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We investigate in detail two multiuser opportunistic scheduling problems in

centralized wireless systems: the scheduling of delay-sensitive flows with packet delay

requirements of a few tens to few hundreds of milliseconds over the air interface, and

the scheduling of best-effort flows with the objective of minimizing mean file transfer

delay.

Schedulers for delay-sensitive flows are characterized by a fundamental trade-

off between maximizing total service rate by being opportunistic and balancing unequal

queues (or delays) across users. In choosing how to realize this tradeoff in schedulers,

our key premise is that robustness should be a primary design objective alongside

performance. Different performance objectives – mean packet delay, the tail of worst

user’s queue distribution, or that of the overall queue distribution – result in remark-

ably different scheduling policies. Different design objectives and resulting schedulers

are also not equally robust, which is important due to the uncertainty and variability

in both the wireless environment and the traffic. The proposed class of schedulers

offers low packet delays, less sensitivity to the scheduler parameters and channel

characteristics, and a more graceful degradation of service in terms of the fraction

of users meeting their delay requirements under transient overloads, when compared

with other well-known schedulers.
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Schedulers for best-effort flows are characterized by a fundamental tradeoff

between maximizing the total service rate and prioritizing flows with short residual

sizes. We characterize two regimes based on the “degree” of opportunistic gain present

in the system. In the first regime – where the opportunistic capacity of the system

increases sharply with the number of users – the use of residual flow-size information

in scheduling will not result in a significant reduction in flow-level delays. Whereas,

in the second regime – where the opportunistic capacity increases slowly with the

number of users – using flow-size information alongside channel state information

may result in a significant reduction. We then propose a class of schedulers which

offers good performance in either regime, in terms of mean file transfer delays as well

as probability of blocking for systems that enforce flow admission control.

This thesis provides a comprehensive theoretical study of these fundamental

tradeoffs for opportunistic schedulers, as well as an exploration of some of the practical

ramifications to engineering wireless systems.
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Chapter 1

Introduction

Current and emerging broadband wireless systems, e.g., LTE and WiMax, are

evolving towards purely scheduled systems, in that all traffic including delay-sensitive

services (e.g., VoIP or SIP signaling, see [1]) needs to be scheduled. These systems

also feature [2, Section 10.2]:

• fine granularity of resource allocation, e.g., 180KHz Resource Block times 1ms

Transmission Time Interval for LTE;

• fast MAC turnaround times, e.g., 2ms for LTE;

• along with highly configurable schemes to obtain channel state information at

the transmitter.

This allows for exploitation of time/frequency channel selectivity through opportunis-

tic scheduling, and thus enables higher user throughputs. However, unlike what is

typically the case in wired systems, more (opportunistic) capacity does not easily

translate to better user-perceived performance [3].

More precisely, in the case of delay-sensitive flows, e.g., voice and video packet

streams, the scheduler has to carefully tradeoff the maximization of total transmission

rate versus the balancing of packet delays across users. In other words, sometimes

one may need to schedule users whose delays/queues are becoming large but whose

current channel is not the most favorable. This tradeoff is rigorously investigated in

the first half of this thesis.
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Similarly, in the case of best-effort flows, e.g.file transfers and web browsing,

the scheduler has to tradeoff maximization of total transmission rate versus priori-

tizing flows with short residual size, so as to reduce transfer delays or enhance web

browsing interactivity. This tradeoff is investigated in the second half of this thesis.

Throughout the thesis, the regime of most interest is where the channel coher-

ence time is long enough for permit channel tracking and opportunistic scheduling,

but short enough such that the packet or file transfer delays (depending on the con-

text) exceed a few multiple coherence times. The tradeoffs mentioned above, and

therefore all results in this thesis, are also applicable to a scenario where the wireless

channel for each user is constant over time but exhibits frequency selectivity.

Lastly, we would like to add that the above-mentioned tradeoffs are not specific

to wireless systems. They appear in general queueing problems involving multiple par-

allel unrelated processors [4], where “unrelated” refers to the fact that the speed/rate

of a processor can be different for different classes of jobs/users. An example would be

a specialized machine or computer, or a shared wireless channel, where the latter has

an added complexity if it is time varying. Therefore, some of the analytical results

presented in this thesis have broader applicability to the control of parallel queues

and servers.

1.1 QoS scheduling

In the first part of this thesis, we address the design of packet scheduling

policies for a fixed number of delay-sensitive or QoS (quality of service) users sharing

a wireless channel. Each user’s data arrives to a queue as a random stream where

it awaits transmission. The wireless channel is time-varying in that the transmission

rates supported for each user vary randomly over time. More generally, a scheduler

can be permitted to allocate rates to the users from a polytope service region, where

2



the service region depends on the channel state. If the channel state is available, a

policy can schedule users so as to exploit favorable channels, e.g., schedule the user

which currently has the highest rate – this is referred to as opportunistic scheduling

[5–7].

Our objective is to evaluate the design of queue-and-channel-aware schedulers

both from the point of view of performance and robustness. By robustness we infor-

mally mean a scheduler’s ability to perform well for the majority of users under un-

predicted/changing conditions and even transient ‘overloads.’ If the system becomes

temporarily overloaded, it is desirable for an opportunistic scheduler to gracefully de-

grade the service seen by the users. Though there has been a substantial amount of

work on opportunistic schedulers, it is still unclear whether scheduler design should be

guided by the objectives like minimizing mean packet delay and the asymptotic prob-

ability of sum-queue overflow, or instead by objectives like minimizing the asymptotic

probability of max-queue overflow. In these considerations lies the motivation for the

first of this thesis and our efforts to leverage analysis, where possible, and simulation

to reach a better understanding of this problem.

1.1.1 Related work

To put our work into context, we begin by summarizing some of the key

related work in this area. Among many others, [7] considers opportunistic scheduling

in a setting where users’ queues are infinitely backlogged. They identify channel-

aware opportunistic scheduling policies, which maximize the sum throughput under

various types of fairness constraints. The missing element in this work is the impact

of queueing dynamics. Recently, [8] showed that under a constant load, scheduling

algorithms that are oblivious to queue state will incur an average delay that grows

linearly in the number of users, whereas, channel-and-queue aware schedulers can

achieve an average delay that is independent of the number of users. Even before

3



this, it was immediately recognized that, when queueing dynamics are introduced,

opportunistic scheduling policies which are solely channel-aware may not be stable

(i.e., keep the users’ queues bounded) unless the policy is chosen carefully, e.g., using

prior knowledge of mean arrival rates [9]. For this reason, a substantial focus was

placed on designing schedulers that are both channel- and queue-aware and provably

throughput-optimal, i.e., ensure the queues’ stability without any knowledge of arrival

and channel statistics if indeed stability can be achieved under any policy. Except for

some degenerate cases, such policies must tradeoff maximizing current transmission

rate (e.g., scheduling the queue with the best channel) versus balancing unequal queues

(e.g., scheduling the longest queue). Balancing queues, avoids empty queues, which

enhances the ability to exploit high channel variations in the future. We will refer to

this tradeoff many times throughout the first half of this thesis. Two representative

classes of policies known to be throughput-optimal are MaxWeight [10] (also known

as Modified Largest Weighted Work/Delay First) and Exp rule [11]. Yet, stability is

a weak form of performance optimality.

Thus, it is of interest to study opportunistic policies that are delay-optimal,

e.g., polices that minimize the overall average delay (per data unit) seen by the users;

or policies which minimize the probability that either the sum-queue or the largest

queue overflows a large buffer. These polices are harder to characterize for servers

with time-varying capacity, but some results are available that we briefly discuss next.

In [12] and [13] the Longest-Connected-Queue (LCQ) and Longest-Queue-

Highest-Possible-Rate (LQHPR) policies are introduced. Strong results are shown for

these policies; they stochastically minimize the max and sum queue process, and thus

also the max and sum queue tails and mean delay. However, in addition to assuming

certain symmetry conditions on arrival and channel statistics, [12] is limited to on-off

channels where only a single user can be scheduled per time slot, and [13] assumes

that the scheduler can allocate service rates from the current information theoretic
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multiuser capacity region. In both cases, the above-mentioned tradeoff between queue

balancing and throughput maximization is absent. Indeed in [12], all policies that

pick a connected queue result in the same transmission rate, whereas, in case of [13],

all policies that pick a service vector from the maximal points of the current capacity

region, i.e. points on the max-sum-rate face, result in the same overall transmission

rate. Thus one can achieve the queue balancing goal, without ever compromising

throughput. Not surprisingly, in both cases the optimal policy turns out to be greedy,

in that it allocates as much service rate as possible to the longest/longer queues.

A related server allocation problem is studied in [14]. The paper considers

minimizing the mean delay in a two queue system where each queue has a dedicated

server and a third server can be dynamically shared between them. As a result, the

two queues can be allocated service rates from a polymatroid capacity region, thus

the objective of queue balancing can again be achieved without compromising the

total service rate. However, without the underlying symmetry assumptions of [12]

and [13], only the existence of a monotone increasing switching curve on the queue

state space is shown; note that the switching curve under LCQ and LQHPR policies

lies along the line where both queues are equal. For a system with a general compact,

convex, and coordinate convex capacity region and any finite number of queues, [15]

gives a large deviations principle (LDP) for transient queue process under MaxWeight

scheduler. This LDP can be used to compute, e.g., the asymptotic probability of sum-

queue or max-queue overflow, as well as the corresponding likely modes of overflow.

Although the capacity region is not changing over time, the region is such that a

scheduler must tradeoff maximizing total service rate with balancing unequal queues.

Therefore this result is insightful in relating the modes overflow to the tradeoff made

by the MaxWeight scheduler. A more recent work [16] gives a many sources large

deviations result for the MaxWeight scheduler for a similar capacity region.

Finally, relaxing the symmetry assumptions of [12] and [13], the works in
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[17–19] consider the asymptotic probability of max-queue overflow. The server ca-

pacity in [17], though time-varying, is identical for all users at any given time, thus the

need to tradeoff queue-balancing versus service rate maximization is again absent. In

fact, the sum-queue process in [17] is identical for all work conserving schedulers. How-

ever [18] and [19] consider a server with asynchronously time-varying capacity across

users. [18] studies the asymptotic probability of max-queue overflow under MaxWeight

scheduler and shows that as the exponent of queue length in the MaxWeight scheduler,

α, becomes large, the asymptotic probability of max-queue overflow under MaxWeight

approaches the minimum achievable under any other scheduler. A stronger result is

shown in [19], that is, the Exp rule scheduler in fact minimizes the steady state

asymptotic probability of max-queue overflow. Indeed the models in [18] and [19]

accurately capture a wireless channel shared by heterogenous users, and exhibit the

tradeoff between queue-balancing and service rate maximization. Existence of this

tradeoff also implies that, unlike the LCQ and LQHPR policies, the asymptotic op-

timality of Exp rule does not translate to minimizing the asymptotic probability of

sum-queue overflow or the mean delay. In fact the policies that minimize mean delay

and sum-queue overflow are very different and we believe are of practical interest.

In a related work on input-queued switches, [20] explains the conjecture that

de-emphasizing queue-balancing improves mean delay of Maximum-Weight Matching

algorithms.

1.1.2 Contributions

We being Chapter 2 by characterizing mean-delay optimal opportunistic sched-

ulers for heterogenous systems where the arrival and channel statistics are known. By

considering a simple model falling in the classical Markov decision process framework,

we show through numerical computation, that mean delay optimal policies exhibit

a property we call radial sum-rate monotonicity. That is, when user queues grow
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linearly (i.e. scaled up by a constant) the scheduler allocates service in a manner

that de-emphasizes the balancing of unequal queues in favor of maximizing current

service rate (being opportunistic). This is in sharp contrast to previously proposed

policies, e.g., MaxWeight and Exp rules, which, nevertheless, have the advantage of

being throughput-optimal.

We therefore propose a new class of policies, called the Log rule, that are

radial sum-rate monotone (RSM) and provably throughput optimal. We also show

in Appendix A that under sufficient load, RSM policies like the Log rule are fluid-

scale asymptotic optimal, which roughly means that when starting with a large initial

queue state, the queue trajectories under the mean delay optimal policy and under

an RSM policy are identical on a scaled queue state-space (scaled by the norm of

the initial state). Moreover, in Chapter 3 we use the approach of [19] to show that

a candidate RSM policy in fact minimizes the asymptotic probability of sum-queue

overflow. The “likely mode of overflow” under the Log rule is categorically different

from that under the Exp rule.

So we have at our disposal several opportunistic scheduling policies which are

optimal for different objectives. The question remains, in designing an opportunistic

scheduler should one be guided by mean or asymptotic tail results, and should one

focus on individual worst case or overall system criteria? In this regard, we use

extensive simulation to attempt to gain further insight on the question, and evaluate

the comparative effectiveness of various policies.

We also extend the proposed scheduling policies to multichannel systems sup-

porting a large number of users, e.g., OFDMA-based WANs such as LTE/WiMAX

downlinks, where bandwidth and power resources can be shared by multiple users over

a scheduling/transmission time interval. Recognizing practical limits on the spectral

granularity of channel feedback in multichannel systems, we suggest a queue-aware
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convex program formulation to realize opportunistic scheduling and resource alloca-

tion policies.

1.2 Best-effort scheduling

For best effort flows, the relevant performance metrics are defined over longer

time scales, i.e., the time scales of flow-level dynamics, e.g., file transfer delays or web

browsing interactivity. Unlike a system where there is a fixed number of users/flows

and each flow generates a stationary packet arrival process, in this setting the arrivals

correspond to new flows and users, i.e., files to be transferred associated with different

users, and thus the number of ongoing flows in the system is dynamic. Each flow can

be viewed as having its own queue associated with the residual data that needs to be

transmitted in order to successfully transfer a file or web page.

In the second part of this thesis, we consider a wireless downlink (or uplink)

shared by a dynamic population of best-effort flows/users.1 Flows of random size

(bits) arrive at the base station at random times, and leave when their transfer is

complete. As before, the transmission rate supported by the wireless channel (referred

to as the channel state) of each user varies randomly over time and is independent of

that of other users. The scheduling problem in this context is to select which flow to

serve based on the current system state (e.g., residual flow sizes and channel states of

the contending flows), with the objective of minimizing the file transfer delay (mean

sojourn time of the flows). This scheduling problem involves a key tradeoff between

prioritizing flows with short residual sizes and maximizing the total service rate; below

we elaborate further on this.

One extreme of this problem is the case where the wireless channel is in fact a

1Each flow is associated with a unique user downloading (or uploading) a file from the base
station; the terms flow, user, and file will sometimes be used interchangeably.
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constant capacity server. This reduces the system to a work-conserving G/G/1 queue,

and in that case the Shortest Remaining Processing Time (SRPT) scheduler [21] is

known to be optimal in a very strong sense: SRPT not only minimizes the mean

sojourn time but also the number of flows in the system at all times.

However, unlike a constant capacity server, the time-varying nature of wireless

channels provides a scope for opportunistic scheduling [5–7]. Therefore, the server’s

capacity is not only time-varying but also growing with the number of flows present

in the system. Another extreme case of our problem is that where a fixed number of

infinitely backlogged flows share the wireless downlink: opportunistic schedulers that

maximize long-run average service rate/throughput under various fairness constraints

are also well understood; see, e.g., [7].

