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In this thesis we will focus on the design of schedulers for next generation

wireless networks which support application mixes, characterized by different, pos-

sibly complex, application/user Quality of Experience (QoE) metrics. The central

problem underlying resource allocation for such systems is realizing QoE trade-offs

among various applications/users given the dynamic loads and capacity variability

they would typically see. In the first part of the thesis our focus is on applications

where QoE depends on flow-level delay-based metrics. We consider system-wide

metrics which directly capture both users’ QoE metrics and appropriate QoE trade-

offs among various applications for a wide range of system loads. This approach is

different from the traditional wireless scheduler designs which have been driven by

rate-based criteria, e.g., utility maximizing/proportionally fair, and/or queue-based

packet schedulers which do not directly reflect the link between flow-level delays and

users’ QoE. In the second part of this thesis we address the key design challenges in

vi



networks supporting Ultra Reliable Low Latency Communications (URLLC) traffic

which requires extremely high reliability (99.999%) and very low delays (1 msec).

We will explore three different types flow delay-based metrics in this proposal,

based on 1) overall mean delay ; 2) functions of mean delays ; and, 3) mean of func-

tions of delays. We begin by considering minimization of mean flow delay for an

M/GI/1 queuing model for a wireless Base Station (BS) where the flow size distri-

butions are of the New Better than Used in Expectation + Decreasing Hazard Rate

(NBUE +DHZ) type. Such a flow size distribution have been observed in real sys-

tems and we too validate this model based on collected data. Using a combination

of analysis and simulation we show that our scheduler achieves good performance

for users that might correspond to interactive applications like web browsing and/or

stored video streaming and is robust to variations in system loads. Next we consider

a generalization of this approach where we minimize a metric based on cost functions

of the mean flow delays in a multi-class system where users/flows are classified based

on their respective QoE requirements and each class’s QoE requirement is modeled

by its respective cost function. This approach helps us model QoE more accurately

and gives us more flexibility in considering QoE trade-offs among heterogeneous user

classes. We optimize two different metrics based on how we average the cost functions

of delays, namely, functions of mean delays ; and mean of functions of delays. The

former can be used when users’ experiences are sensitive to mean delays and while

the latter can be used when user’s experience is also sensitive to higher moments

of delays, e.g., variance or soft thresholds on delay. Extensive simulations confirm

the effectiveness of our proposed approaches at realizing various QoE trade-offs and

vii



performance.

In 5G wireless networks URLLC traffic is expected to support many appli-

cations like industrial automation, mission critical traffic, virtual traffic etc, where

the wireless network has to reliability transport small packets with very high re-

liability and low delays. We address the following aspects related to the system

design for URLLC traffic, 1) quantifying the impact of various system parameters

like system bandwidth, link SINR, delay and latency constraints on URLLC ‘capac-

ity’; 2) provisioning wireless system appropriately to meet URLLC Quality of Service

(QoS) requirements; and, 3) designing efficient Hybrid Automatic Repeat Request

(HARQ) schemes for transmitting small packets. Further, due the heterogeneity in

delay requirements between URLLC and other types of traffic, sharing radio resources

between them creates its own unique challenges. We develop efficient multiplexing

schemes between URLLC traffic and other mobile broadband traffic based on pre-

emptive puncturing/superposition of the mobile broadband transmissions by URLLC

transmissions.
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Chapter 1

Introduction

Next generation wireless networks will support a large number of applications

with heterogeneous Quality of Experience (QoE) requirements, for example in 5G

networks enhanced Mobile Broadband traffic. For example, some applications may

demand low latency, others may demand both low latency and less variability in de-

lays, and some may require only a high throughput over large time-scales. Exploring

possible schedulers for downlink traffic (and uplink) in cellular Base Stations (BS)

in such a heterogeneous setting is a challenging task for network designers and that

will be the main focus of this thesis.

This thesis can be broadly divided into two parts. The first part addresses

the design of QoE-aware schedulers for mobile broadband traffic. Note that the

mobile broadband traffic is a very heterogeneous traffic class which includes traffic

from diverse applications like web traffic, video streaming, file downloads, etc. We

focus on achieving complex QoE trade-offs among various types of mobile broadband

applications sharing a network using flow based schedulers. In the second part of

the thesis, we identify and address the major wireless system design challenges in

supporting URLLC traffic. Further we also design schedulers for 5G networks which

can efficiently multiplex enhanced Mobile Broadband(eMBB) traffic and URLLC
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traffic via superposition/puncturing of eMBB traffic. The two parts are explained in

detail in Sections 1.1 and 1.2, respectively.

1.1 QoE-Aware Schedulers for Mobile Broadband Traffic

Traditional wireless schedulers have been driven by rate-based criteria, e.g.,

utility maximization e.g., proportionally fair allocations, which balance the average1

rates allocated to users and/or queue-based schedulers, which monitor packet queue

lengths and/or waiting times, see [2] for a survey. However, the major drawback as-

sociated with rate and queue-based schedulers is that they do not directly optimize

QoE of users that are primarily sensitive to flow delays. For example, several studies

have shown that QoE of users depend on the delay experienced in observing con-

tent/downloading files, see [3–6]. QoE is only indirectly related to average rate and

packet delays. Therefore, to address this drawback we will explore various types of

flow-aware schedulers and optimize delay-based metrics measured at the time-scale

of flows. Let us first define a ‘flow’.

We shall refer to a flow as the basic data unit whose reception drives the user

perceived QoE. For example, for interactive web browsing a flow could be the content

of a web page a user requested, or in the case of a file download a flow is associated

with the reception of a file. Identifying flows from data streams and classifying users

based on the QoE requirements has received substantial attention in literature, see

e.g., [7,8]. Various parameters such as source/destination port numbers, IP addresses,

1Averages may be computed in an exponentially weighted or moving window ways and thus on
different time scales.
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inter-packet time intervals etc., can be used to classify packets associated with flows.

In this proposal, we shall assume that the scheduler has the required information to

identify the beginning and the end of a flow in the data stream of each user, i.e., it

is flow-aware.

Network operators can ensure good QoE for all users by optimizing flow level

delay metrics for the entire cell/system. The system-wide metric should be such that

when optimized one achieves the optimal trade-offs in QoE among various applica-

tions/users for a range of system loads and traffic patterns. We illustrate trade-offs

in QoE with the help of an example. Consider a situation in which a BS scheduler

has to deal with different congestion levels, e.g., this situation may arise in a BS

which serves a residential area. The system load could be higher in the nighttime as

compared to the daytime. If the system load is very high, then delays experienced

by all flows will be higher, and therefore, the scheduler will have to prioritize delay

critical interactive applications over delay insensitive elastic traffic. However, if the

system load is really low, then the delay performance for all interactive applications

may be good and hence, improving their performance any further will only result

in marginal improvement of QoE. Hence, the spare resources could be utilized to

enhance the performance of other applications. In this example, the overall system

metric should capture the desired trade-offs for a range of system load. To that end

we will explore three different delay-based metrics in this proposal: 1) based on mean

delays; 2) based on functions of mean delays; and, 3) based on the mean of functions

of delays. We explain each of these in more detail.

Mean delay is the simplest metric that one might consider optimizing. Mean
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delay optimal schedulers give priority to short flows over long flows, assuming the

flow sizes are known to the scheduler, e.g., Shortest Remaining Processing Time

(SRPT) scheduling policy. However, in many systems the flow sizes may not be

known. Instead perhaps only the distribution for flow’s sizes can be measured. In

such a setting mean delay optimal scheduling can be complex and simple heuristics

are desirable. We will focus on this aspect in Chapter 2.

Minimizing mean delay can ensure good QoE for users with delay sensitive

traffic if they tend to generate shorter flows than delay insensitive applications. How-

ever, this approach does not address the following two aspects of QoE optimization:

1. QoE may be a non-linear function of the delay experienced by users. For

example, for web browsing, it has been shown that users do not perceive any

degradation in QoE if the flow delay is less than a certain threshold [9].

2. Different applications may have different sensitivities to delay. Also, it may

not be the case that short flows are more sensitive to delay than larger ones.

For example, machine-to-machine traffic might generate short flows, but may

tolerate larger delays as opposed to stored video streaming (e.g. YouTube,

Netflix etc.), which may generate comparatively larger flows but be less tolerant

to delays.

To address these drawbacks we will consider minimizing cost functions of flow

delays. We shall assume that the scheduler can classify flows into various classes,

e.g., application types, with possibly different QoE models, i.e., we have a multi-

class system. In this setting we can assume each type of application/user has an
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associated cost which is a function of delays experienced by its flows. This can be

set/designed by the network operator to reflect user perceived QoE models. The cost

function can possibly be a non-linear function of delay. In fact, the cost function

could be interpreted as the inverse of the QoE perceived by the user, i.e., lower the

cost, the better the QoE. Since larger delays generally tend to result in a poorer user

experience, cost functions would naturally be non-decreasing functions of delays.

One can set cost functions for applications based on their sensitivity to delays, for

example, for a delay sensitive application we can choose very ‘steep’ function of delay

which increases sharply after tolerable delay is exceeded. One can then define a cost

for the overall system by appropriately scaling and adding the cost functions for

various applications/classes.

A natural question which arises when we minimize delay-based cost functions

is whether one should minimize the mean of functions of delays or functions of mean

delays. One way to answer this question is that functions of mean delays can be used

when the user’s QoE is primarily driven by the first moment of the user experienced

delay distribution, whereas, mean of functions of delays would be useful for settings

in which QoE depends on higher moments of the delay, for example, a user may be

sensitive to both the mean and the variability of the delays experienced, or may care

about delays exceeding a given threshold. In general, the setting where we consider

functions of mean delays is more analytically tractable than that where we consider

the mean of functions of delays. We will explore both. Next we will summarize the

key contributions of this part of thesis.
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1.1.1 Contributions

We will divide our work into three parts based on the metrics we choose to

optimize, namely: 1) mean delay; 2) functions of mean delays; and, 3) mean of

functions of delays.

1) Mean Delay: In this work we consider schedulers geared at minimizing

the mean delay experienced by a typical flow in the network when the scheduler

knows only the flow size distribution of the mix of traffic sharing the BS. This is a

reasonable assumption when the scheduler does not have enough information about

higher protocol layers like transport and application layers. The scheduler may be

able to detect the beginning of a flow but may not know the total number of bits

in the flow until the flow has been serviced to completion. We model the BS using

a simple M/GI/1 queuing model. Using empirical data, we observe that the typical

flow size distribution seen in wireless networks is NBUE + DHZ, i.e, it is a mix-

ture of New Better than Used in Expectation (NBUE) and Decreasing Hazard Rate

(DHZ) distributions. When the scheduler knows only the distribution of the flow

sizes, then it is known that Gittins index scheduler is mean delay optimal, see [10].

Such schedulers, however can be somewhat complex to implement, so we propose a

practical approximation for the Gittins index scheduler when the distribution of flow

sizes belong to NBUE + DHZ class. Using a combination of analysis and simulation

we explore the QoE trade-offs such a scheduler could achieve under different mixes of

traffic, in particular: 1) mobile web browsing and small file delays; 2) stored stream-

ing video quality vs re-buffering; 3) throughput of larger file downloads. The results

suggest improved QoS/QoE trade-offs vs traditional proportionally fair schedulers
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which are robust to changes in the network load. These results are presented in

Chapter 2.

2) Functions of Mean Delays: Next we consider a multi-class M/GI/1

queuing system in which users/flows are classified based on their respective QoE

sensitivity or application type. We minimize an overall system-wide cost function

corresponding to a weighted sum of functions of mean delays of all classes. The

weight of each class is assumed to be proportional to the class’s flow arrival rate.

Once again we will assume that the scheduler knows the flow size distribution but this

on a per class basis. We develop a measurement-based scheduling policy which learns

the arrival rates and the delays experienced by flows and adapts the scheduler so as

to optimize the system-wide cost under the current load and traffic mix. We shall

refer to the resulting scheduler as a Measurement Based Delay Optimal (MBDO)

scheduler. We show that under mild assumptions, and in a stationary regime, that

MBDO scheduling is asymptotically optimal. Our extensive simulations confirm the

effectiveness at realizing trade-offs and performance of the proposed approach. We

will describe MBDO scheduler in detail in Chapter 3.

3) Mean of Functions of Flow Delays: In this work we explore resource

allocation strategies geared at optimizing the expected value of functions of delays.

Similar to the previous work we consider a multi-class system with possibly differ-

ent cost functions for different user classes. This final setting is more complex than

the previous two cases so we will narrow our focus to the following two settings:

1) scheduler knows the flow size realizations; 2) flow sizes are drawn from an expo-

nential distribution and scheduler knows the mean flow size. We further will begin
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Metric Used Information Available on Flow Sizes Multi-Class System
Mean delay Distribution for the entire mixture No

Functions of mean delays Distribution of each class Yes
Mean of functions of delays Realizations or Exponential with known mean Yes

Table 1.1: Summary of our work on QoE-aware schedulers

by considering a transient setting where the number of users is fixed and there are

no further user arrivals. In this setting the problem can be modeled as a Restless

Multi-Armed Bandit (RMAB). The exact solution to this problem is unfortunately

still analytically intractable. We thus develop a heuristic index policy, called as Op-

portunistic Delay Based Index Policy(ODIP), based on Whittle’s relaxation, which

is known to work well in practice for RMAB problems. With these simplifications,

we are finally able to propose using this heuristic for dynamic settings which permit

user arrivals to the system. Simulations confirm the effectiveness of the proposed ap-

proach. More details of this work and performance evaluation are given in Chapter 4.

Table 1.1 summarizes the various settings considered in this section.

1.2 URLLC traffic: System Design Principles and Resource
Sharing with eMBB Traffic

5G wireless networks are expected to support Ultra Reliable Low Latency

Communications (URLLC) for applications like industrial automation, mission criti-

cal traffic, virtual reality, etc., see e.g., [11–16]. The design of wireless systems subject

to the stringent requirements of URLLC traffic is a challenging task. In Chapter 5

we will answer the following key questions pertaining to a wireless system supporting

URLLC traffic.
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1. What is the impact of system bandwidth, packet sizes, SINR, and reliability

and latency requirements on URLLC ‘capacity’?

2. What are the optimal choices of bandwidth and transmission duration for

URLLC transmissions?

3. What is the impact of Forward Error Correction (FEC) and Hybrid Automatic

Repeat Request (HARQ) schemes on URLLC ‘capacity’?

We will discuss about these questions briefly here. The first question is fundamental

in nature and it helps network designers provision wireless systems appropriately. To

elaborate on the second question, note that 5G networks are based on Orthogonal

Frequency Division Multiple Access (OFDMA) based systems, where different trans-

missions are allocated different parts of a time-frequency plane. To send a URLLC

packet, we can use a ‘tall’ transmission which uses a large bandwidth for a short

duration or a ‘wide’ transmission, i.e., small bandwidth over a longer duration. If

we use a ‘tall’ transmission, the number of concurrent transmissions possible will de-

crease which may affect the capacity for concurrent transmissions. However, a ‘wide’

transmission will take longer to complete and reduce the number of re-transmissions

possible before the delay deadline expires. Hence, it may be desirable to implement

a robust coding (with more redundancy bits) for ‘wider’ transmissions. We require

an analytical framework to capture and optimize trade-offs between ‘tall’ and ‘wide’

transmissions.

A characterization of the impact of FEC and HARQ on URLLC capacity is

important because one can then optimize the FEC and HARQ schemes to maximize
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the URLLC capacity/spectral efficiency. For example, one can optimize the required

number of re-transmissions to meet a reliability target and the probability of decoding

failure in each transmission. The maximum number of re-transmissions is constrained

by the deadline d. Once the target decoding failure probability is known for each

stage one can then choose the coding rate appropriately which in turn affects the

capacity of the system. To summarize, wireless system design for URLLC traffic has

to tackle the complex dependencies between system bandwidth, SINR, reliability and

latency constraints, resource allocation schemes, and FEC and HARQ mechanisms.

In many practical systems URLLC and eMBB traffic share a Base Station.

Hence, it is of interest to develop efficient mutliplexing strategies for both URLLC

and eMBB traffic. One possible solution is to have dedicated frequency bands for

URLLC and eMBB traffic. However, few authors have observed that this approach

leads to a low resource utilization, see [17, 18]. They have suggested a wide-band

resource allocation for URLLC traffic where the entire system bandwidth is dynam-

ically shared between eMBB and URLLC traffic without any dedicated bands for

each traffic type. Further, the 3GPP standards body has proposed an innovative

superposition/puncturing framework for multiplexing URLLC and eMBB traffic in

a wide-band setting which is described briefly below and in a detailed manner in

Chapter 6.

The proposed scheduling framework has the following structure [15]. As with

current cellular systems, time is divided into slots, with proposed one millisecond

(msec) slot duration. Within each slot, eMBB traffic can share the bandwidth over

the time-frequency plane (see Figure 6.1). The eMBB shares are decided by the
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Figure 1.1: Illustration of superposition/puncturing approach for multiplexing eMBB
and URLLC: Time is divided into slots, and further subdivided into minislots. eMBB
traffic is scheduled at the beginning of slots (sharing frequency across two eMBB
users), whereas URLLC traffic can be dynamically overlapped (superpose/puncture)
at any minislot.

beginning, and fixed for the duration of a slot.

URLLC downlink traffic may arrive during an ongoing eMBB transmission;

if tight latency constraints are to be satisfied, they cannot be queued until the next

slot. Instead each eMBB slot is divided into minislots, each of which has a 0.125 msec

duration. Thus upon arrival URLLC demand can be immediately scheduled in the

next minislot on top of the ongoing eMBB transmissions. If the Base Station (BS)

chooses non-zero transmission powers for both eMBB and overlapping URLLC traffic,

then this is referred to as superposition. If eMBB transmissions are allocated zero

power when URLLC traffic is overlapped, then it is referred to as puncturing of eMBB

transmissions. The superposed/punctured URLLC traffic is sufficiently protected
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(through coding and HARQ if necessary) to ensure that it is reliably transmitted.

At the end of an eMBB slot, the BS can signal the eMBB users the locations, if any, of

URLLC superposition/puncturing. The eMBB user can in turn use this information

to decode transmissions, with some possible loss of rate depending on the amount of

URLLC overlaps.

A key problem in this setting is thus the joint scheduling of eMBB and URLLC

traffic over two time-scales. At the slot boundary, resources are allocated to eMBB

users based on their channel states and utilities, in effect, allocating long term rates

to optimize high-level goals (e.g. utility optimization). Meanwhile, at each minislot

boundary, the (stochastic) URLLC demands are overlapped (superposed/punctured)

onto previously allocated eMBB transmissions. Decisions on the placement of such

overlaps across scheduled eMBB user(s) will impact the rates they will see on that

slot. Thus we have a coupled problem of jointly optimizing the scheduling of eMBB

users on slots with the placement of URLLC demands across minislots. Solutions to

this joint scheduling problem are derived in Chapter 6. Next we shall summarize the

major contributions of this part of the thesis.

1.2.1 Contributions

In Chapter 5, we consider a holistic approach towards the design of wireless

systems supporting URLLC traffic where we study the impact of QoS requirements,

resource allocation schemes and physical layers aspects like the choice of HARQ and

FEC schemes on the URLLC ‘capacity’. We develop an analytical model based on

Jackson queuing networks which captures the essential properties of such a system.
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The key contributions in this chapter are summarized below.

1. We derive the scaling results of URLLC ‘capacity’ with respect to system band-

width, SINR, and QoS requirements.

2. We prove that ‘wide’ transmissions which spreads out the transmission as wide

as possible in the time domain without violating latency constraints are better

than ‘tall’ transmissions in terms of URLLC capacity.

3. We optimize FEC and HARQ schemes to maximize spectral efficiency. We

show that at low URLLC loads, the optimal solution is a one-shot transmis-

sion meeting the desired reliability target without any further re-transmissions,

and at high URLLC loads, the optimal solution permits re-transmissions if

needed. Further, the maximum number of permitted re-transmissions is a non-

increasing function of SINR.

In Chapter 6, we solve the joint eMBB/URLLC scheduling problem described

previously with the dual objectives of maximizing utility for eMBB traffic while

satisfying instantaneous URLLC demands. For a linear rate loss model (loss to eMBB

is linear in the amount of superposition/puncturing), we derive an optimal joint

scheduler. Somewhat counter-intuitively, our results show that our dual objectives

can be met by an iterative gradient scheduler for eMBB traffic that anticipates the

expected loss from URLLC traffic, along with an URLLC demand scheduler that is

oblivious to eMBB channel states, utility functions and allocations decisions of the

eMBB scheduler. Next we consider a more general class of (convex/threshold) loss
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models and study optimal online joint eMBB/URLLC schedulers within the broad

class of channel state dependent but time-homogeneous policies. We validate the

characteristics and benefits of our schedulers via simulation.
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Chapter 2

Mean Delay Minimization Using Context-Aware

Schedulers

2.1 Introduction

In this chapter1 we will discuss our approach of using a practical approxima-

tion of mean delay optimal scheduler to realize key QoE trade-offs between three

different types of applications sharing the network: 1) interactive web browsing; 2)

stored video streaming; and, 3)large file downloads. Each of these applications has

its own specific QoE requirements, making this problem a challenging task.

There are three interrelated challenges in developing resource allocation strate-

gies for such heterogeneous systems. First, the impact of resource allocation on an

application’s Quality of Service (QoS) or user’s Quality of Experience (QoE) can be

quite different, and in some cases may even be hard to characterize all together, e.g.,

video QoE. Second, wireless systems are subject to substantial temporal variabil-

ity and spatial heterogeneity in capacity. Indeed, even for stationary users wireless

channel capacity can fluctuate, while exhibiting drops of several orders of magnitude

from the cell’s ‘center’ to its ‘edge.’ Further, in practice the number of active users

1Publications based on this chapter: [19] A. Anand and G. de Veciana, “Invited paper: Context-
aware schedulers: Realizing quality of service/experience trade-offs for heterogeneous traffic mixes”,
in Proceedings of WiOPT, 2016.

15



can change dramatically as they join, move and leave, and the overall network loads

and traffic mixes can vary throughout the day. The third challenge is managing

trade-offs amongst heterogeneous traffic mixes, particularly when the network be-

comes congested – i.e., how to optimize a graceful degradation in QoS/QoE when

resources become scarce.

This third challenge associated with trade-offs is really the crux of the problem

underlying scheduler design and yet is poorly understood and poorly reflected in

state-of-the-art schedulers. Let us illustrate this via several examples:

1) Web browsing vs large file downloads. Web browsing sessions involve

human interaction on the order of seconds, so the QoE metric of interest is main-

taining responsiveness, i.e., delays on the order of seconds to download the typically

small files associated with web content for mobile devices. By contrast, large files

take a long time, so one might posit the relevant QoS metric is long term through-

put. Clearly a scheduler that prioritizes small files associated with web browsing and

other applications, over large files achieves a good QoS/QoE trade-off for the mix.

2) Video QoE management at congested base stations. Modern

stored video streaming protocols, such DASH (Dynamic Adaptive Streaming over

HTTP), are rate adaptive, i.e., they adapt the video rates, and associated quality,

to network congestion an/or the risk of playback re-buffering. Consider a setting

where a base station serves users with heterogeneous capacity (center/edge users)

via a proportionally fair scheduler, i.e., allocations which are directly proportional

to the user’s capacity. For light to moderate base station loads edge users might see

reduced video quality vs those at the cell center, which is reasonable. Under high
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Stored Video Streaming Web browsing/Small files Large files
Network load Video quality Re-buffering Mean flow delay Mean throughput

Low High Low Low High
Medium Medium Low Low High

High Low Low Low/Medium Medium

Table 2.1: Scheduler design objectives: QoS/QoE trade-offs across applications vs
network loads.

loads, however, edge users will start to see playback re-buffering, i.e., QoE which is

unacceptable. Thus for congested resources the scheduler should be more aggressive

in shifting resources from cell center to edge users.

The above exemplify some of the complex trade-offs base station schedulers

need to make across heterogeneous applications. Realizing such trade-offs through

the design and analysis of context-aware schedulers is the focus of this chapter. This

involves studying schedulers that realize QoS/QoE trade-offs objectives across appli-

cations for different traffic mixes and network loads. Table 2.1 exhibits an example

of the high-level goals we aim to achieve for a mix of stored video streaming, web

browsing, and file transfers.

We shall focus on the following natural QoS/QoE metrics which represent a

simplification of the more complex models discussed further in the related work.

1) Mean delay for small flows. Most small flows are currently due to web

traffic, for which the overall transfer delay (time to display) is the key goal. It is

of interest to limit such delays to less than a second, to maintain interactivity, but

further speedups are not of much value. Further, ideally these delays should not be

too sensitive to other network loads, e.g., video streaming, large files etc.

2) Video quality and re-buffering for stored video streaming. The first
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priority is to avoid client re-buffering, beyond this one would like to achieve good

average video quality depending on the load and the users’ channel condition.

3) Throughput for large files. It is reasonable for large files to see delays pro-

portional to their size as such one would expect to the perceived throughput to be

the relevant metric, though it might be affected by the overall system load and mix

of traffic.

Before we discuss our work in more detail, let us put it into proper context

based on the substantial previous work considering base station scheduling from

different perspectives.

2.1.1 Related work.

Modeling QoS/QoE. Traditional QoS metrics such as throughput, packet de-

lays and jitter, have been found to only poorly reflect user experience. For this reason

there has been significant interest in better modeling user perceived QoE for various

applications. For example, for interactive web browsing, QoE was found to be well

modeled as a function of the delay of transactions, see [3, 20]. In particular [3], web

browsing QoE as an S-shaped function of transaction delay, whereas [20], propose

polynomial functions of transaction delays. These, and other, recent efforts reinforce

the need to look at QoE metrics depending on flow (transaction) delays. Perhaps

the simple lesson learned here is that one would like to see small transaction delays,

below some level, but further reductions do not have a high marginal benefit. We

shall embrace this principle. Similarly, there has been substantial recent interest in
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modeling streaming video QoE including aspects of the quality of the reproduced

video, possibly quality variability, re-buffering, and start up delays, see [21] and ref-

erences therein. In general there is agreement that avoiding re-buffering is the first

priority if one is to improve user perceived QoE, see [5].

Scheduling. Traditional work focused on scheduling for elastic traffic2 focused

on ‘fair’ rate allocation by using utility maximization approaches in the full buffer

model, see e.g., [2,22,23] for detailed surveys. In general this fails to directly account

for the dynamic nature of traffic and indeed the flow-level delays that translate to

user perceived QoE.

There is also substantial work on queue-based schedulers addressing stability

and/or QoS for real-time traffic, e.g, VoIP in LTE networks. Most of this work aug-

ments the utility-based schedulers such as proportionally fair (PF) with the current

queue lengths of users, see e.g., [2]. A weakness of this work remains the lack of fo-

cus on flow level metrics and and ability to multiplex and control performance when

there are user dynamics.

Another area of substantial research is network scheduling and transport for

modern DASH-like video streaming,see e.g, [24–26]. In general these works starve

to optimize the video client behavior as well BS/core network scheduling to video

QoE with constraints on re-buffering time, or fraction of time low quality video is

deliver. These works do do not fully address the impact of flow level dynamics and

in particular the sharing of resources by heterogeneous applications. Still in the

2Traditionally interactive web browsing, large file downloads, emails etc are classified into a
single category called best effort elastic traffic.

19



sequel we shall adopt [24] as a representative mechanism to assess our context-aware

scheduler.

Finally, there has been some work on scheduling to address flow-level delays

which draws from a rich body of work in queuing theory, see e.g., [27–34]. These

works address the minimization of average flow delay for traffic having a a mix of

small and large flows, so called mice and elephants. It is well known that if a sched-

uler knows the required processing time of flows, the Shortest Remaining Processing

Time policy minimizes the mean delay, see e.g., [33]. If such information is not

available, scheduler may infer this based on cumulative service to date and/or use

prior knowledge of the flow size distribution. This is represented by schedulers such

as the Foreground-Background (FB) or Least Attained Service (LAS), Multi-Level

processor sharing, FCFS + FB, etc which are delay optimal in various settings de-

pending on the flow-size distribution, see e.g. [28–30, 33]. This above work for the

most part does not address wireless networks where different flows may see hetero-

geneous and/or changing wireless capacity.. Exceptions include downlink scheduling

studied in [27,35]. We will draw on this previous theoretical work in developing our

own approach and in our effort to tackle QoS/QoE trade-offs across heterogeneous

traffic.

2.1.2 Our Contributions

In this chapter we recognize that for many applications the QoS/QoE is tied

to flow-level performance. For web browsing sessions, flows are associated web pages

that are being downloaded. Similarly modern stored video streaming can be viewed
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as a stream of ‘flows’ associated with video segments whose size is being adapted

to network congestion. Thus the QoE for video depends on the delays/arrivals for

the associated stream of flows. We propose a two-level framework for context-aware

scheduling. The upper block, called the flow classifier, realizes context-aware deci-

sions, regarding applications flows and possible trade-offs e.g, managing re-buffering

amongst video streams. The lower block, implements a flow- and channel-aware

scheduling algorithm, aimed at reducing delays for small flows without requiring

prior knowledge of their size. To that end we study the characteristics of mean de-

lay optimal Gittins index scheduler for an idealized model for a wireless BS serving

users with heterogeneous capacity and for a class of distributions found on today’s

networks. Extensive simulations are used to compare our context-aware scheduler to

traditional proportional fair scheduler. In particular we show that our approach is

able to achieve the desired trade-offs (see Table 2.1) in QoS/QoE amongst stream-

ing video, web browsing and large file transfers and do so robustly over a range of

network loads.

2.1.3 Organization

The chapter is organized as follows. In Sec. 2.2 we present the architecture

of our context-aware scheduler. Its design and analysis are explained in Sec. 2.3.

In Sec. 2.4 we discuss some practical implementation aspects of using TCP like

transport protocols with our scheduler. Performance analysis through simulations

are explained in Sec. 2.5, followed our conclusions in Sec. 5.5.
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Figure 2.1: The block diagram for our context-aware scheduler.

2.2 Context-Aware scheduler

Our context-aware scheduler consists of two modules, namely, the flow clas-

sifier and the flow and channel-aware scheduler. The block diagram is shown in

Figure 2.1. We describe the two blocks in detail.

2.2.1 Flow classifier

Packet streams arrive to the flow classifier block which realizes context-aware

decisions. This block may be implemented at the BS itself or in the core network.

Its main functions are:

1) Manage flow information. It distinguishes flows based on their appli-

cation type and marks the packets of a flow with a unique flow id. This information

is later used by the scheduler block. Also, it may decide when a flow has completed

based on a threshold for the gaps in inter-packet arrivals. It exchanges control signals

and flow level information with the scheduler, for example, to signal the initiation
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of a new flow. It may also gather meta-data associated with the flows which may be

shared with the scheduler, e.g., video segment playback duration.

2) Ensure video QoE. We envisage a flow-classifier that is actively manag-

ing video QoE. In particular, it has to ensure sustained playback for all video clients

without re-buffering. To that end, it has ensure that video streams are not starved

of resources by the scheduler block. We assume that all video users are continuously

watching the video. Otherwise, the video clients stop requesting new segments and

our flow classifier detects that streaming has completed using inter-packet delays.

We consider a simple strategy to prevent re-buffering. The flow classifier samples

the deficit of video streams whenever a flow completes service.3 Let N be the set

of video streams in the system. Let τi, i = 1, 2, . . . be the instants at which flows

complete service. If si (t1, t2] is the total number of segments downloaded by video

stream i between time t1 and t2, then the deficit for the ith stream di (τk) is defined

as

di (τk) := max {di (τk−1) + τk − τk−1 −τseg si (τk−1, τk] , γ} , (2.1)

where τseg is the video playback duration of a segment and γ ≤ 0 is a suitably

chosen threshold. A positive deficit at any time means that the number of segments

downloaded until then is not sufficient for sustained playback, and the video client is

in re-buffering state. A negative γ puts a more stringent constraint on re-buffering.

Let Di(τk) be the set of flows for which the deficit is strictly greater than γ at time

τk. If Di(τk) is non-empty, then the flow classifier block disables the set of flows

3Video segments are marked as flows by flow classifier.
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N \Di(τk) till τk+1, i.e., the flows in the set N \Di(τk) do not contend for the radio

resources in the next τk+1−τk seconds. This ensures that the deficient video streams

are given priority over the streams which have sufficient segments in the playback

buffer.

2.2.2 Flow and channel-aware scheduler

This block allocates the radio resources to flows. The scheduling policy speci-

fies which flows are to be served at each slot. It may use the current Channel Quality

Indicator metric (CQI) of users with active flows and/or the flow state information,

e.g., the amount of service given to a flow. We discuss its design and analysis in the

next section.

2.3 Design and analysis of flow and channel-aware scheduler

2.3.1 Idealized queuing model

To devise our flow and channel-aware scheduler we shall revisit an idealized

queuing model based on the multi-class M/GI/1 queue. If the slot duration at which

the BS makes scheduling decisions is quite small when compared to the transmission

time of a typical flow, then a continuous time queuing system is a good approximation

for the BS.

Arrival process. Given the possibility of a large diverse set of independent

active flows, we shall model the arrival process of flows to the system as a Poisson

process of appropriate rate. These flows are associated with users having different

channel strengths and/or Signal to Interference and Noise (SINR) ratios. In many
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wireless systems like LTE-Advanced, IEEE 802.11 ac etc., the BS can support only a

pre-determined discrete set of transmission rates for users. We classify users into K

distinct classes based on their current transmission rates. The rate of arrival for each

class is given by λi, i = 1, 2, . . . , K. Let ci be the transmission rate for the ith class

and let c1 < c2 . . . , cK . We assume, for now, that a flow’s transmission rate remains

fixed throughout its lifetime. However, class changes can be easily incorporated into

our scheduling algorithm – this is addressed in Sec. 3.5.

Flow size distribution. Our scheduler sees a heterogeneous mix of flows

associated with interactive web traffic and small to large file downloads. Therefore,

from a statistical point of view, the scheduler sees a concentration short and medium

sized flows and few large flows. This property is very well captured by the NBUE +

DHZ (β) class of flow size distributions. We will explain this in detail.

Let X denote the random variable (r.v.) associated with the flow size. Let

GX(x), gX(x), and GX (x) be the cumulative distribution function (c.d.f.), proba-

bility density function (p.d.f.), and complementary c.d.f. (c.c.d.f.) of the flow size,

respectively. We assume that the c.d.f. is a continuous function of the flow size.

Define hazard rate function hX(x) := gX(x)

GX(x)
. A distribution is said to be of type

NBUE + DHZ (β) if:

1. When the flow size is less than β bits, then the distribution is of the type

New Better Than Used in Expectation (NBUE), i.e., the expected residual size

of a flow which has attained service less than β bits is less than the original

25



expected size of the flow. This implies that ∀a ≤ β,

E [X] ≥ E [X − a|X > a] . (2.2)

2. When the flow size is more than β bits, then the flow size distribution has

Decreasing Hazard Rate (DHZ). This means that hX(x) is decreasing function

of x for x > β. The DHZ property is a sufficient condition for a distribution

to have an increasing mean residual file size.

An example of a distribution which is NBUE + DHZ (β) is the Exp. + Pareto

distribution which is given below:

GX (x) =

{
exp (−µx) , x < β,

exp (−µβ)
(
β
x

)α
, x ≥ β,

(2.3)

where µ > 0 and α > 1. If µ = 0, then (2.3) reduces to normal Pareto distribution.

More examples are given in [28].

Our preliminary exploration of measured data in [36] shows that it is nicely

modeled using distributions NBUE + DHZ (β) distributions with Pareto tail and

they are analytically tractable. Figures 2.2 and 2.3 plot the cumulative distribution

function (c.d.f.) of the flow sizes obtained from Google and Flickr, respectively, by

the authors in [36]. The c.d.f. in Fig. 2.2 is curve fitted by Pareto distribution with

parameters α = 1.01 and β = 0.6 KBytes, whereas the c.d.f. in Fig. 2.3 is curve

fitted by Exponential + Pareto distribution with parameters α = 0.55, β = 2.742

KBytes, and µ = 1.02. Therefore, in this chapter we mainly consider distributions

with Pareto tail and we call them NBUE + Pareto (α, β).

Next we discuss about mean delay optimal scheduling policy.
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Figure 2.2: The c.d.f. of flow size for traffic data obtained from Google. The c.d.f. is
closely approximated by Pareto distribution with parameters α = 1.01 and β = 0.6
KBytes.
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Figure 2.3: The c.d.f. of flow size for traffic data obtained from Flickr. The c.d.f.
is closely approximated by Exponential + Pareto distribution with parameters α =
0.55, β = 2.742 KBytes, and µ = 1.02.
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2.3.2 Mean delay optimal policy

When flow sizes are not directly available, the Gittins index scheduling policy

minimizes the expected delay in an M/GI/1 queuing system [32]. Below we shall

introduce the Gittins index and discuss some of its important properties derived

in [28, 29]. We use these properties to derive the optimal scheduling policy for our

multi-class wireless setting which we consider in this chapter.

Gittins Index. Consider an M/GI/1 queuing system which serves flows at

unit rate. This means that a flow of size x bits will take x seconds to complete

service. Consider a flow which has already been served a bits. Define J (a,∆) for

∆ ≥ 0 as

J (a,∆) :=

{
GX(a)−GX(a+∆)∫∆

0 GX(a+t)dt
, if ∆ > 0,

hX (a) , if ∆ = 0.
(2.4)

The above expression is the ratio of the probability that a flow which has attained

service of a bits will complete and the expected additional time required by the flow

to complete when it is given a service time of ∆ seconds. Therefore, J (a,∆) is the

ratio of expected reward to the expected cost of giving a service of ∆ seconds to a

flow that has already attained a bits of service until now.

The Gittins index for such a queuing system is defined in [10] and given by

GX (a) = sup
∆≥0

J (a,∆) . (2.5)

There may be many values of ∆ that maximize the above expression with a possible

value of +∞ too. We define ∆∗ (a) as

∆∗ (a) = sup
∆≥0
{∆ : J (a,∆) = GX (a)} . (2.6)
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If a scheduler is such that it serves the flow achieving the highest Gittins index at

all times, then such a scheduler is called as the Gittins index scheduler.

We summarize the important properties of the Gittins index for distributions

of NBUE + DHZ (β) type which were derived in [28,29].

Proposition 2.3.1. Properties of GX (·) for NBUE + DHZ (β) distribution are:

(a) ∆∗ (0) ≥ β.

(b) For all a < ∆∗ (0) , GX (a) ≥ GX (0).

(c) For all a ≥ β, GX (a) is decreasing and GX (a) = h (a).

(d) If hX(x) is continuous and 0 < ∆∗ (0) < ∞, then GX (0) = GX (∆∗ (0)) =

h (∆∗ (0)).

Comments. The points (a) and (b) above imply that if a flow which has not

received any prior service is selected for service, it would receive ∆∗ (0) ≥ β seconds

of server time. Once it begins service, other flows in the system which have not

received any service previously would not preempt it. Property (c) implies that the

Gittins index is a decreasing function of x, for x > β. This is because of the DHZ

tail which makes it less beneficial for the system to serve large flows.

Next we discuss the Gittins index scheduler for our wireless BS model based

on multi-class class M/GI/1 queue.
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2.3.3 Optimal scheduler for multi-class M/GI/1 queuing system

Consider the multi-class M/GI/1 queuing model for the BS. A flow of size x

bits in ith class requires x/ci seconds of server time. Therefore, the mean service time

associated with a flow in ith class is E [X] /ci. For now we shall assume that at any

time t ≥ 0 only one flow is scheduled for transmission using the entire bandwidth

available. A scheduling policy specifies which flow is to be scheduled at each slot for

any sample path of the arrival process.

Before we derive the optimal Gittins index scheduler for this model, we con-

sider the Gittins index for our multi-class system. The Gittins index in this setting

depends on both the class of the flow and the attained service by the flow. This is

because when the server allocates ∆ seconds of service time to a flow, the probabil-

ity that it completes service within the ∆ seconds and the expected time it takes

to complete service depend on the transmission rate of its class. We shall express

the Gittins index of a flow in ith class, Gi (·), in terms of the Gittins index GX (·)

associated with an M/GI/1 system where flows are served at unit rate.

Lemma 2.3.2. Suppose a flow of class i has attained x bits of service, then its

Gittins index Gi (·) is given by:

Gi (x) = ciGX (x) . (2.7)
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Proof. By the definition of Gittins index, we have

Gi (x) = sup
∆>0

GX (x)−GX (x+ ci∆)∫ ∆

0
GX (x+ cit) dt

, (2.8)

= cisup
∆̃>0

GX (x)−GX

(
x+ ∆̃

)
∫ ∆̃

0
GX (x+ τ) dτ

, (2.9)

= ciGX (x) , (2.10)

where ∆̃ = ci∆.

The Gittins index scheduler requires the exact knowledge of the index as

a function of the service given to a flow. Thus in order to compute the Gittins

index we require the knowledge of the distribution of flow sizes. This information

may not available in practice. Therefore, we require a robust approximation to the

Gittins index scheduler which is based on easily measurable statistical properties like

the mean flow size. In the sequel we discuss some of the key characteristics of the

Gittins index scheduler which will be used to motivate our design approximations to

the optimal Gittins index scheduler.

2.3.4 Qualitative characteristics of the optimal scheduler

Figure 2.4 shows a typical plot of the Gittins index curves for a system with

three different classes of users. Define θ := ∆∗ (0). We call θ as the cross-over

threshold. Later in this section, we will see that the Gittins index policy treats flows

that have received less than θ bits of service and more than θ bits of service differently.

We use this property to develop our approximation to Gittins index scheduler.
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Figure 2.4: Illustration of Gittins index curves as function of the flow size for a
multi-class M/GI/1 queuing system.

Fig. 2.4 illustrates all the properties of Gittins index mentioned in Prop. 2.3.1

and in Lemma 2.3.2. At any given time, the states of flows present in the system can

be visualized as points on the Gittins index curves based on the service they have

attained. The x-axis of a point represents the number of bits served for that flow,

and y-axis is its Gittins index based on its class, for example, a new flow arriving

to class i is represented by the point (0,Gi (0)). As the flows get served they move

along the Gittins index curve.

Consider the characteristics of the optimal scheduling policy when all the

flows in the system have received less than θ bits of service. The flow which is in

state F1 on the Gittins index curve in Fig. 2.4 has received less than θ bits of service.

Its Gittins index is greater than G1 (0). This means it enjoys a higher priority over
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new arrivals to class 1 and over the flows in class 1 which have not been served

till now. Therefore, the scheduling policy is First Come First Serve (FCFS) among

the class 1 flows which have received service less than θ bits. This is true for other

classes too. This FCFS policy is a result of the NBUE property of the flow size

distribution when flow sizes are less than β bits (which is less than θ). Due to the

NBUE property, a flow which has received strictly positive service and less than θ

bits is more likely to complete soon rather than a newly arriving flow. Therefore,

such a flow has a higher Gittins index than any newly arriving flow to its class, and

hence, is scheduled ahead of the later arrivals to its class.

In scenarios where the capacities of various classes are widely separated, if

i > j, then Gi (xi) > Gj (xj) , ∀xi, xj ≤ θ. Therefore, among the flows which have

attained service less than θ bits, flows with higher transmission rates should preempt

the flows with lower transmission rates. For example, the flow in state F2 should

preempt a flow at F1. This implies that the scheduling policy is multi-class preemptive

FCFS for all flows which have attained service less than θ bits i.e., the policy is FCFS

for flows in a class and flows in classes with higher transmission rates can preempt

flows with lower transmission rates.

Next we discuss the characteristics of the optimal scheduling policy for really

long flows which have received a large amount of service. Consider points P1, P2,

and P3 on the Gittins index curves in Fig. 2.4. They all have the same value for their

Gittins index. Let M be the total number of flows in these states. If we consider

distributions with Pareto tails, i.e., the tail probability decays as 1/xα, α > 1, then

it is clear that the Gittins index scheduler serves these M flows according to the
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Processor Sharing (PS) discipline with equal fraction of time given to all the flows,

see [27]. Since each flow receives an equal fraction of time, they get rates proportional

to their channel capacities, i.e., allocation is Proportionally Fair (PF).

Another key observation is that all really long flows in the system which

already received a large amount of service have a lower Gittins index than new

arrivals and the flows which have received service less than θ bits. This is due to

the DHZ property of the tail. From Prop. 2.3.1 and Lemma 2.3.2, Gi (x) = cihX (x),

∀x > β. Since hX (x) is decreasing in x, Gi (x) eventually is lower than the Gittins

index of new arrivals and that of the flows which have received service less than θ

bits.

To summarize, we have the following key characteristics of the optimal sched-

uler

1. All flows with given cumulative service less than θ bits are served based on

preemptive priority for classes with higher ci and FCFS within classes.

2. Flows which have received a large cumulative service are eventually served

using PF scheduling.

3. Flows with received service less than θ bits have priority over those which have

already seen a large cumulative service.

The above characteristics motivate an approximation to the optimal Gittins index

scheduler. This is explained next.
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Let f be an active flow. Its time of arrival is given by f.t. At any point in

time flows in a given class i are partitioned into two sets: Li denoting those that have

received less than or equal to θ bits and Hi the remaining flows. Define L := ∪Ki=1Li

and H := ∪Ki=1Hi. The sets L and H consist of all active flows which have received

less than θ bits of service and more than θ bits of service, respectively. If A and B

are two sets, then A � B implies that the flows of A are given preemptive priority

over the flows of B. Next we introduce our approximation to Gittins index scheduler

which we denote by p-FCFS + PF (θ).

2.3.5 p-FCFS + PF (θ)

To specify a scheduling policy, we need to specify how flows are prioritized

among the sets {Li}Ki=1 and {Hi}Ki=1. Once we decide the priority between sets, we

specify how resources are allocated to flows within these sets. We shall give priority

to various sets in the following manner – LK � LK−1 . . . � L2 � L1 � H. In Li, the

flow which has the earliest arrival time has the highest priority. In H, all flows have

the same priority. At each slot we implement Algorithm 1.

This is a simple low complexity scheduling policy which approximates the

optimal Gittins index scheduler for small and really large flows. It only requires

knowledge of one parameter– the cross-over threshold θ. Below we show that θ is a

solution to a fixed point equation. We derive an approximate expression for θ which

depends on two easily measurable properties – the mean flow size and the exponent

of decay of the tail probability of flow size distribution.

