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This dissertation investigates how to optimize flow-level performance in

interference dominated wireless networks serving dynamic traffic loads. The

schemes presented in this dissertation adapt to long-term (hours) spatial load

variations, and the main metrics of interest are the file transfer delay or average

flow throughput and the mean power expended by the transmitters.

The first part presents a system level approach to interference man-

agement in an infrastructure based wireless network with full frequency reuse.

The key idea is to use loose base station coordination that is tailored to the

spatial load distribution and the propagation environment to exploit the di-

versity in a user population’s sensitivity to interference. System architecture

and abstractions to enable such coordination are developed for both the down-

link and the uplink cases, which present differing interference characteristics.

The basis for the approach is clustering and aggregation of traffic loads into
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classes of users with similar interference sensitivities that enable coarse grained

information exchange among base stations with greatly reduced communica-

tion overheads. The dissertation explores ways to model and optimize the

system under dynamic traffic loads where users come and go resulting in in-

terference induced performance coupling across base stations. Based on ex-

tensive system-level simulations, I demonstrate load-dependent reductions in

file transfer delay ranging from 20-80% as compared to a simple baseline not

unlike systems used in the field today, while simultaneously providing more

uniform coverage. Average savings in user power consumption of up to 75%

are achieved. Performance results under heterogeneous spatial loads illustrate

the importance of being traffic and environment aware.

The second part studies the impact of policies to associate users with

base stations/access points on flow-level performance in interference limited

wireless networks. Most research in this area has used static interference mod-

els (i.e., neighboring base stations are always active) and resorted to intuitive

objectives such as load balancing. In this dissertation, it is shown that this can

be counter productive, and that asymmetries in load can lead to significantly

better performance in the presence of dynamic interference which couples the

transmission rates experienced by users at various base stations. A method-

ology that can be used to optimize the performance of a class of coupled

systems is proposed, and applied to study the user association problem. It is

demonstrated that by properly inducing load asymmetries, substantial perfor-

mance gains can be achieved relative to a load balancing policy (e.g., 15 times
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reduction in mean delay). A novel measurement based, interference-aware

association policy is presented that infers the degree of interference induced

coupling and adapts to it. Systematic simulations establish that both the

optimized static and interference-sensitive, adaptive association policies sub-

stantially outperform various proposed dynamic policies and that these results

are robust to changes in file size distributions, channel parameters, and spatial

load distributions.
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Multiple network technologies are emerging to support high data-rate

applications, making bandwidth a limited commodity. At the same time, the

push for mobility has spurred the need for smaller devices that are more power-

ful, have more capabilities and longer battery lifetimes. Network deployments

with increased numbers of base stations/access points can successfully deliver

high capacity and energy efficiency. By decreasing the distance between users

and their base stations, one can drastically increase capacity while reducing

transmission energy requirements. Of course, this comes at a significant in-

crease in infrastructure and management costs. There are also deleterious

implications in terms of the operational regime of such networks. In partic-

ular, the proportion of users whose capacity is limited by interference from

their neighbors grows. Also, as the number of base stations serving an area

is increased, the coverage area and the number of users served by individual

base stations decreases. This has the undesirable side effect of reducing the

network’s capability for statistical multiplexing and increases the ‘burstiness’

of the offered load. Thus we are faced with operating wireless systems in a

highly dynamic, interference limited regime. In the presence of high temporal

variability, spatial heterogeneity and interference, the goals of efficiency, high

capacity and user performance require system operation that is adapted to the

traffic and the environment.

A simple way to ease this problem is to carefully plan the deployment
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of the wireless network. Consider the scenario shown in Fig. 1, with two neigh-

boring base stations transmitting concurrently. The extent to which a user is

affected by interference depends on the location of the user relative to the serv-

ing and interfering base stations, and the propagation characteristics. Users

close to the serving base station typically see a strong received signal and weak

interference, while users close to the cell boundary see a comparatively weak

signal and stronger interference. If base stations are deployed such that the

majority of the users are close to their serving base stations, the impact of

inter-cell interference becomes less significant. However, dynamic populations

of mobile terminals, which offer unpredictable spatial traffic loads make this

difficult to accomplish. The interference problem is likely to be further exac-

erbated as traditional macrocellular systems are enhanced with repeaters for

range enhancement and hierarchical cellular architectures are incrementally

deployed with limited RF planning to meet changing usage patterns.

Interference is a phenomenon that is significantly different from noise.

Noise can be combated simply by increasing the transmit power. Increasing

transmit power across the board, however, also results in increased interfer-

ence. Therefore, it is necessary to employ other techniques to tackle interfer-

ence. Next generation wireless networks are expected to support a wide variety

of data and multimedia services in addition to traditional voice traffic. These

applications bring fundamentally different traffic characteristics and quality

of service requirements as compared to traditional voice services. Policies

in these networks must be designed to maximize spectral efficiency and sys-

3



Figure 1: Variation of interference levels within a cell

tem capacity along with increasing the reliability of the airlink and enhancing

coverage. Although next generation wireless systems such as OFDMA based

WiMAX/3GPP(LTE) use time and frequency assignments to orthogonalize

intra-cell transmissions i.e., among users in the same cell, inter-cell interfer-

ence will continue to be an important factor impacting performance in such

systems.

Traditional approaches for mitigating interference across base stations

in an infrastructure based wireless network partition resources, e.g., frequency,

so that concurrent transmissions can be realized with minimal interference.

Such approaches are simple and do reduce the effective interference seen by

users, thus enhancing the coverage area of a base station. However, this re-

duction in interference is achieved at the expense of significantly diminished
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individual peak and overall system capacity. For example, with a reuse factor

of 1/3, the bandwidth available for transmission at a base station is reduced

by a factor of three, with a similar reduction in the interference seen at the

receivers. Yet, since the achievable capacity decays roughly linearly with the

available bandwidth, but only grows logarithmically with SINR, this tradeoff

is typically not favorable except at locations experiencing exceedingly high

interference, and low SINR levels. Reusing the entire frequency spectrum

in every cell can allow us to achieve very large network capacities, provided

inter-cell interference is effectively managed. Even in the case of WLANs with

frequency reuse, high densities of users in large scale networks could lead to

high interference due to the limited number of orthogonal frequencies available

under the present standards, making interference inevitable.

Adapting to the Spatial Load: Base stations in wireless networks

do not serve a fixed set of users concentrated at a single location, but rather

serve users that tend to be distributed geographically throughout the service

area. Users at diverse locations typically see very different channel gains to the

neighboring base stations in the network. Thus, users are impacted differently

by interference depending on their spatial location, as exhibited in Fig. 1. The

spatial distribution of the load in the network has a significant effect on the

capacity of the network, and the performance experienced by users.

In addition to short-term, unpredictable variations in the load caused

by individual user arrivals and departures, there are predictable long-term

variations in the aggregate traffic load depending on the day-of-week, hour-of-
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day, etc. A scheme that is adapted to these long-term traffic patterns, and not

dependent on the instantaneous loads or short-term variations is potentially

simpler than dynamic schemes which require knowledge of the instantaneous

loads being served. Our research hypothesis is that one can reap substantial

benefits through system-level optimization of wireless network by:

1. measuring the characteristics of the environment and traffic loads seen

by base stations/access points.

2. based on the measurements, perform traffic-aware optimization of net-

work functions across base stations.

As part of this dissertation, I will examine the impact of heterogeneous spatial

traffic loads on network performance, and demonstrate that policies adapted

to the spatial loads indeed outperform even conventional dynamic ones.

Impact of dynamic system loads: In a realistic scenario, data re-

quests from users are generated at random times, and the users leave when

their service requirements have been met. Such dynamic systems are, in gen-

eral, hard to analyze and have not been studied as extensively as their static

counterparts, i.e., serving a fixed set of backlogged users. The load dynamics

translate to time varying interference that couples user capacities across base

stations in a complex manner. For such coupled systems, stability is fairly

difficult to establish, and performance is particularly hard to optimize. The

performance that users perceive in such dynamic systems can be very different

6



from the performance predicted by a saturated model that assumes that trans-

mitters are always on. The dynamics of the offered loads plays a substantial

role when there is interference coupling among base stations, and schemes that

are optimal in a static setting can be sub-optimal for the dynamic setting.

In the static setting, researchers have typically proposed schemes that

attempt to achieve acceptable signal to interference plus noise ratios at all

user locations or ones that maximize the static network capacity. In the dy-

namic setting, the network capacity is inextricably linked to the distribution

of the spatial load being served. Additionally, these metrics do not adequately

capture the flow-level performance experienced by best effort users, e.g., file

transfers and web browsing. The policies developed as part of this dissertation

directly optimize user perceived flow level performance. The main metrics of

interest are the file transfer delay or average flow throughput and the mean

power expended by the transmitters. A further goal is to develop a low com-

plexity, system-level approach that substantially improves performance per-

ceived by best effort users without requiring high channel measurement and

estimation, communication, and computational overheads.

The focus of this work is on understanding the type of dynamic coupling

one might expect among wireless nodes which are subject to dynamic loads,

and interfere with each other. I examine two network functions that when

optimized in a traffic aware manner can substantially improve performance in

interference dominated wireless networks serving dynamic user populations:

7



1. system level coordination of base stations/access points

2. user association with base stations/access points.

There is a lot of interplay between the policies that tackle these problems,

and ideally these policies would be jointly optimized. However, as we will see

in the sequel, the impact of dynamic inter-cell interference can be difficult to

characterize. So, for ease of analysis, this dissertation is divided into two parts,

each focusing on one of the above problems.
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Part I

System-Level Coordination

9



Chapter 1

Overview of Proposed Approach and Related

Work

In the following chapters, a system-level approach for dynamic, envi-

ronment and traffic aware network operation that can harness the temporal

variability and spatial heterogeneity across users is developed. The approach is

a relatively low-complexity one based on loose coordination among neighbor-

ing base stations to exploit diversity in users’ sensitivity to interference from

different base stations. Here, I consider primarily best effort traffic as against

voice or other delay sensitive traffic. Best effort traffic can be distinguished

from traditional voice traffic in that it is not as sensitive to delays, and users

can be scheduled to take advantage of varying channel conditions. This fact

has been used to opportunistically schedule [13, 61, 74] best effort users that see

time varying channels, so as to improve performance. The scheme presented

in this proposal is similar, but applies this principle in a scenario with mul-

tiple base stations to create and exploit favorable conditions for transmission

to different sets of users. The metric we use to evaluate the proposed scheme

is also different from the traditional outage based metrics used in the case of

delay sensitive traffic, and focuses instead on the performance perceived by

typical users in the system.
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1.1 Related Work

Various physical layer approaches have been proposed in the literature

that use advanced signal processing techniques to mitigate the effect of in-

terference. The major drawback of most physical layer schemes is the high

complexity resulting from the increased computational requirements at the re-

ceiver and transmitter as well as the need for instantaneous channel estimates.

[27, 85, 87] are examples of receiver centric schemes, and [22, 49, 70] are some

transmitter based techniques. A detailed overview of various physical layer

approaches to combat cochannel interference can be found in [4, 41]. As an

alternative, some researchers have also considered systems with distributed

antennas instead of a single centrally located base station [25, 39, 71]. While

such a topology has the advantage of reducing the distance between the access

point and a typical user, it requires a significant infrastructure overhaul at a

potentially high cost.

System level approaches to interference management typically attempt

to increase the signal to interference ratio at the receivers through mechanisms

that reduce the net interference power they see. An example of a simple

method for co-channel interference management is the one proposed in [86]

that employs dynamic power control based only on desired-path signal level

measurements. The scheme proposed aims to improve the outage capacity of

cellular systems by reducing the variance of the signal to interference ratio

at the receiver while leaving the average unchanged. Several other schemes

with varying degrees of complexity have been proposed to deal with cochannel
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interference and some representative examples are detailed below.

1.1.1 Centralized Approaches

Centralized schemes to manage co-channel interference are explored in

[28, 48]. The centralized scheduler proposed in [48] is assumed to be aware

of all packet queue states, and path gains between every transmitter-receiver

pair. The scheduler determines the subset of active base stations and their

target users at every time slot, such that the signal to interference ratio at all

the receivers is adequate to achieve satisfactory bit error performance. The

scheduler simultaneously attempts to achieve the maximum possible through-

put with good delay performance. However, the optimal centralized sched-

uler is found to be NP-hard. Different heuristic schedulers that achieve good

throughput performance are presented, and their performance is evaluated

through simulation.

The proposed scheme in [28] combines load balancing and interference

avoidance. Users can potentially be served by any of the base stations under

consideration, and further, a user’s serving base station can vary from time

slot to time slot. The base stations are restricted to either transmit to a user

at full power, or to stay silent. Two variations of a centralized, coordinated

scheduler are proposed. In the first one, the scheduler has the same information

as the scheduler in [48], and chooses a subset of users to be served and the

associated base stations every time slot. The other scheduler presented, called

the two-tier scheduler, utilizes a centralized scheduler that is only aware of
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long-term average signal strengths, but knows the instantaneous queue lengths.

The centralized scheduler determines the active base station set, and each

individual base station subsequently selects the particular user.

The disadvantage of the above schedulers is the large amount of in-

formation that has to be conveyed to the centralized scheduler. Even in the

two-tier scheduler proposed in [28], the instantaneous queue lengths have to

be communicated to the scheduler every time-slot, in addition to the long-

term signal strengths for each user. The other schedulers impose even higher

burdens on the backhaul. A TDMA based scheduler is proposed in [23, 24],

where only the user with the best channel among all users in the coordinating

cluster of cells is chosen for transmission. The gains from such a scheme in an

asymptotic regime with a large number of users if quantified. This scheme is

potentially suboptimal and still requires base stations to share information ev-

ery time slot. Also, mechanisms to ensure fairness across users will be required

in a practical system.

1.1.2 Labeling-Based Approaches

We use the term labeling-based approaches to describe schemes that

utilize some system planning or engineering to guarantee that the transmis-

sions of different base stations are coordinated. These schemes exploit the

geometry induced by the typical hexagonal cell layout, and sectoring schemes

used in large wireless networks. While these schemes typically assume that the

various base stations are synchronized, they do not require a central controller.
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An algorithm called the staggered resource allocation (SRA) method is

presented in [32], that identifies the major sources of interference for each sector

and schedules transmissions to avoid them. The interference sources are de-

termined assuming idealized base station locations and a uniform propagation

environment. Time is slotted into frames, and each frame is further divided

into multiple subframes. The sectors are labeled assuming a reuse factor of six,

and each sector progressively schedules transmissions in the subframes based

on a predefined set of priorities that is designed to avoid the worst interferers.

The maximum number of subframes that can be used by each sector is fixed,

and is used to determine the degree of concurrent transmissions.

An enhanced version of the SRA algorithms is proposed in [58], that

takes into account variations in the reception quality at the terminals. The

terminals are classified based on the subset of interfering base stations that

can be active while ensuring that the received signal to interference ratio is

above the outage threshold. The subframes introduced by the SRA algorithm

are further divided into mini-frames, and a fixed subset of base stations is

allowed to transmit in a particular mini-frame. Transmissions to terminals

are then scheduled based on the terminal’s ability to tolerate cochannel inter-

ference. The proposed scheme does not take into account the possibility of

using adaptive modulation and coding schemes based on the received Signal

to interference ratios at the terminals. Another scheme similar to SRA is the

one proposed in [76]. The scheme is adapted to work even with irregular cell

layouts where the number of neighbors might vary across sectors.

14



1.1.3 Time Reuse Partitioning Approaches

Examples for time reuse partitioning approaches include [34, 68]. These

methods deal with cochannel interference and the disparity in received signal

to interference ratio across users by allowing multiple reuse patterns to coexist

in the time domain. The method proposed in [68] uses two reuse patterns,

one-cell and four-cell reuse. The frame is divided into two sections, one sec-

tion consisting of shared slots that use one-cell reuse and the other section

consisting of dedicated slots that use four-cell reuse. Users in each cell are

classified into groups based on their average signal to interference ratio using

a threshold. Users with average SIR below the threshold are preferentially

scheduled in the dedicated slots to improve performance. A similar approach

is used in [34], where the cell is divided into concentric region, each associated

with a different reuse factor. The base stations estimate the relative load in

each zone in the cell, and try to assign time periods to each zone such that all

users achieve equal throughput.

[52, 59] propose approaches in the context of an OFDMA system where

the available frequency spectrum is divided into orthogonal subchannels. [59]

considers the case where only the dominant interferer to each user is taken

into account. Subchannels are assigned to users in each cell through a central-

ized combinatorial optimization problem. [52] uses a centralized approach to

specify different frequency reuse factors for the various subchannels as well as

a heuristic with reduced complexity. The proposed scheme still requires care-

ful frequency planning, and both the above schemes require an optimization
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problem to be solved centrally every time a new user request arrives or leaves.

1.1.4 Joint Coding Across Base Stations

Highly fine-grained coordination among base stations has been exam-

ined, with base stations coherently coordinating transmissions. [42, 75] ex-

plore an extension of dirty paper coding to a cellular MIMO scenario where all

interfering base stations jointly encode and coordinate transmissions. If the

interference can be pre-calculated by the transmitters, such joint encoding can

suppress interference and improve performance. However, the computational

burden associated with the successive encoding and decoding is extremely high.

[33, 45, 46, 50] study the gains that can be achieved through techniques that re-

duce the computational burden, such as zero-forcing transmissions where each

users signal vectors are projected away from the others and MMSE precoding.

[93] additionally examines an extension to TDMA, where one user is served at

a time jointly by all base stations. Such schemes do improve performance, but

at the cost of high computational complexity and greatly increased inter-base

station communication requirements. The exact and instantaneous channel

knowledge needed makes these schemes infeasible for practical systems.

1.1.5 Approaches Using Coordinated Power Control

These methods coordinate the transmit power used by neighboring base

stations so as to create favorable conditions for the users in different parts of

the cells. One such algorithm called quasi-static resource allocation is proposed
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in [21] for sectored broadband networks. The central idea is for base stations

to periodically turn off each of their sectors for a brief period of time, produc-

ing predictable variations in the channel conditions seen by various users. The

users track the varying channel conditions and report their preferred transmis-

sion periods to the base stations. This information can be used by the base

stations to schedule users such that all users in the cell experience acceptable

performance levels. A distributed, measurement-based algorithm is presented

that allows base stations to find a sequence in which sectors have to be turned

off to ensure that all users perceive favorable channel conditions in some time

period. Simulation results presented show moderate gains in the average bit

error rates with this on-off strategy.

Another power-control based interference management scheme is pro-

posed in [60]. The proposed scheme divides the available carriers into two sets,

primary carriers that are used to transmit and receive packets at the maxi-

mum allowed power and the secondary carriers that are forced to use a reduced

power. The users can be served using either the primary or the secondary set

of carriers or using both sets. This is determined through an optimization

that depends on the distribution of load in the cell, subject to some fairness

constraint. Under certain conditions, it is found that the optimal strategy in a

scenario with two cells is to serve near users using only the secondary carriers

(low power) and far users using the primary carriers (high power). A similar

approach to interference management that varies transmit power across time

so as to improve performance is proposed in [88]. The proposed method, called
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the cell-breathing scheme, varies the maximum allowable transmit power at a

slow pace such that a cell transmits at high power when the other neighboring

cells transmit at low power. The users track the varying channel conditions

and this information is used by the base station to effectively schedule trans-

missions. An antenna-based version using the same concept has been explored

in [84].

The concept of fractional frequency reuse (FFR) in the context of

OFDMA systems has appeared in technical contributions submitted to cellular

network standardization forums [82, 83]. Fractional frequency allows base sta-

tions to use different transmit powers in different frequency sub bands in order

to mitigate interference. [66, 77] propose schemes in the context of voice-like

traffic, where each user has a threshold SINR requirement that has to be met.

The objective of the schemes is to minimize the overall transmit power used

in order to reduce interference. A scheme to dynamically create FFR patterns

for best effort traffic is proposed in [78]. While these algorithms respond to

changes on fast time scales (seconds), they do not adapt to slow changes in the

long-term load. The focus of the above schemes is to ensure that users perceive

signal to interference ratios that maximize utility. However, this metric does

not fully describe the flow-level performance experienced by best effort users,

e.g., file transfers and web browsing.
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1.1.6 A Major Shortcoming: Dynamic Traffic Loads

In a realistic scenario, data requests from users are generated at random

times, and the users leave when their service requirements have been met. Such

dynamic systems are, in general, hard to analyze and have not been studied as

extensively as their static counterparts, i.e., serving a fixed set of backlogged

users. The load dynamics translate to time varying interference that couples

user capacities across base stations, and even the stability of such systems

is difficult to verify, see [20]. The performance that users perceive in such

dynamic systems can be very different from the performance predicted by the

static model; e.g., the flow level performance of opportunistic scheduling was

studied in a dynamic setting in [13], and it was demonstrated that schemes

that are optimal in a static setting are sub-optimal for the dynamic setting.

All the schemes discussed above concentrate on the static case, where the base

stations serve a fixed set of users.

Potential capacity gains from inter-cell coordination in a dynamic set-

ting were characterized in [10]. Capacity in this case, is analyzed in a dynamic

setting where users arrive according to a random process, and leave when their

service requirements have been met. In this scenario, capacity is defined in

terms of the maximum amount of traffic that can be supported for a given

spatial traffic pattern. It is shown that evaluating the network capacity is

equivalent to finding the optimal static scheduling strategy that is independent

of the network state. The capacity gain from inter-cell scheduling is quantified

for two-cell networks, and for some very special cases of multi-cell networks,

19



e.g. perfectly symmetric networks. The scheme that is developed as part of

this dissertation addresses the case with dynamic, spatially heterogeneous spa-

tial traffic loads. The scheme is based on coarse-grained coordination between

base stations, and I develop abstractions to keep the communication and com-

putational overheads low. Moreover, this is the the first scheme to directly

optimize user perceived performance (file transfer delays and throughput) in

this setting.

1.2 The Central Idea: Exploiting Population Diversity

Base stations in wireless networks do not serve a fixed set of users

concentrated at a single location, but rather serve users that tend to be dis-

tributed geographically throughout the service area. Users at diverse locations

typically see very different channel gains to the neighboring base stations in

the network. The key idea in this paper is to take advantage of this diversity

in users’ sensitivity to interference originating from the adjoining cells.

