
Using Randomly Assembled Networks for

Computation?

Andrey Zykov and Gustavo de Veciana

Department of Electrical & Computer Engineering
The University of Texas at Austin

Abstract. This paper makes the case for perturbation-based compu-
tational model as a promising choice for implementing next generation
ubiquitous information applications on emerging nanotechnologies. Our
argument centers on its suitability for technologies with low manufac-
turing precision, high defect densities and performance uncertainty. This
paper discusses some of the possible advantages and pitfalls of this ap-
proach, and associated novel design principles.

Key words: perturbation, computation model, embedded systems

1 Introduction

Advances in the synthesis and self-assembly of nanoelectronic devices suggest
that the ability to manufacture dense nanofabrics is on the near horizon, see e.g.,
[1, 2]. Yet, effective ways of utilizing emerging nanoelectronic technologies still
elude us. The tremendous increase in device density afforded by nanotechnologies
is expected to be accompanied by substantial increases in defect densities, per-
formance variability, and susceptibility to single event upsets caused by cosmic
radiation (energetic neutrons) and alpha particles. System-level design adher-
ing to current computational models may thus soon reach fundamental scaling
limits, where the increased densities are countered by overheads associated with
achieving defect- and fault-tolerant designs that are robust to performance vari-
ability. Thus, it is critical to consider and explore alternative computational
models that can operate under such difficult conditions.

In this paper, we investigate a promising new class of computational model,
called perturbation-based and show its potential to synergistically address the
two sides of the complex system design equation: technology and applications.
On one hand we argue it suitability in overcomming the reliability challenges
associated with emerging nanoelectronics. On the other hand we focus on meet-
ing the needs and leveraging the characteristics of emerging, but soon to be
ubiquitous, soft real-time processing and control applications.

? This work is supported by the Gigascale Systems Research Center under the ‘Alter-
native’ Theme.



2 Andrey Zykov and Gustavo de Veciana

Fig. 1. On the left a Perturbation-based machine. On the right a proposed hybrid
eNano-CMOS configurable platform for perturbation-based computing.

2 Principles of Perturbation-Based Computing

Perturbation-based computational models are ideal for implementing complex
non-linear filters (operators) associated with real-time information processing.
The key idea is to perform a non-linear projection of the input stream into a
high dimensional space using a complex dynamical system. If the pool of dy-
namics capturing information about current and past stimuli is sufficiently rich,
any desired non-linear filtering task’s output(s) can be derived, or ‘composed’
from it. Below we develop this basic idea in a more rigorous manner. Note this
computational models was recently independently discovered by two research
groups [3, 4]. Yet, their work was driven by research pursuits and objectives
quite different from those in this paper.

Perturbation-based machines. Fig. 1 symbolically depicts a perturbation-
based machine M . As can be seen, it maps an input function u(·) to an output
function y(·), relying on two key components: a high dimensional dynamical sys-
tem, implementing the machine’s computational core DM , and an output stage

fM . The key premise underlying perturbation-based computing is that, by using
computational cores realized by sufficiently complex, even random, dynamical
systems, one can essentially project inputs over a sufficiently large family of
basis operators for any given set applications and desired approximation level
[3]. A machine’s DM is thus a dynamical system realizing a very large pool
of candidate operators, while the above mentioned DM denotes a specific set
of basis operators required for a given approximation. As such, the same com-
putational core DM can be used in realizing various tasks. The output stage
is the task dependent part of this machine, playing the role of both selecting
and composing the ‘relevant’ basis operators through a memoryless function. As
shown in Fig. 1, the computational core DM generates an internal state xM (t),
corresponding to a causal response to the input u. This is a non-linear projec-
tion of the input stream on a high dimensional space, generated by exciting the
dynamical system associated with DM . Note that no stable internal states are
required in the computational core, it suffices to generate a sufficiently rich pool
of transient dynamics. The output stage fM maps the internal transient state to
the desired output. Note that the precise internal dynamics of the core network



Using Randomly Assembled Networks for Computation 3

need not have a specific form, as long as the core projects the input signals on
a sufficiently rich set of basis functions.