Proposition 2.3.3. For NBUE + Pareto (α, β) distribution, θ is obtained by solving
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Algorithm 1 p-FCFS + PF (θ)

{Li, Hi} ← Flow Management( θ)
if L 6= φ then

i∗ = argmaxi {i|Li 6= φ}
Serve flow f ∗ = argminf {f.t|f ∈ Li∗}

else
if H 6= φ then

Serve all flows in H according to PF scheduling policy.
end if

end if
procedure Flow Management(θ)

Update each Li with new arrivals.
Move flows with attained more than θ bit of service from the corresponding Li

to Hi.
Remove flows that have completed service.

end procedure

the following fixed point equation:

θ = α

[
E [X]− P (X > θ) αθ

α−1

P (X ≤ θ)

]
, (2.11)

where X is the random variable denoting the flow size. For large enough values of

α, θ ≈ αE [X].

Proof. Proof is given in Appendix 2.7.

For α > 2, our approximation is quite close to θ. Detailed comparisons

between θ and its approximation are given in Table 2.2. In the sequel we give the

expressions for the mean delay as a function of the flow size for our p-FCFS + PF

(θ) scheduler.
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β = 3 KBytes, µ = 0 KByte−1 β = 3 KBytes, µ = 0.5 KByte−1 β = 3 KBytes, µ = 1 KByte−1

α θ Approximation θ Approximation θ Approximation
1.5 9.8 16.9 2.9 4.9 3.0 1.9
1.9 10.2 13.5 2.9 4.3 3.0 1.9
2.3 11.8 12.2 4.5 4.8 3.0 2.4
2.7 12.8 12.9 5.1 5.2 3.0 2.8
4.0 16.0 16.0 7.1 7.1 4.0 4.0

Table 2.2: Comparison between θ and approximation for Exp. + Pareto distribution

2.3.6 Mean delay analysis for p-FCFS + PF (θ)

Before we discuss the derivations in detail, we introduce further notations.

1. Let G (·) be the c.d.f. of flow size. Then G(x) (·) denotes the truncated version

of G (·) at x, this is given by

G(x) (y) =

{
G (y) , y < x,

1, y ≥ x.
(2.12)

2. Expectation of flow size with respect to G(x) (·) is denoted by E(x) [X].

3. We denote the load arriving to class i for truncated flow sizes at x bits by

ρ
(x)
i = λi

E(x)[X]
ci

.

4. The overall load arriving to class i, which is denoted by ρi, is given by ρi =

λi
E[X]
ci

. The overall load arriving to the system is denoted by ρ =
∑K

i=1 ρi.

5. Let T (x) be the expected delay of a typical flow of size x. Similarly Ti(x) be

the expected delay of a typical flow of size x that belongs to to class i.

6. Let W
(θ)
(P-FCFS,i) be the stationary workload in the system seen by a flow arriving

to class i. It includes the time to serve flows of ith class or higher which are
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already present in the system when class i flow arrives. It is given by

W
(θ)
(P-FCFS,i) =

1
2

∑K
l=i λl

E(θ)[X2]
c2l

1−
∑K

l=i ρ
(θ)
l

. (2.13)

See [34] for its derivation.

Next we derive the mean delay expressions for p-FCFS + PF (θ). We give

exact expression when x ≤ θ. For x > θ, the system can be modeled as a PS system

with batch arrivals. We use the analysis in [31] to obtain upper and lower bounds

for delay. Finally we conclude this section with the insights obtained from the delay

expressions.

Theorem 2.3.4. If ρ < 1, then the mean delay for a multi-class M/GI/1 queuing

system under p-FCFS + PF (θ) service policy satisfies following:

For flows of size x ≤ θ:

Ti(x) =
W

(θ)
(P-FCFS,i)(

1−
∑K

l=i+1 ρ
(θ)
l

) +
x

ci
+

K∑
l=i+1

x

ci

(
ρ

(θ)
l

1−
∑K

j=l ρ
(θ)
j

)
, (2.14)

For flows of size x > θ:

Ti(x) =
W

(θ)
(P-FCFS,1) + θ/ci

1−
∑K

l=1 ρ
(θ)
l

+
TBPF(x−θ),i

1−
∑K

l=1 ρ
(θ)
l

, (2.15)

where c1 (x− θ) ≤ TBPF(x−θ),i ≤ c2 (x− θ) with constants c1, c2 > 1.

Proof. Proof is given in Appendix 2.8.

The expression for T (x) is easily obtained from Ti (x) as T (x) =
∑K

i=1
λi
λ
Ti (x) .

Remarks:
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1. Mean delay of small flows is less sensitive to the flow size as compared to PF

scheduler. For the PF scheduler, the mean delay seen by a class i flow of size

x bits is given by TPF
i (x) = x/ci

1−
∑K
l=1 ρl

. It can be shown that for x ≤ θ

dTi(x)

dx
<
dTPF

i (x)

dx
, x ≤ θ. (2.16)

This is a desirable characteristic for small flows generated by interactive web

traffic. For web browsing, users care about the time to display web pages,

irrespective of the size of web pages.

2. Mean delay for flows of size x > θ is more sensitive to flow size as compared to

the PF scheduler. For x > θ, we have

dTi(x)

dx
>
dTPF

i (x)

dx
, x > θ. (2.17)

Therefore, when x→∞, Ti(x) > TPF
i (x). However, Ti(x) still increases linearly

with x.

2.4 TCP Based Implementation

In this chapter we have so far assumed that if a flow is active, then the data

to be transmitted is always available to the BS. However, this may not be the case

when the data packets are sent over a TCP connection. Due to the congestion and

flow control mechanisms of TCP, all the packets of a flow may not have reached the

BS. In order to address this issue, we modify Algorithm 1.

For each active flow we maintain a queue for its packets. The flows themselves

form a queuing system. Therefore, we consider a ”queue of queues”. This is shown
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Figure 2.5: Extension of Algorithm 1 for TCP based flows.

in Fig. 2.5. We consider a straight forward extension of Algorithm 1 in which we

schedule the flow with highest priority and non-empty queue for transmission at each

slot. The priority across classes and between flows are same as in Algorithm 1. This

is also illustrated in Fig. 2.5.

2.5 Performance Evaluation

In this section we present the results obtained from simulations. First we

present the simulation results for the idealized queuing model. This is followed by a

study of the performance of our context-aware scheduler under heterogeneous traffic

conditions. We compare its performance with that of the PF scheduler.
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Figure 2.6: The mean flow delay T (x) is plotted as a function of the flows size for
p-FCFS + PF (θ), PF and SRPT schedulers

2.5.1 Idealized queuing model

In Fig. 2.6, we compare the mean delay as a function of the flow size for p-

FCFS + PF (θ), SRPT, and PF schedulers. We simulate an M/GI/1 queue with five

different classes of users based on their transmission rates. The transmission rates

are time invariant in this setup. The flow size distribution is Exp. + Pareto with

parameters µ = 0.125 Kbits−1, β = 21.6 Kbits, and α = 4. We choose θ = 22 Kbits

for simulation results with good confidence intervals. We observe that the p-FCFS +

PF (θ) approximates SRPT scheduler closely for flows less than θ Kbits. For really

small flows (less than 1 Kbits), PF scheduler does slightly better than p-FCFS +

PF (θ) scheduler. This is because in p-FCFS + PF (θ), a new flow, however small,

has to wait for the workload ahead of it to be completed, whereas in PF scheduler,

they get served immediately. For flow sizes between 1 and 25 Kbits, p-FCFS + PF

(θ) has a much lower mean delay than the PF scheduler. Figure 2.6 also validates
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our analysis for the mean delay. For x ≤ θ Kbits, the mean delay for p-FCFS + PF

(θ) is less sensitive to the variation in the value of x as compared to PF scheduler.

For x > θ Kbits, the mean delay for p-FCFS + PF (θ) is much more sensitive to the

variation in the value of x and as x increases, eventually, it is higher than the mean

delay curve for PF.

2.5.2 Context-Aware scheduler

We consider a single BS serving 9 video streaming users and a dynamic number

of active web browsing sessions and file downloads. The BS uses slotted time with slot

duration τslot = 0.01 sec. It makes scheduling decisions at the beginning of each slot.

At any time instant, the users are located at varying distances from the base station

and therefore, have heterogeneous channel strengths. The channel variations due to

mobility are modeled by Markov Chain. The marginal distribution of this Markov

chain is same as appropriately scaled versions of the channel strength distribution

obtained from an HSDPA system. See [24] for more details on the generation of

channel realizations. We classify the users into 10 different classes based on their

channel strengths at each slot. Due to the time varying nature of wireless channels,

the users may move from one class to another.

The flow sizes of the mix of web browsing and file downloads are modeled

as a Pareto distribution with the parameters β = 40 Kbits and α = 5. These flows

arrive to the system as a Poisson process with suitable rate, independent of the video

traffic in the system. We classify the flows less than 100 Kbits size as interactive web

traffic and the rest as file downloads.
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The stored video delivery model which we simulate mimics the DASH frame-

work. Similar simulation model for video has also been studied in [24]. The video

users view different parts of three open source movies, namely, Oceania, Route

66, and Valkama. The video segments sent are of one second playback duration.

Each video segment has 6 different representations of varying quality and segment

sizes. The sizes of various representations in the increasing order of quality are

100, 200, 300, 500, 900, and 1500 Kbits/segment. We use MSSSIM-Y metric (see

[37]) for video segments to measure the mean quality of the video stream delivered.

The video client application with each user requests the next video segment

only after the previous segment is delivered. The video client can buffer at most

ten video segments. When the buffer is not full the client requests the next segment

using the state-of-the-art algorithm QNOVA proposed in [24]. QNOVA is a client

application which takes into account mean-variability trade-offs in quality, pricing

constraints and re-buffering constraints to request appropriate representation for next

video segment. In our simulation we adjust QNOVA such that it does not consider

variability in quality across video segments nor pricing constraints. We also relax the

re-buffering constraints in QNOVA because our context-aware scheduler takes care

of the re-buffering events.

Figures 2.7 and 2.8 plot the mean quality of video streams and the average re-

buffering time as a function of the normalized load of web traffic and file downloads,

respectively. Normalized load is defined as the total data rate of web traffic and

file downloads arriving to the system divided by the mean transmission rate for

flows. It is a proxy for the fraction of system utilization by web traffic and file
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downloads. Figures 2.9 and 2.10 plot the mean flow delay for interactive web traffic

and the mean throughput for file downloads as a function of its normalized load.

We compare our context-aware scheduler with the PF scheduler which does not use

contextual information. Through simulations we found that θ between 50 Kbits and

100 Kbits give good results. The key results are:

1) Trade-off between mean quality and mean delay at lower loads.

In Fig. 2.9, we observe that our scheduler improved the mean delay for interactive

web traffic by atleast 54% for loads less 0.4, when compared to the PF scheduler.

This is because it expedites flows of size less than θ via the flow and channel-aware

scheduler block in our context-aware scheduler. Thus there is slight reduction in the

mean video quality for system loads less 0.4. Since the lowest quality representation

of video is 100 Kbits, θ = 50 Kbits selectively expedites short flows over video and

file downloads much more than θ = 100 Kbits. Therefore, θ = 50 gives better mean

delay performance.

2) Robustness to loads. In Fig. 2.9, we observe that for our scheduler the

mean delays for flows less than 100 Kbits size do not vary much for loads less than

0.4. For example, when θ = 50, the mean flow delay increases by 85% when the load

increases from 0.1 to 0.4. However, for the PF scheduler, the mean delay increases

by 323.42% for the same range of loads. This robustness is a result of our scheduler

favoring short flows and forcing the video clients to request lower representations as

the load increases. Therefore, the video streams adapt better to the changing system

load in our context-aware scheduler than under PF scheduler.

3) Trade-off between mean quality and re-buffering at higher loads.
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Figure 2.8 shows that our scheduler accommodates a much higher load of interfering

web traffic and file downloads without any re-buffering. For θ = 50 Kbits, our

context-aware scheduler can sustain video playback without re-buffering till a load

of 0.55. This is 14.6% gain over PF scheduler which has non-zero re-buffering time at

a load of 0.48. Similarly for θ = 100 Kbits we see a gain of 45.8%. For θ = 100 Kbits

the gain is higher because we give priority to all flows less than 100 Kbits, which

include the lowest quality video segments. The price we pay for avoiding re-buffering

is the reduction in mean quality at higher loads, say between 0.4 to 0.6. There are

two reasons for this reduction in mean quality. First, our scheduler favors flows of

size less than θ. Second, when the system is congested, the re-buffering avoidance

mechanism in the BS prevents users which have sufficient segments in their playback

buffers from obtaining the radio resources.

4) Increased throughput. Figure 2.10 shows that our schedulers have

a higher mean throughput for flows of size exceeding 100 Kbits. For a load of 0.4,

our scheduler has atleast a gain of 45.8%. As we have seen in Fig. 2.6, our flow and

context-aware scheduler significantly reduces the delay for flows of size slightly larger

than θ Kbits. This results in the increased throughput for our scheduler. However,

we note that for really large flows the mean throughput in our scheduler could be

less than that of PF scheduler, but such events occur very rarely.

2.6 Conclusions

In this chapter, we aimed to design and study scheduler achieving robust

QoS/QoE trade-offs amongst heterogeneous applications/users sharing a Base Sta-
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tion. Robustness here corresponds in part to the possibility of changing the nature

of the trade-offs as the network loads increase so as to better address the sensitivity

of various applications/users to congestion. Through a combination of analysis and

extensive simulations we have evaluated our proposed framework and believe that it

has met the objectives we set for mixes of streaming video, web browsing, and file

transfers which are the lions share of today’s wireless data traffic.
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Appendix

2.7 Proof of Proposition 2.3.3

From Prop. 2.3.1 we know that GX (0) = hX (θ). For NBUE + Pareto (α, β)

distributions, hX (θ) = α/θ. Using the definition of Gittins index and the fact that

θ = ∆∗ (0), we get that

GX (0) = J (0, θ) = hX (θ) =
α

θ
. (2.18)

The expression for J (0, θ) in (2.4) could be re-written as

J (0, θ) =
P (X ≤ θ)

E [X]− P (X > θ)E [X|X > θ]
. (2.19)

For NBUE + Pareto (α, β) distributions E [X|X > θ] = αθ
α−1

and P (X > θ) =

(β/θ)α. Substituting these expressions in (2.18), we get the fixed point equation (2.11).

For large values of α, P (X ≤ θ) ≈ 1. Using this approximation in (2.11), we get

θ ≈ αE [X].

2.8 Proof of Theorem 2.3.4

We condition on the arrival of a flow of size x bits and derive the expressions

for mean delay. We consider two separate cases, namely, x < θ and x ≥ θ.
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2.8.1 Case-I, x < θ

Recall that in p-FCFS + PF (θ), the new arrivals go into a multi-class priority

FCFS system till they attain θ bits of service. After that they go into a low priority

queue, where everyone is served according to PF discipline when multi-class priority

FCFS system is empty. Therefore, flows already present in the system with service

attained greater than θ bits do not interfere with the multi-class priority based FCFS

part. Also, the newly arriving flows of size greater than θ bits are equivalent to flows

of size θ bits for the multi-class priority FCFS system. Hence, we use the truncated

c.d.f. G(θ) (x) as the flow size distribution.

The mean delay for a typical flow of size x bits of class i has the following

components

1. The stationary workload seen in the system due to classes i, i+ 1, . . . , K.

2. The new arrivals to classes i+1, i+2, . . . , K while the flow is waiting for service.

3. The server time taken to serve the flow, which is equal to x/ci.

4. The time spent in preemption due to newly arriving flows in classes i + 1, i +

2, . . . , K while the flow is being served.

The stationary workload ahead of a new arrival of class i is obtained from the

Pollazeck-Khinchin formula applied to this system. It is given by

W
(θ)
(P-FCFS,i) =

1
2

∑K
l=i λi

E(θ)[X2]
c2i

1−
∑K

l=i ρ
(θ)
l

(2.20)
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Due to the new arrivals to classes i+1, i+2, . . . , K while the flow in class i is waiting

for service, the workload seen gets inflated to W
(θ)
(P-FCFS,i)/

(
1−

∑K
l=i+1 ρ

(θ)
l

)
.

Now we have to compute the time spent in preemption. Suppose that our

class i flow of size x bits is in service and has received τ seconds of service till now.

Consider the next infinitesimal time dτ . During this time dτ a new arrival could

occur in any of the classes i + 1, i + 2, . . . , K. These new arrivals could preempt

the flow of class i in service. An arrival to lth class, l > i occurs with probability

λldτ + o (dτ). Since we consider the infinitesimal interval dτ , more than one arrival

occurs with negligible probability. Each time a new arrival occurs to any of the

classes i+1, i+2, . . . , K, it starts a new busy cycle. Duration of a busy cycle started

by lth class, l > i is given by E(θ)[X]

cl

(
1−
∑K
j=l ρ

(θ)
j

) . Note that the inflation by the factor(
1−

∑K
j=l ρ

(θ)
j

)
is because the new arrivals to any of the classes l, l+ 1, . . . , K could

extend the busy cycle started by an arrival to the lth class. Therefore, the total time

spent in preemption by new arrivals to the lth class is given by

Total time spent in preemption due to lthclass (2.21)

=

∫ x/ci

0

E(θ) [X]

cl

(
1−

∑K
j=l ρ

(θ)
j

)λldτ, (2.22)

=
x

ci

(
ρ

(θ)
l

1−
∑K

j=l ρ
(θ)
j

)
. (2.23)

Using (2.20) and (2.23), we get the expression for total expected delay of a typical

arrival of size x bits to class i as

Ti (x) =
W

(θ)
(P-FCFS,i)(

1−
∑K

l=i+1 ρ
(θ)
l

) +
x

ci
+

K∑
l=i+1

x

ci

(
ρ

(θ)
l

1−
∑K

j=l ρ
(θ)
j

)
, x < θ. (2.24)
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2.8.2 Case-II, x > θ

A flow of size x > θ bits of class i first enters the multi-class priority based

FCFS system, obtains service of θ bits, and then is served using PF discipline if the

multi-class priority based FCFS system is empty. For the purpose of analysis, we

split the mean delay in two components.

1. The mean time spent before it is served for the first time using PF discipline.

This includes the time spent in the multi-class priority FCFS system and the

waiting time before it is served according to PF discipline.

2. The mean time spent in the system after it starts service in PF queue.

Consider the first component of mean delay. A flow with size x > θ bits has

to first finish its service of θ bits in multi-class priority FCFS system, then has to

wait for the busy cycle of the multi-class priority FCFS system to be over before it

is served using PF discipline for the first time. The stationary workload seen by an

arriving flow in the priority FCFS system is given by the Pollazeck-Khinchin formula
1
2

∑K
l=1 λi

E(θ)[X2]
c2
i

1−
∑K
l=1 ρ

(θ)
l

. The service time taken by the flow is θ/ci. This total workload plus

the service time would be inflated by the factor 1−
∑K

l=1 ρ
(θ)
l due to the new arrivals

into system during their service. Therefore, we have

Mean time spent before being served by PF discipline

=

1
2

∑K
l=1 λi

E(θ)[X2]
c2
i

1−
∑K
l=1 ρ

(θ)
l

+ θ/ci

1−
∑K

l=1 ρ
(θ)
l

. (2.25)
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After the busy period of priority FCFS, our tagged flow of size x bits and all

the other flows of size greater than θ bits present in the system are served using PF

discipline. They are served till the next new arrival into the priority FCFS queue.

Once a new arrival enters priority FCFS queue it starts a new busy cycle. This cycle

repeats again with alternating periods of busy cycles of multi-class priority FCFS

system and the PF queue. To analyze the delay we consider a virtual time axis

with only the intervals in which the PF queue is served. At the beginning of each

interval a batch of arrivals enter into the PF queue. The interval durations are i.i.d.

exponentially distributed with the parameter
∑K

i=1 λi. Therefore, this system could

be modeled as an M/GI/1 queuing system with batch arrivals. The delay expression

for such a system is given as a solution of an integro-differential equation in [34].

In [31], the authors have derived upper and lower bounds for mean delay as function

of the flow size. the flow has already received service of θ bits. The residual service

left to be done by the PF queue is x − θ bits. Let the TBPF (x− θ, i) be the mean

virtual time for a flow of size x − θ bits of class i in PF queue. Using Theorem 3

in [31], we have

(x− θ) /ci
1− ρ̃

≤ TBPF(x−θ),i ≤ min

{
(b+ 1) (x− θ)
ci (1− ρ̃)

,
(x− θ) /ci

1− ρ̃
+
bS (2− ρ̃)

2 (1− ρ̃)2

}
, (2.26)

where ρ̃ = λE [N ]E [S], with E [S] being the mean flow service time in PF queue

and is given by E [S] =
∑K

i=1
λi
λ
E[X−θ|X>θ]

ci
, E [N ] being the mean batch size which is

equal to 1−FX(θ)

1−
∑K
l=1 ρ

(θ)
l

. The parameter b is given by the expression

b = 2λ (1− FX (θ))
W

(θ)
(P-FCFS,1) + θ

λ

∑K
l=1

λl
cl

1−
∑K

l=1 ρ
(θ)
l

. (2.27)
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During the virtual time spent in the PF queue, which is TBPF(x−θ),i, the PF

queue is preempted by several busy cycles of the multi-class priority FCFS system.

These busy cycles are due to new arrivals to all the classes of the multi-class priority

FCFS system. Hence the virtual time TBPF(x−θ),i is inflated by a factor of 1−
∑K

l=1 ρ
(θ)
l .

Therefore, the mean delay of a class i flow of size x bits is given by

Ti (x) =

1
2

∑K
l=1 λi

E(θ)[X2]
c2
i

1−
∑K
l=1 ρ

(θ)
l

+ θ/ci

1−
∑K

l=1 ρ
(θ)
l

+
TBPF(x−θ),i

1−
∑K

l=1 ρ
(θ)
l

. (2.28)
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Chapter 3

Minimizing Functions of Mean Delays: A

Measurement Based Scheduler

3.1 Introduction

In this chapter 1 we will focus on minimizing functions of mean delays in a

multi-class queuing system which models a cellular base station. Traditional wire-

less schedulers have been driven by rate-based criteria, e.g., utility maximization or

proportionally fair allocations, which balance the average2 rates allocated to users

and/or queue-based schedulers, which monitor packet queue lengths and/or waiting

times. In particular the utility of user/application i is represented via a function

ui (·) of the user’s average rate ri. In the simplest and stationary instance of this

framework, scheduling is performed so as to solve the following optimization prob-

lem:

max
r
{

n∑
i=1

ui(ri) | r ∈ R}, (3.1)

where n is the number of active users, r = (r1, r2, . . . , rn)T and R is the achievable

rate region. In this setting one often assumes users always have data to transmit,

1Publications based on this chapter: [38] A. Anand and G. de Veciana, “Measurement-based
scheduler for multi-class QoE optimization in wireless networks”, in Proceedings of INFOCOM,
2017.

2Averages may be computed in an exponentially weighted or moving window ways and thus on
different time scales.

55



i.e., so called full buffer model, see e.g. [39–41]. This approach clearly does not

capture the dynamic nature of transaction/flow based traffic wherein the number of

active users changes over time, and wherein QoE is driven by flow-based performance

metrics and only indirectly associated with mean rate and/or packet-level delays.

Specifically we shall refer to a flow as the basic data unit whose reception

drives the user perceived QoE. In particular, for interactive web browsing a flow

could be the content of a web page a user requested, or in the case of a file download

the associated with reception of the file. In the context of modern stored video

streaming, the video is partitioned into a sequence of small files (video segment)

each of which might be considered a flow that should arrive in a timely manner.

Several studies have shown that users perceived QoE should be modeled as a non-

linear function of the flow-level delay, see e.g., [6, 9]. This non-linearity gives us

more flexibility in scheduling users’ data. For example, for web browsing, it has been

shown that users do not perceive any degradation in QoE if the flow delay is less

than a certain threshold [9]. So, depending on the system loads, one may not need

to be aggressive in allocating resources to web browsing users, possibly to the benefit

of others.

In this chapter we consider a stochastic model where flows arrive to the sys-

tem, each with a service requirement in terms of the total amount of bits to be

transmitted and they depart after they have been served. We shall assume that

there are C classes of users corresponding to different application or service types.

Flows arrive at a rate λc for class c and we let dc denote the mean delay experienced

by class c flows. We model the end user’s QoE through a cost which is an increas-
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ing convex function of mean flow delay. The lower the cost, the better the user’s

QoE. The cost function may depend on the application type allowing one to capture

different user/application QoE sensitivities to mean flow delays. The cost function

of class c will be denoted by fc (·). By contrast with rate-based scheduling, we will

consider the design of a scheduling policy which solves the following optimization

problem:

OP1 : inf
dπ
{

C∑
c=1

λcfc(dc) | dπ ∈ D } (3.2)

where dπ := (dπ1 , d
π
2 , . . . , d

π
C)T is the mean delay vector realized by policy π and D

is the set of achievable mean delay vectors by all finite mean delay work conserving

policies. Note that a work conserving policy need not in general have finite mean

delay vector3. In OP1, we scale the cost function of a class with its arrival rate. This

is a natural way to represent performance in a dynamic system where one should

capture not only high costs, but the number of flows that experience high costs.

In addition to addressing drawbacks associated with the conventional ap-

proaches, our model also addresses the need to capture and realize trade-offs in how

resources are allocated amongst classes. Our premise is that network operators will

want to make QoE trade-offs among applications and that these may be different de-

pending on the system loads. In other words, one should consider optimizing resource

allocation for systems not only for heavy loads where such trade-offs are critical, but

also for moderate to light loads. As mentioned earlier the trade-offs to be realized

3If the service time distribution has a finite mean but infinite second moment, then an M/GI/1
queue served according to a non-preemptive work conserving discipline has an infinite mean delay
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can be quite different depending on the load and mix of traffic the system is sup-

porting. For example, when the system is congested, it might be better to give more

resources to interactive applications vs large file downloads, so that delay sensitive

applications are given priority. However, for lightly loaded systems, allocating more

resources to interactive applications will improve their QoE only marginally, once

the mean delay is less than a threshold. Therefore, spare resources can be allocated

to large file downloads.

In our framework, trade-offs are captured by specifying cost functions for each

application. The delay sensitive applications have ‘steeper’ cost functions after the

tolerable delay, as compared to delay tolerant applications. In general, as the system

load increases, the mean delays seen by all classes of traffic increase. However, the

delay sensitive applications get higher priority because of their steeper cost functions.

Therefore, for a range of system loads, a solution to OP1 will achieve the necessary

trade-offs. Next we discuss the related work in flow-level scheduling.

3.1.1 Related Work

Flow-level scheduling has been extensively studied in the literature, see [9,

27, 35, 42–47]. Some of the works focus only on stability of the system and do not

consider delay metrics, see [42,43]. Several other works target minimization of mean

flow delay [27, 35, 46, 47]. However, as mentioned earlier the users’ QoE may not be

a linear function of mean delays.

The works most closely related to our work are [9, 44], and [48]. In [9], the

authors show that the problem of QoE optimization in wireless networks can be mod-
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eled as a Linear Programming problem. However, solving the LP is computationally

expensive. Therefore, they develop a heuristic which works well. This chapter does

not provide any analytical performance results for the heuristic. In [44], the authors

develop scheduling policies to satisfy delay based deadlines for various applications.

Using simple policies, they achieve the minimum possible deadline violation proba-

bility in systems with large amounts of resources (bandwidth and time). The cost

functions which we use in our approach can be used to approximate the deadlines

and give us more flexibility in allocating resources. In [48], the authors consider an

approach which uses cost functions based on delay, however, their work is restricted

to only non-pre-emptive scheduling. To the best of our knowledge, this is the first

work which considers the minimization of cost functions of the mean delay for gen-

eral flow size distributions while considering both pre-emptive and non-pre-emptive

policies. However, we assume the knowledge (perhaps measured) of flow size distri-

butions which is not assumed in [44, 48]. We deem this a strength since in principle

our approach can capture measurable and base station specific characteristics of the

offered loads.

Several works such as [42, 46, 47] consider wireless channel models with fast

fading. Such a channel model invites the use of opportunistic scheduling policies

based on the instantaneous channel conditions. However, in this chapter we focus a

time invariant channel model. This model is justified when the users are relatively

stationary as compared to the time scale of flow dynamics and/or when there is

a channel hardening effect. Channel hardening occurs when many diverse paths

between transmitter and receiver diminishes the effect of fast fading, see [49]. In the
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sequel we will however incorporate heterogeneous channel strengths as seen by users

that have very different channel characteristics due to their different locations, e.g.,

far or close by, relative to a base station.

3.1.2 Our Contributions

In this chapter we introduce a Measurement-based Delay Optimal (MBDO)

scheduler which minimizes a non-linear cost function of the mean delays experienced

in a multi-class system. Starting from a fairly general multi-class M/GI/1 queuing

model for a base station we make the following contributions.

1) Extension of Gittins index scheduler: We propose and show a simple ex-

tension to the results in [10]. In particular, we show that a weighted Gittins index

scheduler (w-GittinsScheduler) will minimize a weighted linear combination of

mean delays in a multi-class system. This w-GittinsScheduler scheduler, serves

as the workhorse for our MBDO scheduler.

2) MBDO scheduling: We propose the MBDO scheduler which based on sys-

tem measurements adapts to the system characteristics so as to eventually optimize

system performance. In particular, at the end of each queue busy cycle, the MBDO

scheduler adapts the weights for a w-GittinsScheduler based scheduler based

on measurements to date. Such measurements allow the scheduler to learn the loads

on the system, and possibly also to the flow size statistics and optimize schedul-

ing decisions to the specific load and mix the base station is supporting. MBDO

scheduler can thus track slow variations in traffic characteristics which might change

on the time-scales of few hours in wireless networks, see [50]. The scheduler can in
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principle also track slow variations in flow size distributions, however, in this chapter

we assume the knowledge of flow size distributions.

3) Optimality results : Under mild assumptions on flow size distributions and

the knowledge of the minimum of the fraction of total traffic that might arrive to a

class, we show that the mean delay vector achieved by our MBDO scheduler converges

to the optimal solution of OP1 in probability.

Overall this approach is quite novel. We are not aware of any proposed

measurement-based wireless scheduler able to optimize flow-level delays/trade-offs

for a multi-class system. In addition the possibility of tuning scheduling to the traffic

characteristics, e.g., flow-size distributions, which may depend on usage patterns in

given locations (e.g,, university vs financial district), is novel and intriguing.

3.1.3 Organization

This chapter is organized as follows. In Section 3.2, we present a simple

M/GI/1 queuing model where all flows are served at unit rate. In Section 3.3, we

explain about MBDO in detail and prove the asymptotic optimality of our proposed

scheme. In Section 3.4, we extend our scheme for a wireless BS, where different users

could have different channel rates. Performance evaluation through simulations is

given in Section 3.5.

Notation: In the sequel we denote vectors by bold faced letters and random

variables by capital letters. All vectors are column vectors of length C, the number

of classes in the system. The components of vectors are represented by normal faced

letters, for example, D denotes a random vector given by (D1, D2, . . . , DC)T , where
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T is the transpose operator. Continuous time random processes are written as a

function of time, for example, {D(t), t ≥ 0} is a continuous time vector-valued ran-

dom process. Discrete time random processes are indexed as follows
{
D(k), k ∈ N

}
.

The expectation operator is denoted by E [·] and the probability of an event A is

given by P (A).

3.2 System Model

Throughout this chapter we will develop our scheduler based on a basic multi-

class M/GI/1 queuing model, but expect it to be robust to the underlying assump-

tions. Poisson arrivals are a reasonable model for flow-based transactions and even

interactive, i.e, on-off type web browsing, when viewed as an aggregate of reasonably

large population. The flow service requirements are generally distributed and again

it is reasonable to assume independence amongst flows. We assume that the system

supports C classes of flows. Flows of class c arrive as a Poisson process of rate λc.

The flow sizes are modeled as random variables which are i.i.d. for each class and

independent of the flow sizes of other classes. Flow sizes for class c have a distri-

bution function Gc(·) with a mean value of mc bits. The scheduler does not have

prior knowledge of the size of individual flows, however, it does have knowledge of

the size distributions, and of the cumulative service each flow has received. Initially

we assume that all flows are served at unit rate by the server, thus the stability of

queue is assured if ρ :=
∑C

c=1 λcmc < 1. This will subsequently be relaxed in Section

3.4.

As mentioned in the introduction we associate a cost function fc (.) to each
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class c, which depends on mean flow-delay dc experienced by flows in that class. We

assume that fc is strictly convex, continuous, and differentiable. Also, fc is non-

decreasing and bounded from below. Let dπc be the mean delay of class c under

a scheduling policy π. The overall mean delay vector for policy π is denoted by

dπ = (dπ1 , d
π
2 , . . . , d

π
C)T . Let D be the set of mean delay vectors that can be achieved

by finite mean delay work conserving policies. We call this as the set of feasible mean

delays.

3.3 Cost Minimization

We are interested in finding a scheduling policy π such that dπ solves the

following optimization problem.

OP1 : inf
d
{ f (d) :=

C∑
c=1

λcfc(dc) | d ∈ D }. (3.3)

Note we will show that there is indeed a policy which achieves the infimum.

To solve OP1, we first consider the following optimization problem:

OP2 : inf
d
{

C∑
c=1

λcwcdc | d ∈ D }, (3.4)

where the weights wc, c = 1, 2, . . . C are positive real numbers.

The following corollary, which is a natural consequence of Theorem 5.6 in [10]

shows that a Gittins’ index based scheduler optimizes OP2. Below we state the result

and then detail the characteristics of such schedulers.

Corollary 3.3.1. A (w-GittinsScheduler) achieves the optimal delays for OP2.

In such a scheduler the Gittins index of a flow is simply scaled by its class weight,
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and at each time instant the flow with the highest weighted index is scheduled for

transmission.

Proof of this result is given in the Appendix 3.7. Next introduce w-GittinsScheduler

and Gittins indices in detail.

w-GittinsScheduler: Let A(t) be the set of active flows at time t. For each

flow l ∈ A(t), we associate a positive real number known as the Gittins index, which

is a function of the cumulative service the flow has received, in bits. For a flow l, let

its Gittins index be denoted by Gl (·). At each time t, we scale the Gittins index of a

flow by its class weight wc. We shall refer to this as the weighted Gittins index. We

schedule the flow with the highest weighted Gittins index at all times. If there are two

or more flows with the highest weighted Gittins index, we choose one of the flows at

random. Note that the w-GittinsScheduler with a given weight vector w is same

as the w-GittinsScheduler with weight vector κw, where κ > 0. Only the relative

weights across classes matter in w-GittinsScheduler. Therefore, in this chapter

we will assume that the weights are normalized to one for w-GittinsScheduler.

Next we review the Gittins indices for such dynamic systems given in [10,28].

Gittins index: Consider a flow which has received a bits of cumulative service.

Let G (·) and G (·) be the cumulative density function (c.d.f.) and complementary
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c.d.f. of the flow, respectively. For ∆ ≥ 0, we define the following

R(a,∆) :=
(
G (a)−G (a+ ∆)

)
/G (a) ,

C(a,∆) :=

(∫ ∆

0

G (a+ t) dt

)
/G (a) ,

J (a,∆) :=
R(a,∆)

C(a,∆)
.

Here R(a,∆) and C(a,∆) correspond to probability that a flow which has received a

bits of service will complete, and the expected time the flow would be busy if it were

allocated ∆ seconds of service. Therefore, J (a,∆) is the ratio of expected reward

to the expected cost of allocating ∆ seconds to a flow which has received a bits of

service. The Gittins index for an active flow in our queuing model as defined in [10]

is given by

G (a) = sup
∆≥0

J (a,∆) (3.5)

i.e., the best reward/cost trade-off over all time horizons ∆ Computing the Gittins

index requires knowledge of flow size distribution. In our setting, different classes of

traffic may have different flow size distributions depending on the applications types

in the network, and how they are grouped together into classes. Such information

can in principle be easily collected by monitoring traffic on the network.

Next we discuss an approach to optimizeOP1 based on a w-GittinsScheduler.

The following two lemmas show that OP1 is a convex problem with a unique mini-

mum which can be realized via a w-GittinsScheduler with appropriate weights.

Lemma 3.3.2. If ρ < 1, then the achievable delay region for work conserving finite

mean delay policies D is a non-empty convex set.
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Figure 3.1: Sample path of MBDO scheduler

Lemma 3.3.3. There exists an unique minimizer d∗ for the optimization problem

OP1 and it can be achieved by a weighted Gittins index policy with suitable weights.

Proof. Proofs are given in Appendices 3.8 and 3.9, respectively.

In the next sub-section, we will describe our policy in detail.

3.3.1 Measurement-Based Delay Optimal (MBDO) Scheduler

The idea underlying MBDO scheduling is to learn an optimal weights setting

for w-GittinsScheduler such that optimal delays for OP2 are also optimizing for

OP1.

We shall decompose the system evolution based on its renewal periods, where

each period consists of an idle period and a busy cycle. The weights for the w-

GittinsScheduler are fixed for each renewal period but adapted at the end of each

renewal cycle based on measurements seen to date. This is exhibited in Figure 3.1.

Pseudo-code for our MBDO scheduler is given in the Algorithm 2 panel.

The variables used and their meanings are summarized in Table ??. The procedure

W-GittinsScheduler simply implements a weighted Gittins index policy during a
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Algorithm 2 Measurement-Based Delay Optimal Scheduling (MBDO)

Initialize: D
(0)
,λ

(0)
, T

(0)
,w(1) with some non-zero positive values.

Track the following:

• The amount of service given to each flow

• The number of active flows of class c at time t, say Nc(t).

for each renewal cycle k do
Run w-GittinsScheduler(w(k)).

D(k) ← DelayEstimate(λ
(k−1)

, T
(k−1)

, {Nc(·)}) Updates:

D
(k) ← D

(k−1)
+ εk

(
D(k) −D

(k−1)
)

w(k+1) = γ
(
D

(k)
)(∂f1

∂d1

∣∣∣
D

(k)
1

,
∂f2

∂d2

∣∣∣
D

(k)
2

, . . .
∂fC
∂dC

∣∣∣
D

(k)
C

)T
λ

(k)
=

(k − 1)T
(k−1)

(k − 1)T
(k−1)

+ Tk
λ

(k−1)
+

1

(k − 1)T
(k−1)

+ Tk
N(k),

T
(k)

=
k − 1

k
T

(k−1)
+

1

k
Tk,

end for

procedure DelayEstimate(λ
(k−1)

, T
(k−1)

, {Nc(·)})
return

D(k)
c = z

(
1

λc
(k−1)

T
(k−1)

)∫
kth renewal cycle

Nc (t) dt c = 1, 2, . . . , C

end procedure

procedure w-GittinsScheduler(w)
for Each time slot do

for Each flow in the system do
Compute Gittins index for each flow.
Scale the Gittins index by its class weight wc.

end for
Schedule the flow with highest wc.

end for
end procedure
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Table 3.1: Variables used in MBDO

Name Description

D
(k)

Estimate of mean delay upto and including kth renewal cycle.

D(k) Estimate of mean delay for the policy used in kth renewal cycle.

λc
(k)

Estimate of mean arrival into class c rate upto and including kth renewal cycle.

T
(k)

Estimate of mean renewal cycle duration upto and including kth renewal cycle.
Nc(t) Number of active flows of class c at time t.

N
(k)
c Total number of flows that arrived to class c in kth renewal cycle.

w(k) Weights used by w-GittinsScheduler in kth renewal cycle.

busy cycle. For simplicity we further divide the time into slots and assume scheduling

decisions are made at the beginning of every slot. The slot duration is assumed to be

very small as compared to the flow transmission times. The computations performed

at the end of a renewal cycle are discussed below.

(1) Delay measurement. We shall estimate the mean delay seen by each class in

the kth renewal cycle. it is denoted by D(k). Further we let D
(k)

:=
(
D

(k)

1 , D
(k)

2 , . . . , D
(k)

C

)T
denote the time-averaged delay vector averaged across renewal cycles up to and in-

cluding the kth one. Specifically D
(k)

at the end of kth renewal cycle is updated using

the new estimate D(k) as follows:

D
(k) ← D

(k−1)
+ εk

(
D(k) −D

(k−1)
)
, (3.6)

where (εk | k ∈ N) is a non-increasing sequence of positive real numbers such that∑
k

εk =∞ and
∑
k

ε2k <∞. (3.7)

For technical reasons, the delay estimate D(k) is obtained using the procedure

DelayEstimate, where the function z (·) is defined as follows:

z (x) := min (x, λ/λc∗) , (3.8)
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where λc∗ = min {λi|i = 1, 2, . . . , C}. The reasoning behind the choice of this esti-

mator is discussed in § 3.3.2 and we assume the knowledge of the minimum fraction

of traffic (λc∗/λ) that may arrive to any class.

(2) Updating λ
(k)

and T
(k)

. The estimate of mean arrival rate vector up to

and including kth cycle is given by λ
(k)

:=
(
λ1

(k)
, λ2

(k)
, . . . , λC

(k)
)

. Similarly, the

estimator for the mean renewal cycle duration up to and including the kth cycle is

given T
(k)

. They are updated as follows:

λ
(k)

=
(k − 1)T

(k−1)

(k − 1)T
(k−1)

+ Tk
λ

(k−1)
+

1

(k − 1)T
(k−1)

+ Tk
N(k), (3.9)

T
(k)

=
k − 1

k
T

(k−1)
+

1

k
Tk, (3.10)

where Tk is the random variable denoting the length of the kth renewal cycle and

N(k) :=
(
N

(k)
1 , N

(k)
2 , . . . , N

(k)
C

)
is the random vector denoting the total number of

flow arrivals during that cycle for each class.

(3) Adaptation of weights: For the next (k+1)th renewal cycle, run w-GittinsScheduler

with weights given by

w(k+1)
c = γ

(
D

(k)
) ∂fc
∂dc

∣∣∣
D

(k)
c

, for c = 1, 2, . . . , C,

where γ
(
D

(k)
)

is the normalizing factor so that w(k+1) has unit norm.

The procedure DelayEstimate is crucial to the optimality of MBDO, so we

shall discuss it in detail next.
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3.3.2 Delay Estimates

In our model the duration of renewal periods Tk’s are i.i.d. since arrivals

are Poisson and service times are i.i.d. Furthermore, the distribution of Tk’s is

independent of scheduling policy because we are considering only work conserving

policies. Note that the delay estimator for class c in the kth renewal period used in

the procedure DelayEstimate can be re-written as

D(k)
c = U (k)

c +B(k)
c (3.11)

where

U (k)
c :=

∫
kthrenewal cycle

Nc (t) dt

λcE [Tk]
, (3.12)

B(k)
c :=

[
z

(
1

λc
(k−1)

T
(k−1)

)
− 1

λcE [Tk]

]
(3.13)

×
∫
kthrenewal cycle

Nc (t)dt. (3.14)

In Lemma 3.3.4, we prove that U
(k)
c is an unbiased estimator for mean delay

in kth renewal cycle. We also require that this term have finite second moment to

prove the convergence results of MBDO. This is proved in Lemma 3.3.5.

Lemma 3.3.4. Let U
(k)
c =

∫
kthrenewal cycle

Nc(t)dt

λcE[Tk]
, c = 1, 2, . . . , C, then U

(k)
c is an unbi-

ased estimator for the mean delay seen by a typical flow in cth class for the scheduling

policy in the kth renewal cycle.

Proof. The proof is given in Appendix 3.10.
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Lemma 3.3.5. Let the fourth moment of flow size distribution for class c be denoted

by hc. If hc <∞, c = 1, 2, . . . , C, then E
[(
U

(k)
c

)2
]
<∞, c = 1, 2, . . . , C.

Proof. The proof is given in Appendix 3.11.

The term B
(k)
c in (3.11) represents the bias in the estimator. The function

z (·) truncates the value of 1/(λ
(k−1)

T
(k−1)

) to λ/λc∗ which ensures that the term

B
(k)
c has a finite first moment. We have chosen the value λ/λc∗ for truncation to

obtain asymptotic unbiased estimates as indicated in the following lemma.

Lemma 3.3.6. If hc <∞ and z (·) is as defined in (3.8), then limk→∞ E
[
|B(k)

c |
]
→

0.

The above lemma shows that B
(k)
c converges to zero in expectation. The main

idea is to show the almost sure convergence of the sequence
(
|B(k)

c ||k ∈ N
)

to 0 as

well as its uniformly integrability. Proof is given in Appendix 3.3.6. This result is

necessary for the convergence result given in the next section.

3.3.3 Optimality Results

In this sub-section, we will show the asymptotic optimality of MBDO schedul-

ing and the main result of this chapter.

Theorem 3.3.7. Assuming flow size distributions for all classes have finite fourth

moments and (εk | k ∈ N) satisfies (3.7), then the MBDO scheduler is such that D
(k)

converges to d∗ in probability, i.e., for any ε > 0

lim
k→∞

P
(
|D(k) − d∗| > ε

)
= 0. (3.15)
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where d∗ is the unique minimizer of OP1.

Let us outline the key steps of the proof of this theorem, an leave the details

to appendix. Consider the piece-wise constant random process D(t) which is defined

as:

D(t) =

{
D

(k)
if t ∈

[∑k−1
i=1 εi,

∑k
i=1 εi

)
0 if t < 0.

(3.16)

The key ideas come from stochastic approximation algorithms wherein as εk become

small, i.e., for large t, the trajectories of the sequence D(t) can be approximated by

the trajectories of an associated differential equation for a variable x(t) given by

dx(t)

dt
= g∗ (x(t))− x(t), (3.17)

where g∗ (x) := argmin
d∈D

∇f (x)T d and

∇f (x) :=

(
λ1
∂f1

∂d1

∣∣∣
x1

, λ2
∂f2

∂d2

∣∣∣
x2

, . . . , λC
∂fC
∂dC

∣∣∣
xC

)T
.

This can be seen noting that the update equation (3.6) can be re-arranged as

D
(k) −D

(k−1)

εk
= D(k) −D

(k−1)
. (3.18)

In the above equation, the L.H.S. approximates dD(t)
dt

when εk is small. The term D(k)

should be viewed as an asymptotically unbiased estimate of g∗
(
D

(k−1)
)

. Indeed this

follows observing that:

1. It follows from Lemmas 3.3.4 and 3.3.6, we have shown that D(k) is an asymp-

totically unbiased estimate of mean delay under the policy used in kth renewal

cycle.

72



2. Our choice of weights for kth renewal cycle is such that it minimizes

argmin:
d∈D

∇f
(
D

(k−1)
)T

d in kth renewal cycle.