1.2.1 Related work

The work in [22] considers a dynamic heterogenous wireless system under a

specific flow-size oblivious scheduler, namely, Proportional Fair (PF). Using a time

scale separation argument, it is shown that such a system can be modeled as a multi-

class Processor Sharing (PS) queue where the server capacity/speed increases with

the total number of users in the queue. This model allows one to obtain explicit

formulas for the mean sojourn time as well as the queue length distribution and the

stability region of the system. The result is complemented by simulations which show

that even when some of the relatively more restrictive assumptions (regarding certain

symmetry of the normalized channel variations across various classes) do not hold,

modeling the system as a multi-class PS is still quite accurate. In this thesis, we will

use a similar model for the wireless channel as the above work. Note that [23] further

shows that the sojourn times decrease if channels change quickly. Therefore, strictly

speaking, using a time-scale separation argument to obtain a multi-class Processor

Sharing model leads to optimistic performance estimates. Neither [23] nor [22] give
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bounds on the sub-optimality of mean sojourn time under PS/PF. Such bounds are

developed in this thesis.

In the literature, there have been various efforts to combine SRPT and op-

portunistic scheduling. However, few analytical results are available. Most work has

focused on designing and investigating heuristics through a mix of simulation and

analysis.

Both [24] and [25] consider a transient system, i.e., the problem of transmitting

a fixed set of finite sized files from the base station to their respective destination users,

with the objective of minimizing the total expected sojourn time. [24] shows that the

problem can be set up as a Markov decision process (MDP) with a finite state space

and numerically solved. However, perhaps due to having a very large state-space

for any useful system, it is difficult to characterize any structural properties of the

optimal scheduler from the computed solution. [25] explores various ways of combining

SRPT and opportunistic scheduling and provides bounds on mean sojourn time for

the proposed heuristics. In this thesis, we will show that the transient system studied

in [24] and [25] can be modeled as a deterministic dynamic program, and explicitly

give the optimal scheduler and sojourn times for certain insightful examples.

Both [26] and [27] consider dynamic systems where new flows arrive randomly.

[26] considers the case where current channel state information is not available to the

scheduler. [27] motivates various heuristics that combine SRPT and opportunistic

scheduling, and compares them via extensive simulation. From the presented results,

one can make the qualitative observation that schedulers which perform well in various

situations do not excessively compromise opportunistic gain to favor flows with short

residual sizes. [27] also points out a necessary condition for the stabilizability of a

dynamic system and suggests that this condition may be sufficient, but stops short

of a formal proof.
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Recently, [28] has formally characterized the stability region of such a system,

and (implicitly) shown that, asymptotically in the number of flows, any throughput-

optimal scheduler must fully exploit the opportunistic gain. It is also shown that a

version of MaxWeight scheduler which prioritizes flows with long residual sizes can

indeed be unstable.

[29] deals with designing practically viable throughput optimal schedulers and

proposes a measurement-based MaxQuantile-like scheduler [30, 31]. The problem of

scheduling a mix of best effort and QoS flows is also considered. Once again, the

schedulers which seem to perform best in various simulation settings are those which

do not, or only minimally, compromise the opportunistic gain.

1.2.2 Contributions

Recall that [28] showed that the queue-driven MaxWeight scheduler is not

throughput optimal2 in the presence of flow-level dynamics. In Chapter 4, we show

that the version of MaxWeight which prioritizes flows that are experiencing long delays

is nevertheless throughput optimal. Despite its throughput optimality, delay-driven

MaxWeight may still be unsuitable for use in a real wireless system: the scheduler

may excessively compromise opportunistic capacity until a significant fraction of the

contending flows have a large and nearly equal sojourn time. Moreover, the relation

between the residual flow-size and its current delay is unclear.

Therefore, in view of the above-mentioned tradeoff, next we investigate sched-

ulers which explicitly use the residual file-size information and seek to minimize the

mean file transfer delay. The main analytical results are given in Chapter 5, specifi-

cally Theorems 5.2 and 5.3. Theorem 5.2 characterizes the competitive ratio for flow-

size-oblivious opportunistic schedulers, like Proportional Fair (PF) [6] or MaxQuan-

2Queue-driven Exponential rule and Log rule can similarly be shown to be not throughput optimal
in the dynamic flow setting.
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tile [30] [31], for a transient system, and shows that the presence of opportunistic gain

mitigates their sub-optimality. Using this, we characterize two regimes based on the

“degree” of opportunistic gain:

• A regime where the use of residual flow-size information in scheduling will not

result in a significant reduction in flow’s delay.

• A regime where optimally using flow-size information alongside channel state

information may result in a significant reduction in flow’s delay.

More specifically, but still informally, if the opportunistic capacity of the wireless

channel increases rapidly in the number of users, e.g., as log(n) or log log(n) where

n is the number of users, then the mean sojourn time under a purely opportunistic

scheduler like MaxQuantile or PF is only about 1–20% higher than the minimum

possible. If, however, the opportunistic capacity increases more slowly (e.g., as 1−an

for a ∈ [0, 1)), a significant reduction in mean sojourn time may be achievable if

schedulers exploit the residual flow-size information. Using these insights, we pro-

pose a class of schedulers which is simple to implement and offers good performance

irrespective of the operating regime – this is analyzed in Theorem 5.3.

Overall, this thesis presents some significant theoretical results and accom-

panying practical insights that can serve as the foundation towards building better

opportunistic schedulers for next generation wireless systems.
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Part I

QoS scheduling
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Chapter 2

Mean delay optimal schedulers: a case for radial

sum-rate monotonicity

2.1 Overview, main contributions, and organization

In this chapter, we consider the design of multiuser opportunistic packet sched-

ulers for users sharing a time-varying wireless channel from performance and robust-

ness points of view. For a simplified model falling in the classical Markov decision

process framework, we numerically compute and characterize mean-delay-optimal

scheduling policies. The computed policies exhibit radial sum-rate monotonicity :

as users’ queues grow linearly, the scheduler allocates service in a manner that de-

emphasizes the balancing of unequal queues in favor of maximizing current system

throughput (being opportunistic). This is in sharp contrast to previously proposed

throughput-optimal policies, e.g., Exp rule and MaxWeight (with any positive ex-

ponent of queue length). In order to meet performance and robustness objectives,

we propose a new class of policies, called the Log rule, that are radial sum-rate

monotone (RSM) and provably throughput optimal. We use extensive simulations to

explore various possible design objectives for opportunistic schedulers. When users

see heterogenous channels, we find that emphasizing queue balancing, e.g. Exp rule

and MaxWeight, may excessively compromise the overall delay. Finally, we suggest

an implementation the proposed policies for scheduling and resource allocation in

OFDMA-based multichannel systems.
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Relation to other chapter

In the next chapter we will show that for a two-user system, an RSM policy

minimizes the asymptotic probability of sum-queue overflow. As a corollary of the

large deviation results, we show in Appendix A that under sufficient load, RSM

policies are fluid-scale asymptotic optimal (FSAO). This roughly means that, when

starting with a large initial queue state, the queue trajectories under the mean delay

optimal policy and under an RSM policy are identical on a scaled queue state-space

(scaled by the norm of the initial state).

In Appendix B, we show that even though mean-delay optimal schedulers for

single-channel systems can be described as a linear program, such schedulers become a

nonlinear convex program for multichannel systems. This provides analytical support

for the proposed scheduling and resource allocation policies for multichannel system.

Contributions

We begin by characterizing mean-delay optimal opportunistic schedulers for

heterogenous systems where the arrival and channel statistics are known. We con-

sider a simple model falling in the classical Markov decision process framework, where

we can numerically compute the optimal scheduling policy. Our first contribution is

showing through numerical computation that mean delay optimal policies exhibit ra-

dial sum-rate monotonicity (RSM), i.e., when user queues grow linearly (i.e. scaled

up by a constant) the scheduler allocates service in a manner that de-emphasizes

the balancing of unequal queues in favor of maximizing current system through-

put (being opportunistic). This is in sharp contrast to previously proposed policies,

e.g., MaxWeight and Exp rules, which, nevertheless, have the advantage of being

throughput-optimal. Our second contribution is to propose a new class of policies,

called the Log-rule, that are radial sum-rate monotone and provably throughput op-

timal. These policies are favorable both in terms of mean delay and robustness. Our
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simulations for a realistic wireless channels confirm the superiority of the Log-rule

which achieves a 20-75% reduction in the mean packet delay. The Log rule is pro-

posed as a practical solution but is not provably mean-delay optimal. However, in

the next chapter, we use the approach of [19] to show that the candidate RSM policy

indeed minimizes the asymptotic probability of sum-queue overflow.

So we have at our disposal several opportunistic scheduling policies which are

good for different objectives. The question remains, in designing an opportunistic

scheduler should one be guided by mean or asymptotic tail results, and should one

focus on individual worst case or overall system criteria? In this regard, we use

extensive simulation to attempt to gain further insight on the question, and evaluate

the comparative effectiveness of various policies.

We also extend the proposed scheduling policies to multichannel systems sup-

porting a large number of users, e.g., OFDMA-based WANs such as LTE/WiMAX

networks, where bandwidth and power resources can be shared by multiple users over

a scheduling/transmission time interval. Recognizing practical limits on the spectral

granularity of channel feedback in multichannel systems, we suggest a queue-aware

convex program formulation to realize opportunistic scheduling and resource alloca-

tion policies.

We make the following observations:

Minimizing mean delay vs asymptotic tails Based on simulations we

observe that when users see heterogenous channels, policies such as Exp rule that aim

to minimize the exponential decay rate of delay distribution tail of the worst user may

excessively compromise average delay, in some cases penalizing the tail distributions

of many of the users. Our simulations show that Log rule can achieve better mean

delays (overall and on a per user basis) and comparable or better distribution tails

for many, if not all, the users under reasonably high loads.
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Graceful degradation of service Due to the uncertain and changing char-

acteristics of wireless channels, precise resource allocation to meet quality of service

requirements (QoS) for real-time or streaming flows is likely to be virtually impos-

sible. As such, a desirable design objective is for a scheduler to gracefully degrade.

If there is a change in the environment causing a temporary overload, then as many

users as possible should meet their QoS requirements rather than all failing. Our

simulation results show that Log-rule compares favorably in this regard. In a system

with unpredictable heterogenous channels, there will be a wider disparity in the per-

formance users see under the Log rule, but a substantial number of users does very

well. Hence depending on the QoS objective and specific character of the change in

user’s channels, one could end up with no users seeing acceptable performance under

the Exp rule while, say, half the users meet their QoS requirement under Log rule.

Finally we note that Log rule’s underlying goal of minimizing mean packet delays

might be a desirable objective from the point of view maximizing throughput seen by

best effort traffic.

Organization

Rest of the chapter is organized as follows.

2.2 System model: system model and definitions of “opportunistic capacity region”

and “scheduling policy” are given. Optimality criterion is defined which is slightly

more general than mean packet delay.

2.3 Characterization of delay-optimal policy: a time-scale separation argument is used

to formulate the optimal policy as a numerically tractable Markov decision process.

2.4 Comparing the optimal policy with known heuristics: “Radial Sum-rate Mono-

tonicity” is formally defined, and through numerical computations, the optimal policy

is shown to be (weakly) RSM. By contrast, known heuristics (MaxWeight and Exp

rule) are shown to differ.
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2.5 Improved throughput-optimal policies: a new class of scheduling policies, called the

Log rule, is proposed which is both RSM and throughput-optimal. A large-deviations

optimality result for an RSM policy is also stated.

2.6 Simulations – evaluating scheduler design objectives: extensive simulation results

are presented for an HDR-like downlink [32], to contrast various scheduling policies

and underlying design objectives.

2.7 Scheduling in multichannel systems: implementation of the proposed schedulers

for OFDMA-based multichannel systems is discussed.

2.2 System model

Consider the following continuous time model for scheduling n̄ users’ traffic

over a shared wireless channel. Each user n ∈ N ≡ {1, 2, ..., n̄} is assigned a queue

in which packets with independent and exponentially distributed sizes arrive as a

Poisson stream with rate λn packets/sec. At any time t, define the (random) vector

Q(t) ≡ (Qn(t), n ∈ N ) ∈ Zn̄+, where Qn(t) denotes the number of packets in the nth

queue at time t. The state of the users’ wireless channels at time t is modeled

by random M(t) which can take values in the finite set M ≡ {1, 2, · · · , m̄}. We

assume that for all t 6= t′, the channel states M(t) and M(t′) are independent and

have the same distribution as a random variable M . Associated with each channel

state m ∈ M is a vector r(m) = (rn(m), n ∈ N ), where rn(m) has the following

interpretation: when the channel is in state m and dedicated to the nth user, then

rn(m) is the instantaneous service rate in packets/sec available to the nth user. We

allow the channel to be split among users at any time instant according to a stochastic

vector σ(t) = (σn(t), n ∈ N ) – recall that a stochastic vector has non-negative

components that sum up to 1 – in which case the service rate available to the nth

user at time t will be σn(t)rn(M(t)). We follow the convention that capital letters,

e.g., Q(·) and M(·), denote a random variable, whereas small letters, e.g., q(·) and
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m(·), denote a particular realization. Moreover, we will make the natural distinction

between “increasing” and “strictly increasing.”

The problem of scheduling users for service is then to choose a vector σ(t) for

each time instant t, such that a given optimality criterion is met. A scheduling policy

is said to be static state-feedback if it chooses the vector σ(t) according to a fixed

rule based solely on the current system state (q(t),m(t)). More precisely, a static

state-feedback scheduling policy is defined as a function f which takes the system

state (q(t),m(t)) at any time t into a stochastic vector σ(t):

σ(t) = f(q(t),m(t)) . (2.1)

Let F denote the set of static state-feedback policies. Given the optimality cri-

terion described next, Poisson arrivals, exponentially distributed packet sizes, and

i.i.d. channel state vectors, there is no loss of generality in restricting our attention

to the policies in F .

2.2.1 Optimality criterion

Consider a system initiated at t = 0 in state Q(0) = q(0) which evolves under

scheduling policy f . The expected long-run average queue for the nth user is given

by,

qn(f) ≡ lim sup
t→∞

Efq(0)

[
1

t

∫ t

0

Qn(τ)dτ

]
, (2.2)

where Efq denotes expectation under f conditional on Q(0) = q. We define the delay-

optimal scheduling policy f ∗ as the one which minimizes the total weighted average

queue length, if it exists, for a given weight vector w = (wn, n ∈ N ) > 0, i.e.,

f ∗ ∈ arg min
f∈F

∑
n∈N

wnqn(f) . (2.3)

It follows from Little’s Law that if the process (Q(t), t ≥ 0) is stationary, this

optimality criterion minimizes the overall (weighted) average packet delay seen by

the n-users.
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2.2.2 Stabilizability and opportunistic capacity region

For n ∈ N , let en ∈ Rn̄
+ denote the nth standard basis vector in Rn̄

+. For each

m ∈M, let Cm ∈ Rn̄
+ denote the convex hull of origin and following n̄ points:

r1(m)e1, r2(m)e2, . . . , rn̄(m)en̄.

That is, Cm is the set of service rates that can be jointly offered to the n̄ users,

conditional on the channel being in state m. Define the opportunistic capacity region,

C, of a channel as the set of long-run average service rates that can be jointly offered to

the n̄ users under all possible scheduling policies. The opportunistic capacity region

associated with the distribution of M is given by the weighted Minkowski sum of

regions Cm, i.e.,

C ≡ P(M = 1)C1 ⊕ · · · ⊕ P(M = m̄)Cm̄ ,

=

{∑
m∈M

P(M = m)u(m) : u(m) ∈ Cm

}
.

