
∑

c∈Cv φc : v ∈ V). The overall rate

across the system is λ := ‖λ‖1 = ‖φ‖1 = ‖γ‖1, where ‖ · ‖1
is the L1-norm. SCS is thus defined as follows.

Definition 2. α−Share Constrained Slicing (α−SCS): Under
equal intra-class weight allocation with class weights q, we say
a class-level rate allocation φ corresponds to α−SCS if it is
the solution to the following optimization problem

max
φ

{Uα(φ;q) :
∑
c∈Cr

drcφc ≤ 1, ∀r ∈ R}, (2)

where α > 0 is a pre-defined parameter,

Uα(φ;q) :=

{
e
∑

v∈V Uv
α(φv ;qv) α = 1,∑

v∈V Uv
α(φ

v;qv) α > 0 and α 	= 1,

and Uv
α(φ

v;qv) is the utility function of slice v, given by

Uv
α(φ

v;qv) :=

⎧⎨
⎩

∑
c∈Cv qc log

(
φc

qc

)
α = 1,∑

c∈Cv qc
(φc/qc)

1−α

1−α α > 0 and α 	= 1.

The criterion underlying SCS is different from the traditional

class-level (weighted) α−fairness criterion proposed in [22] and

[4], which is defined as follows.

Definition 3. Class-level α−fairness: Under equal intra-class
weight allocation, with class-level weights q, a class-level rate
allocation φ corresponds to (weighted) α−fairness if it is the
solution to Problem (2) where the utility function of slice v is
given by

Uv
α(φ

v;qv) :=

{ ∑
c∈Cv qc log (φc) α = 1,∑
c∈Cv qc

(φc)
1−α

1−α α > 0 and α 	= 1.

As shown in [22], α−fairness is equivalent to (weighted)

proportional fairness when α = 1 and unweighted maxmin

fairness when α → ∞. By contrast, a characterization of

α−SCS resource allocation is given as follows.

Corollary 1. α−SCS is equivalent to (weighted) proportional
fairness when α = 1, and weighted max-min fairness when
α → ∞.

Under equal intra-class weight allocation, weighted pro-
portional fairness is defined as the solution to the following
problem:

max
φ

{∑
c∈C

qc log φc :
∑
c∈Cr

drcφc ≤ 1, ∀r ∈ R
}
, (3)

while weighted max-min fairness is defined as the solution to
the following problem:

max
φ

{
min
c∈C

φc

qc
:
∑
c∈Cr

drcφc ≤ 1, ∀r ∈ R
}
. (4)

In summary, under α−SCS resource allocation the weight

(and thus slice shares) have a consistent impact even when

α → ∞, retaining a notion of inter-slice protection. To the

3

best of our knowledge, SCS is the first variation of α−fairness

incorporating such slice-based weighting in a consistent manner.

Let us define function fα(x;y) of two positive vectors x,y ∈
R

n
+ such that ‖x‖1 = ‖y‖1 = 1 as

fα(x;y) =

⎧⎨
⎩

e−DKL(y‖x) α = 1,(∑
i yi

(
xi

yi

)1−α
) 1

α

α > 0, α 	= 1,
(5)

where DKL(·‖·) represents the Kullback-Leibler (K-L) diver-

gence. The function fα(x;y) can be viewed as a measure of

how close a normalized resource allocation x is to a normalized
weight vector y in that, for example, when α = 1, it decreases

with the K-L divergence between x and y, thus assumes

maximum when x = y, meaning that the rate allocation is

aligned with the specified weights. For general α and a given

y, when no other constraint is imposed, fα(x;y) achieves

maximum when x = y. Thus fα(x;y) can be interpreted as

a measure of y−weighted fairness of the allocation x.

Let us define the efficiency/utilization of a resource allocation

as a concave non-decreasing function of the overall λ,

Eα(λ) :=

{
λ α = 1,
λ1−α

1−α α > 0 and α 	= 1.