Therefore, for small εk we can approximate (3.18) by (6.28).

One can then show that the differential equation (6.28) is globally asymptot-

ically stable and its trajectories converge to the optimal point of OP1. This follows

from the following lemma.

Lemma 3.3.8. The differential equation given by (6.28) is globally asymptotically

stable and its asymptotically stable point is d∗.

Proof. Proof is given in the Appendix 3.13.

Finally one can use Theorem 2.1 in Chapter 7, [51] to conclude the convergence

of D
(k)

to d∗. The conditions necessary for the theorem are satisfied as a result of

Lemmas 3.3.4, 3.3.5, 3.3.6, and 3.3.8

3.4 Modifications to model wireless networks

In the previous section, we considered a multi-class M/GI/1 queue and as-

sumed all flows were served at unit rate. In a wireless network flows destined to

different users may experience different service rates due to the heterogeneity in

channel conditions they see. For simplicity in this chapter we assume (mean) ser-

vice rates may be heterogenous but are fixed for the duration of a flow. Further

modifications can be considered to address opportunism and/or user mobility.
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For systems with heterogeneous service rates, one can show that the Gittins

index for a flow f need only be scaled by its mean service rate rf , see [35]. If a flow

f has received a cumulative service of x bits and the service rate for the flow is rf ,

then its Gittins index Gf (·) is given by:

Gf (x) = rfG (x) . (3.19)

where G (x) is the Gittins index of the flow if it is served at unit rate in a queue.

In summary then, the effective weight for a flow would be the product of its class

weight wc and its service rate.

3.5 Performance Evaluation

In this section, we study the performance of MBDO scheduling through dis-

crete event simulation.

Simulation setup: We consider an M/GI/1 queue with three idealized traffic

classes, so as to best understand how MDBO scheduling is performing. We will

assume the total service rate is normalized to one bit/second so flow sizes are given

in terms of required service time (in seconds). The service rate and the service

requirements can be scaled appropriately to study other scenarios too. The three

service classes are described in detail below.

1. Small flows: Flow sizes for this class are uniformly distributed between 0.1

and 0.3 seconds. The cost function for this class is given by f1(d1) = 1
2
d2

1.

This might model web traffic or other interactive applications which are delay

sensitive. However, for mean delays upto 1 second, the cost is low.
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2. Medium sized flows: Flow sizes are uniformly distributed between 0.3 and 0.5

seconds. The cost function used is given by f2(d2) = 1
3

(
d2

0.6

)3
, i.e., the delay

cost increases steeply after 0.6 seconds. This class represents medium sized

flows with tight delay constraints. This could model the segments in a HTTP

adaptive video streaming service.

3. Large files: Flow sizes have a Pareto distribution with c.c.d.fG (x) =
(

4
x+4

)5
, x ≥

0. They have a mean service time of 1 second. The Pareto distribution is a

heavy-tailed thus this class includes a mix of small and large flows. This could

be used to model a variety of file downloads. This class has a cost function

f3(d3) = 0.1d3. This class is the least sensitive to delay, i.e., most elastic or

delay-adaptive.

There are closed form expression for the Gittins index of Uniform and Pareto

distributions. For Uniform distribution, the Gittins index is the inverse of the mean

residual service time, see [28]. If the flow size is uniformly distributed in the interval

[p, q], we have

GU (a) =

{
2

p+q−2a
if 0 ≤ a ≤ p,

2
q−a if p < a < q.

(3.20)

For Pareto distribution, the Gittins index is equal to its hazard rate, where hazard

rate is the ratio of p.d.f. to c.c.d.f., see [28]. Therefore, for our setting, the Gittins

index is given by

GP (a) =
5

a+ 4
. (3.21)

In order to see how MBDO realizes trade-offs, we shall fix the arrival rates

of two classes and sweep increase that of the third class. Therefore, we study three
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Figure 3.2: Weights for all classes as a function of the number of busy cycles for
λ1 = 0.5, when λ2 = 1 and λ3 = 0.2 flows/sec.

different cases based on the class for which we sweep the arrival rate. All simulations

statistics were obtained based on 4 × 105 flows have been served to completion,

giving trends with negligible confidence intervals. In Fig. 3.2, we have shown the

convergence of weights in MBDO for. After about 100 busy cycles, the weights

converge. We have used the sequence εk = 1/k, k ≥ 1 to average the delay in

MBDO.

We shall mainly compare our scheduler with a mean delay Gittins index sched-

uler, i.e., w-GittinsScheduler with equal weights. The w-GittinsScheduler with

equal weights is known as Gittins index scheduler in the literature and we will use

the same terminology in the sequel. We have also compared our scheduler with the

Processor Sharing (PS) scheduler. Note that PS is similar to Proportional Fair when

the channels do not change much. However the delay performance for PS (a rate
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Figure 3.3: Mean delays for classes 1 and 2 as a function of λ1, when λ2 = 1 and
λ3 = 0.1.

based scheduler) is much worse than MBDO, since it is not geared towards minimiz-

ing delays of flow and hence, we cannot illustrate the trade-offs in resource allocation

achieved by MBDO when we compare it to PF. The comparison with PS for sweeping

the arrival rates of small flows is given in Fig. 3.4.

1) Sweep arrival rate of small flows: In this scenario, we fix the arrival rates

of Classes 2 and 3 (λ2 and λ3) at 1 and 0.1 flows/second, respectively. We sweep the

arrival rate of Class 1 (λ1) from 0.1 to 2.2 flows/second. We have plotted the mean

delays of Classes 1 and 2 vs λ1 in Fig. 3.3. We have not shown the delay performance

for the third class in this Fig.3.3 because the delay of third class is much larger in

both the cases and finer details will be missed. The plot with all three classes is

shown in 3.5. The two key observations obtained from Fig. 3.3 are as follows:

1. The mean delay for Class 1 flows in MBDO increases much more with λ1 than
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Figure 3.5: Mean delays for all classes as a function of λ1, when λ2 = 1 and λ3 = 0.1.
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for the Gittins index scheduler.

2. The mean delay for Class 2 flows in MBDO stays close to 0.55 sec. even with

increasing λ1, whereas for the Gittins index scheduler it increases by a factor

of four on increasing λ1 from 0.1 to 2.2 flows/sec.

Note that the Gittins index scheduler minimizes the overall mean delay of a

typical arrival, i.e., solves OP2 with equal weights. In other words, by Little’s law, it

minimizes the mean number of flows in the system. Thus the Gittins index scheduler

gives priority to the shorter Class 1 flows at the expense of Class 2 and Class 3 flows.

However, for the MBDO scheduler, Class 2 traffic has a very steep cost function after

the mean delay of 0.6. As more Class 1 flows arrive into the system, the steep cost

function of Class 2 will ensure that the class 2 traffic will get more priority over the

Class 1 traffic. Note that the Class 1 traffic can tolerate a mean delay up to 1 sec.

without paying too much penalty. Hence, the mean delay of Class 2 does not vary

much with λ1 under MBDO scheduling. Class 3 has lower priority than both Class 1

and 2 as it has the least sensitivity to delay. Therefore, the MBDO is able to protect

the most delay sensitive Class 2 traffic from both Class 1 and Class 3 traffic.

2) Sweep arrival rate of medium-sized flows: In this scenario, we keep the ar-

rival rates of Classes 1 and 3 fixed at 1 and 0.1 flows/sec., respectively and the arrival

rate of Class 2 is swept from 0.1 to 1.6 flows/sec. We show the mean delays for Classes

1 and 2 vs λ2 in Fig. 3.6. An interesting observation is that the mean delay for Class

1 first decreases and then increases on increasing λ2 in MBDO scheduler. Recall the

objective function of OP1. The overall cost function f(·) increases with λ2 due to
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Figure 3.6: Mean delays for classes 1 and 2 as a function of λ2, when λ1 = 1 and
λ3 = 0.1.

increase in λ2f2(·). If the mean delay for Class 2 is less than 0.6 seconds, then value

of f2 does not change much. The only way MBDO can compensate for increasing λ2

is to decrease the cost of a traffic class, i.e., decrease the mean delay for Class 1. Note

that decreasing the mean delay of Class 3 does not help much as it is not so sensitive

to delay. Once the mean delay for Class 2 is close to 0.6 seconds, then it dominates

the total cost and MBDO stabilizes its delay at the expense of Class 1 traffic. This

is in sharp contrast to the Gittins index scheduler which always gives lower mean

delays to small flows. Therefore, the mean delay for highly delay sensitive Class 2

traffic is made robust to the changes in its arrival rate in MBDO scheduler.

3) Sweep arrival rate of large flows: Here λ1 and λ2 are fixed at 0.5 and 1

flows/sec., respectively, while λ3 is swept from 0.01 to 0.45 flows/sec. We exhibit the

mean delay for classes 1 and 2 vs λ3 in Fig. 3.7 and the mean delay for class 3 vs λ3
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in Fig. 3.8. Note that the mean delays of classes 1 and 2 are not affected by increase

in λ3. There are two reasons for this.

1. For the Pareto distribution, the Gittins index decreases with the cumulative

service given to the flow, whereas, for Uniform distribution it increases. For

the parameters which we have used for the Pareto and Uniform distributions,

GU (0) > GP (0). Therefore, Classes 1 and 2 always have higher Gittins indices

than class 3. This ensures that Classes 1 and 2 get absolute pre-emptive priority

over class 3. Hence, the mean delays of Classes 1 and 2 are not affected by

class 3 in Gittins index scheduler.

2. In MBDO, in addition to the Gittins index, we also have the weights associated

with the classes. Due to the fact that class 3 is least sensitive to delay, the

weights used for classes 1 and 2 are higher than class 3. This along with

the characteristics of Gittins indices ensure that classes 1 and 2 get absolute

pre-emptive priority over class 3 and hence, they are not affected by class 3.

Due the above mentioned effects, the class 3 always has the least priority in Gittins

and MBDO schedulers and therefore, has the same mean delay in both these sched-

ulers. Even though mean delays for classes 1 and 2 are unaffected by class 3 under

the Gittins index and MBDO schedulers, they differ in their treatment of Classes 1

and 2. This is because of the effect of cost functions in MBDO which tolerates higher

delays for class 1 traffic. Therefore, delay sensitive applications are protected from

the changing loads of a delay insensitive application.
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3.6 Conclusions

In this chapter we have proposed a novel delay based approach for QoE opti-

mization in wireless networks. Our proposed scheme MBDO is measurement based

and can adapt to slowly varying traffic statistics at the BS. It also achieves opti-

mal trade-offs in resource allocation between application types at various system

loads based on their sensitivities to mean delay. Through simulations we have shown

that MBDO performs better than mean delay optimal Gittins index and Processor

Sharing schedulers.
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Appendix

3.7 Proof of Corollary 3.3.1

It is shown in Theorem 5.6, [10] that the weighted Gittins index scheduler

minimizes the mean expected weighted flow delay in a busy cycle. Using Renewal

Reward Theorem (RRT)(see [33]) and the fact that the renewal cycles are identical for

all work conserving policies, it can be shown that minimizing the expected weighted

flow time in a busy cycle with weights wc, c = 1, 2, . . . , C is same as OP2.

3.8 Proof of Lemma 3.3.2

First we will show that the region is convex. Let d1 and d2 be the two mean

delay vectors achieved by the two finite mean delay policies π1 and π2, respectively.

To achieve the mean delay vector φd1 + (1 − φ)d2, φ > 0, use the policy π1 with

probability φ and π2 with probability 1 − φ, i.i.d. across busy cycles. The set of

achievable finite delay vectors is non-empty because the mean delay for a Processor

Sharing discipline is finite as long as the first moments of the service times exist and

the load ρ is less than one. See [33] for the proof.

3.9 Proof of Lemma 3.3.3

For brevity, we define

∇f (d) :=

(
λ1
∂f1(d1)

∂d1

, λ2
∂f2(d2)

∂d2

, . . . , λC
∂fC(dC)

∂dC

)T
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.

In OP1 we take infimum of a continuous, differentiable, strictly convex, lower

bounded, increasing (in all coordinates) function over a convex set D which is a

subset of the positive orthant of RC . Therefore, the objective function of OP1 has

an infimum and it is uniquely achieved by a vector. Let this infimum achieving vector

be denoted by d
∗
. Next we show that there exists a work conserving policy which

has its mean delay vector same as d
∗
.

The vector d
∗

is the optimal solution to OP1 if and only if the following

condition is satisfied.

∇f
(
d
∗
)T (

d− d
∗
)
≥ 0, ∀d ∈ D. (3.22)

We have to show that the delay vector d
∗

can be achieved, i.e. it is in D. We have

shown in Corollary 3.3.1 that we can minimize the linear combination of the delays

using weighted Gittins index scheduler. Hence, we can minimize ∇f
(
d
∗
)T

d using

weighted Gittins index scheduler using weights as ∇f
(
d
∗
)

. From (3.22), we know

that this is a necessary and sufficient condition for optimality. This proves that d
∗

is in D.

3.10 Proof of Lemma 3.3.4

Assume that a given scheduling policy π is used in all busy cycles. Let Nc(t)

be the number of flows of class c present in the system at time t. Let Nc be the

random variable which denotes the number of customer in class c when the system

is stationary. If time instants t1 and t2 belong to different busy cycles, then Nc(t1)
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is independent of Nc(t2) because of the independent increment property of Poisson

arrivals and the assumption that flow sizes are i.i.d. Therefore we can consider

renewal cycles which consist of the idle period and the busy cycle. From the Reward-

Renewal theorem, we get that

lim
τ→∞

1

τ

∫ τ

0

Ni(t)dt =
E
[∫

busy cycle
Ni(t)dt

]
E [T ]

w.p.1, (3.23)

where T is a random variable denoting the renewal duration for a typical cycle. Note

that the mean renewal cycle duration is same irrespective of the scheduling policy,

as long as the policy is work conserving. For stationary queues, we have

lim
τ→∞

1

τ

∫ τ

0

Ni(t)dt = E [Ni] w.p.1. (3.24)

Using Little’s law, we get E [Ni] = λiE [Di], where Di is the random variable which

denotes the stationary mean delay seen by a typical arriving customer. Substituting

this in (3.23), we get that

E [Di] =
E
[∫ T

0
Ni(t)dt

]
λiE [T ]

. (3.25)

If we define Di :=
∫ T
0 Ni(t)dt

λiE[T ]
, then from the above expression Di is an unbiased

estimator for the delay of class i flows under the policy used in the given renewal

cycle.
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3.11 Proof of Lemma 3.3.5

Let us look at kth busy cycle. Let N (k) be the total number of jobs that

arrived in the busy cycle. Then

E

[[∫
kth busy cycle

Ni(t)dt

]2
]
≤ E

[(
N (k)Tk

)2
]
. (3.26)

From Cauchy–Schwarz inequality, we get that

E
[(
N (k)Tk

)2
]
≤
√
E
[
(N (k))

4
]
E [T 4

k ]. (3.27)

Based on the analysis of the distribution of busy cycle duration in Chapter 27, [33],

it can be shown that E
[(
N (k)

)4
]

and E [T 4
k ] are finite when hc <∞, c = 1, 2, . . . , C

and ρ < 1.

3.12 Proof of Lemma 3.3.6

From the definition of λc
(k)

and T
(k)

in (3.9) it is true that

lim
k→∞

λc
(k)

= λc, w.p.1. (3.28)

lim
k→∞

T
(k)

= E [T ] w.p.1. (3.29)

Since the function 1/x is continuous when x > 0, the above results would ensure

that

lim
k→∞
| 1

λc
(k)
T

(k)
− 1

λcE [T ]
| = 0 w.p.1., (3.30)

However, to prove that the above term converges to zero in expectation, we have to

show uniform integrability of the sequence
{
| 1

λc
(k)
T

(k) − 1
λcE[T ]

| | k ∈ N
}

. Therefore,

we introduce the thresholding function z (·).
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Let us consider a threshold θ > 0 and define z (·) as follows

z (x) := min (θ, x) , x ≥ 0. (3.31)

If the value of θ is such that θ ≥ max
{

1
λcE[T ]

| c = 1, 2, . . . , C
}

, then we have that

lim
k→∞
|z

(
1

λc
(k)
T

(k)

)
− 1

λcE [T ]
| = 0∀c w.p.1. (3.32)

This is because we have chosen θ such that z
(

1
λcE[T ]

)
= 1

λcE[T ]
∀c. Since

|z
(

1

λc
(k)
T

(k)

)
− 1

λcE[T ]
| is bounded for all k, there exists a constant B <∞ such that

E

[
|z

(
1

λc
(k)
T

(k)

)
− 1

λcE [T ]
|2
]
< B ∀k. (3.33)

This is a sufficient condition for uniform integrability of the sequence.

Next we will show that θ = λ/λ∗c is a good choice for the threshold. We

require that θ ≥ max
{

1
λcE[T ]

| c = 1, 2, . . . , C
}

. This is ensured if

θ ≥ 1

λc∗E [T ]
. (3.34)

From [33], we know that

E [T ] = 1/λ+
ρ/λ

1− ρ
. (3.35)

Substituting the above expression into the inequality (3.34), and using the fact that

ρ/λ
1−ρ ≥ 0, we get that

θ ≥ λ/λc∗ . (3.36)
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3.13 Proof of Lemma 3.3.8

A differential equation is globally asymptotically stable if for any initial con-

dition, eventually it converges to the equilibrium point. Here the equilibrium point

is the place where dx(t)
dt

= 0 . From (6.28), the equilibrium point x∗ satisfies:

g∗ (x∗) = x∗. (3.37)

From the definition of g∗ (·), this implies that

∇f (x∗)T x∗ ≤ ∇f (x∗)T d ∀d ∈ D. (3.38)

From (3.22), this implies that x∗ is the optimal solution for OP1, which we proved

is unique.

To prove that the differential equation (6.28) is globally asymptotically stable,

it is enough to show that we can construct a Lyapunov function L (d) which has a

negative drift. Let L (d) := f (d)− f (x∗) .

dL (d)

dt
=
df (d)

dt
, (3.39)

= ∇f (d)T
dd

dt
, (3.40)

= ∇f (d)T g∗ (d)−∇f (d)T d, (3.41)

≤ 0. (3.42)

The last inequality follows from the definition of g∗ (·). However, we have to show

a strict negative drift for the Lyapunov function. In the RHS of (3.41), ∇f (d) >

0, ∀d ∈ D. This is because of the assumption of strict convex and increasing cost

functions. Therefore, for the R.H.S. of (3.41) to be zero, the only possibility is
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g∗ (d) = d. This happens only at the equilibrium point x∗, which is same as the

unique solution to OP1. Hence, the drift is strictly negative when the delay vector

d is away from the equilibrium point.
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Chapter 4

Minimizing Mean of Functions of Delays: A

Whittle’s Index Based Approach

4.1 Introduction

In this chapter1 we will focus on optimizing mean of functions of delays which

can possibly take into higher moments of delays. We will also consider the most

general system model for flow based schedulers in this chapter. Traditional work on

delay minimization, see e.g. [33, 34], has not simultaneously addressed the following

aspects of user experience and resource allocation in wireless networks:

1. QoE of a user may be a non-linear function of the delay to download a file.

For example, for many applications users can tolerate delays up to a certain

threshold and beyond that the user experience deteriorates gradually [3].

2. Applications may have different sensitivities to delay. Some applications could

be more delay tolerant than others, e.g., a simple file download vs interactive

web browsing, thus a scheduler can exploit this heterogeneity in delay sensi-

tivity to realize appropriate QoE trade-offs among applications for a range of

system loads.

1Publications based on this chapter: [52] A. Anand and G. de Veciana, “A Whittle’s Index Based
Approach for QoE Optimization in Wireless Networks”, in Proceedings of ACM SIGMETRICS,
2018 (accepted).
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3. User service rates may change with time due to variations in wireless channel

characteristics and different users may have different service rates at any given

time.

In this chapter we explore addressing the above mentioned issues simultaneously. To

that end, we consider a setting in which each user in the system has a job to be

served by the BS and it has an associated cost function which is a non-decreasing

function of the delay to complete its service. Our aim is to study how to minimize

the total expected cost in serving all types of jobs in the system.

The cost function models the QoE of a user as a function of the delay it

experiences. The larger the cost, the poorer the QoE perceived by the user. Since

the cost function could be non-linear and possibly be different for different jobs this

approach takes into account both the non-linearity and the heterogeneity in users’

QoE with respect to the delay experienced. Using this approach we can model several

useful cost functions, for example, one could consider polynomial functions of delay

to model the user’s QoE [3] for applications like web browsing and FTP. QoE for

stored video streaming (DASH framework) is slightly more complex as it is a function

of several parameters like the amount of re-buffering, initial delay and variations in

quality of video segments [5]. However, our notion of flow is flexible to accommodate

this setting. Indeed current video streaming protocols essentially transfer a sequence

of flows associated with video segments. The QoE can then be tied to the delays of

these flows/files and/or variability associated with transferring them to the receiver.

Cost functions can be obtained through offline studies which collect Mean Opinion
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Scores (MOS) from users, see for e.g. [6] and [5]. Henceforth, we shall use cost as a

measure of a user’s QoE.

An important challenge which is specific to systems with time-varying service

rates is realizing the right trade-off between opportunism and minimizing cost. If we

schedule the user with the highest service rate at all times, then we may increase the

overall rate at which the jobs are served. However, this opportunistic selection of jobs

for service may not be cost optimal, as delay critical jobs with low service rates may

see poor cost performance. At the other extreme, if we schedule jobs solely based

on their current marginal costs, then we may schedule users when their service rates

are low and hence the overall rate at which jobs are processed goes down and overall

jobs are delayed, resulting in poor overall cost. Therefore, one needs to find the

right balance between being opportunistic and giving priority based on cost. This is

explored in this chapter by studying directly how to minimize the expected system

cost.

4.1.1 Related Work

We classify the related work into two categories based on the underlying

model for job arrivals to the system, namely: 1) Dynamic system in which jobs

arrive according to a stochastic process (typically a Poisson process) and leave once

they are serviced; and 2) Transient system in which there is a finite number of jobs

at the beginning and no additional arrivals enter the system. We will make further

classifications based on the information on job sizes available to the scheduler, for

example, some works assume that the job sizes are known to the scheduler whereas
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others assume that there is perfect or partial knowledge of job size distributions.

Another characteristic which distinguishes various works in the literature is whether

they consider a system with time-varying service rates.

4.1.1.1 Dynamic Systems

Many authors have considered mean delay minimization in dynamic systems

which process jobs at a constant service rate, see for e.g., [28–30, 32, 34]. If the job

sizes are known to the scheduler, it has been shown that the Shortest Remaining

Processing Time (SRPT) scheduler is the mean delay optimal scheduler [53]. Under

the SRPT policy, the job with the least remaining processing time is scheduled for

service at all times. If only the job size distributions are known and the job arrivals

form a Poisson process, then it has been proved that the Gittins index scheduler is

mean delay optimal [10]. Gittins index schedulers assign a priority to jobs depending

on the service received to date and job size distributions. Properties of Gittins index

based schedulers for different job size distributions have been studied extensively,

see [27–29, 47]. There are few works which consider, however, time-varying service

rates in a dynamic system, see [35, 42, 43]. These works either focus on establishing

system stability rather than delay-based performance metrics, or propose heuristics

which are based on schedulers developed for constant service rate systems.

An interesting line of work which focuses on non-linear cost functions of the

mean file/job delay in multi-class systems is explored in [38,48]. However, these works

deal with cost functions of expected delays rather than expectation of cost functions

of the delays experienced by users. This difference is crucial since minimizing the
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expectation of the cost functions of delay accounts for higher moments of the delay

distribution, whereas, minimizing a metric based on functions of expected delays only

accounts for the first moments. Our approach therefore, can model scenarios where

the users are sensitive to both the mean and the variability in delay distributions

seen by the users. Also, [38,48] do not consider time-varying job service rates which

are typical in wireless settings.

Another line of work which focuses on optimizing non-linear cost functions

of delay and queue lengths in multi-class systems includes [54–59]. They consider

generalizations of cµ rule and prove its optimality in heavy traffic regime for various

settings. They differ from our work in the following ways.

1. The above works except [59] do not consider time-varying service rates.

2. They do not use the job size information for scheduling, instead, use only the

average job size of each class. Using knowledge of job sizes or distribution of

actual size is beneficial as it helps us further discriminate jobs based on their

sizes.

3. They allow preemption among jobs of different classes but do not allow pre-

emption among jobs of the same class. In wireless systems the jobs sizes could

have large variations in their size. Therefore, if we do not allow preemption

among jobs of the same class, then the system might suffer from high delays

due to a big Head-of-the-line (HOL) job. Also in systems with time-varying

service rates one should be able to switch between jobs quickly to opportunis-
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tically schedule users. In our work, we allow both preemption within a class

and across classes.

In [60], the authors consider optimization of average cost under convex holding costs

functions of the number of users in the system. This is different from our setting

where we associate a cost with the delay experienced by each user.

4.1.1.2 Transient Systems

Unfortunately, many problems are analytically intractable in the dynamic

setting. In particular there is no known optimal solution to the problem of minimizing

mean delay in a dynamic system with time-varying service rates [61]. Therefore,

many authors have focused on scheduling policies which optimize the relevant metrics

in transient systems and propose such solutions as a heuristic for dynamic systems.

The effectiveness of these policies are then studied through simulation. Our problem

is also analytically intractable in a dynamic system and hence, we shall also consider

transient systems. Next we will discuss related work focused on transient systems.

The authors of [46,62] have considered minimizing mean delay in the transient

setting where they assume that there is a time-scale separation between service-rate

variations and job service times. This means that service rate variations occur at a

time-scale which is much smaller than the overall time taken to serve a job. They also

assume that the service rate fluctuations are statistically identical and independent

across users. These assumptions are valid in situations where the job sizes are large

and/or when the service rate variations are due to fast fading. Under this assumption,

they have combined opportunistic scheduling with a SRPT like policy to minimize
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mean delay. The main issue with this approach is that the assumption of statistically

identical service rate variations across users may not be valid in scenarios where there

are users with heterogeneous mobility patterns. Also, the assumption of a time-scale

separation may not hold when there are many short files to be transmitted.

Minimizing delay based metrics in a transient system with time-varying rates

for jobs and without the assumption of time-scale separation between service-rate

variations and job service times is unfortunately still analytically intractable due to

the associated large state spaces. Recently there have been many works which lever-

age Whittle’s indices to explore the optimization of delay performance in wireless

networks in a transient setting [61, 63–65]. However, this line of work has focused

only on minimizing weighted linear functions of delay and does not address non-linear

cost functions of delay. In [63], the authors have shown that the problem of mini-

mizing mean delay is indexable and derived the Whittle’s index when job sizes are

geometrically distributed with i.i.d. service rate variations across time. This result

was extended to the case with Markovian service rate variations in [64], however,

they do not show whether the problem is indexable. In [65], the authors consider a

system model where the job sizes are not known but only the job size distributions

are known. They derived index policies based on solving a Markov Decision Process,

however, they consider only ON-OFF channel model. The approach used in [61] is

closely related to our work. They approximate job sizes using shifted Pascal dis-

tributions, i.e., a phase-type distribution where each phase has an i.i.d. geometric

distribution. They have also derived Whittle’s indices when users have heterogeneous

two-state i.i.d. channel variations.
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Users’ States Parameter of Interest Priority given to

User i → best possible rate, user j → lowest possible rate Service rate User i
Both users in their lowest possible rate Residual file sizes User with the largest residual file size
Both users in their best possible rate Residual file sizes Depends on the cost function
Both users in their best possible rate Probability of best possible rate User with the lower probability
Users i and j have the same rate ci(t) ≤ cj(t) ∀t User j

Table 4.1: Summary of structural properties of ODIP.

4.1.2 Our Contributions

In this chapter we focus on resource allocation strategies to minimize the

expectation of possibly non-linear cost functions of job delays in a transient set-

ting with time-varying service rates. To the best of our knowledge, this is the first

chapter which simultaneously addresses the challenges of 1) non-linearity and het-

erogeneity in users’ experiences as a function of delay, and 2), time-varying service

rates for jobs in a non-heavy traffic regime. To that end, we develop a Whittle’s

index based scheduling policy, which we denote as Opportunistic Delay Based Index

Policy (ODIP), for a transient system. ODIP is simple and easy to implement. At

any given time, each user has an index based on its residual file size, service rate

and its cost function. In any slot we schedule a user based on the indices. The main

results of this chapter are as follows:

1) Indexability: We show that our delay/cost minimization problem is index-

able. This means that we can associate a well-defined index with each possible state.

These indices can then be used to assign priorities to active users.

2) Opportunistic Delay Based Index Policy: We derive structural properties

of the ODIP index for the case of phase-type job size distributions, convex cost

functions of delay, and i.i.d. (possibly heterogeneous) two-state service rates for
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each user. In particular we show that when a user’s instantaneous channel has the

best possible rate, then the user has a higher priority than users whose channels are

not currently in their respective best possible rates. We then show the following

structural properties of the Whittle’s index:

1. Given two users with the same holding cost function and identical and indepen-

dent channel statistics. If both the users are in their respective lowest possible

rates, then the user with the longest remaining service time gets higher priority.

However, if both users are in their respective best possible channel rates, then

the priority order between the two users depends on both the cost function and

their respective residual file sizes. These properties should be contrasted with

the SRPT scheduling policy which gives the highest priority to the user with

the smallest residual file size.

2. If there are two users which differ only in the probability of their channel being

in the best possible rate, then the user with the lowest probability of being at

the best rate gets a higher priority. Therefore, ODIP is opportunistic and gives

a higher priority to users likely to be in good rates.

3. If there are two users which differ only in their cost functions and the cost

function of one user strictly dominates the other, then the ODIP gives a higher

priority to the user with the higher cost function.

These properties are summarized in Table 4.1 where we have characterized the prior-

ity order between two users when we vary one parameter of interest while the other

parameters are kept the same.
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Information on Jobs Service Rate

1 Sizes known Fixed across time slots

2 Geometric distribution and mean job size known i.i.d. across time, two states

3 Sizes known i.i.d. across time, multiple states

Table 4.2: Various scenarios for which Whittle’s indices are obtained.

Leveraging these structural properties, we derive expressions for the Whittle’s

index for a few special cases. Each case is characterized by two elements of the system

model: 1) information on job size distribution available to the scheduler; and 2)

service rate model. The cases considered in this chapter are summarized in Table 4.2.

In the scenario where job sizes are known to the scheduler, we shall approximate job

sizes using an appropriate phase-type distribution. In all the scenarios, we assume

that service rates are independent across users, however, they may not have to be

statistically identical.

3) Simulation Study: For dynamic systems, we use the results from [66] to

show that ODIP is maximally stable, i.e., ODIP ensures system stability if there ex-

ists a policy which stabilizes the system for the given system load. We then compare

the performance of applying ODIP in a dynamic setting with other policies through

simulation. We establish that ODIP makes trade-offs which cannot be achieved by

policies which do not take into account the non-linearity of users’ QoE in file/job

delays. We also show that simple priority based policies perform poorly as compared

to ODIP when we consider higher moments of delays in the cost function.
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4.1.3 Organization

The remainder of the chapter is organized as follows. In Sec. 4.2, we describe

our system model. In Sec. 4.3, we develop our Whittle’s index based approach. In

Sec. 4.4 we derive the structural properties of ODIP. Expressions for Whittle’s index

are provided in Sec. 4.5. Performance evaluation results based on simulation are

presented in Sec. 4.6.

4.2 System Model

We consider a transient setting where N users are present in the system

at time t = 0, each with a single job to be served. Since there is a one-to-one

correspondence between a user and a job, we shall use the terms user and job inter-

changeably. Time is assumed to be slotted and is indexed by t = 0, 1, 2, . . .. For

simplicity we assume that the scheduler can schedule only one user in a given slot

and this decision has to be made at the beginning of the slot. Users leave the system

after their jobs are served to completion, and there are no further arrivals.

If a user i is scheduled at time t, then it is served at its current service/channel

rate Ri(t) measured in bits/slot. We shall assume that the service rate processes

(Ri(t), t ∈ Z+), i = 1, 2, . . . , N are

1. i.i.d. across time slots and independent across users

2. We assume that Ri(t) ∈ {ri,1, ri,2, . . . , ri,L} , and Ri(t) can take the value ri,l

with probability qi,l. Without loss of generality we assume that ri,1 > ri,2 >

. . . ri,L and for all l, qi,l 6= 0. Let Ri denote an r.v. with the above distribution.
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We call it as multi-state channel model. A restriction of this model to the case

with L = 2 is called as a two-state channel model.

Independence of service rate across users is a reasonable assumption as the user

mobilities are generally independent of each other, and hence, they experience inde-

pendent and heterogeneous wireless channel variations. We can also account for the

heterogeneity in long term channel variations like shadowing and path loss variations

by selecting different mean service rates for different users. Small time-scale fast fad-

ing experienced by mobile users are taken care by the i.i.d. service rate variations

across slots.

Further we assume that the job sizes are drawn from a phase-type distribution

as in [61]. Thus the job size of user i is modeled by a random variable Si given by:

Si =

ji∑
j=1

Si,j, (4.1)

where ji is the number of phases, and Si,j, j = 1, 2, . . . , ji are i.i.d. geometric random

variables with mean 1/µi bits. We use such phase-type distributions to model the

following two cases:

1. If ji = 1, then the phase-type distribution reduces to a geometric distribution.

We consider geometric distributions in the second case in Table 4.2.

2. If ji is large we can model known deterministic file sizes by phase type distri-

butions. For example, if the job size of user i is known to be si bits, then one

can choose µi and ji such that

si = ji/µi. (4.2)
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For a given value of si, as ji increases, the phase-type approximation of a

deterministic/known job size is more accurate. We will use this approximation

to study the first and third cases in Table 4.2.

Next we explain how we model the effect of time varying service rates on the service

time of a user. Let us first consider an example where the service rate of user i

has a constant value of ri,l bits/slot. If µiri,l ≤ 1, then the average number of slots

to complete the transmission of a phase of user i can be approximated by 1/µiri,l.

Therefore, if the service rate is fixed at ri,l, then the average number of slots to

complete a phase has a geometric distribution with parameter µiri,l. From (4.2), we

require that ji ≤ si/ri,l for the condition µiri,l ≤ 1 to be true. To ensure that for all

j we have µiri,l ≤ 1, we assume that for a given value of si, we choose ji and µi such

that (4.2) is satisfied and ji ≤ si/ri,1. We shall assume that si is much larger than

the number of bits that can be transmitted in a slot, and hence, ji is large enough

to closely approximate si with ji phases.

This idea has a natural extension to time-varying service rates. If the current

service rate of user i is ri,l, and user i is scheduled for transmission in the current

slot, then the probability that its current phase completes in this slot is given by

µiri,l. Therefore, the service rate of a user in a given slot modulates the probability

of successful completion of the current phase. When all the phases of a user are

serviced, then the user leaves the system.

In summary, we shall assume that the scheduler either has knowledge of the

exact job sizes or the job size distribution, depending on the case being considered,
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see Table 4.2. When we assume that the scheduler has the knowledge of job sizes, we

will use phase-type distributions to approximate job sizes. In this setting knowledge

of job sizes would imply that the scheduler knows the parameters µi, i = 1, 2, . . . , N

and the number of remaining phases for each user. By contrast when we consider

job sizes with geometric distributions, we will assume that the scheduler knows only

the parameters of the distributions which are memoryless. We shall also assume that

the scheduler knows the service rates of all the users in the next time slot for which

a scheduling decision has to be made, and the service rate statistics of all the users.

Let us now introduce the objective function to be optimized:

OP1 : min:
π∈Π

Eπ
[
∞∑
t=1

N∑
i=1

ci(t)1 {Y π
i (t) > 0}

]
, (4.3)

where Π is the set of causal and feasible scheduling policies. Here Y π
i (t) is a random

variable corresponding to the residual file size of user i at time t under policy π and

ci(t) is the holding cost at slot t. A policy is said to be causal if it does not assume

knowledge of future service rate realizations. A policy is feasible if only one user is

scheduled per slot. For a feasible policy π we have that for all i and t:

N∑
i=1

Aπi (t) = 1, Aπi (t) ∈ {0, 1} , a.s., (4.4)

where Aπi (t) is a random variable which is equal to one if user i is scheduled for

transmission in slot t and zero otherwise.

The holding cost function ci(·), is a function of time, that captures the sensitiv-

ity of user i’s QoE to the delay. Suppose the user leaves the system at time d, then the

overall accumulated cost, which we denote by Ci(·), is given by Ci(d) =
∑d

t=0 ci(t).
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Therefore, ci(·) can be viewed as the marginal cost for a job staying an additional

tth slot in the system. The following assumption will be made on these functions.

4.2.1 Assumption on holding cost functions

1. Monotonicity: For any user i, ci(·) is a positive, non-decreasing function of

time.

2. Bounded by polynomials: There exist real numbers δ > 0, ζ > 0, and t′ ∈ Z+

such that for t > t′ and i = 1, 2, . . . , N , ci(t) < δtζ .

3. Non-zero: For any user i, ci(t) is not equal to zero for all t.

The monotonicity assumption ensures that a properly interpolated Ci(·) would be

a convex function of the holding time. The boundedness assumption is a technical

assumption to ensure finiteness of indices for the policy to be discussed in the sequel.

The last assumption rules out trivial solutions to OP1. Note that if for all t and user

i ci(t) = c, then OP1 reduces to the minimization of the overall mean delay.

The remainder of this chapter is focused on exploring resource allocation

strategies to solve OP1.

4.3 Problem Formulation

The minimization problem OP1 can be viewed as a Markov Decision Pro-

cess (MDP) when the channel rate variations are Markovian or i.i.d. across time.

However, due to the large state space, in general it is not analytically tractable.

Therefore, we will consider the so called Whittle’s relaxation of OP1 [67].
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The main idea underlying Whittle’s relaxation is to relax the constraint of

scheduling exactly one user per slot. Instead we add a cost ν for scheduling a user

on a given slot, and we minimize a new total cost function which is given by:

OP2 : min :
π∈Π̃

Eπ
[
∞∑
t=0

N∑
i=1

ci(t)1 {Y π
i (t) > 0}+ ν

∞∑
t=0

N∑
i=1

Aπi (t)

]
, (4.5)

where Π̃ is the set of causal policies, which may no longer satisfy (4.4). This relaxed

problem can now be de-coupled into sub-problems associated with each user i as

follows:

SP i(ν) : min :
π∈Π̃

Eπ
[
∞∑
t=0

ci(t)1 {Y π
i (t) > 0}+ ν

∞∑
t=0

Aπi (t)

]
. (4.6)

Using Whittle’s relaxation one can obtain a feasible policy for OP1 based on the

solutions to SP i(ν), i = 1, 2, . . . , N . To that end we first explore the solution to the

MDP associated with SP i(ν).

Consider SP i(ν). User i’s state is specified by three variables: j the number

of remaining phases including the current phase; r the current service rate; and, t

the current time. There are two possible actions in a state, to Transmit (T ) or Not

to Transmit (NT ). Let P ((j, r, t) , (j′, r′, t′) ; a) be the transition probability from

the state (j, r, t) to (j′, r′, t′) under the action a. The transition probabilities under

the two possible actions are summarized in Table 4.3. Let us consider an example

to illustrate how they are obtained: a transition from (j, r, t) to (j, ri,1, t+ 1) occurs

under the action T , if the transmission does not succeed in completing a phase in

slot t, which happens with probability (1− µir) and the service rate in slot t + 1 is

ri,1, which happens with probability qi,1. Since these are independent events, we have
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Transition Probability Expression

P ((j, r, t) , (j, ri,l, t+ 1) ;T ) qi,l(1− µir)
P ((j, r, t) , (j − 1, ri,l, t+ 1) ;T ) qi,lµir
P ((j, r, t) , (j, ri,l, t+ 1) ;NT ) qi,l

Table 4.3: Transition probabilities in state (j, r, t)

P ((j, r, t) , (j, ri,1, t+ 1) ;T ) = qi,1(1−µir). One can similarly define other transition

probabilities. The transition probabilities from (j, r, t) to states other than those

specified in Table 4.3 are zero.

Based on standard results for MDPs, it can be shown that there exists a

time-varying Markov policy which is optimal for SP i(ν), see [68]. Therefore, we

shall restrict ourselves to Markov policies. Let V ∗i (j, r, t; ν) be the total cost under

the optimal policy for SP i (ν) starting from the state (j, r, t) for a transmission cost

of ν. From the Bellman equations for MDPs, we have that

V ∗i (j, r, t; ν) = min
{
ci(t) + V

∗
i (j, t+ 1; ν) ,

ci(t) + ν + µirV
∗
i (j − 1, t; ν) + (1− µir)V

∗
i (j, t+ 1; ν)

}
, (4.7)

where j ∈ {1, 2, . . . ji} , t ∈ {0, 1, 2, 3, . . .} , r ∈ {ri,1, ri,2}, and V
∗
i (j, t+ 1; ν) is

defined as follows:

V
∗
i (j, t+ 1; ν) := E [V ∗i (j, Ri, t+ 1; ν)] . (4.8)

V
∗
i (j, t+ 1; ν) is the optimal value function averaged over the service rates. Note

that a holding cost ci(t) is incurred for slot t irrespective of the action taken in slot

t. From (4.7) and the definition of V
∗
i (j, t+ 1; ν), it is clear that the optimal policy
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will transmit in (j, r, t) if and only if the following inequality holds:

ν ≤ µir∆
∗
i (j, t+ 1, ν), (4.9)

where ∆∗i (j, t, ν) is defined as follows:

∆∗i (j, t, ν) :=

{
V
∗
i (j, t; ν)− V ∗i (j − 1, t; ν) , if j > 1,

V
∗
i (j, t; ν) , if j = 1.

(4.10)

Indeed this policy minimizes the value functions by choosing the function minimizing

the R. H. S. in (4.7). The inequality (4.9) is central to the main results of this chapter.

It implies it is optimal to transmit in a given state if and only if the marginal decrease

in the future cost due to the transmission in the given state is more than the cost ν

of transmission.

To develop a feasible solution for OP1 from SP i(ν), for i = 1, 2, . . . , N , we

first show that the problem is indexable. The indexability property, defined in [67]

is re-stated here:

Definition The optimization problem SP i(ν) is indexable if for any j ∈ {1, 2, . . . , ji} , r ∈

{ri,1, ri,2, . . . , ri,L} , and t ∈ {0, 1, 2, . . .}, there exists a value ν∗i (j, r, t) such that

1. It is optimal to transmit in (j, r, t) if ν < ν∗i (j, r, t):

2. It is optimal not to transmit in (j, r, t) if ν > ν∗i (j, r, t).

3. It is optimal to either transmit or not to transmit in (j, r, t) if ν = ν∗i (j, r, t).

The value ν∗i (j, r, t) is known as the Whittle’s index.
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The indexability property ensures that the optimal action in a given state has

a threshold structure in ν. Note that some problems are not indexable, see [67] for

examples. However, SP i(ν) is indexable and this result is stated next with a proof

given in Appendix 4.8.

Theorem 4.3.1. Under Assumption 4.2.1, phase-type distribution for file sizes and

i.i.d multi-state channel model, SP i(ν) is indexable.

To construct a feasible solution for OP1 based on SP i(ν), i = 1, 2, . . . , N , we

schedule the user with the highest Whittle’s index in each slot. We can interpret the

Whittle’s index as the lowest price at which it is optimal not to transmit in a given

state. A higher Whittle’s index means that the state is better suited for transmission.

This is a natural heuristic which arises from the relaxation of OP2. Whittle’s index

based policies are known to have good performance in practice, see [61, 67]. The

remainder of this chapter will focus on the derivation and characteristics of the

Whittle’s index for various scenarios mentioned in Table 4.2.

4.4 Whittle’s Index

In this section we will characterize key structural properties of the Whittle’s

Index for SP i(ν). The first main result is given in the following theorem, which is

proved in Appendix 4.11.

Theorem 4.4.1. Under Assumption 4.2.1, phase-type distribution for file sizes and

i.i.d multi-state channel model, the Whittle’s index for any user i in phase j ∈
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{1, 2, . . . , ji} is such that

ν∗i (j, ri,1, t) =∞, (4.11)

ν∗i (j, ri,l, t) <∞ l 6= 1. (4.12)

Theorem 4.4.1 implies that for any finite value of ν, it is optimal to transmit

when the current rate is ri,1. Since the lowest price at which it is optimal not to

transmit in (j, ri,1, t) is ∞. Since the Whittle’s index for users experiencing their

lowest possible rate is finite, they will have a lower priority than users experiencing

their best possible channel rate. A similar result was proved in [61] in the setting

of constant holding costs. Theorem 4.4.1 is thus a generalization of that result to

convex holding costs.

Since the Whittle’s index is∞ for all users currently experiencing their highest

possible service rates, scheduling users based on the Whittle’s index policy alone

is not feasible. We require a further tie-breaking rule to obtain a feasible policy.

We will refer to (4.11) and (4.12) as the primary indices and the tie-breaking rule

which we will derive next will be based on secondary indices. The secondary index

is defined based on the discounted version of the problem and determined as the

asymptotic behavior of the Whittle’s index as the discount factor approaches one.

The discounted version of OP2 is given by:

OPβ2 : min
π∈Π

Eπ
[
∞∑
t=0

βt

(
N∑
i=1

ci(t)1 {Y π
i (t) > 0}

)
+ ν

∞∑
t=0

βt

(
N∑
i=1

Aπi (t)

)]
,

(4.13)

where β ∈ [0, 1) is the discount factor. The discounted sub-problem for user i is in
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turn given by:

SPβi (ν) : min
π∈Π

Eπ
[
∞∑
t=0

βtci(t)1 {Y π
i (t) > 0}+ ν

∞∑
t=0

βtAπi (t)

]
. (4.14)

We can define the Whittle’s index for the discounted version of the problem

as follows:

Definition Let P (j, r, t) denote the set of prices such that for ν ′ ∈ P (j, r, t) it

is optimal not to transmit in (j, r, t) when ν > ν ′. We let the Whittle’s index

for the discounted problem for a user i in state (j, r, t), denoted by ν∗i,β (j, r, t), be

ν∗i,β (j, r, t) := inf {ν ′ : ν ′ ∈ P (j, r, t)}.

The above definition differs from that of the un-discounted case since we do not show

or require that the discounted problem be indexable.