(2.4)

The capacity region C is a compact, convex, coordinate-convex polyhedron in Rn̄
+

whose exact shape depends on the distribution of M [7]. Let Cv ≡ {v(1),v(2), ...,v(l̄)}

denote the set of maximal vertices of C, where l̄ denotes the number of vertices. For

any N ′ ⊆ N , define C(N ′) ≡ {u ∈ C : un = 0, ∀n /∈ N ′}, where C(N ′) is the channel

capacity region when the channel is shared only amongst the users in N ′.

The following (restatement of) Lemma 2.1 from [22] will be used in the sub-

sequent sections.

Lemma 2.1 Assume all queues are infinitely backlogged. For any weight vector

α = (αn, n ∈ N ) ≥ 0, let β(α) ∈ C denote the vector of average service rates seen

by the queues under the policy which serves user n∗ at time t if,

n∗ ∈ arg max
n∈N
{ αn rn(m(t)) } , (2.5)
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augmented with a tie breaking rule; then,

β(α) ∈ arg max
u∈C
〈α,u〉 . (2.6)

In words, α is an outer normal vector to the capacity region C at point β(α)

on the boundary.

As shown in [10], the system of n̄ queues is stabilizable if and only if there

exists a vector u = (un, n ∈ N ) ∈ C such that for all n ∈ N ,

λn < un . (2.7)

We assume that the system under consideration is stabilizable which implies that the

weighted sum defined in (2.3) is bounded under at least one stationary policy.

2.3 Characterization of delay-optimal policy

Consider the process (Q(t), t ≥ 0) initiated in state Q(0) = q(0) and evolving

under a policy f . Then conditional on the process being in state q, the nth queue is

offered an average service rate of µn(q) given by,

µn(q) = E [ rn(M)fn(q,M) ] , (2.8)

where the expectation is with respect to M . By definition of C in (2.4), the average

service rate vector µ(q) = (µn(q), n ∈ N ) lies1 in C. We assume that over an epoch,

each queue n ∈ N is served constantly at rate µn(q), thus the set of n queues see state-

dependent service rates chosen from C. A rigorous justification of this can be found

in [33] and relies on packet or file dynamics that are slow relative to channel variations,

where the latter can be averaged. A similar assumption is made in [22] to obtain

processor-sharing queueing model for a slotted time system where a packet (or file)

typically takes many slots to process while the channel can change from slot to slot.
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Note that strictly speaking, it is shown in [23] that analysis under the assumption of

infinitely fast channel variations leads to optimistic flow-level performance estimates.

Under these assumptions, the scheduling problem of finding the right function

f(q, ·) for each q such that the total (weighted) average queue length is minimized

(see (2.3)), is one of finding the right service rate vector µ(q) ∈ C for each q. Using

this, we re-define a scheduling policy as a function µ : Zn̄+ → C that takes a queue

state vector in Zn̄+ to a service rate vector in C, where µ relates to f through (2.8).

Under a fixed policy µ, the process (Q(t), t ≥ 0) forms a time-homogeneous

Markov chain on Zn̄+ with state-dependent transition rates. For convenience, we shall

uniformize Q(t). For any q ∈ Zn̄+, let Anq ≡ q + en and Dnq ≡ (q − en)+,

where q+ ≡ (y : yn = max{0, qn}). Let γ ≡ |λ| + maxu∈C |u|, where | · | denotes L1

norm. Let τk denote the (random) time of the kth transition of Q(t) and τ0 = 0.

Also, let Qk = limt↓τkQ(t). Then under policy µ, the process Q(t) can be viewed as

having a state-independent event rate of γ (i.e. (τk+1 − τk) ∼ exp(γ)) and transition

probabilities given by, for all n ∈ N ,

P ( Qk+1 = Anq|Qk = q ) =
λn
γ
,

P ( Qk+1 = Dnq|Qk = q ) =
µn(q)

γ
,

P ( Qk+1 = q|Qk = q ) = 1− |λ|+ |µ(q)|
γ

.

(2.9)

Define the cost under policy µ over [0, τk) when starting in state q as

Eµq
[ ∫ τk

0

〈w,Q(t)〉dt
]
,

which, ignoring a constant multiplier γ−1, can be shown to be equal to,

V µk (q) ≡ Eµq

[
k−1∑
l=0

〈w,Ql〉

]
. (2.10)

1The map f(q, ·)→ µ(q) ∈ C given by (2.8) is surjective.
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Likewise, the average cost under policy µ, when starting in state q, is given by,

Jµ(q) = lim sup
k→∞

1

k
V µk (q) . (2.11)

The optimality criterion given in (2.3) seeks to minimize this average cost. The

problem of finding the minimum average cost and an optimal policy fits the classical

dynamic programming framework (e.g. see [34]). Thus the minimum average cost

over all policies (denoted by J∗) is well defined, independent of the starting state,

and together with a relative cost function h : Zn̄+ → [0,∞), which is unique up to an

additive constant, satisfies Bellman’s equation, i.e., for all q ∈ Zn̄+,

J∗ = min
µ

{
〈w, q〉+ Eµ

[
h(Qk+1)− h(Qk) |Qk = q

]}
,

= min
u∈C

{
〈w, q〉+

∑
n∈N

λn
γ

(
h(Anq)− h(q)

)
+

un
γ

(
h(Dnq)− h(q)

)}
.

(2.12)

Moreover, let ∆h(q) ≡
(
h(q) − h(Dnq), n ∈ N

)
, and define µ∗ as a policy that

achieves the minimum in (2.12) for every q, i.e.,

µ∗(q) ∈ arg max
u∈C

〈u,∆h(q)〉, (2.13)

then µ∗ is an optimal policy achieving the minimum average cost J∗. The following

lemma characterizes optimal scheduling decisions in time (see (2.1)), and follows from

Lemma 2.1 by interpreting ∆h(q) and µ∗(q) in (2.13) as α and β respectively.

Lemma 2.2 The following policy achieves the minimum average cost (see (2.3) and

(2.11)): at any time when the system is in state (Q,M) = (q,m), choose a stochastic

vector σ that satisfies

σn∗ = 1 for some n∗ ∈ arg max
n∈N
{ ∆nh(q) rn(m) }, (2.14)

where h is a relative cost function satisfying Bellman’s equation (2.12).

23



Figure 2.1: Partitions under the optimal policy: (a) 2-user capacity region. Remaining
three figures show partitions corresponding to (b) arrival vector λ1 = (0.25, 0.25) (c)
arrival vector λ2 = (0.4, 0.4) (d) arrival vector λ3 = (0.4, 0.25).

Lemma 2.2 and (2.13) relate the tradeoff mentioned in Chapter 1 to the geometry of

vector field ∆h associated with the relative cost function. We explore this tradeoff in

the next section where we use relative value iteration (see, e.g., [35]) to numerically

compute h and J∗.
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2.4 Radial sum-rate monotonicity: comparing the optimal
policy with known heuristics

In this section, we investigate how delay optimal schedulers, as well as through-

put optimal policies such as MaxWeight and Exp rule, tradeoff current service rate

versus balancing unequal queues. Specifically, we consider how the service rate vector

chosen by each policy changes as the queues grow proportionally from a state q ∈ Zn̄+

to a state θq ∈ Zn̄+ for θ > 1. Note that q and θq lie on a radial line in Rn̄
+ that passes

through origin. For any q, let Nq ≡ {n ∈ N : qn 6= 0}, i.e., the set of non-empty

queues. We begin by defining an interesting property which we refer to as radial

sum-rate monotonicity, as well as a weaker version of this property.

Definition 2.1 Given a weight vector w > 0, we say a scheduling policy µ is radial

sum-rate monotone with respect to vector w if it satisfies two conditions. For any q

and scalar θ such that θq ∈ Zn̄+:

(a) the total weighted service rate, 〈w,µ(θq)〉, is an increasing function of θ,

(b) limθ→∞〈w,µ(θq)〉 = maxu(〈w,u〉 : u ∈ C(Nq)).

Moreover, we say that µ is weakly RSM if it satisfies (a).

Hence, as the queue grows proportionally, a radial sum-rate monotone (RSM)

policy allocates service rates in a manner that de-emphasizes queue-balancing in favor

of increasing the total weighted service rate (with respect to weight vector w). An-

other useful and natural property, called transition monotonicity [36], describes the

behavior of a policy along an axial line, i.e., as a queue grows from state q to a state

q + θen for any integer θ > 0 and n ∈ N .

Definition 2.2 A scheduling policy µ is transition monotone if for all n ∈ N and

q ∈ Zn̄+, we have2 µn(q) ≤ µn(q + en), and limθ→∞ µn (q + θen) = maxu∈C un.
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Hence, as a single queue grows while others remain unchanged, a transition

monotone policy allocates more service to the growing queue, and in the limit, only

the longest queue is scheduled (whenever it sees a non-zero channel). As a result,

asymptotically along an axial line, the total weighted service rate decreases.

Remark 2.1 Radial sum-rate and transition monotonicities both describe the above-

mentioned tradeoff as q is taken to ∞, however along different paths. Indeed, a policy

can be both radial sum-rate and transition monotone, in which case, the total weighted

service rate will increase along radial lines, however (asymptotically) decrease along

axial lines. Moreover, it is simple to show that a throughput-optimal policy must be

transition monotone except possibly on a compact subset of queue state space; see,

e.g., [37].

2.4.1 The tradeoff under delay-optimal schedulers

Since the capacity region C is a polyhedron, instead of searching over the entire

region for the maximum in (2.13), it suffices to only consider the vertices of C,

µ∗(q) ∈ arg max
u∈Cv

〈u,∆h(q)〉 . (2.15)

Hence, the optimal policy partitions the state space Zn̄+ into at most l̄ non-empty

decision regions S1,S2, ...,S l̄, each of which is associated with a distinct vertex, i.e.,

S l ≡ {q : µ∗(q) = v(l)}.

In each region S l, the scheduler tries to push the queue processQk along vector λ−v(l).

Fig. 2.1 shows the optimal policy’s partitioning of Zn̄+ for a two user system with

weight vector w = (1, 1) under three different arrival vectors. The first plot shows

the hypothetical 2-user capacity region and arrival vectors considered. The second

2By coordinate-convexity of C, it follows that for all n′ 6= n, we have µn′(q) ≥ µn′(Anq)
)
.
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plot depicts the partition for λ = (0.25, 0.25) packets/sec. The third plot exhibits

a more pronounced radial sum-rate monotonicity when arrival rate is increased to

λ = (0.4, 0.4) packets/sec, and the last plot is intended to exhibit the warping effect

on the partition resulting from asymmetric arrival rates λ = (0.4, 0.25) packets/sec.

The boundaries between decision region are referred to as the switching curves.

For the optimal policy to be RSM we must have that as θ →∞ such that

θq ∈ Zn̄+ and q > 0, the ratio
∆n′h(θq)

∆nh(θq)
monotonically converges to

wn′
wn

, and therefore,

lim
θ→∞

∆h(θq) ∝ (wn11{qn>0}, n ∈ N ) . (2.16)

Whereas, for the optimal policy to be weakly RSM, we only need that as θ increases,

the ratio
∆n′h(θq)

∆nh(θq)
monotonically gets closer to

wn′
wn

(but is not required to converge to

wn′
wn

).

By computing the relative cost function h and the optimal scheduling policy

for various arrival rate vectors and capacity regions, we observe that the optimal

policies exhibit weak radial sum-rate monotonicity. An intuitive explanation of why

the delay-optimal policies exhibit weak radial sum-rate monotonicity can be based on

the following two observations:

1. the cost incurred per unit time in state θq for θ > 1 is more than the cost

incurred per unit time in state q;

2. the state θq is farther from any axis than the state q.

Both observations suggest that in state θq, an optimal policy would indeed de-

emphasize queue balancing in favor of increasing the current total weighted service

rate.

To verify if the optimal policy is RSM, we need the asymptotics of the rela-

tive cost function h(θq) for large θ (see (2.16)), which we cannot compute through
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relative value iteration. One can however use deterministic fluid models to ob-

tain3 limθ→∞
h(θq)
θ2 , see [38, Theorem 10.0.5]. Such limits can be used to determine

the asymptotic slope of the switching curves on the state space of the fluid-scaled

queue process. For details, see Appendix A, where we solve the fluid models of some

non-trivial systems and show that, in general, the optimal policy may not be RSM.

However, for a symmetric system subject to sufficient load, RSM policies are fluid-

scale asymptotic optimal and therefore, RSM policies and optimal policies have similar

switching curves on the state space of the fluid-scaled queue process.

Weighted max-rate horn

Consider the decision regions S4 and S5, i.e., regions corresponding to those

vertices of C which have the largest projection along vector w. Under the optimal

policy, union of these decision regions is shaped like a French horn (referred to as

weighted max-rate horn). As we shall see next, under the Exp rule (with appropriately

chosen constants), the union of the same partitions is shaped like a cylinder with

gradually increasing diameter, whereas, under MaxWeight, all partitions are simply

cones.

2.4.2 The tradeoffs under MaxWeight and Exp Rule

The MaxWeight and the Exp rule policies can also be expressed in a similar

form as (2.13). These policies replace ∆h with a suitable vector field on Zn̄+ such that

the system is stable for any stabilizable λ. Hence the tradeoff under each policy can

be investigated by considering how the vector fields change direction as queues grow

proportionally.

MaxWeight policies [10] can be defined as follows: when the system is in state

3Function h exhibits quadratic growth [38, Theorem 9.0.5], therefore the limit is meaningful.
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Figure 2.2: Curves along which the direction is held constant by the vector field
(a) ξ(·) with bn = 1 ∀n ∈ N , α = 0.5, (b) x(·) with an = 0.1, bn = 1 ∀n ∈ N , c = 1,
η = 0.5

(Q,M) = (q,m), choose a stochastic vector σ that satisfies

σn∗ = 1 for some n∗ ∈ arg max
n∈N
{ ξn(q) rn(m) } ,

where ξn(q) is the nth component of ξ(q) ≡ (bnq
α
n , n ∈ N ), for any fixed positive bn’s

and α. Equivalently, when the queue state is q, the policy uses a service rate vector

µW (q) given by,

µW (q) ∈ arg max
u∈Cv

〈u, ξ(q)〉 . (2.17)

Similarly, the Exp rule [11] is given by,

µX(q) ∈ arg max
u∈Cv

〈u,x(q)〉 , (2.18)

where,

x(q) ≡

(
bn exp

(
anqn

c+ (n̄−1
∑

j∈N ajqj)
η

)
, n ∈ N

)
,

for any fixed positive an’s, bn’s, c, and 0 < η < 1.

While both the MaxWeight and the Exp rule are transition monotone, neither

is radially sum-rate monotone. For n = 2 and extending the domain of ξ and x to
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Rn̄
+, Fig. 2.2 shows the curves in R2

+ along which the vector fields ξ and x hold their

direction, i.e.,{
q :

ξ2(q)

ξ1(q)
= “constant”

}
and

{
q :

x2(q)

x1(q)
= “constant”

}
for various values of “constant”. Curves like these form the boundaries of the decision

regions, i.e., the switching curves. The vector field ξ is homogeneous, hence the service

rate allocation under MaxWeight is invariant as the queues grow from state q to state

θq. By contrast, in the case of the Exp rule (with b set to w), the total weighted

service rate 〈w,µX(θq)〉 decreases with θ and the emphasis shifts to queue-balancing,

so much so that as θ →∞, only the longest weighted queue(s) receives service.

2.5 Improved throughput-optimal policies

We begin this section with a sufficiency theorem regarding throughput-optimal

policies.

