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In this thesis we propose research towards evaluating wireless systems which may be based

on multiple providers using different technologies, and in which end-systems can select among

multiple wireless interfaces and/or modes of communication. A key element in this context is

the typically distributed decision making mechanism and associated criterion used by end nodes

to select among multiple interfaces or modes of communication. We propose to investigate this

problem from two perspectives. First how such decision-making impacts the ability of providers

compete with each other. And second, how one might design such decision making mechanisms

along with associated network engineering tools so as to minimize cost and optimize system

capacity when providers or end-systems choose to cooperate. Our focus will be to investigate

the large-scale system performance. As such we propose to devise simple stochastic geometric

models capturing the salient features of such systems, e.g., locations of access points and users,

coverage areas, spatial nature of available capacity and modeling of decision-making strategies

which are spatially dependent. The research presented in this thesis provides a formal basis

along with some of the basic insights underlying the design and evaluation of such large-scale
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Multi-provider scenarios in future wireless networking

The last few decades have been marked by intense growth of wireless communications indus-
try [1]. One attribute of this growth is the complex and heterogeneous networking landscape,
integrating the various technologies that have emerged in recent years. The reason for this di-
versity is twofold. Firstly, emerging technologies have to coexist with legacy systems. Thus
new designs can not immediately replace their less efficient predecessors, due to either in-
vestors’ uncertainty or reluctance caused by possibly large investments that have already been
made to predecessor technologies. For example as of now, Code Division Multiple Access
(CDMA)-based schemes are widely admitted to be dominant in the next generation of cellular
telephony [2]. CDMA was first introduced [3] in 1991, followed by QualComm’s adopting it
for cellular IS-95 standard in 1993 [4]. It was, however, not until a few years ago that broad
recognition of this technology was achieved. Moreover, the European wireless communications
market is still dominated by a Time Division Multiple Access (TDMA)-based GSM technology.

Secondly, different technologies can accomplish different goals, and each technology
may be advantageous under particular conditions. For example, networks engineered using a
currently existing IEEE 802.11b standard can deliver data rates of up to about 11 Mbs. However,
since they operate in an unlicensed (ISM) portion of spectrum, they are required by FCC1

to obey rigid power ceiling constraints. This stipulates extremely limited coverage of such
networks, making them suitable only for small (office or home) networking. By contrast, third
generation (3G) wide area networks (WAN) technologies strive to achieve a uniform coverage.
As they use a quite expensive and limited portion of licensed spectrum, the achieved data rates
are much lower. For example in 1XEV-DO (High Data Rate) systems, the achievable down-link

1Federal Communication Commission
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rates theoretically go up to at most 2.4 Mbs.
It is unlikely that future generations of wireless networks will exhibit reduced complex-

ity. In fact, a large fraction of community researching the new fourth generation (4G) wireless
networks concentrates on providing mechanisms for supporting interoperability, e.g., global
roaming across multiple wireless networks [5] – for example, from a cellular network to a
satellite-based network to a high-bandwidth wireless local area network (WLAN). This con-
firms that 4G wireless networks will be consisting of multiple entities, where each is designed
to achieve a particular engineering goal.

It is already frequently the case that wireless networks employing non-interfering tech-
nologies, e.g., operating in different portions of spectrum, co-exist within the same spatial lo-
cations. We will refer to networks consisting of such non-interfering entities as heterogeneous

wireless networks. Future generation networks are likely to include joint design of heteroge-
neous networks, which exploit strengths of various technologies. For example 3G technology
can provide ubiquitous mobile access, but performs much worse inside buildings [2]. But then,
3G service could be augmented in each building by installing a non-interfering WLAN within
it.

1.1.2 Role of decision making and diversity in wireless connectivity

Guaranteeing seamless transition among heterogeneous networks requires end-devices with
multiple interfaces that are able to communicate with different network entities. Examples
of such devices already exist today. For example, a recently developed “dual-mode” phone has
two interfaces which permit it to realize a call through a wide area cellular network or an IEEE
802.11 WLAN access point (hotspot), see e.g., [6]. Users of such devices are able to choose be-
tween the services different providers offer so as to exploit the diversity of technology/providers.
The mode selection mechanism at the end-device could be performed by the user, by observing
the quality of received services, monitoring the signal strength, etc. However, a truly seam-
less implementation would require mode selection to be controlled by a properly configured
software client (which we will refer to as “agent”), that resides within the end-device [7].

Clearly, the way that those agents are configured to perform mode selection will affect
the ability of the constituent networks to compete for a share of the subscribers, and thus affect-
ing the revenues that corresponding service providers are able to collect. Understanding how the
decision-making mechanism influences “competitiveness” of different network entities proves
useful since it allows one to evaluate the viability of a particular technology with respect to the
others. For example, recently there was quite a lot of qualitative discussion of how WiFi tech-
nology is able to compete with 3G in providing a ubiquitous wireless access, see e.g. [8, 9, 10].
However no precise convincing analytic models have been proposed and there is still quite a lot
of controversy on the conclusions that different groups have reached on this matter.

2



The way that the mode selection mechanism is implemented at end devices, clearly, also
affects the performance of heterogeneous systems. Indeed, it is likely that when a large number
of agents decide to choose a particular network, that this network would become congested.
We envision network systems with cooperating constituent entities that are able to dynamically
redistribute load, by instantiating particular rules for mode selection across the end-devices and
networks. Note that one way to realize globally optimal mode selection is to impose central-
ized control on the end-nodes’ agents – such implementation is suggested in the context of the
so-called “tightly coupled” [11] heterogeneous networks, which we discuss in greater length in
Chapter 4. In this case the central controller would likely to have to solve a complex optimiza-
tion problem that involves a lot of information about users’ locations, link qualities, amount of
interference, current resource congestion levels, etc. However, such an approach will lead to
extra complexity and infrastructure investments and is likely to also not scale well [12]. Thus,
instead, an attractive design option is a “loosely coupled” architecture, in which mode selec-
tions are realized by the agents independently, based on “local” information about the state of
the network2. The broad research challenge in this direction is effective design of such agents’
decision-making strategies, such that cooperative multi-provider networks achieve substantial
performance gains.

Allowing for multiple communication modes in wireless devices will also enable more
complex cooperation opportunities among wireless end nodes. For example, the end-devices
that are able to reliably communicate using a particular mode can organize into ad hoc clus-
ters. Nodes within such ad hoc clusters can cooperate, e.g., by relaying each others’ packets
to extend the reach of a sparse infrastructure [14, 15, 16]; or participate in joint message en-
coding/decoding, which would enable simple single antenna devices to achieve performance of
complex multi-antenna systems [17, 18]. Designing mode selection mechanisms in this setting
is even more complex, since there are many opportunities to explore.

1.2 Research objectives and methodology

1.2.1 Objectives

The objective of this dissertation is to investigate how the mode selection (decision making)
mechanisms that are employed within end-devices affect the ability of networking entities in a
heterogeneous network to compete or cooperate. We split this complex objective into a series of
smaller tasks. We start by studying competition and cooperation between providers in a multi-

provider network. Then we move to analysis of the benefits that the end devices and network
systems could reap from cooperation, by studying the so-called hybrid networks.

2Such an approach would be reminiscent to the way CDMA uplink power control is realized [13].
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Specifically, we first focus on a scenario where users may choose among two wireless
data access providers: a wireless wide area network (WAN) service provider engineered to
achieve uniform spatial coverage, and a hotspot provider, i.e., an aggregator of WLAN access
points each with limited coverage, and used as throughput enhancements at local hotspots areas.
When decision-making is solely controlled by users of wireless devices, we investigate the
impact the decision making criterion has on the competitiveness of the two networks. We then
investigate if distributed decision-making mechanisms could be devised (i.e. imposed on end-
devices by network designers) so that cooperative multi-provider wireless networks and end-
nodes see substantial overall performance gains.

As mentioned above, allowing for cooperation among end nodes will lead to more com-
munication modalities. As there are many ways in which end devices can cooperate, providing
a truly optimal mode selection mechanism that covers all cooperation possibilities is a hard task.
Our approach to assessing the value of end-node cooperation is to allow for only one additional
mode – namely – ad hoc relaying. We study a hybrid network model, which consists of “ad
hoc” nodes, that can relay information among each other via wireless links, and of infrastruc-
ture nodes (base stations) that can communicate with ad hoc nodes in a wireless manner are
themselves interconnected via independent high capacity wired or wireless links.

Given that communication in such networks could be realized in a variety of different
ways, we will investigate what is the “optimal” way to operate such networks. Optimality can be
associated with a number of different criteria, in particular, given a particular traffic pattern, we
could be interested in ensuring that nodes experience on average the least possible delay, or in
guaranteeing that each node sees the largest possible common throughput. Following [19][20]
we associate optimality with the network capacity, that is we attempt to find communication
paradigms (such as optimal scheduling, routing, and communication mode selection at the end
nodes) that guarantee each node with the largest common throughput.

1.2.2 A note on methodology

This thesis will emphasize the role of spatial dimension in wireless systems. Spatial relation-
ships are clearly fundamental in designing wireless systems. They play a critical role in de-
termining power link budgets, coverage areas, co-cell interference, and spatial reuse in cellular
systems. Interest in ad hoc networking, and approaches to enabling wireless access to the In-
ternet, have placed renewed emphasis on the spatial dimension. For example, research on the
“capacity scaling” of ad hoc networks with the number of participating nodes has highlighted
its fundamental relationship with spatial packings of concurrent transmissions[19, 21]. Simi-
larly, recent innovations at the physical and MAC layers, e.g., opportunistic beamforming and
multiple antenna systems, are based on exploiting temporal and spatial diversity seen at end
nodes in a wireless environment, see e.g., [22]–[26].
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Explicit modeling of spatial relationships among devices and/or access nodes has histor-
ically taken either a deterministic approach, e.g., selecting a particular pattern for the locations
of access points or devices, or introduced the full complexity of modeling an environment’s
propagation characteristics, (see, e.g. [27]). Recently, researchers have proposed an alternative
approach, based on stochastic geometric models, which permits capturing some of the richness
of wireless environments, e.g., channel diversity, interference, and spatial load fluctuations,
without resorting to unwieldy complexity [28]–[31]. Our own experience with this approach
strongly suggests it provides a valuable tool to address the many challenges faced in engineer-
ing wireless networks [32, 33]. In this thesis we stress the role that spatial analysis of wireless
systems can play in driving research towards improving old, and devising new, communication
modalities.

1.3 Organization of the dissertation

We split the thesis into two parts. Part I deals with analysis of competition and cooperation
in a multi-provider network that consists of a WAN and a set of WLANs. Part II focuses on
modeling hybrid wireless networks.

Specifically, in Chapter 2 we will introduce a stochastic-geometric model for the lo-
cations of users, WAN and WLAN access points, service zones and describe an approach to
modeling the dynamics of users’ decisions. We will demonstrate how the dynamics eventually
reach a fixed point in the space of configurations for users’ choices which we will refer to as an
“equilibrium”. Then we will show how decision-making mechanisms on end-devices affect the
structure such equilibria possess. The structure of such equilibria is used to assess the competi-
tiveness of WAN with respect to the WLANs. In particular, our approach allows one to analyze
via simulation the dependence of a provider’s competitiveness on a set of a few parameters,
such as the aggregate bandwidths available at WAN and WLAN access points, spatial densities
of access points and users, service prices as well as the characteristics of traffic patterns that
users generate. In an effort to provide analytic tools, in Chapter 3 we analyze an asymptotic
scenario where the service area of each WAN AP contains a significantly large number of users
and hotspots.

In Chapter 4 we shift our focus from the analysis of competition to the analysis of
the benefits that the hotspots and WAN could gain from cooperation and study the so-called
“loosely coupled” heterogeneous networks. In such networks both WAN and WLANs operate
independently, and thus the decision-making has to be located within the dual-mode devices.
We demonstrate that WAN is able to statistically multiplex spatial load fluctuations on hotspots,
by removing the extra load from overly congested hotspots. Such load-smoothing capability
of the WAN, however, can only be exploited if congestion-sensitive decision making mecha-
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nisms are imposed on end-devices. Finally, in Chapter 4 we consider the problems of backhaul
dimensioning, jointly optimized with congestion-sensitive decision-making. We show that our
optimal design enables one to achieve target performance in a system while realizing significant
savings in resource costs.

In Chapter 5 we complement the work discussed in Chapter 4 via studying “tightly-
coupled” heterogeneous wireless systems. In such systems, agents within end-devices are also
provided with additional feedback from the different networking components, which enable
agents’ decisions to be better tuned towards the needs of the overall network. We formulate and
evaluate centralized and distributed decision-making algorithms, akin to load-balancing algo-
rithms in wire-line networks, that enable further performance gains in multi-provider wireless
systems. The major contribution of Chapter 5 is formulation of decision-making metric which
ties together various congestion signals with the amount of interference at particular spatial
locations.

Chapter 6 provides background on hybrid networks and their modeling. We briefly re-
view the related work on the scaling of hybrid networks’ capacity, in the case when the ad
hoc and infrastructure communications share channel resources. Previous work on the capacity
scaling of hybrid networks assessed only what was possible for a narrow set of routing and
scheduling strategies. Our approach provides a rigorous capacity analysis which is much more
systematic and general than previous work.

Chapter 7 summarizes the major contributions of this thesis and briefly outlines the pos-
sible directions for future research.
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Part I

Multi-provider wireless networks
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Chapter 2

Model and analysis

In this chapter we develop a model for a multi-provider network that consists of two entities
operating within the same area, and using non-interfering technologies: a wireless wide area
network (WAN) and a set of wireless local area networks (WLANs/hotspots). The heteroge-
neous wireless system which we study is an example of a “hierarchical overlay”, a “multi-tier”,
or an “umbrella” network, with macro- and micro-cell levels corresponding to the WAN and
WLANs coverage areas respectively. Efficient design of such networks was addressed in the
past in the context of cellular voice applications [34]–[37]. It was noticed that introducing an
overlay level has a capability to reduce the number of dropped calls due to handovers. In these
studies both hierarchical layers operate over a shared spectral band, thus the efforts targeted
ways to efficiently allocate spectrum among layers.

Emerging integrated 3G and WiFi networks [7]–[11] and dual-mode wireless devices [6]
have stimulated renewed interest in the problem of heterogeneous network design [42]–[44].
The major application of these networks is providing enhanced data services, which have dras-
tically different quality of service requirements than circuit-switched voice. In addition, dif-
ferent networking components may use orthogonal technologies, e.g. they might utilize non-
overlapping portions of spectrum. Thus the design tools for hierarchical networks where the
layers share spectrum, developed in [34]–[37] for circuit-switched applications can not be read-
ily adopted in the context of heterogeneous wireless data networks.

2.1 Summary of main features

In our model it is assumed that users have dual mode devices which are able to communi-
cate with both hotspots and the WAN access points and thus, users that are covered by both
a hotspot and the WAN can select between the two providers by choosing the corresponding
interface/mode. As discussed in Chapter 1, mode selection can be carried out by the user of
the device or a properly configured software client. To abstract from these two cases, in what
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follows we will use the word “agent” to refer to the entity responsible for decision-making at
the end-device.

Our setup incorporates two major components: a geometric model for providers’ and
users’ spatial interactions and a utility-based model for agents’ decision-making. In partic-
ular, to capture the geometry of the network we use a simple geometric framework akin the
stochastic-geometric models first introduced in [28]. The basic idea is to represent the locations
of subscribers and access points (APs) as realizations of spatial point processes (e.g. Poisson)
and the service zones associated with the access points as functionals of the realizations of these
processes. The main advantage of such models is that they allow one to analytically capture the
effect of spatial and load variations in the system based on a reduced set of salient parameters.

We assume that agents make greedy decisions in an effort to maximize their associated
utility function, which captures users’ valuation of the available services. Each agent switches to
the provider offering the higher utility at random times, where those times might, for example,
model the closing and initiation of communication sessions. Our geometric model is such that
it imposes agents in close vicinity of each other to choose from similar sets of access points.
Thus whenever an agent switches to an access point it affects the congestion level that is seen by
all nearby users already connected to this access point. As the perceived quality of service, and
hence agents’ utilities are likely to depend on resource congestion level, the agents’ provider
selections may change over time. This leads to dynamics for the configuration of agents choices,
where decisions of agents within a limited vicinity of each other are inter-dependent. We show
that these dynamics eventually converges to a not necessarily unique, but fixed configuration,
which we refer to as an equilibrium.

In Section 2.6, we study the properties of agents’ decisions equilibria. In particular we
concentrate on the simple, but quite insightful case where utilities depend only on resource con-
gestion level, and deployed hotspots are identical, in that they are characterized by the same
bandwidth, coverage radius, etc. We define a notion of uniqueness for equilibria and provide
conditions under which the equilibrium is unique. Guaranteeing uniqueness will prove useful
in two respects. On the one hand, in Chapter 3 it will allow us to devise, an asymptotic estimate
for a fraction of agents that choose either of the providers, and hence to estimate the competi-
tiveness of providers with each other. On the other hand, we will show in Chapter 4 that systems
with unique equilibrium possess properties that could be exploited when designing cooperative
multi-provider systems under a target performance constraint.

2.2 Relation to existing work

Models that account for interactions between decision-making and systems’ spatial properties
have been considered in a number of applications spanning various disciplines. Thus, e.g. in
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economics, one of the most famous models that explicitly analyzes the interplay of decision-
making and spatial relationships across agents is the Hotelling spatial competition model [45,
46]. In its simplest version the model considers uniformly distributed customers on a line
segment and two initially arbitrarily located firms within the same segment. Customers buy the
same goods from the firm closest to them, thus the amount of revenue a firm is able to generate,
given some fixed locations of both firms, is proportional to the portion of the line segment that
is served by this firm. It is assumed that at each time slot a single firm changes its location
so as to serve a larger portion of the segment, thus a firm’s decision-making incorporates the
information of spatial location of the competing firm.

Similarly, in statistical mechanics, Ising models [47] are used to describe phase transi-
tions in magnetic materials. The simplest Ising model consists of a number of entities (spins)
that are in some arbitrary way distributed on a line. The spins can only be in two states (“up”
or “down”) which are identified by the spin orientation and they interact with each other and an
external magnetic field. The energy associated with this interaction depends on the orientation
of all individual spins in the system. One can associate changes of orientation of each individual
spin (due to physical forces exerted on it) as the spin’s decision-making. Here again, changes
in spin orientations are implicitly linked to spatial configuration of the system.

The main contribution of our modeling approach is that it explicitly ties various spatial
factors (and associated uncertainty) with agents’ decision-making in the context of heteroge-
neous wireless networks. Our geometric model is quite general in that it allows a lot of flexi-
bility in the way the geometry of the network is defined. For example, the locations of access
points and users could be assumed either to be deterministic or random, and the service zones
associated with access points could be deterministically given or random and dependent on the
locations of access points.

Our choice to represent decision-making via utility functions is motivated by the large
variety of models studied in economics and game theory, (see, e.g. [48]). Our analysis is on
a par with that for game-theoretic models which take into account the effects of agents learn-
ing [49, 50] and attempt to not only identify possible equilibria in the system but to study the
dynamics of decision-making in time. The study of the system’s convergence to equilibrium is
also reminiscent of the analysis of convergence problems in distributed computation theory [51]
and stability problems addressed in control theory [52]. It turns out, however, that straightfor-
ward application of standard control-theoretic tools to analysis of convergence in our system
presents certain challenges, due to the fact that we can not impose restrictions on how fast the
changes in the system are allowed to occur. Indeed, our model does not assume that users are
cooperative which means any user is permitted to redirect all its flow from one access point
to another as opposed to gradually shifting it as would be required by slow adaptation mecha-
nisms. However, some existing game-theoretic work answers (however not fully) some of the
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questions we pose, and we further comment on this matter in Section 2.5.

2.3 Spatial model and notation

2.3.1 General formulation

In this section we introduce a geometric model that captures the key features of spatial inter-
actions between users, the WAN and WLANs. The setup has two components: (i) a model for
locations of access points (APs) of various types, and (ii) a model for service zones associated
with each access point. Here and in what follows by the “service zone” of a WAN or a hotspot
AP we mean the set of locations on the plane, that the AP can serve.

We will let locations of subscribers, hotspots and WAN APs be represented by the corre-
sponding realization of three simple1 point processes Πa, Πh and Πw within a bounded spatial
region D. We will denote the resulting locations of agents, hotspots and WAN AP respectively
via πa ≡ {ai}I

i=1, πh ≡ {hk}K
k=1 and πw ≡ {wm}M

m=1 and assume that these locations are inde-
pendent of time (i.e. agents and access points do not move). With each AP we associate a
static (in time) geometric object with (random) size and shape that might depend on the spatial
realization of the APs and agents within D – these geometric objects will serve as first order
approximations for the APs’ service zones. Below we will use Sh

k and Sw
m to refer to the service

zones of a hotspot hk and wm respectively.
Note that in practice the particular shape of service zones would depend on the underly-

ing technology. Thus, for example, in an IS-95 system a mobile decides whether it belongs to
the service zone of a particular AP by comparing the strength of pilot signals in its vicinity. In
our model, for the reasons we will explain later, we will impose that service zones obey a set of
restrictions, which are listed below:

Assumption 2.1.

1. The WAN has full coverage, i.e.
⋃M

m=1 Sw
m = D.

2. The service zones of distinct WAN (WLAN) APs are disjoint, i.e. Sw
m1
∩ Sw

m2
= /0 and

Sh
k1
∩Sh

k2
= /0, for m1 6= m2, and k1 6= k2.

3. The service zone of any WLAN AP is fully contained within a service zone of some WAN

AP, i.e. for all k = 1,2, . . . ,K, Sh
k ⊂ Sw

m, for some m, 1≤ m≤M.

Assumption 2.1.1 is typically true when the WAN utilizes a portion of licensed spectrum
and APs and mobiles use large enough powers for their transmissions. Assumption 2.1.2 is
valid for scenarios where WLANs are sufficiently spaced or when they operate using orthogonal

1The location of each WAN or hotspot AP is not shared by any other AP [53], i.e. points do not overlap.
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spectra. It also holds for some current WAN technologies, but would not be true for systems
implementing a “soft handoff”. For these systems a mobile “on the cell boundary” may be
simultaneously served by several WAN APs, however Assumption 2.1.3 can still be accepted as
a reasonable, first order approximation. Finally, Assumption 2.1.3 is motivated by the fact that
WAN and WLAN technologies operate at significantly different spatial coverage scales. We
will also impose the following technical assumption on the realization of agents and hotspots
within WAN service zones, which is satisfied in all practical situations:

Assumption 2.2. For all m ∈ N, the service zones Sw
m contains an almost surely finite number

of agents and hotspots.

We postulate that the agents covered by the service zone of a WAN and a WLAN AP
can connect to either. We let Cm be the subset of Sw

m that includes spatial locations where agents
would have the option to choose among a hotspot and WAN AP wm, i.e.:

Cm ,
⋃

k∈K m

Sh
k ,

where K m denotes the set of indices of hotspots located within the Sw
m. (for notation summary,

see Table (2.3.1)) Users which fall in C̄m , Sw
m \Cm can not make a choice and will be assumed

to automatically connect to WAN AP wm. By contrast, an agent ai ∈ Cm is also covered by
some hotspot hk’s service zone and can choose between connecting to either hk or the WAN AP
wm. Note that the set of Assumptions 2.1 effectively constraints the agents covered by the same
WLAN to select between this WLAN and the same WAN AP2.

2.3.2 Example of defining service zones

We now give a particular example in which we define service zones so that they obey As-
sumption 2.1. Figure 2.1 a exhibits a realization for a stochastic geometric model for the two
competing wireless access providers: WAN base stations are shown as boxes, with associated
coverage areas modeled by a Voronoi3 tessellation, i.e., each access point is responsible for
locations which are closest to it4. Thus, the WAN provider’s service is available at all spatial
locations. By contrast, the second provider’s WLAN access points, shown as triangles, have
limited coverage areas which are modeled by discs centered at each access point. This captures
a technology with a highly constrained transmit power, e.g., IEEE 802.11 access points sharing
unlicensed spectrum.

2As will be seen later this requirement makes each agent’s choice contingent on information available locally
at WAN AP wm.

3Voronoi cell of wm ∈ πw is the set of all points on the plane that are closer to wm than to any wn ∈ πw, n 6= m.
4In practice, there would be overlap among coverage areas associated with base stations, yet this is a reasonable

approximation in the case where relatively high power levels are used, see e.g., [54].
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Πa Point process modeling agents’ locations
Πh Point process modeling hotspots’ locations
Πw Point process modeling WAN AP locations’

πa, πh, πw Realization of Πa, Πh, Πw

π(A) All points of a realization π that fall within the set A∣∣π(A)
∣∣ Number of points in π(A)

|x| Length of vector x ∈ R2

B(x,r) Disc of radius r centered at x ∈ R2

V w
m Voronoi cell of WAN AP wm ∈ πw

V h
k Voronoi cell of hotspot AP hk ∈ πh

K m {k : hk ∈ πh(V w
m )}, indices of hotspots located within the Voronoi cell V w

m
Sh

k Service zone of hotspot hk
Sw

m Service zone of WAN AP wm
Cm Subset of Sw

m where agents can make choices
C̄m Sw

m \Cm
Mw

m Total number of agents in Sw
m

Mh
k Total number of agents in Sh

k
MCm Total number of agents in Cm
MC̄m

Total number of agents in C̄m

Nw
m(t) Total number of agents connected to WAN AP wm at time t

Nh
k (t) Number of agents connected to hotspot hk at time t, where k is s.t. ai ∈ Sh

k

Uw
i

(
Nw

m(t)
)

Utility function of agent ai ∈ Sw
m, connected to WAN AP wm at time t

Uh
j

(
Nh

k (t)
)

Utility function of agent a j ∈ Sh
k connected to hotspot hk at time t

Table 2.1: Notation Summary

We formally define the service zones as follows. With each hotspot hk ∈ πh we associate
a disc B(hk,d) of radius d > 0 and centered at hk. We assume that service from hk is available
only within the disc (see Figure 2.1). In addition, we assume that agents desiring to connect
to a hotspot will connect only to the closest feasible hotspot. This yields a service zone Sh

k for
hotspot AP hk given by:

Sh
k , V h

k ∩B(hk,d) .

For each WAN AP wm ∈ πw we define its service zone, Sw
m, to be its Voronoi cell, V w

m , augmented
by the service zones of the hotspots that have their APs within V w

m :

Sw
m = V w

m

⋃

 ⋃

k∈K m

Sh
k


\


 ⋃

l∈∪n 6=mK n

Sh
l


 ,
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(fixed radius discs)

LAN Access 
Point (AP)

WAN AP’s
coverage area
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(a) (b)

Figure 2.1: Example of defining WAN and WLAN service zones to ensure Assumptions 2.1.1-3.
(a): Bird’s eye view of network geometry. (b): WAN AP service zone definition.

(in this case K m denotes the set of indices of hotspots located within the Voronoi cell V w
m ). Note

that each agent ai ∈ πa selects between connecting to the closest hotspot AP hk (if it is covered
by its service zone) and the WAN AP wm which contains hk in its service zone.

2.4 Modeling decision making

Whenever an agent is covered by service zones of two different APs she can potentially choose
which AP to connect to. Agents can base these decisions on the distance from an access point,
amount of received bandwidth, service price, etc. To make our approach general, we assume
that agents base their choices on a particular utility function that captures a user’s valuation of
the quality of received services. We will consider two types of utility functions which we define
below.

Definition 2.1. We say that the utility function Uw
j (Uh

j ) of an agent a j connected to WAN AP

(hotspot AP), is congestion and agent dependent if Uw
j (Uh

j ) is a function of a total number of

agents connected to the WAN AP (the hotspot AP), and possibly is different for each j.

Example 2.1. We may have a utility Uw
j for an agent a j connected to a WAN AP wm which

depends linearly on the throughput T w
j that the agent obtains by connecting to wm. Assuming

that the WAN provider charges each agent p units of currency per unit service rate that an agent
is granted, we have, for some constant a > 0:

Uw
j = (a− p)T w

j .

Note that T w
j depends on the resource allocation mechanisms employed at the WAN AP. At the

same time, T w
j may be “agent dependent”, in the sense that it may depend on the location of the
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agent relative to the WAN AP. For example, WAN APs might serve agents in a time division
fashion and grant them equal share of the available time slots. However, the amount of data
that the WAN AP is able to deliver to (receive from) agents within their slot shares varies across
agents, due to the difference in the quality of their channels.

Let Rw
j denote the data rate of an agent if it was the only one served by the WAN. Clearly

Rw
j depends on many factors, e.g. quality of channel available to agent a j, particular power

control strategies used by WAN AP, etc. Thus, for example we might roughly model this as:

Rw
j = CEη j log(1+η j) ,

where C > 0 is some constant, and the expectation is taken over the distribution of SINR η j

seen by agent a j at its location. Now, assuming there are Nw
m agents connected to WAN AP

wm, and equal time allocation among agents, we have T w
j = Rw

j /Nw
m . Hence we arrive at the

following expression for utility, which has a congestion and agent dependent structure:

Uw
j (Nw

m) =
(a− p)Rw

j

Nw
m

.

Example 2.2. Opportunistic scheduling is a technique that is designed to exploit inherent diver-
sity of wireless media and is utilized in many third generation wireless systems, see, e.g. [55].
For example, in Qualcomm’s 1XEV-DO systems, a WAN AP serves only one user per time
slot with full available power, whereas the selected user is the one achieving the largest cur-
rent per-slot throughput relative to the average throughput available at the user’s location. It
can be shown [56], that under the symmetric fading assumption, such scheduling results in a
“proportionally fair” throughput gains for each user and thus:

T w
j =

g(Nw
m)Rw

j

Nw
m

,

where g(N) is the throughput gain factor which is an increasing function of N. Note that in
general g(N) depends not only on the number of served users but also on the channel statistics
of all users served by WAN AP wm. Under the simplifying assumption that g(N) depends
solely on the number N of served users5, one can modify utilities in Example 2.1 to account for
opportunism exploited at APs. Then we have for utility function of agent a j:

Uw
j (Nw

m) = (a− p)Rw
j

g(Nw
m)

Nw
m

.

5This perhaps is not a bad assumption when the number of users is sufficiently large: for Rayleigh fading
channel statistics, for example, g(N) can be shown to grow logarithmicaly with N, thus dependence on individual
agent’s channel is likely to be weak.
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Definition 2.2. We say that a utility function Uw
j (Uh

j ) of agent a j connected to a WAN (hotspot)

AP is solely congestion dependent if it depends only on the total number of agents, N, connected

to the WAN (hotpsot) AP, and for each N ∈ N, Uw
j (N) = Uw

i (N) (Uh
j (N) = Uh

i (N)) whenever

the agents a j and ai fall within the service zone of the same WAN (hotspot) AP.

Example 2.3. In Example 2.2 assume that for all a j ∈ Sw
m we have Rw

j = Rw
m, for some Rw

m > 0,
i.e. average over time link data rates are the same for all agents served by the WAN AP wm.
Then we arrive at:

Uw
j (Nw

m) =
(a− p)g(Nw

m)
Nw

m
Rw

m ,

which has a solely congestion dependent structure.

Example 2.4. Examples 2.1–2.3 consider time-division multiplexed system, where a WAN AP
grants equal long-term shares of time slots to all serviced by it users. Thus users with relatively
worse channels are at a disadvantage, since they achieve lower throughputs. One can consider
a scenario where a WAN AP serves some users longer than others (on average), in order to
compensate for this disadvantage.Such service model would be especially appropriate for real-
time users, e.g. the ones running (rate-adaptive) multimedia applications. We can find the share
of slots that each user is granted, if we assume that the WAN AP provides all users with the
largest common long-term throughput. Simple computation shows that the common throughput
T seen by all users is given by:

T w
j = T =

1

∑Nw
m

j=1 1/Rw
j

,

In the limit of large number of users, T can be approximated as:

T = T (Nw
m)≈ 1

Nw
mE[1/Rw

j ]
,

where the expectation is taken over the distribution of average over time data rates seen by a
typical agent connected to the WAN. Associating utility with the throughput, as before we find:

Uw
j (Nw

m) = (1− p)T (Nw
m) =

1− p
Nw

mE[1/Rw
j ]

.

Note that Uw
j (Nw

m) is of solely congestion dependent type.

Example 2.5. Examples 2.1–2.4 are formulated for a scenario in which each user has an infinite
backlog of data to download from/send to its WAN AP. In this case users indeed benefit from
larger long-term throughputs, and thus using utilities that are functions of the corresponding
throughputs is quite natural. In many conventional applications, such as, e.g. web browsing, ftp
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transfers, etc., users are interested in downloading finite blocks of data, i.e. files of finite size.
In that case a user’s appreciation of service at WAN APs will instead be sensitive to the delays
that the user experiences during a typical file transfer. One may thus relate utility of an agent to
the average of such delay.

Let us assume that all users generate a Poisson stream of γ files per time unit with sizes
that follow general distribution (same across all users) with mean f . If we take the assumption
of Example 2.3, where the link capacities Rw

j at all spatial locations are the same and equal Rw,
and neglect the diversity gain (i.e. g(N)≡ 1), then the average delay for typical transfer is given
by that of a single-class processor-sharing queueing system (see, e.g. [57]) thus:

E[Dw
j ] =

1
f/Rw−Nw

mγ
.

Using this expression, one can construct a solely congestion dependent utility:

Uw
j (Nw

m) =− 1
f/Rw−Nw

mγ
− c f ,

where we took into account that users are penalized by both their transfer delay the cost c that
the WAN provider charges them per bit of transfer.

Consider an agent ai ∈ πa(Cm) that is connected to WAN AP wm at time t and assume that
the total number of agents that are connected to wm at that time is Nw

m(t). We model the level of
“satisfaction” of agent ai with the service via a congestion and agent dependent utility function
Uw

i

(
Nw

m(t)
)

that depends on the current congestion level and possibly the agent’s location6

within Sw
m.

We assign a solely congestion dependent utility function Uh
j

(
Nh

k (t)
)

to an agent a j ∈
πa(Sh

k) connected to a hotspot at time t. Here Nh
k (t) denotes the total number of agents that

are connected at time t to the same hotspot as agent a j. As opposed to the case with service
from the WAN, we require that the perception of service from hotspots to be the same for agents
connected to the same hotspot, i.e., if ai,a j ∈ Sh

k , then Uh
j (N) =Uh

i (N), for any N ∈N. However,
we do not impose this restriction for agents connected to different hotspots, thus we retain the
flexibility of including potentially different hotspots’ types in the model7.

In the sequel we will use the following assumption for the utility functions:

Assumption 2.3. For all i ∈ N, Uw
i (·) : R+ 7→ R and Uh

i (·) : R+ 7→ R are continuous, mono-

tonically decreasing functions.