Fig. 1.1 illustrates this idea in the case of downlink transmissions in a

two base station network. When both base stations are transmitting concur-

rently, they interfere with each other. The degree to which this is a problem

depends on the locations of, and propagation characteristics to the mobile

terminals of interest relative to both base stations. For example, as shown

on the left in Fig. 1.1, if the mobile terminals are roughly at the midpoint

between the two base stations, they see weaker received signals and stronger

interference from the neighboring base station. In contrast, a node close to
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its associated base station will see a strong received signal and weaker inter-

ference. Assuming each base station is likely to serve a large population of

spatially distributed users, it would be advantageous to coordinate base sta-

tions so that they operate in favorable transmission scenarios such as the one

on the right. In such a scenario, the base station on the right could use a low

power to transmit to the nearby user while suffering minimal loss in capacity.

This would considerably improve the conditions perceived by the user at the

cell edge which can now be served at much higher capacities.

Cell Edge
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Base
station 
 

Mobile Terminal

   strong interference

transmitted
signal

interference
signal
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station

Base
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Mobile Terminal
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A B
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Figure 1.1: Examples of concurrent transmission scenarios with strong and
weak interference.

Fig. 1.2 depicts an area served by three base stations, with each user

(location) being served by the base station with the strongest signal. The rates

at which users can be served when all the base stations are transmitting at

maximum power is shown on the left, while the figures in the middle and on

the right show the perceived capacity when one of the base stations is turned

off. The diversity in the users’ sensitivity to interference from different base

stations can be easily seen. Users close to their serving base station are rela-

tively unaffected by interference, while those at the cell edge see a significant

increase in capacity when the interfering base station near them is turned off.
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To effectively operate the system, this increase in capacity has to necessarily

be balanced against the loss in capacity from turning a base station off. This

scenario can be extended to one with a larger number of permissible power

levels at which the base stations can operate. The challenge lies in coordinat-

ing transmissions and choosing transmit power levels that achieve good user

performance while keeping complexity and overheads low. The novelty of my

work lies in the development of new abstractions, a network architecture, and

associated optimizations that make such coordination practical, and efficient.

Figure 1.2: Capacity to users within a cell: Diversity in sensitivity to interfer-
ence from neighboring base stations.

1.3 Contributions

I propose a measurement-based coordination scheme that is tailored to

the spatial load distribution served by the network, as well as the particular

propagation environment. The proposed scheme only requires coarse grained

information to be communicated among base stations over slow time scales,

resulting in greatly reduced demands on the backhaul. I evaluate performance
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in a dynamic setting where users come and go, and the main metrics of interest

are the file transfer delay or average flow throughput and the mean power

expended by the transmitters. My contributions are highlighted as follows:

First, I develop an approach to measure and classify a spatial popula-

tion of users into a small number of user classes that capture average system

loads, characteristics of the propagation environment, and interference sen-

sitivities. These user classes are a critical abstraction towards reducing the

complexity of the system-level optimization. To enable the optimization of

class-level coordination schedules, one needs to properly represent the service

rates that classes will see in a dynamic system. I propose an effective approx-

imation for this which factors the intra-class variability in service capacity

across users.

Second, I investigate the optimization of a coarse-grained coordination

schedule for both the uplink and the downlink scenarios. I consider various

scenarios from high to low loads. Key differences arise due to the degree of

dynamic interference, i.e., neighboring base stations may not always be on, and

the extent to which this impacts the optimized schedule’s performance may

vary. I propose and evaluate various approaches to incorporate such dynamics.

Third, through extensive analysis and simulation, I illustrate the sig-

nificant gains that can be achieved in terms of delay performance, power con-

sumption at the transmitter, and substantially enhanced spatially homoge-

neous service to users. I further demonstrate the impact that the spatial

traffic distribution can have on user performance, illustrating the importance
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of a scheme that is traffic aware.
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Chapter 2

The System Model and Traffic Abstractions

2.1 System Model

Best-effort file transfers are considered on both the uplink and the

downlink. User requests are assumed to arrive to the coverage area X as a

Poisson process with a location dependent intensity λ(x), x ∈ X . For simplic-

ity, each user is assumed to be associated with the base station that provides

the strongest signal, e.g., the geographically closest base station in the absence

of shadowing. User requests arrive at random, and leave the system when the

associated data transfer is completed. In the downlink scenario, base stations

are assumed to transmit at the specified power level when there are active as-

sociated users present, and turn off otherwise. A natural consequence of this

assumption is that base stations interfere with transmissions in the neighbor-

ing cells only when serving associated users. Similarly, in the uplink scenario,

no interference is generated by a cell with no active users.

In a wireless cellular network with full reuse, it is typically transmis-

sions in the neighboring cells that generate most of the interference. In a

small network, all the base stations could potentially be coordinated. Larger

networks can be split into a number of independent coordinated clusters, such
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that the cells/sectors whose performance is tightly coupled through mutual

interference are grouped together. Let N denote the number of neighboring

base stations/sectors being coordinated, indexed by b = 1, . . . , N . Let F bk,

denote the mean size in bits of a file that is transferred on the downlink or

the uplink. The long-term, average channel between base stations and users

is assumed to be reciprocal. Let hbi denote the average channel gain between

base station b and user i, and ~hi = (hbi |b = 1, . . . , N) represent a collection of

channel gain vectors.

2.2 Simulation Model

In the sequel I will describe different methods to coordinate base station

transmissions, and use extensive uplink and downlink simulations to compare

their performance. In the simulations, I consider three facing sectors in a

hexagonal layout of base stations with cell radius 250m - see Fig. 2.2a. Users

associate themselves to the geographically closest base station. A carrier fre-

quency of 1GHz, and a bandwidth of 10MHz are assumed. The maximum

transmit power is limited to 10W. The base stations are assumed to be able to

transmit at three different power levels: 0, 5, and 10W. Additive white Gaus-

sian noise with power −55dBm is assumed. A log distance path loss model

[69] with path loss exponent 2 is considered. Shadowing, and fading are not

considered in these results, but the addition of shadowing does not fundamen-

tally change the characteristics of the proposed measurement driven scheme,

see Sec. 2.3. File sizes are assumed to be log normally distributed, with mean
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2MB. The data rate at which users are served is calculated based on the per-

ceived SINR using Shannon’s capacity with rates quantized to 0, 1, 2, 5, 10,

20, and 30Mbps. Users arrive according to a Poisson process, and except in

Sec. 3.5 are assumed to be distributed uniformly within the simulated area. In

Sec. 3.5, I explore the impact of non-homogeneous user populations, and the

spatial traffic model is described in detail therein. In all simulations, mean

user perceived delay is estimated within a relative error of 1%, at a confidence

level of 95%.

2.3 Traffic Abstractions - User Classes

Exploiting the diversity in user populations to mitigate the effects of in-

terference requires base stations to adapt not only to user distributions within

their cells, but also to distributions in neighboring cells. Sharing information

between base stations on a per user basis would result in extremely high com-

munication costs. So, in this section I propose to use aggregates, see Fig. 2.1,

that allow base stations to efficiently share information about the spatial loads

and sensitivities to interference.

In addition to short term, unpredictable variations in the load caused

by individual user arrivals and departures, there are predictable long-term

variations in the aggregate traffic load depending on the day of week, hour-

of-day, etc. [16, 18]. Consider monitoring a user population sharing a wireless

system over a long period of time, say a few hours. I shall assume that during

this period, the average rate of user requests arriving at any location x remains
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Figure 2.1: Traffic abstractions to enable efficient coordination.
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constant, i.e., λ(x) denotes the long-term rate of arrival of user requests at

location x. Note that the traffic load might still be spatially heterogeneous.

For each base station/sector b, I define Kb user classes that will abstract the

key characteristics of the load distribution and the propagation environment.

They enable base stations to measure, aggregate, and share coarse grained

information about the traffic loads they support. They also drive the system-

level optimization methodology described in the sequel.

User classes and class loads aggregate users (locations) that share sim-

ilar sensitivity to interference from neighboring base stations. A simple way

to capture these environmental conditions is to measure the average channel

gains between users and neighboring base stations – this is already done in

practice to facilitate handoffs. Users feedback the measured channel gain vec-

tors ~hi to their serving base stations. Fig. 2.2a depicts the measurements made

by each user when coordinating three facing sectors in a hexagonal layout of

base stations.

Users sharing similar gain vectors, ~hi, have similar susceptibility to in-

terference from neighboring base stations on the downlink, and cause similar

levels of interference at the neighboring base stations in the uplink case. Yet,

in an interference limited regime, Shannon’s capacity formula suggests that

users transmission rates vary as the logarithm of the ratio of the received

signal power to interference. Thus, for each user measurement, I define a loga-

rithmically distorted gain vector ~gi = (gbi |b = 1, . . . , N), where gbi = log(hbi). A

k-means clustering algorithm [3, 43] is used to cluster measured log-gain vectors
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Figure 2.2: Building user classes.

into a fixed number of user classes. Specifically, the algorithm partitions users

associated with base station b intoKb clusters with centroids ~g∗bk, k = 1, . . . , Kb,

such that the mean Euclidean distance between the log-gain vectors and the

centroids is minimized. Given a clustering, and the resulting centroid vectors,

future users can be classified based on which centroid its log-distorted gain

vector is closest to. In the sequel, I address the question of how many classes

are used per base station, and the associated tradeoffs.

Fig. 2.2b exhibits a clustering for a sector in our example scenario where

three neighboring base stations are to be coordinated. The points in the fig-

ure represent individual users, while the sets reflect their division into classes.

The users near the serving base station are minimally impacted by interference,

leading to radially symmetric classes that are influenced mainly by the path

loss to the serving base station. Interference plays a significant part in trans-
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missions involving users at the cell edge, and the asymmetric classes reflect the

resulting discrimination based on which neighbor has the most impact. Note

that in practice, due to shadowing and real environment obstructions, user

classes will not result in the clean spatial partition exhibited in this example.

In fact, they would instead reflect the character of the environment as well as

the typical locations where the user population dwells.

With classes defined, estimating the average loads for each class under

a given spatial traffic load is a simple task. Arrivals to class k = 1, . . . , Kb

associated with base station/sector b are thus Poisson, with rate denoted by

λbk. Define ρbk = λbkF bk to be the mean traffic (bits per second) arriving at

class k in base station b. Let ~ρ = (ρbk : b = 1, . . . , N, k = 1, . . . , Kb) denote

the expected offered load vector. The classes may have different offered loads,

capturing in part the spatial distribution of traffic supported by the system.

The expected offered load vector can thus be exchanged between base sta-

tions infrequently (on the order of hours), drastically reducing communication

overheads.
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Chapter 3

The Downlink Case

3.1 System Abstractions

For simplicity, I will initially focus on the downlink scenario. A joint

transmission profile represents one of the various modes in which the network

can be operated. As illustrated in Fig. 3.1, it specifies a power profile, i.e., the

transmit power level for each base station, and the associated user classes to

be jointly served. The base stations are assumed to be able to transmit at one

of P discrete power levels, including 0, corresponding to no transmission. The

N -dimensional column vectors ~pi and ~cj specify the power levels and classes to

be served by the base stations under power profile i and class combination j.

The bth component of these vectors, pib and cjb, specify the transmit power to

be used by base station b and the class to be served. The number of different

power profiles is denoted by U = PN , the number of class combinations by

V =
∏N

b=1 Kb, and thus the number of joint transmission profiles is L = UV.

Let P := {~p1, . . . , ~pU} and C := {~c1, . . . ,~cV } denote the sets of admissible joint

power profiles and class combinations respectively for the N base stations, and

L the set of joint transmission profiles. Thus, each joint transmission profile l

where l = 1, . . . , L is two vectors: ~p(l) ∈ P and ~c(l) ∈ C.
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Figure 3.1: Illustration of a joint transmission profile.

A joint transmission schedule corresponds to the fractions of time ~α =

(αl : l = 1, . . . , L) for which the network operates in each transmission pro-

file. The base stations are assumed to be synchronized, as is the case in

modern broadband systems like GSM and WiMAX, and they can (quickly)

cycle through these profiles. Note that the resource that is subdivided for

the purpose of coordination could also be frequency, or even a combination

of time and frequency in an OFDMA-like system. In general, this schedule

will be picked to optimize a chosen performance measure, f(~α), through an

optimization of the form:

Problem 3.1.1. A generic optimization problem to determine a coordination

schedule:

min
~α
f(~α)
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such that

ρbk ≤ Rbk(~α), ∀b, k, (3.1)
L∑
l=1

αl ≤ 1 and αl ≥ 0, l = 1, . . . , L. (3.2)

Here, Rbk(~α) denotes the capacity allocated to class k at base station

b under schedule ~α. Eq. (3.1) constrains the rate allocation across classes to

be one that stabilizes the network. Eqs. (3.2) ensure that the coordination

schedule is valid.

Fig. 3.2a exhibits the overall system architecture used for coordination.

Each user reports signal strength measurements from neighboring base stations

to its serving base station. Each base station uses this information to aggregate

users into classes that capture the spatial load being served, and the nature of

the propagation environment. Coarse grained information about traffic loads

and achievable transmission rates are exchanged between base stations at the

level of user classes. The base stations can then determine the optimized

coordination schedule (common to all coordinating base stations), i.e., the

fraction of time each transmission profile is used. The user classes are the

key abstraction that allows such cross-layer, cross-base station optimizations

to be carried out while keeping communication and computational overheads

manageable.

Note that the transmission profiles are not a specification of which user

to serve, only a restriction on the transmit power to be used at the base station

and a ‘recommended’ class that might be beneficially served. Base stations can
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Figure 3.2: System abstractions for downlink coordination.

independently devise complimentary dynamic inter-class scheduling policies

that serve classes other than the recommended one. Since the choice of class

does not affect the interference levels observed at the neighboring cells, such
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inter-class scheduling does not violate the coordination schedule. Further,

base stations can use any intra-class scheduling policy to serve users within

the selected class(es). In this paper, I assume that base stations use processor

sharing (or an approximation thereof) to serve the active users in the chosen

class(es). Fig. 3.2a summarizes the relationship between the various elements

of the architecture.

In order to solve Problem 3.1.1, accurate estimates for Rbk(~α) are

needed. However, the dynamics of the system make this a difficult task, see

Fig. 3.2b. User performance is coupled across base stations as the capacity to

users is impacted significantly by the state (transmitting or not) of neighbor-

ing base stations. A further degree of coupling, intra-base station coupling,

can be introduced depending on how individual users and classes are served

within each base station. If inter-class scheduling depends, for instance, on

the instantaneous loads in the classes, the performance of the different classes

at a base station will be coupled together. The choice of user and inter-class

scheduling policy also affect the activity level of the base stations, thus im-

pacting neighboring base stations through interference driven coupling.

Determining the exact capacity allocated by a schedule to each class

when the activity levels and performance of neighboring base stations are

coupled corresponds to analyzing a set of spatially coupled (through inter-

ference) queues. Systems of coupled queues have been analyzed in the past

[14, 15, 31, 36], but the problem is extremely difficult and closed form expres-

sions are only available for simple scenarios with only two queues. So, for
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simplicity, I assume in Sec. 3.2 that the performance of the various base sta-

tions are decoupled by assuming base stations are always on; i.e., the perfor-

mance (interference) seen by users does not depend on the traffic at other base

stations.

As a further approximation, I study policies under which a base station

is restricted to serving only the class specified by the transmission profile. If

the chosen class has no active users, the base station does not opt to serve

another class. Such a policy is denoted static scheduling. Thus, there is

no inter base station or inter class coupling. Subsequently, I evaluate the

performance of a policy that allows base stations to share the excess capacity

from empty scheduled classes among other associated users and thus introduces

coupling among classes. In Sec. 3.3, I will drop the assumption of decoupled

base stations and present approximations for optimizing the coupled systems.

3.2 Optimizing the Decoupled Model

3.2.1 Static Scheduling

As the number of user classes is increased, the fidelity of the gathered

information increases. However, communication overheads, and the computa-

tional complexity associated with the proposed coordination scheme also grow.

Problem 3.1.1, for example, has a number of constraints and decision variables

which respectively grow linearly and polynomially (of degree N) in the number

of classes. Therefore, it is advantageous to use a relatively small number of

classes. However, in this case, there may be large disparities in transmission
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rates of users in the same class. In order to optimize the schedule, we first

need to develop good estimates for the class capacities, Rbk(~α) which them-

selves depend on the schedule ~α. As will be seen in the following section, this is

not a simple matter even for a decoupled model, yet good approximations that

make the optimization problem convex can be found to make this tractable.

3.2.1.1 Estimating Class Capacities

Let the random variable I denote a randomly selected user from the

system’s load distribution, i.e., the distribution of user requests; thus I = i

corresponds to a location, and assume user i stays there until its request is

completed. Let b(i), and k(i) be user i’s base station and class respectively.

Finally, let Rl
i denote the peak rate at which user i can be served under profile

l, assuming all base stations are active. Note that Rl
i is zero, if a class other

than k(i) is served by base station b(i) under profile l.

Proposition 3.2.1. Consider the downlink queue associated with class k at

base station b. It sees an offered load of ρbk bits/sec., and a time varying

capacity that depends on ~α. Suppose the rate at which base stations switch

among profiles is fast compared to the time scale of the user dynamics, and

the base station uses processor sharing to serve users in each class, then the

queue is stable if ubk = ρbk
RHbk(~α)

< 1, where

RH
bk(~α) =

1

E
[

1∑L
l=1 αlR

l
I

∣∣∣ b(I) = b, k(I) = k
] . (3.3)

Further, when the queue is stable, the mean number of active users in the class
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is given by ubk
1−ubk

.

Proof. If the rate at which base stations switch between the different transmis-

sion profiles is infinitely fast, the variations in rate perceived by users become

negligible, and the system corresponds to a processor sharing queue oper-

ating in a ‘fluid’ regime similar to the approximation used in [11]. In this

regime, a typical user I is served at the average transmission rate given by∑L
l=1 αlR

l
I if it is the only active user in the class. In this case, the time to

serve user I is F bk∑L
l=1 αlR

l
I

. The mean time to serve a user in the class is given by

E
[

F bk∑L
l=1 αlR

l
I

]
= F bk

RHbk(~α)
. The total normalized load offered by the class is then

given by ubk = ρbk
RHbk(~α)

. The fact that this processor sharing queue is stable

when ubk < 1 follows from the results in [11, 13], and the mean queue length

of the system can be computed to be ubk
1−ubk

using the expression for the queue

length distribution from [11].

Note that RH
bk(~α) is the harmonic mean of the average transmission

rates seen by the different users in class k associated with base station b.

Henceforth, I shall refer to this as the capacity allocated to the class under

schedule ~α. Unfortunately, estimating this for each ~α requires knowledge (es-

timates) of the complete spatial distribution of users versus simple descriptive

statistics, e.g., means and variances, and thus increased communication and

computational overheads.

The arithmetic and geometric mean of the average transmission rate

perceived by users are alternative estimates for the class capacity. The arith-
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metic mean approximation is given by:

RA
bk(~α) = E

[
L∑
l=1

αlR
l
I

∣∣∣ b(I) = b, k(I) = k

]

=
L∑
l=1

αlE[Rl
I | b(I) = b, k(I) = k]. (3.4)

The geometric mean approximation for class capacity is given by:

RG
bk(~α) = exp(E[log(

L∑
l=1

αlR
l
I) | b(I) = b, k(I) = k]).

Note that the arithmetic mean is simple to compute: it depends only on the

mean rates observed by users in the class under each profile, and is linear in

~α. However, it can be shown that RH
bk(~α) ≤ RG

bk(~α) ≤ RA
bk(~α), whence the geo-

metric mean is the better estimate for the harmonic mean [38]. Unfortunately,

the geometric mean is also burdensome to compute, making it unsuitable.

An approximation for the geometric mean based on moments was de-

rived in [91], and empirical studies presented in [44] show that the approxi-

mation yields accurate results. I propose using this approximation, truncated

to the first and second moments, to effectively capture intra-class diversity in

transmission rates. Let Σbk be the covariance matrix of the transmission rates

to the users in class k in base station b, σbk(l,m) = Cov[Rl
I , R

m
I | b(I) =

b, k(I) = k]. The rate allocated to class k in base station b is approximated

as

RG
bk(~α) ≈ RA

bk(~α)−
Var

[∑L
l=1 αlR

l
I

∣∣∣ b(I) = b, k(I) = k
]

2RA
bk(~α)

= RA
bk(~α)− ~αTΣbk~α

2RA
bk(~α)

. (3.5)
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Thus, the capacity allocated to all classes can be estimated with the coordi-

nating base stations exchanging only the class means, and covariances of the

transmission rates under the different profiles.

However, the estimate in Eq. (3.5) does not lead to constraint (3.1) be-

ing a provably convex function of ~α. The following approximation to Eq. (3.5)

is used to model the allocated rates:

RGA
bk (~α) = RA

bk(~α)− ~αTΣbk~α

cbk
. (3.6)

Here, ~c = (cbk, b = 1, . . . , N, k = 1, . . . , Kb) is a positive vector that is appro-

priately chosen, to yield a good estimate for the class capacity.

Fact 3.2.1.
(
RA
bk(~α)− ~αTΣbk~α

cbk

)−1

is a convex function of ~α, when it is positive,

and ~c is any positive vector.

Proof. ~αTΣbk~α
cbk

is convex in ~α, since the covariance matrix and thus the Hes-

sian is positive semidefinite. Also, −RA
bk(~α) is a linear function of ~α. Thus,

−RA
bk(~α) + ~αTΣbk~α

cbk
is also convex in ~α. This implies that RA

bk(~α)− ~αTΣbk~α
cbk

is a

positive concave function. Since the reciprocal of a positive, concave function

is convex,
(
RA
bk(~α)− ~αTΣbk~α

cbk

)−1

is a convex function of ~α.

I examine the actual achieved class capacities, and compare it to the

estimates developed above in an example scenario with three sectors and users

classified into two classes per sector using the method described in Sec. 2.3.

Fig. 3.3 exhibits the class capacities for a fixed transmission schedule. The

classification process results in classes of uneven sizes, and the classes with
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higher load in Fig. 3.3 correspond to larger fractions of the uniformly dis-

tributed users with larger intra-class variance in the rates observed by users.

The schedule used allocates a larger share of the capacity to these larger classes.