The tie-breaking rule for users in their respective best possible service rate is

based on the observation that for any j ∈ {1, 2, . . . , ji} and r ∈ {ri,1, ri,2, . . . , ri,L}

lim
β→1

ν∗i,β (j, r, t) = ν∗i (j, r, t) . (4.15)

The tie-breaking rule for user i is obtained by considering the asymptote of ν∗i,β (j, ri,1, t)

as β → 1 which we shall call the secondary index. This is the same terminology as

used in [61]. We define the secondary index for state (j, ri,1, t) as given by

ξ∗i (j, ri,1, t) := lim
β→1

(1− β) ν∗i,β (j, ri,1, t) . (4.16)

Since we have defined the secondary index in terms of a limit we have to show that

the limit exists and it is finite. This is given by the next result which is proved in

Appendix 4.12.1.
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Theorem 4.4.2. Under Assumption 4.2.1, phase-type distribution for job sizes and

i.i.d. multi-state channel model, we have that for any j ∈ {1, 2, . . . , ji} and t ≥ 0,

the secondary index ξ∗i (j, ri,1, t) is finite and ξ∗i (j, ri,1, t) <∞.

With these in hand we can now describe our Whittle’s index based policy,

which we shall refer to as Opportunistic Delay Based Index Policy (ODIP).

4.4.1 Opportunistic Delay Based Index Policy (ODIP)

In any time-slot t, we will schedule a user based on the flow-chart exhibited

in Fig. 4.1. We first check if there is any user whose current service rate is the best

possible. If there is at least one such user, then we schedule the user with the highest

secondary index for transmission. If there is no such user, then we will schedule the

user with the highest primary index. The selected user in that case will have a finite

primary index as guaranteed by Thm. 4.4.6.

The computation of indices in ODIP requires cost functions of various appli-

cations, channel statistics of users, and flow sizes. When a new user joins the net-

work, there many not enough channel measurements to get reliable channel statistics.

Hence, when a new user joins the system, one has to use the typical channel state

distribution observed in the network. This can be obtained through offline data col-

lection. As time evolves, one can then update the channel statistics from the channel

measurements at the Base Station (BS). Below we develop some qualitative results

on the primary and secondary indices, which characterize the scheduling policy.
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Figure 4.1: Flow-chart for ODIP.
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4.4.2 Qualitative Results for Two-state Channel Model

In this section for simplicity we shall restrict ourselves to a two-state channel

model, i.e., L = 2. First we compare the indices of two users where the cost function

of one user dominates that of the other user. The proof of this result is given in

Appendix 4.14.3.

Theorem 4.4.3. Suppose users i and l have i.i.d. two-state service rate variations.

If their holding cost functions are such that for all t ≥ 0, ci(t) ≤ cl(t), then for any

j ∈ {1, 2, . . . , ji}, r ∈ {ri,1, ri,2} and t ≥ 0, we have that ∆∗i (j, t, ν) ≤ ∆∗l (j, t, ν).

The above theorem is used to prove the following two important corollaries.

Corollary 4.4.4. Suppose users i and l have i.i.d. two-state service rate variations.

If their holding cost functions are such that for all t ≥ 0, ci(t) ≤ cl(t), then for any

j ∈ {1, 2, . . . , ji}, r ∈ {ri,1, ri,2} and t ≥ 0, ν∗i (j, r, t) ≤ ν∗l (j, r, t) and ξ∗i (j, r, t) ≤

ξ∗l (j, r, t).

Corollary 4.4.5. For any user i and phase j ∈ {1, 2, . . . , ji}, and t ≥ 0, ν∗i (j, ri,2, t) ≤

ν∗i (j, ri,2, t+ 1) and ξ∗i (j, ri,1, t) ≤ ξ∗i (j, ri,1, t+ 1).

Corollary 4.4.4 implies that we will give priority to users with ‘steeper’ holding

cost functions. Corollary 4.4.5 implies that the priority of a user increases with the

time spent in the system. This is because of the non-decreasing property of ci(t),

i.e., convex cumulative holding costs. Corollary 4.4.5 will be useful for studying the

structural properties of the primary and secondary indices. The main result for the

primary index is given below and it is proved in Appendix 4.14.1.
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Theorem 4.4.6. Under Assumption 4.2.1, phase-type file size distributions and i.i.d.

two-state channel model, for any (j′, ri,2, t
′) and (j, ri,2, t), if j′ ≥ j and j′+t′ ≥ j+t,

then ν∗i (j, ri,2, t) ≤ ν∗i (j′, ri,2, t
′) .

The j′ and t′ which satisfy the condition in Thm. 4.4.6 for a given j and t are

shown in Fig. 4.2. An important corollary to this theorem is given next

Corollary 4.4.7. ν∗i (j, ri,2, t) is a non-decreasing function of both j and t.

The above result implies that for any two identical users with the same i.i.d.

service rate statistics, holding cost function if they both are in their lowest possi-

ble service rates, then the user with the largest number of phases remaining to be

completed will have priority. This is similar to the Longest Remaining Time First

(LRTF) scheduling policy. Intuitively, this is because a user with a large residual job

size will have to transmit when service rates are low to reduce the overall holding

cost, whereas, a user with a small residual job size can be served opportunistically,

i.e., wait for a slot with higher service rate. Since ν∗i (j, ri,2, t) is a non-decreasing

function of time, the priority for that user in the next slot is higher if we make a

transition to ν∗i (j, ri,2, t+ 1), i.e., either if we do not transmit in state (j, ri,2, t) or

we transmit and fail to complete a phase. However, if we transmit in (j, ri,2, t), com-

plete a phase, and make a transition to (j − 1, ri,2, t+ 1), then the priority may not

necessarily increase.

Next we will consider the secondary index. We define the set of ‘reachable’

states from any state (j, r, t) as follows:
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Figure 4.2: The shaded region shows j′ and t′ which satisfy the conditions in
Thm. 4.4.6.

Definition If there exists a Markov policy with non-zero transition probability from

(j, r, t) to (j′, r′, t′) (in one or more time slots), then (j′, r′, t′) is said to be reachable

from (j, r, t). The set of all reachable states from (j, r, t) is denoted by R (j, r, t).

Note that our system model permits only transitions from (j, r, t) to (j′, r′, t′) such

that j′ ≤ j and t′ > t. Also, we can complete at most one phase in a slot. Therefore,

(j′, r′, t′) is reachable from (j, r, t), if and only if 1) j′ ≤ j and 2) j′ + t′ ≥ j + t. The

value of r′ can be either ri,1 or ri,2, irrespective of the values of j, r, and t. This can

be visualized with the help of Fig. 4.3. The states are exhibited as a two dimensional

grid, with time represented in the x-axis and the residual number of phases on the

y-axis. We do not explicitly show the channel rate in the representation but it can be

understood from the context of the discussion. For r ∈ {ri,1, ri,2}, the shaded region

represents R (j, r, t), i.e., if j′ and t′ are in the shaded region, then both (j′, ri,1, t
′)

and (j′, ri,2, t
′) are in R (j, r, t). For the secondary index, we have the following result

which is proved in Appendix 4.14.2.
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Figure 4.3: The shaded region shows j′ and t′ such that (j′, r, t′) is reachable from
(j, r, t) for any r ∈ {ri,1, ri,2}.

Theorem 4.4.8. Under Assumption 4.2.1, phase-type file size distributions and i.i.d.

two-state channel model, if (j′, ri,1, t
′) is reachable from (j, ri,1, t), then ξ∗i (j′, ri,1, t

′) ≥

ξ∗i (j, ri,1, t).

The above theorem implies that for a given user i, the secondary index in slot

t + 1 is higher than ξ∗i (j, ri,1, t), whatever is the action taken in the state (j, ri,1, t).

Therefore, similar to the primary index, the secondary index for the user in slot t+1

is higher if we do not transmit in (j, ri,1, t) or if we transmit and fail to complete a

phase. However, unlike the primary index, the secondary index also increases in slot

t+ 1 if we complete a phase in slot t.

The previous results do not help us characterize the ODIP when users have

heterogeneous channels and/or cases where one cost function does not dominate the

other. For this we have to find exact expressions for primary and secondary indices.

These qualitative results, however, give basic insights and help us in further deriving
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exact expressions. We derive expressions for indices in the next section.

4.5 Quantitative Results

We consider the three different cases mentioned in Table 4.2. Starting with

the simplest case in which we schedule users with fixed service rates and where job

sizes are known to the scheduler.

4.5.1 Fixed Service Rate, Known Deterministic File Sizes

As explained in Sec. 4.2, we model the job sizes using phase-type distributions.

The fixed service rate is a special case of the two-level model described in the previous

section where qi,1 = 1. Suppose user i is served at a fixed rate ri bits/slot. In this

case we shall assume that for all i, µiri = 1. This would imply that if user i is

scheduled in a given slot, then it will complete the phase with probability one. One

can also visualize this as splitting the job into ji equal parts where each part has a

size of ri bits and if user i is selected for transmission, then one part is serviced in

that slot. Our main result for this setting is the following. A proof of this result is

given in Appendix 4.15.1.

Theorem 4.5.1. Under Assumption 4.2.1, fixed service rate and phase type service

requirement with µiri = 1, ODIP reduces to scheduling a user with the highest sec-

ondary index. For a user i in state (j, ri, t), the secondary index ξ∗i (j, ri, t) is given

by

ξ∗i (j, ri, t) =
1

j
ci(t+ j). (4.17)
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The priority rule described above considers two factors– the residual service

time and the cost function of the user. Recall that j, corresponds to the number

of phases left to complete, i.e., the number of slots that will be required for that

particular user to complete service. Therefore, on the R.H.S. of (4.17), the term 1/j

gives more weight to a user with a smaller residual service time and the term ci(t+j)

gives more weight to users with a steeper cost function. Note that ci(t + j) is the

holding cost when the user i leaves the system if it is served without preemption till

completion.

This policy can be viewed as a generalization of SRPT, which is known to be

the mean delay optimal policy when the job sizes are known and service rate is fixed.

If the holding cost function is constant and is same for all users, then (4.17) reduces

to SRPT. With more general cost functions, the priority rule in (4.17) achieves a

trade-off between accelerating short flows and giving priority to users with higher

holding cost functions.

4.5.2 Two-state I.I.D. Service Rates, Geometric File Sizes

In this sub-section we consider the two-state channel model described in

Sec. 4.2. We shall assume that file sizes are geometric. This is a special case of the

phase-type distribution where each user has one phase. Since there is only one-phase

for each user, we do not have to track the phase of active users. However, we shall

explicitly represent this by j = 1 to maintain consistent notation as in other cases.

We state the main result for this setting next which is proved in Appendix 4.15.2.

Theorem 4.5.2. Under Assumption 4.2.1 on ci(t), geometric file sizes and two-state
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i.i.d. service rate variations, the primary index for user i is given by

ν∗i (1, ri,2, t) =
µiriri,2
ri − ri,2

∞∑
k=1

ci(t+ k) (1− µiri)k−1 (4.18)

where ri := qi,1ri,1 + (1− qi,1)ri,2. The secondary index in turn is given by

ξ∗i (1, ri,1, t) = qi (µiri,1)2
∞∑
k=1

ci(t+ k) (1− qiµiri,1)k−1 . (4.19)

Let us now consider how the indices depend on the residual job size, cost func-

tions and the service rates. Since the file sizes are geometric, and thus memoryless,

the residual file size at any slot is given by 1/µi bits. The larger the value of µi the

smaller the residual file size. For a given ci(t), ri,1, ri,2, and qi,1, it can be shown that

ν∗i (1, ri,2, t) is a non-increasing function of µi. This means that among the users who

have the same cost function and who are not in their best possible rates, the users

with larger residual file sizes are given priority over users with smaller residual file

sizes. The intuition behind this is similar to that underlying Corollary 4.4.7. How-

ever, unlike ν∗i (1, ri,2, t), the properties associated with the changes in ξ∗i (1, ri,1, t) as

function of µi depend on ci(t).

For a given ri and ci(t), ν
∗
i (1, ri,2, t) and ξ∗i (1, ri,1, t) are increasing functions

of ri,2 and ri,1, respectively. This means that we give priority to users with better

service rates when the other parameters are the same. It can be easily seen that a

higher holding cost function results in a higher value for ν∗i (1, ri,2, t) and ξ∗i (1, ri,1, t).

Therefore, the primary and the secondary indices together achieve a trade-off between

minimizing cost and opportunistically scheduling users. Note that if for all t we have

ci(t) = ci, then ODIP reduces to the Size-Aware Whittle’s Index SWA policy derived

in [61]. Our results are thus the generalization of SWA.

120



4.5.3 Multi-state I.I.D. Service Rates, Known Deterministic File Sizes

The exact expressions for the primary indices are analytically intractable.

Therefore, we will derive a lower bound. We state the main result for this setting

which is proved in Appendix 4.15.3.

Theorem 4.5.3. Under Assumption 4.2.1, phase-type file size distributions, and

i.i.d. multi-state channels for any j ∈ {1, 2, . . . , ji}, t ≥ 0, and l ∈ {2, 3, . . . , L}, the

primary index for user i is lower bounded by:

ν∗i (j, ri,l, t) ≥
µi

(∑l
n=1 qi,nri,n

)
ri,l∑l

n=1 qi,nri,n − ri,l
(∑l

n=1 qi,n

) ∞∑
m=0

ci(t+j−1+m)

(
1− µi

L∑
n=1

qi,nri,n

)m

.

(4.20)

The secondary index for user i is given by the following equation.

ξ∗i (j, ri,1, t) =
qi,1 (µiri,1)2

j

[
H†i,1 (j, t+ 1)−H†i,1 (j − 1, t+ 1)

]
, (4.21)

where H†i,1 (j, t) is the average total holding cost (transmission cost not included)

incurred by the policy in which transmissions are done only when channel state r =

ri,1, when there are j remaining phases at time t. Its value is obtained by solving the

following set of equations for all t:

H†i,1 (j, t) = ci(t) + (1− µiqi,1ri,1)H†i,1 (j, t) (4.22)

+ µiqi,1ri,1H
†
i,1 (j − 1, t) , j = 2, 3, . . . , ji, (4.23)

H†i,1 (1, t) =
∞∑
k=0

ci(t) (1− µiqi,1ri,1)k , (4.24)

H†i,1 (0, t) = 0. (4.25)
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The lower bound (4.20) retains the properties mentioned in Thm. 4.4.3 and 4.4.6.

Therefore, it retains the priority ordering of various states for a given user as well

as the priority ordering among states for two users when the cost function of one

user dominates the other. However, it may affect the priority ordering between two

users when cost functions do not dominate each other. This will not adversely affect

the performance of our ODIP because at moderate to high system loads there would

be a sufficient number of users in the system such that at least one user is in its

best possible rate and therefore, the scheduling is primarily done based on secondary

indices for which we can derive exact expressions.

Let us consider an example for the computation of ξ∗i (j, ri,1, t). If ci(t) = t,

then we will get the following expression for H†i,1 (j, t).

H†i,1 (j, t) =
j

µiqi,1ri,1
t+

j (j + 1)

2

[
1− µiqi,1ri,1
(µiqi,1ri,1)2

]
. (4.26)

Substituting (4.26) in (4.21), we get the following equation for secondary index.

ξ∗i (j, ri,1, t) =
µiri,1 (t+ 1)

j
+

1− µiqi,1ri,1
qi,1

. (4.27)

In the above example, the secondary index is a non-decreasing function of the re-

maining service requirement j for a given t. However, in general, for a given t, the

manner in which ξ∗i (j, ri,1, t) varies as a function of j depends on ci(t). Also for a

given j, ξ∗i (j, ri,1, t) is a non-decreasing function of time. From Corollary 4.4.5 this

holds for any ci(t) which is a non-decreasing function of t. Another interesting prop-

erty is that ξ∗i (j, ri,1, t) is a non-increasing function of qi,1, if all the other parameters

are fixed. This can be proved using (4.21). A smaller qi,1 implies that there is less
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chance of user i being in its best possible rate. Since it is a rare ‘good’ event, it is

good to opportunistically use it to serve user i. Therefore, if all parameters except

qi,1 are the same for a set of users, then the user with the smallest qi,1 gets the

highest priority in this set. This is reminiscent of quantile based scheduling [69] and

references therein.

4.6 Dynamic System

In this section we discuss properties and performance of ODIP when applied

to a dynamic setting. As we have stated previously, we propose to use ODIP as a

heuristic for the dynamic setting. Instead of starting with a finite number of jobs

at time t = 0, here we shall consider a system in which jobs arrive according to a

Poisson process. Jobs are classified into K different classes based on their holding

cost functions. All jobs in a class have the same cost function. Let λk be the arrival

rate of jobs of class k. We shall assume the same channel model for jobs as in

Sec. 4.2. We shall also assume that all jobs associated with a class have i.i.d. service

rate distributions, both across time and between users. Therefore, with a slight abuse

of notation, instead of specifying holding cost functions and the service rates of the

individual jobs, we will specify them for an entire class. For example, ck(·) is the cost

function of class k and rk,1 is the maximum service rate for a job of class k. Finally

to specify the holding cost of job in given slot, it will be based on the sojourn time

since its arrival to the system.

In a dynamic system, the first concern is whether the system is stable for a

given set of arrival rates λk, k = 1, 2, . . . , K. Let Sk be a r.v. denoting the job size
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(in bits) of a typical class k job. If the system stability is not maintained, then the

delays experienced by jobs may grow unboundedly. From Theorem 5.2 in [66], we

have the following result on the stability of the system under ODIP.

Corollary 4.6.1. In a dynamic multi-class system with Poisson arrivals and multi-

state i.i.d. service rates for jobs, ODIP is maximally stable and the arrival rates

must satisfy:
K∑
k=1

λkE [Sk]

rk,1
< 1. (4.28)

Proof. A policy is said to be maximally stable if it can stabilize the system for any

arrival rate for which a stabilizing policy exists. It has been shown in [66] that a

class of policies called Best Rate (BR) policies are maximally stable. A BR policy

serves a user whose current rare is best possible whenever such a user is present in

the system. Our ODIP is also a BR policy and hence, maximally stable.

We will evaluate the delay cost performance of ODIP for dynamic systems

via simulation. In our simulations, we will classify the arriving jobs into two classes

based on their QoE requirements. Let λ1 and λ2 be the average arrival rates of jobs of

Class 1 and 2, respectively. We assume that we can make a scheduling decision every

0.01 sec, i.e., slot duration is 0.01 sec. A job of Class 1 has cost C1(d) = d2 for a delay

of d seconds. We use the gradient of C1(·) to obtain c1(·), i.e., ci(t) = Ci(t)−Ci(t−1).

Similarly, a job of Class 2 has cost C2(d) =
(
d

1.5

)2
. Therefore, Class 1 users are more

sensitive to delays than Class 2 users. For Class 1 traffic the cost increases steeply

after a delay of one second, whereas the Class 2 traffic can tolerate delays upto 1.5

seconds. We shall compare our scheme with the following three policies:
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1. Size-Aware Whittle’s Index Policy (SW): This is a BR policy which considers

the optimization of weighted mean delay in dynamic systems. It is a special

case of ODIP which minimizes a weighted function of mean delays. The weight

could be different for each user. This approach does not consider the non-

linearity of user experience with respect to delay. In the sequel we will show

that even if we optimize the weights for SW scheduling such that it has the

least cost among all SW policies for a given set of arrival rates, the costs due

to this policy are still higher than the costs under ODIP.

2. Proportional Fair (PF): This is a commonly used rate-based policy in wireless

networks in which at any time we schedule a user with the highest ratio of its

current rate to the average rate allocated to the user previously. When the

service rate is constant for each user, then this policy reduces to Processor

Sharing. In a dynamic system with time-varying service rates, it has been

shown in [43] that PF is maximally stable. We will compare our scheme with

a weighted version of the PF algorithm where we assign a higher weight to the

more delay sensitive class. We shall optimize the weight for each arrival rate

vector so that the cost is least among all weighted Proportional Fair schedulers.

We will show that even with optimized weights this policy cannot achieve good

QoE.

3. Priority Based Policy: We consider a simple priority based policy where we give

absolute preemptive priority to the more delay sensitive Class 1 jobs over Class

2 jobs and within each class we will schedule users according to SW discipline
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with unit weights for all jobs. However, this policy is not a maximally stable

and hence, we can compare with this policy only for smaller range of arrival

rates.

In all the simulation scenarios considered, we shall generate jobs having Pareto file

size distribution with c.c.d.f. G(x) =
(

4
x+4

)5
, where the size is measured in Mbits.

This distribution has a mean of 1 Mbit. For practical systems, these parameters

can be scaled appropriately. We now discuss the simulation results for two different

settings based on the service rate model: fixed and time-variant service rates.

4.6.1 Fixed Service Rate

In this section we shall assume that all jobs can be processed at a constant

rate of 1 Mbps. If we fix the arrival rate of a class and sweep the arrival rate of

the other class, we will get two sets of simulation results. In Fig. 4.4, we compare

the average cost of all the policies when λ1 is fixed at 0.5 arrivals/sec. and λ2 is

swept. Similarly in Fig. 4.5, we have fixed λ2 at 0.5 arrivals/sec. and have swept

λ1. In both the scenarios, ODIP performs better than the other policies. Note

that we have optimized the weights of SWA and weighted PF for each data point.

ODIP performs better than other policies because it takes into the non-linearity of

cost functions. To understand this better, we have plotted the average cost per class

when we sweep λ1 and λ2 in Figures 4.6 and 4.7, respectively. We have only plotted

the comparisons with SW as it is the second best policy in terms of the average cost.

In both the scenarios, as the overall system load increases, ODIP protects the delay

sensitive Class 1 at the expense of other class. SW which considers the minimization
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of weighted linear functions of delays does not have the required flexibility to make

trade-offs as it can only give a higher weight to the more delay sensitive Class 1 jobs

without considering the time spent by the jobs in the system. The priority scheme

fully prioritizes Class 1 traffic and hence, jobs of Class 2 traffic have poor delay

responses, which has resulted in higher overall cost.

4.6.2 Time-varying Service Rate

Next we compare ODIP with other policies in a system where users have

time-varying service rates. We consider a two-state service rate for all jobs which is

i.i.d. across time and users. The maximum rate is 1 Mbps and the minimum rate

is 0.5 Mbps, and probability of being in the best possible rate is 0.5 for both the

classes.

As in the fixed service case, we compare the average cost under different poli-

cies. Note that the priority based scheme is not maximally stable and hence, we

cannot simulate it for the full range of arrival rates in the stability region. Fig-

ures 4.8and 4.9 exhibit the average cost versus λ2 and λ1 sweeps, respectively. In

both scenarios, ODIP performs better than other policies. The priority scheme per-

forms poorly because it does not fully exploit the opportunism in the system and

becomes unstable. The weighted PF does not take into account the delay of jobs

while scheduling. Therefore, it has a poor cost performance. SW and ODIP have

similar costs at low loads, however, as load increases, ODIP performs better than

SW. We have also compared the average cost per class in Fig 4.10 and 4.11. As the

load increases, ODIP is able to balance the delays experienced by both the classes,
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Figure 4.4: Average cost as a function of λ2 (λ1 = 0.5 arrivals/sec.) in the system
with fixed service rates for jobs (1 Mbps).

wheres, SW can only give a higher weight to the more delay sensitive Class 1 at the

expense of Class 2. This results in a better performance for Class 1, but the delays

experienced by Class 2 traffic easily exceeds 1.5 seconds and hence, results in a larger

cost.

4.7 Conclusions

In this chapter we have explored the three inter-related problems in scheduling

for wireless systems: 1) non-linear relationships between a user’s QoE and flow delays;

2) managing load dependent QoE trade-offs among heterogeneous application classes;

and 3) striking a good balance between opportunistic scheduling and greedy QoE

optimization. We have used Whittle’s relaxation to develop our proposed scheme

ODIP and to study its structural properties. Simulations confirm the effectiveness
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Figure 4.5: Average cost as a function of λ1 (λ2 = 0.5 arrivals/sec.) in the system
with fixed service rates for jobs (1 Mbps).
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Figure 4.6: Average cost as a function of λ1 (λ2 = 0.5 arrivals/sec.) in the system
with fixed service rates for jobs (1 Mbps).
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Figure 4.7: Average cost as a function of λ2 (λ1 = 0.5 arrivals/sec.) in the system
with fixed service rates for jobs (1 Mbps).
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Figure 4.8: Average cost as a function of λ2 (λ1 = 0.5 arrivals/sec.) in the system
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Figure 4.9: Average cost as a function of λ1 (λ2 = 0.5 arrivals/sec.) in the system
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Figure 4.10: Average cost as a function of λ1 (λ2 = 0.5 arrivals/sec.) in the system
with time-varying service rates for jobs (peak rate 1 Mbps).
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Figure 4.11: Average cost as a function of λ2 (λ1 = 0.5 arrivals/sec.) in the system
with time-varying service rates for jobs (peak rate 1 Mbps).

of ODIP in achieving the complex QoE trade-offs among different traffic classes for

a range of system loads.
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Appendix

4.8 Proof of Theorem 4.3.1

We will use the following definitions to explain the proofs:

∆∗i (j, t, ν) :=

{
V
∗
i (j, t; ν)− V ∗i (j − 1, t; ν) , if j > 1,

V
∗
i (j, t; ν) , if j = 1,

(4.29)

∆∗i,β (j, t, ν) :=

{
V
∗
i,β (j, t; ν)− V ∗i,β (j − 1, t; ν) , if j > 1,

V
∗
i,β (j, t; ν) , if j = 1.

(4.30)

We use the following two important lemmas which are proved in Sec. 4.9 to

prove Thm. 4.4.1.

Lemma 4.8.1. For any user i, j ∈ {1, 2, . . . , ji}, t ≥ 0, and ν > 0, we have that

∆∗i (j, t, ν) > ν
µiri,1

.

Lemma 4.8.2. For any user i, j ∈ {1, 2, . . . , ji}, and t ≥ 0, we have that

1. ∆∗i (j, t, ν) is an non-decreasing concave function of ν and the following equation

has a fixed point:

µiri,l∆
∗
i (j, t, ν) = ν l ∈ {2, 3, . . . , L} (4.31)

2. ∆∗i (j, t, 0) > 0.

For r ∈ {ri,1, ri,2, . . . , ri,L}, and a fixed j and t, let us look at the fixed point

of µir∆
∗
i (j, t, ν), i.e., the solution to the following equation:

ν = µir∆
∗
i (j, t, ν) . (4.32)
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By Lemma 4.8.1 and the fact that ∆∗i (j, t, ν) is continuous in ν, there does not exist

a fixed point, i.e., solution to µir∆
∗
i (j, t, ν) = ν when r = ri,1 and for any finite ν we

have that ν < µiri,1∆∗i (j, t, ν). From Bellman equation (4.7), this is implies that it

is always optimal to transmit when r = ri,1 for any ν <∞. Hence, ν∗i (j, ri,1, t) =∞.

Property 1 in Lemma 4.8.2 shows that there exists a fixed point for µir∆
∗
i (j, t, ν)

when r = ri,l, l = 2, 3, . . . , L. Let us choose any such fixed point as the Whittle’s

index denoted by ν∗i (j, ri,l, t). For ν < ν∗i (j, ri,l, t), from properties 1 and 2 in

Lemma 4.8.2, µiri,l∆
∗
i (j, t, ν) ≥ ν. Therefore, from the Bellman equations (4.7) it

is optimal to transmit in (j, ri,l, t). Similarly, for ν > ν∗i (j, ri,l, t), it is optimal not

to transmit in (j, ri,l, t). Thus we conclude that the problem is indexable for the

multi-level i.i.d. service rate model.

4.9 Proof of Lemmas

4.9.1 Proof of Lemma 4.8.1

We will prove this inequality by contradiction. Suppose that the inequality is

not true. From the Bellman equations (4.7), this would imply that it is not optimal

to transmit in states (j, ri,1, t) l ∈ {1, 2, . . . , L}. From this we get the following:

V
∗
i (j, t; ν) = ci(t) + V

∗
i (j, t+ 1; ν) . (4.33)

By Assumption 4.2.1 that for any t, there exists a t′ such that t′ > t and ci(t
′) > 0,

it can be easily shown that V
∗
i (j, t; ν) < V

∗
i (j, t+ 1; ν). However, (4.33) implies a

contradiction. Hence, the inequality

∆∗i (j, t, ν) > ν
µiri,1

must be true.
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4.9.2 Proof of Lemma 4.8.2

We will use the following two intermediate lemmas proved in Sec. 4.10 to

prove Lemma 4.8.2.

Lemma 4.9.1. Let the truncated holding cost function for user i is defined as follows:

c
(k)
i (t) :=

{
ci(t), if t ≤ k,

ci(k), if t > k.
(4.34)

Let V
∗,(k)

i (j, t; ν) be the corresponding averaged optimal value function under the cost

function c
(k)
i (·), then for all j, t, and ν we have that

lim
k→∞

V
∗,(k)

i (j, t; ν) = V
∗
i (j, t; ν) . (4.35)

Lemma 4.9.2. If the cost function of user i is constant in time, i.e., ci(t) = c, then

under the multi-state channel model we have that ∆∗i (j, t, ν) is independent of j and

t and is a concave, non-decreasing, piecewise linear function of ν.

The proof of Lemma 4.8.2 is as follows. First we shall prove the non-decreasing

property of ∆∗i (j, t, ν) with respect to ν.

1) Non-decreasing: First we shall prove the non-decreasing property of

∆∗i (j, t, ν). To that end we will approximate c(t) with a sequence of truncated

holding cost functions {c(k)
i (t), k = 1, 2, 3, . . .} as defined in (4.34). Let us define

∆
∗,(k)
i (j, t, ν) := V

∗,(k)

i (j, t; ν)−V ∗,(k)

i (j − 1, t; ν). We will show that ∆
∗,(k)
i (j, t, ν) is

a non-decreasing function of ν and use Lemma 4.9.1 to conclude that ∆∗i (j, t, ν) is

also a non-decreasing function of ν.
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c
(k)
i (·) is a ‘truncated’ approximation of the holding cost function, in which

the holding cost has a constant value of ci(k) after time k. Since the holding cost

function is fixed after time k, the policy in the state (j, r, t′) for any t′ > k is the

same. Also, V
∗,(k)

i (j, t; ν) depends only on the actions in other states
(
j
′
, r
′
, t
′)

such

that j
′ ≤ j and t

′ ≥ t. Because of this we have to consider a finite number of feasible

policies and the decisions that have to be made over time interval [0, k].

Let π∗
(
c

(k)
i (·), ν

)
be the optimal policy when the price is ν and the holding

cost function is c
(k)
i (·). If we fix a policy π, then the overall average cumulative

holding cost from the state (j, r, t), denoted by V
π,k

i (j, t; ν) is a linear function of ν.

Therefore, to find V
∗,(k)

i (j, t; ν), we are taking a minimum over a finite number of

linear functions in ν when the cost functions is c
(k)
i (·). This implies that V

∗,(k)

i (j, t; ν)

is a piece-wise linear function in ν and is concave. Therefore, for any ν, there

exists a neighborhood Nδ(ν) where the policy π∗
(
c

(k)
i (·), ν

)
is optimal. When we say

neighborhood, we mean any of the three sets: (ν − δ, ν], (ν − δ, ν + δ), or [ν, ν + δ),

where δ > 0. Next we state an important lemma which is proved in Sec. 4.10.

Lemma 4.9.3. ∆
∗,(k)
i (j, t, ν) is non-decreasing function of ν in Nδ(ν).

Since ∆
∗,(k)
i (j, t, ν) is continuous in ν and piece-wise linear function, the

above lemma implies that ∆
∗,(k)
i (j, t, ν) is a non-decreasing function of ν. There-

fore, limk→∞∆
∗,(k)
i (j, t, ν) = ∆∗i (j, t, ν) is also a non-decreasing function of ν.

Concavity: Next we shall prove the concavity of ∆∗i (j, t, ν). We shall

use truncated holding cost functions to prove this property. We shall prove that

∆
∗,(k)
i (j, t, ν) is concave in ν. Using the fact that concavity is preserved on taking
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the limit limk→∞∆
∗,(k)
i (j, t, ν) we will conclude that ∆∗i (j, t, ν) is concave in ν. We

shall use prove the concavity of ∆
∗,(k)
i (j, t, ν) by induction. Let us assume that t ≤ k.

Base Case: For t′ ≥ k, we have that ∆
∗,(k)
i (j, t′, ν) is a concave function of

ν ∀ i and j. This is proved in Lemma 4.9.2.

Induction Hypothesis: Let us assume that for any user i, ∆
∗,(k)
i (j, t′, ν) is

a concave function ν for t+ 1 ≤ t′ < k.

We have to prove that ∆
∗,(k)
i (j, t, ν) is a concave function of ν ∀ j and k. We

can re-write ∆
∗,(k)
i (j, t, ν) as follows:

∆
∗,(k)
i (j, t, ν) = ∆

∗,(k)
i (j, t+ 1, ν) + E

[
min

{
0, ν − µiRi∆

∗,(k)
i (j, t+ 1, ν)

}]
− E

[
min

{
0, ν − µiRi∆

∗,(k)
i (j − 1, t+ 1, ν)

}]
, (4.36)

where the expectation is computed with respect to Ri which is a r.v. with the same

distribution as Ri(t). Define

l̃ := max
{
l : ν ≤ µiri,l∆

∗,(k)
i (j, t+ 1, ν)

}
.

From Lemma 4.8.1, l̃ ≥ 1. Therefore, the first two terms in the R.H.S. of (4.36) sum

upto ν+
(

1− µi
∑l̃

l=1 qi,lri,l

)
∆
∗,(k)
i (j, t+ 1, ν), which is a concave function of ν from

the induction hypothesis. Similarly one can argue that the third term in the R.H.S.

of (4.36) is also a concave function of ν. Since sum of concave functions is a concave

function, ∆
∗,(k)
i (j, t, ν) is also a concave function. Therefore, from Lemma 4.9.1,

∆∗i (j, t, ν) is also concave in ν.

To prove that (4.32) has a fixed point, we will have to show that curves

µiri,l∆
∗
i (j, t, ν) as a function of ν and the linear function ν intersect when l 6= 1.
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For this we derive an upper bound on ∆∗i (j, t, ν). If we use the optimal policy when

starting with j − 1 stages at time t for the first j − 1 phases when starting with j

phases at time t, we will get an upper bound for V
∗
i (j, t; ν) which is given below:

V
∗
i (j, t; ν) ≤ E

[
V
∗
i (1, T (j − 1, t, j − 1; ν) ; ν)

]
+ V

∗
i (j − 1, t; ν) , (4.37)

where E
[
V
∗
i (1, T (j − 1, t, j − 1; ν) ; ν)

]
is the average cumulative cost to finish one

remaining phase if the time taken to finish the first j−1 phases is T (j − 1, t, j − 1; ν).

Using this we can re-write ∆∗i (j, t, ν) as follows:

∆∗i (j, t, ν) = V
∗
i (j, t; ν)− V ∗i (j − 1, t; ν) (4.38)

≤ E
[
V
∗
i (1, T (j − 1, t, j − 1; ν) ; ν)

]
. (4.39)

We can bound the term the R.H.S. of the above equation with the average

cumulative cost under the policy in which we transmit only when Ri(t) = ri,1. We

get the following:

E
[
V
∗
i (1, T (j − 1, t, j − 1; ν) ; ν)

]
≤ E

[
H†i (j, T (j − 1, t, j − 1; ν))

]
+

ν

µiri,1
, (4.40)

where H†i (j, t) is the cumulative average holding cost under the policy which trans-

mits only when Ri(t) = ri,1. Under this policy, the probability of success of com-

pleting a phase given that the user i transmits is given by µiri,1. Hence, the average

transmission cost is given by ν
µiri,1

. The expectations in the above expression are all

with the respect to the r.v. T (j − 1, t, j − 1; ν). So we have that

∆∗i (j, t, ν) ≤ E
[
H†i (j, T (j − 1, t, j − 1; ν))

]
+

ν

µiri,1
. (4.41)
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Let T †i (j − 1) be a r.v. denoting the time taken to finish j − 1 stages under the

policy in which transmits only when Ri(t) = ri,1. Since it is optimal to transmit

Ri(t) = ri,1, we have that T †i (j − 1)
s.t.
> T (j − 1, t, j − 1; ν). Since E

[
H†i (j, t)

]
is

a non-decreasing function of t, we have a further bound on ∆∗i (j, t, ν) and is given

below:

∆∗i (j, t, ν) ≤ E
[
H†i

(
j, T †i (j − 1)

)]
+

ν

µiri,1
. (4.42)

Therefore, ∆∗i (j, t, ν) is a concave, non-decreasing function of ν which is upper

bounded by an affine function of ν with slope 1/µiri,1. This implies that for l 6= 1,

µiri,l∆
∗
i (j, t, ν) is upper bounded by a function of ν with slope strictly less than one

since
µiri,l
µiri,1

< 1. Hence, µiri,1∆∗i (j, t, ν) should intersect with ν and therefore, there

exists a fixed point. Hence, this part of the lemma is proved.

2) When ν = 0, it is optimal to transmit in all states. Therefore, the average

cumulative cost includes only the holding cost component. ∆∗i (j, t, 0) = H∗i (j, t, 0)−

H∗i (j − 1, t, 0). The average cumulative cost to finish j phases is more than the cost

to finish j − 1 phases if we transmit in all states, and hence, ∆∗i (j, t, 0) > 0.

4.10 Proof of Auxiliary Lemmas: Indexibilty

4.10.1 Proof of Lemma 4.9.1

Let us consider |V ∗,(k)

i (j, t; ν)−V ∗i (j, t; ν)|. Let us also consider t ≤ k. This is

not a restrictive assumption as we would be taking the limit k →∞ for a fixed t in the

sequel. First we will find an upper bound on the term |V ∗,(k)

i (j, t; ν) − V ∗i (j, t; ν)|.

Let π∗ (ci(·), ν) be the optimal policy when the cost function is ci(·). Similarly,

π∗
(
c

(k)
i (·), ν

)
be the optimal policy when the cost function is c

(k)
i (·). To get an upper
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bound we shall use the following hybrid policy which combines both π∗ (ci(·), ν) and

π∗
(
c

(k)
i (·), ν

)
• For t ≤ k, use π∗ (ci(·), ν).

• For t > k, use π∗
(
c

(k)
i (·), ν

)
.

This policy is clearly sub-optimal for c
(k)
i (·) and hence, the average cumulative holding

cost under this hybrid policy will be an upper bound on V
∗,(k)

i (j, t; ν). Let the total

cost under this policy be denoted by V
h,(k)
i (j, t; ν).

We shall use a coupling argument next. Let us consider two systems, one

which uses the hybrid policy with holding cost function c
(k)
i (·) and the other with

π∗ (ci(·), ν) and holding cost function ci(·). Let us couple the job size random vari-

ables and the channel state process. Let us consider two mutually exclusive and

exhaustive events 1) user i is served to completion before slot k 2) user i is served to

completion after slot k. Conditioned on event 1, for any sample path, the difference

between the cumulative cost of both the systems is zero. This is because, the poli-

cies are same and the holding are also the same for t ≤ k. Let us look at event 2.

From lemma 4.8.1 and Bellman equations (4.7), it is always to optimal to transmit

when Ri(t) = ri,1 ∀ t. Event 2 happens only if there less than j phases are success-

fully completed in k − t slots. Therefore, probability of event 2 is upper bounded

by
∑j

j′=0

(
k−t
j′
)

(qi,1µiri,1)j
′

(1− qi,1µiri,1)k−t−j
′

. If event 2 occurs, then there will be

non-zero residual phases that has to be served after slot k. We can bound this cost

by taking maxj′′≤j V
h,(k)
i

(
j
′′
, k; ν

)
−V ∗i

(
j
′′
, k; ν

)
. From the above discussion we have
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the following inequalities:

V
∗,(k)

i (j, t; ν)− V ∗i (j, t; ν) ≤ V
h,(k)
i (j, t; ν)− V ∗i (j, t; ν) (4.43)

≤
j∑

j′=0

(
k − t
j ′

)
(p̃i)

j
′

(1− p̃i)k−t−j
′

(4.44)

×max
j′′≤j

[
V
h,(k)
i

(
j
′′
, k; ν

)
− V ∗i

(
j
′′
, k; ν

)]
, (4.45)

where p̃i := qi,1µiri,1. Since we have assumed that the holding cost functions are up-

per bounded by polynomials, the term V
h,(k)
i

(
j
′′
, k; ν

)
−V ∗i

(
j
′′
, k; ν

)
is a polynomial

function of k. This is because the under c
(k)
i (·), holding cost is a constant ci(k) for

t ≥ k, and the average holding cost to complete any phase is just scaling an appro-

priate geometric random variable with ci(k). Note that this term is multiplied by an

exponentially decaying function of k in (4.44). Therefore, on taking the limit k →∞,

the R. H. S. goes to zero. Hence, we have shown that the upper bound goes to zero.

We can derive a lower bound for V
∗,(k)

i (j, t; ν) − V ∗i (j, t; ν) in a similar manner by

interchanging the roles of π∗ (ci(·), ν) and π∗
(
c

(k)
i (·), ν

)
in the construction of hybrid

policy and then using that to upper bound V
∗
i (j, t; ν). We shall skip the details in

the interest of space. Therefore, we have that limk→∞|V
∗,(k)

i (j, t; ν)−V ∗i (j, t; ν)| = 0.

4.10.2 Proof of Lemma 4.9.2

Suppose if we have that ∀t ci(t) = c, then it should be clear that ∆∗i (j, t, ν)

is independent of t. To study the effect of j, from the definition of ∆∗i (j, t, ν) we can
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write the following equation:

∆∗i (j, t, ν) = ∆∗i (j, t+ 1, ν) + E [min {0, ν − µiRi∆
∗
i (j, t+ 1, ν)}]

− E [min {0, ν − µiRi∆
∗
i (j − 1, t+ 1, ν)}] , (4.46)

where Ri is a r.v. denoting the random service rate in a typical slot. Since ∆∗i (j, t, ν)

is independent of t under constant holding cost assumption, we shall suppress the

argument t in the sequel. Then the above equation simplifies to the following:

E [min {0, ν − µiRi∆
∗
i (j, ν)}] = E [min {0, ν − µiRi∆

∗
i (j − 1, ν)}] . (4.47)

Since the above equation holds for any service rate distribution, we have that ∆∗i (j; ν)

must be independent of j. Therefore, we can re-write ∆∗i (j; ν) in the following

manner:

∆∗i (j, ν) = ∆∗i (1, ν) = V
∗
i (1; ν) . (4.48)

From Bellman equations (4.7), if it is optimal to transmit in Ri(t) = ri,l, then it is also

optimal to transmit when Ri(t) = ri,l′ for l′ < l. We shall restrict ourselves to such

policies. Let π be a policy where we transmit when Ri(t) = ri,l′ for l′ = 1, 2, . . . , l.

The average cumulative cost under such a policy is given by:

V
π

i (1; ν) =
c

µi
∑l

l′=1 qi,l′ri,l′
+

ν
∑l

l′=1 qi,l′

µi
∑l

l′=1 qi,l′ri,l′
. (4.49)

This is because of probability of transmitting in a slot is µi
∑l

l′=1 qi,l′ri,l′ , and therefore

the number of slots required to complete a phase on an average is 1

µi
∑l
l′=1 qi,l′ri,l′

. Given

that one transmits, probability of succeeding in completing a phase in a given slot is

given by
∑l
l′=1 qi,l′ri,l′∑l
l′=1 qi,l′

. This is because the average rate conditioned on the fact that
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user i transmits is
µi
∑l
l′=1 qi,l′ri,l′∑l
l′=1 qi,l′

. Therefore, for any ν, to determine the optimal cost

to go, we need only to take a minimum over a finite number of policies parametrized

by l = 1, 2, . . . , L. For each policy, the average cumulative cost is a non-decreasing

linear function of ν. Therefore, from (4.48) ∆∗i (j, ν) is a non-decreasing, piecewise

linear, concave function of ν.

4.10.3 Proof of Lemma 4.9.3

Let Y
∗,(k)
i (t) be an r.v. denoting the residual number of phases of user i at

time t. We can write V
∗
i (j, t; ν) as follows:

V
∗,(k)

i (j, t; ν) = H
∗,(k)
i (j, t, ν) + νEπ

∗
(
c
(k)
i (·),ν

) [ ∞∑
t′=t

Ai(t
′)|Y ∗,(k)

i (t) = j

]
, (4.50)

where H
∗,(k)
i (j, t, ν) is the average cumulative holding cost starting with j phases

at time t and the second term is the average cumulative transmission cost incurred

due to transmissions under the policy π∗
(
c

(k)
i (·), ν

)
. Therefore, we can re-write

∆
∗,(k)
i (j, t, ν) as follows:

∆
∗,(k)
i (j, t, ν) = H

∗,(k)
i (j, t, ν)−H∗,(k)

i (j − 1, t, ν)

+ν

(
Eπ
∗
(
c
(k)
i (·),ν

) [ ∞∑
t′=t

Ai(t
′)|Y ∗,(k)

i (t) = j

]
− Eπ

∗
(
c
(k)
i (·),ν

) [ ∞∑
t′=t

Ai(t
′)|Y ∗,(k)

i (t) = j − 1

])
.

(4.51)

Since the optimal policy is same for all ν ∈ Nδ (ν), the termH
∗,(k)
i (j, t, ν)−H∗,(k)

i (j − 1, t, ν)

is independent of ν for ν ∈ Nδ (ν). If we can show that the slope of second term

with respect to ν is greater than zero, then we can prove this lemma. To that end

let us define T (j, t, k; ν) to be the random variable denoting the time to complete
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first k phases starting with j phases at time t, when the price is ν, under the optimal

policy.

First we show that T (j, t, j − 1; ν)
s.t.

≤ T (j − 1, t, j − 1; ν), i.e., the time to

complete the first j−1 phases when starting with j phases at time t is stochastically

less than the time to complete j − 1 phases when starting with j − 1 phases at time

t. To see this, we can re-write V
∗,(k)

i (j, t; ν) as

V
∗,(k)

i (j, t; ν) = Average cumulative cost to finish first j − 1 phases

+ Average cumulative cost to finish the last phase. (4.52)

Individually each of the two terms on the R.H.S. above consists of a part due to

the holding cost and a part due to the transmission cost ν. Also, note the two

terms in the R.H.S. are not independent of each other. If the time to complete to

first j − 1 phases is longer, then the average cumulative holding cost in completing

the last phase is also higher because the transmission of the last phase starts at

a later time and the holding cost function is non-deceasing function of time. If

T (j, t, j − 1; ν)
s.t.
> T (j − 1, t, j − 1; ν) , then we can replace the policy for the first

j − 1 phases when starting with j phases with the optimal policy for j − 1 stages

when starting with j − 1 stages and therefore, we can obtain a better policy. Hence,

T (j, t, j − 1; ν)
s.t.