6Note that this allows to model a situation when the agents, that are farther from the WAN AP have potentially
worse communication channels.

7For example, hotspots could support different bandwidths.
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Once utility functions have been specified for each agent, we will assume agents make
decisions consistent with maximizing their utility, i.e., connect to the provider offering the
higher utility. However, we will account for a fixed cost of switching to another interface. We
stress here that this is simply a model for decision-making, and need not involve any specific
transaction of money among agents.

We assume that for each agent in Cm there is a sequence of times, at which the agent
makes decisions. If t is a time when agent ai ∈Cm is making a choice, then, we postulate that
ai switches to the WAN AP wm from a hotspot hk if and only if it was connected to hk at time
t− and

Uw
i

(
Nw

m(t−)+1
)

> Uh
i

(
Nh

k (t−)
)

+ cw ,

where t− refers to the time immediately prior to t and cw represents a cost of switching to the
WAN AP. Similarly, the agent ai ∈ Sh

k switches to a hotspot hk at time t if and only if it was
connected to a WAN AP wm at t− and

Uh
i

(
Nh

k (t−)+1
)
≥Uw

i

(
Nw

m(t−)
)

+ ch ,

where ch represents the cost of switching to a hotspot. Note that we break ties in favor of
hotspots.

Assumption 2.4. Agents’ decision times within Cm are given by a simple point process Φm with

realizations φm and assume that Φm obeys the following:

• Φm almost surely contains infinitely many points in R+, i.e. φm = {sk}∞
k=1, where sk ∈R+

for k = 1,2, . . .

• each point of φm is associated with a decision time for a unique agent within Cm

• a point sk ∈ φm is a decision time of the agent ai ∈Cm with some positive probability pi,

which possibly depends on realization φm up to time sk and the history of agents choices

up to time sk.

Assumption 2.4 postulates that only one agent within Cm can make decision at a time,
each agent has unlimited opportunities for decision making, and any decision time with some
positive probability is associated with a particular agent.

2.5 Analysis of decision dynamics

In this section we consider the dynamics of agents’ decision making. In particular we investigate
if the dynamics converge to a particular fixed point which we refer to as an “equilibrium”. We
define equilibrium similarly in the way Nash equilibria [48] are defined in game theory:
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Definition 2.3. Consider a service zone Sw
m of WAN AP wm for a particular realization of agents,

hotspots and WAN APs on the plane. We refer to a particular configuration of agents’ choices

within Sw
m as equilibrium, if, given this configuration, no agent will alter its choice.

The rest of this chapter will be devoted to answering the following questions:

1. Does the dynamics of greedy decision-making converge to a (fixed) equilibrium?

2. If the dynamics converge, what is the structure of the corresponding equilibria?

This study is motivated by our ultimate goal, which aims to characterize the heterogenous wire-
less system in terms of (i) competitiveness of the two providers and (ii) end-users’ performance.
Guaranteeing that an equilibrium is eventually reached by the system will enable us to focus
our attention on this equilibrium configuration, and associate the “competitiveness” and perfor-
mance metrics with the structure of equilibrium.

Let us denote by Mw
m the total number of agents that fall within Sw

m for a particular real-
ization. We will make the following assumption.

Assumption 2.5. If ai,a j ∈ πa(Sh
k) where k ∈ K m then |Uw

i (N)−Uw
j (N)| < ch + cw for 1 ≤

N ≤Mw
m.

Assumption 2.5 requires that the utility associated with connections to the WAN does
not vary too much for agents located within the service zone of the same hotspot. For example
if the performance of WAN connections simply degrades with distance, then this assumption
requires the coverage radius of a single hotspot to be small enough.

Theorem 2.1. Consider the service zone Sw
m for a particular fixed realization πa, πh and πw.

Then, under Assumptions 2.1–2.4, given any initial configuration of agents’ choices, say, at time

t = 0, the system converges a.s. to an equilibrium configuration as t → ∞.

The proof of Theorem 2.1 that we give below is built on analysis of the system “from first
principles”. Before plunging into the proof we elaborate on how our decision-making model
compares to some existing ones that have been analyzed within the game-theoretic literature.

Potential games, congestion games and relationship to our model. It turns out that a simple
variation (but not general form) of our model could be cast into the realm of the so-called
“congestion games”. A congestion game is any game where a collection of homogeneous agents
have to choose from a finite set of alternatives, and where the payoff of a player depends on the
number of players choosing each alternative. These were first introduced within the game-
theoretic community8 by Rosenthal [61] in 1973.

8However, as mentioned in [58], similar concepts have been developed within the transportation research com-
munity back in 1952, see, e.g. [59] and [60].
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The simplest example of a congestion game is a routing game in a transportation net-
work, in which there is a finite number N of cars that share M distinct roads. The car i has
a finite number of strategies that it would choose from, and each of its strategies represents a
subset Ai of roads that it would use (these roads would, for example form one of the alternative
routes leading to the i’s car destination). The cost of using road m, for m = 1, . . . ,M is given
by cm(Nm) for each car having route passing through this road; here Nm is the total number of
cars sharing the road. (Note that c(Nm) has a solely congestion dependent structure according to
Definition 2.2.) All cars greedily minimize their cost, by selecting one of the choices available
to them. Assuming only one car changes her strategy at a time leads to a time dynamics where
congestion level at each road changes over time.

Convergence of such dynamics with time was established by Monderer and Shapley
in [62] for a class of “potential games” that includes “congestion games” as a sub-class. The
basic idea is to find a “potential” function which would depend on actions of all players and
would be able to follow the changes in utilities of each individual player. For completeness,
we will formally define potential games. The basic setup deals with games in “strategic form”,
which include:

• Finite set of players: P = {1,2 , . . . , I}

• Finite set of (pure) strategies Si available to player i ∈ P . (We let S ≡ S1× S2× . . .× SI

denote the Cartesian product of strategies’ spaces. Also let S−i = S1× S2× . . .× Si−1×
Si+1× . . .×SI , i.e. a set of strategies available to all players but the i-th player)

• A set of utility (payoff) functions {ui}I
i=1, where ∀i ∈ P we have ui : S 7→R. For example

ui(s) denotes the utility function of player i when the strategies of all players are given by
s ∈ S.

Definition 2.1. A strategic form game G is a tuple

{P ,{Si}I
i=1,{ui}I

i=1}

consisting of a set of players, pure strategy spaces and utility functions. A strategic form game

is finite if strategy spaces Si are finite for all i ∈ P .

Definition 2.2. A strategic form game is a potential game if there exists a function Φ : S 7→ R,

such that, for all i ∈ P and all si ∈ Si, s−i ∈ S−i we have:

ui(si,s−i)−ui(s′i,s−i) = Φ(si,s−i)−Φ(s′i,s−i) .

A path in S is a sequence Γ = γ0,γ1, . . ., where γn ≡ {sn
i : sn

i ∈ Si}i∈P , and, for every
n = 1,2, . . ., there exists a unique player i(n), such that γn = {x,γn−1

−i(n)} for some x 6= sn−1
i(n) . γ0 is
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(xi, xj , z)

(yi, xj , z) (yi, yj , z)

(xi, yj , z)

Figure 2.2: Closed loop A→ B→C → D→ A in Proposition 2.3

called the initial point of Γ, and if Γ is finite, then its last element is called the terminal point of
Γ. The path Γ in S is an improvement path if for all n = 1,2, . . . we have ui(n)(γn) > ui(n)(γn−1),
where i(n) is the unique deviator at step n.

Proposition 2.1. [62] Any improvement path in a finite potential game is finite.

Proposition 2.2. [62] If Φ is a potential function for a potential game G, then s∗ ∈ S is a (Nash)

equilibrium of G if, for each i: Φ(s) ≥ Φ(x,s−i), i.e. Φ(s) is maximized over the unilateral

deviations from s∗.

Note that Propositions 2.1, 2.2 in fact imply that the Nash equilibria for each potential
game are reached in a finite number of steps, under the assumption that only one player selects
a better strategy per time step.

The following proposition gives a necessary and sufficient condition for a game to admit
a potential function. Note that this condition resembles the corresponding requirement for a
force field in physics to admit a representation via potential: the work of the force field over any
closed loop must be zero.

Proposition 2.3. [62] For any xi,yi ∈ Si, and x j,y j ∈ S j and z ∈ S−i− j define A = (xi,x j,z),
B = (yi,x j,z), C(yi,y j,z) and D = (xi,y j,z) (see Figure 2.2). Then a strategic form game G is a

potential game if and only if:

ui(B)−ui(A)+u j(C)−u j(B)+ui(D)−ui(C)+u j(A)−u j(D) = 0 .

Corrollary 2.1. [62] Any congestion game is a potential game.
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Corrollary 2.2. For any congestion game, greedy decision-making strategies converge to Nash

equilibria in a finite number of steps.

Note that Corollary 2.2 establishes our Theorem 2.1 for the simple case where utilities
of agents connected to both the WAN and WLANs are solely congestion-dependent. Indeed,
our decision-making model represents a variant of a “congestion game”. The highlight of this
paragraph is that the general version of our model, however, does not belong to a class of
congestion, or more generally does not belong to a class of potential games.

Proposition 2.4. In our general model where utilities of agents connected to the WAN are

congestion and agent dependent, the decision-making dynamics can not be represented by that

of a congestion, or more generally, potential game.

Proof. Note that strategy space Si for each agent in our decision-making model consists of only
two elements {h,w} corresponding to agent selecting a hotspot or the WAN. We will now use
Proposition 2.3 to test if the corresponding game admits representation via a potential function.
Let us consider two agents ai,a j ∈ Sw

m that fall into two different hotspots hk and hl (we assume
hk,hl ∈ Sw

m). Let si,s j,z denote a configuration in the strategy space where ai made decision si

and a j made decision s j, while all other agents within Sw
m keep with their decisions, which we

will denote by z. Now consider a four distinct configurations in the space of agents’ decisions:
A = {h,h,z}, B = {w,h,z}, C = {w,w,z}, D = {h,w,z}, and the corresponding “closed loop”
defined via transitions A → B → C → D → A. According to Proposition 2.3 the game would
have a potential function iff:

Uw
i (Nw

m +1)−Uh
i (Nh

k )+Uw
j (Nw

m +2)−Uh
j (N

h
l )

+Uh
i (Nh

k )−Uw
i (Nw

m +2)+Uh
j (N

h
l )−Uw

j (Nw
m +1)

= Uw
i (Nw

m +1)−Uw
j (Nw

m +1)+Uw
j (Nw

m +2)−Uw
i (Nw

m +2) = 0 . (2.1)

Note that in (2.1) we assumed that Nw
m , Nh

k and Nh
l agents have been respectively connected to

WAN AP wm, hotspots hk and hl in configuration A. Clearly, Uw
i (N) 6= Uw

j (N) in general, thus
equation (2.1) is not satisfied and decision-making dynamics in our model does not represent a
potential game.

As discussed at length in [58], some convergence results exist for games that do not fall
into class of potential games, but often particular scenarios have to be treated on a case by case
basis. This motivates the approach that we took in proving Theorem 2.1, where we do not rely
on any existing results from game theory, but instead construct a proof technique that works for
our particular setup.
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Proof of Theorem 2.1. To prove Theorem 2.1 we need the following technical lemma, that is
a straightforward consequence of Assumption 2.5.

Lemma 2.1. Consider ai,a j ∈ πa(Sh
k) where hk ∈ Sw

m and suppose Assumptions 2.3 and 2.5 hold.

Furthermore let a j be connected to hk and suppose ai switches from WAN AP wm to hk at time s.

Then a j can not switch from hotspot hk to WAN AP at time t > s if no other agent has switched

in Sw
m during the time interval (s, t).

Proof. We prove the lemma by contradiction. Assume that an agent a j has switched from hk to
WAN AP wm at time t, then the following condition must have been satisfied:

Uw
j

(
Nw

m(t−)+1
)

> Uh
j

(
Nh

k (t−)
)

+ cw . (2.2)

Furthermore, suppose agent ai switched from the WAN AP wm to hotspot hk at time s < t, and
thus:

Uw
i

(
Nw

m(s−)
)

+ ch ≤Uh
(

Nh
k (s−)+1

)
. (2.3)

Since we have assumed that no other agent within Sw
m has switched in time interval (s, t), we

have Nw
m(s−) = Nw

m(t−)+1 and Nh
k (s−) = Nh

k (t−)−1. Now combining (2.2) and (2.3), we have:

Uw
j

(
Nw

m(t−)+1
)
−Uw

j

(
Nw

m(t−)+1
)

> ch + cw ,

that is in contradiction to Assumption 2.5.

Below we give the essential details of the proof of Theorem 2.1. Note that under the
assumptions of Theorem 2.1, the dynamics for the configuration of agents’ decisions in Sw

m

follow a continuous time Markov process with state X (t) := {X(ai, t)| ai ∈ πa(Cm)}, where
X(ai, t)∈ {0,1} – denotes the “connection state” of the agent ai at time t and takes the value 0 if
the agent is connected to a hotspot and 1 if it is connected to a WAN AP. (Note that we need only
to consider the states of agents located within Cm.) We will classify transitions for this chain as
“up”, “down” and “stay”, corresponding to agents switching from hotspots to the WAN AP, vice
versa, or staying with their current choice. For simplicity we can “uniformize” the continuous-
time process to focus on a discrete time Markov chain capturing times where decisions are
made. We shall denote these decision times by s = 1 ,2 , . . .. The transition probabilities for
the discrete-time Markov chain are determined by two factors: the probability that a particular
agent reconsiders her decision at that time, and whether the current configuration cause the
agent to change providers.

By Assumption 2.1.4, each service zone contains an a.s. finite number of agents, thus
there is an a.s. finite number of different configurations for agents’ choices so the set of possible
configurations is finite a.s.. It follows that some of the states must be revisited by the chain
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infinitely often. To show the convergence of a system to an equilibrium, it is sufficient to
construct a feasible path for the chain evolution which hits an equilibrium state with positive
probability, starting from any initial configuration.

Below we present the steps of an algorithm to construct a path P consisting of a sequence
of transitions for the state X (s), which, starting from any arbitrary configuration of agents’
choices X (0), ends up in an equilibrium configuration after a finite number of steps. Let Au(s)
denote the set of agents that, given the configuration at time s, could make “up” transitions and
Ad(s) the set of agents that can make “down” transitions. Let us also define a nondecreasing
composite function,

Ji(N) , (Uw
i )−1 ◦ (Uh

i (N)+ cw) ,

where (Uw
i )−1 denotes a unique and decreasing, due to Assumption 2.3 inverse of Uw

i . We
describe our algorithm in terms of pseudo-code shown in Table 2.2, where for convenience we
denote Nh(ai, t) = Nh

k , where k is such that ai ∈ Sh
k . Note that our notational convention is that

an agent making her decision at time slot s≥ 1 is basing this decision by observing the state of
the system prior to that time, i.e. time s−1.

After initialization, the algorithm (see Table 2.2) alternates between the Up- and Down-
transition phases. During the Up-transition phase only the “up”-switchings occur, where the
agents performing these transitions are selected to be those which are the most “unsatisfied”.
This phase ends once the set of agents that are able to perform the “up”-transitions depletes.
At that time the algorithm switches to the “down”-transition phase, where at most one agent
performs a “down”-transition. We introduce an auxiliary integer sequence {Z(t)}∞

t=1 with val-
ues that depend on the state of the system prior to a transition at times t = 1,2, . . ., and show
that this sequence is nonincreasing. This allows us to argue that Z(t) converges to a limit Z∗

after an a.s. finite number of transitions. Then, we demonstrate that the equilibrium must be
reached in a.s. finite time once Z(t) has reached the level Z∗. The remaining steps of the proof
are straightforward, but lengthy and are relegated to the Appendix of this chapter.

2.6 Structure of agents’ choices equilibria

Note that, in general, the specific character of the agents’ choices in equilibrium depends on
the utility functions, distances from access points, and resource allocation mechanisms at the
access points. For the service zone associated with a particular WAN AP an equilibrium might
not even be unique. For solely congestion dependent utilities, however, in the next section we
show that the set of all equilibria in each WAN service zone could be made quite “tight”, under
some conditions which we elaborate on below.
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Initialization:
s = 1 and X (s) = X (0)

Z(s) := 0
go to Up-transition phase

Up-transition phase:
if Au(s) 6= /0
{ j := argmaxi: ai∈πa(Au(s))

⌊
Ji

(
Nh(ai,s)

)⌋

Z(s) :=
⌊

J j

(
Nh(a j,s)

)⌋

let a j make an “up” transition
update the state X (s)
s := s+1 }

otherwise: go to Down-transition phase

Down-transition phase:
if Ad(s) 6= /0:
{ choose any a j ∈ Ad(s)

let a j make a “down” transition
update the state X (s)
Z(s) := Z(s−1)
s := s+1
go to Up-transition phase }

otherwise: done

Table 2.2: Pseudo-code for constructing the path P converging to equilibrium.

2.6.1 Solely congestion utilities for both WAN and WLAN connections

Let us consider the properties of the set of possible equilibria for a given service zone Sw
m

associated with a particular WAN AP wm. In this section we will assume that for each agent both
utilities are solely congestion dependent, and the switching costs, cw = ch = 0. Moreover, to
simplify exposition we will let the structure of utility for agents connected to different hotspots
within Sw

m be the same, i.e., for all N ∈ N, Uh
i (N) = Uh

j (N) for agents ai and a j that belong to
different hotspots within Sw

m. With such simplifications, we can drop the subscripts from utility
functions that correspond to agents within Sw

m, in particular, with some abuse of notation we let
Uw(·) to denote the utility of any agent within Sw

m connected to WAN AP, and Uh(·) denote the
utility of any agent within Sw

m connected to a hotspot. Note that an example where this set of
assumptions holds is a scenario where utilities of agents depend only on the share of bandwidth
that they are able to get by connecting to a particular AP, i.e. all hotspots have the same available
bandwidth and WAN and hotspots’ APs split the available bandwidth equally among the agents
connected to them.
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Here we will give a characterization of the system state, i.e., configuration of agents’
decisions, define a notion of uniqueness, and analyze under what conditions the system equilib-
rium is unique. We first introduce some additional notation9

• Mw
m =

∣∣πa(Sw
m)

∣∣ – the number of agents located within the service zone of WAN AP wm.

• Mh
k =

∣∣πa(Sh
k)

∣∣ – the number of agents located within the service zone of hotspot hk.

• Mw
Cm

=
∣∣πa(Cm)

∣∣ – the number of agents located within Cm, i.e. agents that can make
choices.

• Mw
C̄m

= Mw
m−Mw

Cm
– the number of agents located within C̄m, i.e. the agents that can not

make choices.

• Hm =
∣∣πh(Sw

m)
∣∣ – the number of hotspots located within the service zone of WAN AP wm.

• X πa,πh,πw

m , {X(ai)| ai ∈ πa(Cm)} – denotes the system configuration in service zone Sw
m

associated with a fixed realization πa, πh and πw. Here X(ai) ∈ {0,1} takes the value 0 if
agent ai is connected to a hotspot, and 1 if she is connected to a WAN AP.

• Tm = Tm(πa,πh,πw) – the a.s. finite set of possible system configurations (states) in Sw
m

for a given realization πa, πh and πw.

• Em – the set of all system configurations c ∈ Tm that correspond to equilibria in Sw
m.

• Fm = Fm(πa,πh,πw) – subset of Em which consists of only “fair” equilibria (see below).

• Nw
m(c) – the number of agents that connect to WAN AP wm in configuration c ∈ Tm.

• Nh
k (c) – the number of agents that connect to hotspot AP hk in configuration c ∈ Tm.

• (Uw)−1(·) – unique and decreasing, by Assumption 2.3 inverse of Uw(·).

• (Uh)−1(·) – unique and decreasing inverse of Uh(·).

• G(·) , (Uh)−1 ◦Uw(·) – nondecreasing composition of (Uh)−1 and Uw(·)

• J(·) , (Uw)−1 ◦Uh(·) – nondecreasing composition of (Uw)−1 and Uh(·)
9Note that we use letter M with different sub- and super- scripts to refer to the actual number of agents that fall

within different sets, while we use the letter N to refer to the number of agents within different sets to refer to the
agents actually connected to particular APs.
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Characterization of a configuration. For any fixed realization πa, πh and πw consider only
WAN APs wm that have at least one hotspot in their service areas, i.e. K m 6= /0. For such m

we characterize the system configuration c ∈ Tm for the service zone Sw
m by a vector Nm(c) ,

{Nh
k (c)| k∈K m}. The vector Nm(c) determines how many agents are connected to each hotspot

hk for k ∈K m in configuration c ∈ Tm.

Definition 2.3. We say that two configurations for agents’ choices characterized by Nm(c) and

Nm(c′) are equivalent, and write Nm(c)∼ Nm(c′), if the components of the vector Nm(c) are a

permutation of those of Nm(c′).

Fair equilibria.

Definition 2.4. We say that a configuration c ∈ Tm is “fair” if its characterization Nm(c) =
{Nh

k (c)|k ∈K m} satisfies, for some K ∈ Z+:

∀k ∈K m :

{
K−1≤ Nh

k (c)≤ K , if Mh
k ≥ K ,

Nh
k (c) = Mh

k , otherwise .

If c is also an equilibrium configuration we say that c is a “fair” equilibrium.

We shall interpret this definition via Figure 2.3. The hexagonal region is a schematic
representation of the service zone Sw

m, while the positions of the cylinders represent the locations
of hotspots. The height of each cylinder represents the overall number of agents that fall within
the service zone of a particular hotspot.

Sw
m

WAN 
coverage 

area

LAN 
hotspot’s 
coverage 

areas

Sh
k

# of 
agents 
choosing 
hotspot

# of 
agents 
choosing 
WAN

Load 
(# of agents at 

hotspots)

K∗
=

Figure 2.3: Structure of a “fair” configuration.
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Assume that the slicing plane in Figure 2.3 is one unit thick and its upper surface is
placed at integer-valued heights K above the surface of Sw

m. Any “fair” configuration has the
following assignment of agents to APs:

• All agents in Sw
m \Cm connect to WAN AP wm.

• A number of agents corresponding to the parts of cylinders that fall under the lower
surface of the slicing plane connect to their respective hotspots.

• A number of agents corresponding to the parts of cylinders above the upper surface of the
plane connect to the WAN AP wm.

• Finally, a number of agents corresponding to the parts of cylinders within the slice connect
to either their associated hotspots or WAN AP wm.

In what follows, to avoid ambiguity we will always associate a fair configuration f with the “cut-
off” plane at level10 Km( f ) = maxk∈K m Nh

k ( f ). Note, that in fair configuration f the hotspots
having more than Km( f ) agents in their service zones yield the “overload” to the WAN AP wm.
As a result the number of agents connected to those hotspots is nearly the same, i.e. either
Km( f ) or Km( f )−1.

By the construction used to prove Proposition 2.5 we can always find a position of the
slicing plane, K = K∗

m, and an assignment of agents corresponding to the parts of cylinders at the
slice, so that the connection configuration in Sw

m is a fair equilibrium. This results in statement (i)
of Proposition 2.5.

Proposition 2.5. For any realization πa, πh and πw we have that:

(i) The set of all fair equilibria, Fm, is not empty.

(ii) All fair equilibria have equivalent characterizations, i.e. for all f , f ′ ∈Fm, Nm( f )∼Nm( f ′).

For the proof of statement (ii) of Proposition 2.5, see Appendix 2.7.2.

Non-uniqueness of equilibrium.

Definition 2.5. For a particular realization πa, πh and πw we say that the equilibrium in Sw
m is

unique if for any e,e′ ∈ Em we have Nm(e)∼ Nm(e′).

Note that agents’ decisions are discrete in nature, and unfortunately, this can lead to
multiple equilibria in the system, even when we understand uniqueness in the weak sense of

10The ambiguity arises in the case when for a particular fair configuration f ∈ Fm we have 0 < Nh
k = Km <

maxk Mh
k , for all k ∈ K m and for some Km ≥ 0. Then the upper surface of the “slicing plane”, associated with this

configuration can be drawn at either the levels Km or Km +1.
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Definition 2.5. Below we show this via a simple example. Observe that for all equilibrim
configurations e ∈ Em we must have that:

Uh
(

Nh
k (e)+1

)
< Uw

(
Nw

m(e)
)

and Uh
(

Nh
k (e)

)
≥Uw

(
Nw

m(e)+1
)

(2.4)

for all k ∈K m such that the service zone Sh
k has an agent connected to the WAN AP wm and an

agent connected to hk. Also we must have that:

Uh
(

Nh
l (e)

)
≥Uw

(
Nw

m(e)+1
)

,

for all l ∈K m such that the service zone Sh
l has all of its agents connected to hl . Lastly,

Uh (1) < Uw
(

Nw
m(e)

)
, (2.5)

must be satisfied for all p ∈ K m such that all agents within Sh
p are connected to wm in equilib-

rium. It follows from (2.4) that:

G
(

Nw
m(e)

)
−1 < Nh

k (e)≤ G
(

Nw
m(e)+1

)
, (2.6)

for hotspots hk ∈ πh(Sw
m) with at least one agent connected to the WAN AP wk. Note that,

depending on the utility functions there can be more than one integer solution to the inequali-
ties (2.6). Consider, for example:

Uh(N) = N−β , Uw(N) = N−α , (2.7)

where α > β > 0. In this case G(N) = Nα/β, and the gap between the right and left hand side
in (2.6) increases with Nw

m(e). In other words, when the number of agents, not covered by
hotspots is large enough, there can be many integer solutions to the inequalities (2.6). Hence,
“unfair” equilibria can be constructed easily from the fair one. For example we could switch
some number L of agents from WAN AP wm to a particular hotspot hk and the same number L

of agents from some other hotspot hl within the same WAN AP wm. Note that this procedure
would not change the number of agents connected to the WAN AP. If L is selected so that
the Nh

k (e)−L and Nh
l (e)+ L are still within the bounds (2.6), this procedure would result in a

feasible equilibrium which is not equivalent to the fair one.

Conditions guaranteeing uniqueness and fairness. One might ask under what conditions
the equilibrium in Sw

m is unique. The following result assumes that the utilities have a particular
property, and that the cells of the WAN provider are large enough to guarantee that a sufficiently
large number of agents connects to the WAN AP in equilibrium.
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Proposition 2.6. Suppose that there exists N such that for all N ≥ N

G(N +1)−G(N) < 1 , (2.8)

and assume that the number of agents that can not make choices in service zone Sw
m satisfies:

Mw
C̄m
≥ N . (2.9)

Then, the equilibrium in Sw
m is unique and fair.

We prove this proposition in Appendix 2.7.3. In general, if the property (2.8) holds then it must
be the case that the utility function associated with connections to hotspots decrements faster in
the number of connected agents than the utility associated with connections to the WAN AP11.
One such example is given by (2.7) with β > α > 0.

Max-min fairness property of unique equilibria. Let us define Umin
m (c) to be the minimum

over the utilities of agents within Sw
m that choose according to configuration c ∈ Tm. We refer

to Umin
m (c) as the utility of the bottleneck agent for the configuration c. The following proposi-

tion, which we prove in Appendix 2.7.4, implies that when equilibrium configuration of agents’
choices is unique, it would maximize the utility of the bottleneck agents over all possible con-
figurations of agents’ choices. This property will become crucial when we consider efficient
heterogeneous network design problems in Chapter 4.

Proposition 2.7. If the equilibrium in Sw
m is unique, then Umin

m (c)≤Umin
m ( f ), for all f ∈ Fm and

c ∈ Tm.

2.6.2 Structure of equilibrium in a more general setting.

We now return to our general model where the utility functions of agents connected to the WAN
are of congestion and agent dependent types. It is easy to identify the conditions for equilibrium
corresponding to the service zone Sw

m. Let Nh
k be the equilibrium number of agents within Sh

k

connected to hk, and denote by Wm(k) and Hk the indices of agents located within Sh
k and

connected to WAN AP wm and hotspot hk respectively. Then using equilibrium conditions for
all agents within Sh

k it is easy to establish:

max
i∈Wm(k)

[
(Uh

i )−1 ◦ (Uw
i (Nw

m)+ ch)
]
−1 < Nh

k ≤ min
j∈H (k)

[
(Uh

j )
−1 ◦ (Uw

j (Nw
m +1)− cw)

]
, (2.10)

11Since, as we alluded above, the WAN service might be degrading slower with the number of connections than
that of hotspots, the assumption that (2.8) holds may be reasonable.
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where we assumed the convention that max over empty set is equal to −1 (lower bound is not
binding when no agents within Sh

k are connected to the WAN) and the convention that min over
empty set is equal to ∞ (upper bound is not binding when no agents are connected to hotspot
hk).

From the complex expression (2.10) it can be seen that equilibria for our general model
are much harder to identify and their structure is more complex. A simple case is that where
utilities of agents connected to the WAN and located within the range of the same hotspot are
close in value – in this case the structure of the equilibria resembles Figure 2.3, where the slicing
surface has a spatially dependent structure with both its level and thickness varying from one
hotspot to another.

To provide a sensible illustration we will study equilibria for a particular scenario which
takes Example 2.1 as a basis. We consider a service zone of a WAN AP wm populated with
Mw

m agents that are trying to maximize their average over time throughput, thus the utility of an
agent ai ∈ Sw

m∩Sh
k , when it is connected to the WAN is

Uw
i (N) =

Bw
i

N
(2.11)

and when it is connected to the hotspot is:

Uh
i (N) =

Bh
k

N
. (2.12)

To make utility Uw
i (·) congestion and agent dependent, but same for all agents residing within

the same hotspot, we assume that Bw
i depends on location of agent’s ai hotspot, hk. For example,

we can have (for downlink transmissions):

Bw
i =

C
2

log
(

1+
Pw

mLw
m(hk)

ΓN 0

)
(2.13)

where C is the size of a frequency band used for WAN transmissions, Pw
m is the (fixed) power

level used at WAN AP, Lw
m(hk) is the path loss from wm to hk (depending on shadowing, large

scale attenuation, etc.), N 0 is the ambient noise power level at the agent’s receiver and Γ ≥ 1
is the “gap” which depends on modulation scheme. To make utility Uh

i (·) solely congestion
dependent we require Bh

k to be independent of i – this would model quite well a typical [8]
scenario where wireless access bandwidth at, e.g., Wi-Fi hotspots exceeds by far the available
to hotspots backhaul bandwidth.

Using the equilibrium conditions (2.10) and expressions (2.11,2.12) for utilities we ob-
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Figure 2.4: Spatial structure of the “slicing surface” when Lw
m(hk) has spatially dependent mean

given by (2.15) with α = 3. (a) log-normal component in attenuation is small (b): Log-normal
component in attenuation is significant.

tain:

lk(Nw
m) :=

Bh
k

Bw
i

Nw
m

+ ch
−1 < Nh

k ≤
Bh

k[
Bw

i
Nw

m+1 − cw
]+ := uk(Nw

m) . (2.14)

Expression (2.14) provides a lower and upper bounds for the number of agents connected to
hotspot hk in equilibrium given that Nw

m agents are connected to the WAN AP. Note that the
bounds might become loose, when, e.g. lk < 0 or uk = ∞. These bounds correspond to lower
and upper envelops of the “slicing surface” which replaces the plane in Figure 2.3. Note that
lk and uk both depend on Bw

i , and hence, on the strength of the signal from the WAN AP at
location hk, thus the shape of both envelopes is spatially dependent, as well as the gap between
them.

In Figure 2.4 we show the spatial structure of lk(Nw
m) and uk(Nw

m), for a fixed value of
Nw

m = 10. The values of x and y are Cartesian coordinates of the hotspot hk, and we assume
that the location of the WAN AP wm is at the center of this coordinate system. The path loss
Lw

m(hk) for each hk is lognormally distributed with spatially dependent average given by simple
power-law decay function

L̄w
m(hk) = min

(
A,

1
|hk−wm|α

)
, (2.15)

and the backhaul bandwidth Bh
k is equal for all k ∈K m. In Figure 2.4 (a) we plot the case where

log-normal deviations from the average L̄w
m(hk) are negligible and, for comparison, in Figure 2.4

(b) the case where these fluctuations are more visible.
In Figure 2.4 we also indicate the tendency of the gap between the upper and lower

envelopes to increase with the switching costs cw and ch. The gap also increases with distance
of a hotspot from the WAN AP. Indeed, according to (2.14) the difference between lk(Nw

m) and
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uk(Nw
m) is:

uk(Nw
m)− lk(Nw

m)≥ 1+
Bh

k
Bw

i
,

and thus this difference will most likely increase with distance from WAN AP, as long as Bh
k is

close for all hk ∈ Sw
m and Bw

i degrades with distance.
One obvious consequence of the increasing distance between lower and upper envelopes

of the slicing surface, is that the equilibria can realize in a number of different ways. This means
unique equilibria will in general be an unlikely property for such a system indicating that most
of the results of Section 2.6 will no longer hold in this more general setting.

2.7 Appendix to Chapter 2

2.7.1 Remainder of the proof of Theorem 2.1

Note that if the algorithm does not enter an Up-transition phase then there can only be “down”
transitions in the system. Since the number of agents that are connected to each WAN AP is
finite, the system will inevitably converge to an equilibrium which has no agents connected to
the WAN AP wm. Instead, assume that the system enters the Up-transition phase at time t0.
We will show that the sequence Z(s), s = t0, t0 +1, . . ., defined in Table 2.2, is a non-increasing
sequence.

We start by relating the function J j(·) to agent a j’s eligibility for an “up” transition at
time t. We must have:

Uw
j

(
Nw

m(t−1)+1
)

> Uh
j

(
Nh(a j, t−1)

)
+ cw ,

for an agent to be eligible to switch “up” at time t ≥ 1. This is equivalent to:

Nw
m(t−1) < J j

(
Nh(a j, t−1)

)
−1 , (2.16)

which in turn can be strengthened to:

Nw
m(t−1)≤

⌊
J j

(
Nh(a j, t−1)

)⌋
−1 (2.17)

with a strict inequality in (2.17) if J j

(
Nh(a j, t−1)

)
∈ N.