2.5.1 Sufficient conditions for throughput-optimality

Theorem 2.1 Let g : Rn̄
+ → Rn̄

+ be a gradient field ( i.e. g = ∇G for some G : Rn̄
+ → R).

Moreover, suppose g is differentiable on Rn̄
+ and for all n ∈ N , and satisfies,

lim
y→∞:yn=0

gn(y)

|g(y)|
= 0 , (2.19)

lim
y→∞

∂gn(y)/∂yn
|g(y)|

= 0 , (2.20)

and for some ε > 0, |g(y)| > ε for all y outside a compact subset of Rn̄
+, then any

policy µ̂ satisfying the following is throughput-optimal: for all q ∈ Zn̄+,

µ̂(q) ∈ arg max
u∈C
〈u, g(q)〉 . (2.21)

Remark 2.2 The condition that g be a gradient field and |g(y)| > ε outside a com-

pact set, is used to establish the existence of a potential (Lyapunov) function G such
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that ∇G = g. Condition (2.19) is needed to ensure that when queue state vector q

is large, the policy given by g is work-conserving, i.e., it does not allocate any service

rate to an empty queue at the cost of non-empty queues. Condition (2.20) is used to

ensure that the Hessian of G can be dominated by its gradient in the Taylor expansion

(see proof). See Appendix 2.5.1 for proof. See [37] for a similar result with a slightly

different system model. [37] improves upon the above result by not requiring g to be a

gradient field.

Examples Examples of functions that satisfy the conditions of Theorem 2.1 are

ξ(·) with its domain extended to Rn̄
+, g(y) = (exp(yαn), n ∈ N ) for α ∈ (0, 1), and

g(y) = (log (1 + log (1 + yn)) , n ∈ N ), indicating that a throughput-optimal policy

can exhibit anywhere from sub-logarithmical to almost exponential sensitivity to

changes in queue lengths. Another interesting example is,

g(y) = (yα1
n (yn + c)α2 , n ∈ N ) ,

for α1 ≥ α2 > 0 and c ≥ 0, which behave as MaxWeight with exponent α1 near the

origin in Zn̄+ and as MaxWeight with exponent α2 radially far from the origin.

Proof of Theorem 2.1

We will use Foster’s criterion to show that (Qk, k ≥ 0) is positive recurrent for

any stabilizable λ (see (2.7)). Specifically, take a (Lyapunov) function G : Rn̄
+ → R+

such that ∇G = g and G(0) = 0. Then,

Eµ̂[ G( Qk+1 )−G( Qk ) | Qk = q ]

= γ−1
∑
n∈N

λn ( G(Anq)−G(q) ) + γ−1
∑
n∈Nq

µ̂n(q) ( G(Dnq)−G(q) ) ,

(2.22)
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where, as before, Nq = {n : qn 6= 0}. Since g is differentiable, let ġn(·) = ∂gn(·)/∂xn

for all n ∈ N . Then G has the following Taylor expansion for any q ∈ Zn̄+,

G(Anq)−G(q) = gn(q) +
1

2
ġn(q + αnen) ∀n ∈ N ,

G(Dnq)−G(q) = −gn(q) +
1

2
ġn(q − βnen) ∀n ∈ Nq,

for some αn ∈ [0, 1] and βn ∈ [0, 1] that depend on q. One can rewrite (2.22) as

follows,

Eµ̂[ G( Qk+1 )−G( Qk ) | Qk = q ]

= γ−1
(∑
n∈N

λngn(q) +
1

2

∑
n∈N

λnġn(q + αnen) −∑
n∈Nq

µ̂n(q)gn(q) +
1

2

∑
n∈Nq

µ̂n(q)ġn(q − βnen)
)
.

Adding and subtracting γ−1
∑

n∈N\Nq
µ̂n(q)gn(q) from the left side of above yields,

Eµ̂[ G( Qk+1 )−G( Qk ) | Qk = q ]

= γ−1〈λ− µ̂(q), g(q)〉 + γ−1
∑

n∈N\Nq

µ̂n(q)gn(q) +

γ−1

2

∑
n∈N

λnġn(q + αnen) +
γ−1

2

∑
n∈Nq

µ̂n(q)ġn(q − βnen)

≤ γ−1〈λ− µ̂(q), g(q)〉 + γ−1
∑

n∈N\Nq

µ̂n(q)gn(q) +

max
{

max
n
{ġn(q + αnen) : n ∈ N} ,

max
n
{ġn(q − βnen) : n ∈ Nq}

}
. (2.23)

Let u ∈ C be a service rate vector that satisfies λ < u. Let ε1 > 0 be given by

ε1 = γ−1 minn∈N {(un − λn)}. Moreover, by Lemma 2.1, for all q ∈ Zn̄+,

〈λ− µ̂(q), g(q)〉 ≤ 〈λ− u, g(q)〉 ≤ −ε1γ|g(q)|

Substituting in (2.23),

Eµ̂[ G( Qk+1 )−G( Qk ) | Qk = q ]
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Figure 2.3: Curves along which the direction is held constant by gL(·) with
an = 1, bn = 1 ∀n ∈ N , c = 1.

≤ − ε1|g(q)| + γ−1
∑

n∈N\Iq

µ̂n(q)gn(q) +

max
{

max
n
{ġn(q + αnen) : n ∈ N} ,

max
n
{ġn(q − βnen) : n ∈ Nq}

}
. (2.24)

By using (2.19), when q is suitably large, gn(q) for each n ∈ N \ Nq in the second

term of the above summation can be bounded above by ε1
4
|g(q)|. Similarly, using

(2.20), the third term of the above summation can be bounded above by ε1
4
|g(q)|.

Hence, for q large enough, (2.24) becomes,

Eµ̂[ G( Qk+1 )−G( Qk ) | Qk = q ] ≤ − ε1
2
|g(q)|

Since 0 < ε < |g(q)| for all large q, the proof is complete.

2.5.2 The Log Rule

In this section we consider a class of schedulers satisfying Theorem 2.1, which

we refer to as the Log rule.

Definition 2.3 Arbitrarily fix a = (an, n ∈ N ) > 0, b = (bn, n ∈ N ) > 0, and

c ≥ 1. For all y ∈ Rn̄
+, let gL(y) = (gLn (y), n ∈ N ), where gLn (y) = bn log(c+ anyn).
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When the system is in state (Q,M) = (q,m) (see (2.1)), choose a stochastic vector

σ that satisfies,

σn∗ = 1 for some n∗ ∈ arg max
n∈N
{ gLn (q) rn(m) } . (2.25)

Theorem 2.2 The Log rule is radial sum-rate monotone w.r.t. weight vector b (with

c = 1) and throughput-optimal.

Proof First the throughput optimality: let µL(q) = (µLn(q), n ∈ N ) denote the

vector of service rates (under the Log-Rule) seen by the queues when Q(t) = q, i.e.,

µLn(q) = E
[
rn(M)fLn (q,M)

]
, (2.26)

where fL(q,m) denotes the stochastic vector chosen by the Log-Rule (i.e. satisfying

(2.25)) in state (q,m). By (2.25) and Lemma 2.1, we have

〈
gL(q),µL(q)

〉
= max

u∈C

〈
gL(q),u

〉
.

Noting that the functions gL and µL satisfy the conditions of Theorem 2.1, the

throughput-optimality of Log rule follows. To verify the radial sum-rate monotonicity

of the Log rule we note that for any q ∈ Zn̄+ such that 0 < anqn < an′qn′ , we have

gLn (θq)

gL
n′ (θq)

↑ bn
bn′

as θ →∞.

With c = 1 and extending the domain of gL to Rn̄
+, we note that as θ → 0, we

have gLn (θq)/gLn′(θq) → anqn/an′qn′ , i.e., close to origin in Zn̄+, the Log rule behaves

similar to the MaxWeight with α = 1, whereas, radially far away from origin (as

θ →∞), gL(θq) becomes parallel to the vector (bn11{qn>0}, n ∈ N ) and thus the Log

rule ignores queue-balancing in favor of maximizing the total weighted service rate,〈
b,µL(θq)

〉
.

Fig. 2.3 shows the curves along which the direction of the gradient field gL

is constant; curves like these form the switching curves and define partition of the
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queue state-space into decision regions. A good choice for wn (hence bn) is 1/E[Rn],

as suggested for the Exp rule in [39]. The line {q ∈ Zn̄+ : anqn = an′qn′ ∀n, n′ ∈ N}

defines the axis of the weighted max-rate horn, whereas, the magnitude of the vector

a controls the width of the horn. Increasing the magnitude of a widens the horn and

reduces the emphasis of Log rule on balancing user queues (this is opposite to the

role this parameter plays in the Exp rule). By choosing c > 1, the Log rule can be

made to behave similar to the Exp rule, instead of MaxWeight with α = 1, near the

origin in Zn̄+.

Asymptotic probability of sum-queue overflow under the Log rule

The proof of Log rule’s asymptotic optimality is given in the next chapter.

By leveraging the refined sample path large deviations principle, recently introduced

in [19] to study non-homogenous schedulers such as the Exp and the Log rules, we

are able to show that for a n̄ = 2 user system, a Log-rule-like radial sum-rate mono-

tone policy (w.r.t. a given weight vector (w1, w2)) indeed minimizes the asymptotic

probability of weighted-sum-queue overflow, i.e.,

lim sup
k→∞

1

k
logP

(∑
n∈N

wnQn(0) > k

)
,

where P(·) denotes the stationary distribution of the Markov chain Q under a stable

scheduling policy.

The most-likely mode of queue overflow under an RSM policy like the Log rule

is in general quite different from the mode under the Exp rule. Recall that the latter

minimizes the asymptotic probability of max-queue overflow [19], whereas the former

minimizes the asymptotic probability of (weighted) sum-queue overflow.

This leads to basic questions as to which design objective is appropriate in

designing opportunistic schedulers, and whether the asymptotic results are sufficiently
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accurate to dictate which class of scheduler should be used. We consider this in the

next section.

2.6 Evaluating opportunistic scheduler design objectives –
simulations

In this section we discuss a simulation-based evaluation of opportunistic sched-

ulers from various perspectives:

1. performance, including mean packet delays and 99th percentile delays of indi-

vidual users as well the overall system;

2. sensitivity to both scheduler parameters and channel characteristics;

3. and graceful degradation, in terms of the fraction of users that meet QoS ob-

jectives under overloads.

Note we consider a system as overloaded if it can no longer meet users’ QoS require-

ments, this might be due to a change in the channel characteristics, due to mobility

etc. These perspectives are clearly interrelated yet for clarity we discuss them sepa-

rately.

2.6.1 Simulation model and operational scenarios

We choose an HDR-like wireless downlink [32] to compare various scheduling

rules, namely Log rule, MaxWeight, and Exp rule. Performance comparisons for an

HDR downlink under Proportional Fair scheduling, MaxWeight, and Exp rule were

presented in [39], and showed the Exp rule to be superior to the others. Note that the

HDR downlink model differs from the system model presented in Section 2.2, however,

we choose this as our simulation model to demonstrate the practical significance of our

proposed scheduling rule and allow comparison with other simulations and theoretical
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User i 1 2 3 4 5 6
E[Rn] kbps 572.8 392.1 304.6 250.1 215.1 187.9

User i 7 8 9 10 11 12
E[Rn] kbps 167.6 151.3 138.0 127.2 117.1 109.6

Table 2.1: Mean data rate supported by wireless channel of each user

Figure 2.4: Simulation-based performance comparisons for three opportunistic
scheduling policies, Log Rule, Exp rule and Max Weight: (a) mean delay and (b)
99th %−tile delay for each user and overall system, under low, medium, and high
symmetric loads; (c) mean and 99th %−tile delay for each user and overall system
under low symmetric traffic but when User 7 is moved to the cell edge; and (d) mean
and 99th %−tile delay for users and overall system for the asymmetric traffic . Each
cross-tick on vertical line marks a user’s performance.

work in the literature. Thus, instead of i.i.d. channel, continuous time scheduling,

and Poisson arrivals with exponentially distributed packets sizes, here we assume that

channels are correlated over time, scheduling decisions are made once in each time

slot of duration 1.67 ms, and each user’s packets are 1Kb and arrive as i.i.d. Bernoulli

processes.

We consider n̄ = 12 heterogenous users connected to a single access point.

The locations of the n̄ users are taken to be uniformly distributed in a circular cell.

The wireless link between the access point and each user is taken as an independent

37



LOG EXP MW

bn = 1
E[Rn]

bn = 1
E[Rn]

bn = 1
E[Rn]

an = 10 an = 0.05, α = 1
c = 10 c = 1, η = 0.5

Table 2.2: Parameters used for each scheduling policy

Rayleigh fading channel with a Doppler frequency of 18 Hz. Specifically, in any time

slot t ∈ Z, the channel state (rate supported by the channel) of nth user is given by,

Rn(t) ≡ BW× log2 (1 + SINRn(t)) bits/sec

and SINR (signal-to-interference-plus-noise ratio) is assumed to hold its value over

the duration of the time slot. During each time slot, data is transmitted to a single

user who is selected according to the scheduling policy. If user n is selected in time

slot t, then (at most) 1.67ms× Rn(t) bits are transmitted from its queue. Table 2.1

gives the mean data rate E[Rn] in bits/sec that the wireless channel of each user can

support.

Let Cno ∈ Rn̄
+ denote the simplex obtained as the convex hull of origin and the

following n̄ points,

E[R1]e1, . . . ,E[Rn̄]en̄.

That is, Cno ⊂ C is the capacity region achievable by non-opportunistic (but possibly

channel-aware) schedulers. Let r∗ ≡ (r∗n, n ∈ N ) ∈ Cno be the maximal point of Cno

that satisfies r∗1 = r∗2 = · · · = r∗n̄, then we have [32]

r∗n =

(
n̄∑
j=1

1

E[Rj]

)−1

bits/sec, n ∈ N .

We present simulation results for five operational scenarios. In the first three

scenarios users see heterogenous channels but have homogenous traffic with low λ(s,l),
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medium λ(s,m), or high λ(s,h) packet arrival rates given by,

λ(s,m) = 2.3r∗ × 1

1024 bits/packet
packets/sec,

λ(s,l) = 0.98λ(s,m),

λ(s,h) = 1.02λ(s,m).

In words, for the medium case a user’s arrival rate is 2.3 times higher than that

is stabilizable by a non-opportunistic scheduler; the low and the high arrival rates

are respectively 2% lower and higher than the medium. Fig. 2.4-(a) and (b) show

performance results under these three homogenous load scenarios – see caption for

detailed explanation. In the fourth scenario the arrival rate is kept low but User 7

(see Table 2.1) is moved to the edge of cell, which increases the system load. Fig. 2.4-

(c) exhibits the results for this case. For the fifth scenario, users have heterogenous

arrival rates given by,

λn = 2.35× E[Rn]

n
× 1

1024
packets/sec

i.e., arrival rate vector λ is proportional to the mean channel rate vector E[R] and

2.35 times higher than that is stabilizable by a non-opportunistic scheduler. Fig.

2.4-(d) exhibits the performance results for this case.