We define an inter-slice fairness function as

F inter
α (γ) := fα(γ̃; s),

where γ̃ := (γ̃v := γv/λ : v ∈ V) is the normalized aggregated

rate allocation across slices. In view of Eq. (1), we shall also

define the normalized weight allocation for slice v as q̃v :=
(q̃c := qc

sv
: c ∈ Cv), and the normalized rate allocation across

user classes on slice v as φ̃v := (φ̃c := φc

γv : c ∈ Cv). Finally

we define an intra-slice fairness measure as

F intra
α (φ;q) :=

⎧⎨
⎩

e
∑

v∈V tvα(γ̃;s) log fα(φ̃v ;q̃v) α = 1,(∑
v∈V tvα(γ̃; s)(fα(φ̃

v; q̃v))α
) 1

α

α 	= 1,

where tvα(γ̃; s) can be viewed as a weight impacting the

importance of the fairness for each slice v:

tvα(γ̃; s) :=
sv(

γ̃v

sv
)1−α∑

v′∈V sv′(γ̃
v′

sv′)
1−α

. (6)

With these definitions in place we can show that for a given

α, the α−SCS criterion can be expressed as follows.

Proposition 1. Under the α−SCS criterion, we have that

Uα(φ;q) = Eα(λ)
(
F inter
α (γ)F intra

α (φ;q)
)α

, (7)

where Eα(λ), F inter
α (γ) and F intra

α (φ;q) can be interpreted
as the overall network efficiency, inter-slice and intra-slice
fairness, respectively.

Based on Eq. (7) it should be clear that α−SCS embodies

a trade-off among overall network efficiency, inter- and intra-

slice fairness, which can be viewed as a proxy for the degree of

protection offered to slices, where the significance of fairness

grows as α increases. When α → 0, α−SCS corresponds

to maximizing the overall rate allocation, regardless of slice

shares. In order to achieve flexible resource utilization, a sharing

criterion should realize load-driven elasticity, i.e., the amount

of resources provisioned to a user class would ideally increase

in the number of users in the class. Under equal intra-slice

weight allocation, from Eq. (7) one can observe that, due to

the fairness terms, the relative resource allocation of a slice

tends to be aligned with q̃v = (nc

nv : c ∈ Cv), i.e., its relative

load distribution. Thus the load-driven elasticity of α−SCS is

achieved as a result of weighted fairness. Specifically, under

SCS when users’ requirements are decoupled, i.e., each user

only uses one resource, |Rc| = 1, ∀c ∈ C, one can show the

following result.

Proposition 2. Under equal intra-slice weight allocation, as-
suming |Rc| = 1, ∀c ∈ C, α−SCS is such that φc is a
monotonically increasing function of nc, when nc′ is fixed for
c′ 	= c.

Proof: Specifically in the setting of Proposition 2, solving

the associated KKT condition, one can show that each resource

r will provision its resource across user classes in proportion to
sv(c)nc

nv(c) .

Such load and share-dependant elasticity is key to achiev-

ing a sharing scheme that embodies the inter-slice protection,

while still improving the resource utilization by accommodating

dynamic user loads on different slices.

III. STATIC ANALYSIS

A. System model

In this section we will take a closer look at the characteriza-

tion of α−SCS slice level resource allocations. The α−SCS

criterion (Problem (2)) is equivalent to the solution to the

following problem

max
φ

{∑
v∈V

Uv
α(φ

v;qv) :
∑
c∈Cr

drcφc ≤ 1, ∀r ∈ R
}
. (8)

We shall explore two key desirable properties for a sharing

criterion, namely, protection and envyfreeness. In our setting,

protection means that no slice is penalized under α−SCS shar-

ing vs. static partitioning, where each resource is provisioned

across slices in proportion to their shares. Envyfreeness means

that no slice is motivated to swap its resource allocation with

another slice with a smaller share. These two properties together

motivate the choice of α−SCS sharing, and at least partially

purchasing a larger share in order to improve performance.