Now consider any Up-transition phase. Note that
⌊

Ji

(
Nh(ai,s)

)⌋
can only decrease for

each agent ai ∈ Sw
m. Indeed, for each i, the function Ji(·) is nondecreasing and Nh(ai,s) could

only be reduced during an Up-transition phase. Now, since the number of agents connected to
the WAN AP wm could only increase and by Assumption 2.3, Uw

i (·) is a decreasing function,
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the value Uw
i (Nw

m(s)) can only decrease during an Up-transition phase. Clearly, by the general
eligibility requirement (2.17), we have that the set of agents eligible for “up” transitions can
only diminish within the Up-transition phase. Hence Au(s1) ⊂ Au(s2), when s1 < s2 are both
restricted to the period of the same Up-transition phase. Thus, for such s1 and s2:

Z(s1) = max
i:ai∈Au(s1)

⌊
Ji(Nh(ai,s1))

⌋

≥ max
i:ai∈Au(s2)

⌊
Ji(Nh(ai,s2))

⌋
= Z(s2) ,

and hence Z(s) is a nonincreasing sequence whenever s is within a single Up-transition phase.
We now show that Z(s) is in fact nonincreasing for all s ≥ t0. Suppose that an Up-

transition Phase finished at time τ+1, and a j was the agent that switched “up” at time τ, hence
Z(τ) =

⌊
J j

(
Nh(a j,τ−1)

)⌋
. We will consider two scenarios. In the first scenario there is only

one “down” transition at time τ+1 and Au(τ+2) becomes nonempty. We will show that in this
scenario Z(τ+2)≤ Z(τ). In the second scenario there is a sequence of n > 1 “down” transitions,
before the set Au(τ+n+1) becomes nonempty for the first time. In this scenario we will show
once again that Z(τ+n+1)≤ Z(τ).

Scenario 1: Au(τ + 2) 6= /0. Observe that once an agent ai has performed a “down”
transition at time τ+1, we have:

Jk

(
Nh(ak,τ+1)

)
= Jk

(
Nh(ak,τ)

)
,

for all agents ak ∈ Sw
m that do not fall within the service zone of the same hotspot as ai. For such

agents we also have that:

⌊
Jk

(
Nh(ak,τ)

)⌋
≤

⌊
J j

(
Nh(a j,τ)

)⌋
= Z(τ) ,

since a j was chosen to make an “up” transition at time τ. Hence we have that for each agent
that does not fall within service zone of the same hotspot as ai:

⌊
Jk

(
Nh(ak,τ+1)

)⌋
≤

⌊
J j

(
Nh(a j,τ)

)⌋
= Z(τ) . (2.18)

Now, by Lemma 2.1, no agent ak that falls in the service zone of the same hotspot as ai

could switch “up” immediately after ai has switched “down”, and thus ak 6∈ Au(τ+2). But then,
in view of (2.18) and the definition for Z(t), we conclude that:

Z(τ+2)≤ Z(τ).
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Scenario 2: Au(τ+ l) = /0 for l = 1, . . .n and Au(τ+n+1) 6= /0. We will show that

Z(τ+n+1)≤ Z(τ) , (2.19)

by contradiction. Assume that the inequality (2.19) is not satisfied. Then, we must have that:

⌊
Jk

(
Nh(ak,τ+n−1)

)⌋
>

⌊
J j

(
Nh(a j,τ)

)⌋
, (2.20)

for some agent ak within Cm. Indeed, consider an agent ai that switches “down” at time τ + n.
Since ai’s switching down does not affect the number of agents connected to hotspots that do
not contain ai in their service zone, we have:

Jr

(
Nh(ar,τ+n−1)

)
= Jr

(
Nh(ar,τ+n)

)
,

for all agents ar ∈ Sw
m that do not fall within the service zone of the same hotspot as ai. Moreover,

by Lemma 2.1, no agent ap that belongs to the service zone of the same hotspot as a j can be
eligible for an “up” transition at time τ+n+1, i.e. ap 6∈ Au(τ+n+1). Hence, if

max
l:al∈Au(τ+n+1)

⌊
Jl

(
Nh(al,τ+n)

)⌋

= Z(τ+n+1) > Z(τ) ,

then
max

l:al∈Sw
m

⌊
Jl

(
Nh(al,τ+n−1)

)⌋
> Z(τ) ,

which translates into (2.20).
Next we show that the agent ak, where k satisfies (2.20), was eligible to switch “up” at

time τ + n. Consider again an agent a j that switched “up” at time τ. To be eligible for making
an “up” switch at time τ, according to (2.17) we must have:

Nw
m(τ−1)≤

⌊
J j

(
Nh(a j,τ−1)

)⌋
−1 (2.21)

with a strict inequality in (2.21) if J j

(
Nh(a j,τ−1)

)
∈ N. Now consider the agent ak, and note

that
Nw

m(τ+n−1)≤ Nw
m(τ−1) , (2.22)

since one agent has switched “up” at time τ and at least one agent has switched “down” at
time interval (τ,τ + n−1]. Considering the agent ak at time τ + n−1 in view of (2.20), (2.21)
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and (2.22) we obtain

Nw
m(τ+n−1) <

⌊
Jk

(
Nh(ak,τ+n−1)

)⌋
−1 .

This leads to:
Uw

k (Nw
m(ak,τ+n−1)+1) > Uh

(
Nh(ak,τ+n−1)

)
,

and hence the agent ak was eligible for an “up” transition at time τ + n. We thus have a con-
tradiction with the assumption that no agents were eligible for “up” transitions in the interval
(τ,τ+n]. This proves that the inequality (2.19) holds.

To summarize we have proved that:

1. Z(s) is nondecreasing if s is restricted to the period of a single Up-transition phase

2. If τ + 1 is the time when an Up-transition phase has finished and τ + n + 1, for n ≥ 1 is
the time when the next Up-transition phase has started, then: Z(τ)≥ Z(τ+n+1).

Therefore Z(s) is a nonincreasing sequence and since Z(s) is integer valued it must have an
integer-valued limit Z∗ which is reached by the sequence in a.s. finite time t1. We are left
to show that the algorithm needs a.s. finite number of steps before an equilibrium is in fact
reached.

For t ≥ t1, we have Z(t) = Z∗ and there are three scenarios for system evolution. The first
scenario corresponds to the case where only “down” transitions take place in the system, and in
the second – only “up” transitions are possible. In both of these scenarios the system reaches an
equilibrium once all agents in Cm have switched to either the WAN or their respective hotspots.
The third scenario is when the system undergoes both “up” and “down” transitions that are
intermingled and we consider this scenario below.

From (2.17) we obtain that the agent is eligible for an “up” transition at time t > t1 if and
only if:

J j(Nh(a j, t−1)) = Z∗+η , (2.23)

where η ∈ [0,1), and
Nw

m(t−1)≤ Z∗−1 , (2.24)

with strict inequality if J j(Nh(a j, t − 1)) ∈ N. Now, assume that an Up-transition phase has
ended at time τ̃ + 1 > t1. Then this phase could finish either of the conditions (2.23) or (2.24)
or both were violated at time t = τ̃+1 for all agents a j ∈Cm.

Suppose that at time t = τ + 1 inequality (2.23) is violated for all a j ∈Cm, but inequal-
ity (2.24) is not. It is sufficient to show that no agent can become eligible for an “up” transition
ever again at times t ≥ τ̃+1, since then the algorithm exits once all agents in Cm have connected
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to their respective hotspots. To show this, we note first that if for any agent a j ∈Cm

J j(Nh(a j,τ))≥ Z∗+1 (2.25)

then, from (2.24)
Nw

m(τ) < J j(Nh(a j,τ))−1 ,

which indicates, via (2.16) that a j is eligible to switch “up” at time τ̃. This is in contradiction to
what we assumed in the beginning of the paragraph and hence we can only have:

J j(Nh(a j,τ))≤ Z∗−1 , (2.26)

for any agent a j ∈Cm. Now observe that, by (2.23) an agent a j ∈Cm may become eligible for an
“up” transition at time t > τ̃ + 1 only if J j(Nh(a j, t)) has increased to or above level Z∗. Since
J j(·) is nondecreasing, there must be a “down” transition that would occur within the hotspot
that contains a j in its service zone. But if such “down” transition happens at time τ̃+1, no agent
within the service zone of a hotspot containing a j can become eligible for an “up” transition at
time τ̃+2 as we proved in Lemma 2.1. Clearly we have that (2.24) is still satisfied for t = τ̃+1,
but then we must have

J j(Nh(a j, τ̃+1)) < Z∗ , (2.27)

for any a j ∈ Cm since no agent is still available for an “up” transition. By induction we can
prove that no agent is eligible for an “up” transition at any time t ≥ τ̃+2.

Now suppose that (2.24) is violated at time t = τ̃+1. Note that the condition (2.24) was
met at time t = τ̃, since an “up” transition occurred at time τ̃. Due to this “up” transition, we
also have Nw

m(τ̃) = Nw
m(τ̃−1)+1 which yields Nw

m(τ̃) = Z∗. Now let L(τ̃+1) denote the set of
agents for which: ⌊

Jk(Nh(ak, τ̃))
⌋

= Z∗ . (2.28)

If no “down” transition occurs at time τ̃+1 then the algorithm has exited and thus an equilibrium
has been reached. Otherwise, assume that the “down” transition at time τ̃+1 was in the service
zone Sh

l of a hotspot hl ∈ Sw
m. Note, that by Lemma 2.1, no agent that falls within Sh

l can become
eligible for an “up” transition at time τ̃+2, thus, since Nw

m(τ̃+1) = Z∗−1, the condition (2.23)
must be violated for those agents at time τ̃ + 2. Hence these agents could not be within the set
L(τ̃+1) since otherwise they would be eligible for an “up” transition at time τ+2. Furthermore,
transition to Sh

l does not change the number of agents connected to hotspots hn 6= hl , and thus
we have:

Ji(Nh(ai, τ̃+1)) = Ji(Nh(ai, τ̃))

for ai 6∈ Sh
l . We thus conclude that L(τ̃+1) = L(τ̃+2).

37



Now if L(τ̃ + 1) = /0 then, similarly to as we argued above, no agent can ever become
eligible for an “up” transition and the algorithm exits in finite time. Otherwise, if L(τ̃+1) 6= /0
then at least one agent a j ∈ L(τ̃+2) is eligible for an “up” transition at time τ̃+2 by sufficient
conditions (2.23)-(2.24), since Nw

m(τ̃ + 1) = Z∗− 1 and bJ j(Nh(a j, τ̃ + 1))c = Z∗. Thus a j can
perform an “up” transition, which can only diminish the set L at a subsequent time τ̃ + 3. By
induction we thus can show that the set L(t) necessarily depletes in finite time, whence the
algorithm exits.

In summary we have shown that from any starting configuration there exists a path, that
with positive probability reaches an equilibrium state. Since the state space is finite, there must
be a state which is visited infinitely often. Whence the Markov chain will necessarily eventually
hit an equilibrium state.

2.7.2 Proof of Proposition 2.5

Proof. Consider any fair equilibrium configuration f ∈Fm and let Km( f ) = maxk∈K Nh
k ( f ) give

the level of the corresponding slicing plane (see Figure 2.3). We will first show that for any two
fair equilibria f and f ′ we have that Km( f ) = Km( f ′).

We show this by contradiction, suppose, in fact that there exist f , f ′ ∈ Fm such that
Km( f ) 6= Km( f ′). Without loss of generality assume that Km( f ) > Km( f ′). Note that in this case
for some l ∈K m we have Nh

l ( f ) = Km( f )≥ 1. Considering the hotspot hl , we get

Uh
(

Km( f )
)
≥Uw(Nw

m( f )+1) (2.29)

since otherwise an agent connected to this hotspot would choose to switch to WAN AP wm

which would contradict the fact that f is an equilibrium. Now, for equilibrium f ′ all hotspots
have fewer than or equal to Km( f ′)≤ Km( f )−1 agents, so in particular Nh

l ( f ′)≤ Km( f )−1. It
follows by adding 1 to both sides and the fact that Uh() is monotonically decreasing that:

Uh(Nh
l ( f ′)+1)≥Uh

(
Km( f )

)
. (2.30)

At the same time, since Km( f ′) < Km( f ) it follows that Nw
m( f ′)≥Nw

m( f )+1. Using the fact that
Uw() is monotonically decreasing we have that

Uw(Nw
m( f )+1)≥Uw(Nw

m( f ′)). (2.31)

Now putting (2.29),(2.30) and (2.31) together we have that

Uh(Nh
l ( f ′)+1)≥Uw(Nw

m( f ′))
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which implies that under f ′ an agent on WAN AP wm would choose to switch to hotspot hl .
This contradicts the fact that f ′ is an equilibrium. Thus we conclude that for any f ∈ Fm we
have Km( f ) = K∗

m for some integer K∗
m.

In order to show that all fair equilibria are equivalent, we first argue that for two fair
equilibria f ′ 6= f we must have Nw

m( f ) = Nw
m( f ′). Without loss of generality suppose Nw

m( f ′)≥
Nw

m( f )+ 1. Then, for at least one hotspot, say hl , Nh
l ( f ′) ≤ Nh

l ( f )− 1 which also implies that
Nh

l ( f )≥ 1. For f to be an equilibrium we must have that:

Uh
(

Nh
l ( f )

)
≥Uw(Nw

m( f )+1)≥Uw(Nw
m( f ′)) , (2.32)

which follows from the fact that no agent in hotspot hl wishes to switch to the WAN AP and
our assumption. Considering the hotspot hl under the equilibrium configuration f ′ we obtain:

Uw(Nw
m( f ′)) > Uh

(
Nh

l ( f ′)+1
)

> Uh(Nh
l ( f )) , (2.33)

which is the consequence of the fact that an agent in hl connected to the WAN AP wm has no
desire to switch to the hotspot hl . Clearly, by monotonicity of utilities we have that (2.32) is in
contradiction to (2.33).

Thus we know that if f , f ′ ∈ Fm, then we have Nw
m( f ) = Nw

m( f ′) and Km( f ) = Km( f ′) =
K∗

m, for some integer K∗
m. Next we show that all fair equilibria must have equivalent character-

izations. Let R denote the number of hotspots in Sw
m that have at least K∗

m− 1 agents in their
service zones. The equilibrium number of agents connected to such hotspots is between K∗

m−1
and K∗

m. Now assume that r < R of the R hotspots have K∗
m−1 agents and the remaining R− r

hotspots have K∗
m agents, connected to their APs under the equilibrium configuration f . Sim-

ilarly, we assume that r′ < R hotspots have K∗
m− 1 agents in the equilibrium configuration f ′.

Equating the total number of agents in the service zone Sw
m in equilibria f and f ′, we have that:

(K−1)r +K(R− r)+ ∑
k∈K m, Mh

k <K∗m−1

Mh
k +Nw

m( f )

= (K−1)r′+K(R− r′)+ ∑
k∈K m, Mh

k <K∗m−1

Mh
k +Nw

m( f ′) .

Since Nw
m( f ) = Nw

m( f ′) this leads to r = r′, showing that Nm( f )∼ Nm( f ′).

2.7.3 Proof of Proposition 2.6

Proof. By part (i) of Proposition 2.5 there exists a fair equilibrium in Sw
m. Let f ∈ Fm be one

such equilibrium and let Km( f ) = maxk∈K m Nh
k ( f ). We will consider three cases based on the

value of Km( f ) and show that under the assumptions of the proposition, any other equilibrium,
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e ∈ Em has the same characterization.

Case 1: Km( f ) = 0 In this case there is no agent in Sw
m which connects to a hotspot. If there

are no agents within any of the hotspots’ service zones, then it is nothing to prove, since no
agents make any choices. Otherwise, considering the equilibrium conditions for agents that fall
within some hotspot we have:

Uw(Mw
m) > Uh(1) . (2.34)

It follows that no other equilibrium configuration can exist. Indeed, if e 6= f is some other
equilibrium configuration, we must have Nh

l (e) 6= Nh
l ( f ), and thus Nh

l (e)≥ 1 yielding Nw
m(e)≤

Mw
m−1. By Assumption 2.3 on utilities, we obtain:

Uw
(

Mw
m

)
≤Uw

(
Nw

m(e)+1
)

and Uh
(

Nh
l (e)

)
≤Uh(1) . (2.35)

Since e is an equilibrium, we should have:

Uw
(

Nw
m(e)+1

)
≤Uh

(
Nh

l (e)
)

, (2.36)

since no agent in Sh
l wishes to switch to WAN AP wm. Combining inequalities (2.35) and (2.36)

we obtain:
Uw

(
Mw

m

)
≤Uh(1) ,

which contradicts inequality (2.34).

Case 2: 0 < Km( f ) = maxk∈K m Mh
k In this case we have that there are no agents in Cm con-

nected to the WAN AP wm in configuration e and thus we have Nm( f ) = {Mh
k |k ∈ K m}. This

can only be feasible if:
Uw

(
Mw

C̄m

)
≤Uh(Mh

k ) ,

for k ∈ K m. Using this inequality instead of (2.34) and following the steps similar to the Case
1 one can prove that no equilibrium e exists, such that Nh

k (e) < Mh
k for some k ∈K m.

Case 3: 0 < Km( f ) < maxk∈K m Mh
k Consider any other equilibrium e 6= f and note that

Nw
m(e) ≥ Mw

C̄m
. Hence the inequalities (2.6) admit at most two integer solutions. It follows

that, for some K ≥ 1 we have that:

K−1≤ Nh
k (e)≤ K ,

for k ∈K m such that Mh
k ≥ K and

Nh
k ( f ) = Mh

k ,
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otherwise. Hence e must be a fair equilibrium, characterized by the slicing plane at level
Km(e) = K. Since by part (ii) of Proposition 2.5, all fair equilibria are equivalent, we have,
that N(e)∼ N( f ).

2.7.4 Proof of Proposition 2.7

For any configuration c ∈ Tm we will refer to agents that have utility equal Umin
m (c) as the

“bottleneck” agents. Let c ∈ Tm be a configuration that maximizes utility of a bottleneck agent
and c 6∈ Fm. We will show that Umin

m (c) ≤Umin
m ( f ), for all f ∈ K m. Since, by assumption of

the proposition, all fair equilibria in Sw
m are equivalent, we have that Nw

m( f ) = Nw
m( f ′), for all

f , f ′ ∈ Fm. Thus to prove the proposition it suffices to consider the following three cases.

Case 1: Nw
m(c) > Nw

m( f ), for all f ∈ Fm In this case we have that Nh
l (c) ≤ Nh

l ( f )− 1 for
at least one l ∈ K m. First we prove, that without loss of generality, one can assume that the
bottleneck agents for configuration c are connected to a hotspot. Indeed, we have:

Uh
(

Nh
l (c)+1

)
≥Uh

(
Nh

l ( f )
)

,

and
Uw

(
Nw

m(c)
)
≤Uw

(
Nw

m( f )+1
)

,

by Assumption 2.3 on utilities. Since in equilibrium f we must have Uh(Nh
l ( f ))≥Uw(Nw

m( f )+
1) we arrive at:

Uh
(

Nh
l (c)+1

)
≥Uh

(
Nh

l ( f )
)
≥Uw(Nw

m( f )+1)≥Uw
(

Nw
m(c)

)
.

Hence, Uh
(

Nh
l (c) + 1

)
≥ Uw

(
Nw

m(c)
)

and thus the utility of the bottleneck agent stays the
same or improves when an agent is switched from the WAN AP wm to hotspot hl .

Thus if c is maximizing the bottleneck among all configurations of agents choices,
the bottleneck agents could be assumed to be connected to a hotspot. However, consider
l = argmaxk∈K m Nh

k (c). Then any agent connected to the hotspot hl is the bottleneck for con-
figuration c. Thus, since no agent connected to the WAN is the bottleneck for c, we have
Uh(Nh

l (c)) < Uw(Nw
m(c)). Then we have the following chain of inequalities:

Uh(Nh
l (c)) < Uw(Nw

m(c)) ≤ Uw(Nw
m( f )+1) ≤ Uh(Nh

l ( f )) ,
(a) (b)

where inequality (a) follows from the assumption of Case 1, and inequality (b) – from the fact
that f is an equilibrium. Thus Uh(Nh

l (c)) < Uh(Nh
l ( f )) which means that Nh

l (c) ≥ Nh
l ( f ) +
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1. Since f is a fair configuration, we have maxk∈K m Nh
k ( f ) ≤ Nh

l ( f )+ 1. But then, Nh
l (c) ≥

maxk∈K m Nh
k ( f ), and hence Umin

m (c)≤Umin
m ( f ).

Case 2: Nw
m(c) < Nw

m( f ), for all f ∈ Fm We first prove that no agents connected to the WAN
can be the bottleneck for configuration c. Indeed, by assumption of this paragraph, we have
that there exists at least one l ∈ K m such that Nh

l (c)≥ Nh
l ( f )+1. Now assume that the agents

connected to the WAN are the bottleneck for configuration c, hence Uw(Nw
m(c)) ≤Uh(Nh

k (c)),
for all k ∈K m. Then we have the following chain of inequalities:

Uw(Nw
m( f )) < Uw(Nw

m(c)) ≤ Uw(Nh
l (c)) ≤ Uh(Nh

l ( f )+1) .

Hence Uw(Nw
m( f )) < Uh(Nh

l ( f )+ 1) which contradicts the fact that the agents connected to hl

in configuration f are in equilibrium. This shows that no agent connected to the WAN could be
the bottleneck for the configuration c.

It follows that the agents within the hotspot hn, such that n = argmaxk∈K m Nh
k (c) are the

bottleneck. Since there exists l such that Nh
l (c)≥Nh

l ( f )+1, we have that Nh
n (c)≥maxk∈K m Nh

n ( f ),
by the fair structure of f . This yields that Umin

m (c)≤Umin
m ( f ), which we claimed to show.

Case 3: Nw
m(c) = Nw

m( f ), for all f ∈ Fm First, we show again that no agent connected to the
WAN could be the bottleneck for configuration c. Indeed, since Nm( f ) 6∼N(c) we have that, by
fair structure of f , there exists at least one l ∈K m such that Nh

l (c)≥ Nh
l ( f )+1. Assuming that

the agents connected to the WAN are the bottleneck in configuration c, we have the following
chain:

Uw(Nw
m( f )) = Uw(Nw

m(c))≤Uh(Nh
l (c))≤Uh(Nh

l ( f )+1) .

Thus, Uw(Nw
m( f )) ≤ Uh(Nh

l ( f ) + 1) indicating that f could not be an equilibrium configura-
tion. This contradiction shows that the bottleneck agents for configuration c must be connected
to hotspots. It is easy to see that maxk∈K m Nh

k (c) ≥ maxk∈K m Nh
k ( f ) which yields Umin

m (c) ≤
Umin

m ( f ).
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Chapter 3

Shares of subscribers for competing
providers

3.1 Introduction

In this chapter we will describe how to compute the fractions of agents that would be connected
to WAN APs and hotspots in equilibrium. These fractions are useful as, for example, a metric for
assessing “competitiveness” of one provider versus another. Note that the model that we built
could readily be used to obtain the subscriber shares via simulation. However, as there are many
elements involved in the model, (e.g. various capacities at access points, densities of access
points and subscribers, geometric characteristics of coverage zones, etc.) the simulations might
not yield a plausible enough demonstration of a possibly complex role that those parameters
might play. Thus the objective of this section is to obtain analytical results that could be used
to estimate subscriber shares and sensitivities of these to system parameters without simulation.

We will assume1 that Πw,α is a deterministic process such that the Voronoi cells asso-
ciated with each WAN AP are geometrically similar and have the same area α. We further let
the processes Πh and Πa be independent stationary Poisson processes with densities λh and λa

respectively. Throughout the chapter we will also assume that the service zones of WAN and
WLAN APs are defined as described in Section 2.3.2.

The non-uniqueness of equilibria poses certain difficulties in analyzing the model for
arbitrary utilities, densities and cell sizes. Note that in practice, the sizes of WAN service zones
typically would exceed that of hotspots2. Thus, to simplify our analysis we will study a system
where the coverage area of WAN service zones, denoted α, is large enough to ensure each WAN
service zone contains a large number of users and hotspots. Intuitively, one might expect that
when the WAN service zones grow in area, the set of different equilibria becomes tighter, i.e.,

1This is, perhaps, not a bad assumption since WAN network would be carefully designed and optimized
2See e.g. [63] for a nice comparison of WiFi vs. 3G technologies.
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a type of the Law of Large Numbers making the system more amenable to analysis. In the next
section we demonstrate that this intuition is indeed correct.

3.2 Setup for asymptotic analysis

We consider a sequence of deterministic point processes {Πw,α} indexed by α ∈ R+,α ↑ ∞,
where each represents the spatial locations of WAN APs which are increasingly spread out. In
particular, we suppose that the area of the Voronoi cell associated with any point wα

m ∈ πw
α is

equal to α, and let α grow. Let us also assume that for each α > 0, πw,α contains a point wα
0 at

the origin.
In what follows we will consider the service zones of WAN AP wα

0 and we will use the
same notation as before to refer to the number of agents and hotspots falling within the service
zone of the WAN AP wα

0 ∈ πw,α, but indicate the dependence on the area α via the corresponding
superscript. Thus, for example we will write Hα

0 to indicate the number of hotspots that fall
within the service zone Sw,α

0 of the WAN AP wα
0 . In addition, we use Eh

0 [A0] to denote the
expectation of the quantity Ak associated with a typical hotspot hk (see, e.g. [64]), i.e. the
expectation with respect to the Palm probability.

For fixed λh and λa the service area of each WAN AP will have to support a larger
(roughly linear in α) number of users as α grows. Therefore, we will assume that the WAN
resources also scale with α. This leads to a scaling requirement on the utility function associated
with connecting to the WAN. Let Uw,α(·) denote the utility function associated with connecting
to the WAN when the area of a Voronoi cell of any WAN AP is α, and assume that Uw,α(·)
satisfies Assumption 2.3 for utility functions. Define Jα(N) = (Uw,α)−1 ◦Uh(·) (where Uh(·) is
independent of α) and assume the following:

Assumption 3.1. The scaling of Jα(N) with α is such that:

1. Jα(N) = α j(N) for any N ∈ N,

2. limN→∞ j(N) = ∞,

3. There exists N̄, such that j−1
(
(N + 1)/α

)
− j−1

(
N/α

)
< 1, for all N ≥ N̄ and each

α≥ 1.

4. For any integer K ≥ 2, u(K) 6= j(K), j(K−1), where

u(K) = λae−λhπd2
+λhEh

0

[
(Mh

0−K +1)1{Mh
0≥K}

]
. (3.1)

The interpretation of these assumptions is as follows. Condition 1 means that the re-
sources of WAN APs scale linearly in the area α of their service zones. For example, we might
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have Uh(N) = Bh

N and Uw,α(N) = αBw

N , in which case Jα(N) = αBw

Bh N. The second condition
follows if, as more agents connect to a resource, the utility of those agents is strictly decreasing
to zero. The third condition allows us to use Proposition 2.6 to argue that the equilibrium in
Sw,α

m is unique with probability approaching 1 as α→ ∞. Finally, the last condition is technical,
and satisfied for the cases of interest.

The asymptotics of this system are summarized in Theorem 3.1 and we give the details
of the proof in Section 3.4. Here when we say that an event Eα happens with high probability
(w.h.p.) we mean that limα→∞P(Eα) = 1.

Theorem 3.1. Consider any realization of the Poisson point processes Πa and Πh and the

sequence of deterministic processes {Πw,α} with Voronoi cells of area α and each with a typical

cell Sw,α
0 centered at the origin coinciding with wα

0 . Under the scaling Assumption 3.1 we have:

1. The equilibrium f α
0 in Sw,α

0 is unique and fair w.h.p.

2. The largest number of agents connected to each hotspot in this equilibrium, Nh,α
max( f α

0 ) =
maxk∈K α

0
Nh

k ( f α
0 ) has a limit:

lim
α→∞

Nh,α
max( f α

0 ) = Nh,∞
max ,

for some integer Nh,∞
max ≥ 0.

3. We have that Nh,∞
max > 0 if and only if j(1) ≤ λa in which case it is given by the largest

integer solution for K ≥ 1 of the inequality

u(K)≥ j(K) , (3.2)

where u(K) is given by (3.1).

We must note that item 3 in Theorem 3.1 requires certain properties of Poisson point
processes. Items 1 and 2 actually will hold for scenarios where the point processes that describe
APs’ and users’ locations are any stationary and ergodic (thus not necessarily Poisson), with a
restriction that the variances of the number of APs and users within a given compact set on the
plane asymptotically grow slower than some multiple of the corresponding means. The intuition
is that for such processes, the standard deviation associated with the number of users located
within a WAN service zone is asymptotically negligible in comparison to the mean.

The basic idea of the proof of Theorem 3.1 is to leverage the analogs of the Law of
Large Numbers for functionals on random sets, e.g. Voronoi cells, which have distributions
dependent on realizations of point processes. We also show that fluctuations from averages for
the quantities of interest do not grow “too fast” as the area of the WAN service zones grows.
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This allows us to express the position of the asymptotic “cutoff” Nh,∞
max, in terms of averages of

functionals of the realizations of Πh and Πa.
Based on Theorem 3.1 the analysis of competition when the WAN cell sizes are “large”

reduces to comparing the number Nh,∞
max = K∗ to the average number of agents falling within the

service zone of a typical hotspot. In particular, if

K∗À Eh
0

[
Mh

0

]
=

λa(1− e−λhπd2
)

λh , (3.3)

then hotspots retain most of the agents that fall within their service zones in equilibrium. We
classify this case as hotspots effectively competing with the WAN. On the other hand if

K∗¿ λa(1− e−λhπd2
)

λh , (3.4)

the hotspots yield most of their agents to the WAN APs in equilibrium. In this case we say that
hotspots are not competitive with respect to the WAN. Using Theorem 3.1, we can suggest the
following heuristic approach to estimate the value of Nh

max. In general one has to solve for K ≥ 0
the equation:

Uw
(

λa|V |e−λhπ|d|2 +λhEh
0 [P0(K)]

)
= Uh(K) , (3.5)

where P0(K) = (Mh
0 −K + 1)1{Mh

0≥K}. Note that since the left side of (3.5) is monotonically
increasing in K and the right – monotonically decreasing, the solution either does not exist
(K∗ = 0) or is unique, when it exists. Unfortunately, there is no closed form expression for the
term Eh

0[P0(K)] and hence simulation has to be used to estimate it. However, to test if hotspots
are not competitive with respect to the WAN one could use the following simple criterion.
Clearly, (3.4) holds if the solution to:

Uw(λaα−λhKα) = Uh(K) , (3.6)

falls much below the value λa/λh(1− e−λhπd2
). Note that this allows for a simple intuitive in-

terpretation. The number of agents and hotspots occupying WAN service zone tends to λaα and
λhα respectively when α is large. The number of agents connected in equilibrium to hotspots
tends to λhαK, whenever K ¿ λaE|Sh

k |, since then we can assume that each hotspot has exactly
K agents connected to its AP in equilibrium. Thus the number of agents connected to the WAN
AP must tend to:

λaα−λhKα ,

once the size of the WAN service zone gets large enough. Thus, (3.6) follows by equating the
utility of agents that are connected to the WAN AP and utility of the ones that are connected to
hotspots.
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3.3 Verification via simulation
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Figure 3.1: Representative geometries for different scaling factors α. The locations of users
(green dots) and hotspots (red circles) are given by two independent Poisson processes of fixed
densities. The service areas for WAN APs (blue hexagons) grow in area linearly in α. The
figure on the left corresponds to α = 5, and the one on the right – to α = 50.

To support the asymptotics in Theorem 3.1 we will construct a simple simulation sce-
nario. Let us consider the setup of Example 2.3, where utilities of agents connected to the
WAN and hotspots are solely congestion-dependent. We let Uw,α

j (N) = αBw

N , for α ≥ 1, and

Uh(N) = Bh

N . We let Πw,α to be a deterministic process that puts WAN APs on the plane in
a honeycomb pattern, with density inversely proportional to the scaling factor α. At the same
time, the locations of users and hotspots are given by two independent spatial Poisson processes
with some fixed densities, independent of α. We use the construction of WAN and hotspot ser-
vice zones described in Section 2.3.2. The representative geometries for two different scaling
factors are shown in Figure 3.3, and the summary of different parameters that we are using is
given in Table 3.1

Parameter Notation Value
Agents’ density λa 20 km−2

Hotspots’ density λh 1 km−2

WAN APs’ density λw/α 0.81/α km−2

Hotspot coverage radius d 500 m
Hotspots’ bandwidth Bh 1.5 Mbs
WAN APs’ bandwidth αBw 3α Mbs

Table 3.1: Simulation parameters

Figure 3.2 exhibits the results of a series of experiments in which we have simulated
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the area corresponding to 10× 10 WAN service zones each with increasing coverage area.
The figure shows the distribution of equilibrium “cutoff level” Nh,α

max, i.e., the distribution of
the largest number of agents within any given WAN service zone that connect to a hotspot in
equilibrium. We note that the width of the distribution shrinks when we increase the scaling α
and eventually all mass of the distribution concentrates at point K∗ = Nh,∞

max = 7. This behavior of
the cutoffs’ distribution function is in perfect agreement with Theorem 3.1, and we verified that
the asymptotic value of the cutoff indeed agrees with the one predicted item 3 in Theorem 3.1.
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Figure 3.2: The evolution of the sample distribution function for the “cutoff level” Nh
max for

different scaling factors α.

3.4 Proof of Theorem 3.1

Prior to giving a proof of Proposition 3.1 we provide several technical lemmas.

Lemma 3.1. For any realization of the Poisson processes Πa and Πh consider a service zone
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associated with the WAN AP wα
0 ∈ πw,α. Let

Lk(K) = (Mh
k −K)1{Mh

k≥K} , Pk(K) = (Mh
k −K +1)1{Mh

k≥K} . (3.7)

For any m ∈ N we have the following a.s. limits:

lim
α→∞

Hα
0

α
= λh , lim

α→∞

Mw,α
0
α

= λa , (3.8)

lim
α→∞

∑k∈K α
0

Lk(K)

Hα
0

= Eh
0 [L0(K)] , lim

α→∞

∑k∈K α
0

Pk(K)

Hα
0

= Eh
0 [P0(K)] , (3.9)

lim
α→∞

Mw,α
C0

α
= λa(1− e−λhπ|d|2) , lim

α→∞

Mw,α
C̄0

α
= λae−λhπ|d|2 , (3.10)

lim
α→∞

P
(
∃hk ∈ Sw,α

0 : Mh
k ≥ K

)
= 1 , ∀K ≥ 0 . (3.11)

Proof. The limits (3.8) follow by ergodicity [53] of the process πa and πh. One needs only to
note that the ratio α/|Sw,α

0 | converges to 1 as α→ ∞ since d (the radius of hotspot coverage) is
bounded.

Consider now the limits (3.9). Note that for each k, and any fixed K, both Lk(K) and
Pk(K) are functionals of the realization of processes Πh and Πa within some a.s. bounded
region (Voronoi “flower” [29] associated with the Voronoi cell V h

k ). Thus Lk(K) and Pk(K) are
“local statistics” as defined in [29], and thus one can use Theorem 3.1 therein to obtain these
limits.

Now consider the limits (3.10). By (3.8) and (3.9) and noting that:

∑
k∈K α

0

Mh
k = ∑

k∈K α
0

Lk(K)|K=0 ,

we have:

lim
α→∞

∑k∈K α
0

Mh
k

α
= λhEh

0

[
Mh

0

]
.

