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Abstract

We propose mechanisms to combat the congestion
caused by non-homogeneities in the distribution of infor-
mation, the peers’ locations, and the demand for informa-
tion in a peer-to-peer system for exchanging context. We
propose two novel mechanisms for adapting the topology
formed by the peers to the underlying traffic: our first
mechanism employs virtual locations for the peers while
the second modifies the edges connecting them. The posi-
tive effect of our mechanisms is evaluated experimentally.
Our key metric is the average query delay, a critical
performance indicator in a prototypical system we have
already presented, expected to be used by mobile users for
exchanging contextual information.

I. Introduction.

Recent developments in hardware design and manufac-
turing have made possible the advent of devices with ca-
pabilities in computing, sensing, and, mobility that reach,
if not surpass, the expectations for ubiquitous computing
laid out by M. Weiser in the publication that introduced
his vision to the world [1]. Still, there exists a gap between
what the state-of-the-art in computing fabric can offer and
the performance of ubiquitous systems.

Context-awareness has long been recognized by re-
searchers, as a pre-requisite for ubiquitous computing.
Informally, context-awareness refers to the ability of an
application to recognize the ‘environment’ in which it
executes. For example, a mobile user equipped with
a sensor-enabled smart-phone, opportunistically gather-
ing/contributing information relevant to the available ap-
plications in his vicinity is a prime use-case of context-
awareness in ubiquitous computing.

We envisage a system where computing devices, e.g.,
smart-phones, robots, and, associated applications will
contribute and consume opportunistically contextual infor-
mation relevant to a ‘region’ in space/time around them.
In our vision, we cater explicitly for the exchange and
storage of contextual information as mobility and the
opportunistic nature of the applications interested in it
pose several challenges, e.g., for the persistent ‘floating’
of information in its relevant space [2]. We articulated a
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concrete implementation of our ideas in [3]. Our platform
consists of a peer-to-peer (p2p) overlay where contextual
information relevant to a region is exchanged by mobile
users via peers that are ‘responsible’ for storing the context
pertinent to the area around them and answering queries
about it.

Despite our design decisions to enhance our platform’s
performance, e.g., information to be stored close to its
expected consumption area, we propose to add overlay
edges between peers that act as ‘shortcuts’ for traffic,
the challenges posed by an inhomogeneous operating en-
vironment can significantly hamper its performance. For
example, consider a ubiquitous application where users
opportunistically provide and query real-time information
about the waiting time in participating restaurants. The
spatio-temporal distribution of the information input in
such an application is not uniform, e.g., during weekends
information about locations around the downtown of a city
may be more likely to be present in the system. Peers
located close to downtown may then be disproportionally
congested.

Contributions. In this paper, we build on our previous
work and present mechanisms to tackle the load-balancing
challenges posed by the presence of non-homogeneities
in ubiquitous platforms. More specifically, we address
issues relevant to the spatio-temporal distribution of the
information to be exchanged/stored in our system, the
distribution of the peers available to store that information,
as well as the distribution of the queries to acquire that
information.

We propose two novel mechanisms: employing virtual
locations for the peers adapted to the underlying traffic
as well as adapting the edges among them. The first
mechanism is inspired by our intuition that traffic at a peer
consists of two components: /ocal traffic, due mainly to the
relevant location of a peer to its neighbors, and end-fo-
end traffic, due mainly to the location of a peer, the more
‘central’ the location of a peer, the more routing traffic
the peer will suffer. We propose a novel distributed load-
balancing algorithm based on estimations of queue sizes
of neighboring peers. Our algorithm increases the density



of peers in areas with high traffic in order to balance the
overall load among the participating peers.

The second mechanism, i.e., adapting the overlay edges
to the underlying traffic aims to create traffic-aware edges
that ‘match’ peers with high production of queries to peers
with high ‘consumption’. We propose a novel distributed
algorithm that estimates traffic between source-destination
pairs of peers and creates edges between pairs with max-
imal traffic. An experimental evaluation of our proposed
mechanisms via custom simulations reveals their beneficial
effect on average query delay.