Both the arithmetic and geometric mean approximations are optimistic in es-

timating the capacity allocated to classes, but the geometric mean is much

more accurate as it takes into account the variability within a class. As can

be seen from the figure, this larger variance results in the arithmetic mean

being too optimistic for the larger classes, and overestimates the capacity allo-

cated to the classes by up to 20% compared to the geometric mean estimate.

The simulation results also indicate that the geometric mean approximation

yields considerably better estimates for the class capacities, compared to the

arithmetic mean. In the case of a fast fading environment, if the base station

uses an opportunistic policy for user scheduling, the estimates should addition-

ally capture the effective class capacities allocated by the scheduler as well as

the channel state dependent, time-varying rates at which users will be served.

The derivation of such capacity estimates which will necessarily depend on

the characteristics of the chosen user level scheduler is a topic for future study.

Next, two different strategies for optimizing user performance are discussed.

3.2.1.2 Matching Capacity and Load

The first schedule optimization approach that is considered to deter-

mine the joint transmission schedule is as follows:

Problem 3.2.1. Determine a static, capacity maximizing, decoupled schedule
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Figure 3.3: Comparing the different estimates for class capacity

based on:

min
~α

{
L∑
l=1

αl

∣∣∣ ρbk ≤ Rbk(~α), ∀b, k, ; αl ≥ 0, l = 1, . . . , L.

}

The optimal schedule maximizes the fraction of time that the system is

idle, which is a natural starting point. The optimal transmission schedule ~α∗

associated with Problem 3.2.1 assigns capacity to each class in proportion to

the offered load. This formulation is similar to the idealized case considered in

[10], and the optimal schedule stabilizes the network, if possible, for any load

distribution proportional to ~ρ when Rbk(~α) is exact, i.e., Rbk(~α) = RH
bk(~α).

The geometric approximation from Eq. (3.6) is used to estimate class

capacities. To determine the constants, cbk, optimization Problem 3.2.1 is

first solved with Rbk(~α) = RA
bk(~α) to find ~αA∗. Let cbk be the arithmetic mean
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approximation of the rate allocated using schedule ~αA∗, cbk = RA
bk(~α

A∗). Then,

problem 3.2.1 is re-solved with the geometric mean approximation.

The graph in Fig. 3.4 shows the average downlink file transfer delays

vs. offered load obtained under three schemes: uncoordinated transmissions at

the maximum power, and two static approximations with two and three user

classes per base station. At higher loads, coordination performs extremely

well, improving delay performance over the scheme with no coordination by

over 80%. However, this is not uniformly the case, and at very low loads, the

coordination scheme increases mean delays by around 50% compared to the

non-coordinated scheme. Under low loads, coordinating across base stations to

mitigate interference is less of a concern because the probability that neighbor-

ing base stations are simultaneously transmitting is low. Therefore, one might

as well allow base stations to transmit at higher power without coordination.

Also, since a static schedule is being used, the probability that there are no

active users in the class scheduled at a base station is high at low loads. This

leads to the base station unnecessarily wasting time while users wait their turn

to get served. This is also the reason for the coordination scheme with only

two classes per sector outperforming the scheme with three classes until the

offered load is high enough. A larger number of classes results in base stations

wasting more time when using a static schedule, as the scope for statistical

multiplexing is further reduced. Splitting the load and the resources into in-

dependent small chunks results in reduced capacity for sharing, and incurs a

statistical multiplexing loss. At low loads, the gains from reduced interference
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levels resulting from careful coordination across base stations are not sufficient

to compensate for this statistical multiplexing loss.

Figure 3.4: Average file transfer delays under capacity maximizing static
schedules.

3.2.1.3 Delay Optimal Scheduling

When the load offered by different user classes is very different, allo-

cating capacity proportionally to the load does not result in optimal delay

performance. Classes with a larger number of users share the allocated capac-

ity more effectively due to statistical multiplexing within the class vs. ‘smaller’

classes. Therefore, delay performance can be further improved by allocating

more than a proportional share of the capacity to the smaller classes, and

less to the larger classes. The following optimization minimizes the mean

sum queue length across all the classes, assuming each class corresponds to a

M/GI/1-PS queue, thus minimizing user-perceived delay. I continue to assume
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that the different base stations are decoupled.

Problem 3.2.2. Determine a static, delay minimizing, decoupled schedule

based on:

min
~α

N∑
b=1

Kb∑
k=1

ρbk
Rbk(~α)

1− ρbk
Rbk(~α)

such that

ρbk ≤ Rbk(~α), ∀b, k,
L∑
l=1

αl ≤ 1 and αl ≥ 0, l = 1, . . . , L.

Proposition 3.2.2.
∑N

b=1

∑Kb
k=1

ρbk
Rbk(~α)

1− ρbk
Rbk(~α)

is a convex function of ~α, if ρbk
Rbk(~α)

is

convex.

Proof. Let ubk(~α) = ρbk
Rbk(~α)

. Then,
ρbk

Rbk(~α)

1− ρbk
Rbk(~α)

= ubk(~α)
1−ubk(~α)

. ubk(~α)
1−ubk(~α)

is a convex

non-decreasing function of ubk, and ubk(~α) is a convex function of ~α. Since the

composition of a convex, non-decreasing function and a convex function is con-

vex, ubk(~α)
1−ubk(~α)

is a convex function of ~α. Therefore, the sum
∑N

b=1

∑Kb
k=1

ubk(~α)
1−ubk(~α)

is also convex.

Note that one can also consider other convex objective functions to

capture other QoS metrics such as blocking rate, or other metrics such as

power consumption at the base stations.

Fig. 3.5 exhibits the performance of the capacity maximizing sched-

ule developed earlier vs. the above delay minimizing approach under a static
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schedule. Both scenarios utilize two classes per base station along with the ge-

ometric approximation in Eq. (3.6) to estimate the class capacities, and three

transmit power levels. The queue length-minimizing approach clearly out-

performs the first approach where we allocated capacity proportionally to the

class loads. This is mainly because this approach takes into account the poten-

tial each class has for statistical multiplexing. This queue length-minimizing

approach will be used as the basis for developing further improved joint trans-

mission schedules in the sequel.

Figure 3.5: Performance of capacity maximizing vs. delay optimal static,
decoupled schedules with 2 classes per sector.

3.2.2 Dynamic Inter-Class Scheduling

As noted earlier, for downlink transmissions, the capacity perceived

by users in neighboring base stations is independent of the user/class that a

base station serves and depends only on the transmit power levels used by the
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various base stations. Thus, when there are no active users in the class picked

by the static schedule, the base station can dynamically pick an alternate class

to serve without adversely affecting any of the cooperating base stations, i.e.,

without increasing the interference levels perceived by users. This class can

be chosen by the base station based on different criteria, such as maximizing

transmission rates, or serving the class with the largest number of active users.

This is referred to as inter-class scheduling.

Definition 3.2.1. An inter-class scheduler that upon exhausting the scheduled

class performs processor sharing scheduling across all active users, is referred

to as a dynamic processor sharing inter-class scheduler.

I found through simulations that the delay performance of this strat-

egy compared favorably to other policies. Note that this strategy allocates a

proportionally larger rate to user classes that have a large number of active

flows. When the traffic offered by all classes share similar characteristics, the

optimized static schedule balances the expected number of active users in each

class. Thus, this dynamic scheduling strategy attempts to align the available

capacity to the particular realization of the offered load.

As can be seen in Figs. 3.6 and 3.7, inter-class scheduling significantly

improves user delay performance and throughput, especially at light to mod-

erate loads where mean delays are reduced by up to 40% as compared to the

static scheme. At very low loads, it is still true that a scheme that transmits

at maximum power without any coordination outperforms the coordination
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scheme. Attempting to coordinate transmissions at low loads results in base

stations needlessly using a lower power, thus transmitting at a lower rate even

when the neighboring base stations are idle. Since the probability of simul-

taneous transmissions occurring is minimal at low loads, coordinating is not

worthwhile.

Figure 3.6: Average file transfer delays under delay minimizing static, de-
coupled schedules complemented by inter class scheduling with 2 classes per
sector.

3.3 Optimizing the Coupled Model

The coordination schedules thus far have not taken into account the uti-

lization of the neighboring base stations, and the performance coupling result-

ing from inter-cell interference. This is responsible for the poor performance

at low loads. Determining the exact utilizations of the mutually coupled net-

work of base stations for a particular joint transmission schedule is a difficult
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Figure 3.7: Average user throughput under delay minimizing static, decoupled
schedules complemented by inter class scheduling with 2 classes per sector.

problem. However, if the utilizations can be estimated, the actual capacity

perceived by classes in the dynamic, coupled system can be approximately

determined. This would, in turn, allow us to pick better coordination sched-

ules that explicitly take into account the degree to which the base stations are

coupled.

Consider again the static coordination scheduling policies introduced

in Sec. 3.2.1. Let ~u(~α) = (ubk(~α) : b = 1, . . . , N, k = 1, . . . , Kb), where ubk(~α)

is the resulting utilization of class k in base station b. As the base stations

switch among different transmission profiles, a base station might not transmit

in a designated profile if there are no active users at that base station. As a

result, users in neighboring base stations can be served at enhanced rates.

This effect can be modeled as a correspondence between a profile chosen as

part of the joint transmission schedule, and a number of induced profiles in
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which the network actually operates depending on class utilizations.

A base station remaining idle, with no users to serve just corresponds

to using a transmit power level equal to zero, which corresponds to a valid

joint transmission profile. When N base stations are being coordinated, each

transmission profile can, in actual operation, result in one of up to 2N profiles

depending on which base stations are busy, or idle. Note that, these induced

profiles are still a subset of L. Let ~β = (βm : m = 1, . . . , L) be the fractions

of time actually spent in each profile when the transmission schedule specified

by ~α is followed. ~β is approximated as a function of ~α and ~u as follows.

βm(~α, ~u) =
L∑
l=1

αlq
m
l (~u),

where qml (~u) denotes the probability that, given the transmission profile l is

chosen by the schedule, the network actually operates in profile m because the

corresponding set of base stations are inactive. The vector ~slm = (slmb : b =

1, . . . , N) is defined to take binary values as follows: slmb = 1 if pb(l) = pb(m),

and 0 otherwise. qml (~u) is then estimated assuming that the busy periods of the

queues corresponding to the classes in different base stations are independent,

i.e.,

qml (~u) =


0 if ~c(l) 6= ~c(m),

0 if ~p(m).(~p(l)− ~p(m)) 6= 0,∏N
b=1(ubcb(l))

slmb (1− ubcb(l))(1−slmb ) otherwise.

Note that the network can only operate in a transmission profile m that

allocates the same transmit power level as l, (or zero) to the base stations. This
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is captured by the second case in the equation above. The fraction of time

actually spent by the network in each induced profile can be computed in a

similar fashion in the case of the dynamic coordination policy, except that qml

depends on the probability that there are no active users in any of the classes

associated with a base station. —- A joint transmission schedule optimizing

users’ delay performance is computed while taking into account the coupling

across base stations iteratively. Let uzbk, R
z
bk represent the utilization, and

rate estimates for the classes used in iteration z. Here, ~βz = (βzm : m =

1, . . . , L) denotes the computed resultant schedule induced by the choice of

time fractions ~αz = (αzl : l = 1, . . . , L) in iteration z, and is a function

of uzbk, and ~αz. Let ~αz∗ denote the optimal coordination schedule found in

iteration z, and ~βz∗ the resultant induced schedule. Initially, u1
bk = 1, ∀b, k,

and R1
bk = RA∗

bk , and

βzm(~αz, ~uz) =
L∑
l=1

αzl q
m
l (~uz)

uz+1
bk =

ρbk

R
(z)
bk (~β(z)∗)

, ∀b, k.

The optimization problem solved at each iteration is:

Problem 3.3.1. Determining a delay minimizing schedule for the coupled

network:

min
~αz

N∑
b=1

Kb∑
k=1

ρbk
Rzbk(~βz)

1− ρbk
Rzbk(~βz)
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such that

ρbk ≤ Rz
bk(
~βz), ∀b, k,

L∑
l=1

αzl ≤ 1,

αzl ≥ 0, l = 1, . . . , L.

In the simulations that follow, the geometric rate approximation based

on Eq. (3.6) is used:

Rz
bk(
~βz) = RGA

bk (~βz) = RA
bk(
~βz)−

~βz
T

Σbk
~βz

2R
(z−1)
bk (~β(z−1)∗)

The objective function, and constraints in Problem 3.3.1 are convex, since ~βz

is a linear function of ~α, and the composition of a convex function and an affine

function preserves convexity. This ensures that the problem can be efficiently

solved at each iteration.

Fig. 3.8 illustrates the reduction in the average user-perceived delays

that is achieved using two iterations in the above formulation. Here, the de-

lay performance of the scheme with no coordination is not shown for clarity.

Fig. 3.9 shows the increased user throughputs achieved from this coordination

scheme, and also compares against the non-coordinated case. Now, at low

loads, the coordinated transmission schedule does not penalize performance

by restricting the transmit power level used by the base stations. The co-

ordinated schedule performs as well as random scheduling at very low loads,

when the probability of simultaneous transmissions at neighboring base sta-

tions is extremely low. At moderate to high loads, an optimized coordinated
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Figure 3.8: Average file transfer delays under schedules factoring inter-base
station coupling, with 2 classes per sector.

Figure 3.9: Average user throughput under schedules factoring inter-base sta-
tion coupling, with 2 classes per sector.
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scheduling scheme factoring the effect of coupling across base stations consid-

erably outperforms the non-coordinated network, decreasing mean delays by

over 80% as compared to a non-coordinated scheme. This ensures that the

coordination scheme achieves good delay performance irrespective of the load

on the network.

3.4 Further Benefits of Coordination

Figure 3.10: Average power consumed at the base stations.

In addition to improving delay performance and capacity, coordination

has further benefits. As shown in Fig. 3.10, the average power expended by

the base station is substantially reduced when coordination is used, e.g., 45%

when the arrival rate is 2 users per second. This suggests a reduction in cooling

costs at the base station, and also indicates that we can further improve delay

performance if the base stations were subject to mean power constraints, and
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could transmit at higher peak power levels.

(a) Spatial delay: No coordination (b) Spatial delay: Dynamic coordination

Figure 3.11: Distribution of user-perceived delay

Figure 3.12: CDF of user delay

Figs. 3.11a, and 3.11b show the spatial delay distribution induced when

no coordination is used, and the coordination scheme that minimizes the over-
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all queue length, with λ = 1.75. As shown in Fig. 3.11b, when coordination

is used, the average delays seen by users at different locations are much more

spatially homogeneous. In particular, with no coordination users at the edge

experience very poor performance. Under coordination, users’ experience is

virtually decoupled from their location in the coverage area.

Fig. 3.12 exhibits the distribution of delay across all users, when λ = 2.

Coordination improves delay performance for all users, not just the ones at

the edge. This is because the coordination scheme increases the probability

that there are no active users at a base station. Thus, even though users close

to the base stations are potentially served using lower transmit power levels,

they benefit from lower interference levels.

3.5 The Importance of Being Traffic Aware

In a real-world wireless network, the traffic load is unlikely to be spa-

tially homogeneous and may exhibit significant variations over time. For ex-

ample, at different times of the day, one might see concentrations in different

regions, e.g., coffee houses, lunch spots, public transportation, or depending

on congestion patterns, etc. This chapter explores the potential gains from co-

ordination in such scenarios. In particular, the focus is on understanding the

degree to which optimizing for a particular load is beneficial. For example, if a

fixed interference mitigation scheme such as a static fractional frequency reuse

pattern is used, a natural choice is to optimize for a uniform distribution of

users. The performance of our dynamic coordination scheme is first evaluated

57



when optimized for a uniform load, and is then compared to the case where it

is tuned to the particular spatial traffic load.

Figure 3.13: A clustered user population.

The clustered traffic model used is as follows. User locations are con-

strained to a subset of the simulated area determined by the realization of a

Boolean germ-grain model [80]. The grains of the Boolean model are discs of

fixed radius, while the germs are distributed uniformly within the simulated

area. The probability that an arrival’s location falls in any of the discs is

equal. The density of users at various points within the cell depends on the

number of grains covering it. The density of users in areas covered by multiple

grains is high, resembling a hotspot. Fig. 3.13 exhibits a realization of the

spatial load with 70 germs, and discs with radius equal to one fifth the radius

of the cell are used. Note that there are regions within the cell with sparse
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user densities, and others where users tend to cluster. As the number of germs

increases, the arrivals process converges to a homogeneous Poisson process. A

small number of germs represents a user population that is highly clustered,

with large variations in user densities within the coverage area.

In the simulations that follow, the number of germs is varied from 10

to 10,000 to simulate various degrees of clustering in the spatial load. For

each case, we investigate the performance in twenty different realizations for

the Boolean model. As explained previously, the actual load on the system

is highly dependent on the spatial characteristics of the traffic. To roughly

evaluate performance under vastly different spatial loads, we normalize the

overall arrival rate so that the actual loads are comparable. Specifically, we

choose the arrival rate that results in the base stations being 95% utilized,

assuming all base stations transmit at maximum power all the time even if they

have nothing to send. This operating point is computed using the harmonic

mean, as described in Sec. 3.2.

Fig. 3.14a depicts the reduction in delay achieved by the two schemes

compared to the non-coordinated case. It is clear that when the actual traffic

being served is highly clustered (few germs), the traffic-independent coordina-

tion scheme performs much worse. In fact the average delays experienced by

users are more than doubled vs the case with no coordination. As the num-

ber of germs is increased, and the spatial distribution of users approaches the

uniform distribution, the traffic-independent scheme performs better than the

non-coordinated one, and eventually catches up to the traffic-aware scheme.
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The reduction in delay achieved by the traffic aware scheme appears indepen-

dent of clustering in the loads. Note however, that the normalization used

is imperfect, and in fact the measured loads were lower for scenarios subject

to clustered loads. Thus I conjecture that subject to the same system load

the gain achieved by the traffic aware will increase if the spatial load exhibits

higher random clustering.

(a) Reduction in average file transfer delays (b) Variance in average file transfer delay

Figure 3.14: A scenario with non-homogeneous spatial load

Fig. 3.14b exhibits the variance across the scenarios under the traffic-

aware scheme and the case where no coordination is used. This variance is

induced by the sensitivity to inter-cell interference, and because different loca-

tions are affected very differently by interference. A non-coordinated system

that serves a varying, non-homogeneous spatial distribution of users is prone

to excessive variations in user perceived performance, and can experience very

poor delay performance during time periods when it has to support a user

population that is “poorly situated”. The traffic aware coordination scheme is
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successful in shielding users from varying spatial loads, and achieves relatively

homogeneous performance independent of where a user population lies. This

decoupling of performance from both the variable spatial distribution of load,

and the location of the users is a significant benefit.
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Chapter 4

The Uplink Case

The impact of interference on the uplink is less pronounced than on the

downlink. The key difference between the downlink and uplink cases results

from the shift in the source of interference. On the downlink, the interference

perceived by a user is independent of the particular user that is scheduled

at the neighboring base stations. On the uplink, users’ transmissions create

interference at the neighboring base stations and a change in the location

of the user can drastically alter the resulting degree of interference. This

automatically modulates the interference caused at a base station as users at

different locations are scheduled.

Compared to the downlink case where edge users always see high inter-

ference from active neighbors, the number of scenarios where users are severely

limited by interference on the uplink is reduced. Consider the scenario de-

picted in Fig. 4.1 when all transmissions are at full power. In the downlink

case shown in Fig. 4.1a, the edge user receives interference that is very close to

the strength of the received signal. However, the interference at BS B is very

low on the uplink as shown in Fig. 4.1b and the edge user’s rate is impacted

much less by interference. BS A does perceive higher interference in the uplink
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scenario than the near user does on the downlink. However, the interference

is still much weaker than the received signal at BS A, and the nearby user can

be served at high rates.

A Binterference

a. Downlink

A Binterference

b. Uplink

Figure 4.1: Difference between uplink and downlink scenarios.

Users close to their serving base station typically have high channel

gains to the serving base station and low channel gains to the neighboring

base stations. Such users cause very low interference at their neighbors, and

due to high received signal strengths are not severely affected by interference

themselves. Users at the cell edge cause very high interference at the neigh-

boring base stations, and additionally have to cope with low channel gains to

the serving base station. Thus, the strength of interference seen by a base

station depends both on the transmit power chosen by the users transmitting

in the neighboring cells as well as the channel from the interfering user to the

base station. While knowledge of the transmit power level at the neighboring

base stations was sufficient to predict the interference received by a user or

user class on the downlink, a different coordination mechanism is required for

uplink coordination.
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4.1 System Abstractions

The abstractions used for uplink coordination are similar to the down-

link case. The difference is that power profiles are replaced by joint interference

profiles. As noted earlier, fixing the transmit power used in all the cooperating

cells/sectors is not sufficient to predict the interference at the base stations.

The interference profiles directly bound the average interference that each cell

is allowed to cause on neighboring base stations, so now an uplink transmis-

sion profile is specified by the combination of an interference profile and a class

vector.

The maximum interference caused by transmissions at a cell to a neigh-

boring base station is set at one of Q discrete levels, including 0. The N ×N

matrix ~qi specifies bounds on the interference each sector can cause at each of

its neighboring base stations under interference profile i. The maximum av-

erage interference that transmissions at sector b can cause at sector m under

interference profile i is denoted qib,m. Note that qib,b = ∞, for b = 1, . . . , N .

The number of different interference profiles is denoted by U ′ = Q(N(N−1)), and

the number of joint transmission profiles is L′ = U ′V. Let Q := {~q1, . . . , ~qU
′}

and C := {~c1, . . . ,~cV } denote the sets of admissible joint interference pro-

files and class combinations respectively for the N base stations. Thus, each

joint transmission profile l where l = 1, . . . , L′ is given by: q̃(l) = q̃i ∈ Q

and ~c(l) = ~cj ∈ C. A joint uplink transmission schedule corresponds to the

fractions of time ~α = (αl : l = 1, . . . , L′) for which the network uses each

transmission profile.
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4.1.1 Determining user power levels under interference profiles

Consider a user u served by base station/sector b′. Recall that ~hu is the

channel gain vector corresponding to user u. Users choose the largest transmit

power that ensures that the average interference caused at all the neighboring

base stations meets the constraints. The transmit power chosen by user u

under interference profile i is given by minb=1,...,n

qi
b′,b
hbu

.