B. Protection

Formally, let us characterize protection among slices by how

much performance deterioration is possible for a slice when

switching from static partitioning to α−SCS sharing. Note that

under static partitioning, slices are decoupled, so inter-slice

protection is achieved possibly at the cost of efficiency. To be

specific, the rate allocation for slice v under static partitioning

is given by the following problem.

max
φv

⎧⎨
⎩Uv

α(φ
v;qv) :

∑
c∈Cv

r

drcφc ≤ sv, ∀r ∈ R
⎫⎬
⎭ . (9)

From now on, for a given α, let us denote the rate allocation

for slice v under α−SCS by φv,S := (φS
c : c ∈ Cv), and

that under static partitioning by φv,P := (φP
c : c ∈ Cv). The

parameter α is suppressed when there is no ambiguity. The

following result demonstrates that 1−SCS achieves inter-slice

4

protection in that each slice individually achieves a better utility

under α−SCS as compared to static slicing.

Theorem 1. For given q, when the resource allocation is
performed according to 1−SCS, slice v’s utility exceeds that
under static partitioning (Problem (9)), i.e.,

Uv
1 (φ

v,P ;qv) ≤ Uv
1 (φ

v,S ;qv). (10)

Remark: It is a straightforward to see that under 1−SCS,

the global utility
∑

v∈V Uv
1 (φ

v;qv) is improved since it can be

viewed as relaxing the system constraints. However, Theorem

1 asserts that this holds on a per slice basis.

A similar result can be shown for general α and is provided

in the extended version of this work [33]. Roughly speaking,

for general α, the utility deterioration depends on the user

distribution across classes. If a slice’s user distribution is aligned

with that of the overall system, it is guaranteed to see a utility

gain under α−SCS. Also, for general α the gap cannot be

arbitrarily bad.

C. Envyfreeness

Formally, envyfreeness is defined under the assumption that,

for two slices v and v′, if they swap their allocated resources,

slice v’s associated utility will not be improved if sv′ ≤ sv .

Before swapping, the rate allocation for slice v is given by

φv,S , while after swapping with slice v′, its rate allocation is

determined by solving following problem:

max
φv

{Uv
α(φ

v;qv) :
∑
c∈Cv

r

drcφc ≤
∑
c∈Cv′

r

drcφ
S
c , ∀r ∈ R}.

Note that
∑

c∈Cv′
r
drcφ

S
c corresponds to the fraction of re-

source r provisioned to slice v′ under SCS. Let us denote the

solution to such problem for slice v as φv↔v′
. Then we have

the following result for the case with α = 1.

Theorem 2. The difference between the utility obtained by slice
v under 1−SCS with SCWA, and that under static partitioning
with the resource provisioned to another slice v′ is upper-
bounded by the difference between their shares, i.e.,

Uv
1 (φ

v↔v′
;qv)− Uv

1 (φ
v,S ;qv) ≤ sv′ − sv.

Thus, a slice has no incentive to swap its allocation with

another with a less or equal share, which implies our global

sharing is envyfree. Envyfreeness indicates that 1−SCS achieves

desirable resource utilization in that the right portion of re-

sources is provisioned to each slice.

D. Using ∞−SCS as a surrogate for 1−SCS

From the previous discussions, one can see that it is of

particular interest to use 1−SCS as the fairness criterion,

as it achieves both strict protection and envyfreeness. When

α = 1, α−SCS becomes weighted proportional fairness, whose

solution usually involves iterative methods, and the complexity

increases rapidly with the number of user classes as well as

the accuracy requirement, see, e.g., [25], making it hard to

implement in large-scale. In comparison, weighted max-min is

relatively easy to implement in distributed manner, see [19] for

example. Specifically a progressive water-filling algorithm [25]

has O(|C|maxc∈C |Rc|) complexity. Thus, in our work we will

discuss the feasibility of using ∞−SCS, which is equivalent to

a (dynamically) weighted maxmin, as a surrogate to 1−SCS.