Universal approximative power and target applications. Based the
work in [5], [3] established that perturbation-based machines have universal com-
puting power – that is, machines operating ‘natively’ under this computational
model can approximate arbitrarily closely any time invariant fading memory
operator. Still, although this result tells us that the number of basis operators
required by any such approximation is finite, it says nothing about how many
such operators may be required in each case. If very high precision is required,
the number of operators may be very high for certain tasks. The proposed com-
putational model is inherently based on approximation. Therefore it is not ex-
pected to operate without errors, with perhaps the exception of approximation
of very simple functions/operators. Although for some tasks this will be unac-
ceptable, for others this presents an opportunity to tradeoff error rate against
other costs, e.g., manufacturing cost, power consumption etc. An example of
such tasks would be those involving real-time searches for opportunities, e.g.,
block matches across frames in video compression. If we miss an opportunity
this will not cause algorithm failure, instead it results in a temporarily lower
compression rate. Another class of applications involves systems with feedback,
where such small/rare errors can be compensated subsequently through feedback
overall having a negligible effect. More generally the aim is not to achieve high
precision, but rather simplicity and universality. Blocks having moderate relia-
bility can be bootstrapped to construct more complex and/or reliable operators,
e.g., through averaging or other forms of aggregation [6] or specific mechanisms
akin to the way complex logic functions are constructed from elementary logic
gates (e.g. NAND, NOR, etc).

3 Design Principles for Perturbation Based Computing

We begin this section by first proposing a hybrid eNano-CMOS platform as a rep-
resentative realization of perturbation-based machines. The machine’s compu-
tational core is implemented on an emerging nanoelectronic fabric while CMOS
is used to implement the simple (e.g., linear) read out function at the output
stage and support the machine configuration/training process. Fig. 1 shows an
abstract view of such a platform, with the key basis operators in the pool high-
lighted in bold. Clearly, this platform can directly leverage the formidable den-
sities achieved by nanotechnologies to create computational cores of essentially
arbitrary size. At the same time the more reliable CMOS layer allows to reli-
ably configure (train) the output readouts to properly approximate the desired
function. We discuss five underlying design principles next and refer the reader
to [7] for experimental results supporting them:
1. Defect-tolerance, randomly assembled cores, and training. First we
need only ensure that the core and readout connectivity are sufficiently ‘rich’ to
achieve the desired approximation after training. The designer needs only con-
trol the size and statistics of the core network without precisely specifying its