Evaluating this expectation, we get:

Eh
0

[
Mh

0

]
= Eh

0


 ∑

ai∈Πa(V h
0 )

1{ai∈V h
0 }1{|ai|≤d }


 = Eh

0

[
∑

ai∈Πa
1{Πh(B(ai,|ai|))= /0}1{|ai|≤d }

]
,

where the second equality uses the fact that if ai ∈ V h
0 then there can be no other point of Πh
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within the ball of radius |ai| centered at ai. Now by independence of Πh and Πa and also using
Campbell’s formula and Slyvnyak’s theorem (see e.g. [65]) we get:

Eh
0

[
Mh

0

]
= Eh

0

[∫
x∈B(0,d)

1{Πh(B(x,|x|))= /0}λadx
]

=
∫

x∈B(0,d)
e−λhπ|x|2λadx

=
λa

λh (1− e−λhπ|d|2) ,

from which the first limit in (3.10) follows. The second limit in (3.10) follows by taking into
account the limit (3.9) and the first limit in (3.10).

Finally, to obtain the limit (3.11), we apply the Strong Law of Large Numbers to the sum
of random variables Zk , 1{Mh

k >K} to obtain:

lim
α→∞

1
Hα

0
∑

k∈K α
0

1{Mh
k >K} = lim

α→∞

1
Hα

0
∑

k∈K α
0

Zk = P(Mh
k > K) > 0 a.s. . (3.12)

Here we used the fact that the variables Zk are i.i.d., since they depend on the number of points
of homogeneous Poisson process sampled on disjoint sets Sh

k . Thus, at least one term in the sum
in (3.12) is nonzero, for sufficiently large α, which proves the limit (3.11).

Lemma 3.2. Let ∆α
i where i = 1,2,3,4 be defined as follows:

∆α
1 = Mw,α

0 , ∆α
2 (K) = ∑

k∈K α
0

Lk(K) , ∆α
3 (K) = ∑

k∈K α
0

Pk(K) , ∆α
4 = Mw,α

C̄0
.

Then for each i, 1≤ i≤ 4 and any C > 0 we have:

lim
α→∞

P
[
|∆α

i −E [∆α
i ]|> C

√
α logα

]
= 0 . (3.13)

Proof. To prove the lemma we will use Chebyshev’s inequality:

P
[
|∆α

i −E [∆α
i ]|> C

√
α logα

]
≤ var [∆α

i ]
C2 α logα

.

First we show that for 1≤ i≤ 4:
var [∆α

i ] = O(α) . (3.14)

Indeed, ∆α
1 = Mw,α

0 is just a Poisson random variable with average that scales linearly in α.
Hence (3.14) is satisfied for i = 1. To obtain the bound on the variances of ∆α

2 and ∆α
3 we use

Lemma 1 in [29], which yields:

var [∆α
2 (K)] = O(α) , var [∆α

3 (K)] = O(α) .
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Finally for the variance of Mw,α
C̄0

observe that

Mw,α
C̄0

= Mw,α
0 −∆α

2 (0) .

Since the variances of both terms on the right are O(α) we get:

var [∆α
4 ] = O(α) .

Now using Chebychev’s inequality and (3.14) we obtain, for any C > 0,

P
(
|∆α

i −E [∆α
i ]|> C

√
α logα

)
=

O(α)
Θ(α logα)

→ 0 , when α→ ∞ .

Lemma 3.3. Under the scaling Assumption 3.1, the equilibrium f α
0 in Sw,α

0 is unique and fair

w.h.p..

Proof. Using Lemma 3.2 we have that, eventually, Mw,α
C̄0

≥ N̄ a.s. as α→∞. Taking into account
Assumption 3.1, the conditions of Proposition 2.6 hold w.h.p. Using Proposition 2.6 yields the
statement of the lemma.

Lemma 3.4. For any equilibrium configuration f α
0 in Sw,α

0 we have that:

max
k∈K α

0

Nh
k ( f α

0 ) < max
k∈K α

0

Mh
k , w.h.p. (3.15)

Proof. Note that (3.15) has a strict inequality. Thus (3.15) implies that the largest number of
agents connected to any hotspot within Sw

0 in equilibrium f α
0 is strictly less than the maximum

number of agents in any one of the hotspots – at least asymptotically. We prove the lemma
by contradiction. Suppose that there exists a sequence ξε = {αn > 0| limn→∞ αn = ∞} with the
following property. For any α ∈ ξε, f α

0 is such that for some lα ∈ K α
0 we have Nh

lα( f α
0 ) =

maxk∈K α
0

Mh
k with probability greater than ε. Then, for any α ∈ ξε:

Jα(Mh
lα)≤ Nw,α

0 ( f α
0 ) , (3.16)

since no agent desires to switch to the WAN AP w0 from the hotspot hlα . Now, note that f α
0 is

fair w.h.p, by Lemma 3.3 and thus:

Mh
k −1≤ Nh

k ( f α
0 )≤Mh

k ,

where we took into account that there are no k ∈ K α
0 such that Mh

k > Mh
lα . This yields, that at
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most one agent within each hotspot hk, for k ∈K α
0 selects the WAN, thus

Nw,α
0 ( f α

0 )≤Mw,α
C̄0

+Hm , (3.17)

Now, using Assumption 3.1 and Lemma 3.1, the inequalities (3.16) and (3.17) imply:

j
(

Mh
lα

)
≤ λae−λhπd2

+λh . (3.18)

Taking into account that by Lemma 3.1 and Assumption 3.1:

liminfα→∞ max
k∈K α

0

Mh
k = ∞ , lim

N→∞
j(N) = ∞ , a.s.

we find that the inequality (3.18) is violated with probability tending to 1 as α → ∞. Thus, ξε

can not exist for any ε > 0, which proves the lemma.

Lemma 3.5. Consider a configuration f α
0 for service zone Sw,α

0 and let Nh,α
max( f α

0 )= maxk∈K m Nh
k ( f α

0 ).
For any α > 0, a necessary and sufficient condition for f α

0 to be an equilibrium w.h.p. is that

f α
0 is a fair configuration that obeys either of the following:

Nh,α
max( f α

0 ) = 0 , Jα(1) > Mw,α
0 , (3.19)

Nh,α
max( f α

0 )≥ 1 , Jα
(

Nh,α
max( f α

0 )
)
−1≤ Nw,α

0 ( f α
0 ) < Jα

(
Nh,α

max( f α
0 )+1

)
(3.20)

where Nh
k ( f α

0 ) = Nh,α
max( f α

0 ) for all k ∈K α
0 , such that Mh

k ≥ Nh,α
max( f α

0 ), or:

Nh,α
max( f α

0 )≥ 1 , Jα
(

Nh,α
max( f α

0 )
)
−1≤ Nw,α

0 ( f α
0 ) < Jα

(
Nh,α

max( f α
0 )

)
, (3.21)

where ∃k, l ∈K α
0 , such that Mh

k ,M
h
l ≥ Nh,α

max( f α
0 ), and Mh

k = Nh,α
max( f α

0 ), Mh
l = Nh,α

max( f α
0 )−1.

Proof. We already proved in Lemma 3.3 that all equilibria in Sw,α
0 have the same fair charac-

terizations w.h.p. In case Nh,α
max( f α

0 ) = 0 there are no agents connected to any hotspots in Sw
0 .

The necessary and sufficient condition for that, as follows from the inequality (2.5), is given
by (3.19).

Consider the case Nh,α
max( f α

0 ) ≥ 1. First assume that for all k ∈ K α
0 , such that Nh,α

max( f α
0 )

we have that Nh
k ( f α

0 ) = Nh,α
max( f α

0 ). By Lemma 3.4 we have Nh,α
max( f α

0 ) < maxk∈K 0 Mh
k , and thus

we can use the equilibrium conditions (2.4) to obtain (3.20).
Now assume, instead, that there exist such k, l ∈ K α

0 , so that Mh
k ,M

h
l ≥ Nh,α

max( f α
0 ), and

Mh
k = Nh,α

max( f α
0 ), Mh

l = Nh,α
max( f α

0 )−1. For the hotspots having Nh,α
max( f α

0 )−1 agents connected
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to them in configuration f α
0 , via equilibrium conditions (2.4) we get:

Jα
(

Nh,α
max( f α

0 )−1
)
−1≤ Nw,α

0 ( f α
0 ) < Jα

(
Nh,α

max( f α
0 )

)
, (3.22)

while for the hotspots having Nh,α
max( f α

0 ) agents connected to them:

Jα
(

Nh,α
max( f α

0 )
)
−1≤ Nw,α

0 ( f α
0 ) < Jα

(
Nh,α

max( f α
0 )+1

)
, (3.23)

Now, using monotonicity of Jα(·), by combining (3.22) and (3.23) we get (3.21).

Proof of Theorem 3.1 Let f α
0 denote an equilibrium configuration in the service zone Sw,α

0 of
the WAN AP wα

0 ∈ πw
α. By Lemma 3.3 such configurations have equivalent and fair character-

izations w.h.p, which gives Part 1 of the theorem. Let Nh,α
max = maxk∈K α

0
Nh

k ( f ) where f ∈ F α
0

is any fair equilibrium configuration. In what follows we will consider two cases that depend
on whether the density of agents λa is less than the value j(1). Our goal is to show that the
limα→∞ Nh,α

max( f α
0 ) exists.

Case 1: λa < j(1) We will show that λa < j(1) if and only if:

lim
α→∞

Nh,α
max = 0 .

Indeed, the “only if” part follows from the condition (3.19) by dividing both sides by α and
taking limits as α → ∞. Now using the limit (3.8) we obtain that Nh,α

max = 0 w.h.p. implies
λa < j(1).

Next we prove that if λa < j(1) then Nh,α
max = 0 w.h.p. Indeed, by Lemma 3.1 we know

that:
Mw,α

0 = λaα+ ε(α) ,

where |ε(α)|= O
(√

α logα
)
. But then, for sufficiently large α we have:

Mw,α
0 < Jα(1) ,

which, by Lemma 3.5 implies Nh,α
max = 0 w.h.p.

Case 2: λa ≥ j(1) We first prove that Nh,α
max has a limit once α → ∞. Consider any sequence

ξ := {αn|n ∈ N}, where limn→∞ αn = ∞. We define the following disjoint subsequences of ξ:

ξ1 =

{
α| α ∈ ξ, 1≤ Nh,α

max < max
k∈K α

0

Mh
k and ∀k ∈K α

0 , s.t. Mh
k ≥ Nh,α

max, Nh
k ( f α) = Nh,α

max

}
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ξ2 =

{
α| α ∈ ξ, 1≤ Nh,α

max < max
k∈K α

0

Mh
k , and

∃k, l ∈K α
0 , s.t. Mh

k ,M
h
l ≥ Nh,α

max , and Nh
k ( f α) = Nh,α

max , Nh
l ( f α) = Nh,α

max−1

}

ξ3 =

{
α| α ∈ ξ, 1≤ Nh,α

max = max
k∈K α

0

Mh
k

}

ξ4 =
{

α| α ∈ ξ, Nh,α
max = 0

}

Clearly, ξ =
⋃4

i=1 ξi. However, by Lemma 3.4, the sequence ξ3 is finite. Moreover, we have
proved above that when λa ≥ j(1) the sequence ξ4 is finite too. Thus, asymptotically, ξ consists
only of the members of the sequences ξ1 and ξ2. Note that either ξ1 or ξ2 or both ξ1 and ξ2

have to be infinite, since ξ is infinite.
By definition of ξ1 and ξ2, we have, that maxk∈K α

0
Mh

k > Nh,α
max when α ∈ ξ1∪ξ2. Thus,

if any of ξ1 or ξ2 is finite, to prove the statement of the theorem we have to show that Nh,α
max

converges along the other infinite sequence. If both ξ1 and ξ2 are infinite, then we need to show
that Nh,α

max is asymptotically the same along each subsequence, and in addition that:

lim
α∈ξ1 , α→∞

Nh,α
max = lim

α∈ξ2 , α→∞
Nh,α

max .

We will consider first the sequence ξ1 and assume that it is infinite. We will show that:

lim
α∈ξ1, α→∞

Nh,α
max = K1 , (3.24)

where K1 is independent of α. We argue by contradiction. In particular, assume that there exist
arbitrary large γ,δ∈ ξ1 such that Nh,γ

max 6= Nh,δ
max. Without loss of generality let γ < δ, and consider

the equilibrium conditions in Sw,δ
0 . By Lemma 3.5 we have that:

Jδ
(

Nh,δ
max

)
−1≤ Nw

0 ( f δ
0 ) < Jδ

(
Nh,δ

max +1
)

,

Now multiplying these inequalities by γ/δ, and using Assumption 3.1, we obtain:

Jγ
(

Nh,δ
max

)
− γ/δ ≤ γ/δNw,δ

0 ( f δ
0 ) < Jγ

(
Nh,δ

max +1
)

.

Note that by Lemma 3.1 we have:

γ/δNw,δ
0 ( f δ

0 ) = γ
(

λa e−λhπd2
+λhEh

0

[
Pδ

0 (Nh,δ
max)

])
+ ε1(γ,δ) ,
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where, by Lemma 3.2, |ε1(γ,δ)|= O
(

γ
√

logδ/δ
)

= O
(√

γ logγ
)
. This yields:

Jγ
(

Nh,δ
max

)
−1≤ γ

(
λa e−λhπd2

+λhEh
0

[
Pδ

0 (Nh,δ
max)

])
+ ε1(γ,δ) < Jγ

(
Nh,δ

max +1
)

. (3.25)

Now consider a fair configuration f̃ γ
0 for service zone Sw,γ

0 , such that maxk∈K α
0

Nh
k ( f̃ γ

0 ) = Nh,δ
max

and such that for all k ∈K γ
0 for which Mh

k ≥ Nh,γ
max we have Nh

k ( f̃ γ
0 ) = Nh,δ

max. Clearly, in this case
Lemma 3.1 and Lemma 3.2 yield:

Nw
0 ( f̃ γ

0 ) = γ
(

λa e−λhπd2
+λhEh

0Pδ
0

(
Nh,δ

max

))
+ ε2(γ) ,

where |ε2(γ)|= O
(√

γ logγ
)
. By Assumption 3.1 (item 4) we have, for all integer K:

λa e−λhπd2
+λhEh

0Pδ
0 (K) 6= j(K) ,

which then translates the inequalities (3.25) into:

j
(

Nh,δ
max

)
< λa e−λhπd2

+λhEh
0Pδ

0

(
Nh,δ

max

)
< j

(
Nh,δ

max +1
)

. (3.26)

Now note that |ε1(γ,δ)+ ε2(γ)|= O
(√

γ logγ
)

= o(γ). Hence, using (3.25), one gets

Jγ
(

Nh,δ
max

)
− γ/δ≤ Nw,γ

0 ( f̃ γ
0 ) < Jγ

(
Nh,δ

max +1
)

,

once γ < δ are selected large enough. By Lemma 3.5 we have that f̃ γ
0 is a fair equilibrium that

is different from f γ
0 . By Lemma 3.3 this can not happen w.h.p. Thus we obtain that

lim
α∈ξ1,α→∞

Nh,δ
max = K1

for some positive integer K1.
Now, if ξ2 is finite, we are done, since asymptotically ξ consists only of ξ1 and we have

already shown that along ξ1 the value of Nh,α
max has a limit. Now we will prove that if ξ2 is

infinite, then the value of Nh,α
max along ξ2 also converges to a limit. Take any γ ∈ ξ2 then, by

Lemma 3.5 we have, that

Jα(Nh,γ
max)−1≤ Nw,γ

0 ( f γ) < Jα(Nh,γ
max) .

Dividing these inequalities by γ, by Assumption 3.1, we have:

j(Nh,γ
max)−1/γ≤ Nw

0 ( f γ)
γ

< j(Nh,γ
max) . (3.27)
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We now show that Nh,γ
max < K0 for some K0 independent of γ. Indeed, otherwise, there exists a

subsequence ξ5 ⊂ ξ2, with limγ→∞,γ∈ξ5
Nh,γ

max = ∞. Now using Lemma 3.1, we have that

limsupγ→∞,γ∈ξ5

Nw
0 ( f γ)

γ
< λa e−λhπd2

+λh lim
γ→∞,γ∈ξ5

Eh
0

[
Pγ

0

(
Nh,γ

max

)]
= λa e−λhπd2

.

At the same time we have that
lim

γ→∞,γ∈ξ5
j(Nh,γ

max) = ∞ ,

which means that the inequalities (3.27) could not be satisfied along the subsequence ξ5. Thus
we have a contradiction, and ∃K0, such that Nh,γ

max < K0.
Thus the set {Nh,γ

max|γ ∈ ξ2} is finite, hence if ξ2 is infinite, at least some values from this
set must realize infinitely often along ξ2. Consider any value K which is achieved infinitely
often along ξ2, i.e. there exists a subsequence ξ6 ⊂ ξ2, with sup{γ|γ ∈ ξ6} = ∞ and for any
γ ∈ ξ6, Nh,γ

max = K. Note that Nw,γ
0 ( f γ

0 ) must satisfy:

Mw,γ
C̄0

+ ∑
k∈K γ

0

(Mh
k −K)1{Mh

k≥K} < Nw
0 ( f γ

0 ) < Mw,γ
C̄0

+ ∑
k∈K γ

0

(Mh
k −K +1)1{Mh

k≥K} w.h.p. ,

since f γ
0 is asymptotically fair w.h.p. Dividing these inequalities by γ, and comparing to in-

equalities (3.27), one finds that K must satisfy:

l(K) , λa eλhπd2
+λhEh

0 [L0(K)] < j(K)≤ λa eλhπd2
+λhEh

0 [P0(K)] , u(K) , (3.28)

where we used Lemma 3.1. Note that u(K)= l(K+1) and thus the intervals (l(K),u(K)] are dis-
joint for different integer K. Moreover

⋃∞
K=1(l(K),u(K)] = (0,u(1)]. Since j(K) is increasing

in K and limK→∞ j(K) = ∞, there exists exactly one integer solution to the inequalities (3.28),
since we assumed

j(1)≤ λa ,

and u(1) = λa. But then the value of Nh,γ
max is asymptotically unique w.h.p., when γ ∈ ξ2 and

γ→ ∞.
We are left to show that if both ξ1 and ξ2 are infinite, then the asymptotic values K1 and

K2 along ξ1 and ξ2 respectively satisfy K1 = K2. Observe that the condition (3.26) implies for
K1:

j(K1) < u(K1) < j(K1 +1) .

Now, since K2 is a unique integer solution to (3.28) we obtain that K2 = K1. Since Nh,α
max( f α

0 ) =
K1 w.h.p. when α ∈ ξ1 and Nh,α

max( f α
0 ) = K2 = K1 w.h.p when α ∈ ξ2, we obtain Part 2 of the

theorem. Lastly, Part 3 of the theorem follows from the above analysis.
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3.5 Summary of Chapters 2 and 3

In summary, at this point we have developed a geometric model for a system where subscribers
with dual mode devices and select among two noninterfering wireless service providers – a
WAN provider and a second provider (or aggregator) of LAN hotspots. Our model is of in-
terest in that, on the one hand, it captures wireless providers using technologies that might
have different capacity and coverage, and on the other hand it captures the role of subscribers
decision-making mechanisms in determining the eventual equilibrium. Assuming that each sub-
scriber makes greedy decisions, based on comparing two utilities, at random times, we show
that an equilibrium configuration would eventually be reached. Further we have characterized
such equilibria and shown that they are likely to be close to an equilibrium, corresponding to
slicing the excess loads on hotspots, and “shifting” only those to the WAN. In an effort to get
numerical estimates for the level at which this slicing occurs, we developed an asymptotic re-
sult for the case where WAN service areas are large, which would permit an evaluation of this
setting.

The results of Chapter 3 can be viewed from different perspectives. On the one hand
they permit an evaluation of the competitiveness of the two providers to attract subscribers
in their service areas. We admit however, that such evaluation is contingent on knowing (or
ability to model appropriately) users’ utility functions. However, more importantly, and as
we will see in the next chapter, our results permit a study of how to design decision making
mechanisms, i.e., appropriate utility functions, to realize equilibria that may be desirable for
the overall system. The highlight of Chapters 2,3 is characterization of such equilibria, and
this would permit further consideration of the performance and network design implications of
wireless systems where users are capable to switch among multiple providers, depending on the
key parameters of the system.
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Chapter 4

Design of cooperative multi-provider
wireless networks under the “loosely

coupled” option

4.1 Introduction

As WAN and WLAN technologies posses complementary features, cooperation scenarios be-
tween WAN and hotspots’ providers could be of high practical value and can be realized in a
number of different ways. For example, a WAN provider could be interested in augmenting
its service via high bandwidth hotspots’ access points in urban areas seeing a high steady load
and thus seek an agreement with a hotspot provider which will let the subscribers of WAN ser-
vice use hotspots within these locations. Similarly, a hotspot provider might be interested in
upgrading its service which is only available locally at a limited set of locations, to a ubiquitous
“always on” wireless access service, and thus seek an agreement which would oblige a WAN
provider to serve hotspot provider’s subscribers at locations not covered by hotspots. Finally,
WAN and hotspot providers might merge together to become a single entity which provides a
service possessing the complementary strengths of both WAN and hotspots’ technologies.

In all of the above examples the resulting heterogeneous network can be designed ac-
cording to several architectural options, which can be referred to as “loosely coupled” and
“tightly coupled” internetworking solutions [11]. According to the former option the WAN and
hotspots networks are kept as separate entities, but the subscriber databases for both providers
are augmented so that the WAN and hotspots are able to handle the requests associated with the
common subscribers of the WAN and the hotspots networks. This option does not assume any
coordination between the access points or any additional feedback that the access points might
provide to users to facilitate their decision-making (selection of services, when several options
are available). As such, the simplicity of this design option implies that control on performance
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of such networks will be quite limited.
The other design option is especially suitable in a scenario where the WAN and hotspots

belong to the same service provider (e.g. due to a merger). With this second option the access
points of the WAN and hotspots might provide some sort of additional feedback to users or to a
separate networking entity (which we will call Radio Access Controller and abbreviate as RAC)
operating across WAN and hotpsot networks. The task of the RAC would be to monitor the state
of the network by collecting pertinent information from access points (such as, e.g. current
utilization, channel rates available to users etc.) and dynamically coordinate the assignment of
users’ requests to various access points based on the collected network state information. As
we already mentioned in Chapter 1, this architectural option is likely to provide a tighter control
on the performance of the network, but is also likely to contribute to overall design complexity
and cost, and might also lead to scalability problems.

Whichever architectural option is chosen, the way that the users are assigned to access
points must affect the performance of the overall cooperative system. In this chapter we focus
on understanding how the decision-making criteria and various parameters of heterogeneous
network interplay and affect the performance. Our ultimate goal is to show how the controllable
parameters in the system could be tuned so as to ensure the target performance under the least
resource cost. Some important tunable parameters are the decision-metrics as well as resource
allocation strategies e.g. network dimensioning.

It is important to understand that the design of decision-making metrics is a lot different
for the two architectural options presented above. The decision-making entity in the “tightly
coupled” heterogeneous network could be located within users’ agents or within the RAC. The
corresponding decision metric might involve a carefully designed feedback, (e.g. congestion
levels of all APs in the network, amount of interference, proximity of end nodes to APs, etc)
which the access points provide either to the end-nodes or the RAC. The decision-making de-
sign problem will then aim to find and tune the exact form of this feedback as well as the
decision metric based on this feedback. In contrast, under the “loosely coupled” design option
the decision-making has to undergo within the end nodes. Since the extra signaling from APs
will be unavailable, the end-nodes would only be able to use some inferred information on the
state of the network in their decision-making. This could be done, however, by observing the
actual performance, e.g. typical service delays (in case of file transfers) and thus inferring the
congestion levels at APs that the agent is able to communicate with. The design problem in this
setting is hence finding good decision-making metric which utilizes no extra feedback from the
APs.

In this chapter we consider the design of heterogeneous networks under the “loosely
coupled” option, leaving the “tightly coupled” case for consideration in Chapter 5. Note that
under the “loosely coupled” option the users (or agents on the users’ behalf) are in charge of
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making selections between possible access points and thus we can use the network model that
was analyzed in Chapters 2,3, where the decisions of individual agents are based on utility
functions. Here we will assume that utilities are exogenously specified within a framework of a
particular decision-making protocol, which we will design to optimize a particular performance
objective.

We start by showing that, under some conditions, congestion-sensitive decision-making
strategies are performance optimal. In particular, in Section 4.3 we show that if performance
metric for each agent is given by a solely congestion dependent utility function, the equilibrium
system performance will possess a max-min fairness property. In simple forms this property
implies that in order to optimize the performance of the “worst” user per WAN service zone it
is optimal to let agents make selections among the access points which lead to improvements
in their individual performance. For example, if we need to optimize the network for data ap-
plications, it is optimal (under the conditions specified in the sequel) to let agents connect to
access points which grant the least individual file transfer delays, since in that case the delays
seen by the “worst” users in the WAN service zone will be the smallest. We verify these conclu-
sions by performing several simulation experiments which illustrate the performance gains of
congestion-sensitive decision-making strategies over more natural proximity-based strategies.

Good performance under congestion-dependent decision-making strategies is associated
with an efficient usage of available network resources. Thus, for example hotspots are especially
useful in spatial areas with a high and steady load, but can be under- or over- utilized when-
ever the loads in given spatial locations are time-varying and bursty (due to, e.g. daily user
migration). At the same time the fluctuations at hotspots spatial scales can be “smoothed out”
by the WAN network which is only sensitive to an aggregate load within much larger coverage
areas. This smoothing property is realized by implementing congestion-sensitive decisions on
agents, which will tend to prefer WAN service when they are within the coverage area of overly
congested (relatively to the WAN) hotspot.

Once we demonstrate optimality of congestion-sensitive decision-making strategies, we
focus on the complementary problem of minimizing available network resources while meet-
ing a constraint on network performance. We solve a number of optimization problems that
show how to optimally capacitate the network, and demonstrate that optimal capacity allocation
might potentially significantly reduce the overall backhaul costs – backhaul links from WLAN
access points to the wired network represent a significant fraction of the cost of operating such
infrastructure [63]. Finally, we conclude Chapter 4 with Section 4.5 where we briefly identify
the major takeaways from our analysis.
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(a) (b)

Figure 4.1: (a): Available WAN rates spatial profile. (b): Traffic demands spatial profile.

4.2 Optimal heterogeneous network design problem

4.2.1 General intuition

Figure 4.1 (a) exhibits the possible spatial profiles for the realization of downlink bit-rates avail-
able from the WAN at different spatial locations within its service zone. Red color on the figure
corresponds to higher available rates, while blue – to lower. Similarly, Figure 4.1 (b) shows a
possible realization of average daily loads, with higher loads shown in red, and lower in blue.
Clearly such information may and, in fact, as we will see in this chapter, should be accounted
for when designing heterogeneous network.

In what follows we assume that the information on bit-rate and statistics of spatial loads
is available for each WAN service zone – it could be obtained through measurements or could
be deduced in some other way (e.g. predicted/projected). We will deal with several design
problems. The first class of design problems assumes that the locations of hotspots are inflexible
– they might have already been installed by a hotspot provider. For this class of problems we
will still be able to optimize the backhaul bandwidth of hotspots – ideally the hotspots located
in areas which are poorly covered by the WAN, or most densely populated will be provided
with larger backhauls to sink more traffic. The second type of design problems assumes that the
locations and the total number of hotspots (as well as the provided for them backhaul bandwidth)
could be appropriately chosen.

In this chapter (as well as in the rest of the thesis) we will concentrate on wireless data
services, with essential examples being FTP file downloads and web-browsing. Average delays
seen by users during a typical file transfer are thus the natural quality of service metric in this
setting, thus in this chapter we will consider two quality of service metrics that are related to
the average delays which users experience.
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For both types of design problems our objective will be to minimize the total backhaul
bandwidth used within the WAN service zone under the constraint of providing a given amount
of quality of service. Our motivation for considering backhaul dimensioning problems is that
backhaul represents one of the largest recurring costs for operation of hotspots networks (see,
e.g. [63]). For example, although bit-rates of up to 11 Mbps are available at current IEEE
802.11b systems, the practical achieved rates are rarely above 1-3 Mbps, since traffic is bottle-
neckhed by slower DSL/Cable providers’ service rates.

Note that the selection of a decision-making strategy and backhaul dimensioning prob-
lems are tightly related to each other. Indeed, in one extreme scenario, agents might be con-
figured to prefer the WAN at all times (because of, e.g. high-capacity WAN service at that
area) making hotspots useless. In the opposite extreme, the agents could connect to hotspots
exclusively when they are within hotspots coverage areaa – in that case the hotspots have to
be equipped with sufficient backhaul bandwidth to ensure a reasonable quality of service. As
we will show later such decision-making based on proximity may require large extra over-
provisioning costs. This illustrates that optimization problem for backhaul dimensioning has to
be considered in the context of a decision-making strategy.

4.2.2 Formalization of the problem

Consider the service zone Sw
m of a given WAN AP wm. We will assume that Hm non-overlapping,

equal-sized subzones (sites) are specified within Sw
m. We will denote these sites (in the same way

as in Chapter 2) via {Sh
k}k∈K m , and assume that Sh

k could be completely covered by the service
zone of a single hotspot. These sites could represent the locations at which the hotspot provider
has already installed hotspots, or the locations at which the hotspots are planned. A possible
scenario is when ∪Hm

k=1Sh
k = Sw

m, i.e. the (planned) hotspot sites cover the whole service zone Sw
m.

We will assume that the agents ai ∈ Sh
k , share the same average (over time) WAN down-

link data rate given by Bw(ai) = Bw(hk), for k ∈K m and where Bw(hk) belongs to a discrete set
B , {bw

r }NB
k=1 which consists of NB distinct possible rates. We will not be specifying the up-link

rates since our goal here is to consider heterogeneous network design for data services, which
are mostly sensitive to the performance of the downlink. The major assumption that we take
in this chapter, (but will dispense with in Chapter 5), is that the average over time down-link
rates at each spatial location only depend on the large scale path loss, shadowing and short-term
fading statistics, but are mostly insensitive to interference, e.g. out-of-cell interference from
adjacent WAN APs. This will allow us to treat different WAN service zones as non-interacting,
and thus will enable to optimize each the network on a per WAN cell basis. Our other major
assumption is that all users within a hotspot’s service zone are able to communicate with the
hotspot’s AP at a rate constrained by the bandwidth of the backhaul – as we already mentioned
the wireless access bandwidth is likely to exceed by far that of the backhaul.
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We will assume that the distribution of the number of agents within a site Sh
k is Poisson

with density (per unit area) λa
k , where λa

k is possibly random itself. The number of agents at
different sites Sh

k and Sh
l is assumed to be conditionally independent, given λa

k and λa
l , but the

means λa
k and λa

l are possibly correlated. This construction will allow us to model scenarios
with daily migration of users – in that case a number of contingent sites (e.g. covering a hotel
lobby) will see loads varying around the same mean which slowly changes during the day.

Let us further specify the load and service models that we will be using. We will assume
that each user generates a Poisson stream of download requests with intensity γ, each request
is for files of average size f , and that all APs in the system serve users in a processor sharing

fashion. This assumption works well [56] when modeling, for example, TDMA-based wireless
systems in which all users connected to an AP receive an equal fraction of available time slots
for service. A well-known current example of such systems is Qualcomm’s 1XEV-DO (HDR).

We will denote by βm a particular backhaul allocation strategy across sites Sh
k , for k∈K m

and WAN AP wm and let β ≡ {βm}M
m=1. Let τm(ai) denote the decision-making strategy that

is used to assign a download request from an agent ai ∈ Sw
m ∩ Sh

k to WAN AP wm or hotspot
AP hk. We will also denote τm = {τm(ai)}ai∈Sw

m and τ = {τm}M
m=1. Note that τm(ai) in general

can depend on many factors, such as proximity of agents to various APs, observed quality
of channels, delays, etc. We will require τm(ai) to be dependent only on information that is
available locally to ai, thus the decisions of an agent ai ∈ Sh

k can not, for example, explicitly
depend on the current utilization of hotspot hl , for l 6= k.

Let P(β,τ) denote a given performance metric in the system – this could be, for ex-
ample, average delay in the WAN system or a worst user’s average over time delay, etc. For
conventional simplicity we assume that better performance corresponds to the case when metric
P is smaller – this is, for example, the case when the metric is given by the mean delay seen by
a typical user in the system. We formulate the general multi-provider network design problem
as:

Problem 4.1. (Jointly optimal decision-making and backhaul dimensioning):

min
β,τ

[
M

∑
m=1

Bw
m +

K

∑
k=1

Bh
k

]
, (4.1)

under constraints:

P(P(β,τ)≤ θ)≥ 1−δ (4.2)

0≤ Bw
m ≤ B̂w , Bh

k ≥ 0 . (4.3)

In Problem 4.1 (4.2) ensures that performance in the system is at least a target θ with
probability being only a small amount δ away from 1. The constraints (4.3) assume that the
wireless access bandwidth at hotspots is unlimited and thus only constrained by the backhaul.
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By contrast, only B̂w is available at each WAN AP – usually WAN services operate using a
limited portion of expensive licensed spectrum, and thus the wireless access bandwidth is likely
to be the bottleneck.

4.2.3 Choice of performance metric

The explicit solution to Problem 4.1 is only possible when P(τ,β) is specified. As the choice
of performance metric must depend on the application at hand and we focus on down-link
data services, it seems natural for our purposes to relate performance to the delays that users
experience during a typical file download. There are a lot of possibilities, however, in which
performance could be related to the delay. For example the possible choices of performance
metrics could be:

P(β,τ) = “delay, averaged over time and across users in the system” (4.4)

or
P(β,τ) = max

m=1,...,M

(
“delay, averaged over time and across users within Sw

m”
)

(4.5)

or
P(β,τ) = max

ai

(
“delay, averaged over time for user ai”

)
(4.6)

and etc. Note that optimizing the system for each performance metric has its own advantages
and disadvantages. Designs under metric (4.4) would ensure good performance on average but
will tend to neglect some small fraction of users who experience relatively bad performance and
which do not contribute much to the average delay in the system. A typical example of such
“neglected” user would be the user not covered by any hotspot and falling on the boundary of
WAN service zone, who thus sees relatively poor channel to WAN AP. To rectify this situation
we could set our performance metric to (4.6) which favors users experiencing worst perfor-
mance. In that case, however, under some pathological cases too much of network resources
could be spent on providing service to a single user, while the rest of the network could benefit
from these resources tremendously. We can illustrate this by getting back to the previous exam-
ple with the user who is not covered by any hotspot and which experiences a very poor channel
to the WAN (on average in time). Improving performance of such user would mean that the
WAN (under no power control assumption) has to serve this user on average much longer than
others. Since the WAN AP serves all users in processor sharing fashion, this situation can only
realize if the decision-making of users covered by hotspots is biased in favor of hotspots, so that
more of the WAN resources could be allocated to the user at the boundary of the WAN service
zone. Overall this intuitively looks like a poor design choice, since most of network resources
would be spent on a single user while they could be utilized more efficiently by the rest of the
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users in the network.
This discussion illustrates that the choice of the performance metric should also be

matched to the scenario conditions and be reasonably motivated. In what follows we will con-
sider scenarios for which the WAN service is reasonably uniform, i.e. the average bit-rates
experienced by agents at different spatial locations are not drastically different. For such sce-
narios we have selected the “worst user’s performance” metric (4.6) to be the main measure
of performance – partially due to the fact that with this choice of performance metric we are
able to obtain closed-form results, and partially due to the fact that when the WAN service is
“uniform enough” the design pathologies described in the above paragraph should not realize.