If the resulting utility function is not far from the optimum of

the 1−SCS criterion, we shall assert ∞−SCS achieves similar

performance as 1−SCS. We consider a global utility function

as the sum of 1−SCS utility functions across v ∈ V , given by

Ψ(φ;q) :=
∑
v∈V

Uv
1 (φ

v;qv), (11)

then for the overall utility achieved we have following theorem.

Theorem 3. For a given class weight allocation q, if drc ≥
1, ∀r ∈ R, c ∈ C, we have

Ψ(φ∗,1;q)−Ψ(φ∗,∞;q) ≤
∑
c∈C

qcDc − 1, (12)

where φ∗,α := (φ∗,α
c : c ∈ C) is the optimal rate allocation

under α−SCS, and Dc :=
∑

r∈Rc
drc .

Remark: First note that the condition drc ≥ 1 can be easily

satisfied by rescaling the unit of rate without loss of generality.

Also by rescaling, one can show that such bound vanishes

when each user class is associated with only one resource, i.e.,

|Rc| = 1, ∀c ∈ C, and drc are the same, e.g., drc = 1. The

bound implies that, the suboptimality due to using a surrogate

solution to achieve weighted proportional fairness depends on

the diversity in the users’ requirements across resources. Also,

this suboptimality gap cannot be arbitrarily bad because under

SCWA, we have
∑

c qc = 1, thus the right hand side of Eq. (12)

is upper-bounded by maxc Dc − 1.

Also, note that by averaging utility observed across time

instants, one can easily extend the results in this section to a

dynamic setting in the time average sense as long as the user dy-

namics are not impacted by the resource allocation, e.g. inelastic

and/or rate-adaptive users seeing acceptable performance.

IV. ELASTIC TRAFFIC MODEL

A. System model

In this section we switch gears to study a scenario where the

user traffic is elastic, i.e., each user carries a certain amount of

work and leaves the system once it is finished. Specifically, for

a class-c user, we assume that its service requirement is drawn

from an exponential distribution with mean 1
μc

independently,

and its arrival follows a Poisson process with intensity νc. Then

the traffic intensity associated with user class c is given by ρc =
νc

μc
.

Let us first consider a given time instant, when the cardinal-

ities of Uc and Uv are given by nc and nv respectively. Also,

for simplicity we assume equal intra-slice weight allocation,

thus qc =
sv(c)nc

nv(c) . Substituting qc into Problem (2), the α−SCS

criterion can be rewritten as follows.

max
φ

∑
c∈C

(sv(c)nc

nv(c)

)α (φc)
1−α

1− α
, (13)

such that
∑
c∈Cr

φcd
r
c ≤ 1, ∀r ∈ R.

B. Stability

Problem (13) characterizes the rate allocation across classes

when the number of users in the network is fixed. However, it

is natural to study the evolution of the system under stochastic

loads. Note that while [4] studied the stability condition for

α−fairness when weights are introduced, their weights do not

depend on the dynamic number of users in the network. By

5

using the fluid models to study stability as established in [15],

[14] and [13], one can show that α−SCS stablizes the system

as long as no resource is overloaded.

Theorem 4. Consider a set of slices sharing resources under
the α−SCS criterion with equal intra-slice weight allocation,
then when the following effective load conditions are satisfied:

∑
c∈Cr

ρcd
r
c < 1, ∀r ∈ R, (14)

the network is stable.

Remark: The result in [4] is similar to the above under

the assumption that each user has a fixed weight. Thus the

overall resources committed to a slice increase with the number

of the active users on the slice, up to the full capacity of

the resources it requires. In other words, it achieves full-level

allocation elasticity, by possibly compromising inter-slice pro-

tection. Theorem 4 shows that even when inter-slice protection

is maintained, α−SCS will still stablize the system.