2.6.2 Discussion of results and insights

Performance comparison As seen in Fig. 2.4-(a) and (b) under low traffic,

Log and Exp rules are comparable and outperform MaxWeight. Although users see

heterogeneous channels the performance they see is very similar verifying we have

a good choice for the scheduling policy parameters, see Table 2.2. However, as the

traffic rate increases there are clear trends: the users’ and overall means are better

under the Log rule (up to 20% reduction), while the variability or spread of the

99th percentile delay across users is lower under the Exp rule (the 99th percentile
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delay spread is halved). Note, however, that all but two users have 5-70% better

99th percentile delay under the Log rule versus the Exp rule. The situation is even

more favorable to the Log rule at higher loads, where all users experience 20-80%

lower mean and 99th percentile delays versus the Exp rule (which still maintains a

lower delay spread than the Log rule). Clearly for heterogenous channels, the Exp

Rule’s strong bias towards balancing queues is excessively compromising the realized

throughput, and eventually the mean delays and tails for almost all users. Although

asymptotically Exp rule should be optimal, the pre-exponent must also be playing a

role in determining the systems performance.

Sensitivity Another way to view this is that the actual performance (not

the theoretical asymptotic tail) achieved by the Exp rule is more sensitive to the

absolute values of a. Fig. 2.4-(a) and (b) exhibit the degeneration in the relative

performance of Exp vs Log rule for a set of fixed parameters as the load is scaled

up. The RSM property of the Log rule naturally calibrates the scheduler to increased

load. Similarly, comparing the low and the medium results in Fig. 2.4-(a) and (b) to

those in Fig. 2.4-(c) and Fig. 2.4-(d), we see the performance sensitivity to changes

in the channel or load characteristics. In both cases for most users the mean and 99th

percentile delays are better under the Log rule and in the case of heterogenous loads,

i.e. Fig. 2.4-(d), the delay spreads are also improved. So unless parameters can be

carefully tuned to possibly changing loads and unpredictable channel capacities, the

Log rule appears to be a more robust scheduling policy. Intuitively, this is what one

would expect from optimizing for the overall average versus worst case asymptotic

tail.

Graceful degradation Suppose the user flows correspond to buffered stream-

ing audio sessions with a QoS requirement of 99th percentile delay below 1 sec, see

e.g., [39]. Under medium traffic (Fig. 2.4-b), all users comfortably meet the QoS

requirement for both the Log and the Exp rule. However, if User 7 moves to the cell
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edge (Fig. 2.4-c), then under the Log rule, 9 out of 12 users versus 6 out of 12 for Exp

rule meet the QoS requirement. If instead, the traffic loads associated with the users

were to change, then as shown in Fig. 2.4-(d) all users meet the QoS requirement un-

der the Log rule versus only 6 out of 12 under the Exp rule. Unless system resource is

provisioned extremely conservatively, i.e. for worst case, we can expect such scenarios

to arise, and this work suggests Log rule would provide a more graceful degradation

of service.

2.7 Scheduling in Multichannel Systems

This section focuses on implementation of the Log rule for scheduling and re-

source allocation in OFDMA-based multichannel systems, e.g., WiMax, LTE. We be-

gin by appropriately modifying the single-channel HDR-like system model used in the

previous section to now capture an OFDMA-based multichannel system where power

and bandwidth can be shared across multiple users over a scheduling/transmission

time interval.

So far, the implied meaning of a channel state m ∈M has been “a collection

of quantized SNRs measured and reported by each user.” Since we were considering

a TDMA system where the scheduled user was allocated all the resources (power

and bandwidth), we implicitly converted the SNR reported by the nth user into the

supported transmission rate rn(m). Therefore, the region Cm – available service rate

region conditional on channel being in state m – was given by a simplex defined by

rates (rn(m), n ∈ N ). All scheduling policies considered so far (see (2.15), (2.17),

(2.18), and (2.25)) picked a vertex of the simplex Cm, or equivalently, scheduled a

single user.

However, in wideband/multichannel systems it is undesirable (and oftentimes

even infeasible) to allocate all the resources to one user over a scheduling time in-
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terval [40]. The main reasons are as follows and will be addressed by our proposed

implementation:

• allocating all resources to one user in the presence of typically hundreds of active

users will result in bursty service with long delays between successive allocations

to a user, and

• the service rate region available under all possible power and bandwidth alloca-

tions to multiple users over a scheduling time interval, is larger than the simplex

Cm defined above.

2.7.1 Modifications to the system model

As in the previous section, we consider a time slotted system. We can capture

a multichannel system by appropriately redefining the meaning of channel state m,

and associating with it a suitable service region Cm:

• The channel state is now defined as the collection of quantized SNRs reported by

each user and measured at a reference power level for each resource block4 (RB)

group (collection of a few consecutive resource blocks). We continue to denote

by M the set of all possible channel states.

• For each m ∈ M, the service region Cm is the convex hull of the service rates

(in bits/time-slot) that can be jointly offered to the n̄ users under all feasible

resource (power and bandwidth) allocations, conditional on the channel being

in state m.

Feasibility is determined by the system specifications and computational complexity

afforded, e.g., limits on the minimum and maximum bandwidth that can be allocated

to a user, and limits on power per user and per RB; see, e.g., [41] for a formal
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description of the rate region Cm in terms of various feasibility constraints. Also we

let q denote the queue length vector in number of bits rather than packets.

2.7.2 Scheduling and resource allocation polices

The general channel-aware (but queue-oblivious) rate-adaptive scheduling and

resource allocation problem for an OFDMA system is typically defined as follows

(see [40,41] and references therein): when the channel is in state m, allocate resources

to users so that the long-run average offered service rate conditional on the channel

being in state m solves the following program,

maximize U(u) ,

subject to u ∈ Cm ,
(2.27)

where U : Rn̄
+ → R is a given utility function satisfying concavity, smoothness, and

separability properties. An optimal rate u∗ (i.e., maximizer of (2.27)) corresponds

to an allocation of RBs and transmit power across users. However, much like the

single-channel case, such a queue-oblivious scheduler will not be throughput-optimal.

Using a convex program formulation like that in (2.27), we shall define the

Log rule for multichannel systems as follows.

Definition 2.4 When the system is in state (q,m), allocate resources so that the

long-run average offered service rate conditional on the system being in state (q,m)

is given by the solution to the following program,

minimize hL(q − u) ,

subject to u ∈ Cm ,
(2.28)

where hL : Rn̄
+ → R is given by,

hL(y) ≡
∑
n∈N

bn

((
c

an
+ yn

)
log(c+ anyn)− yn

)
, (2.29)

4Resource blocks are the smallest chunks of bandwidth that can be allocated to a user over a
scheduling time interval.
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and the constants (an, n ∈ N ), (bn, n ∈ N ), and c are as in the definition of the

single-channel Log rule (see Definition 2.3).

The function hL is convex increasing and can be viewed as an approximation for

the relative cost function on the queue state space, satisfying the Bellman’s equation.

Also, note that

∇hL(q − 0) ≡
(
∂hL(q − u)

∂un
, n ∈ N

)∣∣∣∣
u=0

,

= −gL(q).

Therefore, for a single-channel system where Cm was a small simplex, the single-

channel Log rule (see (2.25)) can be viewed as linearizing the convex program (2.28)

using the first-order Taylor expansion of hL(q − u) at u = 0, i.e.,

maximize
〈
gL(q),u

〉
,

subject to u ∈ Cm ,

Remark 2.3 The linearized version stated above may not be suitable in a multichan-

nel system because, if the region Cm is a simplex (or close to a simplex), the linearized

program reduces to picking a vertex and thus a single user (or allocating most of the

resources to a single user) even if all weighted queues anqn are equal. As mentioned

earlier, this is undesirable in a multichannel system. The region Cm in a multichannel

system can still be a simplex if, for instance, the users only report one effective SNR

over the entire bandwidth ( e.g. wideband CQI in LTE [2]) and the power allocated

per resource block is fixed ( i.e., the mapping from the reported CQI to the chosen

modulation and coding scheme is fixed). Moreover, the analysis in [42] shows that for

certain symmetric on-off multichannel systems, any resource allocation policy given

by a linear program will have a zero large-deviation rate function associated with the

max-queue (asymptotically in the number of users and channels, and in the small

buffer regime.)
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Fast computation algorithms to solve program (2.27) (or (2.28)) for a general

concave increasing separable utility function U(·) are given in [40] and [41] (and refer-

ences therein). The complexity of the algorithm depends on the feasibility constraints

that define the region Cm. For example, assuming that service rate at any SNR is

equal to the Shannon’s capacity (with a possible gap), a total power constraint, and

that each resource block group can be shared by an arbitrary number of users, the al-

gorithm obtained in [40] has a complexity of O(n̄b̄) per iteration where b̄ is the number

of resource block groups over which the users report their measured SNR/CQI. It is

reported that typically about 25 iterations are needed for the algorithm to converge.

For a similar system where users only report a single effective SNR measured across

the entire bandwidth (however the power and/or bandwidth can still be shared by

multiple users), the complexity of the above algorithm reduces to O(n̄) per iteration,

which is the complexity of single-channel scheduling algorithms (see (2.17), (2.18),

(2.25)) which pick only a single user.

See [43] for an implementation of a complete queue-and-channel-aware sched-

uler for an LTE downlink, and a performance comparison through simulation of the

Log and Exp rules. The simulation results presented in [43] for a multichannel system

agree with ones presented in Section 2.6 for a single-channel system, and reinforce

the observations made in Section 2.6.2.

2.8 Conclusion

We have made the case not only for a new class of opportunistic scheduling

policies, but also for new metrics to design and evaluate such schedulers. Our con-

clusion is simple, and in retrospect intuitive, a scheduler ‘optimized’ for the overall

system performance is likely to be more robust to changes in the traffic and channel

statistics than the one optimized for the worst case. The numerical results show that
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mean delay optimal schedulers are weakly RSM, and in some cases, even RSM. The

proposed Log rule policy is RSM and although not necessarily mean delay-optimal

for a given scenario, exhibits the promised robustness vs the Exp and MaxWeight

rules. The set of presented simulations (and others given in [43]) lend support to the

practical benefits of this new class of policies.

Further asymptotic results, briefly discussed in this chapter and presented

in detail in the next, show that an RSM policy minimizes the tail of sum-queue

distribution.
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Chapter 3

Large deviations sum-queue optimality of a radial

sum-rate monotone opportunistic scheduler

3.1 Overview, main contributions, and organization

A centralized wireless system is considered that is serving a fixed set of users

with time varying channel capacities. An opportunistic scheduling rule in this context

selects a user (or users) to serve based on the current channel state and user queues.

Unless the user traffic is symmetric and/or the underlying capacity region a polyma-

troid, little is known concerning how performance optimal schedulers should tradeoff

maximizing current service rate (being opportunistic) versus balancing unequal queues

(enhancing user-diversity to enable future high service rate opportunities). By con-

trast with currently proposed opportunistic schedulers, e.g., MaxWeight and Exp

Rule, a radial sum-rate monotonic (RSM) scheduler de-emphasizes queue-balancing

in favor of greedily maximizing the system service rate as the queue-lengths are scaled

up linearly. In this chapter, it is shown that an RSM opportunistic scheduler, p-Log

Rule, is not only throughput-optimal, but also maximizes the asymptotic exponential

decay rate of the sum-queue distribution for a two-queue system. The result com-

plements existing optimality results for opportunistic scheduling and point to RSM

schedulers as a good design choice given the need for robustness in wireless systems

with both heterogeneity and high degree of uncertainty.
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Relation to other chapter

As a corollary of the Lemmas 3.1–3.3 of this chapter, we show in Appendix A

that under sufficient load, RSM policies are fluid-scale asymptotic optimal (FSAO).

Contributions

In the introductory chapter, we pointed out that Exp rule minimizes the

asymptotic probability of max-queue overflow (APMO). However, unlike LCQ and

LQHPR policies in their respective setting, in the presence of a tradeoff between ser-

vice rate maximization and queue balancing, the asymptotic optimality of Exp rule

does not translate to minimizing the asymptotic probability of sum-queue overflow

(APSO) or the mean delay. In order to minimize APMO, the desired1 mode of over-

flow is one where all queues (more precisely, the set of overflowing queues which then

exclusively share the server) grow at the same rate and overflow at the same time [19].

This constrains the system throughput, while, of course, keeping the queue lengths

equal across users.

By contrast, we will show that in order to minimize APSO, the desired mode

of overflow is one where the total service rate (system throughput in packet/sec) is

the highest possible while queues may build up at different rates. Using this, we give

a tight lower bound on APSO under any scheduler.

Next we show that a radial sum-rate monotone scheduler, called the pseudo-

Log rule (p-Log), minimizes APSO by achieving the lower bound mentioned above.

Although our focus is on overflows of the sum-queue instead of overflows of the max-

queue as in [19], the general technique of proof in [19] lends itself well to our problem

and we rely heavily on the results developed therein. Other desirable features of radial

1By the “desired” mode of max-queue overflow we mean the mode which gives the lower bound
on the asymptotic probability of max-queue overflow under any scheduler, as given in [19]; the likely
mode of max-queue overflow under the Exp rule matches the desired mode.
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sum-rate monotone schedulers have been explained in Chapter 2, which include,

i. reducing mean delay,

ii. graceful degradation of service in terms of fraction of users that can meet their

Quality-of-Service requirements during transient overloads,

iii. robustness to uncertainty in traffic and channel statistics.

Organization

Rest of the chapter is organized as follows. The system model is described

in Section 3.2. Queue-and-channel aware schedulers of interest, namely, MaxWeight,

Exp rule, and Log rule, and the property of radial sum-rate monotonicity are reviewed

in Section 3.3, followed by the introduction of pseudo-Log scheduling rule in Section

3.4. The ‘main result’ is summarized in Section 3.5. Some preliminary discussion

and relevant large deviation principles follow in Section 3.6. The proofs for the lower

and the upper bounds stated in the main result are given in Section 3.7 and 3.8

respectively. After defining local fluid sample paths and developing essential results

(summarized in Table 3.1) in Section 3.9, the optimality of the p-Log rule, i.e., the

last part of main result is proved in Section 3.10. Immediate extensions of the main

result to some other interesting system models are presented in the concluding Section

3.11.

3.2 System model

We consider the problem of dynamically allocating a time-varying server to

two queues. Each Queue i ∈ I = {1, 2} is fed by an independent arrival process

(Ai(t), t = 0, 1, · · · ) that is i.i.d. over t and where Ai(t) ∈ Z+ denotes the number of

packets arriving in time slot [t, t+ 1). We assume that the arrivals are bounded, i.e.,
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Ai(·) ≤ C for some finite C > 0. Let A(t) = (Ai(t), i ∈ I), and vector λ = E[A(0)]

denote the mean arrivals to the queues. We use bold face, e.g., (A(t), t = 0, 1, · · · ),

to denote the random process and plain font, e.g., (A(t), t = 0, 1, . . .), to denote a

realization of the process.

A server with randomly varying service rates is available to the two queues

and modeled as follows. The server has a time-varying state that is modeled by an

i.i.d. random process (m(t), t = 0, 1, · · · ), where m(t) ∈ M = {1, 2, · · · ,M} for

some finite M > 0 denotes the state of the server over [t, t + 1), and is drawn from

distribution π = (π1, · · · , πM) > 0. Associated with each server state m ∈ M is a

vector µm ∈ Z2
+. When in state m over a time slot, the server can either serve at

most µm1 packets from Queue 1, or at most µm2 packets from Queue 2. The scheduling

problem is thus to allocate the server to one of the queues for each time slot such

that a given optimality criterion is met. This will be formally described later.

At any integer time t, Q(t) =
(
Qi(t), i ∈ I

)
∈ Z2

+ is a random vector, where

Qi(t) denotes the number of packets in the ith queue at the end of time slot [t− 1, t).