4.1.2 Estimating class rates

Each user can calculate the minimum rate achieved under each trans-

mission profile after calculating the transmit power and using the upper bounds

on received interference specified in the corresponding interference profile.

Thus, the harmonic mean of the user rates provides a lower bound on the

effective rate at which users in any class are served. Any of the estimates pre-

sented in Sec. 3.2.1.1 can then be used as an approximation of the class rates

under a particular coordination schedule. In the simulation results presented

in the sequel, the geometric mean rate approximation is used.

4.1.3 Optimizing the schedule

In order to optimize the user perceived delay performance, we use the

methodology described in Sec. 3.3, with the transmission profiles defined as

the combination of an interference profile and a class vector. The optimization

problem solved at iteration z is:

Problem 4.1.1. Determine a delay minimizing schedule for the coupled net-
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work based on:

min
~αz

N∑
b=1

Kb∑
k=1

ρbk
Rzbk(~βz)

1− ρbk
Rzbk(~βz)

such that

ρbk ≤ Rz
bk(
~βz), ∀b, k,

L′∑
l=1

αzl ≤ 1 and αzl ≥ 0, l = 1, . . . , L′.

While optimizing user performance is valuable, reducing the energy

consumption while maintaining acceptable user performance is likely to be an

important concern on the uplink. The arithmetic mean of the users’ trans-

mit powers under each transmission profile provides an approximation of the

power consumed. Let Jb(l) denote the average power consumed at base sta-

tion b under transmission profile l. The average power consumption under

a joint transmission schedule ~α can then be estimated as
∑L′

l=1

∑N
b=1 α

z
l Jb(l).

The coordination framework presented above can be modified to minimize the

weighted sum of the mean user delay and the mean power consumption un-

der a coordination schedule. The weight chosen, denoted by γ, represents the

relative importance of conserving energy versus minimizing delay, and is a pa-

rameter that can be adjusted. The objective function to be minimized at each

iteration in the methodology of Sec. 3.3 is given by

N∑
b=1

Kb∑
k=1

ρbk
Rzbk(~βz)

1− ρbk
Rzbk(~βz)

+ γ

L′∑
l=1

N∑
b=1

αzl Jb(l).

In the sequel, processor sharing is again used as the intra-class scheduling
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policy and dynamic processor sharing as the inter-class scheduling discipline -

see Def. 3.2.1.

4.2 User Performance

Uplink file transfers in the three sector scenario shown in Fig. 2.2a are

simulated with user requests distributed as a homogeneous Poisson process in

space. Fig. 4.2 exhibits plots of the mean delay performance, while Fig. 4.3
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Figure 4.2: Uplink delay performance under delay minimizing schedules that
account for inter-base station coupling.

shows plots of the average throughput achieved under the delay-minimizing

joint uplink transmission schedule. As a result of using a methodology that

accounts for inter-base station coupling, we see that the delay and throughput

performance always equals or improves on those obtained for the uncoordi-

nated scheme. At high loads, mean delay is improved by about 40% when 2

classes are used per base station, and by up to 80% when 3 classes are used

per base station. The average throughput is increased by up to 27% when
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2 classes are used per sector and by up to 90% when 3 classes are used. At

moderate to high loads, using a finer grain classification of users results in sig-

nificant performance gains. Since individual users adjust their transmit powers

to satisfy the constraints imposed by the interference profile, the variability in

rates across users in an interference profile is increased. Users near the bound-

ary have low channel gains to their serving base station, and are additionally

forced to use lower power levels in order to limit the interference that they

cause. Using a larger number of classes improves the estimates for the class

rates, and also enables the schedule to accurately differentiate between users

at different locations.
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Figure 4.3: Average throughput under schedules factoring inter-base station
coupling.

Fig. 4.4 exhibits plots of the mean delay achieved against the average

power consumption under the non-coordinated system as well as the coordi-

nated schedule that minimizes a weighted sum of mean delay and mean power.

The overall rate at which users arrive into the system is fixed at 2.1 arrivals
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Figure 4.4: Power-Delay tradeoffs on the uplink.

per second and they are assumed to be spatially homogeneous. The weight γ

is varied to demonstrate the trade-offs between energy saving and performance

that can be achieved through coordination. Average energy consumption can

be decreased by up to 75% through coordination while achieving delay per-

formance identical to the non-coordinated system. Note that even when the

coordination scheme is tuned to minimize user perceived delay performance,

the average power consumption is lowered by approximately 50% relative to

the non-coordinated system. This improvement in performance and energy ef-

ficiency is achieved while simultaneously ensuring that the average delays seen

by users at different locations are much more spatially homogeneous relative

to the case with no coordination, similar to the downlink case (graph omitted).
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Chapter 5

Final Observations

In order to determine the joint transmission schedule, base stations in

a coordinating cluster need to exchange user class loads as well as information

required to compute class capacities. Two different architectures could poten-

tially be used to exchange information across base stations. In a centralized

version, base stations could use backhaul communication to exchange informa-

tion. Base stations could also leverage the users in the system to relay these

system messages. Two coordinating base stations will likely find edge users

that can communicate with both of them. Such users could forward messages

between base stations allowing a completely distributed mechanism. Also, the

transmission schedule could be computed centrally and communicated to the

base stations, or each base station could individually solve the identical opti-

mization problem and determine the schedule when tie-breaking mechanisms

and an ordering of the profiles has been previously agreed upon.

5.1 Cost of Base Station Coordination

Consider the case where each of the N coordinating base stations in

the cluster use K user classes. In order to exchange spatial load informa-
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tion, the total communication required among base stations within the cluster

is KN(N − 1) data points. If the arithmetic mean based approximation,

see Eq. (3.4), is used for computing class capacities, only the mean capac-

ity to each class under each power profile needs to be exchanged. Thus,

the total information exchanged among base stations is KN(N − 1)U data

points. However, when the geometric mean approximation, see Eq. (3.6), is

used for the class capacities, the second moment has to be exchanged in ad-

dition to the mean, and the total amount of data to be exchanged is given by

KN(N − 1)U + N(N − 1)KU2. Thus the total information required grows

quadratically in the number of coordinating base stations, linearly in the num-

ber of classes, and linearly or quadratically in the number of power profiles

depending on the method used to approximate class capacities. Computing

the joint transmission schedule requires the solution of a convex optimization

problem with UV variables, and (NK + UV + 1) constraints. Note that this

information exchange and schedule computation happens when the long-term

average spatial load changes (on the order of hours). For example, in a sce-

nario with three coordinating base stations, three transmit power levels, and

three classes per base station, the total information exchanged per base station

when the geometric mean approximation is used is: 4542 data points.

5.2 Reducing Coordination Overheads

Reducing the communication and computational overhead associated

with the coordination scheme is of high importance. To this end, it would be
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advantageous to eliminate some of the redundant transmission profiles. One

relatively simple approach to pruning the number of profiles we have to deal

with is eliminating the power vectors that are dominated by at least one other

power vector.

Definition 5.2.1. The power vector indexed by i0 is said to be dominated by

another vector indexed by i1 if ~rl1 ≥ ~rl0, where l0 ≡ {i0, j} and l1 ≡ {i1, j} for

any class vector j.

Theorem 5.2.1. Under a simple physical interference model, the power vector

~p is dominated by the power vector µ~p, if µ ≥ 1.

Proof. The only assumption made about the interference model is that the

received signal strength that a user sees is proportional to the transmit power.

Denote the received power from base station b at the user of interest by qb.

Consider an user in base station b1. The signal transmitted by base station

b1 is the desired signal, and the transmissions from all other base stations

constitute interference.

When ~p is used, the transmit power used at base station b1 is pb1 , and

the received signal is qb1 . The interference that the user sees is
∑N

b=1,b6=b1 qb.

If we denote the noise power by pnoise, the SINR that the user sees is given by

qb1∑N
b=1,b6=b1

qb+pnoise
.

Now, when µ~p is used, the transmit power used at base station b1 is

µpb1 , and the received signal is µqb1 . The interference that the user sees is∑N
b=1,b6=b1 µqb. If we denote the noise power by pnoise, the SINR that the user
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sees is given by
µqb1∑N

b=1,b6=b1
µqb+pnoise

=
qb1∑N

b=1,b6=b1
qb+

pnoise
µ

. For µ ≥ 1, the SINR in

this case is clearly higher than the SINR that the user sees when ~p is used.

Thus, the rate that the user sees is also higher.

Thus, as long as minimizing delay or maximizing throughput is our

only concern, we can eliminate any vector ~p if a vector µ~p is available, µ ≥ 1.

Note that eliminating a power vector eliminates all the transmission profiles

obtained as a combination of that power vector and any class vector. As a

consequence of the above theorem, we can also conclude that, when we have a

large number of power vectors and the granularity of the vectors is very fine,

only the power vectors with at least one base station operating at maximum

power need to be considered.

A more general approach to eliminating redundant transmission profiles

is to examine the structure of the rate region generated by the discrete set

of power profiles and class vectors. The convex hull of the UV vectors in∑N
b=1 Kb dimensions is the rate region. Only the profiles that are the vertices

of the convex hull are necessary to obtain the region. The other profiles are

superfluous. Algorithms exist to find the convex hull of a finite set of vectors

in any dimension. However, the problem is complicated when the dimension is

greater that 3. In the case of 3 dimensions or less, the problem of finding the

convex hull can be solved efficiently, with complexity x log x, where x is the

number of vectors [35, 67]. Each class vector can be picked one by one, and

for each class vector, the profiles that are dominated can then be eliminated.

If we consider groups of three cells, this problem is in three dimensions and
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can be solved efficiently. The complexity of the algorithm to eliminate the

superfluous vectors is V U logU .

5.3 Integration with Physical Layer Methods and Fu-
ture Research Avenues

A low complexity, system-level approach that substantially improves

performance perceived by best-effort users without requiring high channel

measurement and estimation, communication, and computational overheads

was presented. The proposed approach simultaneously achieved spatially ho-

mogeneous performance while also reducing the transmit power requirements.

Future wireless networks could include physical layer techniques such as in-

terference cancellation. Such techniques are likely to be imperfect due to

associated measurement and estimation errors. One can view the proposed

approach as complementary to an imperfect physical layer interference mit-

igation scheme, and use it as an overlay that takes into account traffic and

environmental characteristics and spatial diversity under imperfect interfer-

ence cancellation. Fig. 5.1 exhibits the performance of the same three base

station system, without coordination, and coordination and dynamic schedul-

ing as considered earlier, but then with no coordination under an idealized

regime where 50% of all interference is canceled, and with both coordination

and interference cancelation. These results are an indication that even under

an aggressive regime where one is able to cancel 50% of all interference seen by

users irrespective of their location, that system-level coordination will provide
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Figure 5.1: Performance comparison schemes with no coordination, with coor-
dination, with interference cancellation and then coordination and interference
cancellation.

additional performance benefits - albeit somewhat reduced.

System-level coordination can also be profitably used in the case of

(packet) delay sensitive traffic, as long as suitable complementary dynamic

user scheduling schemes are developed to meet users’ QoS requirements. A

factor that we have not considered in this paper is user mobility. Mobile users

simply transition from one class to another as they move about within the

network, and can potentially be treated as premature departures from a class

arriving at another. These topics are left for future research.
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Part II

Optimizing User Association
Policies
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Chapter 6

Motivation and Related Work

A basic problem in a wireless network is to decide which base station

should serve a new user request. Clearly, the policy used to assign serving

base stations to user requests greatly influences the performance experienced

by users in the network. The simulation results presented in Part I assume that

user requests are served by the base station that provides the strongest signal,

which is not unlike policies in use in networks today. In the following chapters,

I study the impact of policies to associate users with base stations/access

points on the downlink flow-level performance in interference limited wireless

networks. To aid our understanding of the problem and for ease of analysis,

base station coordination is not considered in this part.

6.1 Related Work

Without having access to good performance models, many researchers

have resorted to intuitive objectives such as load balancing across system re-

sources. Load balancing policies for wireless systems were first studied in the

context where the traffic carried by the network is voice, and frequency reuse

is used to combat interference. Load balancing algorithms to minimize outage
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probability were presented in [26, 51, 55]. The idea in a circuit switched net-

work is to direct a new call to the base station with the greatest number of

available channels, so that the probability that future incoming calls will be

blocked because of lack of resources is minimized. [8, 89] focus on packet based

voice networks, and consider balancing schemes that account for the variation

in service capacity to users at different locations.

This philosophy has been extended to address the case of best effort

traffic. When the wireless network is subject to spatially heterogeneous traffic

loads, emphasis has been placed on the development of schemes that try to

balance the load across base stations. Schemes that maximize base station and

network utility respectively using joint base station assignment and scheduling

were presented in [57, 64]. The schemes use a utility function that is decreasing

in base station load to divert traffic away from heavily loaded cells. The scheme

proposed in [64] is a centralized one that incurs excessive communication and

computational overheads.

In [28], a load balancing scheme which requires much less coordination

is considered. The scheme tries to explicitly balance the load across base

stations, taking into consideration both the long term rate at which users can

be served, and their load. Another idea which was proposed, in [28, 37], is

to lower the strength of the pilot signals that heavily loaded base stations

broadcast, so as to discourage users from joining them. Such an approach has

also been adopted in Qualcomm’s systems [1]. However, such manipulation

could potentially interfere with the estimation procedures used by the users
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to accurately estimate the channel to support adaptive modulation, which

requires stable pilot power.

A joint power control and cell selection scheme for CDMA networks,

referred to as cell breathing was developed in [37], and a very similar scheme

was developed in [90]. Users’ power levels are adjusted and they are switched

among cell sites depending on the load levels, to balance loads. Cell breathing

refers to the notion of cells expanding or contracting in space, to equalize loads.

A scheme that is similar in spirit is proposed in [73], called MAC-cell breathing,

that attempts to balance the load in all base stations. Users attempt to join

the base station that provides the highest throughput, taking into account

channel conditions as well as cell congestion. A centralized controller instructs

heavily loaded base stations to reduce the rates allocated to users at the edge,

thus encouraging them to join a neighboring base station.

The focus in these schemes is to ensure that the load being served

by different base stations in a neighborhood is as similar as possible. The

implicit assumption made by all the above schemes is that fewer users in a

cell corresponds to increased capacity to them. While this is certainly true if

the users were seeing constant interference, we will see that this is surprisingly

not the case in the presence of dynamic interference. The following sections

demonstrate that such load balancing, be it greedily done by users or across

the system, may be counter productive when there is dynamic coupling due

to interference.

The case of dynamic traffic, with the associated bursty interference,
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has not been extensively studied. In [10], the effect of equalizing the load in

neighboring base stations was studied through simulation, and it was observed

that load balancing did not make much of a difference under heavy load. This

problem is also studied in [18], but under the assumption that transmissions

are orthogonal. The impact of dynamic interference was also demonstrated in

[92], wherein the problem of load balancing in a hybrid wireless local area/wide

area network was studied using approximations proposed in [9].

The stability region of a dynamic system with interacting servers un-

der load balancing strategies was examined in [17]. The stability region was

explicitly characterized in the case of a two server system, and a lower bound

on the stability region was obtained for systems with multiple servers. The

stability region in the case of static load balancing policies and a class of dy-

namic policies was also studied in [47]. While the above papers address the

question of determining the network capacity, they do not provide insight into

designing user association policies to optimize performance perceived by users

in a system serving a load that is in the interior of the stability region. In con-

trast, the focus here is on flow level performance, i.e., the actual file transfer

delays experienced by users.

6.2 Is Load Balancing Always Optimal?

Consider the user association problem exhibited in Fig. 6.1a. Assume

again that the base stations share the same spectrum, so they interfere with

each other when they are concurrently active, which in turn reduces the maxi-
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mum transmission rate to users. For simplicity, assume user requests to down-

load files arrive uniformly between Base Stations 1 and 2. If both the network

and traffic demands are symmetric, one might intuitively expect that a static

policy that associates arrivals with the closest base station, i.e., the one that

delivers the strongest signal, and thus balances the offered load, would be

‘optimal’.
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Figure 6.1: The user association problem in a two base station scenario.

Fig. 6.1b shows the simulated delay performance (explained in more

detail in the sequel) when the load split between the base stations is varied

from 0.5 (even division of load) to 0.1 (highly asymmetric load division). The

results show that the optimal load division depends on the intensity of the

offered load, and is not always balanced but can be significantly asymmetric.

As exhibited in the figure, where mean delays are plotted on a logarithmic
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scale, the performance implications can be substantial; load balancing may

achieve mean delays 15 times higher versus an optimal asymmetric split. This

result is surprising, and reveals the complexity and substantial impact that

dynamic coupling can have in the context of wireless networks. This motivates

the need for careful analysis as well as comparisons with more complex user

and system greedy dynamic policies.

6.3 Contributions

My contributions in this context include:

1. I propose a methodology to optimize the performance of wireless systems

coupled through dynamic interference and apply it to study one and two di-

mensional networks. To our knowledge, prior to this work, no closed-form or

good approximations were available for wireless systems with coupled queues.

2. For a dynamic model of the user association problem in one dimension, I

show that optimal static policies are threshold based. Surprisingly, even for

a symmetric network, a policy which balances load can be highly suboptimal.

Moreover, I show that asymmetric policies can improve average delays seen by

users at all spatial locations.

3. I show that an optimized static policy (asymmetric) can substantially out-

perform dynamic policies which are greedy from the user’s or system’s points

of view and achieves performance close to that of a ‘repacking’ policy. This

suggests that an important objective for protocol and network design will be

to achieve such load asymmetries.
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4. I present ISAP (Interference-Sensitive, Adaptive Policy), a novel load as-

sociation policy that uses measurements to infer the degree of performance

coupling due to inter-cell interference, and adapts to it.

5. I demonstrate through extensive simulations that the proposed policy con-

sistently outperforms conventional, load balancing based approaches under

both spatially homogeneous and heterogeneous loads. These results also show

that the performance of conventional dynamic schemes is highly dependent on

the spatial load, and no single best scheme can be identified.

In Chapter 7, a generalized system of coupled queues is analyzed and

a method to find upper/lower bounds on performance measures is developed.

This method is used in Chapter 8 to optimize static association policies based

on the long term spatial loads being served. Finally, Chapter 9 presents an

adaptive user association policy that infers the pertinent characteristics of the

spatial load distribution through simple measurements.
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Chapter 7

Analyzing a Coupled Queuing System

At the heart of the interference limited wireless network serving a dy-

namic user population lies a system of coupled queues, and in order to under-

stand the performance users perceive in the network we need to analyze this

underlying system. The focus in this chapter is on a queuing system with cou-

pled processors, where the rate at which users in a queue are served depends

on the lengths of the other queues in the system. In particular, we will con-

sider those systems where the service rate at each queue varies depending on

the set of queues in the system with non-zero queue lengths. Such a coupled-

processors model arises naturally in the study of systems where a resource is

shared by several classes of customers

7.1 Prior Work

A queue with multiple user classes using the generalized processor shar-

ing (GPS) discipline [65] is an example of a coupled queuing system, where

the performance experienced by users in different classes are coupled. Large

deviations asymptotics of the workload in GPS systems have been derived in

[6, 30, 94, 95], and the effect of serving customers with long-tailed service times
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has been analyzed in [14, 15]. Approximate asymptotic formulas for the sta-

tionary distribution of the number of customers in a system of two coupled

queues are obtained in [53]. However, steady state queue length distributions

are known only in some special cases.

The uniformization technique was used in [54] to study a special case of

the GPS model with two classes where the classes are identical. The coupled-

processors model with exponentially distributed service requests and the num-

ber of classes/queues restricted to two was analyzed in [31, 36, 54]. The gen-

erating function of the steady-state queue length distribution was obtained

in [31] by solving a Riemann-Hilbert boundary value problem. Closed-form

expressions were obtained in [36] for the special case where the queueing sys-

tem is work conserving, without resorting to the formulation of a Riemann-

Hilbert problem. However, the techniques used in the above papers cannot

be extended to systems with more than two queues. The stability of queuing

systems with coupled processor systems was examined in [20], and even in

simple cases, closed-form stability conditions cannot be obtained and one has

to resort to numerical techniques.

In this chapter, bounds on the moments of the steady-state queue-

length in a system consisting of N coupled queues are obtained by studying

the stochastic recursive equations that govern the system. Lower and upper

bounds on the moments of the queue length are obtained by formulating and

solving a semidefinite relaxation of the original problem. These bounds can

be made progressively tighter at the expense of increasing the complexity of
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the associated semidefinite program. Our model is motivated by the one used

in [5] to analyze GI/GI/1 queues, and draws on results obtained in [7, 56].

7.2 System Model and Notation

We consider a system of N queues. Users arrive at queue n as a Poisson

process, with mean arrival rate λn. We assume that the users require expo-

nential service times with mean 1. We denote the queue length at each queue

at time t by ~Q(t) = (Qn(t), n = 1, 2, . . . , N). The queue service rates depend

on the subset of queues in the system with non-zero queue length, where the

number of possible subsets is 2N . The status of the system at time t is cap-

tured by a vector ~∆(t) of length n that takes values ~δi, i = 1, . . . , 2N . Suppose

~Q(t) = ~q has associated system status vector ~δi, then δin = 1(qn > 0). Under

~δi, the rate at which queue n serves users is denoted by µ
~δi

n . We assume that

there is a well defined maximum rate µ∗ that bounds the rate at which any

queue can be served, irrespective of the state of the system.

The queue length process evolves as a continuous time Markov chain,

parametrized by the rates defined above. The maximum rate of transitions

is bounded by η =
∑N

n=1 λn + Nµ∗, thus the continuous time Markov chain

can be uniformized by introducing fictitious events that cause no change in

the state of the Markov chain. With a slight abuse of notation, let ~Q(k) =

(Qn(k), n = 1, 2, . . . , N) denote the state of the uniformized discrete time

Markov chain at discrete time step k, and ~∆(k) the associated system state

vector. The transition probabilities for the uniformized Markov chain when
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~Q(k) = ~q, which corresponds to state vector ~δ are as follows:

P(arrival to queue n| ~Q(k) = ~q) =
λn
η
,

P(departure from queue n| ~Q(k) = ~q) =
µ
~δi
n

η
,

P(no change| ~Q(k) = ~q) = 1−
∑N

n=1 λn + µ
~δi
n

η
.