V. SIMULATION RESULTS

One might think that by introducing inter-slice protection,

α−SCS effectively imposes additional constraints to the service

discipline, thus is compromised in users’ performance. However,

this need not to be true, as we will demonstrate in this section.

We compare the performance of α−SCS resource allocation

versus several benchmarks, including:

1) Dominant Resource Fairness (DRF) [19], which is a vari-

ation of weighted maxmin fairness where users’ weights

are associated with their resource demands. Here to incor-

porate network slicing, we adopt a variation where a user’s

weight also reflects equal intra-slice weight allocations,

i.e., wu = sv
nv

· δu, u ∈ Uv , where δu is the inverse domi-
nant share of user u given by δu := 1

maxr∈R dr
c
, u ∈ Uc.

2) Discriminatory Processor Sharing (DPS) [2], [12]. To

address the multi-resource setting, we adopt a version

of DPS which again is a variation of maxmin fairness

where user u’s weight is wu = sv, u ∈ Uv , without

comprising a notion of per-slice share constraint and inter-

slice protection.

DRF and DPS are two representatives of weighted max-min

fair resource sharing policies, with different heuristics begin

invoked to assign weights. Other policies, including BMF [5]

and Proportionally Fair, might not be practical under multi-

resource cases due to excessive computational complexity, Thus

are not included in our comparison. Also note that because SCS

might be hard to scalably compute for general α, we propose

the use of ∞−SCS, as a surrogate resource allocation scheme.

In our simulations, we focus on two performance metrics:

mean delay and mean throughput of a typical user. Let the

random variable D denote the delay/sojourn time perceived by a

typical user, and L its service requirement. The mean delay and

mean throughput are defined as E[D] and E[LD], respectively.

The performance of different sharing schemes were compared

in a range of settings, from a simple single-resource setting, to

a more complex multi-resource network setting where different

services/tasks are coupled together through shared resources.

0.2 0.3 0.4 0.5 0.6 0.7
Slice 1

0.2

0.3

0.4

0.5

0.6

0.7

S
lic

e
2

Throughput trade-off

SCS
DPS

(a)

1 2 3 4 5 6 7 8
Slice 1

2

3

4

5

6

7

8

S
lic

e
2

Delay trade-off
DPS
SCS

(b)

Fig. 2: Performance trade-offs of single-resource case

A. Single-resource case

Since for more complicated network setup, the system perfor-

mance (for example, processing rate) is often determined by the

resource allocation at ‘bottleneck’ resources, we first consider

single-resource setting. Note that, under such circumstances,

SCS coincides with General Processor Sharing (GPS) [29] as

well as DRF because all classes of users c ∈ C are associated

with the same resource, and have the same demand.

We consider a simple scenario where |V| = 2, and each slice

only supports one user class, so in this setting, a user class

corresponds to a slice. Two slices share one resource, referred

to as Resource 1 with capacity 1, and d11 = d12 = 1. Their traffic

models are assumed to be symmetric, with mean arrival rates

ν1 = ν2 = 0.45 and mean workloads 1
μ1

= 1
μ2

= 1. Their

shares, however, are tuned to achieve different performance

trade-offs. The share of Slice 1, s1, ranges from 0.01 to 0.99,

while s2 = 1 − s1. The achieved mean user perceived delay

and throughput are illustrated in Fig. 2. One can see that the

average delays are marginally better under ∞−SCS, and that

it outperforms DPS in terms of the average throughput. For

example, when two slices have the same share s1 = s2 = 0.5,

SCS increases the throughput of users on both slices by ∼10%.

This phenomenon was widely observed under different traffic

assumptions, for example, when arrival processes are nonsym-

metric, and/or workloads have general distributions. See the

extended version [33] for details.

This observation, may be surprising, in the sense that enforc-

ing protection might be seen as compromising performance. We

note, however, that even when average delays are the same,

perceived throughput can vary significantly under different

6

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Fr

ac
tio

n
Fraction of periods vs.