≤ T (j − 1, t, j − 1; ν).

Next observe that the average cumulative cost in completing j − 1 phases

starting with j − 1 phases initially has to be less than the average cumulative

cost in completing j − 1 phases when starting with j phases. T (j, t, j − 1; ν)
s.t.

≤

T (j − 1, t, j − 1; ν) would imply that the average cumulative holding cost in com-
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pleting the first j − 1 phases when starting with j phases is less than the average

cumulative holding cost in completing j − 1 phases when starting with j − 1 phases.

The only way that the average cumulative cost to complete the j − 1 phases when

starting with j phases is more than the average cumulative cost in completing j − 1

phases when starting with j − 1 phases is by having a larger average cumulative

transmission cost. This would imply that the slope of the R.H.S. of (4.51) is positive

with respect to ν. Hence, the Lemma 4.9.3 is proven.

4.11 Proof of Theorem 4.4.1

In order to find the Whittle’s index for any state (j, r, t), we have to find the

fixed point of the following equation:

ν = µir∆
∗
i (j, t, ν) . (4.53)

We have already shown in the Appendix 4.8 that when r = ri,1 there does not exist

a finite fixed point for the above equation and the ν∗i (j, ri,1, t) = ∞. We have also

shown that there exists a finite fixed point when r 6= ri,1, and therefore, for l 6= 1,

ν∗i (j, ri,l, t) <∞ . Hence, proved.

4.12 Secondary Index

4.12.1 Proof of Theorem 4.4.2

Consider the discounted sub-problem SPβi . From the definition of Whittle’s

index for the discounted case, to find ν∗i,β (j, ri,1, t), we have to find the supremum of
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the fixed points of the following equation

ν = µiri,1β∆∗i,β (j, t, ν) . (4.54)

The supremum of the fixed points of the above equation is finite because of the

following reasons

1. When ν = 0, it is optimal to transmit in all states and ∆∗i,β (j, t, 0) > 0.

2. When ν →∞, it is optimal not to transmit in any of the states, and

limν→∞∆∗i,β (j, t, ν) = 0. This is because if it is not optimal to transmit in

any of the states, then only average cumulative discounted holding cost is

incurred. Therefore, V
∗
i,β (j, t; ν) =

∑∞
k=t ci(k)βk, for any j ∈ {1, 2, . . . , ji}. By

our assumption that ci(t) < δtζ , we get that
∑∞

k=t ci(k)βk <∞.

3. We also know that V
∗
i,β (j, t; ν) is a continuous function of ν.

From the above observations and Intermediate Value Theorem, we can conclude that

there exists at least a fixed point for (4.54), and we can find a supremum of the fixed

points.

We know that limβ→1 ν
∗
i,β (j, ri,1, t) = ν∗i (j, ri,1, t) = ∞. To the find the

asymptote of ν∗i,β (j, ri,1, t) as β → 1, we can use (4.54), since ν∗i,β (j, ri,1, t) is a fixed

point of (4.54). To that end we will first study the characteristics of V
∗
i,β (j, t; ν)

evaluated at ν = ν∗i,β (j, ri,1, t) as β → 1, which we denote by V
∗
i,β

(
j, t; ν∗i,β (j, ri,1, t)

)
.

We will show that the asymptote of V
∗
i,β

(
j, t; ν∗i,β (j, ri,1, t)

)
is same as that of a pol-

icy in which transmissions are always performed when r = ri,1 and never performed
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otherwise. For any ν we can split the average cumulative cost into two, the average

cumulative holding and transmission costs. Let H∗i,β (j, t, ν) be the average cumula-

tive holding cost under optimal policy starting from the phase j at time. Similarly,

let the N∗i,β (j, t, ν) be the cumulative discounted average number of transmissions

under the optimal policy, i.e., E
[∑∞

k=t β
k−tA∗i,β(k)

]
, where A∗i,β(k) = 1 if the optimal

decision is to transmit in slot k and 0 otherwise. Therefore, the average cumulative

cost is given by:

V
∗
i,β (j, t; ν) = H∗i,β (j, t, ν) + νN∗i,β (j, t, ν) . (4.55)

Similarly we can define N †i,β (j, t) and H†i,β (j, t) for the policy in which trans-

mission are done only if r = ri,1 for all j and t. Note that N †i,β (j, t) and H†i,β (j, t)

are independent of ν as the policy is fixed and does not change with ν. The average

cumulative cost associated with this policy is thus given by:

V
†
i,β (j, t; ν) = H†i,β (j, t) + νN †i,β (j, t) . (4.56)

The main result connecting the optimal policy for SP i(ν) and the policy with

transmissions only in ri,1 is given next. Proof of this lemma is given in Sec. 4.13.1.

Lemma 4.12.1. Let V
†
i,β (j, t; ν) be the average cumulative cost starting from j and

t for the policy in which transmissions are performed only when the channel is in the

best possible state. We have that

limβ→1H
∗
i,β

(
j, t, ν∗i,β (j, ri,1, t)

)
limβ→1H

†
i,β (j, t)

= 1, (4.57)

limβ→1N
∗
i,β

(
j, t, ν∗i,β (j, ri,1, t)

)
limβ→1N

†
i,β (j, t)

= 1. (4.58)
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The above lemma proves that limβ→1 V
∗
i,β

(
j, t; ν∗i,β (j, ri,1, t)

)
and

limβ→1 V
†
i,β

(
j, t; ν∗i,β (j, ri,1, t)

)
have same asymptotes, and hence, we can use the lat-

ter to find the asymptote of

V
∗
i,β

(
j, t; ν∗i,β (j, ri,1, t)

)
. For V

†
i,β

(
j, t; ν∗i,β (j, ri,1, t)

)
we can find closed form expres-

sions as we know the structure of the policy.

First we will find an expression for ν∗i,β (j, ri,1, t). Substituting (4.55) in (4.54)

and noting that ν∗i,β (j, ri,1, t) is a fixed point for (4.54), we get the following expression

for ν∗i,β (j, ri,1, t):

ν∗i,β (j, ri,1, t)

=
µiri,1β

[
H∗i,β

(
j, t+ 1, ν∗i,β (j, ri,1, t)

)
− H∗i,β

(
j − 1, t+ 1, ν∗i,β (j, ri,1, t)

)]
1− µiri,1β

[
N∗i,β

(
j, t+ 1, ν∗i,β (j, ri,1, t)

)
−N∗i,β

(
j − 1, t+ 1, ν∗i,β (j, ri,1, t)

)] .
(4.59)

Next we multiply both sides of (4.59) with 1 − β and take the limit β → 1

on both the sides. Using Lemma 4.12.1, we can the replace the average cumulative

costs related to the optimal policy with that of the policy in which transmissions are

done only in r = ri,1. Note that N †i,β (j, t) depends only on j and not on t. We have

used this notation to maintain consistency. Further it can be shown that

(1− β)N †i,β (j, t)

qi,1
= 1− µiri,1β

(
N †i,β (j, t)−N †i,β (j − 1, t)

)
. (4.60)

Substituting (4.60) in (4.59), re-arranging the terms, and using the fact that

limβ→1N
†
i,β (j, t) = j

µiri,1
, we get that

ξ∗i (j, ri,1, t) =

lim
β→1

(1− β) ν∗i,β (j, ri,1, t) =
qi,1 (µiri,1)2

j

[
H†i,1 (j, t+ 1)−H†i,1 (j − 1, t+ 1)

]
. (4.61)

148



Figure 4.12: Increasing β while setting ν = ν∗i,β (j, ri,1, t) is illustrated here.

Due to Assumption 4.2.1 on ci(·), it is bounded by a polynomial function of t. There-

fore, the above expression is finite.

4.13 Proof of Auxiliary Lemmas: Secondary Index

4.13.1 Proof of Lemma 4.12.1

We have to the find the optimal policy when β → 1 while we set ν =

ν∗i,β (j, ri,1, t). This procedure is shown in the Fig. 4.12. In this proof, we shall show

the following two properties of the optimal policy as β → 1, while ν = ν∗i,β (j, ri,1, t):

1. It is not optimal to transmit in r = ri,l when l 6= 1 for any j and t.

2. It is always optimal to transmit in r = ri,1 for j′ and t′ such that (j′, ri,1, t
′) is

reachable from (j, ri,1, t)

First we have the following result. Proof of the following lemma is given in Ap-

pendix 4.13.2.
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Lemma 4.13.1. For a given ν, i, j, and t, ∆∗i,β (j, t, ν) is a non-decreasing function

β.

This would imply that ν∗i,β (j, ri,l, t) is a non-decreasing function of β. Hence,

for any β ∈ [0, 1] and l 6= 1, we have

ν∗i,β (j, ri,l, t) ≤ ν∗i (j, ri,l, t) <∞. (4.62)

From the indexability property, if the price ν > ν∗i,β (j, ri,l, t), it is not optimal to

transmit in (j, ri,l, t). Let us take the limit β → 1 while ν = ν∗i,β (j, ri,1, t). We know as

β → 1, ν = ν∗i,β (j, ri,1, t)→∞. We also know that as β → 1, ν∗i,β (j, ri,l, t) <∞. This

implies that for any j and t there exists some β′ (j, ri,l, t) such that for β > β′ (j, ri,l, t),

it is optimal not to transmit in (j, ri,l, t).

Now we have to show that it is optimal to transmit in when r = ri,1 in all

states reachable from (j, ri,1, t). We say that a state is reachable from (j, ri,1, t) if

there exists a policy π such that there is a strictly positive probability of making a

transition into that state in the future. The reachable states from (j, ri,1, t) is shown

in the Fig. 4.3. Note that the transition probabilities permit only transition into

states where t > t′, j′ ≤ j, and if it is in the region shown in the figure. This is

because we can get only at most one successful transmission in a slot. The following

lemma will help us characterize the optimal policy when β is increased to 1, such

that ν = ν∗i,β (j, ri,1, t). Proof of this lemma is given in the Appendix 4.13.3.

Lemma 4.13.2. For large enough β, if it is optimal to transmit in (j, ri,1, t), then it

is optimal to transmit in all states (j′, ri,1, t
′) such that (j′, ri,1, t

′) is reachable from

(j, ri,1, t).
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The above lemma tells that if it is optimal to transmit when r = ri,1 in any

given time, then it is optimal to transmit in r = ri,1 in all future times. If we choose

ν = ν∗i,β (j, ri,1, t), we know that it is optimal to transmit in (j, ri,1, t). Hence, it is

optimal to transmit in all states in the future where r = ri,1. Therefore, as β → 1

while ν = ν∗i,β (j, ri,1, t), it is optimal to transmit when r = ri,1 and not optimal to

transmit when r 6= ri,1. This completes the proof of this lemma.

4.13.2 Proof of Lemma 4.13.1

We will show that this property holds for any c
(k)
i (·) and hence, in the limiting

case too due to lemma 4.9.1. We will first prove that ∆
∗,(k)
i,β (j, t, ν) is a non-decreasing

function of β.

To prove the result for c
(k)
i (·), we will use induction over time which proceeds

backwards from time k to t.

Base Case : We will first prove that ∆
∗,(k)
i,β (j, t, ν) is non-decreasing func-

tion of β for t ≥ k. From the Bellman equations 4.7, we can re-write the value

function as follows:

V
∗,(k)

i,β (j, t; ν) = c
(k)
i (t) + βV

∗,(k)

i,β (j, t+ 1; ν)

+ E
[
min

{
0, ν − µiRiβ

[
∆
∗,(k)
i,β (j, t+ 1, ν)

]}]
, (4.63)

where Ri has the same distribution as Ri(t). Using the above form of V
∗
i,β (j, t; ν),
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we can re-write ∆
∗,(k)
i,β (j, t, ν) as follows:

∆
∗,(k)
i,β (j, t, ν) = β∆

∗,(k)
i,β (j, t+ 1, ν) + E

[
min

{
0, ν − µiRiβ∆

∗,(k)
i,β (j, t+ 1, ν)

}]
− E

[
min

{
0, ν − µiRiβ∆

∗,(k)
i,β (j − 1, t+ 1, ν)

}]
. (4.64)

We know that when the holding cost function c
(k)
i (·) has a constant value of ci(k) for

t ≥ k. Therefore, ∆
∗,(k)
i,β (j, t, ν) = ∆

∗,(k)
i,β (j, k, ν) once t ≥ k. Hence, substituting this

in (4.64), we get that

(1− β) ∆
∗,(k)
i,β (j, k, ν)− E

[
min

{
0, ν − µiRiβ∆

∗,(k)
i,β (j, k, ν)

}]
=

− E
[
min

{
0, ν − µiRiβ∆

∗,(k)
i,β (j − 1, k, ν)

}]
. (4.65)

Using the above equation, we can argue that ∆
∗,(k)
i,β (j, k, ν) is an non-decreasing

function of β. This is done via induction over j. If j = 1, then ∆
∗,(k)
i,β (j, k, ν) =

V
∗,(k)

i,β (1, k; ν). V
∗,(k)

i,β (1, k; ν) is an non-decreasing function of β because for any

policy π, the average cumulative cost to complete (average cumulative holding cost

+ transmission cost) is a non-decreasing function of β and therefore, V
∗,(k)

i,β (1, k; ν),

which is obtained by computing infemum of the cost under all policies, is also a non-

decreasing function of β. If we assume the induction hypothesis that ∆
∗,(k)
i,β (j, k, ν)

is a non-decreasing function of β till j − 1, then from (4.65), it can be easily shown

that ∆
∗,(k)
i,β (j, k, ν) is a non-decreasing function of β. Hence we have proved that

∆
∗,(k)
i,β (j, k, ν) is a non-decreasing function of β.

Induction Hypothesis: Assume that ∆
∗,(k)
i,β (j, t′, ν) is a non-decreasing of

β for any j and t′ ≥ t+ 1.
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We have to show that ∆
∗,(k)
i,β (j, t, ν) is a non-decreasing function of β. Con-

sider (4.64). Its R.H.S. is a non-decreasing function of β because of our induction

assumption that ∆
∗,(k)
i,β (j − 1, t+ 1, ν) and ∆

∗,(k)
i,β (j − 1, t+ 1, ν) are non-decreasing

functions of β. Therefore, ∆
∗,(k)
i,β (j, t, ν) is also a non-decreasing function of β. Hence,

we have proved that ∆
∗,(k)
i,β (j, t, ν) is a non-decreasing function of β when the holding

cost function is c
(k)
i (·). Therefore, on taking the limit as k → ∞, we get the result

for ci(·).

4.13.3 Proof of Lemma 4.13.2

We will show that for large enough β, if it is optimal to transmit in (j, ri,1, t),

then it is optimal to transmit in the states (j, ri,1, t+ 1) and (j − 1, ri,1, t+ 1).

This is enough to show that it is optimal to transmit in all states reachable from

(j, ri,1, t) because we can iteratively use this result on the states (j, ri,1, t+ 1) and

(j − 1, ri,1, t+ 1) and its neighboring states and so on. We will prove this result for

any c
(k)
i (·).

We have already argued that for large enough β (say β > β′), it is optimal

not to transmit in ri,l l 6= 1 in all states reachable from (j, ri,1, t) if the price is

scaled such that ν = ν∗i,β (j, ri,1, t). Let us assume that β is large enough that it is

optimal not to transmit in ri,1 for all states reachable from (j, ri,1, t). Note that if

we transmit in (j, ri,1, t), then it must be optimal to transmit in either (j, ri,1, t+ 1)

or (j − 1, ri,1, t+ 1). Else, it is optimal not to transmit in (j, ri,1, t), and instead

transmit in the state (j, ri,1, t+ 1) incurring only the discounted cost βν. Next we

have to show that it is optimal to transmit in both (j, ri,1, t+ 1) and (j − 1, ri,1, t+ 1).
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Figure 4.13: Illustration of the induction procedure

We will prove this as two separate cases. The induction process is illustrated in the

Fig. 4.13.

Base Case: We have to prove that if it is optimal to transmit in the state

(j, ri,1, k), then it is optimal to transmit in the states (j, ri,1, k + 1) and (j − 1, ri,1, t+ 1).

If it is optimal to transmit in (j, ri,1, k), then from Bellman equations, we know the

following:

ν ≤ µiri,1β∆
∗,(k)
i,β (j, k + 1, ν) . (4.66)

We know that ∆
∗,(k)
i,β (j, k + 1, ν) = ∆

∗,(k)
i,β (j, k + 2, ν) as the holding cost function has

a constant value for t ≥ k. Therefore, ν ≤ µiri,1β∆
∗,(k)
i,β (j, k + 2, ν). From Bellman

equations, this would imply that it is optimal to transmit in (j, ri,1, k + 1). Hence,

base case is proved.

Induction Hypothesis: We shall assume that if t + 1 ≤ t′ ≤ k and if it is

optimal to transmit in (j, ri,1, t
′), then it is optimal to transmit in (j, ri,1, t

′ + 1) and

(j − 1, ri,1, t
′ + 1).
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Using the induction hypothesis we will have to show that if it is optimal to

transmit in (j, ri,1, t), then it is optimal to transmit in (j, ri,1, t+ 1) and (j − 1, ri,1, t+ 1).

We will consider two separate cases:

1. If it is optimal to transmit in (j, ri,1, t) and (j, ri,1, t+ 1), then it is optimal to

transmit in (j − 1, ri,1, t+ 1).

2. If it is optimal to transmit in (j, ri,1, t) and (j − 1, ri,1, t+ 1), then it is optimal

to transmit in (j, ri,1, t+ 1).

We will prove the above two cases separately via proof by contradiction.

Case 1

Suppose it is optimal to transmit in (j, ri,1, t) and (j, ri,1, t+ 1), and it is not

optimal to transmit in (j − 1, ri,1, t+ 1). Let us also assume that j ≥ 2. From our

induction hypothesis and Bellman equations the following is true for t+ 1 ≤ t′ ≤ k:

V
∗,(k)

i,β (j, t′; ν)− V ∗,(k)

i,β (j − 1, t′; ν) ≤ V
∗,(k)

i,β (j − 1, t′ + 1; ν)− V ∗i,β (j − 2, t′ + 1; ν) .

(4.67)

The above equation is true because of the induction hypothesis that if it is optimal

to transmit in (j, ri,1, t
′), then it is optimal to transmit in (j − 1, ri,1, t

′ + 1). First

observe that if it is optimal to transmit in (j, ri,1, t), then from Bellman equations

we get the following:

ν ≤ µiri,1β
(
V
∗,(k)

i,β (j, t+ 1; ν)− V ∗,(k)

i,β (j − 1, t+ 1; ν)
)
. (4.68)
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Since we have assumed that it is optimal to transmit in (j, ri,1, t+ 1), we have the

following:

V
∗,(k)

i,β (j, t+ 1; ν) = c
(k)
i (t+ 1) + qi,1ν + (1− µiqi,1ri,1) βV

∗,(k)

i,β (j, t+ 2; ν)

+ µiqi,1ri,1βV
∗,(k)

i,β (j − 1, t+ 2; ν) . (4.69)

Similary, since it is not optimal to transmit in (j − 1, ri,1, t+ 1), then we have that

V
∗,(k)

i,β (j − 1, t+ 1; ν) = c
(k)
i (t+ 1) + βV

∗,(k)

i,β (j − 1, t+ 2; ν) . (4.70)

Substituting (4.69) and (4.70) in (4.68), we get the following inequality:

ν ≤ β (1− µiqi,1ri,1)

1− µiqi,1ri,1

[
µiri,1β

(
V
∗,(k)

i,β (j, t+ 2; ν)− V ∗,(k)

i,β (j − 1, t+ 2; ν)
)]
. (4.71)

Now let us look at the state (j − 1, ri,1, t+ 1). Since it is not optimal to

transmit in this state, from Bellman equations, we will get the following inequality:

ν > µiri,1β
(
V
∗,(k)

i,β (j − 1, t+ 2; ν)− V ∗,(k)

i,β (j − 2, t+ 2; ν)
)
. (4.72)

We will expand the terms in the R.H.S. of the above inequality. From our induction

hypothesis, the states in which it is optimal transmit is shown in the Fig. 4.14. This

includes all states reachable from (j, ri,1, t+ 1). This would imply that it is optimal

to transmit in (j − 1, ri,1, t+ 2). This will give us the following equation:

V
∗,(k)

i,β (j − 1, t+ 2; ν) = c
(k)
i (t+ 1) + qi,1ν + (1− µiqi,1ri,1) βV

∗,(k)

i,β (j − 1, t+ 3; ν)

+ µiqi,1ri,1βV
∗,(k)

i,β (j − 2, t+ 3; ν) (4.73)

Also, it has to be true that it is optimal not to transmit in (j − 2, ri,1, t+ 2).

This is because if it is optimal to transmit in both (j, ri,1, t+ 1) and (j − 2, ri,1, t+ 2),
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Figure 4.14: Illustration of the induction steps

then it must be optimal to transmit in (j − 1, ri,1, t+ 1). This is obtained directly

from the Bellman equations and our induction hypothesis. Therefore, we have the

following equation:

V
∗,(k)

i,β (j − 2, t+ 2; ν) = c
(k)
i (t+ 1) + βV

∗,(k)

i,β (j − 2, t+ 3; ν) (4.74)

Substituting (4.73) and (4.74) in (4.72), we will get the following:

ν >
β (1− µiqi,1ri,1)

1− µiqi,1ri,1

[
µiri,1β

(
V
∗,(k)

i,β (j − 1, t+ 3; ν)− V ∗,(k)

i,β (j − 2, t+ 3; ν)
)]
.

(4.75)

Using (4.71) and (4.75), we will get the following inequality:

V
∗,(k)

i,β (j − 1, t+ 3; ν)−V ∗,(k)

i,β (j − 2, t+ 3; ν) < V
∗,(k)

i,β (j, t+ 2; ν)−V ∗,(k)

i,β (j − 1, t+ 2; ν) .

(4.76)

However, this cannot be true due to (4.67). Therefore, we have proved the result via

contradiction.
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Case 2

Let us assume that it is optimal to transmit in both (j, ri,1, t) and

(j − 1, ri,1, t+ 1) and not optimal to transmit in (j, ri,1, t+ 1). We will prove that

this is not possible by contradiction.

From our induction hypothesis if it is optimal to transmit in (j − 1, ri,1, t+ 1),

then it is optimal to transmit in the states shown in the Fig. 4.14. This would imply

that if it is optimal not to transmit in (j, ri,1, t+ 1), then it is optimal not to transmit

in any (j, ri,1, t
′) ,∀t′ ≥ t+2. This is because if it was true for some t′′, then using the

fact that it is also optimal to transmit in (j − 1, ri,1, t
′′), we can iteratively show that

it is optimal to transmit in (j, ri,1, t
′) , ∀t′ ≥ t+1. Therefore, if the transmission does

not succeed in (j, ri,1, t), then there are no future transmissions. To derive analytic

expressions for this property, let us first define the following term:

Ĥβ(t) :=
∞∑
m=0

c
(k)
i (t+m)βm. (4.77)

Ĥβ(t) is the average cumulative cost if no transmission is performed after time t. This

summation is guaranteed to be finite because of our assumption that ci(t) < δtζ for

large t. Therefore, in this setting, from our previous discussion V
∗,(k)

i,β (j, t+ 1; ν) =

Ĥβ(t). Since we have assumed that it is optimal to transmit in (j, ri,1, t), from

Bellman equations, we have the following inequality:

ν ≤ µiri,1β
(
Ĥβ(t+ 1)− V ∗,(k)

i,β (j − 1, t+ 1; ν)
)
. (4.78)

Since it is not optimal to transmit in (j, ri,1, t+ 1), we can similarly write the follow-
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ing inequality:

ν > µiri,1β
(
Ĥβ(t+ 2)− V ∗,(k)

i,β (j − 1, t+ 2; ν)
)
. (4.79)

Let us look at the term Ĥβ(t+ 1)−V ∗,(k)

i,β (j − 1, t+ 1; ν). We can re-write this term

as follows:

Ĥβ(t+ 1)− V ∗,(k)

i,β (j − 1, t+ 1; ν) = E

 ∞∑
t′=t+2+T (j−1,t+1,j−1;ν)

c
(k)
i (t′)βt

′


−N∗i,β (j − 1, t+ 1, ν) (4.80)

The above equation is obtained by re-writing V
∗,(k)

i,β (j − 1, t+ 1; ν) as follows:

V
∗,(k)

i,β (j − 1, t+ 1; ν) = E

t+1+T (j−1,t+1,j−1;ν)∑
t′=t+1

c
(k)
i (t′)βt

′

+N∗i,β (j − 1, t+ 1, ν) .

(4.81)

Similarly, we can re-write Ĥβ(t+ 2)− V ∗,(k)

i,β (j − 1, t+ 2; ν) as follows:

Ĥβ(t+ 2)− V ∗,(k)

i,β (j − 1, t+ 2; ν) = E

 ∞∑
t′=t+3+T (j−1,t+2,j−1;ν)

c
(k)
i (t′)βt

′


−N∗i,β (j − 1, t+ 2, ν) . (4.82)

By our induction hypothesis and the fact that we are only transmitting when r = ri,1,

T (j − 1, t+ 1, j − 1; ν) and T (j − 1, t+ 2, j − 1; ν) are statistically identical. We

also have that

N∗i,β (j − 1, t+ 1, ν) = N∗i,β (j − 1, t+ 2, ν) . (4.83)

Therefore, using the non-decreasing property of c
(k)
i (t), we get the following inequal-

ity:

Ĥβ(t+ 2)− V ∗,(k)

i,β (j − 1, t+ 2; ν) > Ĥβ(t+ 1)− V ∗,(k)

i,β (j − 1, t+ 1; ν) . (4.84)
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Therefore, a lower bound for ν is greater than its upper bound, which is a contra-

diction. Hence, proved.

4.14 Qualitative Results

4.14.1 Proof of Theorem 4.4.6

First we will prove the following lemma which is useful to prove this theorem.

Lemma 4.14.1. If it is optimal to transmit in the state (j, ri,2, t), then it is optimal

to transmit in any state (j′, ri,2, t
′) such that j′ ≥ j and t′ ≥ t.

Proof. We will show that this holds for the cost function c
(k)
i (·). For this we will use

induction starting from time k and proceeding backwards to t as shown in Fig. 4.13.

Base Case: Note that for t ≥ k the holding cost function is a constant. For

constant holding cost functions, ∆
∗,(k)
i (j, t, ν) is independent of j, see Proposition 1

in [61]. Therefore if it is optimal to transmit in (j, ri,2, t), then it is optimal to

transmit in (j′, ri,2, t) such that j′ ≥ j.

Induction Hypothesis: If it is optimal to transmit in (j, ri,2, t
′) for any j

and t′ ≥ t+ 1, then it is optimal to transmit in (j′, ri,2, t
′′) for any j′ ≥ j and t′′ ≥ t′.

Using the induction hypothesis, we will prove the result for any j at time t.

First note that if it is optimal to transmit in (j, ri,2, t), then it is optimal to transmit

in either (j, ri,2, t+ 1) or (j − 1, ri,2, t+ 1). This can be proved using contradiction,

i.e., we shall assume that it is optimal to transmit in (j, ri,2, t) and it is not optimal

to transmit in (j, ri,2, t+ 1) and (j − 1, ri,2, t+ 1). Now consider another policy in

which we do not transmit in (j, ri,2, t) and we transmit in both (j, ri,2, t+ 1) and
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(j − 1, ri,2, t+ 1), while leaving the remaining actions unchanged with respect to an

optimal policy. Starting with phase j at time t, the average cumulative cost with

this policy is same as the average cumulative cost with the optimal policy, which is

a contradiction as we had assumed that it is not optimal to transmit in (j, ri,2, t+ 1)

and (j − 1, ri,2, t+ 1). Therefore, it is optimal to transmit in either (j, ri,2, t+ 1) or

(j − 1, ri,2, t+ 1).

From induction hypothesis, if it is optimal to transmit in (j, ri,2, t+ 1) or

(j − 1, ri,2, t+ 1), it is also optimal to transmit in (j, ri,2, t+ 1) and (j + 1, ri,2, t+ 1).

If it is optimal to transmit in both (j, ri,2, t+ 1) and (j + 1, ri,2, t+ 1), then it is

optimal to transmit in (j + 1, ri,2, t). To see this, let us re-write ∆∗i (j + 1, t, ν) as

follows:

∆
∗,(k)
i (j + 1, t, ν) = V

∗,(k)

i (j + 1, t+ 1; ν)− V ∗,(k)

i (j, t+ 1; ν) , (4.85)

= (1− µiri)
(

∆
∗,(k)
i (j + 1, t+ 1, ν)

)
+ µiri

(
∆
∗,(k)
i (j, t+ 1, ν)

)
(4.86)

Note that in writing (4.86), we have used the fact that is optimal to transmit in

(j, ri,2, t+ 1), (j + 1, ri,2, t+ 1), (j, ri,1, t+ 1), and (j + 1, ri,1, t+ 1). Since it is opti-

mal to transmit in (j, ri,2, t+ 1) and (j + 1, ri,2, t+ 1), from Bellman equations, we

have that

ν

µiri,2
≤ ∆

∗,(k)
i (j + 1, t+ 1, ν) , (4.87)

ν

µiri,2
≤ ∆

∗,(k)
i (j, t+ 1, ν) . (4.88)

From (4.86), this would imply that ∆
∗,(k)
i (j + 1, t, ν) ≥ ν/µiri,2. This would mean

that it is optimal to transmit in (j + 1, ri,2, t). Since this was proved for any c
(k)
i (·),
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from lemma 4.9.1 it holds for ci(t) too.

The above lemma would imply that ν∗i (j, ri,2, t) ≤ ν∗i (j′, ri,2, t
′). Since j, j′,

t, and t′ are arbitrarily chosen, this would imply that ν∗i (j, ri,2, t) is a non-decreasing

function of j and t. To extend this result to the entire shaded region as shown in

Fig. 4.2, from (4.64), one could show that if it is optimal to transmit in (j, ri,2, t+ 1)

and (j − 1, ri,2, t+ 1), then it is also optimal to transmit in (j, ri,2, t). If we use this

property and the above lemma iteratively, then it can be shown that if it is optimal

to transmit in (j, ri,2, t), then it is optimal to transmit in any state (j′, ri,1, t
′) such

that j′ ≥ j and j′ + t′ ≥ j + t.

4.14.2 Proof of Theorem 4.4.8

We have already proved in Lemma 4.13.2 that for large enough β if it is

optimal to transmit in (j, ri,1, t), then it is optimal to transmit in all states reachable

from (j, ri,1, t). This would also imply that it is optimal to transmit in all states

(j, ri,1, t
′) such that t′ ≥ t. Hence, ν∗i,β (j, ri,1, t) ≤ ν∗i,β (j, ri,1, t

′). This would imply

that

lim
β→1

(1− β) ν∗i,β (j, ri,1, t) ≤ lim
β→1

(1− β) ν∗i,β (j, ri,1, t
′) . (4.89)

Hence, the result is proved.

4.14.3 Proof of Theorem 4.4.3

We will show that this property holds for truncated holding cost functions

c
(k)
i (·) and c

(k)
l (·). To prove this result for any k, we will use induction.
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Base Case: By the definition of ci(t) and cl(t), we have that c
(k)
i (t) ≤

c
(k)
l (t). This would also imply that ci(k) ≤ cl(k). Using the result from [61] for

constant holding costs, when the cost functions are c
(k)
i (·) and c

(k)
l (·), we get that

∆
∗,(k)
i (j, k, ν) ≤ ∆

∗,(k)
l (j, k, ν). Hence, base case is true.

Induction Hypothesis: Assume that ∆
∗,(k)
i (j, t′, ν) ≤ ∆

∗,(k)
l (j, t′, ν) for all

t+ 1 ≤ t′ ≤ k.

We will show that ∆
∗,(k)
i (j, t, ν) ≤ ∆

∗,(k)
l (j, t, ν). Note that from (4.64) (with

β = 1), ∆
∗,(k)
i (j, t, ν) is an increasing function of ∆

∗,(k)
i (j, t+ 1, ν) and

∆
∗,(k)
i (j − 1, t+ 1, ν). Then from our induction hypothesis it follows that ∆

∗,(k)
i (j, t, ν) ≤

∆
∗,(k)
l (j, t, ν). Since we have proved it for truncated holding cost functions, from

Lemma 4.9.1 it follows that the result holds for ci(·) and cl(·).

4.15 Quantitative Results

4.15.1 Proof of Theorem 4.5.1

This is a special case with qi,1 = 1 and µi = 1. We have already proved that

ν∗i (j, ri, t) =∞,∀t and j. In the proof of Theorem 4.4.2, we have given a constructive

proof to study the asymptote of ν∗i,β (j, ri, t) (with respect to β) in which we have

shown that the optimal policy and the policy in which transmission is done only in

ri,1 have the same asymptote when we set ν = ν∗i,β (j, ri, t). In this setting, we have

µiri = 1, i.e., all transmissions are successful in completing a phase with probability

one. Substituting this in (4.61), we get

ξ∗i (j, ri,1, t) =
1

j
ci(t+ j). (4.90)
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Note that in writing the above equation, we have used the following expression for

H†i,1 (j, t), which was obtained because µiri = 1:

H†i,1 (j, t) =

t+j∑
t′=t

ci(t
′). (4.91)

4.15.2 Proof of Theorem 4.5.2

From Thm. 4.4.6, if it is optimal to transmit in (1, ri,2, t), then it is optimal to

transmit in (1, ri,2, t
′) ∀t′ ≥ t. From Bellman equations, if it is optimal to transmit in

(1, ri,2, t
′), then it is also optimal to transmit in (1, ri,1, t

′). Therefore, if it is optimal

to transmit in (1, ri,2, t), then it is optimal to transmit in all states in future. To find

ν∗i (1, ri,1, t), we have to solve the following equation in ν:

ν = µiri,2V
∗
i (1, t+ 1; ν) . (4.92)

Since it is optimal to transmit in all future states we can re-write V
∗
i (1, t+ 1; ν) as

follows:

V
∗
i (1, t+ 1; ν) =

∞∑
j=1

ci(t+ j) (1− µiri)j−1 +
ν

µiri
. (4.93)

Substituting in (4.92), we get the expression for ν∗i (1, ri,1, t).

4.15.3 Proof of Theorem 4.5.3

Primary indices: It is difficult to find an exact expression for the primary

index when R(t) 6= ri,1 in a multi-state i.i.d. service rate setting with phase-type

distribution for jobs sizes. In any state (j, r, t) we know from the Bellman equa-

tions (4.7) that if it is optimal to transmit in r = ri,l, then it is optimal to transmit
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when r = ri,l′ , l
′ = 1, 2, . . . , l − 1. However, we do not know if it is optimal to

transmit it when Ri(t) = ri,l for the future states.

We shall approximate ν∗i (j, ri,l, t) with a lower bound. Observe that if it is

optimal to transmit in state (1, ri,l, t+ j − 1), then it is also optimal to transmit in

state (j, ri,l, t). This directly follows from Thm. 4.4.62. Therefore, ν∗i (1, ri,l, t+ j − 1)

is a lower bound for ν∗i (j, ri,l, t).

Next we shall discuss computation of ν∗i (1, ri,l, t+ j − 1). For j = 1, we have

that

∆∗i (1, t, ν) = V
∗
i (1, t; ν) = H∗i (1, t, ν) + νN∗i,1 (1, t, ν) . (4.94)

If it is optimal to transmit in (1, ri,l, t), then it is optimal to transmit when the rate

is greater than or equal to ri,l in all future states from Lemma 4.14.1. However, we

cannot say if it is optimal to transmit in future states with service rates strictly lower

that ri,l. Therefore, we shall find a lower bound for V
∗
i (1, t+ j − 1; ν) and use to find

the fixed point of µiri,lV
∗
i (1, t+ j − 1; ν). This fixed point using the lower bound

of V
∗
i (1, t+ j − 1; ν) will be a lower bound for ν∗i (1, ri,l, t+ j − 1). First we shall

derive a lower bound for H∗i (1, t, ν). For any policy, the average holding cost is lower

bounded by the cost under the policy in which transmission is always performed

irrespective of the channel state. Therefore, we have that

H∗i (1, t+ j − 1, ν) ≥
∞∑
m=0

ci(t+ j − 1 +m)

(
1− µi

L∑
n=1

qi,nri,n

)m

. (4.95)

2One can easily extend the derivation for the two state i.i.d. channel to a multi-state i.i.d.
channel setting and we state the result without proof.

165



Since we know that it is optimal to transmit when the rate is greater than or equal

to ri,l , we can lower bound the term N∗i,1 (1, t, ν) as follows:

N∗i,1 (1, t, ν) ≥
∑l

l′=1 qi,l′

µi
∑l

l′=1 qi,l′ri,l′
. (4.96)

Solving the following equation in ν gives the required expression:

ν = µiri,l

(
∞∑
m=0

ci(t+ j − 1 +m)

(
1− µi

L∑
n=1

qi,nri,n

)m

+
ν
∑l

l′=1 qi,l′

µi
∑l

l′=1 qi,l′ri,l′

)
. (4.97)

Secondary indices: We have computed the expression for secondary indices

for i.i.d. multi-state channel in (4.61). This gives (4.21). If we transmit only when

Ri(t) = ri,1, then probability of completing a phase in any given slot is qi,1µiri,1.

Using this and the definition of H†i,1 (j, t) one could derive equations (4.22)–(4.25).
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Chapter 5

Resource Allocation Strategies and HARQ

Optimization for URLLC Traffic

5.1 Introduction

5G wireless networks are expected to support a new class of traffic called Ultra

Reliable Low Latency Communication (URLLC) for appplications like industrial

automation, mission critical traffic, virtual reality, etc., see e.g., [11–16]. URLLC

traffic have stringent packet latency requirement of less than 1 msec along with very

high reliability of 99.999 %. The design of wireless systems subject to such stringent

requirements is a challenging task which is the focus of this chapter1. Specifically we

consider downlink transmission of URLLC traffic in an Frequency Division Duplex

(FDD) based system with separate frequency bands for uplink and downlink.

The Quality of Service (QoS) requirements URLLC traffic places on the Radio

Resource Management (RRM) layer of the protocol stack are specified as follows:

A packet of size L bits must be successfuly delivered to the receiver by the Base

Station (BS) within a end-to-end delay of no more than d seconds with a probability

of at least 1 − δ. The delay experienced by a packet includes queuing delay at

1Publications based on this chapter: Arjun Anand and Gustavo de Veciana, ”Resource Allocation
and HARQ Optimization for URLLC Traffic in 5G Networks”, submitted to IEEE JSAC, arxiv
version [70]
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the BS, transmission duration, receiver processing delay, packet decoding feedback

transmission duration, and time to make further re-transmissions as needed. Typical

values of QoS parameters mentioned in the literature are L = 50 bytes, d = 1 msec,

and δ = 10−6, see [16] for more details. This chapter investigates how design choices

impact the the URLLC capacity, i.e., the maximum URLLC load the system can

support and how this is affected by the stringency of the QoS requirements. In

particular, the chapter addresses the following three inter-related questions:

1. How does resource allocation in the time-frequency plane of an Orthogonal

Frequency Division Multiple Access (OFDMA) based system affect URLLC

‘capacity’?

2. How does URLLC ‘capacity’ scale with L, d, δ and system bandwidth W?

3. What is the effect of Forward Error Correction (FEC) and Hybrid Automatic

Repeat Request (HARQ) schemes on the URLLC ‘capacity’?

The answers to the above questions are inter-related, for example, the scaling of

URLLC capacity with system bandwidth W depends on the FEC scheme and HARQ

schemes used.

A characterization of the impact of FEC and HARQ on URLLC capacity is

important because one can then optimize the FEC and HARQ schemes to maximize

the URLLC capacity. For example, one can optimize the appropriate number of

re-transmissions and the target decoding failure probability after each stage. The

maximum number of re-transmissions is constrained by the deadline d. Once the
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target decoding failure probability is known for each stage one can choose the coding

rate appropriately which in turn affects the capacity of the system. Since URLLC

packets are generally small one cannot use the large blocklength Shannon capacity

results to analyze the system. Thus we shall use the channel capacity results for

finite blocklength regimes given in [1] for our analysis.

Another important aspect which needs careful consideration is how resources

are allocated to URLLC transmissions. 5G standards are OFDMA based and hence,

users’ packets are allocated different parts of a time-frequency plane for data trans-

mission. To send a URLLC packet, we can use a ‘tall’ transmission which uses a large

bandwidth for a short duration or a ‘wide’ transmission, i.e., small bandwidth over

a longer duration. If we use a ‘tall’ transmission, the number of concurrent trans-

missions possible will decrease which may affect the capacity for concurrent trans-

missions. However, a ‘wide’ transmission will take longer to complete and reduce

the number of re-transmissions possible before the delay deadline expires. Hence,

it may be desirable to implement a robust coding (with more redundancy bits) for

‘wider’ transmissions. This chapter proposes an analytical framework to capture and

optimize trade-offs between ‘tall’ and ‘wide’ transmissions.

In addition, users may have different wireless channel conditions due to vary-

ing distances from the Base Station and fading. Therefore, different users may require

different amounts of resources to reliably send L bits and hence, the system capacity

depends on the geographical distribution of users in the cell. To summarize, wireless

system design for URLLC traffic has to tackle the complex dependencies between

L, d, δ, W , FEC and HARQ mechanisms, and the resource allocation to URLLC
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transmissions.

5.1.1 Related Work

URLLC traffic has recently received a lot of attention. The 3GPP standards

committee has recognized the need for a new OFDMA based frame structure to sup-

port URLLC traffic, which is different from that used for enhanced Mobile Broadband

(eMBB) traffic, see [16] for a discussion of various proposals. In particular to meet

the stringent latency constraints of URLLC traffic, they have proposed a mini-slot

level access to radio resources for URLLC traffic with mini-slot durations of 0.125−2

msec. This is different from the standard slot level access to radio resources for eMBB

traffic where a slot has a duration of 1 msec or higher. The use of flexible traffic

dependent slot durations and resource allocation has also been proposed in [14].

System level designs for URLLC networks have been explored in [17, 71–74].

In [74], the authors discuss information theoretic results on sending short packets.

They also discuss protocols to transmit small length packets between two nodes, in

a downlink broadcast setting and for random access based uplink. Their protocol for

sending small packets reliably is related to our work, however, they do not focus on

optimizing the resources required in an OFDMA based system supporting stochastic

loads. In [71], the authors have covered various aspects of URLLC traffic like the

overhead due to packet headers, decoding failure probability of URLLC transmis-

sions, Channel State Information (CSI) acquisition at the transmitter. They have

also proposed using interface diversity, grant-free access for uplink and device-to-

device communication (D2D) as possible solutions to achieve the stringent latency
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requirements of URLLC traffic. In [72], the authors discuss QoS requirements for

URLLC traffic. They also specify various methods to share resources among URLLC

and other types of traffic. In [73], the authors study the effect of physical layer wave-

forms, OFDMA numerology, and FEC schemes on the URLLC capacity via simu-

lation. They have proposed the use of Tail Biting Convolution Codes (TBCC) to

achieve a reliability of 10−9.

The work in [17] is most closely related to ours. The authors have have

used a queue based model and simulations to study the design of wireless systems

for supporting URLLC traffic. In particular they introduce simple M/M/m/k and

M/D/m/m queuing models to study trade-offs among system capacity, latency re-

quirements and reliability for the worst case scenario where all users are at the cell

edge. They have observed that decreasing the Round Trip Time (RTT) and Trans-

mit Time Interval (TTI) increases the URLLC capacity. They have also considered

trade-offs among system capacity, reliability, and latency requirements. However,

in the analysis of system trade-offs, they have only considered packet loss due to

blocking at the BS and have not explicitly considered the effect of decoding failures

and re-transmissions on system capacity. Also, they do not consider the design of

FEC and HARQ. Our work is inspired by this initial work.

The above mentioned work [17] also focussed on multiplexing of enhanced Mo-

bile Broadband (eMBB) and URLLC traffic. They showed that allocating dedicated

frequency bands to URLLC and eMBB traffic is inefficient, and have advocated a

wide-band resource allocation for both URLLC and eMBB traffic. In addition to [17],

there are few other works [18,38] which address multiplexing URLLC and eMBB traf-
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fic. In [38], we have also considered the multiplexing of eMBB and URLLC traffic

via puncturing/superposition of eMBB traffic and developed joint scheduling policies

for eMBB and URLLC. We will explain this in detail in Chapter 6

Many works focus on the industrial applications of URLLC traffic and exhibit

simulation based studies for such systems, see [11–13]. Some works, e.g., [75, 76]

focus exclusively on physical layer aspects like modulation and coding, fading and

link budget analysis. However, the above mentioned works do not holistically address

the design of wireless systems supporting URLLC traffic.

5.1.2 Our Contributions

In this chapter we shall consider a simple Poisson model for URLLC packet

arrivals. In line with the previous works, we shall also assume a wide-band allocation

of resources to URLLC traffic by considering systems where such traffic can preemp-

tively puncture/superpose URLLC packets upon previously scheduled eMBB traffic

when necessary. We thus assume URLLC packets are scheduled immediately upon

arrival. Such a model is reasonable due the stringent latency and reliability require-

ments of URLLC traffic. Based on this model this chapter makes the following key

contributions.

1. ‘Tall’ vs ‘Wide’ transmission: We first consider a one-shot transmission set-

ting where URLLC packets are transmitted once and there are no further

re-transmissions. We model the Base Station (BS) as a multi-class queuing

system where each class of users corresponds to users with same quantizeed

SINR. We show that extending URLLC transmissions in time (while reducing
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the corresponding bandwidth usage) subject to deadline constraints increases

the URLLC load that can be supported. Hence, ‘wide’ transmissions in time

which take least amount of bandwidth to meet the delay deadline and reliability

requirements are optimal.

2. URLLC Capacity scaling: Using an extension of the classical square-root

staffing rule, we characterize the minimum overall system bandwidth to sup-

port a given URLLC load. Leveraging the capacity results in [1] under finite

blocklength regime to study the scaling of URLLC capacity as a function of

SINR, W , L, d and δ.

3. Modeling and Performance Analysis: We extend the one-shot transmission

model to incorporate FEC and HARQ schemes which allow re-transmissions if

needed. The entire downlink system, the BS and associated users are modeled

as Jackson queuing network. We derive closed form expressions for various

important parameters of the system like average packet delay, distribution of

the number of packets in the system, average bandwidth utilization etc. Our

framework can also quantify the effect of a given FEC and HARQ scheme on

the URLLC capacity.