Note that, if it exists, the uniformized chain’s stationary distribution

is identical to that of the original. Also, its evolution can be represented as a

stochastic recursion

~Q(k + 1) = ~Q(k) + ~X(k), k = 0, 1, . . . ,

where ~X(k) = (Xn(k), n = 1, 2, . . . , N) denotes increments in the queues. An

arrival into queue n at iteration k is represented by Xn(k) = 1, a departure

by Xn(k) = −1 and if the transition corresponds to the self-loop, ~X(k) =

~0. Note that ~X(k) and ~Q(k) are not independent, e.g., one can not have

a departure from an empty queue. When the system is stable, there is a

stationary distribution for ( ~Q, ~X) [12, 62] such that

~Q
d
= g( ~Q, ~X) := ~Q+ ~X (7.1)

where
d
= denotes equality in distribution. Our goal is to characterize the

behavior of the queuing system by formulating a moments based approach to

bound functions of the moments of ~Q. As in [5], we only use information on the

moments of ~X derived from the uniformized Markov chain in the formulation.
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7.3 Performance Bounds

Let ψ denote a joint distribution for ( ~Q, ~X) on S = S ~Q×S ~X ⊆ ZN
+×ZN

+

satisfying (7.1) and with marginals ψ ~Q and ψ ~X . Note that, ψ ~Q and ψ ~X are not

necessarily independent and the joint distribution ψ cannot be expressed as a

product form. Eq. (7.1) can in this case be rewritten as

ψ ~Q = ψg−1.

We partition S ~Q into 2N regions where the same set of queue lengths are

non-zero, i.e., S~δi := {~q : δin = 1(qn > 0), n = 1, . . . , N} for i = 1, . . . , 2N . Let

ψ
~δi and ψ

~δi

~Q
, ψ

~δi

~X
be the conditional distributions for ( ~Q, ~X) and its marginals

given ~Q ∈ S~δi . Note that for all states in S~δi the queues share the same service

rates, so follows ~Q is conditionally independent of ~X given ~Q ∈ S~δi , i.e.,

ψ
~δi = ψ

~δi

~Q
ψ
~δi

~X
, i = 1, . . . , 2N .

We shall use multi-index notation in formulating our bounds. For ~α ∈

ZN
+ and ~Y ∈ RN , we let ~Y ~α denote the term Y α1

1 . . . Y αN
N , and let |~α| =∑N

n=1 αn. For r ∈ N, we define

m
~β
~δi

= E
ψ
~δi
~X

[
~X
~β
]
, |~β| ≤ 2r and i = 1, . . . , 2N .

Given the transition probabilities on each region S~δi , these can be easily com-

puted. Bounds on functions of the form Eψ~Q

[∑
|~γ|≤2r w~γ

~Q~γ
]
, where w~γ are

constant weights can be obtained by optimizing over distributions ψ satisfying

the following constraints:
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Problem 7.3.1. Given S,S ~Q and S ~X solve:

sup / inf
ψ

Eψ~Q

∑
|~γ|≤2r

w~γ ~Q
~γ


s.t.

ψ ~Q = ψg−1 (7.2)

ψ
~δi = ψ

~δi

~Q
ψ
~δi

~X
, i = 1, . . . , 2N , (7.3)

E
ψ
δi
~X

[
~X
~β
]

= m
~β
~δi
, i = 1, . . . , 2N and |~β| ≤ 2r

Eψ[1] = Eψ~Q
[1] = Eψ ~X

[1] = 1, (7.4)

ψ ∈M(S), ψ ~Q ∈M(S ~Q), ψ ~X ∈M(S ~X). (7.5)

Here, M(S), M(S ~Q), and M(S ~X) are sets of positive Borel measures

supported on S, SQ, and SX respectively, and (7.4) ensures they are probabil-

ity measures. The parameter r controls the degree of accuracy of such bounds

[56]. As r → ∞ the distribution of ~X is specified exactly, in turn uniquely

determining the distributions of ~Q and and ( ~Q, ~X). To allow numerical com-

putation, we further relax Problem 7.3.1 based on joint moments of degree no

higher than 2r.

7.3.1 The Moments Based Approach

For all ~α, ~β such that |~α|+ |~β| ≤ 2r and k = 1, . . . , 2N = K, we define

the decision variables:

x~α
~β

k := E[ ~Q~α ~X
~β| ~Q ∈ S~δk ] P( ~Q ∈ S~δk).
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We express the objective function and the relaxed versions of the constraints

in Problem 7.3.1 in terms of the above decision variables as follows:

Objective function: The objective function in Eq. (7.2) can be writ-

ten in terms of the conditional expectations as follows using the theorem of

total expectation. This expression can then be expressed as a linear function

of the decision variables:

Eψ~Q

∑
|~γ|≤2r

w~γ ~Q
~γ

 =
K∑
k=1

E

[ ∑
|~γ|≤2r

w~γ ~Q
~γ
∣∣ ~Q ∈ S~δk]P[ ~Q ∈ S~δk ]

=
K∑
k=1

∑
|~γ|≤2r

w~γ x
~γ~0
k

Constraints: The equality in distribution in the steady state con-

straint from Eq. (7.2) implies that the equality also holds for moments of all

orders. So, we can relax the distributional constraint (7.2) to a constraint on

moments of order no higher than 2r giving

~Q
d
= g( ~Q, ~X) = ~Q+ ~X

⇒ E[ ~Q~α] = E[( ~Q+ ~X)~α], ∀|~α| ≤ 2r.

Using the theorem of total expectation, we break down the above equation in

terms of the conditional expectations to get

K∑
k=1

E[ ~Q~α| ~Q ∈ S~δk ]P[ ~Q ∈ S~δk ] =
K∑
k=1

E[g( ~Q, ~X)~α| ~Q ∈ S~δk ]P[ ~Q ∈ S~δk ], ∀|~α| ≤ 2r.

Note that the term g( ~Q, ~X)~α can be expanded using the binomial theorem as

g( ~Q, ~X)~α = ( ~Q+ ~X)~α =
∑

| ~γ1|+| ~γ2|≤α

g
( ~γ1, ~γ2)
~α

~Q ~γ1 ~X ~γ2 ,
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where {g( ~γ1, ~γ2)
~α } are the coefficients resulting from the expansion. The con-

straint can now be written as a linear function of the decision variables as

follows:
K∑
k=1

x~α
~0
k =

K∑
k=1

∑
| ~γ1|+| ~γ2|≤α

g
( ~γ1, ~γ2)
~α x ~γ1 ~γ2k , ∀|~α| ≤ 2r. (7.6)

Constraint (7.3) is also relaxed by equating the moments of the product

distribution to the products of the moments

ψ
~δi = ψ

~δi
~Q
ψ
~δi
~X
⇒ E[ ~Q~α ~X

~β| ~Q ∈ S~δk ] = E[ ~Q~α| ~Q ∈ S~δk ]E[ ~X
~β| ~Q ∈ S~δk ],

∀|~α|+ |~β| ≤ 2r, k = 1, . . . , K.

The above equation can be used in combination with the given moments of

~X from constraint (7.4) to constrain the moments of the joint conditional

distribution for |~α|+ |~β| ≤ 2r and k = 1, . . . , K:

E[ ~Q~α ~X
~β| ~Q ∈ S~δk ]P[ ~Q ∈ S~δk ] = E[ ~Q~α| ~Q ∈ S~δk ]m

~β
~δk

P[ ~Q ∈ S~δk ]

x~α
~β

k = m
~β
~δk
x~α

~0
k (7.7)

Constraint (7.4) can be directly expressed as:

K∑
k=1

x
~0~0
k = 1. (7.8)

Finally, we need to ensure that constraint (7.5) is satisfied and {x~α~βk , |~α|

+ |~β| ≤ 2r} represents a valid moment sequence for any k = 1, . . . , K. We

denote the cone of moments supported on Sk = S~δk × S ~X by

M2r(Sk) =
{
xk|x~α

~β
k = Eψk [

~Qα ~Xβ], ∀|~α|+ |~β| ≤ 2r and for some ψk ∈M(Sk)
}
.
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Denoting the closure of M2r(Sk) by M2r(Sk), constraint (7.5) can be trans-

lated to the moment constraint

{xk} ∈ M2r(Sk), ∀k = 1, . . . , K. (7.9)

The relaxed version of Problem 7.3.1 can then expressed in the form of

the following conic optimization problem

Problem 7.3.2.

sup / inf
xk

K∑
k=1

∑
|~γ|≤2r

w~γ x
~γ~0
k

s.t.
K∑
k=1

x~α
~0
k =

K∑
k=1

∑
| ~γ1|+| ~γ2|≤|~α

g
( ~γ1, ~γ2)
~α x ~γ1 ~γ2k , ∀|~α| ≤ 2r

x~α
~β

k = m
~β
~δk
x~α

~0
k , ∀|~α|+ |~β| ≤ 2r, k = 1, . . . , K

K∑
k=1

x
~0~0
k = 1

{xk} ∈ M2r(Sk), ∀k = 1, . . . , K.

7.3.2 A Semidefinite Relaxation

The moment cone can in turn be characterized using positive semidefi-

nite matrices as in [5, 56, 96]. A necessary condition for constraint (7.9) to hold

is that the moment matrix associated with {xk} be positive semidefinite [56].

The moment matrix corresponding to the sequence y = {y~α~β, |~α|+|~β| ≤ 2r} is

denoted Mr(y), and is given by the block matrix {M i,j
r (y), 0 ≤ i, j ≤ r} with

rows and columns indexed in the basis of polynomials of degree less than or
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equal to r. The entries of the moment matrix satisfy the following condition:

if M1,j
r (y) = y ~α1

~β1 and M i,1
r (y) = y ~α2

~β2 , then M i,j
r (y) = y( ~α1+ ~α2)( ~β1+ ~β2).

In our formulation, this condition has to be satisfied by the decision variables

{xk}, i.e.,

Mr(xk) � 0, k = 1, . . . , 2N . (7.10)

Additionally, note that S~δk can be specified by an intersection of linear

inequalities and so can Sk, i.e.,

Sk = ∩h∈Hk{h(~q, ~x) ≥ 0},

where Hk denotes a set of linear functions defining Sk. Clearly {xk} should

also be a valid truncated moment sequence when restricted to each half plane

{h(~q, ~x) ≥ 0}. Again it can be shown that a necessary condition for this

to be the case is that an associated (localizing) moment matrix, denoted

Mr−1(h, xk), depending on the coefficients of the hyperplane h and xk be

positive semidefinite, see [5, 56]. Let the coefficients of h be denoted by

{h~α, |~α| ≤ 1}. Consider any region Sk, a localizing matrix Mr−1(h, xk) as-

sociated with one of the polynomials h ∈ Hk is defined as:

M
(i,j)
r−1 (h, xk) =

∑
|~α|≤1

h~αx
θ(i,j)+~α
k ,

where θ(i, j) is the subscript of the entry M i,j
r−1(xk) in matrix Mr−1(xk). The

corresponding set constraints for {xk} to be a valid truncated moment sequence

is then given by

Mr−1(h, xk) � 0, ∀h ∈ Hk, k = 1, . . . , 2N . (7.11)
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Substituting our semidefinite constraints into Problem (7.8)we obtain :

Problem 7.3.3.

sup / inf
xk

K∑
k=1

∑
|~γ|≤2r

w~γ x
~γ~0
k

s.t.
K∑
k=1

x~α
~0
k =

K∑
k=1

∑
| ~γ1|+| ~γ2|≤α

g
( ~γ1, ~γ2)
~α x ~γ1 ~γ2k , ∀|~α| ≤ 2r

x~α
~β

k = m
~β
~δk
x~α

~0
k , ∀|~α|+ |~β| ≤ 2r, k = 1, . . . , K

K∑
k=1

x
~0~0
k = 1

Mr(xk) � 0, ∀k = 1, . . . , K

Mr−1(h, xk) � 0, ∀h ∈ Hk, k = 1, . . . , K

This semidefinite problem can be solved to obtain the desired upper

and lower bounds on the objective function. As r is increased, and informa-

tion about more moments of ~X are used in the semidefinite program, tighter

bounds can be obtained at the cost of increased complexity of the optimization

problem. In all the computational results presented in the sequel, Gloptipoly

[40] and Sedumi [81] were the tools used to solve the semidefinite program.

7.4 Fidelity of the Bounds

In this section, two examples of queuing systems with coupled proces-

sors are examined. Bounds on mean delay are derived by using Little’s law in

conjunction with the bounds on sum queue length obtained from the semidef-
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inite optimization. These bounds are then compared to the simulated delay

performance.

Two queue system: A system of two queues with users arriving

according to a Poisson process with rate λ. The service time of the users is

assumed to be exponentially distributed with mean 1. The service rates of the

queues are summarized in Table 7.1. Fig. 7.2 depicts the bounds on the mean

Queue status Service rates
Queue 1 Queue 2 Queue 1 Queue 2

Idle Idle 0 0
Idle Busy 0 4
Busy Idle 4 0
Busy Busy 4 2.5

Figure 7.1: Service Rates in the two queue system.

delay obtained by using progressively higher order relaxations, along with the

simulated mean delay. The bounds obtained from assuming that the service

rates correspond to the queues being always busy/idle are also plotted for

comparison. Even when r = 1, the bounds computed through the optimization

proposed above are close to the actual steady state mean delay. Further, as

the relaxation order is increased, the upper and lower bounds further improve,

matching the simulated results very well. The discrepancy between the upper

bound that assumes the system is saturated and the upper bounds obtained

by solving the SDP clearly indicates the impact that coupling has even under

heavy loads. In this case, closed form expressions for the steady state delay are

known, however, the degree of accuracy of our results is highly encouraging.
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Figure 7.2: Mean delay in the two queue system.

Three queue system: For this queuing system, no closed form

expressions or tight bounds for the steady state delay are available to the best

of our knowledge. The state-dependent service rates are summarized in Table

7.3a. The mean rate of arrival at each base station is again λ and the service

times are exponentially distributed with mean 1. As shown in Fig. 7.3b, the

upper and lower bounds are not far apart, and closely trail the simulated

mean delay, and in particular capture the trends with increasing load. The

bounds assuming the queues are saturated are much worse, demonstrating

that coupling plays a significant role in the performance experienced by the

users in the system.
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Queue status Service rates
Queue 1 Queue 2 Queue 3 Queue 1 Queue2 Queue3

Idle Idle Idle 0 0 0
Idle Idle Busy 0 0 10
Idle Busy Idle 0 10 0
Idle Busy Busy 0 7 7
Busy Idle Idle 10 0 0
Busy Idle Busy 7 0 7
Busy Busy Idle 7 7 0
Busy Busy Busy 5 5 5

(a) Service Rates
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(b) Mean delay experienced by users.

Figure 7.3: Three Queue system

7.5 Some Other Instances of Coupled Queuing Systems

In the following chapters, the bounding methodology developed above

will be used to study and optimize the user association policy in a wireless

network. Here, we consider a few other scenarios where the dynamics of
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the system are properly modeled by the coupled processors are examined to

demonstrate the applicability of the bounding methodology.

7.5.1 A Generalized Processor Sharing System

Generalized Processor Sharing (GPS) [65] is a service discipline that

was developed to allow capacity to be shared in a fair and flexible manner,

and is an important mechanism for achieving differentiated quality of service.

Unlike a strict priority scheme, the GPS discipline allows for service differen-

tiation while preventing starvation. The following is a brief description of the

GPS scheduler. Consider N classes of customers, each with some associated

arrival rate and service requirements, sharing a server. Each class, n, also has

an associated weight φn, with
∑N

n=1 φn = 1 and can be served at rate Rn. If

all the queues are non-empty, the fraction of time queue n is served is given by

φn and the corresponding service rate is φnRn. However, if some of the queues

are empty, their allotted time-fractions are distributed among the non-empty

queues in proportion to their respective weights. Thus, the queues are coupled

by the mechanism used to share excess capacity. While the GPS policy is not

itself realistic to implement, disciplines that closely track the GPS mechanism

such as Weighted Fair queuing (WFQ) [29] are used in practice. Understand-

ing the performance of the system, and of the user classes is very important,

for example, in order to optimize the choice of the class weights.

Two Queue System: Consider a server with a service rate of 10 that

is shared by two classes of packets with equal weights, i.e., R1 = R2 = 10
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and φ1 = φ2. packets arrive at each class as a Poisson process of rate λ,

with exponentially distributed service requirements with mean 1. In this case,

since the sum service rate is a constant, independent of the system state, the

sum queue length process is a Markov process, and the distribution of the

sum queue length (but not the individual queue lengths) can be analytically

determined as the sum queue length reduces to a M/M/1 queuing model. The

bounds computed by solving the SDP with r = 1, 2 are plotted in Fig. 7.4,

along with the simulated results. The lower and upper bounds match exactly,

for all the values of λ. In addition, they precisely match the analytically

computed mean delay (not shown). This is confirmed by the simulated mean

delay matching the bound.
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Figure 7.4: Mean overall system queue length for a 2 Queue GPS system.

Fig. 7.5 exhibits the mean queue length at the queue associated with one

of the classes as λ increases. While the system as a whole is work-conserving,

the individual queues are not. The bounds computed by solving the SDP
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with r = 1, 2 are plotted along with the bounds computed assuming that

the neighboring queue is always busy/idle. Note that, in this case closed-form

expressions for the mean delay are known [31, 36]. However, for larger systems,

analytic expressions for the mean delay are not known.
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Figure 7.5: Mean queue length at one of the queues in the two queue GPS
system.

Three Queue System: Consider the case now, where the GPS server

is shared by three classes (queues) of packets with weights φ1 = 3, φ2 = 1, φ3 =

1. packets arrive at each class as a Poisson process of rate λ, with exponentially

distributed service requirements with mean 1. The sum queue length process is

again a Markov process, and the mean sum queue length is plotted in Fig 7.6,

along with the computed bounds.

Figs. 7.7 and 7.8 exhibit the mean queue lengths at Queue 1 and at

Queue 2 respectively. The mean delay observed at Queue 3 is identical to

that observed at Queue 2. In this case, note that trying to bound the delay
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Figure 7.6: Mean system queue length

at Queues 2 and 3, assuming that the other queues are saturated and Queue

1 is always busy leads to a predicted mean delay of ∞. This is because, the

system is only stable because Queues 2 and 3 can borrow the excess capacity

of the server when queue 1 is idle. The simulations demonstrate that the SDP

formulation provides reasonably tight bounds on the mean queue lengths of

the individual queues when r ≥ 2.

Choosing Queue Weights: The choice of class weights is a crucial

factor affecting the performance experienced by packets in the system. In sys-

tems, such as wireless networks, where the maximum rates at which different

classes can be served varies, a systematic method to choose the class weights

is not apparent. Note that, in this case, even the sum queue length process is

not a Markov process, as the system is not work conserving. The close bounds

provided by our formulation can be exploited to determine the weights that

should be associated with each class if the objective function is a weighted
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Figure 7.7: Mean queue length at queue 1

combination of the queue length moments.

Consider a system with two classes, with R1 = 10, R2 = 5, where the

arrival rate to each class is equal to λ. We consider an objective function of

the form E[Qz
1 + Qz

2], and use the lower bound from the SDP formulation to

approximate the value of the objective function for various class weights. The

weight associated with class 1 is assumed to be φ1 = φ, the weight associated

with class 2 is then φ2 = 1 − φ. We do a simple line search to determine the

weight to be associated with class 1 to minimize the objective function. As z

is increased, the penalty associated with high queue lengths increases rapidly,

and the objective function tends to balance the performance experienced by

the queues.

Fig. 7.9 exhibits the mean queue lengths of the two queues against the

arrival rate λ, for z = 1, 2, 4, and Fig. 7.10 plots the weight determined using
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Figure 7.8: Mean queue length at queue 2
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Figure 7.9: Mean queue lengths resulting from the different objective functions.

the SDP formulation. When z = 1, the objective is to minimize the system

queue length. The optimal policy here is to always serve queue 1, whenever

both queues are busy and φ = 1 irrespective of the load, as shown in Fig. 7.10.

However, this leads to very large queue lengths at queue 2. Increasing the

value of z leads to larger weights being associated with queue 2, in order to
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balance the queue lengths at the two queues. Fig. 7.9 clearly shows the impact

of the larger weights that are picked using the SDP formulation on the mean

queue lengths of the two queues.
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Figure 7.10: Optimal weights for the different objective functions

7.5.2 A Multiple Access System

The final example is an ALOHA-like [2, 72] slotted multiple access sys-

tem, where N users contend for access to a shared channel in order to com-

municate with a central server. A collision model is used to capture the effect

of simultaneous transmissions, i.e., if a user is the only one contending for the

channel in a slot, the transmission is successful and a 1Kb portion of the file

is transmitted to the sever. If more than one user transmits at the same time,

there is a collision and all transmissions are unsuccessful. Files with exponen-

tially distributed sizes and mean 2Mb arrive for transmission at each user as

a Poisson process with mean arrival rate λ. All users with files waiting for
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transmission contend at a time slot with probability PC . The aim is to find

a contention probability that results in low file transfer delays and high user

throughputs.

Clearly, the contention probability has to be chosen in a load-dependent

manner. Intuitively, when the system load is low, the number of users with

non-empty queues at any given time will be low and those users should con-

tend with higher probability. However, at high loads, when a larger number of

users are likely to have non-empty queues users should contend with a lower

probability in order to avoid collisions. If all N users are saturated, the con-

tention probability resulting in the highest throughput is PC = 1/N . This

can be seen easily by differentiating the probability of there being exactly one

contending user,

P(exactly one contending user) = P(successful transmission) = PC(1−PC)N−1,

with respect to the contention probability PC and equating to zero. However,

in the dynamic system, the number of busy users varies as files arrive and are

transmitted. In this case, it is not clear how the contention probability should

be chosen.

This system is modeled using a fluid coupled processors model, such

that each user transmits data at a rate of 1000PC(1 − PC)n−1 when n of the

N users have data to send. Using the lower bound from the semidefinite for-

mulation as an approximation, the contention probability that minimizes the

mean sum system queue length is determined. A system with three users is
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considered, and as before use a simple line search is used to find the com-

mon contention probability that minimizes the mean sum queue length of the

system.
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Pr.(contention) = 1/(number of users)

Figure 7.11: Optimal probability of contention.

Fig. 7.11 shows how the contention probability determined using the

SDP formulation varies with the file arrival rate λ. As expected, the contention

probability is high when load is low and collisions are rare, and decreases with

increasing loads in order to avoid collisions. At very high loads, the contention

probability approaches 1
3
, the optimal contention probability in the saturated

system where all users have backlogged queues.