SCS - only 1 busy
SCS - only 2 busy
SCS - both busy
DPS - only 1 busy
DPS - only 2 busy
DPS - both busy

Fig. 3: Busy period of slice 1 and 2 vs. load intensity.

sharing criteria. For example, assuming there are Users 1, 2 and

3, with workloads L1 = 1, L2 = 2 and L3 = 3, respectively.

If a sharing criterion achieves D1 = 1, D2 = 2 and D3 = 3, it

yields mean throughput E[LD] = 1 and mean delay E[D] = 2.

If another criterion achieves D1 = 3, D2 = 2, D3 = 1, it

yields mean throughput 13
9 with the same mean delay. Roughly

speaking, accelerating jobs with short residual time would reflect

an improvement in the mean throughput. We conjecture that

due to the inter-slice protection built into SCS, under stochastic

traffic, the slices with fewer customers, which are usually those

with shorter residual times, will tend to see higher processing

rate than other sharing criterion, as a result, the customers

leave the system faster. Overall, SCS tends to “separate” the

busy periods of slices, so they tend to be non-overlapping, and

the level of inter-slice contention is reduced. We validated this

conjecture by measuring the busy period under the symmetric

traffic pattern, where the arrival rates of both slices are the same,

and are tuned from 0.05 to 0.45, with s1 = s2 = 0.5. Other

parameters are the same as in the setting in Fig. 2. We plot

the fraction of times when there is only one busy slice and both

slices are busy, vs. the overall traffic load ρ = ν1

μ1
+ ν2

μ2
in Fig. 3.

One can see that, for both SCS and DPS, the time fraction when

both slices are busy increases with ρ, and that when only one

slice is busy first increases when ρ is low due to underutilization,

but decreases when ρ is high because the inter-slice contention

becomes inevitable. However the time fraction when both are

busy is always smaller under SCS than that under DPS.

B. Multiple-resource case

We also test the performance of SCS under a more complex

setting where a simple cellular networks with both fronthaul and

backhaul resources are simulated.

Let us consider a setting with 6 fronthaul resources, 3 back-

haul resources, and a cloud computing resource. This system

supports two slices, each containing 3 user classes. Slice 1

includes Classes 1,2 and 3, while Slice 2 includes Classes 4,

5 and 6. The association between user classes and resources is

demonstrated in Fig. 4, and the demand vectors, as well as the

arrival rates and mean workloads, are given in Table II.

Slice 1’s share ranges from 0.1 to 0.9, while s2 = 1−s1. The

achieved performance trade-offs under different sharing criteria

are illustrated in Fig. 5. One can see that both SCS and DRF

outperform DPS throughput, with similar mean delays under all

3 criteria. Similar results are observed in a range of settings with

different traffic patterns and resource demands. For the results

in Fig. 6, we adjust the weighting schemes used in DRF by

Fig. 4: Association between user classes and resources.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Slice 1

0.1

0.2

0.3

0.4

0.5

S
lic

e
2

Throughput trade-off

SCS
DPS
DRF

(a)

2 4 6 8 10 12 14
Slice 1

2

4

6

8

10

12

14

S
lic

e
2

Delay trade-off
SCS
DPS
DRF

(b)

Fig. 5: Performance trade-offs of multi-resource case.

User
Demand vector

Mean Arrival
class workload rate

Class 1 (5
6
, 0, 0, 0, 0, 0, 0.5, 0, 0, 0.217) 1 0.7

Class 2 (0, 5
6
, 0, 0, 0, 0, 0.5, 0, 0, 0.217) 1 0.7

Class 3 (0, 0, 1, 0, 0, 0, 0, 0.625, 0, 0.217) 1 0.7
Class 4 (0, 0, 0, 1, 0, 0, 0, 0.625, 0, 0.217) 1 0.7
Class 5 (0, 0, 0, 0, 1, 0, 0, 0, 0.625, 0.217) 1 0.7
Class 6 (0, 0, 0, 0, 0, 1, 0, 0, 0.625, 0.217) 1 0.7

TABLE II: Multiple-resource experiment setting.

relaxing the share constraints in weight allocation. In particular

we let wu = svδu, u ∈ Uv , and the resources are provisioned

according to DPS with weight wu. The results show that without

SCWA, DRF is similar to DPS in both throughput and delay.