Let St denote a system sample path up to time t, i.e.,

St ≡
((
m(τ), Q(τ), A(τ − 1)

)
, τ ≤ t

)
,

and St denote the space of all feasible realizations St. Let i∗t : St → I denote the

queue scheduled to receive service during time slot [t, t+ 1), i.e., we assume that the

system sample path St is available for making the scheduling decision for time slot

[t, t + 1). The evolution of the queue process under the scheduling decision i∗t (St) is

given by,

Qi(t+ 1) =
(
Qi(t)− µm(t)

i 11{i∗t (St)=i}
)+

+Ai(t) .

The sequence of functions (i∗t (·), t = 0, 1, . . .) is called a scheduler or scheduling

policy. It is easy to see that under a static state-feedback scheduler, i.e., one where
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i∗t (St) = i∗
(
Q(t),m(t)

)
, the process (Q(t), t = 0, 1, . . .) forms a discrete time Markov

chain on Z2
+.

In the sequel, we will extend the domain of all discrete time processes and

functions to continuous time: a function originally defined on integer times has the

same value at any real t that it takes at btc. All such processes and functions lie in

the space of real-valued right continuous functions with left limits, denoted by D. We

assume that D is endowed with the topology of uniform convergence over compact

sets (u.o.c), and the k-times product space Dk with the product topology. Lastly,

let (Ω,F ,P) be a probability space that is large enough to define all the random

processes in this chapter.

For a given weight vector b = (b1, b2) > 0, we are interested in finding a sched-

uler which, informally speaking, minimizes the tail of the distribution of weighted

sum-queue
∑

i∈I biQi(·). We will show that under a static state-feedback scheduler,

namely the p-Log rule described in Section 3.4, the asymptotic probability of weighted

sum-queue overflow in the steady state, i.e.,

lim sup
n→∞

1

n
logP

(∑
i∈I

biQi(0) ≥ n

)
,

is minimized (see Theorem 3.1 for a formal statement.) The p-Log rule depends

only on weight vector b and does not require any knowledge of arrival or server-state

distributions.

Capacity region

For each server state m ∈M, let V m ∈ R2
+ denote the convex hull of vertices

(0, 0), (0, µm2 ), and (µm1 , 0). Then, conditional on the server being in state m, the

average service jointly offered to the two queues under any scheduling rule (such that

the average exists) lies in the triangle V m. Define the capacity region Vπ as the set of

average service vectors offered to the two queues under all possible scheduling rules,
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then Vπ is a convex polyhedron given by the weighted Minkowski sum of regions V m,

i.e.,

Vπ = π1V
1 ⊕ · · · ⊕ πMV M ,

=

{∑
m∈M

πmv(m) : v(m) ∈ V m, m ∈M

}
. (3.1)

See Fig. 3.1-a for a graphical illustration of the capacity region for a server with

M = 6 states.

Let {r1, · · · , rM ′} for some M ′ ≤ M be the set of strictly positive and finite

slopes of the outer normal vectors to the facets of capacity region Vπ. The slopes are

indexed such that 0 < r1 < r2 < . . . < rM ′ < ∞. Also, let r0 = 0 and rM ′+1 = ∞.

For example, see Fig. 3.1-a for a depiction of a capacity region with M ′ = 5 facets

with outer normal slopes in (0,∞). Finally, let V̂π = {v̂1, · · · , v̂M ′+1} denote the set

of maximal vertices of the capacity region Vπ. The vertices in set V̂π are indexed such

that v̂1
1 > v̂2

1 > . . . > v̂M
′+1

1 , i.e., the vertex v̂m lies at the intersection of the facets

with outer normal slopes rm−1 and rm; e.g., see vertex v̂2 in Fig. 3.1-a.

We assume that there exists a v ∈ Vπ such that λ < v, which is a sufficient

condition for stabilizability of the queues [10]. If the above condition is met, then

there exists at least one static state feedback scheduler under which the Markov chain

(Q(t), t = 0, 1, . . .) is ergodic.

Remark 3.1 Since we assumed that the server can be allocated to at most one queue

per time slot, the region V m is obtained by taking the convex hull of service vectors

in the set {(0, 0), (µm1 , 0), (0, µm2 )}. However, we can relax this assumption and allow

the server to be shared between the two queues during a time slot. That is, we can

associate with each server state m a set of km service vectors

{(
µm1 (1), µm2 (1)

)
, · · · ,

(
µm1 (km), µm2 (km)

)}
,
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and allow the server to operate at any one of these service vectors. In this more

general case, each region V m will be an arbitrary convex polyhedron obtained by taking

the convex hull of all feasible service vectors associated with server state m. For

example, V m can be information theoretic polymatroids as in [13]. The optimality

results presented in this chapter will still hold with such a relaxation; see Section 3.11

for some details.

3.3 Throughput-optimal schedulers and radial sum-rate mono-
tonicity

The throughput-optimal schedulers MaxWeight, Exp rule, and Log rule, in-

troduced in the previous chapter, are all static state-feedback. Let the vector fields

hmw(·), hexp(·) and hlog(·) on R2
+ be given as follows: for all x ∈ R2

+,

hmw(x) = (bix
α
i , i ∈ I) ,

hexp(x) =

(
bi exp

(
aixi

c+ (0.5(a1x1 + a2x2))η

)
, i ∈ I

)
,

hlog(x) = (bi log (1 + aixi) , i ∈ I) ,

for any fixed positive bi’s, ai’s, α, c, and 0 < η < 1. Then, when the system is in

state (Q(t),m(t)) = (Q,m) ∈ Z2
+ ×M, the MaxWeight scheduler serves a queue i∗mw

given by,

i∗mw(Q,m) ∈ arg max
i∈I

hmwi (Q)µmi , (3.2)

augmented with any fixed tie-breaking rule. The Exp rule i∗exp and the Log rule

i∗log are defined similarly by substituting hexp and hlog respectively in place of hmw.

Indeed numerous vector field based throughput-optimal schedulers can be engineered

so as to respond differently to the disparity among the users’ queue lengths, i.e.,

make different tradeoffs between service rate maximization and queue balancing. For

reference see, e.g., [37], which gives necessary and sufficient conditions for a vector

field based scheduler to be throughput-optimal.
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We refer to a scheduler as radial sum-rate monotone if, as the queues scale

up linearly, the scheduling rule allocates the server in a manner that de-emphasizes

queue-balancing in favor of greedily maximizing the current service rate. More for-

mally, let v(Q) ∈ Vπ be the vector of average service offered to the queues under a

static state-feedback scheduler i∗, conditional on queue state being Q, i.e.,

v(Q) =
(
E[µmi 11{i∗(Q,m)=i}], i ∈ I

)
, (3.3)

where expectation is with respect to (random) m drawn from distribution π.

Definition 3.1 A scheduling policy i∗ is radial sum-rate monotone with respect to

weight vector b > 0 if for any Q and scalar θ such that θQ ∈ Zn+, the weighted sum

of expected offered service, 〈b, v(θQ)〉, is an increasing function of θ, and

lim
θ→∞
〈b, v(θQ)〉 = max

y

(
〈b, y〉 |y ∈ Vπ and yi = 0 if Qi = 0

)
.

Let vmw(Q) denote the expected service vector under the MaxWeight sched-

uler, i.e., the vector obtained by substituting i∗mw for i∗ in (3.3); similarly, let vexp(Q)

and vlog(Q) denote the expected service vectors under the Exp and Log rule respec-

tively. Also, fix a weight vector b > 0. Next, under schedulers Maxweight, Exp

rule, and Log rule respectively, we will identify the sets Smw0 ,Sexp0 , and S log0 given

approximately2 by,

S(·)
0 ≈

{
Q ∈ Z2

+ : v(·)(Q) ∈ arg max
y∈Vπ
〈y, b〉

}
,

in words, the set of queue states such that the expected service vector v(·)(Q) has the

maximum weighted sum with respect to weight vector b. For example, for the capacity

region shown in Fig. 3.1-a and weight vector b = (1, 1), Fig. 3.1-b–d illustrates the

2Under the formal definition of set S(·)0 given later, the queue states on the boundary of set{
Q ∈ Z2

+ : v(·)(Q) ∈ arg maxy∈Vπ
〈y, b〉

}
may or may not lie in S(·)0 .
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sets Smw0 ,Sexp0 , and S log0 . The set Smw0 is a cone, the set Sexp0 a cylinder with gradually

increasing diameter, and the set S log0 resembles a French horn. The set S log0 is such

that for any Q > 0, we have θQ ∈ S log0 for all θ large enough, indicating that the

Log rule is radial sum-rate monotone. The MaxWeight and Exp rule are not radial

sum-rate monotone. In fact, Exp rule is the ‘opposite’ of radial sum-rate monotone

in that, for any Q such that a1Q1 6= a2Q2, we have θQ /∈ Sexp0 for all θ large enough.

A formal description of the sets S(·)
0 is as follows.

The vector h(·)(Q) can be shown to be an outer normal vector to the capacity

region Vπ at point v(·)(Q) for each scheduler (·) ∈ {mw, exp, log}, i.e.,

v(·)(Q) ∈ arg max
y∈Vπ

〈
y, h(·)(Q)

〉
, (3.4)

See, e.g., Lemma 2.1 of [22]. Recall the set of outer normal slopes,

{r0, r1, · · · , rM ′ , rM ′+1},

and let rk be the largest slope strictly less than b2/b1 (i.e. the slope of vector b) and

rl the smallest slope strictly greater than b2/b1; thus if rk+1 6= b2/b1 then l = k + 1,

otherwise l = k + 2. For example, in Fig. 3.1-a, for weight vector b = (1, 1), we have

k = 2 and l = 4. For each scheduler (·) ∈ {mw, exp, log} we define the set,

S(·)
0 =

{
x ∈ R2

+ : rk <
h

(·)
2 (x)

h
(·)
1 (x)

< rl

}
.

Then, by (3.4), for any Q ∈ S(·)
0 ∩Z2

+, we must have v(·)(Q) ∈ arg maxy∈Vπ 〈y, b〉. Each

region S(·)
0 is bounded by switching curves given by,{

x ∈ R2
+ :

h
(·)
2 (x)

h
(·)
1 (x)

= rk

}
and

{
x ∈ R2

+ :
h

(·)
2 (x)

h
(·)
1 (x)

= rl

}
.

For any queue state Q lying on these switching curves, the argmax in (3.4) is not

unique and whether v(·)(Q) lies in the set arg maxy∈Vπ 〈y, b〉 depends on the tie break-

ing rule associated with (3.2). For each m ∈ {1, · · · , k, l+1, · · · ,M ′+1}, we can also
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Figure 3.1: (a) Capacity region for µm ∈ {(1, 4), (3, 4), (1, 1), (4, 3), (4, 1), (1, 0)}, de-
picting Minkowski addition, outer-normal vectors and maximal vertices; the resulting
switching curves under (b) MaxWeight, (c) Exp rule, (d) Log rule, for weight vector
b = (1, 1).
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define a set,

S(·)
m =

{
x ∈ R2

+ : rm−1 <
h

(·)
2 (x)

h
(·)
1 (x)

< rm

}
.

Then, again by (3.4), for any Q ∈ S(·)
m ∩ Z2

+, we must have v(·)(Q) = v̂m. That is,

each set S(·)
m for m ∈ {1, · · · , k, l + 1, · · · ,M ′ + 1} is associated with a unique vertex.

For m ∈ {1, · · · , k − 1, l + 1, · · · ,M ′}, the switching curve between any two regions

S(·)
m and S(·)

m+1 is given by, {
x ∈ R2

+ :
h

(·)
2 (x)

h
(·)
1 (x)

= rm

}
,

and as before, for any queue state Q lying on this switching curve, the argmax in

(3.4) is not unique and whether it lies in set S(·)
m or S(·)

m+1 depends on the tie breaking

rule associated with (3.2). Fig. 3.1-b–d also show the switching curves and sets S(·)
m

under MaxWeight, Exp rule, and Log rule. In fact, for MaxWeight and Log rule, the

switching curves can be given in closed form, e.g., for Log rule, the switching curves

are given by,

a2x2 = (1 + a1x1)
b1
b2
r − 1 ,

for r ∈ {r1, · · · , rM ′}.

3.4 The pseudo-Log scheduling rule

In this section we introduce a static state-feedback and radial sum-rate mono-

tone scheduler, denoted the pseudo-Log (p-Log) rule. We subsequently show in The-

orem 3.1 that the p-Log rule minimizes the asymptotic probability of weighted sum-

queue overflow for any weight vector b. The p-Log rule takes weight vector b as a

parameter but does not require any knowledge of arrival or server-state distributions.

We will define the p-Log scheduling rule through a vector field h = (h1, h2) on
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R2
+. For any x ∈ [0, 1)2, let h(x) = 0. For any x ∈ R2

+ \ [0, 1)2,

if x1 ≥ x2, then let

{
h1(x) = b1

√
x1,

h2(x) = b2 min(x2,
√
x1);

if x1 < x2, then let

{
h1(x) = b1 min(x1,

√
x2),

h2(x) = b2
√
x2.

(3.5)

The p-Log rule is given as follows: when the queues are in state Q ∈ Z2
+ and the

server in state m ∈M, then the server is allocated to queue i∗pLog(Q,m) given by,

i∗pLog(Q,m) ∈ arg max
i∈I

hi(Q)µmi , (3.6)

where, in the case of a tie, if Q1 ≥ Q2 the server is allocated to Queue 1, otherwise

to Queue 2.

Note that it is only the slope, h2(Q)
h1(Q)

, of the vector h(Q) that determines the

scheduling decision, and so, for example, when Q1 ≥ Q2, Q1 6= 0, the slope is given

by,

h2(Q)

h1(Q)
=
b2

b1

min

(
1,

Q2√
Q1

)
.

Switching curves under the p-Log rule

Let vpLog(Q) denote the vector of average service offered to the queues under

p-Log rule, conditional on queue state being Q, i.e., the vector obtain by substituting

i∗pLog for i∗ in (3.3). Recall the set of outer normal slopes {r0, r1, · · · , rM ′ , rM ′+1} and,

in particular, the slopes rk and rl from this set as defined in Section 3.3. Similar to

the sets S(·)
0 for (·) ∈ {mw, exp, log}, we define the set S0 for p-Log rule as,

S0 =

{
x ∈ R2

+ : rk <
h2(x)

h1(x)
< rl

}
,

=

{
x ∈ R2

+ :
b1

b2

rk
√
x1 < x2 <

(
b1

b2

rl x1

)2
}

.

Similar to the region S log0 , the region S0 too is shaped like a French horn, see Fig. 3.2

for an illustration. For any Q ∈ S0 ∩ Z2
+, we have vpLog(Q) ∈ arg maxy∈Vπ 〈y, b〉.

58



Figure 3.2: Switching curves under p-Log rule for the capacity region depicted in
Fig. 3.1-a and weight vector b = (1, 1).

Therefore, we will refer to the region S0 as the weighted-max-sum rate region (with

respect to weight vector b). Moreover, for any Q > 0, we have θQ ∈ S0 for all θ large

enough, thus indicating that p-Log rule is radial sum-rate monotone. Also, for each

m ∈ {1, · · · , k, l + 1, · · · ,M ′ + 1}, we define a set Sm as,

Sm =

{
x ∈ R2

+ : rm−1 <
h2(x)

h1(x)
< rm

}
.