Figs. 7.12 and 7.13 exhibit the mean file transfer delay and mean user

throughput for the system using the contention probability determined using

our SDP formulation and the system with a contention probability of 1
3
. At

very high loads, performance of the two schemes are close to identical. This is

to be expected as the probability of contention chosen using the semidefinite
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Figure 7.12: Mean delay comparison.
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Figure 7.13: Mean throughput comparison.

formulation is very close to 1
3
. At lower loads, the mean file transfer delay

and the mean user throughputs are much improved when using the contention

probability from the SDP formulation. This is particularly clear from the plot

of the mean user throughputs against the user arrival rate. Thus, we can clearly
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see that the coupled processor model accurately reflects the dynamics of the

system, and shows the potential of the semidefinite formulation in modeling

and optimizing such systems.

In the following chapter, the semidefinite programming based method-

ology developed above is used to optimize user association policies in wireless

networks where users see location dependent service rates that are further

coupled across base stations through interference. The results further demon-

strate the significant impact that coupling can have on user performance and

the accuracy of the proposed method.
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Chapter 8

Static User Association Policies

User association policies are classified into static and dynamic policies.

Dynamic policies use information about the current loads being served at the

candidate base stations when deciding the base station to which a new user is

assigned. A static user association policy is one that does not take into account

the current state of the system when making this decision. In this chapter,

the focus is on understanding the performance of, and optimizing static user

association policies. The methodology developed in Chapter 7 will be crucial

to optimizing the static user association policy.

8.1 System Model

In Secs. 8.3-8.4, the scenario with two base stations, BS1 and BS2,

located a distance d apart on a line, as shown in Fig. 6.1a is considered. User

requests are distributed on the line segment joining the two base stations. A

user request is identified by the distance between the user and BS1, denoted

by x ∈ [0, d]. The distance between the user and BS2 is then given by d− x.

User requests arrive according to a spatial Poisson process with mean measure

λ(·) which is absolutely continuous with respect to the Lebesgue measure, i.e.,
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the rate at which user requests arrive into a set X is λ(X ). Each user request

is assumed to correspond to a downlink file transfer which is assumed to be

exponentially distributed with mean 1, and the position of the user remains

fixed for the duration of the transfer. Once the file transfer is completed, the

user leaves the system.

The capacity to users from their serving base station depends on the

received signal strength and the strength of the received interference, and is

assumed to be monotonically increasing in the perceived signal to interference

plus noise ratio (SINR). The base stations transmit, and thereby cause inter-

ference only when they are serving users. The base stations use the processor

sharing mechanism to serve active users, i.e., the base station splits time evenly

among all users currently being served. Thus, a degree of temporal ‘fairness’

is imposed.

A static load allocation policy π partitions the line segment into regions

X π
1 and X π

2 , served by BS1 and BS2 respectively. The base station that serves

a user at location x under policy π is denoted by βπ(x). Thus, if x ∈ X π
1 then

βπ(x) = 1, otherwise βπ(x) = 2. Base stations transmit at maximum power

when there are active associated users, and turn off otherwise. The signal

strengths received by a user at location x from BS1 and BS2 are denoted by

s1(x) and s2(x) respectively. For i = 1, 2, the worst and best received signals

in A ⊂ [0, d] are denoted by si(A) = infx∈A si(x) and si(A) = supx∈A si(x).

Let N0 denote the average power of the additive Gaussian noise.

Under a given policy π, let Uπ(t) = (Uπ1 (t), Uπ2 (t)) where Uπi (t) is the
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set of locations for users being served at base stations i = 1, 2 at time t. Note

that since λ(·) is non-atomic, users’ locations will be distinct with probability

1. Given the assumptions on arrivals and file sizes, Uπ(t) is a Markov process

since, given all the users locations, one can determine their service capacities

and thus departure rates. Note however that its state space is uncountable.

By contrast, the process Qπ(t) = (Qπ
1 (t), Qπ

2 (t)) where Qπ
i (t) = |Uπi (t)| for

i = 1, 2 is on a countable state space, but not Markovian.

This model is similar to that of optimally routing n classes of users

to m non-identical queues studied in [19], with an infinite number of classes.

However, in this case the problem is further complicated by the fact that the

queues at the base stations are coupled (through interference) and the system

is non-work conserving.

8.2 Simulation Model

In the bulk of the simulation results, we consider two base stations

located 500m apart with users arriving according to a Poisson process. The

three base station network studied in Sec. 8.6.3 consists of three facing sectors

in a hexagonal layout of base stations with cell radius 250m, with users again

arriving according to a Poisson process. In Secs. 8.3-8.6, where I develop

and study the semidefinite programming based methodology, I assume that

the user distribution is spatially homogeneous. In the two base station case,

users are assumed to be distributed uniformly on the line joining the two

base stations, and in the three base station network, users are assumed to
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be distributed uniformly within the hexagon formed by the three interfering

sectors. Non-homogeneous spatial load distributions are considered in the

simulation results presented in Sec. 9. and the exact load profiles simulated

are described in Sec. 9.3.

A carrier frequency of 1GHz, and a bandwidth of 10MHz are assumed.

The maximum transmit power is restricted to 10W. Additive white Gaussian

noise with power −55dBm is assumed. A log distance path loss model[69] is

considered, with path loss exponent 2. Shadowing, and fading are not consid-

ered in these results. File sizes are assumed to be exponentially distributed,

with mean 5MB. The data rate at which users are served is calculated based on

the perceived SINR using Shannon’s capacity formula. The maximum rate at

which a user can be served is capped at 54 Mbps. The base stations transmit

at maximum power when they have active users, share capacity across users

using a processor sharing mechanism, and turn off otherwise. The mean user

perceived delay is estimated within a relative error of 2%, at a confidence level

of 95%. Note that the sensitivity of the delay performance to the channel and

system model is examined in Sec. 9.3.3 where a system with a higher path loss

exponent, and cell-edge SNR of 10 dB is simulated.

8.3 Optimal Static Policies

I begin by considering static association policies in the one dimensional,

two base station system. Such policies are defined by the service regions cor-

responding to each base station, which in turn may depend on the long term

112



offered load λ(·). The key result is that under our system model, the service

regions are contiguous and thus are defined by a single threshold between the

two base stations. The following lemma provides a partial characterization

of optimal static policies. Note at the outset that, while this result appears

straightforward, the challenge lies in the dynamic nature of the model; specifi-

cally, in dealing with the spatial arrivals and departures, the dynamic (on/off)

nature of the interference from the neighboring base station, and thus the

coupling of delay performance between the two base stations.

Lemma 8.3.1. Consider the two base station model defined in Sec. 8.1. For

any static load allocation policy πa with R1 ⊆ X πa
1 , R2 ⊆ X πa

2 with λ(R1) =

λ(R2), and such that s1(R2) ≥ s1(R1) and s2(R2) ≤ s2(R1), the policy πb

with X πb
1 = (X πa

1 ∪R2) \R1, X πb
2 = (X πa

2 ∪R1) \R2 achieves lower (or equal)

average user delay.

The insight underlying this lemma can be grasped by considering Fig.

8.1. It illustrates a policy πa which satisfies the lemma’s conditions if signal

strength decays monotonically with distance from the serving base station –

although part of our system model, this is not required to prove the lemma.

Policy πb is constructed by merely exchanging service regions R1,R2 between

the two base stations. The constraints on the best and worst case signal

strengths ensure that this exchange is favorable for both base stations at all

the associated user locations, which implies the following straightforward fact.

113



BS1 BS2

R2 R1

X     :=
π
1

a

π
2X     :=a

s (R )
_

1      1 s (R )
_

2      2

s (R )_1      2 s (R )2      1_

exchange

> >

Figure 8.1: A sub-optimal load allocation policy.

Fact 8.3.1. Under the assumptions on R1 and R2 in Lemma 8.3.1, and the

assumption that capacity is monotonically increasing in SINR, the capacity

from BS1 to any user in R2 is greater than that to any user in R1 under

the same interference regime, i.e., BS2 is transmitting or not. Similarly, the

capacity from BS2 to any user in R1 is greater than that to any user in R2,

whether BS1 is transmitting or not.

So, the exchange leaves the intensity of arrivals to BS1 and BS2 un-

changed, and associates users to them which then can be served at higher

capacity under the same interference regime. This allows us to construct a

spatial coupling (i.e., by associating users in different regions) for networks

under the two policies, showing that the average queue lengths are not in-

creased.

The following definitions provide a characterization of the stochastic

ordering relationship between two process, and will be used in the proof of

Lemma 8.3.1.

Definition 8.3.1 ([63]). Let l, m ∈ Rn, and let l[1] ≥ · · · ≥ l[n] denote the

components of l arranged in descending order.

l ≺w m if
k∑
i=1

l[i] ≤
k∑
i=1

m[i], k = 1, . . . , n
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The vector l is then said to be weakly majorized by m.

Definition 8.3.2 ([79]). Let L, M be random vectors taking values in Rn. L

is stochastically weak-majorized by M, written L ≺st
w M, if there exist random

vectors L̃ and M̃ taking values in Rn with the same probability laws as L and

M respectively, with L̃ ≺w M̃ a.s.

Proof of Lemma 8.3.1. The proof will demonstrate that the policy πb, which

is obtained from πa by exchanging service regions R1 and R2 between the base

stations, obtains a lower (or equal) mean delay, see Section 8.3. This is shown

by constructing a pair of coupled processes Ũπa(t) and Ũπb(t), such that

Ũπb1 (t) ⊆ Ũπa1 (t) and Ũπb2 (t) ⊆ Ũπa2 (t), (8.1)

and such that Ũπa(t) ∼ Uπa(t) and Ũπb(t) ∼ Uπb(t). It follows that associ-

ated queue length processes Q̃πa(t) and Q̃πb(t) satisfy similar properties with

containment replaced with an inequality. By standard arguments, see [79],

this construction suffices to show that Qπb(t) is stochastically weak-majorized

by Qπa(t). As t → ∞ this implies πb achieves a lower (or equal) mean queue

length, and thus, by Little’s Law, a lower (or equal) mean delay.

Note that the arrival rates associated with the exchanged service regions

are equal so the arrival rate to each base station under the two policies are

the same, i.e., λ1 = λ(X πa
1 ) = λ(X πb

1 ) and λ2 = λ(X πa
2 ) = λ(X πb

2 ). Arrivals of

the two processes Ũπa(t) and Ũπb(t) are coupled, as generated by a common

Poisson process with intensity λ1 + λ2. For convenience, user requests are
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indexed based on arrival times (including those in the system at t = 0), i.e.,

1, 2, . . . While arrival times for users to the two systems are identical, their

locations may not be, whence xπai and xπbi denotes the locations of the ith

request under policy πa and πb respectively.

Suppose x ∈ Ũπa1 (t) then let cπax (t) be the capacity to the user under

policy πa at time t taking into account the state of the neighboring base station.

Since users share capacity via processor sharing, effective service rate to users

at locations x and y under the two policies is given by µπa(t, x) = cπax (t)
Qπa
βπa (x)

(t)
.

and µπb(t, y) =
c
πb
y (t)

Q
πb
βπb (y)

(t)
. So the departure rate of users from BS1 under policy

πa is given by

µπa1 (t) =
∑

x∈Ũπa1 (t)

µπa(t, x).

The overall departure rates µπa2 (t), µπb1 (t), and µπb2 (t) are defined analogously.

Let Ũπa(0) = Ũπb(0) so (8.1) holds at time t = 0. The construction

will be such that if (8.1) holds at some time t then it is satisfied after the next

arrival/departure, while maintaining marginal dynamics that are consistent

with systems associated with policies πa and πb. Although the two systems see

the same overall arrival rates they may see different overall departure rates.

In our construction we let

ν(t) = λ1 + λ2 + max(µπa1 (t), µπb1 (t)) + max(µπa2 (t), µπb2 (t))

denote the current rate of events for the coupled processes and allow fictitious

events to ensure the marginal system processes have the correct dynamics.

Let the time at which the next event occurs be t′ and z be a realization of
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a random variable Z, which is uniformly distributed on [0, ν(t)]. The coupled

process events are constructed as follows:

μ  (t,x )πaπ  :a

π  :b
πbμ  (t,x )

λ1 λ2

λ2

μ  (t,x )πa μ  (t,x )πa

πbμ  (t,x )πbμ  (t,x ) πbμ  (t,x )πbμ  (t,x )λ1

ν(t)0

arrivals     departures BS1                     departures BS2

Z=z

1

1

2

2

33 4

4 ficticious

fic.

(coupled BS1 departures for User 1)

Figure 8.2: Example coupling construction for arrivals/deparartures based on
realization of Z.

Arrivals: If 0 ≤ z ≤ λ1, the next event is an arrival, say of user n , to BS1

under both policies. Let random variables Xπa
n and Xπb

n denote the position of

this user under policies πa and πb respectively. The distribution Xπa
n is given

by P(Xπa
n ∈ A) = λ(A)

λ1
, for a measurable set A ⊆ X πa . The position of the

user under policy πb is identical, except if Xπa
n ∈ R1. In this case, the user’s

location falls within R2 with a distribution P(Xπb
n ∈ B|Xπa

n ∈ R1) = λ(B)
λ(R2)

,

where B ⊆ R2. The states of the processes are updated accordingly. If λ1 ≤

z ≤ λ1 + λ2, the next event is an arrival to BS2 under both policies, with the

user’s location generated analogously to the above. In either case, arrivals to

BS1 or BS2 occurs simultaneously for both policies, so (8.1) holds at time t′.

Also under the above construction the spatial distribution of Poisson arrivals

is maintained.

Departures: If λ1 + λ2 ≤ z ≤ λ1 + λ2 + max(µπa1 (t), µπb1 (t)), the event is a

potential departure from BS1. Consider any user k such that xπbk ∈ Ũ
πb
1 (t).

Since (8.1) holds, user k is also in the system under policy πa, i.e., xπak ∈ Ũ
πa
1 (t).

Since (8.1) holds there are only three cases to consider:
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1. Ũπb2 (t) = Ũπa2 (t) = ∅: BS2 is idle under both policies. If xπak = xπbk ,

cπb
x
πb
k

(t) = cπa
xπak

(t). Otherwise, xπak ∈ R1 and xπbk ∈ R2, so Fact 8.3.1 implies

cπb
x
πb
k

(t) ≥ cπa
xπak

(t).

2. Ũπb2 (t) 6= ∅, Ũπa2 (t) 6= ∅: BS2 is transmitting under both policies, and, as in

the previous case, we can argue that cπb
x
πb
k

(t) ≥ cπa
xπak

(t).

3. Ũπb2 (t) = ∅, Ũπa2 (t) 6= ∅: In this case, users in BS1 see no interference under

policy πb while they see interference from BS2 under policy πa. Combining

our conclusion in case 1 with the fact that the data rate at which users can

be served is an increasing function of the received signal to interference plus

noise ratio, we see that cπb
x
πb
k

(t) ≥ cπa
xπak

(t).

Also, by assumption Q̃πb
1 (t) ≤ Q̃πa

1 (t), thus µπb(t, xπbk ) ≥ µπa(t, xπak ).

This permits us to couple User k’s departure such that if it leaves under

policy πa, it also leaves under policy πb. To see this, consider Fig. 8.2 where

[0, ν(t)] has been subdivided based on the arrival rates and service rates of the

users in the system under the two policies. If a user is present in both systems

then a set of length µπa(t, xπak ) for policy πa is contained within one of length

µπb(t, xπbk ) for policy πb. If the user has already left the system under policy

πa, the corresponding set for policy πb can be arranged arbitrarily (need not

be contiguous) within [0, ν(t)]. Unused intervals correspond to dummy events.

Which departures (if any) occur for the two systems depend on which sets

contain z. However, clearly a departure of User k from BS1 under policy πa

results in the same under policy πb unless it has already left the system, and

(8.1) still hold at time t′. If (λ1 +λ2 + max(µπa1 (t), µπb1 (t))) ≤ z, the event is a
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potential departure from BS2, and is treated analogously to departures from

BS1.

Since relationship (8.1) holds after any future event, by induction the

relationship holds for all times in the future. We show that the following

relationship holds at any given time

1. Q̃P
1 (t) ≥ Q̃PE

1 (t) and Q̃P
2 (t) ≥ Q̃PE

2 (t)

2. Corresponding to every user attached to BS1 under policy PE, there

exists a user attached to BS1 under policy P , that is served at lower

rates both when BS2 is idle and active.

3. Corresponding to every user attached to BS2 under policy PE, there

exists a user attached to BS2 under policy P , that is served at lower

rates both when BS1 is idle and active.

Now, consider a sequence of user arrivals and departures resulting from

a static load allocation policy that associates users in region r1 with base

station 1, and users in region r2 with base station 2. An alternate sample

path is constructed based on this sequence of user arrivals. User arrivals in

region r1 are moved to instead arrive in region r2 while still being served by

base station 1, and user arrivals in region r2 are moved to r1 and served by

base station 2. All other user arrivals are unchanged. Since the probability

of user arrivals in region r1 is equal to the probability of user arrivals in r2,

and there are no correlations between user arrivals, the constructed sequence

of user arrivals is also representative of the arrival process.
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The user queues associated with the two base stations evolve identically

until a user arrives in either region r1 or r2. As proved previously, this user is

served at a higher rate in the alternate sample path. All other users currently

in the queues are served at exactly the same rates as in the original sample

path as the queue lengths of the two queues are identical. As a result the

user that arrived to one of the regions r1 or r2 is served and leaves the system

earlier in the alternate sample path. This results in all the other remaining

users in the system being served at the same or greater rate. Thus, all users in

the alternate sample path perceive delays that are less than or equal to those

in the original sample path.

Since both systems are ergodic, the sample mean of the user delays

in both sample paths converge eventually to the expected values, and the

expected user delay in the alternate sample path has to be lower or equal to

that in the original. Note that this alternate sample path corresponds to a

policy which associates users in region r2 with base station 1, and users in r1

to base station 2.

The argument can also be extended to other service disciplines, e.g.,

FCFS and LCFS.

Theorem 8.3.1. For the two base station model defined in Sec. 7.2, there

exists a static load allocation policy minimizing mean delay corresponding to

a spatial threshold x∗ ∈ [0, d] such that a user at location x is served by BS1

if x ≤ x∗ and by BS2 otherwise. This can also be expressed as a threshold on
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the ratio of received signal strengths from the two base stations.

Proof Sketch: Since traffic intensity measure λ(·) is non-atomic, if the

service regions associated with the BS1 and BS2 are not contiguous, one can

construct regions R1 and R2 satisfying Lemma 8.3.1 which can then be ex-

changed without increasing the mean delay. Thus an optimal policy must be

defined by contiguous regions, i.e., specified by a spatial threshold. Since the

ratio of the received signal strengths is strictly decreasing or increasing with

the received signal strength (or distance) from a base station, the policy can

also be implemented as a threshold on this ratio.

Note that optimal static load allocation policies need not necessarily

be unique. For example, consider the case when user requests are distributed

homogeneously on the line segment joining the two base stations. If the op-

timal threshold does not correspond to the midpoint, then by symmetry, the

policies that divide the service areas using thresholds at a distance d∗ from

BS1 and d∗ from BS2 will result in identical mean user delays.

8.4 Optimal Threshold Trends

As a consequence of Theorem 8.3.1, we need only consider threshold-

based static allocation policies. Fig. 8.3 exhibits again the simulated mean

user delay for varying thresholding policies as the (spatially homogeneous)

arrival rate between the base stations increases. The policies are characterized

by the fraction of load served by BS1 with 0.5 corresponding to load balancing
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Figure 8.3: Impact of load split threshold on delay performance.

and 0.1 to only 10% of the load. As noted earlier, due to symmetry, the delay

performance would be identical if the threshold were moved closer to BS2. For

each arrival rate, the optimal load split, i.e., roughly achieving the minimum

mean delay, is highlighted. One can make the following observations:

1. The location of the optimal threshold is a function of the load on the

system.

2. Except at very low loads, delay performance is improved by moving the

threshold away from the mid-point, thus inducing asymmetrical loads on the

two base stations.

Why does this happen? Load balancing increases parallelism, i.e., base

stations are more likely to be simultaneously active. In our model, load bal-

ancing associates users with close by base stations providing them a stronger
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signal. Finally, it would appear that load balancing might be beneficial in

terms of statistical multiplexing at the two base stations. If capacity users see

were fixed, these points would provide the right insight. Yet, when dynamic

interference is present, the capacity users see (particularly those far from either

base station) can be substantially reduced by interference, and the fraction of

time that base stations interfere with each other depends on the traffic and

the load allocation policy. Thus, when arrival rate is low, the probability of

the base stations being simultaneously active is low; the base stations operate

in an interference-free environment, and load balancing is roughly optimal.

For higher arrival rates, performance is strongly impacted by interference, and

skewing the load is beneficial. Intuitively, this skew reduces the utilization of

one of the base stations, say BS1, and thus the interference it causes on BS2’s

users, which reduces BS2’s utilization, in turn benefiting BS1. However, one

cannot overdo this skew as serving users that are far away, and thus have poor

received signal, is also detrimental. Finally, it is tempting to assume that as

load increases, base stations are always busy and the role of dynamic coupling

reduces. Yet, as can be seen, at high loads performance sensitivity is also high,

and the gains of an optimal asymmetric split increase further. The optimal

threshold reflects a complex tradeoff among dynamic interference, statistical

multiplexing, and users’ signal strengths.
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8.5 Optimizing the Threshold

In this section, an approximation methodology is developed for opti-

mizing static load allocation policies for the wireless network model in Sec. 7.2,

naturally extended to N base stations serving a possibly higher dimensional

region. A policy π partitions the service area such that base station n has

service area X π
n and overall arrival rate λn = λ(X π

n ). First, we approximate

the Markovian model with uncountable state space by one with a countable

state space, i.e., we will no longer keep track of the locations of users associ-

ated with each base station. This involves introducing an ‘effective’ rate for

all users associated with a base station which depends on the busy state of the

remaining base stations. Thus, the model preserves the dynamic interference

characteristics. Second, the methodology developed in Chapter 7.3 is used

to upper/lower bound the performance for the approximated model. Finally,

performance is optimized over families of static policies that can be easily

parametrized, e.g., for our one dimensional example, one need only determine

the threshold.