4. Optimization of FEC and HARQ: Finally we consider the optimization of

HARQ and FEC schemes to maximize URLLC capacity. Instead of maximizing

URLLC capacity to ease analysis we focus on the dual problem of minimizing

the bandwidth required to support a given URLLC load. We consider two

HARQ and FEC schemes, namely, repetition coding with homogeneous trans-
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missions and heterogeneous transmissions. In both these schemes, a packet

is re-transmitted and decoded independently of previous transmissions until it

is successfully decoded or the maximum number of re-transmission attempts

have been completed. In repetition coding with homogeneous transmissions,

the same bandwidth and codeword are used for all re-transmissions. The per-

formance under this scheme can be viewed as a lower bound on the Chase com-

bining. In repetition coding with heterogeneous transmissions, the bandwidth

and the codeword length are allowed to change across re-transmissions. These

schemes provide a lower bound on the Incremental Redundancy (IR) HARQ

schemes where joint decoding is performed based on all attempted transmis-

sions. In the case of repetition coding with homogeneous transmissions, we

find the following two observations:

a) At low loads, the required system bandwidth W is minimized when we use

only one transmission with appropriate coding to meet the reliability require-

ment while spreading out the transmission in time as much as possible without

violating the deadline d. This holds for a range of SINRs and packet sizes.

b) At high loads, the problem of the required system bandwidth W reduces to

minimizing the mean bandwidth utilization. The maximum number of allowed

re-transmissions under the optimal scheme is more than one and the block

length required depends on L, SINR and d. In general at low SINRs the

maximum number of re-transmissions required under the optimal scheme is

more than the corresponding number at high SINR.

In the case of repetition coding with heterogeneous transmissions, we have the
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following two findings:

a) Increasing the number of re-transmissions beyond two does not provide any

additional benefit in terms of minimizing the bandwidth required to support

URLLC traffic.

b) The optimal scheme has a first transmission with probability of failure of

10−2 and a second transmission with very high reliability to meet the required

reliability constraint.

5.1.3 Organization

The chapter is organized as follows. In Sec. 5.2 we explain our one-short

transmission model and the important results under this model. In Sec. 5.3 we

extend the one-shot transmission model to incorporate of FEC and HARQ schemes.

In Sec. 5.4 we discuss the optimization of FEC and HARQ schemes to maximize

URLLC capacity followed by our conclusions in Sec. 5.5.

5.2 Performance Analysis: One-Shot Transmission

In this paper we focus on downlink transmissions in a wireless system with

a single Base Station serving a dynamic population of URLLC users and their asso-

ciated packets. The wireless system is OFDMA based where different parts of the

time-frequency plane are allocated to URLLC users’ packets based on transmission

requests. A URLLC packet may suffer from queuing delays at the BS, transmission

and propagation delays, and receiver processing delays. The system should be engi-

neered such that the QoS requirements of URLLC traffic are satisfied, i.e., a URLLC
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packet of size L bits must be delivered successfully to the receiver within a total delay

of d seconds with a success probability of at least 1− δ. We start by introducing our

system model.

5.2.1 System Model– One Shot Transmission

We consider a system operating in a large aggregate bandwidth of say W

Hz2. For simplicity we ignore the slotted nature of the system. To model the ‘near

far’ effects in wireless systems, we shall consider a multi-class system with C classes

of users where each class represents users with same SINR3. The aggregate traffic

generated at the BS by class c users is modeled as a Poisson process with rate λc

packets/sec. Define the vector of arrival rates λ := (λ1, λ2, . . . , λC). Let SINRc

denote the SINR of a class c user’s packets.

We initially assume that each URLLC packet is transmitted once. We will call

this the one-shot transmission model. We will extend this to include re-transmissions

in Sec. 5.3. A packet destined to a class c user requires rc channel uses in the time-

frequency plane to transmit its codeword. The codeword for a transmission is chosen

such that the decoding is successful with probability of at least 1 − δ. A URLLC

packet of class c is allocated a bandwidth of hc for a period of time sc. These values are

fixed and related to rc by κschc = rc, where κ is a constant which denotes the number

of channel uses per unit time per unit bandwidth of the OFDMA time-frequency

2This need not be a contiguous bandwidth, but result from the use of carrier aggregation across
disjoint segments

3Ideally SINR is a continuous random variable, however, in practical systems the channel quality
feedback from users are quantized to several discrete levels.
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plane. The value of κ depends on the OFDMA frame structure and numerology.

Since URLLC packets have a deadline of d seconds, we shall always choose sc ≤ d.

For ease of analysis we shall also assume that for any class c, d is an integer multiple

of sc. Thus following vectors which characterize the system: r := (r1, r2, . . . , rC),

s := (s1, s2, . . . , sC), h := (h1, h2, . . . , hC) and ρ := (ρ1, ρ2, . . . , ρC), where ρc := λcsc.

We shall make the following key assumption on the system operation.

Assumption 1. ( Immediate scheduling ) A URLLC packet transmission re-

quest is scheduled immediately upon arrival if there is spare bandwidth is available.

Otherwise the packet is lost. New packets do not preempt ongoing URLLC packet

transmissions.

Given the stringent latency requirements, the immediate scheduling assump-

tion is a reasonable design choice.

5.2.2 Infinite System Bandwidth

Initially let us consider a system with infinite bandwidth, i.e., W = ∞. In

such a system the base station can be modeled as a multi-class M/GI/∞, see [77] for

more details. Let N := (N1, N2, . . . , NC) be a random vector denoting the number of

active transmissions when the system is in steady state. For any n ∈ ZC+, let π(n) :=

P (N = n) be the stationary distribution. Using standard results for M/GI/∞

queues (see [33]) one immediately gets the following results:

π (n) = ΠC
c=1

(
ρncc
nc!

)
exp (−ρc) , (5.1)
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and the average bandwidth utilization is given by

E
[
hNT

]
= hρT .

Observe that the number of active transmissions of any class c is Poisson distributed

with mean ρc. Thus ρc as the average load of class c traffic.

5.2.3 Effect of Finite System Bandwidth

Although in practice the available system bandwidth W is not infinite but

possibly large. We will consider a case where a wide-band allocation W is avail-

able to transmit URLLC traffic. This might be made available through a punctur-

ing/superposition scheme between URLLC and eMBB traffic. see e.g., [38]. Even

large bandwidth systems can occasionally suffer from congestion due to the stochastic

variations in the arrival process and occasionally there may not be enough spare band-

width to transmit a new URLLC packet. In such cases we shall assume that packets

are blocked and dropped from the system. Let N(t) := (N1(t), N2(t), . . . , NC(t)) be

a random vector denoting the number of packets of each class in the system at time

t. A class c packet arriving at time t is blocked if the following condition holds:

hc +
C∑
c′=1

hc′Nc′(t) > W. (5.2)

We address the following two questions in this section:

1. How do the choices of h and s affect the blocking of URLLC packets?

2. What is the required system bandwidth W given a desired packet reliability δ?
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To study the effect of h and s on the blocking of URLLC traffic, we shall

first consider the blocking probability of a typical class c packet. Observe that

the blocking probability experienced by packets of a class depends on h, s (of all

classes), λ and W . Let pb,c (h, s,λ,W ) be the blocking probability experienced by a

typical class c packet arrival. The fraction of class c traffic admitted is then given

by λc (1− pb,c (h, s,λ,W )). Hence, lowering the blocking probability increases the

admitted URLLC traffic. The following result which is proved in Appendix5.5.1 gives

us the key insight on optimal choices of h and s for URLLC packet transmissions.

Theorem 5.2.1. For a given h and s, positive integer q, and i ∈ {1, 2, . . . , C} define

h′ := (h1, h2, . . . , hi/q, . . . , hC) and s′ := (s1, s2 . . . , qsi, . . . , sC). Under the one-shot

transmission model and Assumption 1, if ρi < 1, then for any c ∈ {1, 2, . . . , C}, there

exists W̃c such that for W > W̃c we have that pb,c (h, s,λ,W ) ≥ pb,c (h′, s′,λ,W ).

Remarks: Observe that in wide-band systems scaling hi and si by an integer q

as required in the above theorem increases the number of concurrent transmissions of

class i and is also beneficial for all classes (including class i). To understand this let

us look at the mean and variance of the bandwidth utilization of class i in a system

with parameters h′ and s′ and infinite bandwidth. The average bandwidth utilization

of class i, given by hiλisi, does not change with scaling factor q, as the decrease

in bandwidth of class i is compensated by corresponding increase in the average

number of users of class i. However, the variance of the bandwidth utilization, given

by 1
q
h2
iλisi decreases with q. Therefore, the congestion events occur less frequently

and the system admits more traffic. Note that this observation is in line with the
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previous work on URLLC traffic (see [?]) where the emphasis is on such events

corresponding to the ‘tail’ of URLLC traffic demand. Further, the assumption ρi < 1

is not restrictive as one can divide a class into various ‘virtual’ sub-classes such that

the average load in each sub-class is less than unity.

Therefore, one should scale si with an integer q such that qsi = d. Such an

integer q exists because of our assumption that d is an integer multiple of si. Hence,

this motivates the following optimal choices of si and hi:

si = d and hi =
ri
κd
. (5.3)

To summarize, one might think that ‘tall’ transmissions are better as they take less

time, however, according to the above result it is better to decrease the bandwidth

per transmission and spread out the transmissions as ‘wide’ as possible in the time

axis, i.e., increase si (and decrease hi) as long as the deadline is not violated.

To meet the reliability requirements of URLLC traffic, the system bandwidth

W must be chosen such that the probability of blocking of a typical URLLC packet

arrival is of the order of δ. To that end we shall use a multi-class extension of the

classical square-root staffing rule (see [33] for more details) to relate W , r, λ and δ.

Under this dimensioning rule, to support a URLLC load of λ with reliability δ for a

given r, the system bandwidth should satisfy the following condition:

W ≥ ζmean (r) + c(δ)
√
ζvariance (r), (5.4)

where c(δ) = Q−1 (δ), Q (·) is the Q-function, ζmean (r) :=
∑C

c=1 λc
rc
κ

is the mean

bandwidth utilization, and ζvariance (r) :=
∑C

c=1 λc
r2
c

κ2d
is the variance of the bandwidth

utilization.
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Next we study the URLLC capacity scaling with respect to W , SINRc, d,

and δ. This requires a model relating rc, SINRc, and δ which is described in the

next subsection.

5.2.4 Finite Block Length Model

Since the URLLC packet sizes are typically small, we shall use the capacity

results for the finite blocklength regime developed in [1]. In an AWGN channel the

number of information bits L that can be transmitted with a codeword decoding

error probability of p in r channel uses is given by

L = rC(SINRc)−Q−1 (p)
√
rV (SINRc) + 0.5 log2 (r) + o(1), (5.5)

where C(SINRc) = log2 (1 + SINRc) is the AWGN channel capacity under infinite

blocklength assumption and V (SINRc) = (log2(e))2
(

1− 1
(1+SINRc)

2

)
. Using the

above model one can approximate r as a function of p as follows:

r ≈ L

C(SINRc)
+

(Q−1 (p))
2
V (SINRc)

2 (C(SINRc))
2

+
(Q−1 (p))

2
V (SINRc)

2 (C(SINRc))
2

√
1 +

4LC(SINRc)

V (SINRc) (Q−1 (p))2 . (5.6)

A derivation of this approximation is given in Appendix5.6. We can now write rc as

a function of δ, L and SINRc for various user/packet classes.

5.2.5 Capacity Scaling

We shall define the single class URLLC capacity as follows.
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Definition For any class c, its single class URLLC capacity λ∗c is the maximum

URLLC arrival rate that can be supported by the system while satisfying the QoS

requirements if only class c traffic is present in the system.

Note that λ∗c is a function of W , d. δ, SINRc, and L. We would like to

study the scaling of λ∗c with respect to various system parameters. Recall that for

f, g : R+ → R+, we say that f(x) ∼ Θ (g(x)) if there exist xo, a, and b such that

a ≤ b and for x ≥ xo we have that

ag(x) ≤ f(x) ≤ bg(x). (5.7)

The following result summarizes the scaling of λ∗c with various system param-

eters. The proof of the theorem below is given in Appendix5.7.

Theorem 5.2.2. Under one-shot transmission model and Assumption 1 we have

that

1. λ∗c ∼ Θ
(
W −

√
W
)

.

2. For SINRc � 1, we have that λ∗c ∼ Θ
(

log2 (SINRc)−
√

log2 (SINRc)
)

.

3. λ∗c ∼ Θ
(

1− 1√
d

)
.

4. λ∗c ∼ Θ
(

1
− log2(δ)

)
.

Remarks: Observe that λ∗c scales as a strictly concave function of SINRc,

d, and δ. Hence, while increasing SINRc and d or decreasing δ one suffers from

diminishing returns. However, as expected the scaling of λc with respect to W does
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not suffer from diminishing returns. For large W , λ∗c increases linearly with W which

is the best one could hope.

5.3 Performance Analysis with Multiple Transmissions

In this section we shall extend the system model to include re-transmissions

of a packet so that the effects of HARQ and FEC schemes are captured. We shall

first explain the extension of our system model.

5.3.1 System Model– Multiple Transmissions

Similar to the one-shot transmission model in Sec. 5.2, we shall consider a

multi-class system with Poisson arrivals for URLLC traffic, where a class represents

users with same SINR. However, as opposed to a one-shot transmission model, in this

section we shall permit packet re-transmissions. Suppose a class c packet can have

up to mc transmission attempts after which it is dropped. We index transmission

attempts by m = 1, 2, . . . ,mc, where m = 1 corresponds to the initial transmission

and any m > 1 corresponds to a re-transmission. A class c packet in the mth

transmission attempt is assumed to require rc,m resources in the time-frequency plane.

The bandwidth used in mth transmission hc,m, and the time taken to transmit sc,m,

are related to rc,m by hc,msc,m = rc,m. For any m ∈ {1, 2, . . . ,mc}, define r
(m)
c :=

(rc,1, rc,2, . . . , rc,m). After every transmission the intended receiver sends a one bit

feedback to the BS indicating success/failure of the packet decoding process. In

general, the probability of decoding failure of a class c packet after mth transmission

attempt, denoted by pc,m

(
r

(m)
c

)
, is a function of r

(m)
c . A decoding failure for a class c
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packet occurs if the packet has not been successfully after mc transmission attempts.

It happens with probability Πmc
m=1pc,m

(
r

(m)
c

)
. Thus one would design system such

that Πmc
m=1pc,m

(
r

(m)
c

)
≤ δ. Therefore, the values of rc,m, pc,m

(
r

(m)
c

)
and mc jointly

characterize the FEC and HARQ scheme used for class c users.

The feedback on success/failure of a transmission will incur propagation de-

lays, receiver processing delay, and the uplink channel access and scheduling delays.

We shall assume that the uplink channel is well provisioned so that there are no

scheduling and channel access delays. Therefore, the total feedback delay includes

only the propagation delay and the receiver processing delay which we shall denote

by a deterministic value fc for a class c user. A class dependent feedback delay is con-

sistent with our notion that classes denote users with similar channel characteristics,

for example, users at the cell edge suffer from longer feedback delays.

For any class c, define the following vectors:

sc := (sc,1, sc,2 . . . , sc,mc) , hc := (hc,1, hc,2 . . . , hc,mc) , and ρc := (ρc,1, ρc,2 . . . , ρc,mc) ,

(5.8)

where ρc,1 := λcsc,1 and for any m > 1, ρc,m := λc

(
Πm−1
k=1 pc,k

(
r

(k)
c

))
sc,m. Using

the above definitions, we further define the following vectors capturing the overall

system’s designs and loads.

s := (s1, s2, . . . , sC) , h := (h1,h2, . . . ,hC) , and ρ := (ρ1,ρ2, . . . ,ρC) . (5.9)

We further let m := (m1,m2, . . . ,mC) denote vector of maximum transmission at-

tempts per class.

184



Next we shall also revise the immediate scheduling assumption for the setting

with re-transmissions.

Assumption 2. (Immediate scheduling ) An URLLC packet transmission re-

quest, initial or a re-transmission, is admitted and scheduled for transmission imme-

diately if there is spare bandwidth available to transmit it without preempting ongoing

URLLC transmissions. Otherwise the packet is lost.

5.3.2 Infinite Bandwidth System

Once again let us initially assume that the system bandwidth W is infinite

and there is no blocking of packets. In the multiple transmission model the BS has

to wait for the feedback from the intended receiver before re-transmitting a packet.

We model this system with feedback using a network of two multi-class M/GI/∞

queues, one modeling BS transmissions and the other modeling the packets awaiting

feedback, which we refer to as the feedback queue. This is discussed in detail below.

Base Station queue: Similar to Sec. 5.2, the BS is modeled as a multi-class

M/GI/∞ queue where each class corresponds to a set of users with the same SINR.

However, unlike the one-shot transmission model, we further divide each class into

various sub-classes to keep track of the re-transmissions. In particular each class c

is further divided into mc sub-classes with the sub-classes indexed by various stages

of packet (re)transmission. A class c packet which is being transmitted for the mth

time belongs to mth sub-class and it will require hc,m bandwidth and take sc,m time

to complete transmission. Further, because of our assumption of infinite bandwidth,
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Figure 5.1: A wireless system with a single class of URLLC users modeled as a
network of two M/GI/∞ queues. Up to two transmissions attempts are allowed
for all packets, i.e., m1 = 2. Packets of sub-classes one and two are shown by red
and blue colors, respectively. Observe that a packet will change its sub-class after a
decoding failure.
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the BS can transmit any number of packets from any of classes concurrently, i.e., the

number of servers in the queuing model is ∞.

Feedback queue: We model the packet decoding and feedback sending pro-

cesses via a multi-class M/GI/∞ queue which uses the same notion of a class and

sub-class in the feedback queue as in the BS queue. For a class c packet, the feed-

back associated with the decoding of a class c packet is received at the BS after fc

seconds. Based on the success/failure of the decoding process the BS then decides to

re-transmit it or not. We abstract this process as follows. A class c packet after its

mth transmission is routed from the BS queue to the feedback queue where it spends

fc seconds in the feedback queue. Note that the packet retains its class and sub-class

indices in the feedback queue. After fc seconds in the feedback queue it is then routed

to the sub-class m + 1 of class c with probability pc,m

(
r

(m)
c

)
(decoding failure) or

leaves the system with probability 1 − pc,m
(
r

(m)
c

)
(successful decoding). If a class

c packet in mth sub-class is routed to the BS, then it changes its sub-class index to

m + 1, i.e., it is being transmitted for (m + 1)th time. This process repeats until

the packet is successfully decoded, or mc transmission attempts are made, whichever

happens first. Thus a class c packet always leaves the system after mc transmissions

irrespective of the outcome of the decoding process of the mth
c transmission. A queu-

ing network consisting of a BS and a single class of URLLC traffic is illustrated in

the Fig. 5.1.

Observe that it is assumed that any number of URLLC packets can be pro-

cessed in parallel in the feedback queue, and hence it can also be modeled as an

M/GI/∞ queue. This is a reasonable assumption because the packet decoding pro-
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cess across users are independent of each other and done in parallel and we assume

sufficient uplink bandwidth is provisioned for feedback from various users.

The queuing model described previously can be used to study various impor-

tant properties of the multi-class system which are given below. Let N be a random

vector denoting the number of packets in different stages of re-transmissions of all

classes in the steady state, i.e.,

N := (N1,1, N1,2 . . . , N1,m1 , . . . Nc,1, Nc,2 . . . , Nc,mc , . . . , NC,1, NC,2 . . . , NC,mC ). The

steady state value probability distribution denoted by π(n) is given by:

π (n) = ΠC
c=1Πmc

m=1

(
ρ
nc,m
c,m

nc,m!

)
exp (−ρc,m) , (5.10)

where ρc,m is the average system load of class c packets in sub-class m. The average

packet transmission delay for class c packets, denoted by τc, is given by the following

expression

τc =
1

λc

mc∑
m=1

ρc,m + fc

(
1 +

mc∑
m=1

Πm
j=1pc,j

(
r(j)
c

))
, (5.11)

and the average bandwidth utilized is given by E
[
hTN

]
= hTρ.

5.3.3 Effect of Finite System Bandwidth

Similar to the case of one-shot transmission, a finite bandwidth system may

suffer from congestion due to stochastic variations in loads and may have to block an

immediate packet transmission request (a new packet or a re-transmission). Hence,

we have to choose W appropriately to meet the reliability requirements. A natural

extension to the result in (5.4) for the bandwidth requirement of the multi-class
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system is as follows. Given a target blocking probability of δ, W is chosen such that

W ≥ ηmean + c(δ)
√
ηvariance, (5.12)

where

ηmean :=
C∑
c=1

λc

(
rc,1 +

mc∑
m=2

(
Πm−1
k=1 pc,k

(
r(k)
c

))
rc,m

)
,

ηvariance :=
C∑
c=1

λc

(
hc,1rc,1 +

mc∑
m=2

(
Πm−1
k=1 pc,k

(
r(k)
c

))
hc,mrc,m

)
.

This directly follows by applying the square-root staffing rule to multi-class systems.

The first term ηmean again represents the mean bandwidth utilization. The term

ηvariance represents the variance of the bandwidth utilization. Observe that while

ηmean only depends on r, each term in ηvariance is multiplied with hc,m and thus is

affected by the selected transmission modes across re-transmissions.

For mc = 1, we have shown in Thm. 5.2.2 that it is advantageous in terms

of blocking probability to decrease hc,m (or increase sc,m) subject to the deadline

constraint. Proof of the above result is not easily extendable to the case for mc > 1.

However, this result gives us a key insight on the choice of hc,m. A natural extension

of this insight to higher values of mc is to increase the transmission times of all stages

such that the cumulative transmission time of mc stages and feedback delays add up

to d, i.e.,
mc∑
m=1

sc,m +mcfc = d. (5.13)

Based on the previous discussion we shall list the various steps by which one

can dimension a multi-class system appropriately to support URLLC traffic.
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1. Choose r and m such that probability of decoding failure is less than or equal

to δ.

2. Choose s such that the condition (5.13) is satisfied. This also determines h as

r is chosen in the first step and hc,msc,m = rc,m.

3. To support any arrival rate vector λ, determine the minimum necessary band-

width using (5.12).

Even though (5.12) and (5.13) give us insights into the effect of re-transmissions

on the URLLC capacity, however there are many possible solutions which sat-

isfy (5.12) and (5.13). One has to find the optimal values for r, h, s, and m to

maximize the URLLC capacity. This is discussed in the next section.

5.4 URLLC Capacity Maximization/ Required Bandwidth
Minimization

There are two ways to formulate the problem of optimizing FEC and HARQ

schemes to maximize URLLC capacity. One can characterize the set of URLLC

arrival rates which can be supported for a given bandwidth subject to the QoS

constraints. This is will define a multi-class URLLC capacity region. Alternatively,

one can formulate the problem in terms of minimizing the bandwidth required to

support a given set of URLLC arrival rates subject to the QoS constraints. This

second approach is somewhat simpler yet still allows one to study the most efficient

system design choices given appropriate models for the FEC and HARQ schemes.

One can then study the structural properties of the solution obtained. We shall
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follow this second approach in the rest of this chapter. The associated optimization

problem is as follows:

OP2 : min :
m,r,h,s

C∑
c=1

λc
(
rc,1 +

mc∑
m=2

(
Πm−1
k=1 pc,k

(
r(k)
c

)
rc,m

) )
(5.14)

+ c(δ)

√√√√ C∑
c=1

λc

(
hc,1rc,1 +

mc∑
m=2

(
Πm−1
k=1 pc,k

(
r

(k)
c

)
hc,mrc,m

))
,

(5.15)

s.t. hc,msc,m = rc,m,

mc∑
m=1

sc,m +mcfc ≤ d, hc ≤ W, ∀c, (5.16)

Πmc
m=1pc,m

(
r(m)
c

)
≤ δ. (5.17)

The above problem is a non-convex, mixed integer programming problem,

and in general is analytically intractable. To get some insights on this problem

we will consider two specific schemes, namely, repetition coding with homogeneous

transmissions and repetition coding with heterogeneous transmissions. The perfor-

mance under these two schemes provide lower bounds on the performance under two

commonly used schemes, namely, Chase combining and Incremental Redundancy

schemes.

5.4.1 Repetition Coding– Homogeneous Transmissions

In repetition coding, the same codeword is transmitted repeatedly to the

receiver until the packet is successfully decoded or the maximum number of re-

transmissions has been reached. We shall also further assume that the transmissions

are homogeneous. This is stated formally below.
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Assumption 3. (Homogeneous transmissions) For all c and m, we have that

rc,m = rc, hc,m = hc and sc,m = sc.

We also make the following assumption on the packet decoding process at the

receiver.

Assumption 4. (Independent decoding) The receiver decodes each transmission

independently of the previous transmissions, and hence, the probability of failure in

any transmission attempt depends only on the codeword used in that stage.

Under the above assumptions, the decoding failure probability is independent

across re-transmissions and driven by the resource required rc, i.e., for any c and m

we have that pc,m

(
r

(m)
c

)
= pc (rc). Assuming independence between the decoding

processes simplifies the analysis further. Also, due to the stringent latency require-

ments, complex HARQ schemes may not be practically feasible at the receiver. Using

homogeneous transmissions reduces the overhead in control signals to indicate the

allocation of bandwidth to users.

Unfortunately, under finite block length model and repetition coding, OP2 is

still analytically intractable in a multi-class system. Therefore, we shall consider two

regimes, the variance dominated regime and the mean utilization dominated regimes

where the solutions simplify considerably. They are formally described next.

Definition
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1. Variance dominated regime: In the variance dominated regime, the objective

function includes only the variance of the bandwidth utilization ( ηvariance).

2. Mean utilization dominated regime: In mean utilization driven regime, the

objective function includes only the mean of the bandwidth utilization (ηmean).

At low loads when λc’s are small, in (5.15) the term corresponding to the

overall variance is dominant, therefore, at low loads we shall minimize the variance

of the total bandwidth usage. At high loads, the variance of bandwidth usage (second

term) is smaller than the mean (first term). Hence, we shall focus on minimizing

the mean utilization at high loads. We shall also use the finite blocklength model

discussed in Sec. 5.2.4 to relate pc(rc) and rc. Under these simplifications, one can

de-couple OP2 for each class and optimize the HARQ schemes separately for each

class. The main result in the variance dominated regime is given below.

Proposition 5.4.1. For the multiple transmissions model in Sec. 5.3, under As-

sumptions 2, 3, and 4, and in the variance dominated regime, the optimization prob-

lem OP2 decomposes across classes to per class optimization for class c as follows:

min :
mc,rc,hc,sc

mc∑
m=0

hcrc(pc(rc))
m (5.18)

s.t. schc = rc, hc ≤ W, mc (sc + fc) = d, (5.19)

(pc(rc))
mc ≤ δ. (5.20)

Furthermore, under the finite block length model (5.5) relating pc(rc) and rc, for

L ≤ 2000 bits, d ≤ 2 msec, δ ∈ [10−3, 10−7], SINRc ∈ [0, 20] dB the optimal solution

has the following structure:
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1. One shot transmission is optimal, i.e., the optimal value of mc is one.

2. The optimal values of sc and hc satisfy

sc = d− fc and hc =
rc

d− fc
, (5.21)

where rc is the smallest r such that pc(r) ≤ δ.

An explanation with numerical results is given in Appendix 5.8.

The main result in the mean utilization dominated regime is given below.

Proposition 5.4.2. For the multiple transmissions model in Sec. 5.3, under As-

sumptions 2, 3, and 4, and in the mean utilization dominated regime, the optimiza-

tion problem OP2 can be decomposed across classes with the optimization for class c

given by:

min :
mc,rc,hc,sc

mc∑
m=0

rc(pc(rc))
m (5.22)

s.t. schc = rc, hc ≤ W, mc (sc + fc) = d, (5.23)

(pc(rc))
mc ≤ δ. (5.24)

Furthermore, under the finite block length model (5.5) relating rc and pc(rc), for

L ≤ 2000 bits, d ≤ 2 msec, δ ∈ [10−3, 10−7], SINRc ∈ [0, 20] dB the optimal solution

has the following structure:

1. The optimal value of mc is strictly more than one.

2. The optimal value of mc is a non-increasing function of SINRc.
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An explanation with numerical results is given in Appendix 5.9. Some obser-

vations regarding the two results are in order. If we compare the objective functions

under mean and variance dominated regimes, the each term in the variance domi-

nated regime is multiplied with an extra hc. Since hc = rc
sc

= rcmc
d−mcfc , the objective

function in the variance dominated regime increases sharply with increasing mc.

Therefore, the optimal value of mc is lower in the variance dominated regime than

in the mean dominated regime. In the mean dominated regime, as one decreases

the SINR, the resources required per transmission (rc) to meet a given reliability

requirement increases sharply. Hence, it is advantageous at lower SINRs to increase

mc while choosing a lower reliability target per transmission. In the next section we

shall further relax the assumption of homogeneous transmissions.

5.4.2 Repetition Coding– Heterogeneous Transmissions

In this section we shall again study OP2, however, we consider the possible

benefits of heterogenous transmissions, i.e., hc,m and rc,m could possibly vary with

m. We shall assume independent decoding across transmissions.

In the previous section, we have shown that in the variance dominated regime

mc = 1 is optimal, therefore, we do not optimize hc,m and rc,m in this setting. Instead

we shall focus on the mean utilization dominated regime. URLLC users may access

the channel every slot with a slot duration equal to that of a mini-slot (0.125− 0.25

msec). Therefore, we cannot reduce sc,m to arbitrarily small values. Hence, we have

shall place a lower bound on the minimum transmission duration for any stage which

we denote by smin. The value of smin is of the order of fc as the feedback delay is at
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least one slot. Therefore, we shall solve the following optimization problem:

OP5 : min :
m,r,h,s

C∑
c=1

λc

(
rc,1 +

mc∑
m=2

(
Πm−1
k=1 pc,k(rc,k)

)
rc,m

)
, (5.25)

s.t. hc,msc,m = rc,m ∀c, m, (5.26)
mc∑
m=1

sc,m +mcfc ≤ d, (5.27)

hc,m ≤ W ∀c, m, (5.28)

sc,m ≥ smin ∀c, m, (5.29)

Πmc
m=1pc,m(rc,m) ≤ δ ∀c. (5.30)

The main result in this setting is given below.

Proposition 5.4.3. For the multiple transmissions model discussed in Sec. 5.3, un-

der Assumptions 2 and 4, the optimization problem OP5 (mean dominated regime)

can be decomposed across classes with the optimization for class c given by:

min :
mc,rc,hc,sc

rc,1 +
mc∑
m=2

(
Πm−1
k=1 pc,k(rc,k)

)
rc,m, (5.31)

subject to constraints (5.26), (5.27), (5.28), (5.29), (5.30). Furthermore, if we use

the finite block length model (5.5) to relate rc,m and pc,m(rc,m) and restrict to mc = 2,

then we have the following conclusions:

1. For L ≤ 2000 bits, d ≤ 2 msec, δ ∈ [10−3, 10−7], SINRc ∈ [0, 20] dB, the

optimal value of pc,1 (rc,1) is approximately 10−2.

2. The marginal gains obtained by choosing an mc > 2 is insignificant.
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An explanation with numerical results is given in Appendix 5.10. Consider the

case where we restrict mc to two. A low value of pc,1(rc,1), for example pc,1(rc,1) ≈ δ,

ensures that there are very few re-transmissions. However, this is at the expense of

a larger resource requirement rc,1 for the initial transmission for all packets. At the

other extreme, a higher value of pc,1(rc,1) can be achieved with a lower value of rc,1 but

at the expense of more re-transmissions. Hence, the term pc,1(rc,1) captures a trade-

off between sending a robust initial transmission with fewer re-transmissions and

sending a low reliability initial transmission with more re-transmissions. Our results

suggest that most of the gains in reducing pc,1(rc,1) are obtained when pc,1(rc,1) ≈

10−2 and further reduction is counter-productive. Choosing pc,1(rc,1) ≈ 10−2 also

ensures that the resource utilization in the later transmissions has very little effect

on the objective of OP5. Hence, there is very little advantage obtained by increasing

mc beyond two.

Since OP5 simplified to minimizing mean bandwidth utilization, the objective

depends only on rc,1 and rc,2 for mc = 2. One could choose any value of hc,1 and hc,2

such that constraints of OP5 are met. However, the variance of the system load is

a non-decreasing functions of hc,1 and hc,2. Therefore, one would like to choose hc,1

and hc,2 such that the variance is as small as possible. Since the second transmission

occurs only with probability 10−2, one practical solution is to choose the lowest

possible value for hc,1 and the highest possible value for hc,2, i.e., hc,1 = rc,1
d−2fc−smin

and

hc,2 = rc,2
smin

. A representative figure contrasting the homogeneous and heterogeneous

schemes is given in Fig. 5.2.

In the mean utilization dominated regime, the optimal value of mc is often
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SINR Heterogeneous transmissions (mc = 2) Homogeneous transmissions with optimal mc

0 dB 12.5 12.7
10 dB 3.4 3.4
20 dB 1.7 1.7

Table 5.1: Comparison of average bandwidth utilization (in MHz) under homoge-
neous and heterogeneous transmissions for different values of SINR. The other pa-
rameters are: L = 100 bits, λc = 1000 arrivals/sec., d = 1 msec., and δ = 10−6.

greater than 3, for example, for L = 100 bits, SINRc = 20 dB, the optimal value

of mc is 3. A lower value of SINRc requires an even higher value of mc. However,

if we allow heterogeneous transmissions, choosing mc > 2 does not give any signifi-

cant benefit. Further numerical results show that one can achieve the same average

bandwidth utilization with less number of stages under heterogeneous transmission.

One such example is shown in Table 5.1 where we have the compared the average

bandwidth utilization under homogeneous and heterogeneous transmissions. Note

however that the control signal overhead for such a scheme would be higher as the

BS has to signal the resource allocation for the second transmission and the coding

rate used.

5.5 Conclusions

In this chapter we explored possible design of 5G wireless systems supporting

URLLC traffic. We develop an appropriate model for URLLC packet transmis-

sions which capture the essential properties of such a system pre-emptive/immediate

URLLC scheduling and finite block-length transmissions. Based on this model we de-

rive scaling results for URLLC capacity (admissible load subject to QoS constraints)

with respect to various system parameters such as the link SINR, system bandwidth,
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Figure 5.2: Comparison of repetition coding with homogeneous and heterogeneous
transmissions. Observe that when we use heterogeneous transmissions, the initial
transmission is spread out in time with a smaller bandwidth requirement, whereas
the second transmission takes less time and uses a larger bandwidth.

and the packet latency and reliability requirements. Several key findings arise which

are of practical interest. First, URLLC capacity is enhanced by extending URLLC

transmissions in time as much as possible (subject to latency constraints) while using

the least amount of bandwidth (to meet reliability requirements). Next we look at the

results from the optimization of FEC and HARQ schemes. In the variance dominated

regime (typically low loads), one-shot transmission satisfying the above mentioned

requirements minimizes the necessary bandwidth required to support URLLC traf-

fic. In the mean utilization dominated regime (high loads), optimal FEC/HARQ

schemes minimizing the necessary bandwidth will leverage multiple transmissions

and the maximum number of transmissions required depend on the type of FEC and

HARQ schemes used and the SINR values.
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Appendix

5.5.1 Proof of Theorem 5.2.1

Without loss of generality, let us consider pb,1 (h, s,λ,W ). Using the standard

results from queuing theory (see [33]), we have that:

π(n) = GΠC
c=1

(
ρncc
nc!

)
, (5.32)

where G−1 =
∑

ñ∈S ΠC
c=1

(
ρñcc
ñc!

)
and S =

{
n | hnT ≤ W

}
. Here S is the set of all

user configurations such that the total bandwidth constraint is not violated. Similarly

define S ′ =
{
n | h′nT ≤ W

}
. From the definition of h and h′, we have that

n ∈ S ⇔ [n1, n2, . . . , qni, . . . , nC ] ∈ S ′. (5.33)

Define S1 := {n | n ∈ S and n + e1 /∈ S}, where e1 is the unit vector with

only the first coordinate as the non-zero element. S1 is the set of states in which

class 1 users experience blocking. Similarly define S ′1 for the case with bandwidths

h′ and s′. Observe that due to (5.33) we have S ⊆ S ′. Furthermore, if n ∈

S1, then for ñi ∈
{
qni − dh1q

hi
e+ 1, qni − dh1q

hi
e+ 2, . . . , qni

}
we have that n′ :=

[n1, n2, . . . , ñi, . . . , nC ] ∈ S ′1. Using PASTA property (see [33]), the blocking proba-

bility experienced by a typical arrival to class 1 is given by

pb,1 (h, s,λ,W ) =

∑
n∈S1

ΠC
c=1

(
ρncc
nc!

)
∑

n∈S ΠC
c=1

(
ρncc
nc!

) . (5.34)
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Similarly, the blocking probability experienced under h′ and s′ is given by

pb,1 (h′, s′,λ,W ) =

∑
n∈S′1

qniΠC
c=1

(
ρncc
nc!

)
∑

n∈S′ q
niΠC

c=1

(
ρncc
nc!

) . (5.35)

We will show that pb,1 (h′, s′,λ,W ) ≤ pb,1 (h, s,λ,W ). We can re-write (5.34) as

follows:

pb,1 (h, s,λ,W ) =
1

1 +
∑

n∈S�S1
ΠCc=1

(
ρ
nc
c
nc!

)
∑

n∈S1
ΠCc=1

(
ρ
nc
c
nc!

)
. (5.36)

Next we will re-write (5.35) as follows:

pb,1 (h′, s′,λ,W ) =
1

1 +
∑

n∈S�S1
qniΠCc=1

(
ρ
nc
c
nc!

)
∑

n∈S′1
qniΠCc=1

(
ρ
nc
c
nc!

) +
∑

n∈S′�S�S1
qniΠCc=1

(
ρ
nc
c
nc!

)
∑

n∈S′1
qniΠCc=1

(
ρ
nc
c
nc!

)
(5.37)

To compare pb,1 (h′, s′,λ,W ) and pb,1 (h, s,λ,W ), let us compare the denominators

of (5.36) and (5.37). We will show the following:∑
n∈S�S1

qniΠC
c=1

(
ρncc
nc!

)
∑

n∈S′1
qniΠC

c=1

(
ρncc
nc!

) ≥

∑
n∈S�S1

ΠC
c=1

(
ρncc
nc!

)
∑

n∈S1
ΠC
c=1

(
ρncc
nc!

) . (5.38)

If the above equation holds, then from (5.36) and (5.37), it can be easily shown that

pb,1 (h′, s′,λ,W ) ≤ pb,1 (h, s,λ,W ). Note that in the above expression the numerator

of the L.H.S. is greater than the numerator of the R.H.S. Next we have to compare

the denominators. Due to (5.33), we can re-write the denominator of the L.H.S. as

follows:

∑
n∈S′1

qniΠC
c=1

(
ρncc
nc!

)
=

∑
n∈S1

qh1
hi∑
i=1

(qρi)

(
qni−d

qh1
hi
e+i
)

(
qni − d qh1

hi
e+ i

)
!
Πc:c 6=i

(
ρncc
nc!

)
(5.39)
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It can be shown that in wide-band systems with W large enough and ρi < 1 the

following holds:

∑
n∈S1

qh1
hi∑
i=1

(qρi)

(
qni−d

qh1
hi
e+i
)

(
qni − d qh1

hi
e+ i

)
!
Πc:c 6=i

(
ρncc
nc!

)
≤
∑
n∈S1

ΠC
c=1

(
ρncc
nc!

)
. (5.40)

Therefore, the denominator of the L.H.S. of (5.38) is less than the denominator

of its R.H.S. We have proved the inequality (5.38), and hence, pb,1 (h′, s′,λ,W ) ≤

pb,1 (h, s,λ,W ).

5.6 Approximate Expression for Blocklength

If we ignore the terms 0.5 log2(r) and o(1) in (5.5), we have the following

approximate expression relating blocklength r, the number of information bits L

and the probability of decoding failure p.

L ≈ rC(SINR)−Q−1 (p)
√
rV (SINR). (5.41)

If we substitute
√
r = x, then the above equation is a quadratic equation in x.

Solving it we get the approximate expression for r in (5.48). In Fig. 5.3 we have

compared the values of r obtained from expression (5.5) and with the our approx-

imation (5.48) for different packet sizes, SINRs and probability of decoding failure.

Both the expressions give almost similar values of blocklengths.
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Figure 5.3: Comparison r obtained using our approximation (5.48) with respect to
the expression for blocklength derived in [1] and re-stated in (5.5).
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5.7 Proof of Theorem 5.2.2

From (5.12) on single class system with one shot transmissions, we have the

following relation between λ∗c and W

W = λ∗crc + c(δ)
√
hcλ∗crc, (5.42)

where rc is chosen such that

rc =
L

C(SINRc)
+

(Q−1 (δ))
2
V (SINRc)

2 (C(SINRc))
2

+
(Q−1 (δ))

2
V (SINRc)

2 (C(SINRc))
2

√
1 +

4LC(SINRc)

V (SINRc) (Q−1 (δ))2 , (5.43)

and hc = rc/d. Substituting hc in (5.42), we get

W = λ∗crc + c(δ)rc

√
λ∗c
d
. (5.44)

Solving for λ∗c , we have that

λ∗c =
W

rc
+
c(δ)2

d

(
1−

√
1 +

4Wd

c(δ)2rc

)
. (5.45)

Scaling with respect to W directly follows from (5.45).

To understand the scaling with respect to SINRc, we have to first study the

scaling of rc with respect to SINRc. For large SINRc, we have that

C(SINRc) ∼ Θ (log2 (SINRc)) , (5.46)

V (SINRc) ∼ Θ (1) . (5.47)

Therefore, rc ∼ Θ
(

1
log2(SINRc)

)
. Using (5.45), we get that

λ∗c ∼ Θ
(

log2 (SINRc)−
√

log2 (SINRc)
)

. Similarly, using (5.45), we get the scal-

ing with respect to d as λ∗c ∼ Θ
(

1− 1√
d

)
. If we use the square-root staffing rule with
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Figure 5.4: Variance of bandwidth utilization as a function of the number of stages
for repetition coding with homogeneous transmissions and δ = 10−6.

the normal approximation (see [33]), we have that c(δ) = Q−1 (δ) ∼ Θ
(
−
√

log (δ)
)

.

As we increase δ, we c (δ) → 0. Using Q−1 (δ) ∼ Θ
(√
− log (δ)

)
we have that

rc ∼ Θ (− log (δ)). Therefore, from (5.45) we get that λ∗c ∼ Θ
(

1
− log(δ)

)
.

5.8 Numerical Results for Proposition 5.4.1

The optimal solutions to the decoupled problem for different values of SINR

are plotted in Fig. 5.4. Note that mc = 1 is optimal for all cases in the low load

regime. To understand this, first observe that one can approximate the block length

required rc to transmit a packet of L bits with a probability of decoding failure target
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of pc under the finite block length model as follow:

rc ≈
L

C(SINR)
+

(Q−1 (pc))
2
V (SINR)

2 (C(SINR))2

+
(Q−1 (pc))

2
V (SINR)

2 (C(SINR))2

√
1 +

4LC(SINR)

V (SINR) (Q−1 (pc))
2 . (5.48)

This is derived in Appendix 5.6. Under repetition coding, the maximum probability

of failure in each stage (pc) is the same and equal to δ1/mc so that after mc stages,

the probability of failure would be exactly δ. Also, we have that

mc∑
m=0

h2
cλcsc (pmc ) =

λchcrc (1− δ)
1− δ1/mc

(5.49)

In Thm. 5.2.1, we have proved that extending the transmissions in time till the

deadline is beneficial towards reducing the blocking probability. Using this property

and from constraint that hcsc = rc and sc = d−mcfc we have that:

hc =
rc

d
mc
− fc

(5.50)

We also know that Q−1(ε) ∼ Θ
(√
− log ε

)
. Therefore, in (5.49), rc ∼ L

C(SINRc)
+

Θ
(

1
mc

)
, hc ∼ Θ (mc) and denominator is 1 − δ1/mc . The bandwidth hc, which is a

non-decreasing function of mc is the most sensitive to changes of mc for the range of

SINRs seen in a wireless system. Therefore, for range of SINRs in a wireless system

mc = 1 is the optimal solution.

5.9 Numerical Results for Proposition 5.4.2

In Fig. 5.5 we have plotted the average bandwidth utilization for various

SINRs and packet sizes. The key observation is given below
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Figure 5.5: Average bandwidth utilization as a function of the number of stages for
repetition coding with homogeneous transmissions for λ = 100 arrivals/sec. d = 1
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Observation 5.9.1. For a given L, δ, and d, the optimal value of mc decreases with

increasing SINRc.

To understand the above observation, we use (5.48) with p = δ
1
mc . The

expression for rc as a function of mc is given below

rc ≈
L

C(SINRc)
+

(
Q−1

(
δ1/mc

))2
V (SINRc)

2 (C(SINRc))
2

+

(
Q−1

(
δ1/mc

))2
V (SINRc)

2 (C(SINRc))
2

√
1 +

4LC(SINRc)

V (SINRc) (Q−1 (δ1/mc))
2 (5.51)

We have the following lemma which is proved in Appendix 5.10.1.

Lemma 5.9.2. There exists an ε > 0 such that for SINRc ∈ [0, ε], the term

V (SINRc)

(C(SINRc))
2 is a non-increasing function of SINRc and limSINRc→0

V (SINRc)

(C(SINRc))
2 =∞.

Note that for a given δ,
(
Q−1

(
δ1/mc

))2
= Θ

(
1
mc

)
. From the above lemma as

SINRc decreases the constant that multiplies
(
Q−1

(
δ1/mc

))2
increases, and hence

the average bandwidth utilization increases sharply in reducing mc. Therefore, a

higher value of mc is optimal for lower SINRs. To summarize, at high loads, multiple

re-transmissions are preferred, and the number of re-transmissions required increases

with decreasing SINR.