Therefore, we can conclude that SCWA is the root cause of the

improved throughput, and SCS can even improve the system

performance while providing inter-slice protection.

VI. CONCLUSIONS AND FUTURE WORK

This paper has explored a new criterion to resource alloca-

tion in the context of network slicing for distributed coupled

7

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Slice 1

0.1

0.2

0.3

0.4

0.5
S

lic
e

2
Throughput trade-off

SCS
DPS
DRF-weighted DPS

(a)

2 4 6 8 10 12 14 16
Slice 1

2

4

6

8

10

12

14

S
lic

e
2

Delay trade-off
SCS
DPS
DRF-weighted DPS

(b)

Fig. 6: Performance trade-offs with DRF-weighted DPS.

resources–α−SCS, which provides inter-slice protection, load-

driven elasticity and good performance for elastic users at

the same time. SCS can be viewed as a key to enabling

low-complexity performance management in network slicing,

by exposing network shares to slice operators/tenants, as a

high-level resource management interface. Finally, the share

abstraction provides a simple parametric “crude” model for

slice-level resource allocation which needs to interact with an

intra-slice performance management strategy. This approach can

be further extended in two directions: i) if slices have highly

imbalanced spatial user distributions, it might be useful to let

slices specify different shares across different pools of resources,

e.g., regions corresponding to downtown, stadium and/or rural

area, see, e.g., [10]; and ii) slices may wish to request different

shares across types of resources, e.g., a slice may specify a

higher share of computational resource pool than that of the

communicational resources. For example, mobile cloud gaming

is computation intensive, thus the operator might want to reserve

more computing resources than connectivity.

ACKNOWLEDGMENT

This work was partially supported by NSF grant CNS-

1731658.

REFERENCES

[1] A. Ahmed and E. Ahmed. A survey on mobile edge computing. In 2016
10th International Conference on Intelligent Systems and Control (ISCO),
pages 1–8, Jan 2016.

[2] E. Altman, K. Avrachenkov, and U. Ayesta. A survey on discriminatory
processor sharing. Queueing systems, 53(1-2):53–63, 2006.

[3] A. Banchs. User fair queuing: fair allocation of bandwidth for users. In
IEEE INFOCOM, volume 3, pages 1668–1677. IEEE, 2002.

[4] T. Bonald and L. Massoulié. Impact of fairness on internet performance.
In ACM SIGMETRICS Performance Evaluation Review, volume 29, pages
82–91. ACM, 2001.

[5] T. Bonald and J. Roberts. Multi-resource fairness: Objectives, algorithms
and performance. In ACM SIGMETRICS Performance Evaluation Review,
volume 43, pages 31–42. ACM, 2015.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its
role in the internet of things. In Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, pages 13–16. ACM, 2012.

[7] S. Brânzei, Y. Chen, X. Deng, A. Filos-Ratsikas, S. K. S. Frederiksen,
and J. Zhang. The fisher market game: Equilibrium and welfare. 2014.

[8] P. Caballero, A. Banchs, G. de Veciana, and X. Costa-Pêrez. Multi-tenant
radio access network slicing: Statistical multiplexing of spatial loads.
IEEE/ACM Transactions on Networking, PP(99):1–15, 2017.

[9] P. Caballero, A. Banchs, G. de Veciana, and X. Costa-Pérez. Multi-tenant
radio access network slicing: Statistical multiplexing of spatial loads.
IEEE/ACM Transactions on Networking, 25(5):3044–3058, Oct 2017.