Countable state-space approximation: Let ~Q(t) = (Qn(t), n =

1, . . . , N) denote the number of active users at each base station at time t

for our approximated process. For notational simplicity, we have suppressed

its dependency on π. As mentioned earlier, the capacity to a user depends on

both its current location and the interference profile it sees from neighboring

base stations. Let ~∆(t) = (∆n(t), n = 1, . . . , N) where ∆n(t) = 1(Qn(t) > 0)

denote the status (idle or busy) or the ‘interference profile’ of the base stations.
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Note that ~∆(t) can take 2N possible values which we denote ~δi, i = 1, . . . , 2N .

Let cn(x,~δi) denote the actual capacity at which base station n can serve a

user at location x ∈ X π
n under interference profile ~δi. In our approximate

model, the effective capacity for such a user depends only on ~δi and is given

by

c
~δi

n =

(∫
Xπn

1

cn(x,~δi)

λ(dx)

λn

)−1

.

In other words, c
~δi

n is the harmonic mean of the users actual service capacities

weighted by the spatial distribution of arrivals to the base station, i.e., λ(dx)
λn

.

The harmonic mean is the appropriate average since the incremental time

users spend in the system is inversely proportional to their service capacity, as

shown in Sec. 3.2.1.1. Since files have mean size of 1, the total service rate µ
~δi

n

at base station n under interference profile ~δi is given by µ
~δi

n = c
~δi

n . This model

fits precisely the one in Sec. 7.2, and we can use the bounding methodology

developed in Chapter 7 to obtain lower and upper bounds on the sum queue

length. Then, using Little’s law, one can obtain bounds on the mean delay

experienced by users.

8.5.1 Determining Optimal Thresholds

As mentioned earlier, when policies can be easily parameterized, one

can use these bounds to optimize performance. For the two base-station sce-

nario, Theorem 8.3.1 shows the optimal static load allocation policy is a simple

threshold. So for any threshold, Problem 7.3.3 can be solved with the sum

queue length as the objective function to determine bounds on the mean de-
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lay, and a simple line search can be used to determine the threshold giving the

smallest lower bound on the mean delay. In the case of the three base station

network considered in the sequel, we parametrize policies based on weights

associated with the base stations, as described in Sec. 8.6.3.
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Figure 8.4: Goodness of optimized thresholds.

Fig. 8.4 exhibits the computed approximate optimal thresholds ver-

sus those obtained via brute force simulation for our two base station model.

Semidefinite optimization problems associated with relaxations of order 2 were

solved using [40] and [81] to determine the necessary bounds. As can be seen

both load splits (thresholds) and resulting mean delay performance are very

close, supporting the accuracy of our optimization methodology. The opti-

mization approach however provides the flexibility to address complex traffic

loads as well as systems with a larger number of base stations.
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8.6 Performance Comparison

8.6.1 Comparing Static Policies

Fig. 8.5-i again illustrates the impact that the choice of threshold lo-

cation has on delay performance. The user distribution is spatially homoge-

neous, so locating the threshold at the midpoint between the base stations

corresponds to a static load balancing approach. As can be seen, the resul-

tant mean user delays are greatly decreased by choosing an optimal threshold,

particularly at moderate to high system loads. Fig. 8.5-ii further exhibits

the spatial distribution of user delays under the two schemes when the rate

at which user requests arrive in the network is 1.2 per second. Surprisingly,

skewing the load towards one base station does not result in a trade off where

a subset of the users, e.g., at the heavily loaded base station, experience poor

performance. Instead, under the optimal policy, the overall impact of inter-cell

interference is reduced such that all users, irrespective of their spatial location

or perceived signal strength, see improved performance on average.

8.6.2 Optimized Policy vs. Dynamic Strategies

Next, the performance of the optimal static policy is compared versus

the following three dynamic policies:

Greedy User: each new user joins the base station which offers the highest

current service rate. This requires knowledge of the new user’s capacity to

each base station when the neighbor is active/idle and the number of users

each is serving.
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Figure 8.5: Performance of the optimized policy vs. load balancing.

Greedy System: each new user is assigned to the base station so as to maxi-

mize the resulting current sum service rate of the base stations. This policy is

more complex than the Greedy User policy as in addition it requires knowledge

of the capacity for all ongoing users with and without interference.

Repacking: each time a user arrives or leaves, the assignments of all users

are chosen so as to maximize sum service rate of the base stations via a brute

force search – the overheads and complexity of such a scheme would be unreal-

istically high, yet we hypothesize that it results in the best delay performance

among non-anticipative dynamic schemes.

Fig. 8.6 illustrates the mean delay (logarithmic scale) for varying traffic

loads under the above-mentioned greedy policies. Surprisingly, the optimal

static policy substantially outperforms the two greedy policies at moderate

to high loads. Indeed, at high load, the mean delay of the static policy is 6
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times lower than the greedy system policy which itself is orders of magnitude

lower than the greedy user policy. As expected, the repacking policy shown in

Fig. 8.7 (linear scale) is the best, but indeed very close to the optimal static

policy.

Fig. 8.8 exhibits the spatial delay distribution under the system-level

greedy scheme vs. the static policy. While the greedy policy exhibits perhaps

desirable spatially symmetric performance, it is still the case that the optimal

static policy gives better performance to all user locations.

8.6.3 Three Base Station Network

The three base station case can be used as a building block to develop a

load allocation policy in a larger network. The number of base stations that can

potentially serve a particular user request is unlikely to be very large. A load

129



0 0.5 1 1.50

2

4

6

8

10

12

Mean Arrival Rate

M
ea

n 
D

el
ay

 

 

10% di�erence

Repacking

Opt. Load Split

Figure 8.7: Mean Delay - Static vs. Repacking

association policy that decides only between the three strongest base stations

for each user request seems to be a reasonable tradeoff between complexity

and performance. For the 2 dimensional three base station network described

in Sec. 8.2, the form of the optimal static association policy is difficult to

characterize. The ‘optimal’ static association policy is computed within a

family of policies that can be easily parametrized.

8.6.3.1 Weighted Signal Strengths

The first family of policies considered is parametrized by base station

weights. Each base station is assigned a weight and a user is associated with

the base station that offers the maximum weighted received signal strength.

The weight associated with one of the base stations is set to 1, and a simple

gradient descent is used to determine weights for the remaining base stations.
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The bounding methodology described in Chapter 7 is used to approximate the

mean delay at each step of the gradient descent algorithm.

If the base stations are part of a larger network, accurately accounting

for the activity levels of other neighboring base stations could be important.

The proposed methodology can still be used in such a scenario by including

queues corresponding to the neighboring base stations when the performance

bounds are computed using the semidefinite optimization. The objective func-

tion would remain the expected sum queue length at the three sectors under

consideration. Note that including additional base stations will increase the

complexity of the bounding procedure.
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8.6.3.2 Pairwise Optimization

As an alternative to the methodology proposed above, we consider a

family of policies where modifying a single parameter while keeping the rest

constant allows the load division between two base stations to be modified

without affecting the set of users served by the other base station. Note that

the policy presented in Sec. 8.6.3.1 does not possess this property as changing

the weight associated with any base station potentially changes the load served

by all three base stations. This property allows the sequential optimization

of the policy parameters, and the optimal policy can be determined using a

sequence of iterations where one parameter is adjusted in each iteration.

This is particularly important if additional neighboring base stations
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have to be taken into account. When one of the parameters is being opti-

mized, the only sectors that have to be considered in the optimization are the

neighbors of the two base stations that are affected. Thus, each parameter can

be optimized while accounting for a different set of neighbors. This reduces

the complexity of the semidefinite program that has to be solved to obtain the

performance bounds. In this paper, we only consider the three base station

scenario in isolation. Evaluating the performance of the proposed technique

in large networks is a topic for future study.

The vector of received signal strengths from the three base stations,

~s(x) = (s1(x), s2(x), s3(x)), is projected down on to the two dimensional

hyperplane that passes through the origin and is orthogonal to the vector

(1, 1, 1). The family of static policies that is considered divides this hyperplane

into regions, and a base station serves all users whose projected signal strength

vector falls in its region. The hyperplane is chosen such that users with iden-

tical relative received signal strengths from the base stations are mapped to

the same point. The projected vector, after an orthogonal transformation is

given by ~z = {z1, z2}, where

z1 =
1√
6

(2s1(x)− s2(x)− s3(x))

z2 =
1√
2

(s2(x)− s3(x)).

The hyperplane is divided into three regions by three rays extending

from the origin, as shown in Fig. 8.9. Each base station serves the region be-

tween two rays as illustrated in the figure. The rays are specified by the angles
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α, β, and γ that they subtend with the z1 axis, and these angles parametrize a

policy within the family. Rotating one of the rays only exchanges load between

the two base stations whose service regions adjoin the ray. The optimal static

policy is determined through a series of iterations. At each iteration, one of

the parameters is modified, and a new value that improves the overall delay

experienced by the set of users served by the three base stations is chosen.

Thus, each iteration lowers the overall mean delay experienced by users in the

system, ensuring that the optimization procedure converges.
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Figure 8.10: Three Base Station Network: Mean Delay Performance under the
weighted signal strength policy

Fig. 8.10 exhibits the mean delay performance in a three base station

network. The repacking policy for this case is a hard combinatorial problem to

be solved upon each arrival/departure and so was infeasible. The static load

balancing and the greedy user policies exhibit similar performance, i.e., over-

lap, while the optimized static (asymmetric) policy exhibits substantial per-

formance gains. Even the greedy system policy (itself unrealistic in practice)
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achieves mean delays up to 20 times higher than the weighted signal strength

based policy. The projection based policy performs significantly better than

even the weighted signal strength policy, reducing the user perceived mean de-

lay further by 6-10 times at high loads. These results suggest that quasi-static

policies adapting to slowly changing, predictable traffic loads would achieve

excellent performance.
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Chapter 9

The Interference-Sensitive Adaptive Policy

The static policy developed in Chapter 8 requires knowledge of the

long-term traffic loads served by the wireless network. Also, several iterations

of a semidefinite optimization problem have to be solved in order to determine

the optimal thresholding policy. Further, the static policy determined through

the optimization procedure may not be robust to quickly changing traffic loads.

In this section, I present the Interference-Sensitive, Adaptive Policy (ISAP)

that divides load among base stations and induces asymmetry by tracking the

impact of performance coupling among base stations resulting from dynamic

inter-cell interference. The proposed policy requires no communication among

base stations and only requires each base station to track two simple measures

of the load being served.

The load on the system depends not only on the rate at which users

arrive and the mean file size requirements but also on their location with

respect to the base stations. A load allocation policy must be sensitive to

both the intensity of the load as well as its distribution in space. The policy

must be able to distinguish between scenarios where inter-cell interference is

responsible for causing high user delays, and scenarios where user delays are
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driven by high traffic loads inherent in the system. As seen in the previous

sections, in an interference dominated scenario, an adaptive scheme may need

to create an asymmetric division of load among base stations. The scheme

should ideally create an asymmetric division of load even from an initial point

at which the base stations could be identically loaded. Note that schemes

where the desirability of a base station depends solely on the nature of the

load supported by just that base station will not possess this property.

For example, when traffic is concentrated near the midpoint between

cells, even a low intensity of user arrivals can result in high user perceived de-

lays. In this case, inducing asymmetry in the load carried by the base stations

would improve performance by reducing the impact of inter-cell interference.

However, if the traffic carried by the base stations is concentrated near them

(and away from the other base stations), the users are affected only marginally

by inter-cell interference. In this case, there is not much gain possible from

inducing asymmetry even if the observed mean delays are high. Ideally, a dy-

namic load allocation scheme should favor a load balancing approach in such

a scenario.

9.1 Measuring the impact of interference

In order to estimate the effect of inter-cell interference, each base sta-

tion i tracks and maintains estimates for the system load and virtual load as

described below. Let ρ̂Si denote an estimate of the true system load, the cur-

rent utilization of the downlink queue of base station i. This will reflect the
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effect of interference from neighboring base station transmissions. Also, let ρ̂Vi

denote an estimate of the virtual load, the base station utilization that would

result if base station i experienced no interference. Measurements are updated

in discrete time slots of length δ. In any slot, the base station is either idle

or transmitting to exactly one user, say user j. Slots are indexed by t ∈ Z,

corresponding to times δt. The transmission rate to user j in slot t under the

current policy, taking into account the current activity state of the neighboring

base station(s) is denoted rij(t), and the rate to the user in the absence of any

interference is denote r0
ij(t). Each base station estimates the current system

load and the virtual load resulting from the current load allocation policy as

follows.

Estimating the system load: The system load can be estimated by

periodically checking if there are active users associated with the base station.

Each base station updates the estimate for the system load at δ intervals as

follows:

ρ̂Si (t+ 1) = βS1(BS i is transmitting in slot t) +

(1− βS)ρ̂Si (t),

where βS ∈ (0, 1) is a small constant determining the averaging time scale.

Note that we assume time slots are small enough that base stations are either

on or off for the entire duration of a slot.

Estimating the virtual load: A base station’s virtual load is mea-

sured as the fraction of time the base station would be actively transmitting
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to users if it were to serve the same traffic in the absence of interference. The

estimate for the virtual load is updated along with the system load as follows:

ρ̂Vi (t+ 1) = βV q
V
i (t) + (1− βV )ρ̂Vi (t),

where βV ∈ (0, 1) is a small constant, and the function qVi (t) is defined as

qVi (t) =

{
0, BS i is idle
rij(t)

r0ij(t)
, BS i is transmitting to user j.

One can interpret the virtual load as follows: The virtual system serves

exactly the same user as the real system in each slot. The virtual system trans-

mits exactly the same number of bits to the user as the real system, by using

only a fraction
rij(t)

r0ij(t)
of the slot. Thus, when the user in the real system experi-

ences interference in a slot, the slot is only partially used in the virtual system

and the base station is idle for the remainder of the slot. In the case where

the channel to the users is time invariant, the fraction of time that the base

station is transmitting under the virtual system is identical to the utilization

that would result from any work conserving scheduling policy in the absence

of interference. Since the rate at which a user can be served is a constant in

this case, one could rearrange the on and off periods of the base station to

match any work conserving policy. Note that this is not true in general, in the

case of time varying channels and arbitrary scheduling disciplines. However,

a similar virtual system could hypothetically be constructed for such a case

also.

Estimating interference impact: Clearly, ρ̂Si will always be greater

than ρ̂Vi . The overall impact that inter-cell interference has on base station i
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can be measured by a function of both ρ̂Si and ρ̂Vi , such as (ρ̂Si − ρ̂Vi ) or
ρ̂Si
ρ̂Vi

. For

instance, if the load served by the base station is concentrated near the mid

point between the base stations, ρ̂Si will be high due to the effect of inter-cell

interference. However, ρ̂Vi will be significantly lower even after accounting for

path loss, as the major factor contributing to the low rates experienced by

cell edge users is inter-cell interference. However, if the bulk of the load is

concentrated near the base station, ρ̂Si will be close to ρ̂Vi .

9.2 Algorithm to determine the serving BS

9.2.1 Two base station scenario

We begin by considering the two base station case. Suppose a request

from user j arrives at slot t, and is to be assigned to one of base stations

i = 1, 2. The proposed ISAP policy is a simple weighted maximum rate policy,

that is, the user connects to the base station i∗ = arg maxi=1,2 wi(t)r
0
ij(t) with

ties broken arbitrarily. The novelty in the policy lies in specification of time

dependent weights wi(t) which in turn are nonlinear functions of the current

estimates for the true system and virtual traffic loads seen at both of the base

stations.

Specifically, the base stations share their current estimates ρ̂Si , ρ̂
V
i , i =

1, 2 with the user. The user in turn assigns a weight of 1 to the base station

which currently has the lowest system load. The other base station is assigned

a weight which exceeds 1 and increases with the degree of inter-cell interference

experienced by the base stations. There are many possibilities for doing this,
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yet in this dissertation I consider the following specific weight assignment:

w1(t) =

{
1, ρ̂S1 (t) ≤ ρ̂S2 (t)

10(γ
∏2
i=1(ρ̂Si −ρ̂Vi )), ρ̂S1 (t) > ρ̂S2 (t)

where γ is an appropriately chosen constant. The weight assigned to base

station 2 is similarly computed. The idea underlying this weight assignment

is as follows. If ρ̂Si ≈ ρ̂Vi for one or both of the base stations then the weight’s

exponent is roughly 0 and the base station with heavier load will have a weight

which is only slightly larger than 1. In this case the policy reduces to a greedy

max rate policy. However, if both base stations are subject to interference,

then ρ̂Si − ρ̂Vi > 0 for i = 1, 2. So the weight associated with the heavier loaded

base station is quickly increasing with the degree of interference seen by base

stations’s users, and larger than 1. In this case, the policy becomes a weighted

max rate policy with a bias towards attracting additional load to the heavier

loaded of the base stations, the type of load asymmetry that was found to

be advantageous earlier. Clearly other suitable functions of the system and

virtual loads are possible, yet the above appears to be reasonable and work

well.

9.2.2 Multi base station scenario

The proposed policy readily extends to the case of a network with

multiple base stations. Suppose a user j arrives at time t and can associated

with any one of n base stations. For simplicity assume the possible base

stations are indexed i = 1, . . . n such that they have decreasing system loads.

The multiple base station association policy exhibited in Algorithm 1, relies
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Algorithm 1 Assigning user j to one of n BSs

1: Sort the base stations in decreasing order of ρ̂Si(t).
2: Let i∗ = 1
3: for i = 2 to n do
4: wi∗ = 10(γ(ρ̂S

i∗−ρ̂
V
i∗ )(ρ̂Si −ρ̂Vi ))

5: wi = 1
6: if wi∗(t)r

0
i∗j(t) < wi(t)r

0
ij(t) then

7: i∗ = i
8: end if
9: end for

10: return i∗

on making pariwise comparisons among base stations starting from the base

stations which are seeing the heaviest loads. The idea is once again to favor

asymmetries in load towards base stations which are seeing high system loads,

but only if they are also strongly coupled through interference with one of the

other base stations.

By assigning a weight larger than 1 to the heavily loaded base station,

ISAP induces asymmetry in the loads served. However, the asymmetry is

controlled as the policy is also sensitive to the rate at which the users can be

served by the base stations. Note that if either base station is not affected by

interference, the weight associated to the heavily loaded base station will be

very close to 1, resulting in a policy that resembles a greedy maximum rate

policy.
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9.3 Performance Evaluation

The delay performance of ISAP is compared to the other dynamic

schemes introduced in Sec. 8.6, and the static policy resulting from our ap-

proximate SDP based optimization. The value for the constant multiplicative

factor γ is 3, unless noted otherwise. This constant should be chosen to ensure

that the dynamic range of the weights is sufficiently large.

9.3.1 Two base station scenario

Thus far, all the simulation results exhibited performance under spa-

tially homogeneous user (load) distributions. In this section, various spa-

tially non-homogeneous load profiles are additionally considered as shown in

Fig. 9.1a-9.1e. The line segment joining the two base stations is split into

four quarters, and the load distribution is varied by varying the proportion of

users in each quarter. Users in a particular quarter are uniformly distributed

within that quarter. Load profiles 1, 2 and 4 are symmetric with respect to

the midpoint between the base stations. The users are concentrated near the

base stations in profile 2, and the impact of inter-cell interference is dimin-

ished. The effective load on the network under this profile is lighter at a fixed

user arrival rate compared to profile 4, where users are concentrated close to

the midpoint and are strongly impacted by inter-cell interference. The load

distribution under profiles 3 and 5 is asymmetric.

The optimized static policy and ISAP perform consistently well under

all spatial load profiles, and perform as well as or outperform all the dynamic
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policies. This demonstrates their robustness to spatially heterogeneous traffic

loads. Under load profile 3, for example, they outperform all the other schemes

by a wide margin. None of the other schemes perform well under all profiles.

The proposed schemes are able to infer the nature of the spatial load and adapt

to it. Under load profiles 4 and 5, choosing a higher value for the multiplicative

constant γ is necessary for the performance of ISAP to match the optimized

static policy. Thus, in order to achieve optimal performance, ISAP has to be

parametrized depending on the load distribution. However, even if a nominal

value is chosen for γ, ISAP performs very well, even if it is not optimal.

The relative performance of the dynamic schemes can vary dramatically

with the distribution of the spatial load. The greedy system scheme performs

well under profiles 1 and 4. However, it is the worst among the schemes under

load profile 2. Since the greedy system scheme tries to maximize the average

throughput realized by all users in the system, it might deviate from a load

balancing policy so as to ensure that a base station stays idle. However, since

users cannot be reassigned, such decisions adversely affect long-term delay

performance. The static max rate scheme performs well under load profile

2, where the effect of interference is minimal and under profile 4, where the

spatial load is inherently asymmetric. It performs very poorly under the other

spatial profiles.
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Figure 9.1: ISAP: Delay performance under heterogeneous spatial loads
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Figure 9.1: ISAP: Delay performance under heterogeneous spatial loads

9.3.2 Three (or More) Base Station Network:

Fig. 9.2 exhibits the mean delay performance that users perceive in a

three base station network under ISAP with γ set to the nominal value of 3,

the projection based static policy, and the greedy dynamic policies. We only

consider the spatially homogeneous user distribution in this case. Evaluating

the performance of the various static and dynamic policies under spatially het-
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Figure 9.2: ISAP: Delay performance in a three base station network with
homogeneous load.

erogeneous user distributions is a topic for future study. ISAP results in delay

performance that is comparable to the projection based static policy. Both

policies perform significantly better than the dynamic policies. The results

indicate that ISAP performs well even in a multiple base station network.

9.3.3 Performance Sensitivity

Channel Model: The dependence of the performance results on the

parameters of the system channel model is examined using parameters that

model cellular base stations in an urban environment. A system consisting of

two base stations 2800 meters apart is simulated, and the performance of the

schemes presented earlier are compared using a path loss exponent 3.5, and a

cell-edge signal to noise ratio of 10 dB. The data rate at which users are served

is calculated using Shannon’s capacity formula, after a 6dB backoff is applied

to the perceived SINR.
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Fig. 9.3 shows the simulated delay performance when load split between

the base stations is varied from 0.5 (even division of load) to 0.1, similar to

Fig. 6.1b. The results again show that the optimal load division depends on the

intensity of the offered load, and is not balanced but significantly asymmetric.
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Fig. 9.4 compares the delay performance of the optimized static policy

and ISAP to the dynamic schemes described earlier. The proposed schemes

significantly outperform the dynamic schemes. The mean delay under the
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greedy system scheme, for example, is over 50 times the mean delay under

the optimized static scheme at high loads. These results demonstrate that the

performance trends observed earlier do not depend on the particular channel

model used and are a consequence of the dynamics introduced by inter-cell

interference.