5.10 Numerical Results for Proposition 5.4.3

Let U δ (rc,1, rc,2) := rc,1+pc,1rc,2. U δ (rc,1, rc,2) as a function of pc,1 for different

values of SINR is plotted in Figures 5.6 and 5.7. Note that once we reduce pc,1 to

10−2 the term pc,1rc,2 is very small and hence, reducing pc,1 any further does not
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SINR U δ
c (rc,1, rc,2) (MHz) U δ

c (rc,1, rc,2, rc,3) (MHz)

0 dB 12.7 12.7
10 dB 3.4 3.4
20 dB 1.7 1.7

Table 5.2: Comparison of U δ
c (rc,1, rc,2) and U δ

c (rc,1, rc,2, rc,3) for different values of
SINR for L = 100 bits, λc = 1000 arrivals/sec., d = 1 msec., and δ = 10−6.

help. Note that in Fig. 5.6c U δ (rc,1, rc,2) has a piece-wise linear structure. This is

because of the quantization of rc,1 to integer values. At high SINRs increasing the

block length by one causes a sudden drop in pc,1. For L = 100 bits, the optimal value

of pc,1 ≈ 2×10−2, whereas, for L = 1000 bits optimal pc,1 is 10−2. To understand this

consider (5.51), the block length required is more sensitive to the second term when

L/C(SINRc) is smaller relative to the second term. Therefore, for a large value of

L we can have a slightly lower value of pc,1. However, this effect is not so significant.

To summarize, the optimal value of pc,1 is close to 10−2 for all cases.

In Table 5.2 we have compared average bandwidth utilization under the op-

timal HARQ schemes obtained numerically for mc = 2 and mc = 3. Note that there

is no difference between the values for mc = 2 and mc = 3. Most of the benefits of

using heterogeneous transmissions are obtained from two stages of HARQ. This is

because the value of pc,1 ≈ 10−2 and hence, the effect of any additional stages on the

objective function is insignificant. Therefore, we restrict ourselves to mc = 2.
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Figure 5.6: U δ (rc,1, rc,2) as a function of pc,1 for different SINRs and L = 100 bits.
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Figure 5.7: U δ (rc,1, rc,2) as a function of pc,1 for different SINRs and L = 1000 bits.
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5.10.1 Proof of Lemma 5.9.2

One can re-write V (SINRc)/ (C(SINRc))
2 as follows:

V (SINRc)

(C(SINRc))
2 =

2SINRc + (SINRc)
2

(1 + SINRc)
2 (log2 (1 + SINRc))

2 . (5.52)

If we make the substitution x = SINRc, we have that

V (SINRc)

(C(SINRc))
2 =

x2 − 1

(x log2(x))2 . (5.53)

Let us also define f(x) := x2−1
(x log2(x))2 . If we take the derivative of f(x), denoted by

f ′(x), we get that

f ′(x) =
−2x log2 (x) (x2 + 1 + log2 (x))

(x log2 (x))4 . (5.54)

In the above expression, the numerator of R.H.S. is negative for small values of

x. This is obtained by the fact that x2 + 1 + log2 (x) is negative for small x and

−2x log2 (x) is positive for small x. Therefore, one can conclude that there exists

ε such that f(x) is non-increasing in the interval [0, ε]. In the limit as x → 0, the

denominator f(x) goes to 0 while the numerator tends to −1. Hence, limx→0 f(x) =

∞.
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Chapter 6

Joint Scheduling of URLLC and eMBB Traffic in

5G Wireless Networks

6.1 Introduction

An 1 important requirement for 5G wireless systems is its ability to efficiently

support both broadband and ultra-low-latency reliable communications. On one

hand, broadband traffic – formally, enhanced Mobile Broadband (eMBB) – should

support gigabit per second data rates (with a bandwidth of several 100 MHz) with

moderate latency (a few milliseconds). On the other hand, Ultra Reliable Low

Latency Communication (URLLC) traffic requires extremely low delays (0.25-0.3

msec/packet) with very high reliability (99.999%) [15]. To satisfy these heteroge-

nous requirements, the 3GPP standards body has proposed an innovative superposi-

tion/puncturing framework for multiplexing URLLC and eMBB traffic in 5G cellular

systems.

The proposed scheduling framework has the following structure [15]. As with

current cellular systems, time is divided into slots, with proposed one millisecond

(msec) slot duration. Within each slot, eMBB traffic can share the bandwidth over

1This chapter is a joint work with Prof. Sanjay Shakkottai. Publications based on this chapter:
A. Anand, G. de Veciana, and S. Shakkottai, “Joint Scheduling of URLLC and eMBB Traffic in
5G Wireless Networks”, in Proceedings of INFOCOM, 2018 (accepted). Arxiv version [78].
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Figure 6.1: Illustration of superposition/puncturing approach for multiplexing eMBB
and URLLC: Time is divided into slots, and further subdivided into minislots. eMBB
traffic is scheduled at the beginning of slots (sharing frequency across two eMBB
users), whereas URLLC traffic can be dynamically overlapped (superpose/puncture)
at any minislot.

the time-frequency plane (see Figure 6.1). The sharing mechanism can be oppor-

tunistic (based on the channel states of various users); however, the eMBB shares

are decided by the beginning, and fixed for the duration of a slot2.

URLLC downlink traffic may arrive during an ongoing eMBB transmission;

2The sharing granularity among various eMBB users is at the level of Resource Blocks (RB),
which are small time-frequency rectangles within a slot. In LTE today, these are (1 msec × 180
KHz), and could be smaller for 5G systems.
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if tight latency constraints are to be satisfied, they cannot be queued until the next

slot. Instead each eMBB slot is divided into minislots, each of which has a 0.125 msec

duration3. Thus upon arrival URLLC demand can be immediately scheduled in the

next minislot on top of the ongoing eMBB transmissions. If the Base Station (BS)

chooses non-zero transmission powers for both eMBB and overlapping URLLC traffic,

then this is referred to as superposition. If eMBB transmissions are allocated zero

power when URLLC traffic is overlapped, then it is referred to as puncturing of eMBB

transmissions. The superposed/punctured URLLC traffic is sufficiently protected

(through coding and HARQ if necessary) to ensure that it is reliably transmitted.

At the end of an eMBB slot, the BS can signal the eMBB users the locations, if any, of

URLLC superposition/puncturing. The eMBB user can in turn use this information

to decode transmissions, with some possible loss of rate depending on the amount of

URLLC overlaps. We refer to [15,16] for additional details.

A key problem in this setting is thus the joint scheduling of eMBB and URLLC

traffic over two time-scales. At the slot boundary, resources are allocated to eMBB

users based on their channel states and utilities, in effect, allocating long term rates

to optimize high-level goals (e.g. utility optimization). Meanwhile, at each minislot

boundary, the (stochastic) URLLC demands are overlapped (superposed/punctured)

onto previously allocated eMBB transmissions. Decisions on the placement of such

overlaps across scheduled eMBB user(s) will impact the rates they will see on that

slot. Thus we have a coupled problem of jointly optimizing the scheduling of eMBB

3In 3GPP, the formal term for a ‘slot’ is eMBB TTI, and a ‘minislot’ is a URLLC TTI, where
TTI expands to Transmit Time Interval.
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users on slots with the placement of URLLC demands across minislots.

6.1.1 Main Contributions

This work is, to our knowledge, the first to formalize and solve the joint

eMBB/URLLC scheduling problem described above. We consider various models

for the eMBB rate loss associated with URLLC superposition/puncturing, for which

we characterize the associated feasible throughput regions and online joint scheduling

algorithms as detailed below.

(Linear Model): When the rate loss to eMBB is directly proportional to the frac-

tion of superposed/punctured minislots, we show that the joint optimal scheduler

has a nice decomposition: the stochastic URLLC traffic can be uniform-randomly

scheduled in each minislot, and the eMBB scheduler can be scheduled via a greedy

iterative gradient algorithm the only accounts for the expected rate loss due to the

URLLC traffic.

(Convex Model): For more general models where the rate loss can be modeled

through a convex function, we restrict to time homogeneous policies. In this setting,

we characterize the capacity region and derive concavity conditions under which we

can derive the effective rate seen by eMBB users (post-puncturing by URLLC traffic).

We then develop a stochastic approximation algorithm jointly schedules eMBB and

URLLC traffic, and show that it asymptotically maximizes utility for eMBB users

while satisfying URLLC demands.

(Threshold Model): We finally consider a threshold model, where eMBB traffic is

unaffected by puncturing until a threshold; beyond this threshold it suffers complete
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throughput loss (a 0-1 rate loss model). We consider two broad classes of time

homogeneous policies, where the URLLC traffic is placed in minislots proportional to

either the eMBB allocated bandwidths (Rate Proportional) or the eMBB thresholds

(Threshold Proportional). We motivate these policies (e.g. minimizes probability of

eMBB loss in any slot) and derive the associated throughput regions. Finally, we

utilize the additional structure imposed by the RP and TP Placement policies along

with the shape of the threshold loss function and derive fast gradient algorithms that

converge and provably maximize utility.

The related work for this chapter has been covered in detail in the previous

chapter. Next we shall explain our system model.

6.2 System Model

Traffic model. We consider a wireless system supporting a fixed set of back-

logged eMBB users U and stationary URLLC traffic demands. eMBB scheduling

decisions are made across slots while URLLC demands arrive and are immediately

scheduled across minislots. Each eMBB slot has an associated set of minislots where

M = {1, . . . |M|} denotes there indices. URLLC demands across minislots are mod-

eled as a independent and identically distributed (i.i.d.) random random process.

We let the random variables (D(m),m ∈M) denote the URLLC demands per min-

islot for a typical eMBB slot. We let D be a random variable whose distribution is

that of the aggregate URLLC demand per eMBB slot, i.e., D ∼
∑

m∈MD(m) with,

cumulative distribution function FD() and mean E[D] = ρ. We assume demands

have been normalized so the maximum URLLC demand per minislot is f and the
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maximum aggregate demands per eMBB slot is f × |M| = 1 i.e., all the frequency-

time resources are occupied. URLLC demands per minislot exceeding the system

capacity are blocked by URLLC scheduler thus D ≤ 1 almost surely. As mentioned

earlier the system is engineered so that blocked URLLC traffic on a minislot is a rare

event, i.e., satisfies the desired reliability on such traffic.

Wireless channel variations. The wireless system experiences channel

variations each eMBB slot which are modeled as an i.i.d. random process over

set of channel states S = {1, . . . , |S|}. Let S be a random variable modeling the

distribution over the states in a typical eMBB slot with probability mass function

pS(s) = P (S = s) for s ∈ S. For each channel state s eMBB user u has a known peak

capacity r̂su. The wireless system can choose what proportions of the frequency-time

resources to allocate to each eMBB user on each minislot for each channel state.

This is modeled by a matrix φ ∈ Σ where

Σ :=

{
x ∈ R|U|×|M|×|S|+ |

∑
u∈U

xsu,m = f, ∀m ∈M, s ∈ S

}
(6.1)

and where the element φsu,m represents the fraction of resources allocated to user

u in mini slot m in channel state s. We also let φsu =
∑

m∈M φsu,m, i.e., the total

resources allocated to user u in an eMBB slot in channel state s. Now assuming no

superposition/puncturing if the system is in channel state s and the eMBB scheduler

chooses an allocation φ the rate ru allocated to user u would be given by ru =

φsur̂
s
u. The scheduler is assumed to know the channel state and can thus exploit such

variations opportunistically in allocating resources to eMBB users. Note that for

simplicity, we adopt a flat-fading model, namely, the rate achieved by an user is
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directly proportional to the fraction of bandwidth allocated to it (the scaling factor

is the peak rate of the user for the current channel state).

Class of joint eMBB/URLLC schedulers. We consider a class of station-

ary joint eMBB/URLLC schedulers denoted by Π satisfying the following properties.

A scheduling policy combines a possibly state dependent eMBB resource allocation φ

per slot with a URLLC demand placement strategy across minislots. The placement

strategy may impact the eMBB users’ rates since it affects the URLLC superposi-

tion/puncturing loads they will experience. As mentioned earlier in discussing the

traffic model, in order to meet low latency requirements URLLC traffic demands

are scheduled immediately upon arrival or blocked. The scheduler is assumed to

be causal so it only knows the current (and past) channel states and achieved rates

r̂su, ∀, u ∈ U , s ∈ S but does not know the realization of future channels or URLLC

traffic demands. In making superposition/puncturing decisions across minislots, the

scheduler can use knowledge of the previous placement decisions that were made. In

addition the scheduler is assumed to know (or can measure over time) the channel

state distribution across eMBB slots and URLLC demand distributions per minis-

lot i.e., that of D(m), and per eMBB slot, i.e., D, and thus knows in particular

ρ = E[D].

In summary joint scheduling policy π ∈ Π is thus characterized by the follow-

ing:

• an eMBB resource allocation φπ ∈ Σ where φπ,su,m denotes the fraction frequency-

time slot resources allocated to eMBB user u on minislot m when the system
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is in state s.

• the distributions of URLLC loads across eMBB resources induced by its URLLC

placement strategy, denoted by random variables Lπ = (Lπ,su,m|u ∈ U ,m ∈

M, s ∈ S) where Lπ,su,m denotes the URLLC load superposed/puncturing the

resource allocation of user u on minislot m when the channel is in state s.

The distributions of Lπ,su,m and their associated means lπ,su,m depend on the joint

scheduling policy π, but for all states, users and minislots satisfy

Lπ,su,m ≤ φπ,su,m almost surely.

In the sequel we let Lπ,su =
∑

m∈M Lπ,su,m, i.e., the aggregate URLLC traffic super-

posed/puncturing user u in channel state s, and denote its mean by lπ,su and note

that

Lπ,su ≤ φπ,su almost surely.

We shall also Lπ,s =
∑

u∈U L
π,s
u denote the aggregate induced load and note that any

policy π and any state s we have that

ρ = E[D] = E[Lπ] = E[
∑
u∈U

Lπ,su ] =
∑
u∈U

lπ,su .

Modeling superposition/puncturing and eMBB capacity regions.

Under a joint scheduling policy π we model the rate achieved by an eMBB user

u in channel state s by a random variable

Rπ,s
u = f su(φπ,su , Lπ,su ) (6.2)
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where the rate allocation function f su(·, ·) models the impact of URLLC superpo-

sition/puncturing – one would expect it to be increasing the first argument (the

allocated resources) and decreasing in the second argument (the amount superposi-

tion/puncturing by URLLC traffic). One would also expect such functions to satisfy

f su(φsu, l
s
u) = 0

if φsu = lsu, i.e., if superposition/puncturing occurs across all of an eMBB users

resources no data is successfully transmitted, however, perhaps under the superposi-

tion some rate might still be extracted from the transmission. Also under our system

model we have that

Rπ,s
u ≤ f su(φπ,su , 0) = φπ,su r̂su almost surely,

with equality if there is no superposition/puncturing, i.e., when lsu = 0. We shall

rπ,su = E[Rπ,s
u ] denote the mean rates achieved by user u in state s under the URLLC

superposition/puncturing distribution induced by scheduling policy π.

Models for Throughput Loss: In the sequel we shall consider specific forms of

superposition/puncturing models: (i) linear, (ii) convex, and (iii) threshold models.

We rewrite the rate allocation function in (6.2) as the difference between the

peak throughput and the loss due to URLLC traffic, and consider functions that can

be decomposed as:

f su(φsu, l
s
u) = r̂suφ

s
u

(
1− hsu

(
lsu
φsu

))
,

where hsu : [0, 1] → [0, 1] is the rate loss function and captures the relative rate loss

due to URLLC overlap on eMBB allocations. The puncturing models we study now

221



h (x)u
s

x

1

10
loss (if any) 
with no overlap

success (if any) 
with full overlap

linear model

threshold model

convex model

Figure 6.2: The illustration exhibits the rate loss function for the various models
considered in this chapter, linear, convex and threshold.

map directly to structural assumptions on the rate loss function hsu(·); namely it

is a non-decreasing function, and is one of linear, convex, or threshold as shown in

Figure 6.2.

Linear Model: Under the linear model, the expected rate for user u in channel

state s for policy π is given by

rπ,su = E[f su(φπ,su , Lπ,su )] = r̂su(φ
π,s
u − lπ,su ),

i.e., hsu(x) = x, and the resulting rate to eMBB users is a linear function of both

the allocated resources and mean induced URLLC loads. This model is motivated

by basic results for the channel capacity of AWGN channel with erasures, see [79]

for more details. Our system in a given network state can be approximated as

an AWGN channel with erasures, when the slot sizes are long enough so that the

physical layer error control coding of eMBB users use long code-words. Further, there

is a dedicated control channel through which the scheduler can signal to the eMBB

receiver indicating the positions of URLLC overlap. Indeed such a control channel

has been proposed in the 3GPP standards [15]. Note that under this model the
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rate achieved by a given user depends on the aggregate superposition/puncturing it

experiences, i.e., does not depend on which minislots and frequency bands it occurs.

We discuss the policies for the linear model in Section 6.4.

Convex Model: In the convex model, the rate loss function hsu(·) is convex (see

Figure 6.2), and the resulting rate for eMBB user u in channel state s under policy

π is given by

rπ,su = E[f su(φπ,su , Lπ,su )] = r̂suφ
u
π,s

(
1− E

[
hsu

(
Lπ,su
φπ,su

)])
.

This covers a broad class of models, and is discussed in Section 6.5.

Threshold Model: Finally the threshold model is designed to capture a simplified

packet transmission and decoding process in an eMBB receiver. The data is either

received perfectly or it is lost depending on the amount of superposition/puncturing.

With slight abuse of notation we shall let hsu also depend on both the relative URLLC

load and the eMBB user allocation, i.e., hsu(x, φ
s
u) = 1(x ≤ tsu(φ

s
u)) where the thresh-

old in turn is an increasing function tsu() satisfying and satisfy x ≥ tsu(x) ≥ 0. Such

thresholds might reflect various engineering choices where codes are adapted when

users are allocated more resources, so as to be more robust to interference/URLLC

superposition/puncturing. The resulting rate for eMBB user u in channel state s

and policy π is then given by

rπ,su = r̂suφ
π,s
u P (Lsπ,u ≤ φπ,su tsu(φ

π,s
u )).

While such a sharp falloff is somewhat extreme, it is nevertheless useful for modeling

short codes that are designed to tolerate a limited amount of interference. In practice
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one might expect a smoother fall off, perhaps more akin to the convex model, e.g.,

when hybrid ARQ (HARQ) is used. We discuss polices under the threshold based

model in Section 6.6.

Capacity for eMBB traffic: We define the capacity C ⊂ R|U|+ for eMBB traffic as

the set of long term rates achievable under policies in Π. Let cπ = (cπu|u ∈ U) where

cπu =
∑
s∈S

rπ,su pS(s).

Then the capacity is given by

C = {c ∈ R|U|+ | ∃ π ∈ Π such that c ≤ cπ}.

Note that this capacity region depends on the scheduling policies under consideration

as well as the distributions of the channel states and URLLC demands.

Scheduling objective: URLLC priority and eMBB utility maximization:

As mentioned earlier, URLLC traffic is immediately placed upon arrival, at the

minislot scale, i.e, no queueing is allowed. Thus if demands exceed the system

capacity on a given minislot such traffic is lost. The system is engineered so that such

URLLC overloads are extremely rare, and thus URLLC traffic can meet extremely

low latency requirements with high reliability. For eMBB traffic we adopt a utility

maximization framework wherein each eMBB user u has an associated utility function

Uu(·) which is a strictly concave, continuous and differentiable of the average rate

cπu experienced by the user. Our aim is to characterize optimal rate allocations

associated with the utility maximization problem:

max
c
{
∑
u∈U

Uu (cu) | c ∈ C}, (6.3)
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Figure 6.3: An example of eMBB resource allocations in 5G NR time-frequency
plane.

and determine and associated scheduling policy π that will realize such allocations.

6.3 Optimal eMBB Placement in Time-Frequency Plane

3GPP New Radio frame structure allows flexible resource allocation for eMBB

users in the time-frequency plane. In an eMBB slot, eMBB users can share resources

in time or frequency . If only time is shared among eMBB users, the entire frequency

is allocated to an eMBB user in a mini-slot. Similarly if only frequency resource are

share among eMBB users, then a part of the bandwidth is allocated to an eMBB

user for the entire eMBB slot. Sharing resources in the time and frequency domains

are illustrated in Figures 6.4 and 6.5, respectively. In this section, we will show that

sharing resources in the frequency domain results in a better average rate for the

eMBB users if the loss functions hsu (·) are convex.

The essence of the problem can be captured in a setting with two eMBB users,

i.e., |U| = 2. We shall look two resource allocation configurations for eMBB users
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given in Figures 6.4 and 6.5. In configuration 1, eMBB user 1 is allocated the entire

bandwidth for m1 mini-slots and the remaining |M|−m1 mini-slots are allocated to

eMBB user 2. Define φ1 := m1

|M| and φ2 = |M|−m1

|M| . Instead in configuration 2, we shall

allocate an eMBB user a fraction φu of the bandwidth for the entire eMBB slot. In

configuration 1, the total puncturing observed by eMBB user u is given by
∑φ|M|

m=1 Dm.

In configuration 2, under uniform URLLC placement, the total puncturing observed

by eMBB user u is given by
∑|M|

m=1 φuDm. Let us first define exchangeable set of

random variables.

Definition An ordered set of random variables
{
D1, D2, . . . , D|M|

}
is said to be

exchangeable if the probability distribution is same for any permutation of the set.

The main result of this section is given below:

Theorem 6.3.1. Under the assumptions of exchangeable URLLC demands in an

eMBB slot (
{
D1, D2, . . . , D|M|

}
) and convex loss functions (hu (·)), if E [hu(D1)] <

∞, we have that

E

hu
φu|M|∑

m=1

Dm

 ≥ E
hu

 |M|∑
m=1

φuDm

 . (6.4)

Remarks: The above theorem shows that the expected loss suffered by an

eMBB user due to URLLC puncturing in configuration 1 is higher than in config-

uration 2. Configuration 2 gives more flexibility in the URLLC placement as well

as lesser variability in the total puncturing. Since the loss function is convex, this

will naturally lead to a lower loss. Therefore, in any configuration if eMBB users
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Figure 6.4: In this configuration, eMBB users share time and do not share the
bandwidth in an eMBB slot.

are allocated resources for different duration in an eMBB slot, then we can replace

the configuration with an equivalent configuration which allocates same amount of

resources for all eMBB users but with same transmit duration and different band-

widths, while suffering lower losses from puncturing by URLLC traffic.

For more general configurations, for example the configuration given in Fig. 6.3,

one can apply the Thm. 6.3.1 iteratively and show that sharing resource exclusively

in the frequency domain is better than sharing resources in time domain. Therefore,

we shall restrict ourselves to resource allocation schemes which share eMBB resources

in the frequency domain in an eMBB slot.

6.4 Linear Model for Superposition/Puncturing

As a thought experiment, consider a two-user system, with users having the

same utility function (say square root function), but i.i.d. (across time and users)
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Figure 6.5: In this configuration, eMBB users share bandwidth and do not share the
bandwidth in and eMBB slot.

channel states. Suppose that a naive eMBB scheduler ignores channel states and

statically partitions the bandwidth between these users (symmetry implies half the

bandwidth to each user). In this case, it is clear that an optimal URLLC scheduler

needs to be both channel-state and eMBB aware – at each minislot, depending on

the instantaneous demand and the channel states, it needs to puncture the two users’

shares of bandwidths differently. For instance at a certain minislot, if one user has a

really poor channel state, then the URLLC traffic in that minislot would be mostly

loaded onto the frequency resources occupied by this user (as the total rate loss to

eMBB traffic will be minimal).

In this section, we show a surprising result – if the eMBB scheduler is in-

telligent, then the URLLC scheduler can be oblivious to the channel states, utility

functions and the actual rate allocations of the eMBB scheduler.
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6.4.1 Characterization of capacity region

Let us consider the capacity region for a wireless system based on linear

superposition/puncturing model under a restricted class of policies ΠLR that combine

feasible eMBB allocations φ ∈ Σ with random placement of URLLC demands across

minislots. For any π ∈ ΠLR with eMBB allocation φπ the mean induced loads for such

randomization for each state s ∈ S and minislot m ∈ M will satisfy lπ,su,m = ρφπ,su,m.

Indeed randomization clearly leads to an induced loads that are proportional to the

eMBB allocations on a per mini-slot basis, but also per eMBB slot, i.e., lπ,su = ρφπ,su .

Thus for our linear superposition/puncturing model we have that

rπ,su = r̂su(φ
π,s
u − lπ,su ) = r̂suφ

π,s
u (1− ρ).

Hence the overall user rates achieved under such a policy are given by cπ = (cπu|u ∈ U)

where

cπu =
∑
s∈S

r̂suφ
π,s
u (1− ρ)pS(s).

The capacity region associated with policies that use URLLC randomization is thus

given by

CLR = {c ∈ R|U|+ | ∃π ∈ ΠLR s.t. c ≤ cπ}

= {c ∈ R|U|+ | ∃φ ∈ Σ s.t. c ≤ cφ},

where we have used abused notation by using cφ to represent the throughput achieved

by a policy π that uses eMBB resource allocation φ and randomized URLLC demand

placement. Finally note that for any fixed ρ ∈ (0, 1), CLR is a closed and bounded

convex region. This is because an affine map of a convex region remains convex;
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hence multiplying the constraints on the capacity region defined by φ by a constant

(1− ρ) preserves convexity of the rate region.

Theorem 6.4.1. For a wireless system under the linear superposition/puncturing

model we have that C = CLR.

The proof is deferred to the Appendix 6.10. In other words the throughput

cπ ∈ C achieved by any feasible policy π ∈ Π can also be achieved by policy π′, with

a possibly different eMBB resource allocation policy than π but utilizing random

placement of URLLC demands across mini-slots.

6.4.2 Utility maximizing joint scheduling

Given the result in Theorem 6.4.1 we now restate the utility maximization

problem as optimizing solely over joint scheduling policies that use URLLC random

placement policies, as below.

max
φ∈Σ

∑
u∈U

Uu(c
φ
u )

s.t. cφu =
∑
s∈S

r̂suφ
s
u(1− ρ)pS(s), ∀u ∈ U .

The above optimization problem has a strictly concave cost function, and convex

constraints. Thus, at face-value, it appears that we can immediately apply the

gradient scheduler introduced in [80], which is an online algorithm that converges

and solves the optimization problem. This intuition is approximately correct, but

subject to two modifications.
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First, the setting in [80] has deterministic rates in each channel state. How-

ever, in our case, in each channel state, the rates are stochastic due to i.i.d. punc-

turing due to URLLC traffic (which accounts for the (1 − ρ) correction). This can

be easily addressed by modifying the setting in [80]; the finite state and i.i.d. nature

of puncturing implies that the proofs in [80] hold with minor modifications; we skip

the details.

The second issue is somewhat more nuanced. In current wireless systems

(e.g. LTE) and proposals for 5G systems, a slot is partitioned into a collection

of Resource Blocks (RB), where each RB is a time-frequency rectangle (1 msec ×

180 KHz in LTE). Importantly, these RBs can be individually allocated to different

eMBB users. If we now apply the gradient scheduler in [80] to our setting, the result

will be that all RBs in a slot will be allocated to the same user. While this is no-

doubt asymptotically optimal, it seems intuitive that sharing RBs across users even

within a slot will lead to better short-term performance. Indeed this intuition has

been explored in the context of iterative MaxWeight algorithms to provide formal

guarantees, see [81,82]. The high level idea is that even within a slot, RB allocations

are iterative, where future RB allocation need to account for prior rate allocations

even within the same slot. This is formalized below, where we have fully described

the joint eMBB-URLLC scheduler.

The URLLC scheduler: As explained in the previous section, the URLLC

scheduler places the URLLC traffic uniformly at random over the minislots.

The eMBB scheduler: Let there be B resource blocks available for alloca-

tion every eMBB slot, indexed by 1, 2, . . . , B. Let Ru(t− 1) be the random variable
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denoting the average rate received by eMBB user up to eMBB slot t − 1. In any

eMBB slot t we schedule an user u(b) in RB b such that

u(b) ∈ argmax
{
r̂suU

′

u (rεu (b− 1, t)) , u = 1, 2, . . . ,U
}
, (6.5)

where rεu (b− 1, t) is an estimate of the average rate received by eMBB user u till

slot t which is iteratively updated as follows:

rεu (b, t) =


Ru(t− 1), b = 0,

(1− ε) rεu (b− 1, t)

+ε
(
r̂su

1
B

(1− ρ)1 (i = u(b))
)
, b 6= 0.

(6.6)

In the above equation, ε is a small positive value. At the end of eMBB slot t, the

eMBB scheduler receives feedback from the eMBB receivers indicating the actual

rates received by the eMBB users due to allocations through (6.6). We denote this

rate received eMBB user u in slot by the random variable Ru(t). We finally update

Ru(t) as follows:

Ru(t) = (1− ε)Ru(t− 1) + εRu(t). (6.7)

This update is analogous to the gradient algorithm [80] (see also iterative algorithms

in [81,82]). The optimality proof of this algorithm follows (with minor modifications)

from the analysis in [80]; we skip the details.

Remarks: (i) A natural decomposition of the joint eMBB+URLLC scheduling is

now apparent. On one hand, the eMBB scheduler maximizes utilities based on the

expected channel rates stemming from uniformly random puncturing of minislots

(accounted for through the (1 − ρ) multiplicative factor), and does so using the

iterative gradient scheduler. The URLLC scheduler, on the other-hand, is completely
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agnostic to either the channel state or the actual eMBB allocations and simply

punctures minislots based on the current instantaneous demand.

(ii) The fact that the URLLC traffic is completely agnostic to the channel

state and eMBB utilities/allocation is surprising. Intuitively it seems plausible that

one could load an eMBB user with a lower marginal utility with more URLLC traffic,

while protecting a eMBB user with a higher marginal utility and achieve a better

sum utility. Further, it seems reasonable that eMBB users with a worse channel state

(and thus lower rate) could be loaded with additional URLLC traffic. However,

Theorem. 6.4.1 implies that there exists an optimal solution that is achieved by

channel and utility oblivious, uniform loading of URLLC traffic, thus providing a

very simple algorithm for URLLC scheduling.

6.5 Convex Model – Time-Homogenous Policies

In this section we shall consider joint scheduling for wireless systems for a gen-

eral superposition/puncturing model. This is a somewhat complex problem, whence

we will focus our attention on a restricted, but still rich, class of scheduling policies

which we refer to as time-homogeneous eMBB/URLLC schedulers. We identify a

key concavity requirement in Condition 1 (that is satisfied by convex loss functions)

that enables a stochastic approximation approach for utility maximization.

6.5.1 Time-homogeneous eMBB/URLLC Scheduling policies

We shall define time-homogeneous eMBB/URLLC schedulers as follows. First,

feasible eMBB allocations φ ∈ Σ will be restricted such that for any eMBB slot in
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channel state s ∈ S allocations are time-homogeneous across minislots across the

slot, i.e., φsu,1 = φsu,m,∀m ∈ M and its overall allocation for the slot is given by

φsu = |M|φsu,1. The set of time-homogeneous eMBB allocations is thus given by

ΣU :=
{
x ∈ Σ | ∀s ∈ S, u ∈ U , xsu,m = xsu,1 ∀m ∈M

}
.

Second, URLLC demand placement per minislot are done proportionally to

pre-specified weights, and these weights are assumed to be time-homogeneous across

minislots. In particular such policies are parametrized by a weight matrix γ ∈ ΣU ,

where induced load on user u under channel state s and slot m is given by

Lsu,m =
γsu,m∑

u′∈U γ
s
u′,m

D(m) =
γsu,1
f
D(m).

The eMBB and URLLC allocations are however coupled together since it must be

the case that for all u ∈ U Lsu,m ≤ φsu,m = φsu,1 almost surely, i.e., one can not induce

more superposition/puncturing on a user than the resources it has been allocated on

that slot. so the following condition must be satisfied. Thus we must have that for

all u ∈M

D(m) ≤ min
u∈U

φsu,1
γsu,1

f.

Note we have assumed that D(m) ≤ f almost surely, thus if
φsu,1
γsu,1
≥ 1 this may not

hold.

Assumption 5. We say a system satisfies a (1 − δ) URLLC sharing factor per

minislot if D(m) ≤ f(1− δ) almost surely for all m ∈M.
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Under a (1− δ) URLLC demand backoff a time-homogeneous eMBB resource

allocation φ and URLLC allocation γ is will be feasible if for all s ∈ S we have

(1− δ) ≤ min
u∈U

φsu,1
γsu,1

,

which is satisfied as long as (1 − δ)γsu,1 ≤ φsu,1 for all u ∈ U . This motivates the

following definition.

Definition Under a (1− δ) sharing factor, the feasible time-homogeneous

eMBB/URLLC scheduling policies are parameterized by φ,γ ∈ ΣU such that (1 −

δ)γ ≤ φ. We shall denote the set of such policies as follows:

ΠU,δ := {(φ,γ) | φ,γ ∈ ΣU and (1− δ)γ ≤ φ},

where ΠU,δ is a convex set.

6.5.2 Characterization of throughput region

In this section we characterize the throughput regions achievable under time-

homogeneous scheduling.

Theorem 6.5.1. Under a (1 − δ) sharing factor and time-homogeneous scheduler

π = (φπ,γπ) ∈ ΠU,δ the probability of induced throughput for user r u ∈ U in channel

state s ∈ S is given by

rπ,su = E[f su(φπ,s
u , γπ,su D)],

and the overall user throughputs are given by cπ = (cπu : u ∈ U) where cπu =∑
u∈U r

π,s
u pS(s).
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The proof is available in Appendix 6.11. Based on the above we can define

feasible throughput region constrained to the time-homogeneous policies in ΠU,δ.

First let us define

CU,δ = {c ∈ R|U|+ | ∃π ∈ ΠU,δ s.t. c ≤ cπ}.

We shall let ĈU,δ denote the convex hull of CU,δ. Note that throughputs rates in

the convex hull are achievable through policies that do time sharing/randomization

amongst time-homogeneous scheduling policies in ΠU,δ.

Condition 1. For all s ∈ S and u ∈ U the functions gsu(, ) given by

gsu(φ
s
u, γ

s
u) = E[f su(φsu, γ

s
uD)], (6.8)

are jointly concave on ΠU,δ.

Lemma 6.5.2. Condition 1 is satisfied for systems where superposition/puncturing

of each user is modelled via either a

1. Convex loss function,

2. Threshold loss function with fixed relative thresholds, i.e., tsu(φ
s
u) = αsu for

φ ∈ [0, 1] and the URLLC demand distribution FD(·) is such that FD( 1
x
) is

concave in x (satisfied by the truncated Pareto distribution).

The proof is available in Appendix 6.11. With this condition in place, we now

describe the throughput region.
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Theorem 6.5.3. Suppose that Condition 1 holds. then CU,δ = ĈU,δ, i.e., there is no

need to consider time-sharing/randomization amongst time-homogeneous

eMBB/URLLC policies.

The proof is available in Appendix 6.11. Thus, with time-homogeneous poli-

cies and imposing concavity of from Condition 1, the above result sets up a convex

optimization problem in (φ, γ), i..e, we have a concave cost function with convex

constraints. Thus, by iteratively updating (φ, γ), we can develop an online algorithm

that asymptotically maximizes utility. Below, we formally develop a stochastic ap-

proximation algorithm to achieve this objective.

6.5.3 Stochastic approximation based online algorithm

We first restate the utility maximization problem for time-homogeneous

URLLC/eMBB scheduling policies:

max
φ,γ∈ΠU,δ

∑
u∈U

Uu

(∑
s∈S

pS(s)gsu (φsu, γ
s
u)

)
. (6.9)

Observe that the objective function consists of a sum of compositions of non-decreasing

concave function (Uu(·)), and supposing Condition 1 holds, a concave function gsu (·, ·)

in φ and γ. Further, the constraint set is convex. Therefore, the above problem fits

in the framework of standard convex optimization problems. However, solving the

above problem requires the knowledge of all possible network states and its prob-

ability distribution, resulting in an offline optimization problem. In this section,

we develop a stochastic approximation based online algorithm to solve the above

problem.
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Online algorithm: Let Ru(t − 1) be the random variable denoting the

average rate received by eMBB user up to eMBB slot t − 1. Let s be the network

state in slot t. Define vectors φs := {φsu, | u ∈ U} and γs := {γsu | u ∈ U}. At the

beginning of eMBB slot t, we compute the vectors
(
φ̃(t), γ̃(t)

)
as the solution to the

following optimization problem.

max
φs,γs

∑
u∈U

U
′

u

(
Ru(t− 1)

)
gsu(φ

s
u, γ

s
u), (6.10)

s.t. φs ≥ (1− δ) γs, (6.11)∑
u∈U

φsu = 1 and
∑
u∈U

γsu = 1, (6.12)

φs ∈ [0, 1]|U| and γs ∈ [0, 1]|U| . (6.13)

This optimization problem is a convex optimization problem and can be solved nu-

merically using standard convex optimization techniques. Using
(
φ̃(t), γ̃(t)

)
, we

schedule URLLC and eMBB traffic as follows:

The eMBB scheduler: For notational ease, we fluidize the bandwidth.

Specifically, we assume that the bandwidth of a resource block is very small when

compared to the total bandwidth available. Hence, the bandwidth can be split into

arbitrary fractions and we allocate φ̃u(t) fraction of the total bandwidth to eMBB

user u.

The URLLC Scheduler: We load different eMBB users with URLLC traffic

according to the vector γ̃(t).

At the end of eMBB slot t, the eMBB scheduler receives feedback from the

eMBB receivers indicating the rates received by the eMBB users. Let us denote the
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rate received eMBB user u in slot by the random variable Ru(t). We update Ru(t)

as follows:

Ru(t) = (1− εt)Ru(t− 1) + εtRu(t), (6.14)

where {εt | t = 1, 2, 3, . . .} is a sequence of positive numbers which satisfy the follow-

ing (standard) condition:

Condition 2. The averaging sequence {εt} satisfies:

∞∑
t=1

εt =∞ and
∞∑
t=1

ε2t <∞

.

Finally, we state the main result of this section, which is the optimality of the

stochastic approximation based online algorithm.

Theorem 6.5.4. Let r∗ be the optimal average rate vector received by eMBB users

under the solution to the offline optimization problem. Suppose that Conditions 1

and 2 hold. Then we have that:

lim
t→∞

R(t) = r∗ almost surely. (6.15)

The proof is available in the Appendix 6.11.

6.6 Threshold Model and Placement Policies

In the previous section, we developed a stochastic approximation algorithm

for time-homogeneous policies. This algorithm iteratively solves an optimization

239



problem described in (6.43). This optimization problem jointly optimizes over a pair

of row vectors (φs, γs). While this convex optimization problem can be solved using

standard methods, it could become computationally challenging as the number of

users scale up.

In this section, we shall restrict our attention to a threshold model for su-

perposition/puncturing, and look at policies that impose structural conditions on

the puncturing matrix γ. We will show that the resulting class of policies have nice

theoretical properties that lead to simpler online algorithms (solving (6.5), which is

an one-dimensional search).

We consider two types of structural conditions on the puncturing matrix γ,

resource proportional and threshold proportional placement policies, described be-

low.

(i) Resource Proportional (RP) Placement: The first is based on allocating

URLLC demands in proportion to eMBB user slot allocations, i.e., γsu = φsu. We refer

to this as Resource Proportional (RP) Placement and denote such policies by

ΠRP,δ := {(φ,γ) ∈ ΠU,δ | γ = φ},

and define the associated achievable throughput region

CRP,δ = {c ∈ R|U|+ | ∃π ∈ ΠRP,δ s.t. c ≤ cπ}.

The motivation for RP Placement comes from the optimality of random placement

for the linear model in Section 6.4. Observe that if puncturing occurs uniformly

randomly, then the expected number of punctures is directly proportional to the
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fraction of bandwidth allocated to an eMBB user. Thus, RP Placement has the

interpretation of a determinized version of the policy we previously studied with

linear loss functions.

(ii) Threshold Proportional (TP) Placement: The second policy allocates

URLLC demands in proportion to the eMBB users associated loss thresholds so

as to avoid losses,

γsu =
φsut

s
u(φ

s
u)∑

u′∈U φ
s
u′t

s
u′(φ

s
u′)
.

We refer to this as Threshold Proportional (TP) Placement and denote such policies

by

ΠTP,δ :=

{(φ,γ) ∈ ΠU,δ | γsu =
φsut

s
u(φ

s
u)∑

u′∈U φ
s
u′t

s
u′(φ

s
u′)
∀s ∈ S, u ∈ U}.

The associated achievable throughput region is denoted

CTP,δ = {c ∈ R|U|+ | ∃π ∈ ΠTP,δ s.t. c ≤ cπ}.

The following theorem provides a formal motivation for TP Placement,. The

main takeaway here is that the probability of any loss in an eMBB slot under TP

Placement policy is a lower bound over all other strategies.

Theorem 6.6.1. Consider a system with (1 − δ) sharing factor. Consider a joint

scheduling policy based on the TP URLLC placement i.e, π = (φπ,γπ) ∈ ΠTP,δ.

Then π achieves the minimum probability of eMBB loss amongst all joint scheduling

policies using the same eMBB resource allocation φπ.
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The proofs (along with characterizations of the capacity region for RP and

TP Placement policies) are available in Appendix 6.11.1.

6.6.1 Online scheduling for RP and TP Placement

In this section, we consider online algorithms that implement the RP and

TP Placement policies. While the stochastic approximation algorithm developed in

Section 6.5.3 can clearly be used, the additional structure imposed by the RP and TP

Placement policies, and the shape of the threshold loss function (discussed below)

can result in much simpler algorithms (with optimality guarantees).

We consider the case where tsu(φ) is a (state dependent but φ independent)

constant, i.e., tsu(φ) = αs, where αs ∈ (0, 1). Intuitively, this means that eMBB traffic

which has a higher share of the bandwidth is more resilient to losses (e.g. through

coding over larger fraction of resources). Then, by substituting this loss function in

(6.32) and (6.35) (where we also use the fact that
∑

u∈U φ
s
u = 1), we have that

rπ,su = r̂suφ
s
uFD(αs).

Comparing with the development in Section 6.4.2, we observe that the cost and

constraints are identical if FD(αs) replaces (1 − ρ). Note that a small difference

is that FD(αs) is state and user dependent, whereas (1 − ρ) does not depend on

either; however, it is easy to see that the development in Section 6.4.2 immediately

generalizes to this setting. Hence, we can interpret FD(αs) as the state and user

dependent average rate loss due to puncturing via the RP or TP Placement policies.

We can now employ the rate-based iterative gradient scheduler developed
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in Section 6.4.2 (by replacing (1 − ρ) in (6.6) by a user-dependent FD(αs)), and

the theoretical guarantees directly carry over. As this algorithm only minimizes over

users at each slot in (6.5), this is easier to implement when compared to the stochastic

approximation algorithm developed in Section 6.5.3.

6.7 Optimality of Mini-slot Homogeneous Policies

In this section we derive conditions under which mini-slot homogeneous URLLC

placement polices are optimal.

With slight abuse of notation, we introduce the following additional assump-

tion on loss function (hsu (·)).

Assumption 6. Let the total URLLC demand in an eMBB slot be d and γd be the

total URLLC puncturing on eMBB user u where γ ∈ [0, 1], then for any φ ∈ [0, 1]

hu (·, ·) can be split as follows:

hsu

(
γd

φ

)
= f(d)h̃su

(
γ

φ

)
, (6.16)

where f(·) is a non-zero non-decreasing function, and h̃su(·) is a non-decreasing con-

vex function.

We shall first state the following definitions.

Definition A scheduler is said to be non-anticipative and causal if at the beginning

of a mini-slot m, 1) scheduler knows the realizations of D1, D2, . . . , Dm−1 and 2),

scheduler is unaware of the realization of Dm, but knows only its distribution.

243



Definition A scheduling policy is said to be mini-slot dependent if the URLLC

placement policy can vary with the mini-slot index m in an eMBB slot.

We shall describe a non-anticipative, causal, and mini-slot dependent joint

scheduling policy π.

1. At the beginning of an eMBB slot, the scheduler chooses φs,πu , u ∈ U such that

∑
u∈U

φs,πu = 1 and φs,πu ∈ [0, 1] ∀u. (6.17)

2. In each mini-slotm, the total puncturing on eMBB user u is given by γs,πu (m,D(m− 1))Dm,

where γs,πu (·, ·) is the URLLC placement factor, D(m−1) := [D1, D2, . . . , Dm−1]

is the vector of URLLC demands till mini-slot m − 1 in a given eMBB slot.

For any m and d, γs,πu (m,d) has to satisfy the following constraints.

∑
u∈U

γs,πu (m,d) = 1, γs,πu (m,d) ∈ [0, 1] , (6.18)

γs,πu (m,d) ≤ φs,πu
|M| (1− δ)

. ∀u ∈ U . (6.19)

Observe that the URLLC placement factor for non-anticipative, causal, and mini-slot

dependent scheduling policy is a function of both the mini-slot index and the past

URLLC demands. Let Π̃ be the set of all non-anticipative, causal, and mini-slot

dependent scheduling policies. For any eMBB slot t, we would like find the policy

which solves the following optimization problem.

OP1 : max
π∈Π̃

:
∑
u∈U

wug
s,π
u (φs,πu , γs,πu (·, ·)) , (6.20)
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where s is the current network state and gs,πu (·, ·) is the average rate experienced by

eMBB user u under policy π. gs,πu (·, ·) is given by the following expression:

gs,πu (φs,πu , γs,πu (·, ·)) :=

rsuφ
s,π
u E

1− hsu

 |M|∑
m=1

γs,πu (m,D(m− 1))Dm, φ
s,π
u

 , (6.21)

where the expectation is computed with respect to the joint distribution of D1,

D2, . . ., D|M|.

The main result on the optimality of mini-slot homogeneous policies is stated

below.

Theorem 6.7.1. Under Assumptions 6, there exists an optimal solution (φs,∗, γs,∗ (·, ·))

for OP1 with a mini-slot homogeneous URLLC placement policy.

The following corollary directly follows from the previous theorem.

Corollary 6.7.2. There exists an optimal mini-slot homogeneous policy when hsu (·)

satisfies:

1. Linear: hsu(
γD
φ

) = ksu

(
γD
φ

)
, where ksu ≥ 0.

2. Monomial: hsu(
γD
φ

) = ksu

(
γD
φ

)q
where ksu ≥ 0 and q ≥ 0.

6.8 Simulations

We consider a system with a total of 100 RBs available per eMBB slot, with

8 minislots per eMBB slot. In an eMBB slot, r̂su for an eMBB user is drawn from
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Figure 6.6: Sum utility as a function of URLLC load ρ for the optimal and TP
Placement policies under threshold model (δ = 0.1).

the finite set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} Mbps with equal probability

and i.i.d. across users and slots. Our system consists of 20 users, and with 100

channel states (all equally likely). The (20 users × 100 states) rate matrix is one-

time synthesized by independently and uniformly sampling a rate from the finite rate

set for each matrix element.