[10] P. Caballero, G. de Veciana, A. Banchs, and X. Costa-Perez. Optimizing
Network Slicing via Virtual Resource Pool Partitioning (Extended). https:
//www.dropbox.com/s/hso0yqupo5wfwwl/Extended VRPP.pdf.

[11] Y. Cao, H. Song, O. Kaiwartya, B. Zhou, Y. Zhuang, Y. Cao, and X. Zhang.
Mobile edge computing for big-data-enabled electric vehicle charging.
IEEE Communications Magazine, 56(3):150–156, March 2018.

[12] N. Chen and S. Jordan. Throughput in processor-sharing queues. IEEE
Transactions on Automatic Control, 52(2):299–305, 2007.

[13] J. Dai et al. A fluid limit model criterion for instability of multiclass
queueing networks. The Annals of Applied Probability, 6(3):751–757,
1996.

[14] J. G. Dai. On positive harris recurrence of multiclass queueing networks: a
unified approach via fluid limit models. The Annals of Applied Probability,
pages 49–77, 1995.

[15] J. G. Dai and S. P. Meyn. Stability and convergence of moments for
multiclass queueing networks via fluid limit models. IEEE Transactions
on Automatic Control, 40(11):1889–1904, 1995.

[16] G. de Veciana, T.-J. Lee, and T. Konstantopoulos. Stability and per-
formance analysis of networks supporting elastic services. IEEE/ACM
Transactions on Networking, 9(1):2–14, 2001.

[17] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[18] M. Feldman et al. The proportional-share allocation market for computa-
tional resources. IEEE TPDS, 20(8):1075–1088, 2009.

[19] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: Fair allocation of multiple resource
types. In Nsdi, volume 11, pages 24–24, 2011.

[20] T. Guo and R. Arnott. Active lte ran sharing with partial resource
reservation. In Vehicular Technology Conference (VTC Fall), 2013 IEEE
78th, pages 1–5. IEEE, 2013.

[21] T. Lan, D. Kao, M. Chiang, and A. Sabharwal. An axiomatic theory
of fairness in network resource allocation. In 2010 Proceedings IEEE
INFOCOM, pages 1–9, March 2010.

[22] J. Mo and J. Walrand. Fair end-to-end window-based congestion control.
IEEE/ACM Transactions on Networking, 8(5):556–567, Oct 2000.

[23] H. Moulin. Fair division and collective welfare. MIT press, 2004.
[24] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic

game theory, volume 1. Cambridge University Press Cambridge, 2007.
[25] M. Pióro and D. Medhi. Routing, flow, and capacity design in communi-

cation and computer networks. Elsevier, 2004.
[26] M. Satyanarayanan. The emergence of edge computing. Computer,

50(1):30–39, 2017.
[27] O. Soliman, A. Rezgui, H. Soliman, and N. Manea. Mobile cloud gaming:

Issues and challenges. In International Conference on Mobile Web and
Information Systems, pages 121–128. Springer, 2013.

[28] R. Srikant and L. Ying. Communication networks: an optimization,
control, and stochastic networks perspective. Cambridge University Press,
2013.

[29] M. J. van Uitert. Generalized processor sharing queues. Eindhoven
University of Technology, 2003.

[30] H. R. Varian. Equity, envy, and efficiency. 1973.
[31] H. P. Young. Equity: in theory and practice. Princeton University Press,

1995.
[32] J. Zheng, P. Caballero, G. de Veciana, S. J. Baek, and A. Banchs. Statistical

multiplexing and traffic shaping games for network slicing. IEEE/ACM
Transactions on Networking, 26(6):2528–2541, Dec 2018.

[33] J. Zheng and G. de Veciana. Elastic multi-resource network
slicing: Can protection lead to improved performance (extended).
https://arxiv.org/abs/1901.07497, 2019.

8