Then for any Q ∈ Sm ∩ Z2
+, we have vpLog(Q) = v̂m. All switching curves in the half

plane {x1 ≥ x2} are given by,

x2 =
b1

b2

r
√
x1 ,

for r ∈ {r0, · · · , rk} and x1 ≥ 1. Similarly, all switching curves in the half plane

x2 > x1 are given by,

x1 =
b2

b1

r−1√x2 ,

for r ∈ {rl, · · · , rM ′+1} and x2 ≥ 1. We will refer to the collection of switching curves

and regions Sm as a partition of R2
+ (or the queue state space Z2

+) under the p-Log
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rule. It will be useful to note that this partition, as well as the partitions under

MaxWeight, Exp rule, and Log rule, depend only on the set of vectors {µ1, · · · , µM}

associated with the M server states and not on the distribution π = (π1, · · · , πM) > 0

over these states.

3.5 Main result

The following three-part theorem summarizes the main results. It includes a

lower bound on the tail of the weighted sum-queue overflow probability, an upper

bound on the same, and the optimality of the p-Log rule. The first part is proved in

Section 3.7, the second in Section 3.8 (and Appendix), while the last in Sections 3.9

and 3.10.

Theorem 3.1 For the system model detailed in Section 3.2, the following hold.

(i) Given a weight vector b = (bi : bi > 0, i ∈ I), there exists finite T0 > 0 such that

for any t > T0 and under any scheduling rule starting in any initial state Q(0), we

have the following lower bound:

lim inf
n→∞

1

n
logP

(∑
i∈I

biQi(nt) ≥ n

)
≥ −J∗ ,

where J∗ is defined in Section 3.7.

(ii) For a stabilizable system, under p-Log scheduling rule the process (Q(t), t = 0, 1, . . .)

forms an ergodic Markov chain, and we have the following upper bound for a random

vector Q drawn from the stationary distribution of the Markov chain:

lim sup
n→∞

1

n
logP

(∑
i∈I

biQi ≥ n
)
≤ −J∗∗ ,

where J∗∗ is defined in Section 3.8.

(iii) The p-Log rule maximizes the asymptotic exponential decay rate of the weighted

sum-queue distribution, i.e.,

J∗∗ = J∗ .
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Remark 3.2 Since a scheduler can, in principle, be non-stationary, the lower bound

in (i) is expressed in a more general form than the upper bound in (ii) which is specific

to a static state-feedback scheduler, namely the p-Log rule. For stationary schedulers

under which the process (Q(t), t = 0, 1, . . .) forms an ergodic Markov chain, the lower

bound in (i) also implies the same lower bound under the steady state distribution of

the Markov chain. This is because the lower bound will hold if the initial state Q(0)

were random and drawn from the steady state distribution.

3.6 Fluid-scaled processes and large deviation principles

In this section, we define sequences of fluid-scaled processes and functions, and

a Large Deviation Principle [44] on those sequences, which is used in proving The-

orem 3.1. Define the cumulative arrivals process F =
(
F (t) = (Fi(t), i ∈ I), t ≥ 0

)
obtained from the process (A(t), t ≥ 0) as,

Fi(t) =

bt−1c∑
k=0

Ai(k) ,

and cumulative time the channel is in each stateG =
(
G(t) = (Gm(t), m ∈M), t ≥ 0

)
obtained from the process (m(t), t ≥ 0) as,

Gm(t) =

bt−1c∑
k=0

11{m(k)=m} .

The triplet (Q,F,G), where Q = (Q(t), t ≥ 0) is the queue sample path (under a

fixed scheduling rule) corresponding to the sample paths (F,G) and initial state

Q(0), denotes a realization of the system (Q,F ,G). For each n = 0, 1, . . ., let

(Q(n),F (n),G(n)) denote an independent and identically distributed system . We

define a corresponding sequence of fluid-scaled processes, denoted by (q(n),f (n), g(n)),

as,

q(n) =
(
q(n)(t), t ≥ 0

)
=

(
1

n
Q(n)(nt), t ≥ 0

)
,
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with f (n) and g(n) similarly defined.

The arrival and service processes are i.i.d. and bounded and, therefore, satisfy

large deviation principles [44]. In particular, for each i ∈ I, define for any scalar

λi ≥ 0 the rate function Li(·) for the sequence f
(n)
i (1) as,

Li(λi) = sup
θ≥0

(
θλi − logE

[
eθAi(1)

] )
,

where Li(·) =∞ over (−∞, 0) and (C,∞). Also, for any vector λ ∈ R2
+, let,

L(f)(λ) =
∑
i∈I

Li(λi) .

For any probability distribution γ = (γm, m ∈ M), we define the relative entropy

L(g)(·) of γ with respect to distribution π as,

L(g)(γ) =
∑
m∈M

γm log
γm
πm

.

where L(g)(·) = ∞ everywhere outside the standard simplex in RM
+ . Now consider

any functions (f, g) ∈ D2+M . If (f, g) are absolutely continuous, then they are differ-

entiable a.e. and we let (f ′(t), g′(t)) = d
dt

(f(t), g(t)). For any t > 0, if (f(0), g(0)) = 0

and (f, g) are absolutely continuous on the interval [0, t], then let,

Jt(f, g) =

∫ t

0

L(f)

(
f ′(s)

)
+ L(g)

(
g′(s)

)
ds ,

otherwise Jt(f, g) =∞. The functional Jt(f, g) is referred to as the cost of the trajec-

tories (f, g) over the time interval [0, t]. The following is a form of Borovkov/Mogulskii’s

theorem [44].

Proposition 3.1 For any fixed T > 0, consider a sequence in n of the fluid-scaled

processes (f (n), g(n)) =
(
(f (n)(t), g(n)(t)), t ∈ [0, T ]

)
, then for any measurable B ⊆ D2+M ,
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we have that,

− inf
(f,g)

{
JT (f, g)|(f, g) ∈ B◦

}
≤ lim inf

n→∞

1

n
logP

(
(f (n), g(n)) ∈ B

)
≤ lim sup

n→∞

1

n
logP

(
(f (n), g(n)) ∈ B

)
≤ − inf

(f,g)

{
JT (f, g)|(f, g) ∈ B

}
,

where, B◦ and B denote the interior and closure of set B respectively.

Let u(n) = dnα e for some fixed α ∈ (0, 0.5). For any function d ∈ D2+M ,

let Und denote the piece-wise linear function obtained by linear interpolation over

samples
(
d(ku(n)

n
), k = 0, 1, . . .

)
. The following upper bound is Stolyar’s refinement

of Mogulskii’s theorem and was first introduced in [19].

Proposition 3.2 For any fixed T > 0, consider a sequence in n of the fluid-scaled

processes (f (n), g(n)) =
(
(f (n)(t), g(n)(t)), t ∈ [0, T ]

)
. Suppose, for each n there is a

fixed measurable B(n) ⊆ D2+M , that is a subset of the set of feasible realizations of

(f (n), g(n)) in [0, T ]. Then,

lim sup
n→∞

1

n
logP

(
(f (n), g(n)) ∈ B(n)

)
≤ − lim inf

n→∞
inf
(f,g)

{
JT (n)Un(f, g)|(f, g) ∈ B(n)

}
,

(3.7)

where T (n) = u(n)
n
b nT
u(n)
c.

Note that by contrast with Proposition 3.1, {B(n)} in Proposition 3.2 corre-

sponds to a sequence of sets of scaled feasible trajectories, and the bound on the

right side is an infimum over the cost of sampled and linearly interpolated scaled

trajectories. Thus this proposition provides a refinement allowing, for example, the

consideration of large deviations for sets {B(n)} which can distinguish among the tra-

jectories in the set {f (k) ∈ D2 : f (k) converges u.o.c. to a Lipschitz f}. That is to say,
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even if all the fluid scaled trajectories in a set converge to the same limiting trajectory,

the events B(n) can be defined to include only a subset of these trajectories.

Also introduced in [19] is a notion of generalized fluid sample path (GFSP)

which naturally appears when applying the bound in Proposition 3.2; we describe

this next. Consider a sequence of realizations (q(n), f (n), g(n)) n = 1, 2, . . . such that

along some subsequence (still denoted by {n}), we have u.o.c convergence

(q(n), f (n), g(n))→ (q, f, g)

to some Lipschitz continuous functions (q, f, g), and u.o.c convergence

J
(n)

=
(
J

(n)

t , t ≥ 0
)
,

=
(
Jt(n)Un(f (n), g(n)), t ≥ 0

)
→ J =

(
J t, t ≥ 0

)
to some non-negative increasing Lipschitz continuous function J . Then the following

construct is called a GFSP,

ψ =
[(
q(n), f (n), g(n)

)
, J

(n)
, n = 0, 1, · · · ; (q, f, g); J

]
and the function J is referred to as the refined cost function of the GFSP. Since

this construct contains not only the limiting trajectory (q, f, g) but also the sequence

converging to it, the construct is useful when one needs to zoom in and study the

limiting trajectories (q, f, g) at a finer-than-fluid scaling. Moreover, we will see that

for the events B(n) of interest to us, the bound in Proposition 3.2 reduces to an

infimum over the refined cost of a well-defined set of GFSPs.

3.7 Lower bound on overflow probability under any schedul-
ing rule

For any distribution γ on the set M of server states, let Vγ denote the corre-

sponding capacity region, see (3.1). Let b = (b1, b2) > 0 be the given weight vector.
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Figure 3.3: For weights bi = 1, the optimal capacity vector v∗(λ(2), π) is unique,
whereas, vector v∗(λ(1), π) is any point on the annotated part of max-sum-rate face
of region Vπ.

For any vector λ ∈ R2
+, let v∗(λ, γ) denote a service vector such that,

v∗(λ, γ) ∈ arg max
v
{〈b, v〉 : v ≤ λ, v ∈ Vγ} , (3.8)

where, if the argmax is not unique, then v∗(λ, γ) can be set to any maximizer. For

example, see Fig. 3.3 depicting v∗(λ, π) for weight vector b = (1, 1) and two hypo-

thetical vectors λ(1) and λ(2) lying outside capacity region Vγ. The interpretation is

as follows: if the arrival process were to exhibit an empirical mean of λ and the server

state were to exhibit an empirical distribution γ, then serving the queues according

to the service vector v∗(λ, γ) minimizes the rate of weighted-sum-queue build-up, i.e.,

〈b, λ− v∗(λ, γ)〉.

Finally, we define the minimum cost (per unit increase of the weighted-sum-

queue) J∗ as,

J∗ = min
γ,λ

L(g)(γ) + L(f)(λ)

〈b, λ− v∗(λ, γ)〉
, (3.9)
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3.7.1 Proof of Theorem 3.1-(i)

Let (λ∗, γ∗) be a point that achieves the minimum in (3.9), and let

T0 =
〈
b, λ∗ − v∗(λ∗, γ∗)

〉−1
.

We will show that regardless of the scheduling rule, all realizations (f, g) sufficiently

close to (λ∗t, γ∗t) over the interval [0, T0]– and thus having cost JT0(f, g) close to J∗–

lead to an overflow at time T0.

Let ||.|| denote the L∞ norm. For any ε > 0, define a set of trajectories over

the interval [0, T0],

Bε =
{

(f, g) ∈ D2+M : (f, g) is absolutely continuous;

∀t ∈ [0, T0],

||L(f)(f
′(t))− L(f)(λ

∗)|| ≤ ε

2T0

;

||L(g)(g
′(t))− L(g)(γ

∗)|| ≤ ε

2T0

;

∀u ∈ Vg′(t), inf
v∈Vγ∗

||u− v|| ≤ ε

5T0

; and (3.10)

||λ∗ − 1

T0

f(T0)|| ≤ ε

5T0

}
(3.11)

The set Bε is measurable, compact, and the cost for any (f, g) ∈ Bε satisfies

||JT0(f, g)− J∗|| ≤ ε.

Next, we will show that any sequence of realizations (q(n), f (n), g(n)), such that q(n)(0) = 0

and (f (n), g(n)) converge uniformly in [0, T0] to some (f, g) ∈ Bε, must have∑
i∈I

biq
(n)
i (T0) > 1− 2ε

for all sufficiently large n. Therefore,

lim inf
n→∞

1

n
logP

(∑
i∈I

biq
(n)
i (T0) > 1− 2ε

)

≥ lim inf
n→∞

1

n
logP

(
(f (n), g(n)) ∈ Bε

)
≥ − J∗ ,
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where the rightmost inequality follows from the Mogulskii’s theorem (Proposition

3.1).

Let λ(n) = 1
T0
f (n)(T0), and u(n) denote the average service vector seen by the

queues; that is to say, u
(n)
i T0 is equal to the number of packets served from the ith

queue over the interval [0, T0]. By (3.11) in the definition of Bε, for all n sufficiently

large,

λ∗ −
(

ε

4T0

,
ε

4T0

)
(i)

≤ λ(n)
(ii)

≤ λ∗ +

(
ε

4T0

,
ε

4T0

)
, (3.12)

and by (3.10) there exists a v ∈ Vγ∗ such that

v −
(

ε

4T0

,
ε

4T0

)
(i)

≤ u(n)
(ii)

≤ v +

(
ε

4T0

,
ε

4T0

)
. (3.13)

We must also have u(n) ≤ λ(n), since the total service cannot exceed the total ar-

rivals. This, along with inequalities (3.12-ii) and (3.13-i), implies v ≤ λ∗+
(

ε
2T0
, ε

2T0

)
.

Without loss of generality, we assume that the weight vector b is normalized to have∑
i∈I bi = 2. Then using (3.13-ii), we get,〈

b, u(n)
〉
≤ 〈b, v〉+

ε

2T0

,

≤ max

(
〈b, y〉 : y ∈ Vγ∗ , y ≤ λ∗ +

(
ε

2T0

,
ε

2T0

))
+

ε

2T0

,

≤ 〈b, v∗(λ∗, γ∗)〉+
ε

T0

.

(3.14)

Finally, using (3.12-i) and (3.14), we have that,

〈
b, q(n)(T0)

〉
=

(〈
b, λ(n)

〉
−
〈
b, u(n)

〉)
T0 ,

>
(
〈b, λ∗〉 − 〈b, v∗(λ∗, γ∗)〉

)
T0 − 2ε ,

= 1− 2ε .

In order to obtain an overflow at any time after T0 while still incurring a cost

close to J∗, the trajectory (λ∗t, γ∗t) can be prepended with the zero-cost trajectory

for an appropriate amount of time.
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3.8 Upper bound on overflow probability under the p-Log
rule

Recall the notion of a GFSP and its refined cost function from Section 3.6. Let

J∗∗ denote the lowest refined cost of a GFSP that, under p-Log rule, raises
∑

i∈I biqi(t)

to 1 from the initial state q(0) = 0, i.e.,

J∗∗ = inf
t≥0

J∗∗,t , (3.15)

where,

J∗∗,t = inf
ψ

{
J t|ψ : q(0) = 0,

∑
i∈I

biqi(t) ≥ 1

}
.

The following is a restatement of Theorem 3.1-(ii) in terms of a sequence of fluid

scaled queues.

Theorem 3.2 For each n = 1, 2, . . ., consider the system under the p-Log scheduling

rule in a stationary regime, then, the corresponding sequence of fluid-scaled processes

is such that,

lim sup
n→∞

1

n
logP

(∑
i∈I

biq
(n)
i (0) ≥ 1

)
≤ −J∗∗ .