We first consider a threshold model with αs = 0.3 for 50% of eMBB states

and αs = 0.7 for the rest. We use the utility function Uu(r) = log(r) + 6.5 for all

eMBB users, where r is measured in Mbps (constant added to ensure non-negativity

of the sum utility). URLLC load in an eMBB slot (D) is generated form the trun-

cated Pareto distribution with tail exponent η = 2. We compare the optimal policy

(stochastic approximation algorithm, see Section 6.5.3) with that from the TP Place-

ment policy (the simpler gradient algorithm in Section 6.6.1). In this case, as the

threshold functions are (state-dependent) constants, the RP and TP Placement poli-
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Figure 6.7: Sum utility and mean URLLC delay as a function of δ.

cies are the same. As we can see in Figure 6.6, the TP Placement policy tracks the

optimal policy very well.

In Figure 6.8, we study the trade-off between achieving a higher eMBB utility

and lowering the mean delay of URLLC traffic for different values of the sharing factor

1 − δ. Figure 6.8 plots the corresponding probability that the URLLC traffic delay

exceeds two minislots (0.125 × 2 = 0.25 msec). To study this trade-off we generate

URLLC arrivals in each minislot from an uniform distribution between [0, 1/8] (recall

there are 8 minislots). In each minislot, we can serve at most 1−δ
8

units of URLLC

traffic. If the URLLC load in a given minislot is more than 1−δ
8

, the remaining

URLLC traffic is queued and served in the next minislot on a FCFS basis. For

the eMBB users we use a convex model with hsu(s) = eκu(x−1) where κu determines

the sensitivity of an eMBB user to an URLLC load. We have chosen κ = 0.2 for

50 % of the users and κ = 0.7 for the rest. We also set ∀u Uu(x) = log(x) + 4.2

(constant added to ensure positive sum utility). In summary, a larger value of δ
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Figure 6.8: Log-scale plot of the probability that URLLC traffic is delayed by more
than two minislots (0.25 msec) for various values of δ.

limits the amount of URLLC traffic than can be served in a minislot. However, a

larger δ enlarges the constraint set ΠU,δ in the eMBB utility maximization problem,

and hence we get higher eMBB utility.

6.9 Conclusion

In this chapter, we have developed a framework and algorithms for joint

scheduling of URLLC (low latency) and eMBB (broadband) traffic in emerging 5G

systems. Our setting considers recent proposals where URLLC traffic is dynamically

multiplexed through puncturing/superposition of eMBB traffic. Our results show

that this joint problem has structural properties that enable clean decompositions,

and corresponding algorithms with theoretical guarantees.
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Appendix

6.10 Proofs from Section 6.4

Theorem 6.4.1. For a wireless system under the linear superposition/puncturing

model we have that C = CLR.

Proof. Clearly since ΠLR ⊂ Π we have that CLR ⊂ C

Now consider any policy π ∈ Π with eMBB user allocations φπ and URLLC

loads lπ and associated long term throughput is cπ given by

cπu =
∑
s∈S

r̂su(φ
π,s
u − lπ,su )pS(s).

Let us define a π′ based on π to have per mini-slot eMBB user allocations

given by

φπ
′,s
u,m =

φπ,su − lπ,su∑
u′∈U φ

π,s
u′ − l

π,s
u′
f =

φsu − lπ,su
1− ρ

f,

for s ∈ S, u ∈ U and m ∈ M. Since induced mean loads on an eMBB user can

not exceed its allocation we have that φπ ≥ lπ so the above allocations are positive.

Note also that this allocation is not mini-slot dependent, but normalized so that per

mini-slot they sum to f and over the whole eMBB slot sum to 1, i.e., φπ′ ∈ Σ. Thus

for such an allocation we have that

φπ
′,s
u =

φsu − lπ,su
1− ρ

.
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Also suppose that π′ uses randomized URLLC placement across mini-slots which

induces mean URLLC loads proportional to the allocations, i.e., lπ
′,s
u = ρφπ

′,s
u . It

follows that

φπ
′,s
u − lπ′,su = φπ

′,s
u − ρφπ′,su

= (1− ρ)φπ
′,s
u

= φπ,su − lπ,su ,

and so cπ,su = cπ
′,s
u for all s ∈ S and u ∈ U . Thus for any policy π there is a

policy π′ which uses randomized URLLC placement and achieves the same long

term throughputs. It follows that C ⊂ CLR and so C = CLR.

6.11 Proofs from Section 6.5

Theorem 6.5.1. Under a (1 − δ) sharing factor and time-homogeneous scheduler

π = (φπ,γπ) ∈ ΠU,δ the probability of induced throughput for user r u ∈ U in channel

state s ∈ S is given by

rπ,su = E[f su(φπ,s
u , γπ,su D)].

and the overall user throughputs are given by cπ = (cπu : u ∈ U) where cπu =∑
u∈U r

π,s
u pS(s).

Proof. Under a policy π = (φπ,γπ) ∈ ΠU,δ we have that the induced loads are given

by

Lπ,s
u,m =

γπ,su,1

f
D(m),
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so we have that

Lπ,s
u =

∑
u∈U

Lπ,s
u,m =

γπ,su,1

f

∑
u∈U

D(m) =
γπ,su,1

f
D = γπ,su D.

where the last equality follows from the uniformity of URLLC splits and normaliza-

tion it follows that

rπ,su = E[f su(φπ,s
u , Lπ,s

u )] = E[f su(φπ,s
u , γπ,su D)].

Lemma 6.5.2. Condition 1 is satisfied for systems where superposition/puncturing

of each user is modelled via either a

1. convex loss function,

2. threshold-based loss function with fixed relative thresholds, i.e., tsu(φ
s
u) = αsu for

φ ∈ [0.1] and the URLLC demand distribution FD is such that FD( 1
x
) is concave

in x (satisfied by the truncated Pareto distribution).

Proof. Recall that convex loss functions are specified as follows

f su(φsu, l
s
u) = r̂suφ

s
u(1− hsu(

lsu
φsu

)),

with hsu : [0, 1] → [0, 1] a convex increasing function. For time-homogenous policies

we have defined

gsu(φ
s
u, γ

s
u) = E[f su(φsu, γ

s
uD)]

= r̂suE[φsu − φsuhsu(
γsu
φsu
D)].
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Recall that convex function h() one can define a function l(φ, γ) = φh(γ
φ
) known as

the perspective of h() which is known to be jointly convex in its arguments. It follows

that φ− φh(γ
φ
) is jointly concave, and so is gsu() since it is a weighted aggregation of

jointly concave functions.

For threshold-based loss functions where tsu(φ
s
u) = αsu we have that

gsu(φ
s
u, γ

s
u) = E[f su(φsu, γ

s
uD)]

= r̂suφ
π,s
u P (γsuD ≤ φπ,su αus )

= r̂suφ
π,s
u FD(

φπ,su αus
γsu

).

Now using the same result on the perspective functions of variables the result follows.

The truncated Pareto case can be easily verified by taking derivatives.

Theorem 6.5.3. Suppose that Condition 1 holds, then CU,δ = ĈU,δ, i.e., there is no

need to consider time-sharing/randomization amongst time-homogeneous

eMBB/URLLC policies.

Proof. Clearly CU,δ ⊂ CU,δ. We will show that c ∈ ĈU,δ then their exists π =

(φπ,γπ) ∈ ΠU,δ such that c ≤ cπ from which it follows that CU,δ ⊂ CU,δ.

Suppose c ∈ ĈU,δ, then it can be represented as a convex combination of

policies ΠU,δ, in each channel state. For example suppose for simplicity that for that

in channel state s ∈ S we have that λ ∈ [0, 1] one time shares between two policies

π1 and π2 to achieve throughput for u ∈ U given by

rsu = λrπ1,s
u + (1− λ)rπ2,s

u .
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Consider u we have

rsu = λrπ1,s
u + (1− λ)rπ2,s

u

= λgsu(φ
π1,s
u , γπ1,s

u ) + (1− λ)gsu(φ
π2,s
u , γπ2,s

u )

≤ gsu(λφ
π1,s
u + (1− λ)φπ2,s

u , λγπ1,s
u + (1− λ)φγ2,s

u )

= gsu(φ
π,s
u , γπ,su ),

where φπ,s
u = λφπ1,s

u + (1− λ)φπ2,s
u and γπ,su = λγπ1,s

u + (1− λ)γπ2,s
u . Clearly φπ,γπ

as given above correspond to a policy π such that π ∈ ΠU,δ since the set is convex.

It also follows that rsu ≤ rπ,su , so csu ≤ cπ,su and so c ≤ cπ.

Theorem 6.5.4. Let r∗ be the optimal average rate vector received by eMBB users

under the solution to the offline optimization problem. Suppose that Conditions 1

and 2 hold. Then we have that:

lim
t→∞

R(t) = r∗ almost surely. (6.22)

The proof requires intermediate lemmas, detailed below. For the ease of

exposition, let us define U(r) :=
∑

u∈U Uu(ru) and

∇U (r) :=

[
∂U1(x)

∂x

∣∣∣
x1=r1

,
∂U2(x)

∂x

∣∣∣
x2=r2

, . . . ,
∂U1(x)

∂x

∣∣∣
rx|U|=|U|

]T
. First we have the following important lemma regarding the stochastic approxima-

tion algorithm.
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Lemma 6.11.1. R(t) =
[
R1(t), R2(t), . . . , R|U|

]T
is an unbiased estimator of

argmax:
c∈CU,δ

∇U
(
R(t)

)T
c, i.e.,

E [R(t)] = argmax:
c∈CU,δ

∇U
(
R(t)

)T
c. (6.23)

Proof. Based on the definition of CU ,δ we can re-write max:
c∈CU,δ

∇U
(
R(t)

)T
c as follows:

max
φ,γ

∑
u∈U

U
′

u

(
Ru(t)

)(∑
s∈S

pS(s)gsu (φsu, γ
s
u)

)
(6.24)

s.t. φ ≥ (1− δ) γ, (6.25)

φ, γ ∈ ΠU,δ. (6.26)

Observe that the above optimization problem can be solved separately for each net-

work state s ∈ S. The de-coupled problem for any state s is same as the optimiza-

tion problem (6.43) in our online algorithm. With a slight abuse of notation, let(
φ̃(s), γ̃(s)

)
be the optimal solution to the online problem when S(t) = s. Condi-

tioned on S(t) = s, we have that:

E [Ru(t) | S(t) = s] = E
[
f su

(
φ̃su, γ̃

s
uD
)
| S(t) = s

]
= gsu

(
φ̃su, γ̃

s
u

)
∀u ∈ U . (6.27)

Computing E [E [Ru(t) | S(t)]] gives the desired result (6.23).

The main intuition behind the proof of optimality is that for large t, the

trajectories of R(t) can be approximated by the solution to the following differential

equation in x(t) with continuous time t:

dx(t)

dt
= argmax:

c∈CU,δ
∇U (x(t))T c− x(t). (6.28)
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Let us define q(x) := argmax:
c∈CU,δ

∇U (x)T c. To show the optimality of our online

algorithm, we shall also require the following result on the above differential equation.

Lemma 6.11.2. The differential equation (6.28) is globally asymptotically stable.

Furthermore, for any initial condition x(0) ∈ CU ,δ, we have that limt→∞ x(t) = r∗.

Proof. To prove this lemma it is enough to show that there exists a Lyapunov function

L(x(t)) such that it has a negative drift when x(t) 6= r∗ and has zero drift when

x(t) = r∗. Define L(x) = U(r∗) − U(x). Observe that under our assumption of

strictly concave Uu(·), the offline optimization problem is guaranteed to have an

unique optimal solution, which is r∗. Therefore, ∀x ∈ CU ,δ and x 6= r∗ L(x) > 0.

Next we will compute the drift of L(x(t)) with respect to time.

dL(x(t))

dt
= −∇U (x(t))T

dx(t)

dt
, (6.29)

= −q (x(t)) +∇U (x(t))T x(t), (6.30)

< 0 ∀x(t) 6= r∗. (6.31)

To get inequality (6.31), first observe that from the definition of q(x(t)) and (6.30),

we get that dL(x(t))
dt

≤ 0. However, we have to show that this inequality is strict

for x(t) 6= r∗. Observe that q(x) = x is a necessary and sufficient condition for

optimality of the offline optimization problem, see [83] for more details. From strict

concavity of the utility functions, we have an unique optimal point r∗. Therefore,

dL(x(t))
dt

< 0 for x(t) 6= r∗ and dL(x(t))
dt

= 0 at x(t) = r∗.

To conclude the proof, Lemmas 6.11.1 and 6.11.2 along with the condition 2

satisfy all the conditions necessary to apply Theorem 2.1 in Chapter 5, [51] which
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states that R(t) converges to r∗ almost surely.

6.11.1 Proofs and Additional Results from Section 6.6

First we state is a corollary to Theorem 6.5.1 for systems having threshold

model for superposition/puncturing.

Corollary 6.11.3. Under a (1− δ) sharing factor and time-homogeneous scheduler

π = (φπ,γπ) ∈ ΠU,δ the probability of induced eMBB loss for user u ∈ U in channel

state s ∈ S is given by

επ,su = 1− FD(
φπ,s
u tsu(φ

π,s
u )

γπ,su
).

where FD denotes the cumulative distribution function of the URLLC demands on a

typical eMBB slot. Then the associated user throughput is given by

rπ,su = r̂suφ
π,s
u FD(

φπ,s
u tsu(φ

π,s
u )

γπ,su
).

and the overall user throughputs are given by cπ = (cπu : u ∈ U) where

cπu =
∑
u∈U

r̂suφ
s
uFD(

φπ,s
u tsu(φ

π,s
u )

γπ,su
)pS(s).

The following two corollaries are direct consequences of Corollary 6.11.3 and

Theorem 6.5.3 restricted to RP and TP Placement strategies, and characterize the

throughput regions under these policies.

Corollary 6.11.4. Consider a wireless system with full sharing factor and time-

homogeneous scheduler based on the RP URLLC Placement policy π = (φπ,γπ) ∈

ΠRP,δ. Then any eMBB resource allocation φ combined with a RP URLLC demand
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placement policy, γ = φ is feasible. The probability of loss for user u ∈ U in channel

state s ∈ S is given by

επ,su = 1− FD(tsu(φ
π,s
u )),

with associated user throughput

rπ,su = r̂suφ
s
uFD(tsu(φ

π,s
u )). (6.32)

Further if for all s ∈ S and u ∈ U the functions gsu(, ) given by

gsu(φ
s
u) = φsuFD(tsu(φ

π,s
u )), (6.33)

are concave then CRP,δ = ĈRP,δ.

Corollary 6.11.5. Under a (1 − δ) sharing factor and jointly uniform scheduler

based on the TP URLLC Placement policy π = (φπ,γπ) ∈ ΠTP,δ, the probability of

induced eMBB loss user u ∈ U in channel state s ∈ S is given by

επ,su = 1− FD(
∑
u∈U

φπ,s
u tsu(φ

π,s
u )), (6.34)

with associated user throughput

rπ,su = r̂suφ
s
uFD(

∑
u∈U

φπ,s
u tsu(φ

π,s
u )). (6.35)

Further if for all s ∈ S and u ∈ U the functions gsu(, ) given by

gsu(φ
s
u, γ

s
u) = φsuFD(

∑
u∈U

φπ,s
u tsu(φ

π,s
u )), (6.36)

are jointly concave then CTP,δ = ĈTP,δ.
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Finally, using the above corollary, we show the optimality of TP Placement

with respect to probability of loss on a given eMBB slot.

Theorem 6.6.1. Consider a system with (1 − δ) sharing factor. Consider a joint

scheduling policy based on the TP URLLC Placement i.e, π = (φπ,γπ) ∈ ΠTP,δ.

Then π achieves the minimum probability of eMBB loss amongst all joint scheduling

policies using the same eMBB resource allocation φπ.

Proof. Clearly the probability of loss depends on the minislot demands and the

users thresholds. If one relaxes the sequential constraint on URLLC allocations, one

can consider aggregating the the minislot demands and pooling together the users

superposition/puncturing thresholds. The probability of loss for this relaxed system

is simply the probability the demand exceeds the size of the superposition/puncturing

pool, i.e., The probability of loss under the pooled resources is given by

P (D ≥
∑
u∈U

φsut
s
u(φ

s
u)).

This is clearly a lower bound for any placement policy. Note however that the thresh-

old proportional strategy meets this bound from Corollary 6.11.5 (see Equation 6.34)

so it indeed minimizes the probability of loss on a given eMBB slot.

Theorem 6.11.6. Under Assumptions 6, there exists an optimal solution (φs,∗, γs,∗ (·, ·))

for OP1 with a mini-slot homogeneous URLLC placement policy.

Proof. The proof has the following three steps.
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1. We shall first upper bound the optimal value of OP1 by the solution to a

hypothetical non-causal scenario described in the sequel.

2. We show that for the hypothetical non-casual scenario there exists an optimal

joint scheduling policy with mini-slot homogeneous URLLC placement policy

which in general is a function of the aggregate URLLC load in an eMBB slot.

3. Lastly, under Assumption 6 on the loss functions, we show that there exists

an URLLC placement policy policy which is still mini-slot homogeneous but

independent of the aggregate URLLC load.

6.11.2 Upper bound on OP1

At the beginning of each eMBB slot, first the scheduler chooses φs,π. Next

the total URLLC demand in each mini-slot is revealed, i.e., the realizations of

D1, D2, . . . , D|M| are revealed. Therefore, this setting is not causal as it assumes exact

knowledge about future events. In general the URLLC placement under the non-

causal setting is dependent on the mini-slot indexm and D (|M|) :=
[
D1, D2, . . . , D|M|

]
.

With slight abuse of notation, we shall denote it by γsu (m,D (|M|)). The joint

scheduling policy has to satisfy the constraints (6.17), (6.18), and (6.19). We have

the following lemma on the non-causal setting.

Lemma 6.11.7. There exists an optimal mini-slot homogeneous policy for the non-

casual setting such that the URLLC placement depends only on the total URLLC

demand in an eMBB slot, i.e.,
∑|M|

m=1Dm.

Proof. Let
(
φ̃π, γ̃s,π (·, ·)

)
be the decision variables under an optimal joint scheduling
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policy π in the non-causal setting. Let d1, d2, . . . , d|M| be realizations ofD1, D2, . . . , D|M|

such that
∑|M|

m=1 dm = d. Define the following:

νsu :=

∑|M|
m=1 γ̃

s,π
u (m,d (|M|)) dm

d
. (6.37)

Note that with the definition of νsu, the total puncturing experienced by an eMBB

user u in an eMBB slot is νsud. From this one can construct an equivalent mini-slot

homogeneous URLLC placement policy. For all mini-slots, use νs as the URLLC

placement factor. This satisfies the constraints (6.17), (6.18), and (6.19). In general

νs could depend on d1, d2, . . . , d|M|. However, we will show that the optimal solution

depends only on the sum
∑|M|

m=1 dm.

Let d′1, d
′
2, . . . , d

′
|M| be such that

∑|M|
m=1 d

′
m = d and there exists an m such

that d′m 6= dm. Define the following:

ν ′su :=

∑|M|
m=1 γ̃

s,π
u (m,d′ (|M|)) d′m

d
. (6.38)

Therefore, the total puncturing observed by ν ′su d. Observe that ν ′s is also a fea-

sible URLLC policy for the case when the URLLC demand realizations are d1,

d2, . . . , d|M|. Similarly νs is also a feasible URLLC placement policy for the case

with d′1, d′2, . . . , d
′
|M|. Therefore, the optimal solution has to be independent of the

realizations of D1, D2, . . . , D|M| and depends only on the sum
∑|M|

m=1 Dm.

Therefore, we shall restrict ourselves to mini-slot homogeneous policies in

the non-causal setting with the URLLC placement as a function of the total URLLC

demand for that eMBB slot. With slight abuse of notation we shall denote a URLLC
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placement policy in this setting by γsu (·) with the only argument as the total URLLC

demand in that eMBB slot. This procedure is formally described next.

1. At the beginning of an eMBB slot, the joint scheduler chooses φs,πu , u ∈ U such

that ∑
u∈U

φs,πu = 1 and φs,πu ∈ [0, 1] ∀u. (6.39)

2. The total URLLC demand D =
∑|M|

m=1Dm in that eMBB slot is revealed.

3. For an URLLC demand of D, γs,πu (D) is chosen such that∑
u∈U

γs,πu (D) = 1, and γs,πu (D) ∈ [0, 1] . (6.40)

Let us denote the feasible policies for this hypothetical non-causal scenario by Π†.

(φs,π, γs,π (·)) is chosen as the solution to the following optimization problem.

OP2 : max
π∈Π†

:
∑
u∈U

wug
s,π
u (φs,πu , γs,πu (·)) , (6.41)

where gs,πu (φs,πu , γs,πu (·)) = rsuφ
s,π
u E [1− hsu (γs,πu (D)D,φs,πu )]. First we have the fol-

lowing important lemma.

Lemma 6.11.8.

max
π∈Π†

:
∑
u∈U

wug
s,π
u (φs,πu , γs,πu (·)) ≥ max

π∈Π̃
:
∑
u∈U

wug
s,π
u (φs,πu , γs,πu (·, ·)) . (6.42)

Proof. This directly follows from the proof of Lemma 6.11.7 where we have shown

that any URLLC placement factor γs,πu (·, ·) can be transformed into a mini-slot

homogeneous policy which depend only on the total URLLC demand in an eMBB

slot, and hence, any feasible solution to OP1 is a feasible solution for OP2.
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In general the optimal URLLC placement policy under OP2 may depend on

the total URLLC demand in an eMBB slot. However, under the Assumption 6 it is

independent of the total URLLC demand. This is stated formally in the following

lemma.

Lemma 6.11.9. Under Assumption 6, there exists an optimal solution (φs,∗, γs,∗ (·))

for OP2 with URLLC placement policy (γs,∗ (·)) independent of D.

Proof. If (φs,∗, γs,∗ (·)) is an optimal solution to OP2, then γs,∗ (·) must also be an

optimal solution to the following optimization problem in γs (·).

max
γs

∑
u∈U

wug
s
u(φ

s,∗
u , γsu (·)), (6.43)

s.t. φs,∗u ≥ (1− δ) γsu(d) ∀u, d, (6.44)∑
u∈U

γsu(d) = 1 and γsu(d) ∈ [0, 1] ∀u, d. (6.45)

(6.46)

For any d and u, from the K.K.T. conditions for the above optimization problem, we

have that

−wursuf(d)hs
′

u

(
γs,∗u (d)

φs,∗u

)
+ β(d) + ηu(d)− νu(d)− λu(d) = 0. (6.47)

where β(d) is an arbitrary constant (function of d) and ηu(d), νu(d) and λu(d) are

constants such that

λu(d) (φs,∗u − γs,∗u (1− δ)) = 0 and λu(d) ≥ 0 ∀u, (6.48)

ηu(d)γs,∗u = 0 and ηu(d) ≥ 0 ∀u, (6.49)

νu(d) (1− γs,∗u ) = 0 and νu(d) ≥ 0 ∀u. (6.50)
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For any d′ 6= d, if we choose β(d′) = β(d)f(d′)
f(d)

, ηu(d
′) = ηu(d)f(d′)

f(d)
, νu(d

′) = νu(d)f(d′)
f(d)

,

and λu(d
′) = λu(d)f(d′)

f(d)
, then γs,∗u (d) and φs,∗u satisfy the K.K.T. condition

−wursuf(d′)hs
′

u

(
γs,∗u (d)

φs,∗u

)
+ β(d′) + ηu(d

′)− νu(d′)− λu(d′) = 0. (6.51)

Note that we have used the non-zero property of f(·) when we multiply with f(d′)
f(d)

.

Hence, γs,∗u (d) and φsu are optimal for d′ too. Hence, we have a constructed an optimal

solution with URLLC placement policy independent of D.

We have shown in Lemma 6.11.9 that there exists an optimal policy (φs,∗, γs,∗ (·))

which is a mini-slot homogeneous policy and independent of the realization of D. In

Lemma 6.11.8, we have also shown that the optimal value of OP2 is an upper bound

for OP1. Hence, there exists a mini-slot homogeneous policy which achieves an up-

per bound for OP1. Therefore, there exists a mini-slot homogeneous policy which is

optimal for OP1.

Theorem 6.11.10. Under the assumptions of exchangeable URLLC arrivals (Dm)

in every mini-slot and convex loss functions (hu (·)), if E [hu(D1)] <∞, then we have

that

E

hu
φu|M|∑

m=1

Dm

 ≥ E
hu

 |M|∑
m=1

φuDm

 . (6.52)

Proof. We shall assume that k := φu|M| is an integer. Let Sk be the set of all subsets

with k elements chosen from the set {1, 2, . . . , |M|}. For example, if |M| = 3 and
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k = 2, then Sk = {{1, 2} , {2, 3} , {1, 3}}. Note that |Sk| =
(|M|
k

)
. Using the above

definitions, we can re-write the R.H.S. of (6.52) as follows:

E

hu
 |M|∑
m=1

φuDm

 = E

[
h

(
1(|M|
k

) ∑
q∈Sk

(∑
m∈q

Dm

))]
. (6.53)

Using the above expression one can apply Jensen’s inequality on the R.H.S. of (6.52),

we have that

E

hu
 |M|∑
m=1

φuDm

 ≤ 1(|M|
k

)E[h(∑
q∈Sk

(∑
m∈q

Dm

))]
. (6.54)

Since Dm’s are exchangeable, the R.H.S. of the above expression is same as the L.H.S.

of (6.52). Hence, proved.
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Chapter 7

Conclusions

In this thesis we have focused on the design of schedulers for next generation

wireless networks which support heterogeneous application mixes, characterized by

different, possibly complex, application/user Quality of Experience (QoE) metrics.

The central problem underlying resource allocation for such systems is realizing QoE

trade-offs among various applications/users given the dynamic loads and capacity

variability they would typically see. We optimized various flow-level delay based

metrics based which are directly related to the QoE of users. This approach is

different from the traditional approach of using rate and packet based metrics which

do not directly relate to user experience.

We have shown that using apriori information on flow sizes/distributions as

well as on application QoE requirements from higher OSI layers like the application

and transport layers can help us realize complex trade-offs in QoE. In future we envi-

sion network protocols which provide more higher layer information to the schedulers

and QoE-aware scheduler designs which can exploit such information for better QoE

management. We have also developed robust scheduler designs, which can learn and

adapt to the changing traffic conditions like system loads, flow size distributions etc.

and in principle do not need any intervention from network operators. Application
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of such learning techniques and in general state-of-the-art Machine Learning (ML)

techniques to design self-adapting wireless systems would be an interesting future

research direction.

URLLC traffic with its stringent reliability requirements has its own specific

design challenges, for example, ‘tall’ vs ‘wide’ transmissions, ‘one shot’ vs ‘multiple

transmissions’ etc. which have been discussed in Chapter 5. From the point of a view

wireless system design, one has to quantify such trade-offs so as to optimize system

parameters. We have developed a queuing network based analytical framework to

capture such trade-offs as well as to dimension the system appropriately to support

URLLC requirements.

Since wireless spectrum is scarce and expensive it is of practical interest to

find efficient multiplexing schemes to share radio resources between URLLC and

other types of traffic like the eMBB traffic. We have developed a joint scheduling

framework for eMBB and URLLC traffic in a downlink setting based on preemptive

puncturing/superposition of eMBB transmissions by URLLC traffic. We then iden-

tified scenarios where it was necessary to do joint scheduling of URLLC and eMBB

with selective puncturing/superposition of eMBB users based on the robustness of

their transmissions as well as scenarios where one could completely de-couple URLLC

and eMBB scheduling. In this thesis we have not addressed some of the issues related

to URLLC traffic, for example, interaction between the HARQ processes of URLLC

and eMBB traffic, exploiting periodicity in URLLC arrivals, and provisioning uplink

channel for URLLC QoS requirements. We hope to address these issues in our future

research.

266



Bibliography

[1] Y. Polyanskiy, H. V. Poor, and S. Verdu. Channel coding rate in the finite

blocklength regime. IEEE Transactions on Information Theory, 56(5):2307–

2359, May 2010.

[2] Bilal Sadiq, Ritesh Madan, and Ashwin Sampath. Downlink scheduling for

multiclass traffic in lte. EURASIP J. Wirel. Commun. Netw., 2009:14:9–14:9,

Mar. 2009.

[3] Magnus Proebster. Improving the quality of experience with size-based and

opportunistic scheduling. In Proc. International Symposium on Wireless Com-

munications Systems (ISWCS), pages 443–448, Aug. 2014.

[4] Tobias Hobfeld, Sebastian Biedermann, Raimund Schatz, Alexander Platzer,

Sebastian Egger, and Markus Fiedler. The memory effect and its implications

on web qoe modeling. In Proc. Int. Teletraffic Cong.(ITC), pages 103–110,

Sep. 2011.

[5] Ricky K. P. Mok, Edward W. W. Chan, and Rocky K. C. Chang. Measur-

ing the quality of experience of http video streaming. In Proc. IFIP/IEEE

International Symposium on Integrated Network Management (IM 2011) and

Workshops, pages 485–492, May 2011.

267



[6] Pablo Ameigeiras, Juan J. Ramos-Munoz, Jorge Navarro-Ortiz, Preben Mo-

gensen, and Juan M. Lopez-Soler. Qoe oriented cross-layer design of a resource

allocation algorithm in beyond 3g systems. Comput. Commun., 33(5):571–582,

Mar. 2010.

[7] S. Ben Fred, T. Bonald, A. Proutiere, G. Régnié, and J. W. Roberts. Statistical

bandwidth sharing: A study of congestion at flow level. In Proceedings of the

2001 Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communications, pages 111–122, NY, USA, 2001. ACM.

[8] S. Sesia, I. Toufik, and M. Baker. LTE – The UMTS Long Term Evolution,

From Theory to Practice. John Wiley and Sons, 2009.

[9] Magnus Proebster, Matthias Kaschub, Thomas Werthmann, and Stefan Valentin.

Context-aware resource allocation for cellular wireless networks. EURASIP

Journal on Wireless Communications and Networking, 2012(1):1–19, Jul. 2012.

[10] John C. Gittins, Kevin D. Glazebrook, and Richard Weber. Multi-armed Bandit

Allocation Indices. Qiley, 2nd edition, 2011.

[11] B. Holfeld, D. Wieruch, T. Wirth, L. Thiele, S. A. Ashraf, J. Huschke, I. Aktas,

and J. Ansari. Wireless communication for factory automation: an opportunity

for LTE and 5G systems. IEEE Communications Magazine, 54(6):36–43, June

2016.

[12] O. N. C. Yilmaz, Y. P. E. Wang, N. A. Johansson, N. Brahmi, S. A. Ashraf,

and J. Sachs. Analysis of ultra-reliable and low-latency 5G communication

268



for a factory automation use case. In 2015 IEEE International Conference on

Communication Workshop (ICCW), pages 1190–1195, June 2015.

[13] M. Gidlund, T. Lennvall, and J. Akerberg. Will 5G become yet another wire-

less technology for industrial automation? In IEEE Int. Conf. on Industrial

Technology (ICIT), pages 1319–1324, March 2017.

[14] K. I. Pedersen, G. Berardinelli, F. Frederiksen, P. Mogensen, and A. Szufarska.

A flexible 5G frame structure design for frequency-division duplex cases. IEEE

Communications Magazine, 54(3):53–59, March 2016.

[15] 3GPP TSG RAN WG1 Meeting 87, November 2016.

[16] Chairman’s notes 3GPP: 3GPP TSG RAN WG1 Meeting 88bis, Available at

http://www.3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_88b/Report/, April 2017.

[17] Chih-Ping Li, Jing Jiang, W. Chen, Tingfang Ji, and J. Smee. 5G ultra-reliable

and low-latency systems design. In 2017 European Conference on Networks and

Communications (EuCNC), pages 1–5, June 2017.

[18] L. You, Q. Liao, N. Pappas, and D. Yuan. Resource Optimization with Flexible

Numerology and Frame Structure for Heterogeneous Services. ArXiv e-prints,

January 2018.

[19] A. Anand and G. de Veciana. Invited paper: Context-aware schedulers: Real-

izing quality of service/experience trade-offs for heterogeneous traffic mixes. In

2016 14th International Symposium on Modeling and Optimization in Mobile,

Ad Hoc, and Wireless Networks (WiOpt), pages 1–8, May 2016.

269



[20] Pablo Ameigeiras, Juan J. Ramos-Munoz, Jorge Navarro-Ortiz, Preben Mo-

gensen, and Juan M. Lopez-Soler. Qoe oriented cross-layer design of a re-

source allocation algorithm in beyond 3g systems. Computer Communications,

33(5):571–582, Mar. 2010.

[21] Kalpana Seshadrinathan and AlanConrad Bovik. Automatic prediction of per-

ceptual quality of multimedia signals—a survey. Multimedia Tools and Appli-

cations, 51(1):163–186, 2011.

[22] A. Asadi and V. Mancuso. A survey on opportunistic scheduling in wireless

communications. IEEE Commn. Surveys Tutorial, 15(4):1671–1688, Jan. 2013.

[23] Matthew Andrews. A survey of scheduling theory in wireless data networks.

In Wireless Commun., volume 143 of The IMA Volumes in Mathematics and its

Applications, pages 1–17. Springer New York, 2007.

[24] V. Joseph and G. de Veciana. Nova: Qoe-driven optimization of dash-based

video delivery in networks. In Proc. INFOCOM, pages 82–90, Apr. 2014.

[25] H. Kowshik, P. Dutta, M. Chetlur, and S. Kalyanaraman. A quantitative frame-

work for guaranteeing QoE of video delivery over wireless. In Proc. INFOCOM,

pages 290–294, Apr. 2013.

[26] D. Bethanabhotla, G. Caire, and M.J. Neely. Utility optimal scheduling and

admission control for adaptive video streaming in small cell networks. In Proc.

IEEE Int. Symp. Information Theory (ISIT), pages 1944–1948, Jul. 2013.

270



[27] Samuli Aalto and Pasi Lassila. Impact of size-based scheduling on flow level

performance in wireless downlink data channels. In Managing Traffic Per-

formance in Converged Networks, volume 4516 of Lecture Notes in Computer

Science, pages 1096–1107. Springer Berlin Heidelberg, 2007.

[28] Samuli Aalto and Urtzi Ayesta. Optimal scheduling of jobs with a dhr tail in the

m/g/1 queue. In Proc. Int. Conf. on Performance Evaluation Methodologies

and Tools, ValueTools ’08, pages 50:1–50:8, 2008.

[29] Samuli Aalto, Urtzi Ayesta, and Rhonda Righter. On the gittins index in the

m/g/1 queue. Queueing Systems, 63(1–4):437–458, 2009.

[30] Konstantin Avrachenkov, Urtzi Ayesta, Patrick Brown, and Eeva Nyberg. Dif-

ferentiation between short and long tcp flows: Predictability of the response

time. In Proc. INFOCOM, volume 2, pages 762–773, Mar. 2004.

[31] K. Avrachenkov, U. Ayesta, and P. Brown. Batch arrival processor-sharing

with application to multi-level processor-sharing scheduling. Queueing Systems,

50(4):459–480, 2005.

[32] S.F. Yashkov. Mathematical problems in the theory of shared-processor sys-

tems. Journal of Soviet Mathematics, 58(2):101–147, 1992.

[33] Mor Harchol-Balter. Performance Modeling and Design of Computer Systems:

Queueing Theory in Action. Cambridge University Press, 2013.

[34] Leonard Kleinrock. Queueing Systems, volume II: Computer Applications.

Wiley Interscience, 1976.

271



[35] Ianire Taboada, Jose Oscar Fajardo, Fidel Liberal, and Bego Blanco. Size-based

and channel-aware scheduling algorithm proposal for mean delay optimization

in wireless networks. In Proc. ICC, pages 6596–6600, Jun. 2012.

[36] Ying Zhang and Ake AArvidsson. Understanding the characteristics of cellular

data traffic. In Proceedings of the 2012 ACM SIGCOMM Workshop on Cellular

Networks: Operations, Challenges, and Future Design, CellNet ’12, pages 13–18,

NY, USA, 2012.

[37] Z. Wang, E.P. Simoncelli, and A.C. Bovik. Multiscale structural similarity for

image quality assessment. In Signals, Systems and Computers, 2004. Con-

ference Record of the Thirty-Seventh Asilomar Conference on, volume 2, pages

1398–1402, Nov. 2003.

[38] Arjun Anand and Gustavo de Veciana. Measurement-based scheduler for multi-

class qoe optimization in wireless networks. In Proc. INFOCOM, pages 1–9,

May 2017.

[39] David Tse and Pramod Vishwanath. Fundamentals of Wireless Communica-

tions. Cambridge University Press, 2005.

[40] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication networks:

shadow prices, proportional fairness and stability. In Journal of the Operational

Research Society, volume 49, 1998.

[41] Kibeom Seong, M. Mohseni, and J.M. Cioffi. Optimal resource allocation for

ofdma downlink systems. In Information Theory, 2006 IEEE International

272



Symposium on, pages 1394–1398, Jul. 2006.

[42] Sem Borst. User-level performance of channel-aware scheduling algorithms in

wireless data networks. In Proc. INFOCOM, volume 1, pages 321–331, Mar.

2003.

[43] Sem Borst and Matthieu Jonckheere. Flow-level stability of channel-aware

scheduling algorithms. In Proc. 4th International Symposium on Modeling and

Optimization in Mobile, Ad Hoc and Wireless Networks, pages 1–6, Apr. 2006.

[44] H. Wu, X. Lin, X. Liu, and Y. Zhang. Application-level scheduling with deadline

constraints. In Proc. INFOCOM, pages 2436–2444, Apr. 2014.

[45] J. Ghaderi, T. Ji, and R. Srikant. Connection-level scheduling in wireless

networks using only mac-layer information. In Proc. INFOCOM, pages 2696–

2700, Mar. 2012.

[46] Bilal Sadiq and Gustavo de Veciana. Balancing srpt prioritization vs oppor-

tunistic gain in wireless systems with flow dynamics. In Proc. Int. Teletraffic

Cong. (ITC), pages 1–8, Sep. 2010.

[47] Samuli Aalto, Aleksi Penttinen, Pasi Lassila, and Prajwal Osti. Optimal size-

based opportunistic scheduler for wireless systems. Queueing Systems, 72(1):5–

30, Oct. 2012.

[48] Chi-ping Li and Michael J. Neely. Delay and Power-Optimal Control in Multi-

Class Queueing Systems. ArXiv e-prints, January 2011.

273



[49] B. M. Hochwald, T. L. Marzetta, and V. Tarokh. Multiple-antenna channel

hardening and its implications for rate feedback and scheduling. IEEE Trans.

Inf. Theory, 50(9):1893–1909, Sept. 2004.

[50] Nan E, Xiaoli Chu, Weisi Guo, and Jie Zhang. User data traffic analysis for

3g cellular networks. In Communications and Networking in China (CHINA-

COM), 2013 8th International ICST Conference on, pages 468–472, Aug. 2013.

[51] Harold J. Kushner and G. George Yin. Stochastic Approximation Algorithms

and Applications. Springer, 1997.

[52] Arjun Anand and Gustavo de Veciana. A whittle’s index based approach for

qoe optimization in wireless networks. Proc. ACM Meas. Anal. Comput. Syst.,

2(1):15:1–15:39, 2018.

[53] Linus Schrage. A proof of the optimality of the shortest remaining processing

time discipline. Operations Research, 16(3):687–690, 1968.

[54] Jan A. van Mieghem. Dynamic scheduling with convex delay costs: The gener-

alized c—mu rule. The Annals of Applied Probability, 5(3):809–833, 1995.

[55] Avishai Mandelbaum and Alexander L. Stolyar. Scheduling flexible servers

with convex delay costs: Heavy-traffic optimality of the generalized c—mu rule.

Operations Research, 52(6), Dec. 2004.

[56] Itay Gurvich and Ward Whitt. Scheduling flexible servers with convex delay

costs in many-server service systems. Manufacturing & Service Operations

Management, 11(2):237–253, 2009.

274



[57] Carlos F. Bispo. Single server scheduling problem: Optimal policy for con-

vex costs depends on arrival rates. In Proc. Multidisciplinary Int. Conf.

on Scheduling : Theory and Applications (MISTA 2011), pages 275–296, Aug.

2011.

[58] Rhonda Righter and Susan H. Xu. Scheduling jobs on non-identical ifr pro-

cessors to minimize general cost functions. Advances in Applied Probability,

23(4):909–924, Dec. 1991.

[59] Alexander L. Stolyar. Maxweight scheduling in a generalized switch: State

space collapse and workload minimization in heavy traffic. Ann. Appl. Probab.,

14(1):1–53, Feb. 2004.

[60] P. S. Ansell, K. D. Glazebrook, J. Niño-Mora, and M. O’Keeffe. Whittle’s index

policy for a multi-class queueing system with convex holding costs. Mathemat-

ical Methods of Operations Research, 57(1):21–39, Apr. 2003.

[61] Samuli Aalto, Pasi Lassila, and Prajwal Osti. Whittle index approach to size-

aware scheduling with time-varying channels. In Proc. ACM SIGMETRICS

Int. Conf. on Measurement and Modeling of Computer Systems, SIGMETRICS

’15, pages 57–69. ACM, 2015.

[62] Samuli Aalto, Aleksi Penttinen, Pasi Lassila, and Prajwal Osti. On the optimal

trade-off between srpt and opportunistic scheduling. In Proc. ACM SIGMET-

RICS Joint Int. Conf. on Measurement and Modeling of Computer Systems,

SIGMETRICS ’11, pages 185–196, 2011.

275



[63] Urtzi Ayesta, Martin Erausquin, and Peter Jacko. A modeling framework

for optimizing the flow-level scheduling with time-varying channels. Perform.

Eval., 67(11):1014–1029, Nov. 2010.

[64] Peter Jacko. Value of information in optimal flow-level scheduling of users with

markovian time-varying channels. Perform. Eval., 68(11):1022–1036, Nov.

2011.

[65] Ianire Taboada, Peter Jacko, Urtzi Ayesta, and Fidel Liberal. Opportunis-

tic scheduling of flows with general size distribution in wireless time-varying

channels. In Proc. Teletraffic Cong. (ITC), pages 1–9, Sep. 2014.

[66] Urtzi Ayesta, Martin Erausquin, Matthieu Jonckheere, and Maaike Verloop.

Scheduling in a random environment: Stability and asymptotic optimality.

IEEE/ACM Transactions on Networking, 21(1):258–271, Feb. 2013.

[67] Peter Whittle. Restless bandits: Activity allocation in a changing world. Jour-

nal of Applied Probability, 25:287–298, 1988.

[68] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume 2.

Athena Scientific, 4 edition, 2012.

[69] Shailesh Patil and Gustavo de Veciana. Measurement-based opportunistic

scheduling for heterogenous wireless systems. IEEE Trans. Commun., 57(9):2745–

2753, Sep. 2009.

[70] A. Anand and G. de Veciana. Resource Allocation and HARQ Optimization

for URLLC Traffic in 5G Wireless Networks. ArXiv e-prints, 2018.

276



[71] P. Popovski, J. J. Nielsen, C. Stefanovic, E. de Carvalho, E. G. Ström, K. F.

Trillingsgaard, A. Bana, D. Kim, R. Kotaba, J. Park, and R. B. Sørensen. Ultra-

reliable low-latency communication (URLLC): principles and building blocks.

CoRR, abs/1708.07862, 2017.

[72] H. Ji, S. Park, J. Yeo, Y. Kim, J. Lee, and B. Shim. Introduction to ultra

reliable and low latency communications in 5g. CoRR, abs/1704.05565, 2017.

[73] S. Ashraf, Y. P. E. Wang, S. Eldessoki, B. Holfeld, D. Parruca, M. Serror, and

J. Gross. From radio design to system evaluations for ultra-reliable and low-

latency communication. In Proc. European Wireless Conference, pages 1–8,

May 2017.

[74] G. Durisi, T. Koch, and P. Popovski. Toward massive, ultrareliable, and low-

latency wireless communication with short packets. Proceedings of the IEEE,

104(9):1711–1726, Sept 2016.

[75] G. Durisi, T. Koch, J. Ostman, Y. Polyanskiy, and W. Yang. Short-packet

communications over multiple-antenna rayleigh-fading channels. IEEE Trans.

on Comm., 64(2):618–629, Feb 2016.

[76] B. Singh, Z. Li, O. Tirkkonen, M. A. Uusitalo, and P. Mogensen. Ultra-reliable

communication in a factory environment for 5G wireless networks: Link level

and deployment study. In IEEE Annual Int. Symp. on Personal, Indoor, and

Mobile Radio Communications (PIMRC), pages 1–5, Sept 2016.

[77] Leonard Kleinrock. Queueing Systems, volume I. Wiley, 1975.

277



[78] A. Anand, G. de Veciana, and S. Shakkottai. Joint Scheduling of URLLC and

eMBB Traffic in 5G Wireless Networks. ArXiv e-prints, 2017.

[79] D. Julian. Erasure networks. In Proc. IEEE International Symposium on

Information Theory,, Jul. 2002.

[80] Alexander L. Stolyar. On the asymptotic optimality of the gradient scheduling

algorithm for multiuser throughput allocation. Operations Research, 53(1):12–

25, 2005.

[81] S. Bodas, S. Shakkottai, L. Ying, and R. Srikant. Low-complexity scheduling

algorithms for multi-channel downlink wireless networks. In Proceedings of

IEEE Infocom, 2010.

[82] S. Bodas, S. Shakkottai, L. Ying, and R. Srikant. Scheduling for small delay

in multi-rate multi-channel wireless networks. In Proceedings of IEEE Infocom,

2011.

[83] S. Boyd and L. Vandenberge. Convex Optimization. Cambridge University

Press, 2003.

278



Vita

Arjun Anand was born in Kerala, India. He received the Bachelor of Technol-

ogy degree in Electronics and Communication Engineering from National Institute

of Technology, Calicut, India in May 2011. Subsequently, he received his Masters’

of Engineering in Telecommunication Engineering degree from Indian Institute of

Science, Bangalore, India in June 2013. He joined The University of Texas at Austin

for his PhD. under the guidance of Prof. Gustavo de Veciana in August 2014.

Permanent address: arjun anand@utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

279