4 Andrey Zykov and Gustavo de Veciana

topology. Manufacturing defects and heterogeneity in the network become part
of its intrinsic randomness. This flexibility comes at the cost of performing a
configuration/training step for each chip – which is indeed a costly requirement.
Yet it can be viewed as ‘similar’ to the overheads associated with typical defect
tolerance approaches. Indeed the typical requirements in the latter are to detect,
i.e., map out, defects for each chip and then re-synthesize the function to avoid
defects. Defect mapping is typically done using test patterns that are either ob-
tained/generated off chip or stored on chip. Re-synthesis involves reprogramming
the function around the defects on the chip. In our case rather than defect map-
ping and re-synthesis steps we require a training step. Such training will involve
access to input-output pairs that can also be provided either off-chip or on-chip.
A comparison of the cost of mapping an re-synthesis vs training is premature.
Another potential disadvantage is possibility of excessive power consumption by
random core in contrast to precisely controlled core. However reduced control
requirements also open opportunities to make these random cores very cheap
especially in terms of power consumption.
2. Fault-tolerance through unstructured redundancy. Second, fault tol-
erance can also be partially achieved by appropriately defining the statistics
and size of the core. Intuitively, even if randomly assembled, a large dynamical
network should incorporate sufficient redundancy to allow the readout layer to
average out internal noise/soft errors. We refer to this as unstructured redun-
dancy in the core, as it need not be explicitly designed, e.g., as would be the case
with triple modular redundancy. Instead the designer need only decide on a suf-
ficiently large core to address soft faults and/or internal performance variability,
e.g., due to coupling etc. An obvious advantage of this approach is reduction in
design cost in comparison to structured redundancy. A disadvantage this comes
at a cost, bigger cores will consume more power.
3. Complete core sharing. Note that aside from general considerations on size
and network statistics detailed core characteristics are task independent. Thus
several different tasks that share the same input can in principle share its projec-
tion on the same core. For example word recognition and speaker identification
tasks for the same speech input could share the same core. Such complete and
parallel sharing of resources has the potential to substantially reduce overall sys-
tem cost in terms of both area and power. Note however that the readout layer
can not be easily shared across tasks, which may lead to a scalability problem if
a core is to be shared among a large number of tasks.
4. Weakly interconnected networks and spatial decomposition. A po-
tential problem with scaling to large cores is a scalability problem if random in-
terconnections among nodes are necessary. We propose a fourth design principle
towards overcoming this problem. The idea is that to introduce some hierarchy
by only weakly interconnecting smaller cores. This allows one to control the in-
terconnect costs as the size of the cores increase. Moreover this seems a natural
way to randomly assemble cores, i.e., one where the primary form of connectivity
is local. More generally one can imagine designs that leverage a large number



Using Randomly Assembled Networks for Computation 5

of relatively small cores which serve as building blocks to create bigger cores as
needed.
5. Nearly decomposable core dynamics. The last design principle we pro-
pose relates to decomposition in terms of temporal dynamics. The idea is that
some applications are driven by (possibly coupled) dynamics at different time
scales, which a designer might recognize and incorporate into his core design. For
example a core design might include weakly interconnected cores operating at
different speeds. One can imagine, creating cores with different response times to
input signals, through some form of doping and/or processing. For applications
exhibiting dependencies on multiple time scales such decompositions are very
effective at reducing complexity. Furthermore purposefully combining fast and
slow cores may present further advantages towards reducing power consumption.
Note that the principle here is not perform careful core design, but simply define
some large scale characteristics for connectivity and dynamics of its constituent
subnetworks.

4 Conclusion

This paper explores an alternative computational model for “nanocomputing”.
We have pointed out a variety of interesting characteristics, such as the possi-
bility of using randomly assembled nano network cores for computation. This
approach is consistent with circumventing what appears to be an intrinsic dif-
ficulty and thus costly requirement of precisely controlling the manufacturing
of nano systems. So the question is to what degree can one give up on precise
control over manufacturing and still devise useful computation systems? In this
paper we presented one possible approach but there may be others (perhaps
more general) models.

References

1. G. Bourianoff, “The future of nanocomputing,” Computer Magazine, pp. 44–49,
Aug. 2003.

2. “Sematech. international technology roadmap for semicon-
ductors - 2004 update on emerging research devices.”
http://www.itrs.net/Common/2004Update/2004Update.htm.

3. W. Maass, T. Natschlager, and H. Markram, “Real-time computing without stable
states: A new framework for neural computation based on perturbations,” Neural

Computation, vol. 14, no. 11, pp. 2531–2560, 2002.
4. H. Jaeger, “The echo state approach to analysing and training recurrent neural

networks,” GMD-Report 148, German Nat. Res. Inst. Comp. Sci., 2001.
5. S. Boyd and L. Chua, “Fading memory and the problem of approximating nonlinear

operators with volterra series,” IEEE Trans. Circ. Sys., vol. 32, pp. 1150–1161, 1985.
6. G. V. Varatkar, S. Narayanan, N. Shanbhag, and D. L. Jones, “Sensor network-on-

chip,” in International Symposium on SOC, November 2007.
7. A. Zykov, M. Jacome, and G. de Veciana, “Perturbation-based computing for next-

generation embedded IT targeted at emerging nanoelectronics,” Submitted, 2008.