Related work. Load-balancing in P2P networks is a
problem of recognized importance, see, [4], [5], and, [6],
where the objective, as in our work, is to alleviate the
effects of the non-uniform storage load per peer and
the non-uniform distribution of queries. All the works
referenced live in the realm of distributed hash table (DHT)
p2p systems. In contrast, in our work data are stored based
on their location instead of an id derived from the content.
As a result, we virtualize peers’ locations to balance the
load instead of, e.g., creating virtual servers to hold parts
of the identifier space as in [4]. Additionally, we create
edges that work as ‘optimal’ shortcuts for the query traffic
as opposed to, e.g, [6], where edges are created to connect
peers storing adjacent parts of the identifier space. Our
solutions are fully distributed involving neighbor peers
only, unlike the approach in [4] where load information is
published in a centralized directory. Our approach, creates
minimal overhead to the network as traffic propagation is
limited in the vicinity of neighboring peers.

Organization. §II briefly reviews the main elements
of our platform introduced in [3], i.e., how peers store
information, how peers are connected to each other and the
range query which is our fundamental building block for
more complex queries. In §III we describe the two mecha-
nisms we offer to combat the effect of non-homogeneities
and discuss some first experimental results showing the
benefit derived. Finally, §IV concludes with a discussion
of ongoing and future work.

II. Platform architecture.

In our platform nodes can contribute events, make
queries, and/or serve as a peer in the p2p overlay network.
We assume that an infrastructure of wired fixed devices,
e.g., PCs and corporate servers, serve as peers and act
as proxies for mobile wireless nodes e.g., sensors, phones,
etc., which can not serve as peers. All entities are assumed
to know their locations, but exact locations are not neces-
sary. Fig. 1 exhibits the elements of the platform which
will be discussed below.

A. Event model and storage.

Our focus is on capturing a spatio-temporal flow of
(short-lived) events which can represent a wide range
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Fig. 1. Elements of the p2p architecture.

of data/information associated with users, applications,
sensors or machines. An informal view of our event model
can be visualized as a cylinder, see Fig. 2, where an event
e has associated spatial coordinates, e.location indicating
where the event ‘occurred’ or is centered, a range e.range
defining the region where it is relevant, as well as a time
at which it is generated/starts and duration: e.time and
e.duration respectively. For simplicity, we denote the disc
centered at location e.location with radius e.range as
B(e.location, e.range) and refer to events whose duration
contains the current time as active.
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Fig. 2. Event model.

Opportunistic gathering/contributing of information is
more likely to occur for events in the vicinity of the
consumer/reporter. The previous ‘locality’ observation mo-
tivates the following rule:

Rule 1. Event storage and deletion. An event e is stored
at the overlay peer p which is closest to e.location.

B. Overlay topology management & routing.

We let IT = {p1,p2, ...} denote the set of peers identi-
fied by their unique virtual locations p; € R?. Initially, a
peer’s virtual location equals its physical location. In the
sequel, whenever we talk about a peer’s location we mean
its virtual location. They are interconnected via links in
a structured p2p overlay, represented in Fig. 1 by thick
straight lines. The basic overlay connectivity is driven
by the spatial locality of queries — it corresponds to the
Delaunay graph induced by the peers’ locations. See [7]
for the definition of the Voronoi tessellation V (II) induced
by IT C R2, the cell C(p|II) corresponding to a peer p and
the Delaunay Graph (DG) induced by IT C R2.

Assumption 1. Topology and Routing. We assume the
overlay connectivity of our platform is a superset of the



Delaunay graph. We further assume peers employ greedy
routing to store events and make queries over the overlay.

Greedy routing here, refers to a policy where each
peer forwards a message (event or query) destined to a
location, say [, to its closest neighbor to [ with the intent
of eventually reaching the peer closest to [.

Greedy routing on a superset of the DG always succeeds
thus, we will consider additional overlay links to reduce
the number of hops a query has to traverse. In the sequel
we will use the well known result of [8] which we adopt
as follows: a peer need only generate a location at random
according to a distribution proportional to the inverse of
the square of the distance from its own location, and then
route a message to that location, i.e., the closest peer to
the randomly selected location. In the sequel we denote
such additional edges, ‘Kleinberg’ edges.

C. Query model and processing.

The goal of the infrastructure is to efficiently support
spatio-temporal queries. In this paper, we focus on range
queries on active events. Range queries are defined as
follows:

Definition 1. The Range Query RQ(l,r) returns all active
events ¢ within a range r of a location l, i.e., events cur-
rently stored in the system such that e.location € B(l,r).