Let D(ai,βm,τm) denote the average over time delay that an agent ai ∈ Sw
m experiences

when the decision-making strategies for agents within Sw
m is given by τm and backhaul within Sw

m

is allocated according to strategy τm. In what follows for notational convenience we will often
use D(ai) to denote the same quantity, keeping in mind that D(ai) depends on the strategies
τm and βm. In that case, using performance metric (4.6) Problem 4.1 reduces to solving the
following optimization

Problem 4.2. (Design to achieve max-min fair performance)

min
βm,τm

[
Bw

m + ∑
k∈K m

Bh
k

]
,

under constraints:

P
(

max
ai∈Sw

m
D(ai,βm,τm)≤ θ

)
≥ 1−δ

0≤ Bw
m ≤ B̂w , Bh

k ≥ 0 .

4.3 Optimal design when WAN coverage is uniform

We start by analyzing the case in which average bit-rates available at all spatial locations within
the WAN service zone are the same – this is an over-simplified scenario which will gain us
basic understanding of the main properties of solution to Problem 4.2. In reality, this scenario
would correspond to the case when the WAN APs use large enough power to provide at least a
target SINR at all spatial locations within their service zones, and the WAN APs do not adapt
the modulation schemes (code rates) to operate on the peak available channel capacity.

Let Bw
m denote the (common) WAN link-rate seen by all agents within Sw

m. In this sce-
nario, let us also assume that all hotspots within Sw

m use same bandwidth at the backhaul. By
using a well known result from queueing theory (see, e.g. [57]) we conclude that the average
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delay seen by an agent ai connected to the WAN is given by:

D(ai) =
1

f/Bw
m− γNw

m
, (4.7)

where, as in Chapter 2 Nw
m denotes the total number of users connected to WAN AP wm. Simi-

larly, the average delay seen by an agent a j ∈ Sh
k connected to hotspot’s AP hk is given by:

D(a j) =
1

f /Bh
k − γNh

k
. (4.8)

Note that in equations (4.7,4.8) we have neglected any boost in performance which might have
resulted from APs serving users in opportunistic fashion [56] – this step will greatly simplify
our analysis. One can also argue that the effect associated with opportunistic scheduling could
be modelled by introducing a (typically slow varying with the number of users) multiplicative
factor which reflects any increase in the effective observed service rates. Thus, for example, if
channel fading is Rayleigh, then this multiplicative factor is roughly proportional to the log of
the total number of users connected to an access point, and therefore we can incorporate it by
scaling Bw

m (or Bh
k) accordingly.

4.3.1 Optimal decision making

Note that one can make a utility of an agent to be negative of the average delay that an agent
experiences when it connects to a WAN or hotspot’s AP. This of course, assumes that each agent
is capable to estimate it with sufficient precision – here we will always assume that this is indeed
the case. According to Definition 2.2 and under the “uniform WAN service” approximation such
utilities have a solely congestion structure – at least for moderate loads1. One can also verify
that the equilibria corresponding to such utilities are always unique – thus we could use the
properties of unique equilibria identified in Section 2.6. In particular we can state the following
corollary to Proposition 2.7:

Corrollary 4.1. For the case of “uniform WAN service”, decision-making based on greedy

minimization of average delay seen by an agent is optimal for Problem 4.2.

Corollary 4.1 implies that backhaul dimensioning in Problem 4.1 must be done under the as-
sumption that agents connect to access points in an effort to reduce their experienced average
delay. Here, to confirm the conclusion of Corollary 4.1 we will report the results of several
simulations, where we compare the performance of a heterogeneous network operating under

1The utilities based on average delay are not defined for all Nw
m ,Nh

k > 0 – for excessive loads delays become
infinite. However this poses no problem for decision-making model and subsequent analysis, since no users will
tend to be choosing an AP where the delays become significantly large.
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Table 4.1: Simulation parameters

Parameter Notation Value
Agents’ density λa 100 km−2

Hotspots’ density λh 30 km−2

WAN APs’ density λw 0.81 km−2

Hotspot coverage radius d 100 m
Requests/user/s γ 1 min−1

Average file size f 80 kB
Simulated area |A| 100 km2

WAN b/w Bw(ai) 1 Mbps

congestion-sensitive decision-making based on negative delays in place of utilities with the per-
formance of such system under proximity-based decision making in which all agents connect
to hotspots when covered by the corresponding hotstpots’ service zones.

Illustrating simulation example. The simulation example that we discuss here uses the geo-
metric model constructed in Section 2.3.2. The locations of agents, hotspots and WAN APs are
assumed to be given by independent Poisson point processes with densities λa, λh and λw, the
values of which are specified in Table 4.1 along with the values for other system parameters.
We consider two performance metrics. The first is the mean delay averaged across users – we
refer to it as “average performance” and it is defined as:

D̄ , 1
|τa(A)| ∑

ai∈τa(A)
D(ai) ,

where A is the simulated area and D(ai) is average file transfer delay seen by agent ai. The
second metric is the average worst case user’s delay per WAN service zone, and is defined as:

W̄ =
1

|τw(A)| ∑
wm∈τw(A)

max
ai∈Sw

m
D(ai) ,

for a simulated region A. Since we do not have blocking, all our results are conditioned on the
event that the overall system is stable. However, the simulation parameters are chosen in such a
way that the probability of instability is very small.

Figure 4.2 shows D̄ and W̄ after convergence to equilibrium versus the hotspot band-
width Bh for utility based (UT) and proximity based (PX) selection strategies. There are sig-
nificant gains both in the average per user and worst case performance per cell if the available
bandwidth at hotspots is less than 60% of that available at the WAN. Given the parameters in
Table 4.1 one might deduce that PX based strategy needs at least five times more bandwidth at
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Figure 4.2: Performance gains of congestion-sensitive decision-making based on delay (UT)
over simple proximity-based decision-making (PX) in a scenario with uniform WAN coverage.

the backhaul than the UT strategy to achieve the same average per user performance and even
more bandwidth to achieve the same value of W̄ .

The results of this experiment confirm the conclusion of Corollary 4.1. The performance
gains arise from the ability of WAN APs to cover considerably larger service areas than hotspots
and thus statistically multiplex spatial load fluctuations across a large number of much smaller
hotspots coverage areas. Thus the WAN APs can serve as a pooled resource which absorbs
load fluctuations within hotspots, and such pooling could be realized by imposing congestion-
sensitive decisions on users’ agents.

4.3.2 Backhaul dimensioning

Next we proceed to solving the remaining part of Problem 4.2 which considers the optimal
allocation of backhaul bandwidth across hotspots. We consider first the case in which the loca-
tions of hotspots have already been specified – these might correspond to the existing locations
for hotspots’ business, e.g. the locations of coffee-shops. In that case we can explicitly solve
for optimal backhaul that is required at hotspots and WAN APs – the solution is presented in
Proposition 4.1 which follows below.

Let M̂w
m(δ) be the largest integer such that:

P(Mw
m > M̂w

m(δ))≤ δ ,

and

N̂w
m(θ) =

⌊
B̂w

γ f
− 1

θγ

⌋
. (4.9)
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Here N̂w
m(θ) is the the largest number of agents that the WAN AP could serve with delay not

exceeding θ, if B̂w was allocated to this AP. We have the following proposition:

Proposition 4.1. Let the user spatial densities λa
k be identically (but, possibly, not indepen-

dently) distributed across k ∈ K m. Then, there are three regimes to consider in solving Prob-

lem 4.1: (i) If

N̂w
m(θ)≥ M̂w

m(δ) , (4.10)

then a policy that allocates Bw
m = γ f M̂w

m(δ)+ f
θ to the WAN AP wm and no bandwidth to any of

the hotspots is optimal for Problem 4.1 when Hm is large enough.

(ii) If

P(Mw
C̄m

> N̂w
m(θ)) > δ , (4.11)

then no solution to Problem 4.1 exists.

(iii) If both (4.10) and (4.11) are violated, then a policy that is optimal for large enough Hm

allocates Bw
m = f γ N̂w

m(θ) + f θ units of bandwidth to the WAN AP and Bh(θ,K) = f γK + f θ
units of bandwidth to each of the hotspots in Sw

m, where K is the smallest integer such that:

P

(
Mw

C̄m
+ ∑

k∈K m

(Mh
k −K)1{Mh

k >K} > N̂w
m(θ)

)
≤ δ . (4.12)

Proof. Observe, that marginal distribution of the number of agents in a hotspot hk is the same
for all k ∈ K m, thus by symmetry we must allocate the same amount of bandwidth to each of
the hotspots. To show the optimal allocation for the first regime, consider an allocation strategy
A1, where each of the hotspots is given Bh units of bandwidth. Then a hotspot could serve at
most Nh(θ,Bh) agents, where

Nh(θ,Bh) =
⌊

Bh

γ f
− 1

θγ

⌋
.

The total number of agents which hotspots could serve is:

N1 = Hm

⌊
Bh

γ f
− 1

θγ

⌋
≤ HmBh

γ f
− Hm

θγ
. (4.13)

Now consider an allocation strategy A2 that shifts ∆B units of bandwidth from each hotspot to
the WAN AP, where ∆B < Bh is such that

Bh−∆B
γ f

− 1
θγ
∈ N .

We will assume that the WAN AP uses the shifted bandwidth to serve the agents within the
hotspots, Then, from (4.1) and (4.2) the total number of agents in Cm that could be served by
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such system, without violating the delay requirement is:

N2 = Hm

⌊
Bh−∆B

γ f
− 1

θγ

⌋
+

⌊
Hm∆B

γ f
− 1

θγ

⌋
≥ Hm

Bh−∆B
γ f

− Hm

θγ
+

Hm∆B
γ f

− 1
θγ
−1

=
HmBh

γ f
− Hm +1

θγ
−1≥ N1−1− 1

θγ
. (4.14)

Now note that under allocation strategy A1, N1 agents in total could be served in the hotspots
only if each of them in fact had Nh(θ,Bh) agents to serve. However, if the system gets large
enough (Hm À 1) with probability arbitrary close to 1 there is at least

⌈
1+ 1

θγ

⌉
hotspots con-

taining at most Nh(θ,Bh)−1 agents at their service zones. We thus obtain that the performance
under allocation strategy A2 is at least as good as the performance under A1 once Hm is large
enough. This shows that if (4.10) holds then a policy that allocates Bw

m = γ f M̂w
m(δ)+ f

θ to the
WAN AP wm is optimal for sufficiently large Hm.

Consider the regime where the inequality (4.10) is not satisfied. Then, a policy which is
optimal for large enough Hm allocates Bw

m = f γ N̂w
m(θ)+ f θ units of bandwidth to the WAN AP,

where N̂w
m(θ) is given by (4.9). For a particular realization of agents let the number of agents

that do not fall within a service zone of any of the hotspots be denoted as Mw
C̄m

and let

∆Nw
m = N̂w

m(θ)−Mw
C̄m

. (4.15)

If ∆Nw
m > 0 then ∆Nw

m agents can be served by WAN AP in any of the hotspots without violating
the delay constraint at the WAN AP. Clearly, the optimal way to use the extra bandwidth is to
serve agents from the most congested hotspots. In particular, assuming that agents in Cm are
initially connected to their hotspots, an algorithm that selects which agents the WAN would
serve, at each step takes the most congested hotspot and switches an agent connected to this
hotspot to the WAN AP. As a result, the number of agents connected to hotspots and the WAN
will be represented by the Figure 2.3 with a “slicing” plane at some level.

If, however, for some realization of agents ∆Nw
m < 0 then no agents inside the hotspots’

service zones can be served by the WAN. In this case, the agents in C̄m connected to the WAN
do not meet their delay requirement. Denote by Fw the event:

Fw(θ) = {N̂w
m(θ) < Mw

C̄m
} . (4.16)

Clearly if P(Fw) > δ, then the optimization problem (4.1) does not have a solution that meets
the probabilistic requirement (4.2) (statement (ii) of the proposition).

Thus, in the remaining case, we assume that P
(
Fw(θ)

)
< δ, and hence the delay require-

ment of the agents in C̄m is always met. Below we find the minimum bandwidth that has to
be allocated to hotspots so that the agents within Cm meet their delay requirement too. We fix
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K > 0 and let:
Bh(θ,K) = f γK + f θ .

Thus Bh(θ,K) is the amount of bandwidth that each hotspot has to be supplied to serve up to K

agents within its service area. Assume that Bh(θ,K) is indeed provided to each of the hotspots,
then the event that any hotspot hk has more then K agents connected to it is equivalent to the
event Fh(θ) which has:

∑
k∈K m

(Mh
k −K)1{Mh

k >K} > ∆Nw
m , (4.17)

Clearly the event Fw(θ) implies the event Fh, and thus, guaranteeing that Fh(θ) does not occur
is enough to guarantee that Fw does not occur either. Thus, via plugging (4.15) into (4.17) we
have that the value of K is as given in part (iii) of the proposition.

Note that Regime (iii) identified by Proposition 4.1 can be viewed as the regime where
both WAN and hotspots benefit from cooperation. Indeed, the WAN AP is unable to handle all
the traffic due to the limit on the wireless access bandwidth. At the same time the backhaul allo-
cated with each hotspot enables a hotspot to serve at most K agents, where K is given by (4.12).
It is optimal to shift the “overload” in each hotspot to the WAN AP. As the Corollary 4.1 shows,
in order to realize such load shifting in a distributed fashion, one needs only to implement a
greedy average-delay based decision-making for the agents.

Backhaul cost savings under optimal dimensioning. In what follows we compare the op-
timal total bandwidth in the sense of Proposition 4.1 with the total bandwidth that would be
required to meet the probabilistic constraint (4.2) if the system was designed under a proximity-
based decision-making mechanism. To simplify exposition, we will make this comparison un-
der the assumption of having no upper constraint on the bandwidth that is used by the WAN AP,
i.e. let B̂w = ∞.

As seen earlier, the optimal strategy for Problem 4.1 allocates sufficient resources on the
WAN and allows all agents to connect to WAN APs. Recall that under PX strategy the agents
falling within the service zones of the hotspots must connect to the hotspots. Under both optimal
and PX resource allocation the agents that do not fall within the service zones of any hotspot
must be served by the WAN, thus there is a comparable cost for both PX and optimal strategy
that is associated with provisioning at the WAN for this type of agents. At the same time, we
expect to see overprovisioning costs associated with agents at hotspots to be quite large for PX
strategy in comparison to the optimal.

We find a lower bound on the savings in overprovisionning by considering a suboptimal
strategy that allocates two separate channels for agents that are within and outside Cm. Under
this strategy, bandwidth cost associated with meeting a delay requirement for the users in C̄m
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is exactly the same as for PX strategy. We are left to compare only the savings in bandwidth
associated with serving the agents in Cm by either hotspots or the WAN AP.

We will find the minimal bandwidths BPX and Bo that is required to meet the delay
requirement (4.2) of agents within Cm, once the PX or optimal connection strategy respectively
is deployed. We define the access bandwidths:

∆BPX = BPX − B̄ , and ∆Bo = Bo− B̄ .

Here B̄ is the minimal bandwidth that has to be used to serve the agents in Cm when there are
exactly average number of them, Hmλaτd2, residing in Cm, thus

B̄ = γ f Hmλaτd2 +
f
θ

.

Proposition 4.2. Let the user densities λa
k for k∈K m be deterministic and equal for all k∈K m.

Then, for large Hm, the overprovisionning costs scale as:

∆Bo

∆BPX
= O

(
1√
Hm

)
.

Proof. We first find the minimum bandwidth that has to be allocated to hotspots to meet the
delay requirement (4.2). Denote M̄ = E

[
Mh

k

]
and let σ2 = var[Mh

k ] = E
[
Mh

k

]
. Let κh(δ,Hm) be

the smallest positive number such that:

[
P(Mh

k ≤ M̄ +κh(δ,Hm)σ)
]Hm ≥ 1−δ . (4.18)

Clearly, κh(δ,Hm) is a nondecreasing function of Hm for any fixed δ. From (2.4), we obtain:

P
(

max
ai∈Sw

m
D(ai) > θ

)
≤ δ ,

if and only if

BPX = BPX(δ,Hm,θ) = γ f (M̄ +κh(δ,Hm)σ)+
f
θ

.

Thus HmBPX(δ,Hm,θ) is the minimum total bandwidth that has to be allocated for hotspots
when PX strategy is deployed, which gives the excess bandwidth:

∆BPX = (Hm−1)
f
θ

+Hmκh(δ,Hm)σ .

Now we find the total bandwidth that would be needed by the WAN AP to serve the
agents within the hotspots and meet the delay requirement. Following the same logic as above,
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we find:
B0 = B0(δ,Hm,θ) = γ f (HmM̄ +κw(δ)σ

√
Hm)+

f
θ

,

where we defined κw(δ) as:

P( ∑
k∈K m

Nh
k ≤ HmM̄ +κw(δ)σ

√
Hm) = 1−δ .

Note that, for sufficiently large Hm we can assume that the Central Limit Theorem holds and
then the sum ∑k∈K m

Mh
k is distributed normally with variance Hmσ. Since the mean and the

variance uniquely define any normal distribution, we have that κw(δ) does not depend on Hm.
Therefore, for sufficiently large2 Hm and any fixed δ > 0 we have κw(δ) ≤ κh(δ,Hm). The
excess bandwidth when all agents in Cm are served by the WAN is given by:

∆Bo = Bo− B̄ = κw(δ)σ
√

Hm .

Comparing ∆Bw
m and ∆Bh we find:

∆Bo

∆BPX
= O

(
1√
Hm

)
, (4.19)

where we used that κh(δ,Hm)≤ κw(δ) for sufficiently large Hm.

Remark 4.1. Note that when the delay requirement is very stringent, in particular when θ ¿
(γλ|Sh

k |)−1, then the excess bandwidth ∆BPX À B̄. Since Bo is of the same order as B̄ we may

find that the scaling of Proposition 4.2 holds also when the excess bandwidths ∆Bo and ∆BPX

are replaced by total bandwidths Bo and BPX respectively.

It is important to note that the exact cost of overprovisionning might vary depending on
the realized scenario conditions. Proposition 4.2 estimated these costs for the “mild” case when
the number of users in each hotspot is identically and independently distributed for k ∈ K m.
More profound overprovisioning costs are observed in some extreme scenarios, in which the
density of users is correlated across hotspots. Such scenarios are quite typical in reality – for
example users might be concentrated in one part of the WAN zone, e.g. during work hours, but
could migrate to other parts of the WAN zone during lunch breaks, etc. Thus, for example it
is quite possible that users, originally uniformly distributed within a WAN service, get to the
same hotspot during a lunch break. Clearly, to ensure good performance under proximity based
decision strategy one would need a tremendous resources to be allocated to cover the traffic
at the hotspot, and these resources would be completely wasted during the off-peak hours. In

2In fact we have checked numerically that for 1≤ λ≤ 100 and 0 < δ < 1 we have κw(δ)≤ κh(δ,Hm) already
when Hm ≥ 3.
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Figure 4.3: (a): The largest number of agents a hotspot could serve without violating target
delay vs. Hm. (b): Probability of exceeding target delay vs. Hm.

contrast, under congestion-sensitive decision-making, the hotspot would require some moderate
amount of backhaul, whereas the overloads during the peak hour could be “shifted” towards the
WAN.

Optimal number of hotspots for a given backhaul size. Proposition 4.1 could also be used
to compute the optimal number of hotspots that should be placed within Sw

m. In particular a
service provider might wonder if putting more hotspots in the area but having them able to
support fewer users is better then doing otherwise. Indeed, we have a tradeoff between the risk
associated with having users uncovered by a hotspot and the risk of often having users that
hotspots can not support.

By Proposition 4.1, part (iii) we know that Bw
m should be made as large as the available

spectrum can support, and thus we have to decide only on how many hotspots would give best
performance within Sw

m when there is a constraint on the total amount of bandwidth used by
hotspots backhaul, Bh

tot . More formally, we need to find Hm, such that

P

(
Mw

C̄m
+ ∑

k∈K m

(Mh
k −K)1{Mh

k >K} > N̂w
m(θ)

)
(4.20)

is minimized under constraint:
Hm( f γK + f θ)≤ Bh

tot . (4.21)

Note that behavior of the probability given by (4.20) as a function of Hm might be quite
complex. Figure 4.3 (a) exhibits this behavior in a typical scenario. Observe that P in the
graph 4.3 (a) goes down steadily with Hm, until Hm = 10. At this point, each hotspot can support
just above average number of agents, falling within their service zones, without violating the
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delay requirement (see Figure 4.3 (b)). The graph is much less regular once each hotspot is
able to support less then the average number of agents that fall within their service zones. We
note, that the lowest point at the graph is for Hm = 17, whence the number of agents that could
be supported by each of the hotspots is below the average number of agents that fall within a
hotspot.

4.4 Optimal design in the case of non-uniform WAN coverage

Let us now assume that the WAN AP does not provide uniform quality of service to all spatial
locations within its service zone. This situation would occur if, for example, the signal from
the WAN AP at a particular location is shadowed by an obstruction. In this scenario users at
different spatial locations will perceive the WAN service differently, and are likely to benefit
from hotspots in different ways. The objective of this section is to provide a recipe for decision-
making design and complementary backhaul dimensioning, which are suboptimal in the sense
of Problem 4.1, but still provide a reasonable design optimization starting point, and as a result
will realize significant performance gains and reduce infrastructure costs.

4.4.1 Performance under a congestion-sensitive strategy

Note that the optimality of decision-making based on greedy minimization of the individual
users’ delays ceases to hold in a scenario with a non-uniform WAN coverage. Firstly, the delays
of agents connected to the WAN are now given as those in a multi-class M/GI/1−PS queue,
e.g. for an agent a j connected to the WAN AP wm at time t we have:

Dw(a j) =− f
Bw(a j)− γ f ∑ai∈Wm(t) Bw(a j)/Bw(ai)

, (4.22)

where Wm(t) is the set of all agents connected to wm. Thus, if we associate the utility of
an agent a j connected to the WAN with the average delay via Uw

j ≡ −Dw(a j), the utility Uw
j

would not have a solely-congestion structure. Moreover, Uw
j does not belong, in general to the

class of congestion and agent dependent utilities, since it depends not only on the total number
of agents connected to wm, but also on the WAN rates available at locations of all the agents
connected to the WAN AP wm.

It is still intuitively clear, that as long as the WAN service is “mostly” uniform, the
congestion sensitive decision-making should perform fairly well. To confirm this intuition, on
Figure 4.4 we plot the results of an experiment where we have used the same setup as in the
example of Section 4.3.1 (see Table 4.1), except that the SINR and, correspondingly, the WAN
rate seen at each spatial location is simulated as a random quantity. In particular, the SINR is
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Figure 4.4: Performance of congestion-sensitive decision-making based on delay (UT) and a
proximity based decision-making, in a scenario with non-uniform WAN coverage.

assumed to be given via the SINR distribution shown at Figure 4.5 (taken from [56]) and the
corresponding rate is mapped from SINR similarly to the way it is done in Qualcomm 1XEV-
DO system [66] (see the table shown at Figure 4.5).

Note that the performance shown in Figure 4.4 is the performance after the decision-
making dynamics has converged to an equilibrium. Since the utilities of agents connecting to
the WAN are more complex than the ones for which we established such convergence, the fact
that the dynamics indeed converge to an equilibrium is quite remarkable. However, whenever
the size of the WAN service zone is large enough to contain a lot of agents, and the rates for all
agents are identically distributed, we have:

∑
ai∈Wm

1/Bw(ai)∼ Nw
mE

[
1/Bw(a j)

]
+O

(√
Nw

m

)
,

which indicates that the two most important factors affecting Uw
j are the total number of agents

connected to the WAN AP, Nw
m and the average WAN downlink rate, Bw(a j), seen at the agent’s

spatial location. One can thus expect the system dynamics to be close to the one where the
utilities Uw

j are of congestion and agent dependent type.
Observe that, under both performance metrics, Figure 4.4 indicates that the performance

of congestion-sensitive decision strategies is superior to that of proximity based strategies, but
only when the backhaul resources at hotspots are limited. The graph for W̄ on Figure 4.4 could
also be used to deduce that the decision-making based on greedy delay minimization does not,
in general result in a max-min fair configuration of agents’ equilibrium choices.

Motivated by the results of Section 4.3 and the intuition presented above, we will not
attempt to solve for the optimal decision-making strategy (in the sense of Problem 4.1), but

76



 

SNR ≥ Rate (Kbs)
-12.5 38.4
-9.5 76.8
-8.5 102.6
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-5.7 204.8
-4.0 307.2
-1.0 614.4
1.3 921.6
3.0 1228.8
7.2 1843.2
9.5 2457.6

Figure 4.5: Qualcomm SNR cdf (left) and SNR-data rate correspondence (right).

will stick to the decision-making based on greedy delay minimization of each user. In Prob-
lem 4.1 we thus have to solve for the backhaul allocation among hotspots, which is likely to
have a spatially dependent structure due to the difference in WAN rates seen in different spatial
locations.

4.4.2 Backhaul dimensioning

Problem 4.2 is much more complex in a general scenario with spatially dependent WAN rates
and spatially dependent user densities. We will make several simplifying assumptions and re-
formulate the problem so as to retain its key aspects. The following are our major assumptions:

1. We assume that the spectrum at the WAN is fully utilized. Since the WAN service could
be arbitrarily poor in some locations it might happen that a single hotspot installed at
such locations would exploit the backhaul bandwidth much more effectively. Thus the
solution to an analog of Problem 4.1 posed in this scenario might lead in some cases to
the conclusion that the available at the WAN spectrum for communication should not be
fully utilized. Since the cost of purchased spectrum probably exceeds by far the backhaul
associated costs within a cell, such a solution would indicate that the placement of the
WAN AP or overall WAN design is poor.

2. We assume that the operation regime is such that each hotspot takes the largest num-
ber of agents within its service zone that it can serve with average delay of at most θ
and “shifts” the remaining agents to the WAN AP. (Recall that θ is the target delay-
performance threshold in Problem 4.2)

77



3. Our last modification to Problem 4.1 is that in place of maxai∈Sw
m D(ai) we will concentrate

on the delay averaged across agents that are connected to the WAN AP wm:

D̄w
m =

1
Nw

m
∑

a j∈Wm

D(a j) ,

where Wm denotes the set of agents that are connected to the WAN via the rule described
in 2. Using the expression for average delay in the multi-class M/GI/1-PS queue we have:

D̄w
m =

1
Nw

m


 1

∑a j∈Wm
f

Bw(a j)

− γ



−1

. (4.23)

Assumption 1 allows us to consider optimization of backhaul allocation associated only with
hotspots, and Assumption 2 permits us to account only for the performance of agents connected
to the WAN AP. With the set of Assumptions 1–3 we arrive at:

Problem 4.3.

min
{Bh

k} , k∈K m

[
∑

k∈K m

Bh
k

]
, (4.24)

under constraints:

P(D̄w
m ≤ θ)≥ 1−δ , (4.25)

Bh
k ≥ 0 , ∀k ∈K m . (4.26)

Note that the constraint (4.25) in Problem 4.3 is a relaxed version of the respective constraint (4.2)
in Problem 4.1, since clearly, (4.2) implies (4.25) (but not vise versa). It is intuitively clear that
the solution to Problem 4.3 will tend to neglect a small fraction of users that experience bad
performance but do not contribute much to the average (per WAN service zone) delay.

Let us assume that each hotspot hk, k ∈ K m is provided enough bandwidth to serve up
to Kk agents with delay not exceeding θ, i.e.:

Bh
k = γ f Kk +

f
θ

.

Solving Problem 4.3 reduces to finding the optimal set of values {Kk}k∈K m , where Kk ≥ 0 for
all k ∈ K m. Proposition 4.3 shows how to approximate the values for Kk in a simple case
where the distribution of users within Sw

m is given by a homogeneous Poisson process. Note that
without loss of generality we assumed ∪k∈K mSh

k = Sw
m, since for a site hl which can not be used

for hotspot installation we can always set Kl = 0.

78



In Proposition 4.3 which follows below, we approximate the distribution of the number
of agents within Sh

k via a Gaussian random variable η such that var[η] = E[η] = E[Mh
k ]. Then

g(Kk) , E
[
(η−Kk)1{η>Kk }

]
,

approximately gives the average number of agents within a hotspot that connect to the WAN
and

L
({Kk}k∈K m

)
, ∑

k∈K m

g(Kk) , (4.27)

approximately gives the average of the total number of agents within Sw
m that connect to the

WAN. We replace Nw
m in (4.23) via its average approximated by (4.27) and treat Kk for each

k ∈ K m as taking continuum values. This allows us to reduce Problem 4.3 to a nonlinear
programming one, at which point we use Kuhn-Tucker conditions to arrive at the approximate
solution for the set {Kk}k∈K m .

Proposition 4.3. Let the distribution of users within Sw
m be given by a (homogeneous) Poisson

spatial process with constant density. We have that either Kk = 0, or

P(η > Kk)
Bw

m(hk)
= ν ,

for some constant ν, such that the set {Kk}k∈K m obeys:

∑
k∈K m

f
Bw

m(hk)
g(Kk) =

(
1

θL
({Kk}k∈K m

) + γ

)−1

.

Remark 4.2. Note that the solution for Kk does not include any dependence on δ. This, in fact

is a result of us neglecting certain terms, which depend on δ, but are provably much smaller

than the terms we kept, independent of δ. For more details, see the following proof.

Proof. We will derive the approximate solution to Problem 4.3 under the assumption3 that Kl =
Kk when bw

l = bw
k , and l,k ∈K m. First, we will elaborate on the expression (4.23) for D̄w

m. Note,
that we can express the number of agents Nw

m connected to WAN AP wm via the set {Kk}k∈K m

as follows:

Nw
m = ∑

k∈K m

(Mh
k −Kk)1{Mh

k >Kk}

=
NB

∑
r=1

∑
{k∈K m|Bw

m(hk)=bw
r }

(Mh
k −Kk)1{Mh

k >Kk} . (4.28)

3Note that the optimal solution to Problem 4.3 might not have this property. However, one can show that for
the solution to the original optimization problem 4.1 such property holds.
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Let nm(r) denote the number of sites in Sw
m with WAN rate equal to bw

r . In the limit nm(r)À 1
we can apply the Central Limit Theorem in (4.28), to obtain that:

Nw
m =

NB

∑
r=1

nm(r)ξr ,

where ξr is a normally distributed random variable with expectation and variance equal to

g(Kr) , E
[
(Mh

r −Kr)1{Mh
r >Kr}

]
.

(Note, that since by our assumption Sh
k have the same sizes for all k ∈K m, we have that Mh

k has
the same distribution for all k ∈K m. Hence, g(Kr) depends only on Kr.) Thus, in the limit when
nm(r)À 1 for r = 1 , . . . ,NB, we have that Nw

m is normally distributed with mean and variance
equal to:

L
({Kk}k∈K m

)
,

NB

∑
r=1

nm(r)g(Kr) .

Similarly, elaborating on the sum Σ that appears in (4.23), we have:

Σ , ∑
a j∈Wm

f
Bw

m(a j)
= ∑

k∈K m

f
Bw

m(hk)
(Mh

k −Kk)1{Mh
k >Kk}

=
NB

∑
r=1

f
bw

r
∑

{k∈K m|Bw
m(hk)=bw

r }
(Mh

k −Kk)1{Mh
k >Kk}

=
NB

∑
r=1

f nm(r)
bw

r
ξr .

Thus, in the limit when nm(r)À 1 for r = 1 , . . . ,NB, we have that Σ is normally distributed with
mean and variance equal to:

NB

∑
r=1

f nm(r)
bw

r
g(Kr)

Now, it is simple to see that the constraint (4.25) reduces to requiring that:

NB

∑
r=1

f nm(r)
bw

r
g(Kr)≤

(
1

θL
({Kk}k∈K m

) + γ

)−1

+ ε , (4.29)

where the variable ε depends on δ and is proportional to the standard deviations of Nw
m and

Σ. Note, that the variances of Nw
m and Σ scale as the square root of their respective averages.

Thus, when both Nw
m and Σ are large on average, and δ is “moderately small”, we can neglect ε
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in (4.29). We thus arrive at the following optimization problem:

min
NB

∑
r=1

nm(r)
(

γ f Kr +
f
θ

1{Kr>0}

)
.

under constraint:
NB

∑
r=1

f nm(r)
bw

r
g(Kr)≤

(
1

θL
({Kk}k∈K m

) + γ

)−1

. (4.30)

It is simpler to treat this problem assuming each Kr takes continuum of values. We
might compute g(Kr) replacing Mh

k , for all k ∈ K m, by normal random variables ηk, that have
the same average and the variance as Mh

k . (This step is supported by the fact that when E[Mh
k ] is

large enough the cdf of a Poisson random variable does not differ much at integer points from
the cdf of the corresponding normal random variable.) Also, when γθÀ 1 (delay requirement
is not very stringent) we could eliminate the term f

θ 1{Kr>0} from the objective. Then, using
Kuhn-Tucker conditions we arrive into the requirement that if {K∗

r } is an optimal set of values,
then if K∗

r 6= 0, we have:

nm(r)γ f −µ
f nm(r)

bw
r

g′(K∗
r )

+µ
∂

∂Kr

(
1

θL
({K∗

k }k∈K m

) + γ

)−1

= 0 , (4.31)

and the constant µ is such that the set of {K∗
r } obeys the constraint (4.30) with equality. Assum-

ing that nm(r) for each r is large enough, we can neglect the derivative associated with the last
term in (4.31). Then we arrive into a simple requirement for K∗

r 6= 0

g′(K∗
r )

bw
r

=−ν , (4.32)

where the constant ν is such that is such that the set of {K∗
r } obeys the constraint (4.30) with

equality. Elaborating on g′r(K) we get:

g′(Kr) =
(∫ ∞

K
(x−Kr)p(x)dx

)′
=−P(ηr > K) ,

where p(·) denotes the pdf of the normal random variable with expectation and variance equal
to E

[
Mh

k

]
. Combining this with (4.32) yields Proposition 4.3.
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Figure 4.6: Distribution of hotspots backhaul across sites: the red stems show (ordered) WAN
rate at each of the 50 sites, the blue stems – the bandwidth for hotspots installed at these sites.