Long tailed file size distributions: The effect of long tailed file

size distributions on the mean delay experienced by users is examined. In the

process of determining the optimized static threshold, we still assume that file

sizes are exponentially distributed. We assume that the users’ file size require-

ments are log normally distributed with mean 5 MB, and variance 12.276×106.

The performance of the various schemes under a spatially homogeneous user

distribution is shown in Fig. 9.5. The relative performance of the different
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Figure 9.5: Sensitivity to file size distribution: Delay performance

schemes is very similar to the case of exponential file sizes. The optimized

static policy and the policy developed above, ISAP, result in the best perfor-

mance. The optimization procedure and the proposed adaptive policy appear
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to be robust to variations in the distribution of users’ file size requirements.

9.4 Summing Up

For the one and two dimensional models considered, the performance

gain from optimized static policies is substantial, even outperforming natural

greedy user and system dynamic policies. The load-balancing static policy was

shown to be very poor, showing that the critical aspect is inducing asymmetry

in the load, even when the network and loads are symmetric. Our simulation

results demonstrated that our proposed policies perform consistently well un-

der all spatial loads and are robust to variations in file size distributions and

channel parameters. The performance of the conventional dynamic policies

was found to vary dramatically with the load distribution, and no one policy

performed consistently well. This work suggests the possibility that substan-

tial gains might be achieved if network functions coupled through interference

(or otherwise) are optimized for dynamic loads.
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Conclusion
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This dissertation focused on the analysis and optimization of wire-

less networks serving dynamic loads and thus coupled through interference.

I addressed two key questions regarding the operation of interference domi-

nated systems: cooperative scheduling and user association. A low complexity,

system-level approach that substantially improves performance perceived by

best-effort users without requiring high channel measurement and estimation,

communication, and computational overheads was developed. The proposed

approach simultaneously achieved spatially homogeneous performance while

also reducing the transmit power requirements. I also studied the user as-

sociation problem in such networks, and proposed a methodology to bound

and optimize performance in the underlying coupled queuing systems. The

proposed user association policies were shown to outperform a load balancing

policy as well as several dynamic policies under both spatially homogeneous

and heterogeneous loads.

The results in this dissertation demonstrated the impact that inter-

ference induced coupling can have on user performance, and the sometimes

counter-intuitive implications for network design. Performance and even the

stability of wireless networks in this dynamic context is highly dependent on

the spatial traffic loads being served. Policies that are tailored to the spatial

load and the resulting interference characteristics can make a great difference.

There are also subtle differences in the interference characteristics between the
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uplink and the downlink resulting from the spatial origin of interference, and

algorithms have to be adjusted depending on the context in which they are

applied.

The two problems studied as part of this dissertation are, in reality,

intertwined. Clearly, the user association policy determines the spatial load

that each base station has to serve, while coordination across base stations

alters the dynamics of interference and inter base station coupling. Ideally,

these policies would be optimized jointly. However, as we have seen, opti-

mizing interference while accounting for interference coupling is not an easy

task, and any joint optimization is likely to be highly complex. Therefore, a

division like the one proposed in this dissertation might be the most practical

way around the problem. For instance, the coordination mechanism and the

user association policy developed in this paper could operate together with

the coordination scheme inferring the spatial distribution induced by the user

association policy. One of the topics I intend to pursue in the future is the de-

velopment of an adaptive scheme (like ISAP) for base station coordination that

could work in tandem with user association and other policies impacted by the

spatial load distribution. Opportunistic scheduling in the presence of fading

channels offers similar challenges, with performance coupling among users. I

believe that understanding the interactions between these various layers, and

designing interference and load aware policies that operate together has the

potential to significantly improve user performance in wireless networks. In

the future, I intend to pursue research in this direction using the framework
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established in this dissertation.

154



Bibliography

[1] Telecommunication Industry Association / Electronics Industry Associa-

tion Interim Standard (TIA/EIA) IS95 Standard. 1999.

[2] N. Abramson. The aloha system-another alternative for computer com-

munications. In Proceedings of Fall Joint Computer Conference, AFIPS

Conference, volume 36, pages 295–298, 1970.

[3] M. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.

[4] J. G. Andrews. Interference cancellation for cellular systems: A contem-

porary overview. IEEE Wireless Communications Magazine, 12(2):19–

29, Apr. 2005.

[5] D. Bertsimas and K. Natarajan. A semidefinite optimization approach

to the steady-state analysis of queueing systems. Queueing Syst. Theory

Appl., 56(1):27–39, 2007.

[6] D. Bertsimas, I. C. Paschalidis, and J. N. Tsitsiklis. Large deviations

analysis of the generalized processor sharing policy. Queueing Syst. The-

ory Appl., 32(4):319–349, 1999.

[7] D. Bertsimas and I. Popescu. Optimal inequalities in probability the-

ory: A convex optimization approach. SIAM Journal on Optimization,

15(3):780–804, 2005.

155



[8] G. Bianchi and I. Tinnirello. Improving load balancing mechanisms in

wireless packet networks. In IEEE ICC, volume 2, pages 891–95, 2002.

[9] T. Bonald, S. Borst, N. Hegde, and A. Proutiere. Wireless data perfor-

mance in multicell scenarios. In ACM SIGMETRICS, volume 32, June

2004.

[10] T. Bonald, S. Borst, and A. Proutiere. Inter-cell scheduling in wireless

data networks. In European Wireless Conference, 2005.

[11] T. Bonald, S.C. Borst, and A. Proutiere. How mobility impacts the

flow-level performance of wireless data systems. In INFOCOM 2004,

volume 3, pages 1872–1881, 2004.

[12] A. Borovkov and S. Foss. Stochastically recursive sequences and their

generalizations. Siberian Advances in Mathematics, 2(1):16–81, 1992.

[13] S. Borst. User-level performance of channel-aware scheduling in wireless

data networks. In INFOCOM, pages 321 – 331, 2003.

[14] S. Borst, O. Boxma, and P. Jelenkovic. Coupled processors with regularly

varying service times. In IEEE INFOCOM, volume 1, page 157164, 2000.

[15] S. Borst, O. Boxma, and M. van Uitert. The asymptotic workload behav-

ior of two coupled queues. Queueing Systems, 43(1-2):81–102, January

2003.

156



[16] S. Borst, A. Buvaneswari, L. M. Drabeck, M. J. Flanagan, J. M. Graybeal,

G. K. Hampel, M. Haner, W. M. MacDonald, P. A. Polakos, G. Ritten-

house, I. Saniee, A. Weiss, and P. A. Whiting. Dynamic optimization

in future cellular networks. Bell Labs Technical Journal, 10(2):99–119,

2005.

[17] S. Borst, N. Hegde, and A. Proutiere. Interacting queues with server se-

lection and coordinated scheduling - application to cellular data networks.

Annals of Operations Research, 170(1):59–78, September 2009.

[18] S. Borst, I. Saniee, and A. Whiting. Distributed dynamic load balancing

in wireless networks. In ITC, pages 1024–37, 2007.

[19] S. C. Borst. Optimal probabilistic allocation of customer types to servers.

In ACM SIGMETRICS, pages 116–25, 1995.

[20] S.C. Borst, M. Jonckheere, and L.S. Leskel. Stability of parallel queueing

systems with coupled service rates. Discrete Event Dynamic Systems,

18(4):447–472, 2008.

[21] K. Chawla and Xiaoxin Qiu. Quasi-static resource allocation with in-

terference avoidance for fixed wireless systems. IEEE J. Select. Areas

Commun., 17(3):493–504, Mar. 1999.

[22] R. Choi, R. Murch, and K. Letaief. MIMO CDMA antenna system for

SINR enhancement. IEEE Transactions on Wireless Communications,

2(2):240–249, March 2003.

157



[23] W. Choi and J. Andrews. The capacity gain from intercell scheduling

in multi-antenna systems. IEEE Transactions on Wireless Communica-

tions, 7(1):714–725, February 2008.

[24] W. Choi and J. G. Andrews. Base station cooperatively scheduled trans-

mission in a cellular MIMO TDMA system. In Conference on Informa-

tion Systems and Sciences (CISS), March 2006.

[25] W. Choi and J. G. Andrews. Downlink performance and capacity of dis-

tributed antenna systems in a multicell environment. IEEE Transactions

on Wireless Communications, 6(1), January 2007.

[26] T. Chu and S. Rappaport. Coverage with reuse partitioning in cellular

communication systems. IEEE Transactions on Vehicular Technology,

46(1):41–54, February 1997.

[27] H. Dai, A. Molisch, and H.V. Poor. Downlink capacity of interference-

limited MIMO systems with joint detection. IEEE Trans. Wireless

Commun., 3(2):442–453, March 2004.

[28] S. Das, H. Viswanathan, and G. Rittenhouse. Dynamic load balanc-

ing through coordinated scheduling in packet data systems. In IEEE

INFOCOM, volume 1, pages 786–96, 2003.

[29] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a

fair queueing algorithm. In Symposium proceedings on Communications

158



architectures & protocols, pages 1–12, Austin, Texas, United States, 1989.

ACM.

[30] P. Dupuis and K. Ramanan. A skorokhod problem formulation and large

deviation analysis of a processor sharing model. Queueing Syst. Theory

Appl., 28(1-3):109–124, 1998.

[31] G. Fayolle and R. Lasnogorodski. Two coupled processors: The reduction

to a Riemann–Hilbert problem. Wahrscheinlichkeitstheorie, (3):1–27,

Jan. 1979.

[32] T. K. Fong, P. S. Henry, K. K. Leung, Xiaoxin Qiu, and N. K. Shankara-

narayanan. Radio resource allocation in fixed broadband wireless net-

works. IEEE Trans. Commun., 46(6):806–818, Jun. 1998.

[33] G. J. Foschini, K. Karakayali, and R. A. Valenzuela. Coordinating mul-

tiple antenna cellular networks to achieve enormous spectral efficiency.

IEEE Trans. Commun., 153(4):548–555, Aug. 2006.

[34] A. Ghasemi and E. S. Sousa. Distributed intercell coordination through

time reuse partitioning in downlink CDMA. In IEEE Wireless Commu-

nications and Networking Conference, volume 4, pages 1992–1997, Mar.

2004.

[35] R. Graham. An efficient algorithm for determining the convex hull of a

finite point set. Info. Proc. Letters, 1(4):132–133, 1972.

159



[36] F. Guillemin and D. Pinchon. Analysis of generalized processor-sharing

systems with two classes of customers and exponential services. Journal

of Applied Probability, 41(3):832–858, 2004.

[37] S. V. Hanly. An algorithm for combined cell-site selection and power

control to maximize cellular spread spectrum capacity. IEEE Journal on

Selected Areas in Communications, 13(7):1332–1340, September 1995.

[38] G. Hardy, J. E. Littlewood, and G. Polya. Inequalities. Cambridge

University Press, 2 edition, January 1952.

[39] R. Hasegawa, M. Shirakabe, R. Esmailzadeh, and M. Nakagawa. Down-

link performance of a CDMA system with distributed base station. In

IEEE Vehicular Technology Conference, pages 882–886, October 2003.

[40] D. Henrion and J . B. Lasserre. Gloptipoly: global optimization over

polynomials with matlab and sedumi. ACM Transactions on Mathemat-

ical Software, 29(2):165–194, 2003.

[41] P. A. Hoeher, S. Badri-Hoeher, Wen Xu, and C. Krakowski. Single-

antenna co-channel interference cancellation for TDMA cellular radio

systems. IEEE Wireless Communications Magazine, 12(2):30–37, Apr.

2005.

[42] S. Jafar, G. J. Foschini, and A. J. Goldsmith. PhantomNet: Explor-

ing optimal multicellular multiple antenna systems. In IEEE Vehicular

Technology Conference, pages 24–28, Sep. 2002.

160



[43] A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall,

1988.

[44] W. H. Jean and B. P. Helms. Geometric mean approximations. The

Journal of Financial and Quantitative Analysis, 18(3):287–293, Septem-

ber 1983.

[45] S. Jing, D. N. C. Tse, J. Hou, J. B. Soriaga, J. E. Smee, and R. Padovani.

Multi-cell downlink capacity with coordinated processing. In Information

Theory and Applications Workshop, Jan. 2007.

[46] S. Jing, D. N. C. Tse, J. B. Soriaga, J. Hou, J. E. Smee, and R. Padovani.

Downlink macro-diversity in cellular networks. In IEEE International

Symposium on Information Theory, pages 24–29, June 2007.

[47] M. Jonckheere. Stability of two interfering processors with load bal-

ancing. In Third IInternational Conference on Performance Evaluation

Methodologies and Tools, 2008.

[48] N. Kahale and P. E. Wright. Dynamic global packet routing in wireless

networks. In IEEE INFOCOM, volume 3, pages 1414–1421, Apr. 1997.

[49] M. Kang and M. Alouini. Quadratic forms in complex gaussian matrices

and performance analysis of MIMO system with cochannel interference.

IEEE Transactions on Wireless Communications, 3(2):418–431, March

2004.

161



[50] K. Karakayali, G. J. Foschini, and R. A. Valenzuela. Network coordi-

nation for spectrally efficient communications in cellular systems. IEEE

Wireless Communications Magazine, 13(4):56–61, August 2006.

[51] J. Karlsson and B. Eklundh. A cellular mobile telephone system with

load sharing-an enhancement of directed retry. Communications, IEEE

Transactions on, 37(5):530–35, 1989.

[52] H. Kim, Y. Han, and J. Koo. Optimal subchannel allocation scheme in

multicell OFDMA systems. In IEEE Vehicular Technology Conference,

pages 1821–1825, May 2003.

[53] C. Knessl. On the diffusion approximation to two parallel queues with

processor sharing. IEEE Transactions on Automatic Control, 36:1356–

1367, December 1991.

[54] A. G. Konheim, I. Meilijson, and A. Melkman. Processor-sharing of two

parallel lines. J. Appl. Probab., 18(4):952–956, 1981.

[55] X. Lagrange and B. Jabbari. Fairness in wireless microcellular networks.

IEEE Transactions on Vehicular Technology, 47(2):472–479, May 1998.

[56] J.B. Lasserre. Bounds on measures satisfying moment conditions. An-

nals of Applied Probability, 12:1114–1137, 2002.

[57] J. W. Lee, R. Mazumdar, and N. B. Shroff. Joint resource alloca-

tion and base-station assignment for the downlink in CDMA networks.

IEEE/ACM Trans. Netw., 14(1):1–14, 2006.

162



[58] K. K. Leung and A. Srivastava. Dynamic allocation of downlink and

uplink resource for broadband services in fixed wireless networks. IEEE

J. Select. Areas Commun., 17(5):990–1006, May 1999.

[59] G. Li and H. Liu. Downlink dynamic resource allocation for multi-cell

OFDMA system. In IEEE Vehicular Technology Conference, pages 1698–

1702, October 2003.

[60] J. Li, N. B. Shroff, and E. K. P. Chong. A static power control scheme

for wireless cellular networks. In IEEE INFOCOM, volume 2, pages

932–939, 1999.

[61] X. Liu, E. K. P. Chong, and N. B. Shroff. A framework for opportunistic

scheduling in wireless networks. Computer Networks, 41:451–474, March

2003.

[62] R. Loynes. The stability of a queue with non-independent inter-arrival

and service times. Proc. Cambr. Phil. Soc., 58:497–520, 1962.

[63] A. Marshall and I. Olkin. Inequalities: Theory of Majorization and its

Applications. New York: Academic Press, 1979.

[64] K. Navaie and H. Yanikomeroglu. Downlink joint base-station assignment

and packet scheduling algorithm for cellular CDMA/TDMA networks. In

IEEE ICC, volume 9, pages 4339–44, 2006.

163



[65] Abhay K. Parekh and Robert G. Gallager. A generalized processor shar-

ing approach to flow control in integrated services networks: the single-

node case. IEEE/ACM Trans. Netw., 1(3):344–357, 1993.

[66] S. Pietrzyk and G. J. Janssen. Subcarrier allocation and power control for

QoS provision in the presence of CCI for the downlink of cellular OFDMA

systems. In IEEE Vehicular Technology Conference, pages 2221–2225,

April 2003.

[67] F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in

two and three dimensions. Commun. ACM, 20(2):87–93, Feb. 1977.

[68] X. Qiu and K. Chawla. Resource assignment in a fixed broadband wire-

less system. IEEE Communications Letters, 1(4):108–110, Jul. 1997.

[69] T. S. Rappaport. Wireless Communications: Principles and Practice.

Prentice Hall, 2002.

[70] F. Rashid-Farrokhi, K. Liu, and L. Tassiulas. Transmit beamforming and

power control for cellular wireless systems. IEEE Journal on Selected

Areas in Communications, 16:1437–1450, October 1998.

[71] W. Rho and A. J. Paulraj. Performance of the distributed antenna

systems in a multicell enviroment. In IEEE Vehicular Technology Con-

ference, pages 587–591, April 2003.

[72] L. G. Roberts. Aloha packet system with and without slots and capture.

SIGCOMM Comput. Commun. Rev., 5(2):28–42, 1975.

164



[73] A. Sang, X. Wang, M. Madihian, and R. D. Gitlin. Coordinated load

balancing, handoff/cell-site selection, and scheduling in multi-cell packet

data systems. Wireless Networks, 14(1):103–120, January 2008.

[74] S. Shakkottai and A. Stolyar. Scheduling for multiple flows sharing a

time-varying channel: The exponential rule. American Mathematical

Society Translations, 207:185–202, 2002.

[75] S. Shamai and B. Zaidel. Enhancing the cellular downlink capacity via

co-processing at the transmitting end. In IEEE Vehicular Technology

Conference, pages 1745–1749, May 2001.

[76] A. Srivastava, N. K. Shankaranarayanan, and K. K. Leung. Sector-

based resource allocation for broadband fixed wireless networks. In IEEE

Vehicular Technology Conference, volume 3, pages 1680–1684, May 1998.

[77] A. L. Stolyar and H. Viswanathan. Self-organizing dynamic fractional

frequency reuse in ofdma systems. In Infocom, Apr 2008.

[78] A. L. Stolyar and H. Viswanathan. Self-organizing dynamic fractional

frequency reuse for best-effort traffic through distributed inter-cell coor-

dination. In Infocom, 2009.

[79] D. Stoyan. Comparison Methods for Queues and Other Stochastic Models.

New York: John Wiley, 1983.

[80] D. Stoyan, W. Kendall, and J. Mecke. Stochastic Geometry and its

Applications. J. Wiley & Sons, Chichester, 1995.

165



[81] J. F. Sturm. Using SeDuMi 1.02, a matlab toolbox for optimization over

symmetric cones. Optimization Methods and Software, 11(12):625–653,

1999.

[82] Third Generation Partnership Project. Radio access network work group

1 contributions. http://www.3gpp.org, September 2005.

[83] Third Generation Partnership Project 2. Ultra mobile broadband tech-

nical specifications. http://www.3gpp2.org, March 2007.

[84] P. Viswanath, D. N. C. Tse, and R. Laroia. Opportunistic beamforming

using dumb antennas. IEEE Trans. Inform. Theory, 48(6):1277–1294,

Jun. 2002.

[85] S. W. Wales. Technique for cochannel interference suppression in TDMA

mobile radio systems. IEEE Trans. Commun., 142(2):106–114, Apr.

1995.

[86] J. F. Whitehead. Signal-level-based dynamic power control for co-channel

interference management. In IEEE Vehicular Technology Conference,

pages 499–502, 1993.

[87] J. H. Winters. Optimum combining in digital mobile radio with cochannel

interference. IEEE Transactions on Vehicular Technology, 33(3):144–155,

1984.

166



[88] X. Wu, A. Das, J. Li, and R. Laroia. Fractional power reuse in cellular

networks. In Proceedings of the 44th Allerton Conference on Communi-

cation, Control, and Computing, September 2006.

[89] E. Yanmaz, O.K. Tonguz, and R. Rajkumar. Is there an optimum dy-

namic load balancing scheme? In IEEE GTC, volume 1, 2005.

[90] R. Yates and C. Y. Huang. Integrated power control and base station

assignment. IEEE Transactions on Vehicular Technology, 44(3):638–644,

August 1995.

[91] William E. Young and Robert H. Trent. Geometric mean approxima-

tions of individual security and portfolio performance. The Journal of

Financial and Quantitative Analysis, 4(2):179–199, June 1969.

[92] A. Zemlianov and G. de Veciana. Load balancing of best effort traffic in

wireless systems supporting end nodes with dual mode capabilities. In

CISS, pages 1–6, March 2005.

[93] H. Zhang and H. Dai. Co-channel interference mitigation and cooperative

processing in downlink multicell multiuser MIMO networks. European

Journal on Wireless Communications and Networking, 4th quarter 2004.

[94] Z. Zhang. Large deviations and the generalized processor sharing schedul-

ing for a two-queue system. Queueing Syst. Theory Appl., 26(3-4):229–

254, 1997.

167



[95] Z. Zhang. Large deviations and the generalized processor sharing schedul-

ing for a multiple-queue system. Queueing Systems, 28(4):349–376, 1998.

[96] L. Zuluaga and J. F. Pena. A conic programming approach to gen-

eralized Tchebycheff inequalities. Mathematics of Operations Research,

30(2):369–388, 2005.

168



Vita

Balaji Rengarajan received the degree of Bachelor of Engineering in

Electronics and Communication Engineering from the University of Madras in

May 2002, graduating at the top of his class. In 2002, he entered the grad-

uate school at The University of Texas at Austin. He was the recipient of a

2003 Texas Telecommunications Engineering Consortium (TxTEC) graduate

fellowship. He received the degree of Master of Science in Electrical Engineer-

ing in May 2004. During the summers of 2005 and 2008, he was a student

intern at Intel Corporation and Bell Laboratories, Alcatel-Lucent respectively.

He was admitted to Ph.D. candidacy in 2007.

Permanent address: 301 West 39th St., Apt. 303
Austin, TX-78751

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

169