For example, return all users/resources currently avail-
able within 200m of my location.

A detailed algorithm for resolving range queries is
described in [3]. For simplicity, we will focus on ‘point’
queries, i.e., queries with zero range around a peer’s
location. These queries return all the events stored in that
peer. As far as performance is considered, these queries
consist of the exchange of two messages between the
source and destination peer, greedily routed on the p2p
overlay.

ITII. Congestion load-balancing.

In this section, we explore ways to adapt the overlay
topology, i.e., the locations of the peers and the edges
connecting them, so as to balance the traffic load on the
peers. As discussed in the introduction, different peers may
receive widely different amounts of traffic due to non-
uniformities in the peers’ and/or traffic’s spatial distribu-
tion.

‘Local’ vs. ‘End-to-End’ Congestion. Congestion at
the peers can be conceptually divided into ‘local’ and ‘end-
to-end’ congestion. We will define the former as caused by
exceedingly high event traffic generated in a cell or query
traffic whose source and destination lie in the same cell.
The latter is caused by routing of queries across the overlay
network. Local congestion depends on the size of a peer’s
cell; the bigger the cell the more local traffic it might be
expected to receive. End-to-end congestion depends mainly

on the location of a peer, the more ‘central’ a peer is,
the more routes cross its cell. End-to-end congestion also
depends on the quality of the edges in the topology; long
edges connecting peers that share a lot of traffic are better.

In this section we consider the following two mecha-
nisms to mitigate congestion: employing virtual locations
for the peers and, adapting the connections among peers
to the underlying traffic.

The first approach addresses mainly the local conges-
tion and, the second approach addresses the end-to-end
congestion.

A. Virtualising the peers’ locations.

The locations of the peers uniquely determine the size
of the cell of each peer. Consider the set P containing all
the peer locations {p1,...,p,}. We denote by Q;(P) the
queue size of the i*" peer under the peer placement given
by P. Ideally one would like to find an algorithm that
provides a solution to the following optimization problem.

| P|
min{E[Y _ Qi(P)]| for all p; € P} ()
=1

under the constraint of greedy routing and a fixed average
intensity of events -, and queries v,. By Little’s law, this
is a proxy for the average traffic delay in the system.

For local traffic only, dividing the region in, e.g., square
grid, etc would be a solution for Eq. 1. The addition of
‘end-to-end’ traffic complicates things; the bigger the area
of a peer’s cell, the more traffic it receives. If a peer could
advertise a different location than its current one, a more
‘balanced’ overlay topology could be achieved.

This observation motivates the following simple heuris-
tic:

Rule 2. Move Heuristic. An overloaded peer, p, may invite
a non-overloaded peer, q, to drop its current location and
join the overlay with a different ‘virtual’ location that is
closer to p and thus take some of its load.

For purposes of implementing this heuristic, a peer will
be considered overloaded with respect to another peer if
its queue size exceeds a fixed multiple, f;s > 1, of the
other peer’s queue size. !

For simplicity, we will require the peers ¢ and p
involved in such move heuristics to be neighbors in the
DG. The peer g will be restricted to move to a new location
that lies along the line connecting its original location to
the location of p. The resulting distance between the two
peers will be a fraction, f; < 1, of the original distance
between them, see Fig. 3.

The above mentioned heuristic has the effect of reduc-
ing the area of the overloaded peer’s cell, which in turn

'Our protocol for peers to join/leave the overlay as well as change
their locations is omitted due to space limitations.



Fig. 3. Move Heuristic, d,; is the distance
between p and ¢ before the heuristic, d,,.,, is
the distance after and %= — f,.

will lower the local traffic the peer sees. Moreover, a peer
with a big cell is likely to lie in the path of an increased
number of queries and suffer increased end-to-end traffic
as well. Thus, reducing a cell’s size is likely to also reduce
the end-to-end traffic it sees.