4.4.3 Performance of the optimized system

We implemented the approximate solution of Problem 4.3 given by Proposition 4.3 when the
traffic parameters and the geometry of WAN network is as we had for the simulation example in
Section 4.4.1. Within a single service zone that has the size of an average typical WAN service
zone, we simulated 50 sites with different WAN rate, where rates were generated randomly
and independently for each site as described in the setup of Scenario 2. We found that the
average delay experienced by agents within the optimized system matches closely the target
value, θ = 0.2s.

The results of the optimization for a particular realization of WAN rates, are shown in
Figure 4.6. Note that the bandwidth is allocated only to hotspots at the sites that experience
the worst WAN rate. We find that on average the total bandwidth required for hotspots in the
WAN service zone is less than 2.5Mbs, once appropriate backhaul is allocated to optimally
selected sites. For comparison, to guarantee the same average performance in the setup of the
Section 4.4.1, where each hotspot was allocated the same bandwidth, one needs about 7.5 Mbps
total to be allocated to hotspots on average per service zone of a WAN AP.

4.4.4 Accounting for both spatial density profile and WAN rates profile

Proposition 4.3 can be used to optimize the backhaul bandwidth in a WAN service zone un-
der homogeneous user distribution. It is however impractical under non-homogeneous spatial
density profiles (see, e.g. Figure 4.1). In that case, clearly, we would like to augment the sites
which “see” smaller average WAN rates with more hotspots and associated backhaul, but we
would also like to augment the sites with possibly larger WAN rates seeing a larger steady load
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users. To optimize the system in this case we need an analogue of Proposition 4.3 that explicitly
incorporates the users’ spatial density profile in the optimization problem.

In Proposition 4.4 we state the extension of Proposition 4.3 for the case of a non-
homogeneous Poisson distribution of users. We will omit its proof since it follows straightfor-
wardly from the proof of Proposition 4.3, however there is an extra scenario assumption which
we briefly explain now. We assume that the service zone Sw

m is a union of a few sufficiently large
sub-zones, within which the density of users could be approximated via deterministic (constant)
values. Now, each of these sub-zones is likely to contain a number of sites Sh

k , k ∈ K m, which
are identical, in terms of the average WAN rate that is seen from their locations, and the user
densities. The realization of the number of users within these sites are i.i.d, conditional on
the value of user density in the corresponding subzone, and hence we can use Gaussian ap-

proximations to the Nw
m and Σ , ∑

a j∈Wm

f
Bw

m(a j)
, similarly to the way we did in the proof of

Proposition 4.3.
Let us define:

gk(Kk) = E[(Mh
k −Kk)1{Mh

k >Kk}] , L̃
({Kk}k∈K m

)
, ∑

k∈K m

gk(Kk) .

Note that the only difference from the corresponding previous definitions is that gk(Kk) now
explicitly depends on the site index, k, since the distribution of the number of users in Sh

k varies
with the density of users, λa

k . The following Proposition gives the way to optimize backhaul
for the service zone with both non-uniform WAN service as well as the non-uniform users’
distribution:

Proposition 4.4. Let the distribution of users within Sw
m be given via a non-homogeneous

Poisson process and assume that Sw
m consists of a few non-overlapping regions with constant

user’s density. Let ηk be a Gaussian random variable, such that E[ηk] = var[ηk] = E[(Mh
k −

Kk)1{Mh
k >Kk}]. We have that either Kk = 0, or

P(ηk > Kk)
Bw

m(hk)
= ν ,

for some constant ν, such that the set {Kk}k∈K m obeys:

∑
k∈K m

f
Bw

m(hk)
gk(Kk) =

(
1

θL̃
({Kk}k∈K m

) + γ

)−1

.

Example of optimization using spatial density and WAN rates’ profiles. Figure 4.7 shows
the result of the optimization using Proposition 4.4 for a particular realization of spatial WAN
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rates profile. The boxes in the figure correspond to classifying various sites according to the
available WAN rate and users’ density. Thus, for example we marked via L−H the group of
sites with relatively “low” average WAN rate and relatively “high” users’ density.

In terms of performance we find that Proposition 4.4 yields a design that leads to perfor-
mance (under congestion-sensitive decision-making) which is quite similar to the target. The
difference between the target and the actual performance is, however a bit larger than typically
observed with optimal designs according to Proposition 4.3 for the case of spatially homoge-
neous users’ distribution. Thus we conclude, that the effect of neglecting some terms depending
on δ when deriving Proposition 4.4 is larger then the effect of similar terms in case with Propo-
sition 4.3. As a general rule of thumb, we suggest to apply Proposition 4.4 with a bit lower
target delay, which would lead to some over-provisioning at hotspots, but would still yield large
savings in comparison to the over-provisioning for a proximity-based system design.
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4.5 Chapter summary

In this chapter we described our first steps towards analyzing a possible future wireless network
landscape which incorporates heterogenous technologies, e.g., WAN, LAN, Bluetooth etc. In
this setting the criterion used by end devices to select which network to connect becomes an
important part of the overall system design. It will not only impact the performance that the
user population will see, but also, the resources (e.g., backhaul links density of access points)
the providers need to put into place to handle the traffic loads.

To our knowledge this is the first attempt to model and evaluate such heterogeneous sys-
tems. In this chapter we showed that congestion dependent decision making is likely to provide
on average much better performance to users than simple and more natural proximity based
strategies, but only when hotspot bandwidths are limited. Since backhaul links correspond
to high recurring costs, it is at this point not unreasonable to expect these to be dimensioned
conservatively and thus enabling congestion-dependent decision making by end nodes when
presented with WAN and hotspot service options to be worthwhile.

At the same time, we addressed the complementary problem of joint network design for
a system incorporating WAN and hotspots to support a spatially distributed set of users. The key
insight, is that WAN capacity is particularly valuable, because it permits statistical multiplexing
of spatial fluctuations in user loads over a wide area. By contrast hotspots have the potential to
substantially and inexpensively enhance capacity in a restricted area. Thus under the uniform
loads, as we show in this chapter, it is the case that WAN resources are typically used as much as
possible with only the necessary bandwidth allocated across hotspots to alleviate overloads on
the WAN. However, if there are spatial inhomogeneities in the capacity the WAN can provide to
users, or in the characteristics of the load, the synergies between these technologies may take a
different form. Indeed one may conclude that hotspots and the associated backhaul bandwidth
is truly worthwhile at particular spatial locations with a high steady (i.e., low variance) offered
load and where the WAN is not able to provide reasonable service. This chapter shows that a
joint system design is likely to exploit such variations in order to reduce overall system cost
significantly.
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Chapter 5

Interference-mitigating load balancing in
“tightly coupled” multi-provider wireless

networks

5.1 Introduction

In this chapter we will consider the design of heterogeneous wireless systems in which decision-
making strategies that guide the users’ assignment to the WAN or hotspots incorporate some
extra information about the current system state, which might not be available locally for all
users. For example, the additional information may include the utilization of all hotspot APs
falling within a WAN service zone containing the user – this is different from the setup of
Chapter 4 where a user’s agent was assumed to only be able to estimate the congestion state of
the WAN and the hotspot APs that are located within some limited vicinity of the user. Such
extra information might be aggregated at the RAC (see Chapter 4) and then signalled to users’
agents, which in turn would make more favorable, from the point of view of the overall network,
decisions regarding the choices of APs.

Note that providing additional feedback requires that the communication protocols at
the WAN and hotsptots have to be augmented in order to include extra signaling/information
exchange between the APs, users and (possibly) a separate networking entity, e.g. RAC (see
Chapter 4). Clearly the interaction between the users and the network is potentially more com-
plex for such “tightly coupled” heterogeneous networks, and enabling such interaction is likely
to come at the cost of additional network complexity. However, the extra complexity is likely to
payoff by enabling tighter control of network performance, leading to more efficient resource
utilization and translating to further performance gains.

The purpose of this chapter is to formulate and evaluate centralized and distributed

decision-making algorithms that could be implemented within the context of a “tightly cou-
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pled” wireless data network. These algorithms lead to gains in performance due to the efficient
redistribution of load between the WAN and WLAN networks. We refer to these gains as “load

balancing” gains, since the study presented in this chapter is related to the large body of work on
load balancing in distributed computer systems and wireline networks, see e.g. [67]–[51]. Ap-
plication of methods developed therein is, however, often challenged by the specifics of wireless
applications. For example, notions of resource and link capacities are not as straightforward to
define in a wireless setting as in the wireline case. The quality of wireless channels suffers from
fading and interference and thus the physical data rates/service rates that are available at users’
spatial locations often significantly depend on system state.

Research targeting load-balancing in the wireless setting is still in its infancy. In [44] two
threshold-based algorithms are evaluated, which bias users that wish to download small files or
are moving too fast to select WAN APs. It is shown that selecting the thresholds appropriately
in some scenarios leads to better load balancing among the layers. However, these assignment
decisions are oblivious to APs’ utilization, thus there is no guarantee that the system operation
point is optimal.

In this chapter we will derive load-balancing decision metrics that tie together the aver-
age physical channel rates available at users’ locations, proximity to access points, utilization
of resources and current demand for particular services. The most important feature that dis-
tinguishes this work from, e.g. [44], is how we incorporate the interference at the WAN layer
as a factor biasing the load-balancing decisions. As in Chapter 4, our model is applicable to
systems where no power control takes place on the downlink at the WAN layer: a key example
of such a system is Qualcomm’s 1XEV-DO [55]. In 1XEV-DO users are “roughly” served in a
“generalized processor-sharing” fashion [56], and only one user is served per time slot with full
power allocated at the WAN AP. Thus in such systems the larger the fraction of users routed to a
particular WAN AP the larger the fraction of time that the WAN AP has to be active on average.
This in turn makes the WAN AP create more interference to its neighboring WAN APs, and
forces degradation in the service quality seen by users served by neighboring WAN APs. We
will show that algorithms which factor such interference at the WAN layer lead to improved
performance, especially in systems with spatially asymmetric loads.

It is worth mentioning that the problem of “other-cell” interference is usually also present
at WLAN layer. In this study we chose to neglect this problem for the following reasons. First,
we assume that WLANs are spatially spaced, so that the interference a WLAN creates at service
zones of peer WLANs can be viewed as negligible. Thus, for example, access points in IEEE
802.11 systems operating in the unlicensed band, have to obey rigid FCC regulations in the
maximum power they use, which implies that the signal emitted by such access points is only
strong enough within the limited vicinity of the access points. Secondly, in most practical
scenarios even when interference is present, the physical rates for communication with the
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WLAN are mostly limited not by the wireless access bandwidth but by the available bandwidth
provided at the backhaul [63]. Thus for example, although WiFi access points can operate
at physical rates of over 10Mbps, it is rarely the case that the available backhaul bandwidth
exceeds 1Mbps: bachhaul capacity usually incurs high recurring costs.

In this chapter we will reuse the geometric models for service zones of the WAN and
WLAN APs which we built in Chapter 2. In Sections 5.3 and 5.4 we will derive our algorithms
for a generic geometric model obeying the set of Assumptions 2.1. For most of our simulations
we will, however, use a geometric setup in which WAN and WLAN APs are placed on regular
meshes and in which the service zones are defined as described in Section 2.3.2. Also, as we
move from a “per WAN service zone” analysis in Chapter 4 to an analysis of cell interactions
within a multi-cell heterogeneous wireless system, we will need to incorporate some additional
queueing modeling and approximations.

The outline of this chapter is as follows. We recapitulate the additional assumptions
regarding the interference model, etc. in Section 5.2. In Section 5.3, under the assumption
that other-cell interference at the WAN layer is negligible, we derive decision-metrics that are
used as a basis to formulate our load-balancing algorithms. In Section 5.4 we describe how
one can adjust the decision-metrics so as to incorporate the “cost” of other-cell interference at
the WAN. The adjusted algorithms perform equally well in scenarios with both significant and
small other-cell interference. We demonstrate this in Section 5.5 where we report the results of
our simulations.

5.2 Additional assumptions

5.2.1 Traffic model

We will concentrate on the so-called semi-dynamic [69] scenario. The setup is very similar to
the one we had in Chapter 4: mobiles generate requests for file transfers, that arrive at random
spatial locations, and stay at these locations for the duration of the file transfer. The arrival of
requests is described by a stationary, possibly nonhomogeneous, spatial Poisson process, i.e.
the numbers of arrivals per unit time within disjoint spatial regions are independent, and the
number of arrivals per unit time for a region ∆S is Poisson distributed with parameter given
by
∫

y∈∆S λ(y)dy. We also let the file sizes associated with the requests to be independent and
generally distributed with, possibly, spatially-dependent means, denoted by f (y), for y ∈ D.

5.2.2 Service type at APs

We shall again postulate that APs serve queued requests in a processor-sharing fashion and
no request is blocked from service. In our simulation models the time is divided into slots of
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duration 1.67 ms and within each slot a small portion of the requested file transfer for a single
user is realized. To derive our algorithms we will assume that users with active requests are
served in a round-robin fashion which neglects the gains from multi-user diversity, exploited,
for example in the HDR protocol [55]. This assumption, will greatly simplify our analysis and
will be relaxed when evaluating the proposed algorithms via simulation.

5.2.3 Data rates

Each time slot the amount of data that is served to a user depends on the instantaneous data rate,
available at the user’s location. Note that there are two factors that limit this rate: the received
signal quality and the bandwidth of the backhaul of the corresponding APs. Our numerical
experiments have been performed under the assumption that the backhaul at WAN APs matches
the channel rates, while backhaul capacity for WLAN APs is very limited.

In our simulations, we will let user’s physical data rate on each time slot be a function
of instantaneous value of the SINR only. (An example of such SINR-to-rate mapping that we
use to compute data rates at WAN layer is provided in Figure 4.5.) Recall that our focus is
on systems with no down-link power control, thus whenever APs are active they use the same
power level. Let M (t) denote the set of WAN APs’ transmitting during time slot t in the same
frequency band as WAN AP w1. Then the SINR ηw(x, t) for a user located at x ∈ Sw

1 which is
served at slot t by WAN AP w1 can be expressed as:

ηw(x, t) =
Pw

1 Lw
1 (x, t)

N(x)+∑m 6=1 1(m ∈M (t))Pw
mLw

m(x, t)
, (5.1)

where Pw
n and Lw

n (x, t) for n = 1 , . . . ,M denote, respectively, the power levels that are used by
the WAN APs and the attenuation factors at location x at time t, for signals emitted at WAN AP,
and N(x) denotes the ambient noise power at location x.

5.2.4 Attenuation

Generally1 we will model the attenuation from each AP as a superposition of a large scale path
loss and, independent slow (log-normal) and fast (Rayleigh) fading components. Thus at time
slot t, Lw

n (x, t) is independently drawn from an exponential distribution with time-independent
mean L̄w

n (x) given by:
L̄w

n (x)(dB) = PL(wn,x)(dB)+Zσ ,

where PL(wn,x) denotes the large scale path loss component and Zσ a zero-mean, normally
distributed random variable with standard deviation σ. For the large scale path loss we adopt

1In some simulations we will “turn off” several fading components to better illustrate the concepts we develop.
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(from [70], p. 642) the formula2:

PL(wn,x)(dB) =−118−10α log10(|x−wn|) , (5.2)

where α is the path loss exponent and the distance |x−wn| is expressed in miles. In our simu-
lations we use the range 2−4 for α, and the range 6−10 for σ.

5.2.5 System objective

As in Chapter 4 we will denote by τ the decision-making control strategy, i.e. the rule that
determines to which AP an incoming request is routed. We will evaluate the efficiency of
strategy τ on the basis of how well this strategy optimizes a certain system objective, given a
stationary spatial load of requests for file transfers. As we mentioned already in Chapter 4 when
the WAN service is severely non-uniform using worst user’s performance as a performance
metric might lead to designs with unreasonable and inefficient usage of network resources.
Thus in this chapter we change the performance metric from the “worst users’ performance” to
the “average across users performance”, given by (4.6). Our motivation for this change comes
from both the fact that we would be like to consider also severely non-uniform WAN coverage
scenarios, as well as to be able to simplify our derivations. Thus, we set the system objective to
the the total mean queueing backlog within the system:

Usystem(τ) =
M

∑
m=1

Eτ[Qw
m]+

K

∑
k=1
Eτ[Qh

k ] , (5.3)

where Eτ[Qw
m] and Eτ[Qh

k ] denote the average queueing backlog at WAN AP wm and hotspot
AP hk under the decision-making policy τ. In expression (5.3) we use the convention that
Usystem(τ) = ∞ if the strategy τ results in unstable queues. Note that whenever the system is sta-
ble under τ, minimizing Usystem(τ) also corresponds (via Little’s law) to minimizing the average

delay experienced by a typical user in the system, and thus results in the same optimization as
under the performance metric given by (4.6).

5.3 Load balancing when other-cell interference is negligible

As reflected by equation (5.1), the instantaneous SINR seen by users connecting to the WAN
depends, potentially, on the activity pattern of all WAN APs in the system. This leads, poten-
tially, to coupling between the queue states of all WAN APs in the system and the service rates
that are seen by the users. The analysis of this coupling in general is quite difficult. We postpone

2For small |x−wn| this is a poor model. We simply put Lw
n (x, t) = 0 if the expression yields a positive value.
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discussion of this general case to Section 5.4.
Instead, in this section we will start by formulating load-balancing algorithms for scenar-

ios where the other-cell interference at the WAN layer is small enough that it can be neglected.
Such scenarios arise, in, e.g., systems where spectrum is spatially divided between different
WAN APs so that no two adjacent service zones share the same frequency band. Our approach
in this section also enables us to roughly model scenarios where all WAN APs use the same
spectrum, but the attenuation is high and only a small fraction of users at service zone bound-
aries are substantially affected by other-cell interference.

By Assumption 2.1.3 two different requests that arrive within the service zone of the
same WLAN AP can only be routed to the WLAN AP or the same WAN AP. When no other-
cell interference is present at both WAN and WLAN levels, the physical data rates are only
affected by fading. It follows that, under any decision-making strategy, the service rates for
users within service zones of different WAN APs are independent. Thus the set of optimal rules
includes one τ which is decomposable into a collection {τm}M

m=1, where τm for m = 1, . . . ,M are
decision strategies operating independently on requests originating within Sw

m, for m = 1, . . . ,M

respectively. We will focus on designing each τm separately, and without loss of generality we
concentrate on τ1.

Let K m denote the indices of WLAN APs that fall within the service zone Sw
m. Taking

into account the above discussion, the optimization reduces to finding a decision strategy τ1 that
minimizes the objective:

U1(τ1) = Eτ1[Qw
1 ]+ ∑

k∈K 1

Eτ1[Qh
k ] ,

over some appropriately defined set of strategies.

5.3.1 Centralized adaptive load balancing.

We first consider a family of strategies where incoming requests are routed to APs in a proba-
bilistic fashion. We will assume that the decision-making entity is able to differentiate between
a finite number of disjoint service classes, and associates the incoming requests with a particu-
lar class based on the average physical data rates available at the requests’ locations. In other
words, each request is associated with a given class which in turn quantifies the mean rate that
the request can achieve to the WAN and WLAN. Our goal is to optimize system performance
by selecting appropriate per-class routing probabilities.

We note that the results of this subsection are not particularly new – they combine clas-
sical results in adaptive routing for wireline networks [71] with recent results [56] using gen-
eralized processor-sharing queueing disciplines to modeling “proportionally fair” scheduling
algorithms in wireless networks.

Let us denote by Bw(x) the time average physical data rate available at x∈ Sw
1 from WAN
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AP w1. Similarly, let Bh(x) denote the time average of the physical data rate available at x ∈ Sh
k ,

from WLAN AP hk ∈ Sw
1 . Based on this pair of rates the request at location x is assigned to one

of the disjoint classes, which we will denote via Bi, for i = 1, . . . , I. We will assume that the
probability of routing a request that belongs to class Bi to the WAN AP w1 is given by Pi and
let P≡ {Pi}I

i=1.
Using the results in [56], we may express the system objective in terms of the vector P

as:

U1(P) =
ρw

1 (P)
1−ρw

1 (P)
+ ∑

k∈K 1

ρh
k(P)

1−ρh
k(P)

, (5.4)

where the utilization ρw
1 (P) of the WAN AP w1 is given by:

ρw
1 (P) =

∫

y∈C̄1

γ(y)1(y ∈ Bi)
Bw(y)

dy+
I

∑
i

Pi

∫

y∈C1

γ(y)1(y ∈ Bi)
Bw(y)

dy , (5.5)

and the utilization ρh
k(P) of WLAN AP hk ∈ Sw

1 is given by:

ρh
k(P) =

I

∑
i
(1−Pi)

∫

y∈Sh
k

γ(y)1(y ∈ Bi)
Bh(y)

dy . (5.6)

In the above expressions γ(y)≡ f (y)λ(y), and we denote by C1 the set of locations in Sw
1 covered

by some WLAN (we use C̄1 for locations not covered by any WLAN), i.e. C1 =
⋃

k∈K 1
Sh

k

(C̄1 = Sw
1 \C1). Our optimization problem is then given by:

Problem 5.1.

min
P
{U1(P) | 0≤ P≤ 1}

The following proposition establishes the convexity property of this cost function, as is
the case for average delay in Jackson networks [71]. For completeness, we include a proof
addressing the specifics of our setup.

Proposition 5.1. Problem 5.1 is convex. The gradient elements of U1(P) are given by:

Gi ≡ ∂U1(P)
∂Pi

= Gw
i −Gh

i , (5.7)

where

Gw
i =

Γw
i

(1−ρw
1 )2 , Gh

i = ∑
k∈K 1

Γh
i (k)

(1−ρh
k)

2
, (5.8)
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and Γw
i , Γh

i (k) are defined as:

Γw
i =

∫

y∈C1

γ(y)1(y ∈ Bi)
Bw(y)

dy , Γh
i (k) =

∫

y∈Sh
k

γ(y)1(y ∈ Bi)
Bh(y)

dy ,

Proof. It is straightforward to verify the expression for the gradient of the objective. The
convexity in P is also easy to check by showing that the Hessian H = [Hi, j] ≡

[
∂2U1

∂pi∂p j

]
is

nonnegative-definite. Indeed, observe that:

Hi, j =
2Γw

i Γw
j

(1−ρw
1 )3 + ∑

k∈K 1

2Γh
i (k)Γ

h
j(k)

(1−ρh
k)

3
.

Thus for any real vector with components {ei}I
i=1 we have:

L

∑
i, j=1

Hi j eie j =
2

(1−ρw
1 )3

(
I

∑
i

Γw
i ei

)2

+ ∑
k∈K 1

2
(1−ρh

k)
3

(
I

∑
i=1

Γh
i (k)ei

)2

≥ 0 .

The convexity of Problem 5.1 follows now from the convexity of the optimization region.

Since Problem 5.1 is convex, any version of a gradient descent method could be used to
obtain globally optimal per-class routing probabilities P. For example we can iteratively adapt
the routing probabilities in a “greedy” fashion according to:

P(t +1) = min[1, [P(t)−a∇U1(t)]+] , (5.9)

where a > 0 is some appropriately chosen constant, and the gradient ∇U1(t) is estimated at each
time step, t, using Proposition 5.1.

We can now describe an implementation of the centralized adaptive load-balancing al-
gorithm based on gradient estimation. In our implementation, WAN and WLAN APs are able
to obtain initial estimates for the average physical data rates at locations of all incoming re-
quests. Such estimates could in practice be obtained for each dual-mode device during initial
session set-up and then maintained throughout sessions’ life-time. The incoming requests are
first routed to the central controllers, residing at each WAN AP, and the controllers forward the
request to either WAN or WLAN AP according to the current value of the routing probabili-
ties. The controller at, e.g. WAN AP w1 is able to communicate (via a wired connection) to
all WLAN APs in its service region Sw

1 and thus maintains a data base that includes smoothed
estimates for utilizations of the WAN and WLAN APs within Sw

1 (equivalently, fraction of time
each AP is busy), estimates for the average data rates (at both WAN and WLAN layers) for each
active mobile in the system, and current values of the routing probabilities.
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Whenever a request is forwarded to the controller, the information on the average data
rates is used to associate request with a particular class of service. The size of file F and the
corresponding estimates B̂w and B̂h of average physical data rates at WAN AP w1 and WLAN
AP hk ∈ Sw

1 , associated with request of class Bi, are then used to update the values of Γw
i and

Γh
i (k) – we simply keep a finite history of the entries given by F/B̂w and F/B̂h and compute

a running average of these entries. Given the estimates for utilization of the WAN AP ρw
1 ,

utilization of WLAN APs ρh
k , k ∈ K 1, estimates of Γw

i , Γh
i (k), for i = 1, . . . , I, k ∈ K 1, the

controller at w1 updates the estimate of the gradient via (5.7,5.8), and the values of per-class
routing probabilities, via (5.9).

5.3.2 Design tradeoffs

In an ideal scenario, where the estimations of various quantities are perfect, the adaptation of
routing probabilities is slow enough and the arrivals to the system are stationary, the centralized
algorithm eventually yields a set of optimal per-class routing probabilities. In practice, how-
ever, various quantities will be computed up to a certain precision, yielding errors in gradient
estimation. Iterative stochastic approximation methods [72] can, in principle, be applied to cope
with such errors. However, most of these methods are formulated assuming various system’s
parameters and inputs (e.g. request arrivals) are stationary, and make the adaptation rate (con-
trolled by constant a in (5.9)) to be gradually diminishing to zero. Note that, request arrivals in
realistic scenarios are rarely stationary, meaning that the adaptation rate has to be large enough
so as the algorithm reacts in a timely fashion to changes in load distribution.

In Figure 5.2 we demonstrate the effect of the design tradeoff explained above, for a par-
ticular simulation experiment. Figure 5.1 shows the geometric setup: we have an isolated WAN
AP operating in the area, whereas in addition, part of the area is covered by a few WLANs.
WLANs support data rates of exactly 600 kbps (WLAN rates are limited by the backhaul
bandwidth), while WAN physical rates within the region span the range R ≡ [0,2458] kpbs
and have a spatial average of about 1650 kbps. The range of rates R is partitioned among I

classes, and we assign a request to class i, if its corresponding data rate, falls within the interval
[2458(i−1)/I,2458i/I], for i = 1,2 . . . , I.

In each of the three experiments the total number of classes, I = 10, and the random
number generator is initialized with a common value. We vary the adaptation rate a, but keep the
smoothing windows in estimating average utilizations and traffic demands across classes fixed.
Note that the case with a = 0.01 results in a non-converging dynamics of routing probabilities,
whereas the values of probabilities forever oscillate around the optimal values. At the same
time, we note that the dynamics of WAN utilization is virtually identical in all three cases,
which eventually stipulates that the mean delays for a typical request under adaptations with
various values of a are very similar. In fact, we have experimentally validated that, although
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Figure 5.1: A rectangular region served by a single WAN AP, indicated by the box in the center
and a few WLANs, shown as triangles. WLAN service areas coincide with the discs, while the
WAN AP services the whole region.

larger values of adaptation rates do result in oscillating dynamics for routing probabilities, the
overall average performance of the system over time is quite similar or even better than the one
for slower adaption rates.

Another design tradeoff is associated with the granularity of partitioning into rate classes,
{Bi}I

i=1 which by itself represents a design challenge. Finer granularity leads, potentially, to
decisions per class being better “tuned” to the traffic characteristics of each class representative,
(as opposed to being tuned to the characteristics of a “typical” class representative, for coarse
classes partitioning) which in turn potentially leads to improved performance at the optimal
operating point. At the same time, a large number of classes might be computationally burden-
some to handle; and in addition, the effect of errors in estimating Γw

i and Γh
k(i), for i = 1 , . . . , I

is likely to increase as the number of classes grows, since the arrivals per class become more
rare.

5.3.3 Efficient distributed heuristic for load balancing

Implementation of the centralized controller requires tight coordination between the WAN and
WLANs. In practice it is desirable not to require such coordination: WAN and WLAN networks
could be operated by different providers and may not even be aware of each other’s existence. To
secure good performance for such networks, the intelligence has to be moved to the dual-mode
devices themselves and implemented via software “agents”, which select suitable access points
with minimal feedback from WAN/WLAN APs. In this subsection we provide a particular
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Figure 5.2: Dynamics of per-class routing probabilities and WAN utilization vs. adaptation rate,
a.

design for such agents along with the design of the APs’ feedback.
Unfortunately, the computation of gradients given via Proposition 5.1 is not amenable to

distributed implementation. To overcome this problem, we reformulate our optimization prob-
lem by switching to more convenient variables. We partition Sw

1 into a large number L of disjoint
sets which we denote ∆S1 ,∆S2 , . . . ,∆SL, containing the representative locations y1 ,y2 , . . . ,yL

respectively. When L is sufficiently large, one can approximate, for y ∈ ∆Si: p(y) = p(yi)≡ pi,
γ(y) = γ(yi), Bw(y) = Bw(yi), and Bh(y) = Bh(yi). Let p denote the vector {pi}L

i=1, then we
obtain the following representation of the system objective as a function of vector p:

U0(p) =
ρw

1 (p)
1−ρw

1 (p)
+ ∑

k∈K 1

ρh
k(p)

1−ρh
k(p)

,

where

ρw
1 (p) =

L

∑
i=1

γi|∆Si|pi

Bw(yi)

ρh
k(p) =

L

∑
i=1

1(yi ∈ Sh
k)

γi|∆Si|(1− pi)
Bh(yi)

,

and |∆Si| denotes the area of ∆Si. The corresponding optimization problem could be defined
similarly to Problem 5.1, but for the function U1(p) in place of U1(P).
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Problem 5.2.

min{U1(p)| 0≤ p≤ 1} .

We also can state an analogue of Proposition 5.1 as follows:

Proposition 5.2. Problem 5.2 is convex. The gradient elements of U1(p) are given as:

∂U1(p)
∂pi

= γi|∆Si|
(

Gw
i −Gh

i

)
, (5.10)

where

Gw
i =

1
Bw(yi)(1−ρw

1 )2 ,

Gh
i = ∑

k∈K 1

1(yi ∈ Sh
k)

Bh(yi)(1−ρh
k)

2
. (5.11)

Based on Proposition 5.2 we suggest the following decision-making strategy. As before,
prior to generating any requests, each dual-mode device has to establish a connection with the
APs which contain the device in their service zones. During initial session setup and within the
session lifetime, the devices maintain information about the average physical data rates that are
available for communication with nearby APs. Prior to requesting a file download from one of
the APs, a device at location yi ∈ Sw

1 ∩ Sh
k asks both WAN AP w1 and WLAN AP hk to signal

their current measured utilizations ρw
1 and ρh

k . The device then computes an estimate Ĝw
i and

Ĝh
i via (5.11) using the estimates for the respective utilizations and average physical data rates.

It forwards the download request to the WAN AP w1 if Ĝw
i − Ĝh

i < 0 and addresses the request
to WLAN AP hk otherwise.

The proposed approach is based on the observation that the routing probability pi has
to be decreased if the derivative ∂U1(p)

∂pi
is positive. By imposing “hard” decisions on the agents

we diminish the per unit time average of the number of requests incoming to the WAN AP
from the set of locations around ∆S(yi). The distributed algorithm is heuristically motivated by
Proposition 5.2. The decisions that agents make are no longer probabilistic and thus, strictly
speaking, the analysis based on the assumption that arrivals to APs follow Poisson processes no
longer holds.
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Figure 5.3: Performance of centralized and distributed load balancing algorithms vs. greedy
delay-based and proximity-based decision-making strategies.

5.3.4 Implementation of distributed heuristic within a “loosely coupled”
heterogeneous network

Note, that under distributed decision-making each agent needs to get a feedback only from the
WAN and hotspot APs that contain it in their service zones. Thus, potentially, the distributed
decision-making in the sense of Proposition 5.2 could even be implemented in the framework of
a “loosely coupled” network, provided each agent is able to estimate the utilization of the WAN
and a hotspot APs in its vicinity. To estimate an AP’s utilization each agent can either send
probing “ping” packets or use the history of download delays. It is a well known [56] property
of generalized processor-sharing queueing disciplines, that (when there is no blocking) the ex-
pected delay of a file transfer E [D | f

B = b
]
, conditioned on a particular value of a normalized

service requirement3 f
Bw is given by:

E [D | f
Bw = b

]
=

b
(1−ρ)

.

By sending ping packets of size f , maintaining the estimate of average bit-rate B̂w
i (ai) and

B̂h(ai) and observing the delays of D̂w and D̂h of the ping packets when sent towards WAN and
hotspot APs, an agent ai would be able to obtain estimates ρ̂w and ρ̂h of utilizations of both

3Normalized service requirement is defined as the ratio of the file size to the average service rate available at
the agent’s location.
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WAN and hotspot AP. Indeed, we have:

ρ̂w = 1− f
D̂wB̂w

, ρ̂h = 1− f
D̂hB̂h

.

With these estimates, Proposition 5.3.3 could be used straightforwardly to make decisions con-
tingent on comparing the values of Gw

i and Gh
i . Different variations on this scheme are also

possible, e.g. each device can maintain a history of estimates ρ̂w and use smoothed (via, e.g.
exponential filter) estimates of ρ̂w and ρ̂h in its decision-making.

5.3.5 Performance of interference-unaware load balancing algorithms

Apart from the fact that the distributed version of the load balancing algorithm does not require
a centralized controller to make routing decisions, it has another attractive feature. This feature
is represented by the fact that there is no need to estimate the current traffic demand at vari-
ous locations, or on a per-class basis as done by centralized implementation when estimating
the quantities Γw

i and Γw
i (k). As mentioned earlier, the imprecision of these quantities only

contributes to errors in estimating of gradient of the objective.
For most of our simulation experiments we found that distributed decision-making strat-

egy performs either as well or even better than the centralized one. In Figure 5.3 we illustrate
this by comparing the load-balancing performance that is achieved in simulation model de-
scribed in Section 5.2 by deploying either a centralized or distributed strategy. The mean delay
seen by a typical request is plotted vs the backhaul bandwidth, available at each WLAN. To
provide a benchmark, as in Chapter 4 we also use a simple and more natural (at least in current
applications) proximity-based routing strategy, under which all requests that emerge within a
service zone of a WLAN are simply routed to the corresponding WLAN AP.