Evaluation. To evaluate the effectiveness of the ‘move’
heuristic on the mean delay to process an event, we
performed the following experiment: we varied the average
intensity of events arriving at a peer per m2-sec, ., and
measured the mean delay to process an event with and
without the ‘move’ heuristic, see Fig. 4. We assumed
that the event arrival process is Poisson with mean rate
7, ranging from 0.2 to 2 events per m2-sec. New event
arrivals are assumed to be homogeneous in space, and
arriving events enter the queue of the closest peer. To
decouple the study of the local congestion from the end-
to-end congestion we set 7, = 0 for this experiment.
The time to process an individual event is assumed to be
an independent exponential random variable with mean
u = 1. The overlay topology is generated by placing
60 peers independently in a 5 X 5 region according to a
homogeneous Poisson process with rate A = % =24
peers per m?. Two peers are connected if and only if they
are neighbors in the Delaunay graph. For this experiment,
since 7y, = 0, the Kleinberg edges would not play any role.
For our preliminary evaluation of the ‘move’ heuristic, we
used the following parameters f;s = 1.3 and fq = 0.95.
Peers were selected to perform the heuristic at random, i.e,
uniformly, at each tick of an exponential clock with rate
Wmove = 0.05. The rate of the clock has been selected
such that on average each peer will have at least 100 event
arrivals before being selected to implement the heuristic.
The simulation lasted for 120000 units of time, ensuring
that on average 100 ‘cycles’ where performed, each cycle
corresponding to a period in which every peer performs

the heuristic at least once.
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Fig. 4. Figure shows in logarithmic scale the
mean delay to process an event as the spatial
intensity of events ~. grows in the overlay
network. Two cases are shown, the first where
peers are randomly located in space, and the
second after the move heuristic is carried out.

The ‘move’ heuristic has an obvious beneficial effect
on the mean delay to process an event for the entire range
of event traffic. Although the maximum mean event arrival
intensity at a cell is ¥ = 3¢ = 2, = 0.84 < p = 1, due
to statistical variations of the cell sizes, some peers will
receive more traffic than they can handle and will become
unstable. In Fig. 5 we show that the ‘move’ heuristic man-
ages to create a homogeneous topology where most cells
are of roughly equal size, thus minimizing the probability
a peer overflows. This is consistent with our observation
about Eq. 1.

Beneficial effect on ‘end-to-end’ congestion. To eval-
uate the effect of the ‘move’ heuristic on the mean delay to
process a query, we performed the following experiment:
we varied the intensity of query traffic generated per m?-
sec, 4, and measured the mean delay for a query starting
from its source to reach its destination, with and without
the ‘move’ heuristic. Throughout the simulation, each peer
has a Kleinberg edge to a fixed point, the ‘target’ of that
edge is the peer that happens to be closest to that point
at any time. The initial placement of the peers, depicted
in Fig. 5, is the same as the one used in our previous
experiment. Due to space limitations, we omit the rest of
the experiment details. The results are shown in Fig. 6. The
‘move’ heuristic appears to be beneficial for high query
intensities; we further discuss that point in the sequel.

A rough, yet enlightening, view of the effect of our
heuristic is that it divides the overlay topology in two
areas: the inner area, which consists of uniformly arranged
peers with small cells that suffer primarily from end-to-end
congestion, and the outer area, which consists of uniformly
arranged peers with big cells that suffer primarily from lo-
cal congestion, i.e., with high probability queries originate



Fig. 5. Resulting overlay by applying the
‘move’ heuristic for 1. = 2 (up) and original
overlay topology (down) (the facets extending
to infinity have been omitted).
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Fig. 6. log(mean delay to process a query) vs.
the spatial intensity of queries ~,.

and end at their cell. Fig. 7 exhibits the resulting topology
achieved by our heuristic when v, = 0.32. The inner area
is defined by the dashed disk. The resulting arrangement
ensures that all peers receive on average the same amount
of total traffic, local plus end-to-end.
B. Adapting the edges among peers to non-uniform
traffic.

In Section II we proposed augmenting our overlay
topology with Kleinberg edges. The effect of these edges
is to create short, on average, routes between any two peers

Fig. 7. Resulting overlay by applying the
‘move’ heuristic for v, = 0.32. The facets
extending to infinity have been omitted.

in the overlay. A limitation of Kleinberg edges is that they
are oblivious to the congestion in the network, and they are
not sufficiently flexible to handle non-uniformities in the
traffic. For example, consider the case of a group of people
attending a conference at a convention center. Some of
their queries could be destined to locations corresponding
to the restaurant where the conference banquet will take
place. In this case traffic is not homogeneous in space.
The peers that happen to be in the path between them
and the destination peer answering their queries will be
disproportionally stressed by traffic.

Fig. 8. A ‘dipole’ model for non-uniform traffic.

To model the non-uniformity in traffic, we introduce the
concept of a traffic ‘dipole’, see Fig. 8. Each dipole creates
traffic that originates from one location, i.e., its source, to
another location, i.e., its destination. The distance between
the source and the destination of a dipole is termed its
separation.

To realize a traffic-aware p2p topology, one can further
augment the topology by a traffic-dependent edge per peer.
A simple heuristic would be:



Rule 3. Congestion Edge Heuristic. Each peer; q, estimates
the average traffic intensity, ;4 and the average traffic
delay, d;,, for the queries originating from every peer
t € P in the network destined to q. The peer with the
maximum 7y q X dy q is selected to create an edge to q. We
call the associated edge, the congestion edge of peer t.

The quantity ~y; 4 X d¢ 4, by Little’s law, is a proxy for the
average number of queries ‘in-flight’ from peer ¢ to peer
q. By creating an edge between peers ¢ and ¢, we offload
the corresponding traffic from the overlay network and
restrict it to the source/destination. In our implementation,
each peer, t, maintains the cost, ;4 X d; 4 associated with
the peer ¢ to which it directs its congestion edge. In case
another peer, r, invites ¢ to establish its congestion edge
toward it, ¢ accepts only if v, X dt, exceeds v 4 X di q.
Due to space limitations we omit the procedure through
which a peer estimates the load and the delay from another
peer.

Evaluation. We studied the performance of the conges-
tion edge heuristic via the following experiment. We used
the peer placement depicted in Fig. 5, the same as the
one used in the experiments for the move heuristic. Ad-
ditionally, we augmented the topology with edges derived
from the Delaunay Graph as well as with Kleinberg edges.
We simulated a combination of homogeneous and non-
homogeneous traffic. The homogeneous traffic consisted
of events arriving with intensity 7. = 0.05 events/m2-sec
and queries arriving with intensity v, = 0.04 queries/m?-
sec. For the non-homogeneous traffic, we created a fixed
number, 10, of traffic ‘dipoles’. The source and destination
of each dipole were placed at random on the topology.
For simplicity, in our implementation all dipoles had a
traffic intensity equal t0 v,on_yniform = 0-1 queries/sec.
The service time for each event/query was an independent
exponential random variable with rate 4 = 1. The rate of
the exponential clock triggering the heuristic at the peers
was set 0 ficonoestion edge = 0.2 and the simulation
lasted for T, = 50000 time units. The simulation duration
was chosen so as to ensure that on average at least 100
cycles of the heuristic are performed, where a cycle is
defined as the period where all the peers perform the
heuristic.

In Fig. 9 we vary the dipoles’ separation and plot the
average delay for traffic. The traffic consists of events,
uniform queries, and non-uniform queries. The intuition is
that as the separation of the dipoles increases more peers
will suffer from the resulting transit traffic.

The relative performance of the two schemes matches
our intuition. Indeed, the mean delay achieved by our
heuristic remains essentially the same regardless of the
dipole separation, as opposed to the delay of the base case
without our heuristic.

One could argue that the comparison we presented in
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Fig. 9. Average traffic delay vs. dipole sepa-
ration for v, on.-uniform = 0-1-

our previous experiments is not fair since peers under
our heuristic have one more edge to route queries, the
congestion edge. Note that even if additional Kleinberg
edges were added to the scheme without our heuristic, the
performance would still be poor. It is the edges that are
congestion-aware that provide the real additional benefit
when traffic is non-homogeneous.

IV. Conclusion and ongoing work.

In this paper we focused on addressing the impact of
non-homogeneity on the performance of a p2p architec-
ture for storing spatio-temporal events. Non-homogeneity
manifests itself in p2p networks not only in terms of the
traffic but in terms of peer locations and thus topology.
Peers with disproportionally large cells can become hot-
spots for the performance of the entire network. We
presented mechanisms to augment the overlay topology
with congestion driven edges and/or peer incentives to
dynamically reconfigure the topology to achieve an even
traffic distribution. In our ongoing work we are extending
our platform’s capabilities with a method to add fault-
tolerance by replicating data to the peers closest to each
event’s associated location. Additionally, we are extending
data management to address issues like load-balancing
enabling, if needed, better sharing of storage resources
when they are limited at each peer.
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