On Figure 5.3 we also show the performance of load-balancing algorithms to the perfor-
mance of a greedy congestion-sensitive decision-making of Chapter 4. Under the latter strategy
each device simply sends to the AP which grants it the least file-transfer delay, which it deduces
either from previous download history and/or by periodically sending short “ping” messages.
Recall, that greedy delay-based decision-making is optimal only when the WAN service is spa-
tially uniform, and performance metric is given by the worst users average delay. It is thus
clear why both centralized and distributed load-balancing strategies significantly outperform
the strategies based on greedy delay minimization. At the same time we note, that greedy
delay-based decision-making still enables a large percent of the total gains in performance of
load-balancing strategies over proximity based decision-making.

Finally, Figure 5.4 compares the performance of a distributed strategy realized in a
tightly coupled heterogeneous network with the performance of distributed decision-making
realized within a loosely-coupled network, which we described in Section 5.3.4. We note that
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Figure 5.4: Performance of distributed algorithms realized within a tightly and a loosely coupled
heterogeneous networks.

the two graphs are quite close to each other. This, however does not mean that there is no benefit
in introducing tight coupling – this just indicates that distributed decision-making within both
tightly and loosely coupled contexts is likely to perform similarly. In the next section we will,
indeed, demonstrate the value of tight coupling by considering “interference-aware” algorithms.

5.4 Interference-aware load balancing

In this section we return to a more general case, in which the activity pattern of a WAN
AP can have a substantial impact on the interference seen within service zones of adjacent
WAN APs. Straightforward application of the interference-unaware distributed or centralized
decision-making rules, described in Section 5.3 might result in poor overall system perfor-
mance. We start this section by explicitly constructing a simulation scenario that captures such
circumstances.

5.4.1 Motivating example

Figure 5.4 shows the geometry for our experimental setup. We have a region that is served by
a mesh of WLANs, whereas each WLAN uses enough power to cover its respective Voronoi
region. There are also six WAN APs that share a service zone boundary with the WAN AP
w1 located at the center of the region. The experiment that we describe models an asymmetric
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Figure 5.5: Geometric setup: WAN APs shown as boxes and WLAN APs are shown as tri-
angles. The power levels at WLANs are sufficient to cover their service zones represented by
corresponding Voronoi cells. The power levels used at WAN APs are large enough to ensure
“interference-limited” regime of operation.

traffic scenario, in which the aggregate load within Sw
1 greatly exceeds the load for the adjacent

WAN service zones. To create even more load asymmetry we assume that WLANs falling
within Sw

1 are shut off, in which case the WAN AP w1 has to serve all requests emerging within
Sw

1 .
We summarize the particular traffic characteristics and other assumptions on system pa-

rameters in Table 5.4.1. To exclude the randomness induced by log-normal and Rayleigh fading,
in this experiment we will only model large scale attenuation, given by equation (5.2), where
the value of path loss exponent, α = 2.0. Clearly, α = 2.0 can hardly correspond to any real-
istic scenario4, but is chosen to maximize the effect of other-cell interference on performance
so we can better illustrate our ideas. We also let the power levels at APs to be the same, and
large enough, so that the effect of ambient noise in equation (5.1) is negligible i.e., the system
operates in the so-called “interference-limited” regime.

Figure 5.4.1 shows simulation results for this scenario where we vary the file arrival
rate within the service zone of the WAN AP in the center. The results are interesting in
that they demonstrate how the proximity-based strategy, which is probably the worst possi-
ble decision-making strategy under low utilizations, becomes desirable with increased load at
central WAN cell. Note that ultimately, this strategy outperforms both the centralized and dis-

4Attenuation exponents in a typical urban environment are α & 3.5.
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Requests’ arr. rate File size Backhaul b/w(
files · s−1 ·km−2) (Bytes) at WLANs (kbps)

Notation λ(y) f (y) Bh
k

y ∈ Sw
1 [15,40] 10 0

or k ∈ Sw
1

y ∈ Sw
n

or k ∈ Sw
n , 15 10 500

n 6= 1

Table 5.1: Simulation parameters.
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Figure 5.6: Mean delay increase over distributed routing, for centralized and proximity-based
routing.

tributed decision-making approaches which operate using the interference-unaware algorithms
of Section 5.3.

The key in understanding the seemingly paradoxical outcome of this experiment is as
follows. The negative effect on the service capacity of the WAN AP w1 from interference of
surrounding WAN APs is the largest when w1 approaches high utilization levels due to the
increased load on Sw

1 . The interference occurs only when WAN APs wm, m 6= 1 are active, i.e.
they serve requests that have emerged in Sw

m, m 6= 1 and have been routed to the WAN. Thus
the decision-making within service zone Sw

m, m 6= 1 potentially, crucially effect the performance
within Sw

1 when w1 is close to the edge of its servicing capability.
Now, note that the decision-making strategies, obtained in Section 5.3 have been for-
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mulated in such a way that they force each WAN service zone to make routing decisions in a
greedy fashion, i.e. each WAN AP tries to balance loads within its service zone only. Note
that in symmetric load scenarios, the degradation in service capability due to WAN APs activ-
ity is similar across service zones, and thus eventually, agents within different WAN service
zones will “feel” equal degradation in the WAN service capacity due to interference, which will
cause them to make more considerate towards their neighbors routing decisions, i.e. they will
be forced to route more requests towards the WLANs.

In our example, however, we have that the WAN AP w1 is affected much more by the
decision-making in surrounding WAN service zones, than these WAN service zones are affected
by the decision-making within Sw

1 . It follows then that WAN APs wm, m 6= 1 are not in any way
stimulated to route more requests to WLAN service zones in order to reduce the interference
they cause within Sw

1 .

5.4.2 Correction of decision-making to account for other-cell interference

The experiment presented in Section 5.5 suggests that to achieve better performance, the decision-
making routing algorithm operating within a particular service zone should factor the effect of
its decisions on the performance within the nearby service zones. Another conclusion that one
might reach is that it might be beneficial for the system to introduce additional bias causing
more requests to be routed to WLANs, under some high and asymmetric load scenarios. How
should one design decision-making, in order that system be able to automatically identify such
extremal circumstances, and “switch” on and off such biases is the focus of this section.

We return to our general model, in which the WAN service rate at each location depends
on the current set of active WAN APs. The queueing dynamics can thus be represented by that
of multi-class processor sharing queues, where the service rates at each queue vary over time as
governed by the activity state of other queues. Rigorous analysis of such queueing systems is
a hard task and the analysis is barely tractable even for two single class queues [73, 74]. Thus,
we will adopt the approach introduced in [75] that relies on approximating the performance.

We will first briefly recall the methodology of [75]. The authors consider a multi-cell
WAN system with Poisson traffic and processor-sharing service at access points, i.e. their setup
is quite similar to the one we have but there is no WLAN layer. The authors start by considering
a particular WAN AP, say w1, in our notation, and assume that the activity pattern of the WAN
APs {wm}m 6=1, follows a stochastic process, which is ergodic and independent of the activity of
w1. Based on this preliminary analysis, they construct approximate5 lower and upper bounds
for the mean number of transfers in progress at WAN AP w1.

The main idea in constructing the upper bound (similar reasoning applies to constructing

5The authors don’t claim that the bounds hold in general. Their argument is however supported by simulations
and the fact that bounds are valid for a particular case of single-class queues.
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the lower bound) is to note that the mean number of transfers at WAN AP w1 is the largest, when
the activity pattern of WAN APs wm, m 6= 1 is as in some “worst case scenario”. The “worst
case scenario” activity pattern can be taken as the one where the nearby WAN APs are active at
all times, since clearly, the other-cell interference within Sw

1 is the largest in that case and thus
the service rates within Sw

1 are the lowest. However, the simulations provided in [75] indicate
that a bound corresponding to such definition of “worst case scenario” might be quite loose.

In order to improve the bound the authors note that, in fact, one can consider another
definition of “worst case” activity pattern. In this new construction, the service rates at WAN
APs wm, m 6= 1 are as the ones corresponding to the case where all other WAN APs in the
system are active. Denoting A1(t) the resulting activity pattern of all WAN APs in the system
except for WAN AP w1, the improved upper bound on the mean number of transfers within Sw

1 is
obtained under assumption that WAN AP w1 operates under interference conditions induced by
the activity process A1(t). The actual upper bound value is then computed using the so-called
quasi-stationary regime approximation, in which the queuing dynamics at WAN AP w1 is much
faster than the changes in activity pattern of WAN APs wm, m 6= 1.

At this point we hope that we have demonstrated that the system we are dealing with
exhibits enough complexity so that we are motivated to take an approach which relies heav-
ily on approximations and which follows steps that are not rigorously argumented but seem,
nevertheless reasonable. The steps we will follow are somewhat similar to the ones described
above [75], in terms of the assumptions that we make. However, there are some differences
associated with the specifics of this study – by contrast to [75] we are not interested in obtain-
ing closed-form solutions for performance measures. Thus, in our case there will be no need
to assume that activity pattern of WAN APs follows any “worst case scenario” process – in the
algorithms that we will suggest in a short while, the measurements that depend on the actual
realized activity pattern will be incorporated into decision-making.

To derive our new, interference-aware, load-balancing algorithms, we will make the fol-
lowing assumptions.

Assumption 5.1. For any fixed strategy τ, the stochastic process Aτ(t), representing the dy-

namics of activity of all WAN APs in the system is stationary and ergodic, and has the same

distribution as Aτ.

Clearly, realistic systems might not obey Assumption 5.1 for all possible control strate-
gies, τ, as the process Aτ(t) in general depends on the strategy τ itself. Assumption 5.1 effec-
tively restricts us to work only with strategies that lead to validity of this assumption.

Assumption 5.2. The system operates in quasi-stationary regime, i.e. the queueing dynamics

within the service zone of each WAN AP is much faster than the changes in the set of active

WAN APs.
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Using Assumption 5.2 we can readily obtain the mean number of transfers in progress
at WAN AP wm:

Eτ[Qw
m] = EAτ

[
ρw

m(τ,Aτ)
1−ρw

m(τ,Aτ)

]
,

where ρw
m(τ,Aτ) is utilization of WAN AP wm under decision-making strategy τ, when the

set of active WAN APs is fixed and is represented by Aτ, and we use EAτ [·] to denote the
expectation with respect to the distribution of Aτ. For example, using the notation introduced
in Section 5.3.3, we have that τ1 corresponds to routing vector p, and the utilization ρw

1 (τ,F )
can be expressed as a function of p as:

ρw
1 (p,F ) =

L

∑
i=1

γi|∆Si|pi

Bw
F (yi)

where Bw
F (y) denotes the average WAN physical data rate available at location y when the set

of active WAN APs is F .
The next assumption is less crucial for our algorithms’ derivation and is mostly motivated

by the resulting implementation simplifications that it enables.

Assumption 5.3. The service rates at WAN AP wm are affected only by the activity pattern of

the set N m of WAN APs that are immediate neighbors of wm, i.e., the ones that share service

zone boundary with wm.

In what follows with some abuse of notation, we will use Aτ
m(t) ⊂ N m to refer to the

set of WAN APs that are immediate neighbors to wm and, for fixed control τ are active at time
t (correspondingly, we will also use Aτ

m to refer to the random set that has the same stationary
distribution as Aτ

m(t)).
We now return to the system objective that is given by equation (5.3). As in Section 5.3,

we can still decompose τ into a family of strategies {τm}M
m=1, so that τm operates on the requests

emerging solely within Sw
m. The difference from Section 5.3 is that {τm}M

m=1, which would min-
imize the system objective over some suitable set of decision-making strategies, can no longer
be treated as independent across different m. Thus, in general, the system optimization can not
be posed separately for each individual WAN service zone. This leads to certain implementa-
tion problems, since even if the solution is possible to obtain it would require a controller that
needs to coordinate potentially among all WAN APs in the system. Instead, we will focus on
designing strategies {τm}M

m=1 which are independent, but in which τm takes into account some
feedback from WAN APs wn ∈N m.

In order to achieve this goal we define “partial” system objectives Ũm(τ), corresponding
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to each service zone Sw
m, m = 1,2, . . . ,M:

Ũm(τ) = Eτ[Qw
m]+ ∑

k∈K m

Eτ[Qh
k ]+CIF ∑

n∈N m

Eτ[Qw
n ] ,

where CIF is some positive constant. We impose that the decision-making entity within Sw
m

strives to minimize Ũm by adjusting decision rules τm. Note that, in comparison to the “inter-
ference unaware” objectives Um(τ) which we used in Section 5.3, the objectives Ũm(τ) contain
additional factor proportional the total queueing backlog of WAN APs neighboring to wm. In
this way we try to enforce that the decision-making within Sw

m is sensitive to the queuing backlog
at the neighboring WAN APs.

Note that decision rules τm are still potentially adjusted as a reaction to the change in
decision rules τn, n 6= m. So in fact, the dynamics of decisions’ adjustments represents a game,
in which the interacting entities adjusting decision-making rules are the players, and where each
player adjusts its strategy in order to maximize its own utility, represented by the corresponding
partial objective. The dynamics might have fixed points (Nash equilibria in game-theoretic
terminology), i.e. sets of policies {τ∗m}M

m=1, such that no player desires to adjust it strategy.
However proving existence of such equilibria and their stability is a hard task by itself, and
will be out of scope of this work. In what follows we will simply experimentally validate that
such equilibrium decision-making strategy exists and the long-term decision-making dynamics
is eventually sufficiently close to this strategy.

The last preliminary step that we take is making assumptions that allows us to describe
the actual changes that occur within the system due to a small variation of a single component
of vector τ, say τ1. Note that for m ∈N 1 we can rearrange terms of Eτ[Qw

m] to obtain:

Eτ[Qw
m] = Aτ

1EAτ
m
[Qw

m | w1 is busy]+ (1−Aτ
1)EAτ

m
[Qw

m | w1 is silent] , (5.12)

where we denoted via Aτ
1 the probability that, under control strategy τ, the WAN AP w1 is

active. The conditional expectation in this expression correspond to taking the average, under
particular fixed control strategy τ, of quantity Qw

m with respect to activity pattern of all WAN
APs within N m except for the WAN AP w1. Thus in expression (5.12) the effect corresponding
to the activity of WAN AP w1 is factored separately from the effect of the activity of all other
WAN APs neighboring to wm. Thus we need to understand how these two effects are influenced
by τ1 in order to deduce how Eτ[Qw

m] changes due to variations in τ1.
Note first, that variations in τ1 are likely to affect the amount of traffic routed to WAN

AP w1 and thus do potentially change the activity probability Aτ
1. In turn, the change in activity

of WAN AP w1 would also potentially affect the activity of WAN APs neighboring to wm, since
the WAN APs wn, n∈N 1∩N m will “see” a different interference pattern from w1 within their
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service zones and thus would have a changed set of service capacities. The latter would result
in changed distribution for Aτ

m(t).
In this regard, we will make another crucial assumption, under which we will consider

the effect on Eτ[Qw
m] associated with the change of distribution Aτ

m on Eτ[Qw
m], occurring due to

change in τ1, to be negligible, in comparison of the effect on the same quantity of the change in
activity probabilities A1(τ) induced by the change in τ1. Expressing this in mathematical form
we have:

Assumption 5.4.

δτ1E
τ[Qw

m] =
(
EAτ

m
[Qw

m | w1 is busy]−EAτ
m
[Qw

m | w1 is silent]
)

δτ1Aτ
1 +o(δτ1Aτ

1) ,

where δτ1F is a first variation of F due to the variation in τ1.

We are now in position to derive our interference-aware load balancing rules. Note, that
the very construction of the “partial” objectives implies that the decision-making rules will be
similar to the ones that we obtained in interference-free case, but will involve some additional
“correction” terms which would reflect the performance penalties incurred due to other-cell
interference.

5.4.3 Correction term in distributed estimation of the gradient

We will derive the correction to load-balancing algorithm for the case of distributed implemen-
tation (it can be done similarly for the centralized version of the algorithm). Under Assump-
tions 5.1-5.4 we can concentrate on decision-making within a particular service zone, and we
choose to focus on Sw

1 , as before. Thus we will use the notation of Section 5.3.3, under which
the policy τ1 corresponds to the vector of routing probabilities p.

Using Assumption 5.4 the convexity of the function Ũ1(p) with respect to the vector p
could be established, however due to our other assumptions it might be expected to hold only
“approximately” in reality. The elements of the gradient of the partial objective can now be
expressed as:

G̃i ≡ ∂Ũ1

∂pi
= γ(yi)∆Si

(
G̃w

i −Gh
i

)
,

where Gh
i is the same as in (5.11), and G̃w

i includes a correction term, which involves “cost of
interference” caused to neighboring cells:

G̃w
i = EAτ

1

[
1

Bw
Aτ

1
(yi)(1−ρw

1 (p,Aτ
1))2

]
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Figure 5.7: Mean delay increase over interference-unaware distributed decision-making for
other decision-making strategies, under asymmetric loads (path loss, α = 3.5)

+CIFEAτ
1

[
1

Bw
A τ

1
(yi)

]
∑

m∈N 1

(
EAτ

m
[Qw

m | w1 is busy]−EAτ
m
[Qw

m | w1 is silent]
)

. (5.13)

The interference-aware decision-making algorithms are the same as we described in Section 5.3.3,
except that an agent at y ∈ ∆Si selects to join the WAN or WLAN AP via comparing G̃w

i with
Gh

i . To enable the computation of G̃w
i the WAN access points have to be able to inform their

neighboring WAN APs of the changes in their activity – such information could be signaled
over a dedicated wireline or wireless channel. With such coordination between APs, the WAN
AP wm neighboring to, say, w1 will be able to estimate the averages EAτ

m
[Qw

m | w1 is busy] and
EAτ

m
[Qw

m | w1 is silent] by averaging its queue length over times when w1 is active or silent re-
spectively6. These estimates will then be signaled to WAN AP w1 and will enable computation
of G̃w

i .

5.5 Performance of interference-aware decision-making

Figure 5.7 shows the performance of the “corrected interference-aware” decision-making in the
“paradoxical” setup described in Section 5.4.1. The “partial” objectives used in our formulation
of the interference-aware algorithms use the current queue lengths at all neighboring WAN APs

6Note that if the adaptation of vector p is much slower than dynamics of changes in activity of WAN APs, the
estimation of the expectations EAτ

m [·] in expression (5.13) can be done in a straightforward way by maintaining a
finite history of measurements for respective quantities.
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Figure 5.8: Average WAN rates within Sw
1 (as multiples of average WAN rate under interference-

unaware distributed decision-making) under different values of CIF for increasing load within
Sw

1 .

to signal their congestion. Including these signals is equivalent to inducing a bias on the system
that forces more requests to be routed towards WLANs when the whole system can benefit
from it. Note that the value of this bias can be controlled by tuning the constant CIF . We
illustrate this tuning in Figure 5.7 by showing performance for different CIF . Note that with
properly “tuned” interference-aware decision-making it is possible to achieve both the gains of
distributed load-balancing under light loads and proximity-based routing, for heavy asymmetric
loads.

Figure 5.8 illustrates the behavior of average WAN rates for different bias constants
CIF , when we increase the load within Sw

1 . Note that for proximity-based decision-making the
average WAN rates are the greatest, since the number of requests routed to WAN APs is the
least, and thus the other-cell interference is the least. Note that when the central cell starts to
approach the limit of its capacity, the “extra” service rate gained from routing more requests
at adjacent WAN service zones to the corresponding hotspots prevents the central cell from the
point of breaking down. This is illustrated by the upward moving of the average WAN rates
corresponding to the interference-corrected decision-making.

Good performance of interference-aware strategies has been verified also in other exper-
iments. The gains from employing interference-aware policies, however, depend on environ-
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Figure 5.9: Mean delay increase over interference-unaware distributed decision-making for
other decision-making strategies, under asymmetric loads (path loss, α = 3.5).

mental propagation characteristics, degree of load asymmetry and particular capacities available
at various access points in the system. In Figure 5.9 we exhibit the outcome of an experiment
that has the same geometric and traffic parameters, as the one described in Section 5.4.1, except
that we have set the value of path loss exponent, α to 3.5. Note that the interference-aware
decision-making still exhibits gains, which are, however more moderate in comparison to the
case with α = 2. This outcome is quite expected, since larger attenuation factors lead to dimin-
ished effect of the other-cell interference on the capacity of WAN service zones.

At Figure 5.10, we show the geometric setup of another experiment, which has a “larger-
scale” heterogeneous network with a number of interfering WAN service zones. The traffic
pattern resembles a chessboard: lightly loaded WAN cells are intermittent with heavily loaded
WAN cells. Figure 5.11 exhibits the gains that are achieved when employing an interference-
aware decision-making vs. a simple distributed decision-making. It is interesting to note that
in this particular setup both the proximity-based and interference-unaware centralized decision-
making strategies perform quite badly, leading to unstable queueing dynamics – this is why we
do not show the performance of these strategies at Figure 5.11.
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Figure 5.10: Geometric setup for an experiment.

5.6 Conclusion

In this chapter we presented our results on achieving load-balancing among heterogeneous wire-
less systems that include a combination of WAN and a set of WLANs. Under the assumption
that the access points serve the incoming download requests in a processor-sharing fashion, we
formulate and evaluate centralized and distributed decision-making routing schemes that enable
significant performance gains. The major contribution of this work is explicit incorporation of
other-cell interference as a factor affecting load-balancing decisions and exhibiting scenarios in
which interference-aware algorithms achieve significant performance gains.
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Part II

Hybrid Networks
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Chapter 6

Capacity of hybrid wireless ad hoc
networks with infrastructure support

6.1 Introduction

In this chapter we investigate the per user throughput that can be achieved in a hybrid ad hoc
wireless network. The network consists of ad hoc nodes, that can relay information among each
other via wireless links, and of infrastructure nodes, that can communicate with ad hoc nodes
in a wireless manner but are also interconnected via independent high capacity wired or wire-
less links. We shall refer to the latter as infrastructure nodes or base stations interchangeably.
There has been extensive interest in studying purely ad hoc networks, for applications involv-
ing networking of military, emergency services and, more recently, to enable the inexpensive
deployment of large numbers of networked sensors in the field [76, 77, 78, 79]. Since wireless
units are typically energy constrained and ad hoc networks may have limited communication
capacity, the addition of infrastructure or base station nodes is a natural approach to reducing
the energy and traffic burden on ad hoc nodes while possibly increasing the system throughput.
For example, one can envisage a hybrid ad hoc wireless network as a means to enable sharing of
information between possibly mobile sensor nodes or gathering of sensed information towards
query points on a wireline network. In this case infrastructure nodes are leveraged by ad hoc
nodes to reduce their energy burden and increase capacity. Alternatively one can view hybrid
ad hoc network model as a means to extend the communication coverage of wireless cellu-
lar infrastructure. In this case base stations would leverage spatially distributed ad hoc nodes
that are willing to relay information to increase coverage and, possibly, capacity. Note that by
contrast with cellular systems in a hybrid ad hoc network not all traffic needs to be mediated
through a base station, i.e., wireless nodes that wish to communicate with each other might do
so directly. Thus there are two “types” of traffic in such networks: that which is eventually
mediated through the infrastructure nodes and that which is relayed in a purely ad hoc manner.
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In this chapter we will study the per user throughput scaling laws as the numbers of ad hoc and
infrastructure nodes in a hybrid ad hoc network grow.

6.1.1 Related work

Let us briefly consider what is known for purely ad hoc networks [80, 19, 81, 82, 83, 84, 14, 21,
85, 86]. The first key result is that under a reasonable interference model the aggregate transport
capacity of an arbitrary network scales as Θ(W

√
An) bits-meter/sec in the number of nodes n

each placed in a region with area A where each has capacity W bits/sec [19]. An arbitrary net-
work is one in which the placement of ad hoc nodes and traffic loads can be selected so as to
maximize the capacity. The insight offered in [19] is that system throughput is maximized when
one minimizes the transmission power of each node resulting in a quadratic reduction in the in-
terference region of a transmission1. Minimizing the interference region permits one to schedule

as many non-interfering concurrent transmissions as possible resulting in maximized transport
capacity. The information theoretic results in [83] suggest that this same basic characteristic
capacity scaling will continue to apply under more general communication models with more
powerful interference cancellation techniques. In addition to the arbitrary network model [19]
studies a random network model where nodes are placed at random within a given region, and
choose to communicate with random destinations. In this context they study the asymptotic
scaling for the minimum per user throughput, and show it to be Θ(W/

√
n logn) bits/sec. This

result provides a better sense of the performance seen by individual nodes under a random traffic
pattern exhibiting no spatial locality. Several follow-on papers have shown the effect of traffic
locality [81], the impact of directional antennas on capacity [21], and how exploiting mobility
might increase the per user throughput with varying penalties in delay [84, 85, 86, 87].

More recently [14] have studied the aggregate throughput capacity for a hybrid network
model supporting uniformly distributed traffic loads. The model assumes that the base stations
are placed on a regular grid, but the ad hoc nodes are randomly distributed within the area of
the network. Since the goal of [14] is to bound the aggregate throughput, in their analysis cer-
tain users’ traffic is shut off, to favor others, e.g., those with “local” traffic. Several additional
interesting questions follow from this work. First their analysis is based on partitioning band-
width statically and in a spatially homogenous manner for purposes of supporting ad hoc and
infrastructure communications. Thus one might ask whether a spatially dependent partitioning
might not result in a higher aggregate or per user throughput. Indeed, since infrastructure nodes
are wired together, they will be very desirable as a shortcut for traffic that needs to traverse
a long distance. Thus one would expect infrastructure nodes to become traffic hotspots. One
might then question whether allowing a larger portion of bandwidth for communication with

1Loosely, the interference region of a transmission is the area around it wherein it would interfere with other
nodes’ receptions.
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infrastructure nodes, in regions close to such nodes while increasing the bandwidth allocated
for ad hoc communications far away from these nodes would not improve the system capacity.
In [14] the capacities of two natural routing strategies between ad hoc and infrastructure nodes
are studied. Thus a second question arises as to whether a better routing strategy, e.g., one that
avoids hot spots, for traffic to be carried in the ad hoc mode, might not be able to achieve a
better asymptotic capacity scaling.

In contrast to [14] the work of [88] considers a hybrid network model where the po-
sitions of both base stations and ad hoc nodes are randomly selected. The authors determine
the asymptotic scaling of capacity for such a network when the number of base stations scales
linearly with the number of ad hoc nodes. No other scaling regimes are considered.

6.1.2 Contributions and organization

In this chapter we resolve some of the issues that are not treated in [14, 88] by proving an
upper bound scaling for the per user throughput in a random hybrid ad hoc network that is
independent of the routing strategy. This bound is shown for networks in which infrastructure
nodes are placed in any deterministic manner, including the placement on the regular grid
described in [14], but ad hoc nodes are placed at random within a given region. In contrast
to [14] where the range of all nodes is the same for all nodes, we allow each infrastructure
node to adjust the range for each transmission. Therefore, the model is quite general in that it
allows one to operate infrastructure nodes in an optimal manner. In contrast to [88], we identify
three scaling regimes for the growth of the number of infrastructure nodes, m with the number
of ad hoc nodes n. In each of these regimes we demonstrate that the upper bound is tight by
specifying a particular placement for infrastructure nodes accompanied with a scheduling and
routing strategy.

Specifically we show that whenever m .
√

n/ logn the per user throughput is of order
W/

√
n logn. This is the same as that shown for pure ad hoc networks by [19] whence in this

regime infrastructure nodes do not enhance the capacity scaling for the hybrid network. When-
ever

√
n/ logn . m . n/ logn the order of the per user throughput is Wm/n. Thus in this case

the additional aggregate bandwidth Wm brought in by infrastructure nodes appears to be shared
by ad hoc nodes. In fact we demonstrate that in this regime, this scaling is achieved by letting ad
hoc nodes communicate directly via infrastructure nodes, i.e., as would be the case in a cellular
system. Thus more advanced routing and scheduling schemes, as, e.g., proposed in [14], might
achieve better leading factors, but would not change the basic asymptotic capacity scaling for
such systems. Finally, whenever m & n/ logn the achievable per user throughput is of order
W/ logn. This implies that further investments in the infrastructure do not lead to improvement
in the scaling of per user throughput. In some sense this is a result of our random uniform
traffic model we are using rather than an intrinsic property of the network itself. However, it is
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interesting to note that due to the limited local communication capacity of ad hoc and hybrid
networks fluctuations in traffic will lead to significant performance penalties. By contrast, a
wireline network with shared but large links can often absorb such fluctuations through statisti-
cal multiplexing.

The organization of the chapter is as follows. In Section 6.2 we describe our network and
traffic models, and define the feasible throughput for a random hybrid network. In Section 6.3
we show an upper bound on the scaling of per user throughput which is independent of routing.
Then, in Section 6.4, we demonstrate that upper bounds are in fact tight. Section 6.5 contains
some concluding remarks.

6.2 Hybrid Ad hoc Networks: Model and Notation

6.2.1 Model for a random hybrid network

We consider a network with n ad hoc nodes, that are randomly, i.e., uniformly, placed at loca-
tions X1,X2, . . . ,Xn within a disc of unit area D. These nodes are capable of transmitting and
receiving W bits/sec via a wireless channel. In addition, there are m(n) arbitrarily placed 2

infrastructure nodes (or base stations), which are interconnected through wired or alternative
wireless links which can support as much traffic as necessary. For simplicity, we shall assume
base stations have a capacity of W bits/sec to communicate with ad hoc nodes. In contrast to
ad hoc nodes, the base stations do not generate any traffic themselves, i.e., they serve purely as
infrastructure which relays traffic on behalf of nodes in the ad hoc network. We will assume
that the channel capacity can be split into an arbitrary number l of orthogonal (non-interfering
) subchannels each with Wj bits/sec such that ∑l

j=1Wj = W . In our model each ad hoc or in-
frastructure node can then send simultaneously using any number of the subchannels, to any
number of receivers. However we assume, that an ad hoc node can receive from only a single
sender and cannot send and receive in the same instant. We do not impose the latter constraints
on the infrastructure nodes, i.e., they are free to send and receive concurrently on orthogonal
channels. In the sequel we will consider a sequence of such networks where n → ∞ and m(n)
grows according to various scalings – in most cases we write m(n) simply as m. We will limit
the cases of interest to that where m(n)≤ n i.e., there are fewer infrastructure nodes than ad hoc
nodes.

2i.e., placed in any pre-specified, but deterministic way which does not depend on the realization of ad hoc
nodes.
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Uniform traffic model

We assume that each ad hoc node, say the i-th one at location Xi selects a destination for its
traffic as follows. It will choose a random location on the disk Si and will then choose the node
among X1, . . . ,Xn which is closest to Si. We shall denote the location of the i-th node’s receiver
by Yi, and let Li denote the length of the segment between Xi and Yi. For this traffic model it can
be shown that Li, i = 1, . . . ,n will be independent and identically distributed [19]. This traffic
model exhibits no locality.

Interference Model

We will adopt the Protocol Model for interference among nodes sharing a wireless channel, see
second version in [20]. In particular, consider an ad hoc or infrastructure node located at Xi

transmitting towards another (ad hoc or infrastructure) node located at X j along the subchannel
s and using the range ri for this transmission. The transmission will be successful at X j if:

|Xi−X j| ≤ ri , and |Xk−X j| ≥ (1+∆)rk , (6.1)

where Xk is the location of any other node which is concurrently transmitting over the sub-
channel s, and ∆ > 0 is some parameter. Note, that the first condition in (6.1) requires that the
receiver is within the range of the sender, and the second – ensures that the interference caused
by any other concurrent transmission in the system is limited at the receiver X j. We will further
restrict the Protocol Model to the case where ad hoc nodes employ a common range r but al-
low infrastructure nodes that might not be power constrained to adjust their transmission range
arbitrarily.

Per user throughput capacity

Following [14] we will extend the definition of [19] for the feasible per user throughput to the
case of a random hybrid network with arbitrarily placed infrastructure nodes.

Definition 6.1. A throughput of λ(n,m) per node/user is feasible if there is a placement rule

for the base stations, and a spatial and temporal scheme for scheduling transmissions allowing

buffering at intermediate nodes (if necessary), such that each node can send λ(n,m) bits/sec

on average to its chosen destination. That is, there is T < ∞, such that in every interval [(i−
1)T, iT ] every node can send λ(n,m)T bits to its corresponding destination node.

Now, as in [19], we can define the asymptotic scaling for the per user throughput as
follows:
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Definition 6.2. The per user throughput Λ(n,m) of a random hybrid network is of order3

Θ(λ(n,m)) bits/sec if there exist deterministic constants c > 0 and c′ < ∞ such that

lim
n→∞

P(Λ(n,m) = cλ(n,m) is feasible) = 1

liminf
n→∞

P(Λ(n,m) = c′λ(n,m) is feasible) < 1.

These two conditions can be interpreted as asymptotic lower and upper bounds over
random realizations for the locations of ad hoc nodes and destinations of the traffic.

6.3 Upper Bound on Per User Throughput

Our upper bound on per user throughput for random hybrid networks will draw on various
results in previous work. So we shall start by providing a summary of several key results we
will use in this chapter.

6.3.1 Background results

It can be shown that the Protocol model for interference (6.1) requires that whenever two si-
multaneous transmissions occur on the same subchannel and are successfully recovered, the
discs of certain radii centered in the receivers must be disjoint [19]. Thus each successful trans-
mission will necessarily occupy a portion of a total area of the disc placing a constraint on the
number of successful receptions that can occur on a given subchannel. The first result below
is an adaptation of Lemma 5.4 in [19], and provides a bound on the number of simultaneous
successful transmissions that can occur in a pure ad hoc network.

Lemma 6.1. Consider a network with n ad hoc nodes arbitrarily placed within the disc of

unit area and let all the nodes use the a common transmission range r for their transmissions.

Under the Protocol Model (6.1) the number of successful simultaneous transmissions nsim that

can occur on a given subchannel is upper bounded by:

nsim ≤ c1

∆2r2 ,

where c1 > 0 is some constant, independent of ∆ and n.

Lemma 6.1 also shows that the number of simultaneous transmissions in a pure ad hoc
network will be maximized, whenever the common transmission range is made as small as

3We will use the asymptotic notation as discussed in [89], i.e., O(g(n)), Ω(g(n)), Θ(g(n)), and o(g(n)) and
ω(g(n)).
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possible. There is, however, a limit on how small this range can be while still keeping network
connectivity. This limit is identified by the following theorem, proven in [90].

Theorem 6.1. Let n nodes be randomly placed on the disc of unit area according to a uniform

distribution. Assume that two nodes are connected if the distance between them is smaller than

the “connectivity range” ρ(n), where:

πρ2(n) , logn+ c(n)
n

. (6.2)

Then, all nodes are connected in a single cluster with probability 1 as n → ∞ if and only if

c(n)→ ∞.

The next result, which we prove in Appendix 6.6, establishes a lower bound on the
minimum range which would allow connectivity in a random hybrid network where the infras-
tructure nodes are placed arbitrarily.

Proposition 6.1. Let n nodes be randomly placed on the disc of unit area according to a uniform

distribution and let m additional nodes be placed arbitrarily. Let r(n,m) be a “connectivity

range”, i.e. the distance within which two nodes are assumed to be connected. Assume that

r(n,m) is chosen so that all n + m nodes form a single connected cluster with probability 1 as

n→ ∞. Then, r(n,m) satisfies:

r(n,m) =





Ω
(√

logn
n

)
, if m = o

(
n

logn

)
,

Ω
(

1√
m

)
, if m = Ω

(
n

logn

)
.

Note that Proposition 6.1 establishes a lower bound on the required connectivity range
under different joint scalings for the number of ad hoc and infrastructure nodes.

6.3.2 Derivation of the upper bound

We will define three scaling regimes for the number of infrastructure and ad hoc nodes:

(i) : m(n) = O
(√

n
logn

)
,

(ii) : m(n) = ω
(√

n
logn

)
and m = O

(
n

logn

)
,

(iii) : m(n) = ω
(

n
logn

)
.

(6.3)

Note that Regime (i) corresponds to the case where m .
√

n
logn , Regime (ii) – to the case where

√
n

logn ¿ m . n
logn and Regime (iii) – to the case where m À n

logn . Our upper bounds on the
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asymptotic scaling for the per user throughput in these three regimes are formally stated in the
following theorem.

Theorem 6.2. The throughput per user, Λ(n,m), in a random hybrid network under the protocol

model is such that for some c′ > 0 independent of n and m we have:

lim
n→∞

P(Λ(n,m) = c′λ(n,m) is feasible) = 0,

where

λ(n,m) =





W√
n logn in Regime (i) ,

Wm
n in Regime (ii) ,

W
logn in Regime (iii) .

We prove the theorem via two propositions as follows.

Proposition 6.2. The throughput per user, Λ(n,m) for a random hybrid network under the

Protocol model satisfies

Λ(n,m) =





O
(Wm

n

)
if m = Ω

(√
n

logn

)

O
(

W√
n logn

)
if m = O

(√
n

logn

) . (6.4)

Proof. For simplicity we assume transmissions are slotted, with slots of length τ secs. By
definition a throughput λ is feasible if over a large period of time, say [0,T ], each node would
be able to send λT bits over T/τ transmission slots. Note that each node may send some (or all)
of its λT bits using base station infrastructure and must send the remainder in ad hoc mode via
multi-hop relaying. The idea of our proof is to bound the ad hoc traffic burden on the network
that n nodes would produce.

We will allow nodes to send over l non-interfering sub-channels each with bandwidth
Wj such that ∑l

j=1Wj = W . Since a hybrid network consists of both nodes and base stations
with the same capability sharing these subchannels, the maximum bits/sec on the up-link to
a particular base station is at most W bits/sec. Since there are m such base stations, the total
up-link flow in a given slot is at most Wmτ bits.

Suppose that κu
i (t)Wmτ bits transmitted by node i are relayed on up-links to base stations

during time slot t. Let κ̄u
i denote the time average of the fractional up-link base station burden
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κu
i (t) associated with node i, i.e.,

κ̄u
i ≡

1
T

dT/τe
∑
t=1

κu
i (t)τ.

This quantity must satisfy the following constraints

n

∑
i=1

κ̄u
i ≤ 1/2 and κ̄u

i Wm≤ λ. (6.5)

The first constraint is due to flow conservation, i.e., the aggregate up-link burden on base sta-
tions can not exceed 1/2 since these same bits will need to be sent by base stations on down-
links. The second inequality must hold true for all nodes i since each node’s feasible throughput
will at least exceed its time average up-link burden on the base stations.

The total number of bits Ni transmitted in ‘ad hoc’ manner from node i to its destination
within the time interval [0,T ] is thus at least:

Ni ≥ λT −
dT/τe
∑
t=1

κu
i (t)Wmτ. (6.6)

Note by bits sent in ‘ad hoc’ manner we mean those which are relayed from the source to the
destination without the the help of a base station. Let b(i) be an integer indexing the b(i)th bit
sent in ad hoc manner by node i and let h(b(i)) denote the total number of hops this bit will take
to reach its destination. By summing over all such bits that are sent over sub-channel l during
time slot t, we obtain:

∑n
i=1 ∑Ni

b(i)=1 ∑h(b(i))
h=1 1 [b(i) performed h’th hop

over subch.l at time slot t]≤Wlτnsim ,

where we denote by nsim the number of simultaneous transmissions that can occur in a hybrid
network with the base stations not participating in the relaying. Note that nsim in this case is the
same as the number of simultaneous transmissions for a purely ad hoc network consisting of
nodes randomly and uniformly placed within the disc D. Using Lemma 6.1 and summing over
all the sub-channels and time slots one obtains:

1
T

n

∑
i=1

Ni

∑
b(i)=1

h(b(i))≤ c1W
∆2r2 , (6.7)

where r is the common range for all ad hoc nodes’ transmissions. We define now the following
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quantity:
lr(b(i)) = h(b(i))r ,

which corresponds to an estimate for the length of the path traversed by bit b(i) to reach its
destination, i.e., number of hops times radius of each ad hoc transmission. We also define the
following per node averages:

l̄r
i =





1
Ni

Ni

∑
b(i)=1

lr(b(i)) if Ni > 0

0 if Ni = 0

,

i.e., the average distance (measured along the path) traversed by bits carried in ad hoc manner
on behalf of node i during the time interval [0,T ]. Thus, from (6.7) we have:

1
T

n

∑
i=1

Ni l̄r
i ≤

c1W
∆2r

.

Note, furthermore, that if Ni > 0 then l̄r
i is lower bounded by li, that is the distance, measured

along the straight line from the node i to its intended receiver. So, it follows that :

1
T

n

∑
i=1

Nili ≤ c1W
π∆2r2 .

Next, using our lower bound (6.6) for Ni, we obtain:

n

∑
i=1

[
λ−Wm

T

dT/τe
∑
t=1

κu
i (t)τ

]
li ≤ c1W

∆2r
.

so,

λ≤ Wm∑n
i=1 κ̄u

i li + c1W
∆2r

∑n
i=1 li

. (6.8)

By the Strong Law of Large Numbers we have that:

lim
n→∞

1
n

n

∑
i=1

li = E[L1], almost surely ,

where we took into account the fact that the sequence {li}n
i=1 are realizations of a sequence

of i.i.d. random variables which share the distribution of L1. Since E[L1] = Θ(1), we have
that ∑n

i=1 li = Θ(n), which combined with (6.8) and the constraints in (6.5) yields the following
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upper bound for the feasible rate:

max
κ̄u

i ,(i=1,...,n)

[
Wm

n

n

∑
i=1

κ̄u
i li +

c1W
∆2nr

]
,

under constraints:
n

∑
i=1

κ̄u
i ≤ 1/2 , κ̄u

i Wm≤ λ . (6.9)

This optimization corresponds to a Knapsack problem with linear constraints, whence it is opti-
mal to give maximal values κ̄u

i ’s to nodes i associated with the largest weights li. Since κ̄u
i ≤ λ

Wm

and ∑n
i=1 κ̄u

i ≤ 1/2 it follows that only the dWm
2λ e largest li’s out of n can be accommodated –

we have relaxed the constraints by taking the ceiling function. Let π(i) denote a permutation of
the node indices such that lπ(1) ≥ lπ(2) ≥, . . . ,≥ lπ(n). Then the upper bound will be maximized
when κ̄u

i are set as follows:

κ̄u
π(i) =





λ
Wm for i = 1 , . . . ,dWm

2λ e
0 otherwise

.

Noting that for each i, li = Θ(1), the upper bound for the per user throughput reads:

λ≤ c2
Wm

n
+ c3

W
∆2nr

(6.10)

for two constants c2,c3 > 0. It is clear then that r must be chosen as small as possible, while
ensuring that the the n nodes and m base stations will still be asymptotically connected. Incor-
porating the lower bounds for r identified by Proposition 6.1 into inequality (6.10) we obtain
the asymptotic upper bounds on per user throughput stated in the proposition.

The next proposition establishes an upper bound on the per user throughput in a random
hybrid network irrespective of the number of infrastructure nodes in the network.

Proposition 6.3. The per user throughput, Λ(n,m), for a random hybrid network under the

protocol model satisfies, for any m:

Λ(n,m) = O
(

W
logn

)
. (6.11)

Proof. We will show that with some positive probability, that does not diminish as n → ∞,
there exists at least one node which is selected as an intended receiver by Θ(log(n)) senders.
The result will then follow by noting that the receiving capacity of each node is limited by W

bits/sec.
We first note that, by Theorem 6.1, the geometric graph Gn of n nodes placed randomly
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within a unit area disc is asymptotically disconnected, if the connectivity radius r̃(n) is chosen
as to satisfy:

πr̃2(n) =
logn+ c

n
,

where c > 0. Furthermore, by the proof of Theorem 2.1 in [90], the probability P(n) of having
at least one isolated node in Gn is lower bounded by some positive constant for all sufficiently
large n. Thus, for all sufficiently large n, with some positive probability, there exists an ad hoc
node In ∈ Gn, which has no ad hoc neighbors within a distance r̃(n).

Second, we show that with probability that does not diminish as n → ∞, the node In is
chosen to be an intended receiver for as many as C logn senders, (for some C > 0 independent
of n). Recall that for each node i, it’s intended receiver Yi is the closest node to a randomly a
uniformly distributed location Si on the disc. The node In will for sure be chosen as intended
receiver for the i-th ad hoc node if Si falls within the distance r̃(n)/2 from In. The ensemble
average of nodes, EN(In), having In as their intended receiver is thus:

EN(In)≥ nπr̃2

4
=

log(n)
4

. (6.12)

Next, using the Chernoff bound we show that the deviations from this average are negligible.
Indeed if N(In) is the actual number of nodes having In as their receiver we have that for any
δ > 0:

P
(

N(In) < (1−δ)EN(In)
)
≤ exp

(
−δ2EN(In)

2

)
≤ 1

nδ2/8

where we have used the inequality (6.12). Thus we have that the actual number of nodes sending
to the node In with probability tending to 1 as n→ ∞ is lower bounded by:

N(In)≥C log(n) , (6.13)

with some C > 0 independent of m and n.
Finally, we note that the receiving throughput capacity of each node is bounded by W

bits/sec whether it receives from a base station or from ad hoc nodes. Thus, since each node
sends λ bits/sec, the throughput must satisfy the following inequality:

λN(In)≤W .

Combined with (6.13), the previous inequality yields:

λ≤ W
C logn

,

and the statement of the proposition follows.
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Theorem 6.2 combines the various scaling regimes for m and n considered in Proposi-
tions 6.2 and 6.3, noting which gives the tightest upper bound.

6.4 Lower bounds on throughput capacity

In this section we will show the upper bounds obtained in Theorem 6.2 are tight in the sense of
Definition 6.1. We will consider separately each of the three scaling regimes defined by (6.3).

6.4.1 Regime (i)

The following corollary is an immediate consequence of Proposition 6.2.

Corrollary 6.1. If m = O
(√

logn
n

)
, the order given in Theorem 6.2 is feasible, i.e., the through-

put of a random hybrid network is of order Θ
(

W√
n logn

)
.

Proof. The per user throughput of a random ad hoc network is of order Θ
(

W√
n logn

)
in [19].

This matches the upper bound in Theorem 6.2 for a random hybrid network whenever m =
O

(√
n

logn

)
. Hence this per user throughput is achievable, and can be achieved through ad hoc

communications alone, i.e. there is no need to deploy the infrastructure nodes.

6.4.2 Regime (ii).

For the regime where
√

n
logn ¿ m . n

logn we shall describe a placement of base stations and
a routing and scheduling strategy demonstrating that the order of the throughput specified by
Theorem 6.2 is feasible. Below we will construct a Voronoi tessellation of the disc D which
meets certain regularity properties. The tessellation will be associated with the placement of
the infrastructure nodes and be used to partition the disc into regions of operation for each base
station – we refer to it as the “infrastructure” tessellation. Subsequently we will show that there
exists a scheduling strategy where each node needs only to communicate exclusively with its
closest base station and can realize its desired asymptotic throughput.

Placement of base stations and the “infrastructure” tessellation

We shall split the plane into a hexagonal tessellation Hm with the side of a hexagon equal to
1√
m . The following fact is proven in appendix.

Fact 6.1. The number m0 of the hexagons in Hm, which are fully contained in the unit area disc

D, satisfies m0 < m and m0 = Θ(m).
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H 2 Hm
Figure 6.1: The tessellation Bm induced by the placement of the base stations on the disc.

Suppose we place m0 out of m base stations into the centers of the hexagons that are fully
contained inside the disc D and let Bm denote the Voronoi tessellation of D induced by these
base stations. The remaining m−m0 base stations are left out of our construction (equivalently,
those base stations can be arbitrary placed anywhere and shut down). As shown on Figure 6.1,
the cells of the tessellation Bm coincide with the hexagons of Hm, except for those close to the
boundary. Based on this construction one can show the following regularity property, see the
appendix.

Lemma 6.2. For a sufficiently large m, each cell B of the tessellation Bm contains a disc of

radius
√

3
2m and is contained in a disc of radius 3√

m .

Routing

Suppose each node directly sends to its closest base station via a wireless channel for routing
its packets on the up-link or receiving packets on the down-link. We assign equal ranges

ri.s.(m) =
6√
m

, (6.14)

for all nodes transmitting on the up-link and let the base stations use the same range for down-
link communications. The following is a simple consequence of Lemma 6.2:
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Fact 6.2. The range ri.s.(m) is sufficient to allow each node to communicate with its closest

base station directly, i.e., in a single hop.

Interference

We now consider interference among nodes transmitting simultaneously. Analogously to [19],
we call the “infrastructure” cells B,B′ ∈ Bm interfering neighbors if there are two points S ∈ B

and S′ ∈ B′, such that the distance along the straight line between them, d(S,S′) satisfies: :

d(S,S′)≤ (2+∆)r(m) .

The following lemma is an adaptation of Lemma 4.3 in [19] and is proven in the appendix.

Lemma 6.3. Let n(B) denote the number of interfering cells for a cell B ∈ Bm then,

n(B)≤CB . (6.15)

where CB depend only on ∆.

Based on a graph coloring theorem on can show the following corollary, see [19] for
details.

Corrollary 6.2. Any cell B ∈ Bm can be guaranteed a fixed fraction 1
1+CB

of total time to

transmit without interference. This fraction depends only on ∆.

Scheduling policy

We split the unit of time into slots of length 1
1+CB

units and assign one slot for each of the
interfering cells B ∈ Bm. We further split each slot into “down-link” and “up-link” phase of
equal duration so that each node within a particular cell B ∈ Bm could be transmitting towards
the base station in B during the “up-link” phase and be receiving from the base station during
the “down-link” phase. In addition, within both the “up-link” and ”down-link” phases a base
station services the nodes within its Voronoi cell in a round robin fashion.

Remarks on the proposed construction

Our construction for tessellation is similar to that used in [19] and will allow us to argue that
the empirical frequencies of some events for sufficiently large numbers m and n with high
probability tend to 0. For example, we will be interested in the event for which a particular
cell B ∈ Bm of the “infrastructure” tessellation contains a number of nodes exceeding some pre
specified value. Although, by construction, on average the number of nodes within such a cell
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is n(B) = Θ
( n

m

)
, we still need to ensure that the probability of a “large deviation” from the

average is negligible for large enough n,m.
For the set of discs on the plane, the uniform convergence of empirical frequencies of

events to the corresponding probabilities has been established in [19]. Then this convergence
can be used to argue the same for the cells with the discs-inclusion-containment properties given
in Lemma 6.2. The next paragraph summarizes the results which we will be using.

Uniform convergence of empirical frequencies to the respective probabilities for a set of
discs on the plane

In what follows we let Dr denote the collection of all discs Dr of radius r on the plane. Then
the following result is proven in [19]:

Proposition 6.4. Let the points Xi, i = 1,2, . . . ,n be i.i.d random points on the plane. Define the

empirical frequency that a point Xi falls into a disc Dr ∈Dr:

F(Dr) =
1
n

n

∑
i=1

1{Xi∈Dr }

and let P(Dr) = P(X1 ∈ Dr). Then,

P

(
sup

Dr∈Dr

|F(Dr)−P(Dr)| ≤ ε

)
> 1−δ , (6.16)

whenever:

n > max
[

24
ε

log
16e

ε
,
4
ε

log
2
δ

]
.

This proposition follows from the uniform convergence in the weak law of large numbers due to
Vapnik and Chervonenkis, and we refer the reader to [19] for the proofs and references therein.

The number of ad hoc nodes contained within an infrastructure cell B ∈ Bm

Based on Proposition 6.4 one can show the following lemma.

Lemma 6.4. Let Ns(B) be the number of ad hoc senders falling within an infrastructure cell

B ∈ Bm. Then, in Regime (ii), for some c1 > 0, which is independent of m and n, we have that

as n→ ∞
P

(
max
B∈Bm

Ns(B)≤ c1
n
m

)
→ 1

Proof. By Lemma 6.2, each cell B ∈ Bm is contained in a disc Dr(m) of radius r(m) = 3√
m .

Denote D̃r(m) the collection of discs on the plane having such a radius. Then, by Proposition 6.4
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we obtain:

P


 sup

Dr(m)∈D̃r(m)

∣∣Ns(Dr(m))−nP(Dr(m))
∣∣≤ nε(n)


 > 1−δ(n) , (6.17)

whenever:
n > max

[
24

ε(n)
log

16e
ε(n)

,
4

ε(n)
log

2
δ(n)

]
. (6.18)

If we let ε(n) = δ(n) = 50logn
n , one can show that (6.18) holds. Then, from (6.17):

Ns(Dr(m))≤ nP(Dr(m))+nε(n) , (6.19)

with probability exceeding 1− δ(n) uniformly for all discs Dr(m) ∈ D̃r(m). The result follows
now from the fact that P(Dr(m)) = 3π

m and the fact that 1
m is the leading factor in (6.19).

The number of nodes, choosing intended receivers within an infrastructure cell B ∈ Bm

Based on Proposition 6.4 one can show the following bound on the number of receivers in a
given cell.

Lemma 6.5. In Regime (ii), the number of ad hoc nodes, Nr(B), that choose their intended

receivers in a particular infrastructure cell B is upper bounded for some c2 > 0, independent of

m and n, as:

P
(

max
B∈Bm

Nr(B)≤ c2
n
m

)
→ 1 ,

as n→ ∞.

Proof. By definition of Nr(B):

Nr(B) =
n

∑
i=1

1{Yi∈B} , (6.20)

where Yi is the node closest to the uniformly and randomly chosen point Si on D that the node
located at Xi chooses to communicate with. Note, that by Theorem 6.1, with probability achiev-

ing 1 as n→∞, each node is at most 2b
√

logn
n away from a closest to it node, whenever b obeys

2b > 1√
π . Therefore, the location Si must be at most b

√
logn

n away from Yi. This yields, that Si

falls within the set B⊕Dρ(n), which is the set formed by taking the union of B and all the discs

of radius ρ(n) = b
√

logn
n centered at the boundary of B. Therefore, by (6.20) it follows that:

Nr(B)≤
n

∑
i=1

1{Si∈B⊕Dρ(n)} ≤
n

∑
i=1

1{Si∈D̄(B)⊕Dρ(n)} ,

where by D̄(B) we denoted the disc of radius 3√
m containing the cell B. Applying Proposition 6.4
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with δ(n) = ε(n) = 50logn
n to the i.i.d. {Si}n

i=1 and the disc D̄(B)⊕Dρ(n), we obtain:

Nr(B)≤ nP
(

S1 ∈ D̄(B)⊕Dρ(n)

)
+nε(n)

≤ nπ
(

3√
m +ρ(n)

)2
+ logn , (6.21)

uniformly for all B ∈ Bm and with probability approaching 1 as n→ ∞. The result now follows
by noting that 3√

m is the leading factor in (6.21) whenever m = O
(

n
logn

)
.

The capacity of the scheme

The aggregate bandwidth, available per cell of a base station, by the scheduling policy is
W

2(1+CB ) . Since, by Lemma 6.4, this bandwidth is shared by at most 2c1n
m nodes for sufficiently

large n, each node is guaranteed a rate of

λ≥ Wm
2c1(1+CB)n

, (6.22)

via the up-link transmissions.
Now, by Lemma 6.5, the number of nodes, sending to any node within a base station cell

B ∈ Bm is uniformly bounded as:
Nr(B)≤ c2

n
m

,

and hence, the aggregate traffic that a base station has to deliver to the nodes in its cell does not
exceed

λNr(B)≤ c2λ
n
m

. (6.23)

This shows, that the aggregate down-link traffic at each base station will be accommodated with
probability approaching 1 as n→ ∞ if:

W
2(1+CB)

≥ λ
n
m

.

is feasible. This, combined with (6.22) yields for the achievable throughput:

λ(m,n) = Ω
(

Wm
n

)
.

Thus we have shown the following result.

Proposition 6.5. The throughput capacity of a random hybrid network under the Protocol

Model in Regime (ii) is of order Θ
(Wm

n

)
.
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6.4.3 Regime (iii).

Note that by Proposition 6.5, whenever m = Θ
(

n
logn

)
the throughput of a random hybrid net-

work is of order Θ
(

W
logn

)
. In the same time, by Proposition 6.3, Θ

(
W

logn

)
is the highest possible

throughput that could be achieved with any number of arbitrary placed base stations. We thus
conclude, that the order of the throughput in this regime is Θ

(
W

logn

)
and it could be achieved

by deploying only Θ
(

W
logn

)
out of total m base stations. Thus we have the following:

Proposition 6.6. The per user throughput of a random hybrid network under the Protocol

Model in Regime (iii) is of order Θ
(

W
logn

)
.

6.5 Concluding Remarks.

In this chapter we have investigated the asymptotic per user throughput for a random hybrid
network with arbitrarily placed base stations and demonstrated explicit schemes achieving these
asymptotic scalings. Our results might be viewed as pessimistic, as they confirm the conclusion
of [14] (for two particular routing strategies) that to obtain a significant improvement in capacity
for such networks infrastructure investments will need to be high. However, taking another point
of view the results are good news since they suggest that when the number of infrastructure
nodes exceeds

√
n/ logn, ad hoc nodes will be able to effectively share the spatially distributed

infrastructure. In practice the first step towards increasing capacity in wireless networks is
to increase the capacity of infrastructure nodes. Thus if their number exceeds

√
n/ logn we

might expect ad hoc nodes that are part of a hybrid network to directly see the benefits of
such investments in infrastructure. Additionally, ad hoc relaying of information in a hybrid
network can be viewed as an effective way to leverage spatially distributed infrastructure and
possibly mobile ad hoc nodes to extend the coverage for power-constrained infrastructure nodes.
Thus the cost-benefit analysis of a hybrid network should not be considered simply from the
perspective of throughput, but also in terms of the infrastructure cost to service a large, possibly
spatially distributed customer base.

Another concern for ad hoc network applications is energy consumption. One might ex-
pect the addition of infrastructure nodes to significantly reduce the average energy requirements
for transmission and relaying among ad hoc nodes by providing a more efficient communica-
tion backbone for traffic that needs to go a long way. In particular, for a large-scale sensor
network based on ad hoc wireless nodes and operating under fairly tight energy constraints, the
investment in extra infrastructure nodes can pay off handsomely by allowing battery operated
sensors to operate over a longer period of time. An unfortunate issue in this context will be the
traffic hot spots, and thus increased energy consumption, that ad hoc nodes in close proximity
to infrastructure nodes are likely to see. We, however, believe that in reality, better routing
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and scheduling algorithms will be able to alleviate these hot spots and increase the throughput
scaling by a multiplicative factor.

Finally we have shown a sharp cutoff bound on the throughput that can be achieved in
a hybrid network irrespective of the number of infrastructure nodes. Our argument is based on
observing that some types of traffic fluctuations can systematically limit the per user throughput.
Although this is a direct consequence of the random traffic model we have adopted, it does
suggest that pure ad hoc networks may have an unfortunate characteristic. Specifically spatial
fluctuations in traffic loads are likely to be difficult to support, unless appropriate infrastructure
and routing are provided to quickly enable their dissipation.

6.6 Proof of Proposition 6.1.

We will first introduce a few definitions. Let Pm denote the set of all possible placement rules
for m base stations on the disc D. Let Pm ∈ Pm be a particular placement rule, for which
Sk(Pm) denotes the position of the k-th base station (k = 1 , . . . ,m). Let r(n,Pm) denote the
smallest common range which ensures that n ad hoc nodes randomly placed on D and m base
stations placed according to Pm, will connect into a single cluster with probability 1. Finally, let
r∗(n,m) = minPm∈Pm r(n,Pm), and P∗(n,m) = argminPm∈Pm r(n,Pm), thus r∗(n,m) is the “con-
nectivity range” under the “best” placement rule P∗(n,m).

We prove the proposition by contradiction. In particular, consider the two scaling regimes:

Regime 1 : m = o
(

n
logn

)
,

Regime 2 : m = Ω
(

n
logn

)
.

and suppose, in contradiction to the statement of the proposition, that the sequence {r∗(n,m)}∞
n=1

is such that:

r∗(n,m) = o
(√

logn
n

)
in Regime 1 ,

r∗(n,m) = o
(

1√
m

)
in Regime 2 .

(6.24)

We let Bk(n,m), for k = 1 , . . . ,m, denote discs of radius r∗(n,m) centered at Sk(P∗(n,m)). Let
U (n,m) = D∩ (∪m

k=1Bk(n,m)
)

denote the subset of D that is covered by such discs. Clearly,
any ad hoc node that belongs to D \U (n,m) can not reach any base station in a single hop.
Such nodes would have to connect to other ad hoc nodes in their vicinity. However, we will
show below, that under the assumptions in (6.24), the region D\U (n,m) contains ad hoc nodes
isolated from any other ad hoc nodes, with positive probability for all sufficiently large n and m.

Let En,m(r) denote the event that there exists an ad hoc node within D \U(n,m) that
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has no ad hoc neighbor within a distance r from it. Let ρ(n) =
√

logn+c
n , for a fixed c > 0. It

is easy to check that in both Regime 1 and 2 we have that r∗(n,m) given by (6.24) scales as
o(ρ(n)). Thus, we have that P(En,m(r∗(n,m))) ≥ P(En,m(ρ(n)) for all sufficiently large n and
m. Now, note that, by Theorem 2.1 in [90] we have that, for all sufficiently large n, with positive
probability that is independent of n, there exists at least one ad hoc node in D which has no ad
hoc neighbors within the distance ρ(n) from it. Noting that, by the assumptions (6.24) the area
of U(n,m) scales in both Regime 1 and Regime 2 as o(1), the proof of Theorem 2.1 in [90]
can be straightforwardly adapted to yield the same conclusion for the nodes within D\U(n,m).
Thus, with positive probability independent of n and m, for all sufficiently large n and m there
exist ad hoc nodes within D\U(n,m) that have no ad hoc nodes within the distance ρ(n) and,
hence, also within the distance r∗(n,m). We thus arrive at a contradiction since we assumed that
r∗(n,m) is sufficient to ensure that all nodes are connected.

6.7 Proof of Fact 6.1.

Since the area of each hexagon is 3
√

3
2m , there are at most m0 ≤ b 2m

3
√

3
c < m hexagons fully con-

tained within the unit area disc, from which the first statement follows.
We now introduce a coordinate system on the disc, so that the origin is at the center of D.

Consider points on a regular grid Pi j with the coordinates
(

3i√
m , 3 j√

m

)
, i, j = 0,1,2, . . . ,b1

6

√m
π c.

Each of those points is within a distance of at least 3√
m away from the boundary of the disc.

Then for each point Pi j there must be a hexagon Hi j out of m0 that is fully contained within
D, with its center within the distance of at most 1√

m from Pi j. Notice that Hi j ∩Hi′ j′ = /0, since
otherwise the points Pi j and Pi′ j′ would have to be within the distance of at most 2√

m . Now, since

all Hi j are disjoint, the number of them is at least
(b1

6

√m
π c

)2 = Θ(m). But then m0 = Θ(m),
which proves the second statement of the lemma.

6.8 Proof of Lemma 6.2.

We first show that each cell B ∈ Bm contains a disc of radius
√

3
2m . We can view the hexagonal

tessellation Hm of R2 as being induced by the seeds placed at the center of each hexagon. By
construction, the tessellation Bm is formed by eliminating some of the seeds of Hm. Since a
Voronoi cell of a seed is an intersection of the half spaces associated with points closer to that
seed, it follows that this intersection will contain the corresponding hexagon of Hm when some
seeds are eliminated. Now, a hexagon of side 1√

m contains a disc of radius
√

3
2m , and hence the

first property stated in the lemma holds.
Now let us show that second statement of the lemma, i.e., that each cell B ∈ Bm is
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Figure 6.2: H has a neighbor H ′ fully contained within the disc D.

contained in a disc of radius 3√
m . This will be true if we can prove that each point P on the

disc is within the distance 3√
m from one of the base stations. For P ∈ H ∈ Hm and H ⊂ D (the

hexagon is fully contained within the disc) this is obvious since then the distance to the base
station centered at the center of the hexagon H is at most 1√

m < 3√
m .

Now consider the case P ∈ H ∈ Hm such that H ∩D 6= /0, and H 6⊂ D. (The hexagon is
not fully contained within the disc.) In that case, for sufficiently large m, the boundary of D has
to cross the boundary of H in at most two points S1 and S2. (S1 might coincide with S2, when
the circle touches the hexagon at its vertex.)

6.8.1 S1 and S2 belong to nonadjacent edges of H

In this case, for a sufficiently large m, there is a hexagon H ′ fully contained within D and sharing
with H an edge (see Figure 6.2). Since the distance from P to the center of H is at most 1√

m and
the distance between the centers of H and H ′ is 2√

m , the point P is within the distance of 3√
m

from one of the base stations.

6.8.2 S1 and S2 belong to adjacent edges of H

There are two cases to consider, one is depicted on Figure 6.3, and the other - on Figure 6.4. In
the former case, for a sufficiently large m there is still a hexagon H ′ ⊂ D sharing and edge with
H, thus the statement of the lemma holds.

In the case of the Figure 6.4, any point P within the intersection H ∩D is also contained
within the set G (defined on the picture) for a sufficiently large m. For that m it is easy to see
that there is an H ′ ∈Hm fully contained within D, with its center located within the distance of
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Figure 6.3: H has a neighbor H ′ fully contained within the disc D.

3√
m from the center of H. Now, since G falls in the ball drawn from the center of H ′ with radius

3√
m , we get that the lemma holds for this case too.

6.9 Proof of lemma 6.3.

It is clear that the nodes using a particular base station are located within the range ri.s. from
this base station. A node will interfere with another node belonging to a cell B′ ∈ Bm using the
infrastructure communications only if the distance between them is at most (2 + ∆)ri.s.. Since
the diameters of B and B′ are bounded by ri.s., the cell B and all its interfering neighbors B′ are
located within a common disc of radius:

1
2
(ri.s. +(2+∆)ri.s. + ri.s.) = 2ri.s. +

∆
2

ri.s. =
12+3∆√

m

Since each cell B of Bm contains a disc of radius
√

3
2m by construction, B will have at most




12+3∆√
m√
3

2m




2

≤CBm

interfering neighbors.
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Chapter 7

Summary of contributions and possible
future directions

In this thesis we have described our latest research towards evaluating wireless systems which
may be based on multiple providers using different technologies, and in which end-systems
can select among multiple wireless interfaces and/or modes of communication. The specific
contributions are as follows. In Part I of the dissertation we have considered a multi-provider
network in which users have ability to select between a WAN and a hotspot provider. We
have formulated a geometric model for providers spatial interactions and a model for decision-
making of individual dual-mode devices. The model is quite general in that it allows for both
deterministic and random placement of users and access points and deterministic or random
shapes of associated with the access points service zones. We have analyzed the decision-
making dynamics and devised a proof of the dynamics’ convergence to an equilibrium. We then
investigated the decision-making equilibria properties, and classified various equilibria. The
“shape of equilibria” in general depends on the realized geometry of service zones, and positions
of access points and users. In order to describe the ability of hotspots and the WAN providers
to compete with each other we have studied asymptotic properties of equilibria for scenarios in
which WAN service zones contain increasingly larger number of users and WLANs. For such
scenarios we have shown that the “cutoff” level which describes the largest number of users
connected to any of the hotspots in equilibrium converges for sufficiently large WAN service
zones to a unique number, which we compared to the typical number of users residing in each
hotspot to conclude on competitiveness/viability of the providers.

After that we turned to the analysis of jointly optimal decision-making and backhaul
allocation problems which enable performance gains and resource savings in “loosely coupled”
multi-provider wireless systems. We have shown that congestion sensitive decision-making is
likely to enable significant performance gains, since it would exploit the statistical multiplexing
property of the WAN in the most efficient way. We have then devised solutions to backhaul di-

138



mensioning problems which enable to optimally incorporate the information about users spatial
density profiles and WAN rates spatial profiles.

We have also formulated and evaluated decision-making algorithms for “tightly-coupled”
multi-provider systems. We started from simple decision-making algorithms akin to the load-
balancing algorithms in wired/computer networks literature, but have shown that there are sce-
narios in which such algorithms perform quite badly since they do not incorporate other-cell
interference in decision-making. Then we devised correction terms which allow to incorporate
interference in decision-making and bias the decisions appropriately so as to achieve further
performance gains.

In Part II we have analyzed the, so-called, hybrid wireless systems, in which users are
able to choose between an ad hoc and infrastructure communication modes. We have provided
a rigorous analysis of the capacity of hybrid networks and determined the asymptotically (in
the number of end-nodes) optimal operation regimes. Our analysis have included the proof for
the upper bound on the network capacity that is independent of the routing strategies. We also
shown that the upper bound is tight by constructing specific communication schemes in which
the capacity order given by the upper bound is achieved.

To conclude, we acknowledge that our thesis presents a series of accomplished studies
within the general theme of analysis and design of complex heterogeneous wireless systems.
We certainly do not claim that the space of problems which arise within the context of this
general area have been exhausted by the ones considered in this dissertation. Thus there is a lot
of space for novel research, which could stem off this dissertation. Some of particular promising
and challenging directions are outlined below.

• Augmentation of multi-provider systems models:

– Incorporating different mechanisms for resource allocation and scheduling at wire-
less access points, see e.g.,[91, 92], and quality of service differentiation.

– Consideration of more realistic admission schemes, such as schemes with blocking.

– Design of heterogeneous systems for mixes of traffic, such as, e.g. voice and data,
that have different quality of service requirements and thus will have to be assigned
different performance metrics.

• Augmentation of hybrid wireless network models:

– Joint designs of multi-provider and hybrid systems, i.e. systems with both multi-
interface diversity and ad-hoc cooperation (e.g. relaying)

• Evaluation of realistic solutions, i.e. WiMax networks combined with WAN networks for
better coverage
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