Remark 3.3 This is the equivalent of Theorem 8.4 of [19], and its proof follows the

same framework and uses classical Wentzel-Freidlin constructions [45]. The theorem

establishes two things: firstly, that the upper bound on the probability of overflow when

starting with empty queues, given by Stolyar’s refinement of Mogulskii’s upper bound,

indeed reduces to inf over the cost of GFSPs of interest; and secondly, that a GFSP

with the cheapest limiting trajectories (f, g) that can raise the sum queue
∑

i∈I biqi to

1, starting with empty queues, indeed has a cost arbitrarily close to the cost of the

cheapest trajectory starting in the stationary regime. See the appendix at the end of

the chapter for a proof.
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It is clear that J∗∗ ≤ J∗ (since −J∗ was lower bound under any scheduling

rule.) To prove the optimality of p-Log rule, we need show J∗∗ = J∗. In the following

section, we develop the results needed to show this; these intermediate steps are

summarized in Table 3.1.

3.9 Local fluid sample path

Let us first motivate the need for defining LFSP (local fluid sample path.) For

each n, define the set S(n)
m as the “fluid” scaled version of set Sm of the state space

partition associated with the p-Log rule, i.e.,

S(n)
m =

{
x ∈ R2

+ : nx ∈ Sm
}
.

Then for the nth system, the scheduling decision at time t depends on which set

S(n)
m , m ∈ {0, . . . , k, l + 1, . . . ,M ′ + 1} (or the corresponding switching curve) the

fluid scaled queue q(n)(t) lies in. As n → ∞, the characteristic function of set S(n)
0

converges pointwise to the characteristic function of S(∞)
0 = {x ∈ R2

+ : x > 0}; while

all other scaled sets from the partition collapse to one of the axes. Note that this

is true for the partition under any radial sum-rate monotone scheduling rule. Now

consider a Lipschitz continuous limiting trajectory (q, f, g) for the fluid scaled process

(q(n), f (n), g(n)). One can show that,

if q(t) ∈ S(∞)
0 , then

d

dt
〈b, q(t)〉 = 〈b, f ′(t)〉 − max

v∈Vg′(t)
〈b, v〉 ,

but if q(t) hits an axis, we lose information about service rates of the queues. Hence,

we define a LFSP using a finer -than-fluid scaling such that the sets of the partition

do not collapse and we are able to state the proper derivative of the limiting queue

trajectory.

Consider a GFSP over some interval [0, T ] and fix any τ ∈ (0, T ) such that

q(τ) 6= 0. Any sequence τ (n) → τ has a subsequence along which q(n)(τ (n)) → q(τ).
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Description Stated in Relies on
Under the usual fluid scaling of the queue state space, some
sets of the partition collapse (or merge), resulting in loss of
information concerning the service rate seen by the queue
(e.g., when the queue lies in any of the collapsed sets.)
Therefore, the fluid-scaled state space is locally magnified
enough to recover the merged sets of the partition; these
magnified or finer-than-fluid-scaled trajectories are called
Local Fluid Sample Paths (LFSP).

Section 3.9,
Lemma 3.1.

Technique
first in-
troduced
in [11]

Although the vector field h(·) associated with the p-Log rule
is not a gradient field, it appears as a gradient field on the
state space of finer-than-fluid-scaled queue. A (globally)
Lipschitz continuous Lyapunov function is then constructed
on this state space. Moreover, under the p-Log scheduling
rule, the Lyapunov function is shown to have a strictly neg-
ative drift for all LFSP trajectories having low cost per unit
time.

Lemma 3.2 Lemma 3.1

The strictly negative drift of a Lipschitz continuous Lya-
punov function translates into a stronger implication: for all
LFSP trajectories with low average cost per unit time over
a given time interval, the decrease in the Lyapunov function
of the finer-than-fluid-scaled queue must be proportional to
the length of the interval. Moreover, a sufficient decrease in
the Lyapunov function also implies at least a proportional
decrease in the weighted-sum-queue.

Lemma 3.3 Lemma 3.2

The above result is used to show that any fluid-scaled tra-
jectory (GFSP) of interest can be magnified to obtain a
finer-than-fluid-scaled trajectory (LFSP) such that the cost
(per unit increase in weighted sum-queue) of the fluid-scaled
trajectory and that of the finer-than-fluid-scaled trajectory
are arbitrarily close.

Lemma 3.4

Lemma 3.3
and using
technique of
Section 11
of [19]

Under the p-Log rule, no LFSP exists whose cost per unit in-
crease in weighted-sum-queue is strictly less than J∗, there-
fore, the least possible cost under p-Log rule, i.e. J∗∗, must
be equal to J∗ – the upper bound on the cost under any
scheduler.

Section 10 Lemma 3.4

Table 3.1: Intermediate steps towards proving Theorem 1-(iii).
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Let

σn =

√
q

(n)
∗ (τ (n))

/√
n,

where, q
(n)
∗ (·) = maxi∈I q

(n)
i (·). To obtain a local fluid sample path, we will mag-

nify in both space and time the fluid scaled trajectories (q(n), f (n), g(n)) by a factor

of σ−1
n , i.e., an order O(

√
n) term. More formally, for any fixed S > 0, the fol-

lowing re-scaled functions (and their limits mentioned subsequently) over the interval[
τ (n), τ (n) + σnS

]
, parameterized by s ∈ [0, S], are called the local fluid sample paths3:

for all i ∈ I and m ∈M,

�q
(n)
i (s) =

1

σn

(
q

(n)
i

(
τ (n) + σns

)
− q(n)

i

(
τ (n)
))

,

�q̂
(n)
i (s) =

1

σn
q

(n)
i

(
τ (n) + σns

)
,

�d
(n)(s) = �q̂

(n)
1 (s)− �q̂(n)

2 (s) ,

�f
(n)
i (s) =

1

σn

(
f

(n)
i

(
τ (n) + σns

)
− f (n)

i

(
τ (n)
))

,

�g
(n)
m (s) =

1

σn

(
g(n)
m

(
τ (n) + σns

)
− g(n)

m

(
τ (n)
))

.

Then along some subsequence in n,

• the functions
(
�q

(n), �f
(n), �g

(n)
)

converge uniformly over [0, S] to Lipschitz

continuous functions
(
�q, �f, �g

)
;

• for each i ∈ I, the function �q̂
(n)
i either converges uniformly over [0, S] to a finite

Lipschitz continuous function �q̂i, or is identically equal to ∞;

• the function �d
(n) converges uniformly over [0, S] to a finite Lipschitz continuous

function �d, or is identically equal to +∞ or −∞.

3The definitions of �f
(n)
i (·) and �g

(n)
m (·) are the same as in [19], whereas, �q

(n)
i (·) are scaled as

in [19] but centered differently.
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We will refer to the point
(
q(τ), f(τ), g(τ)

)
as the GFSP source point of the above de-

fined LFSP. Since q(τ) 6= 0, it must be that �q̂i(·) =∞ for at least one i ∈ I. Note that

the local fluid queue, �q, is merely a re-centered version of �q̂, i.e., �q̂(s) = �q(s) + �q̂(0),

and is always finite by virtue of this re-centering. Moreover, the trajectory �q dwells

in the set {x ∈ R2|x ≥ −�q̂(0)}, which is at least a half-plane. Lastly, we have the

following relation between the cost of LFSP over [0, S] and the refined cost sequence

of GFSP over [τ (n), τ (n) + σnS] (see (9.4) of [19]),

JS(�f, �g)− J0(�f, �g) ≤ lim inf
n→∞

1

σn

(
J

(n)

τ (n)+σnS
− J (n)

τ (n)

)
. (3.16)

3.9.1 Scheduling over time scales of LFSP

By (3.6) the scheduling decision in the interval [τ (n), τ (n) + σnS] depends on

the slope,
h2

(
Q
(
nτ (n) + nσns

))
h1 (Q (nτ (n) + nσns))

,

and the sign of �d
(n)(s), recall the tie-breaking rule mentioned in the description of

p-Log rule in Section 3.4.

Without loss of generality suppose q1(τ) ≥ q2(τ) (and recall that we had

q(τ) 6= 0.) Then by (3.5), for n large enough, we have that,

h2

(
Q
(
nτ (n) + nσns

))
h1 (Q (nτ (n) + nσns))

=
b2

b1

min

(
1,

Q2

(
nτ (n) + nσns

)√
Q1 (nτ (n) + nσns)

)
,

=
b2

b1

min

1,
�q̂

(n)
2 (s)

√
q

(n)
1 (τ (n))√

q
(n)
1 (τ (n) + σns)

 .

Then, as n→∞, the above converges to,

b2

b1

min
(
1, �q2(s) + �q̂2(0)

)
,

where the convergence is uniform on [0, S]. Let us define a vector field �h over the
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state space of �q, i.e., {x ∈ R2|x ≥ −�q̂(0)}, as follows:

�h1(x) = b1 ,

�h2(x) = b2 min (1, x2 + �q̂2(0)) .
(3.17)

That is, we can restate the above convergence as,

h2

(
Q
(
nτ (n) + nσns

))
h1 (Q (nτ (n) + nσns))

→ �h2(�q(s))

�h1(�q(s))

uniformly on [0, S]. Hence, the switching curves on the space of �q are given by,{
(x1, x2) ∈R2 :

�h2(x)

�h1(x)
= rm

}
=

{
(x1, x2) ∈ R2 : x2 = −�q̂2(0) +

b1

b2

rm

}
for m ∈ {0, · · · , k}, and are now parallel to x1 axis (i.e., the axis of �q1(s), see

Fig. 3.4)4. For each m ∈ {1, · · · , k}, define the set �Sm by appropriately re-scaling

the set Sm, i.e.,

�Sm =

{
(x1, x2) ∈ R2 : rm−1 <

�h2(x)

�h1(x)
< rm

}
,

=
{

(x1, x2) ∈ R2 : − �q̂2(0) +
b1

b2

rm−1 < x2 < −�q̂2(0) +
b1

b2

rm

}
,

(3.18)

and define,

�S0 =

{
(x1, x2) ∈ R2 : rk <

�h2(x)

�h1(x)

}
,

=

{
(x1, x2) ∈ R2 : − �q̂2(0) +

b1

b2

rk < x2

}
.

(3.19)

See Fig. 3.4 for a graphical illustration of sets �S0, . . . , �Sk. The service rate µ(s)

allocated to the local fluid queue �q(s) at time s, depends on which re-scaled set �Sm

(or the associated switching curve) the local fluid queue �q(s) lies in. More formally,

the following lemma relates the service rate µ(s) to the vector field �h(�q(s)), and

4Recall that we have assumed, without loss of generality, that q1(τ) ≥ q2(τ); had we assumed
otherwise, we would have found that the switching curves on the space of �q, i.e., {x ∈ R2|x ≥
−�q̂(0)} are parallel to the x2 axis (i.e., the axis of �q2(s)). In the sequel, we continue to assume
that at the GFSP source point, we have q1(τ) ≥ q2(τ), and therefore, �h is given by (3.17).
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Figure 3.4: Partitions and switching curves on the space of local fluid queue �q.

can be derived without much effort from the results shown for the Exponential rule

scheduler in [11]5.

Lemma 3.1 For any LFSP, the following derivatives exist a.e. in [0, S] and are finite:

λ(s) =
d

ds
�f(s) ,

γ(s) =
d

ds
�g(s) ,

d

ds
�q(s) = λ(s)− µ(s) ,

for some,

µ(s) ∈ arg max
v∈Vγ(s)

〈�h(�q(s)), v〉 . (3.20)

Remark 3.4 Note that if �q2(s) ≥ −�q̂2(0) + 1, then �h(�q(s)) = b, and the argmax

in (3.20) may not be unique. However, µ(s) can still be uniquely identified as long as

�d(s) 6= 0. That is, if �d(s) > 0, then µ(s) is such that µ1(s) is the largest possible

among all points achieving max in (3.20); similarly, if �d(s) < 0, then µ(s) is such

that µ2(s) is the largest. The argmax in (3.20) may again be non-unique if �q(s)

5Specifically, Proposition 1 and results leading from (34) to (35) of [11] relate the service rate seen
by the local fluid queue under Exponential rule scheduler to the vector field defining the scheduler.
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lies on a switching curve, i.e., �q2(s) = −�q̂2(0) + b1
b2
rm for some m ∈ {0, 1, · · · , rk},

however, in this case µ(s) can not be uniquely identified using only the components of

LFSP, nor will we need to uniquely identify µ(s).

We will also need the following two crucial lemmas that show for the p-Log

rule what Lemmas 9.2 and 9.3 of [19] show for the Exponential rule. The following

two lemmas also implicitly prove the throughput-optimality of p-Log rule, see the

appendix at the end of the chapter for details.

Lemma 3.2 There exist fixed constants ε1 > 0 and δ1 > 0, and a Lipschitz continu-

ous Lyapunov function H (constructed in the proof below) such that for any regular

point s ∈ [0, S], if

d

ds
Js(�f, �g) ≤ ε1 , then

d

ds
H
(
�q(s)

)
≤ −δ1 .

Proof If d
ds
Js(�f, �g) is small, then λ(s) must be close to the mean arrival rate λ̄, and

γ(s) close to the server state distribution π. Since the capacity region Vγ is continuous

in the distribution γ (see (3.1)), there exist vectors λ∗ < v∗ such that uniformly on

all sufficiently small values of ε1, we have λ(s) < λ∗, and v∗ lies in the interior of Vγ(s).

Let δ1 = mini∈I(v
∗
i − λ∗i ). By Lemma 3.1, we have,〈
�h
(
�q(s)

)
, µ(s)

〉
= arg max

v∈Vγ(s)

〈
�h
(
�q(s)

)
, v
〉
,

>
〈
�h
(
�q(s)

)
, v∗

〉
. (3.21)

Note that since �hi(x) is a function only of xi, the vector field �h is in fact a gra-

dient field associated with a (continuously differentiable) function6 H, i.e., ∇H = �ĥ

on {x ∈ R2|x ≥ −�q̂(0)}. Moreover, since �hi(·) is increasing, positive, and bounded,

therefore, the function H(·) is convex, increasing in each direction, and Lipschitz

continuous. Then we have,

d

ds
H
(
�q(s)

)
=

〈
�h
(
�q(s)

)
, �q
′(s)

〉
,
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=
〈
�h
(
�q(s)

)
, λ(s)− µ(s)

〉
,

≤
〈
�h
(
�q(s)

)
, λ∗ − v∗

〉
,

≤ −δ1 ,

where the first inequality follows from (3.21) and the second from the definition of δ1.

Lemma 3.3 There exist fixed constants ε2 > 0 and δ̂2 > δ2 > 0 such that, if

JS(�f, �g)− J0(�f, �g) ≤ ε2S ,

then,

H
(
�q(S)

)
−H

(
�q(0)

)
≤ −δ̂2S ,

which further implies that uniformly for all large S, we have the following bound on

the change in the weighted sum queue,

〈b, �q(S)− �q(0)〉 ≤ −δ2S.

Proof Noting that H
(
�q(s)

)
(as a function of s) is Lipschitz continuous with some

Lipschitz constant denoted by c, the proof of first statement is identical to that of

Lemma 9.3 of [19]: pick a positive ε2 < ε1, let B1 = {s ∈ [0, S] : d
ds
Js(�f, �g) ≥ ε1}

and B2 = S \B1. Then the Lebesgue measures of B1 and B2 satisfy, ν(B1) ≤ ε2
ε1
S

and ν(B2) ≥ (1− ε2
ε1

)S. Finally,

H
(
�q(S)

)
−H

(
�q(0)

)
=

∫
B1

d

ds
H
(
�q(s)

)
+

∫
B2

d

ds
H
(
�q(s)

)
,

≤ c
ε2
ε1
S − δ1(1− ε2

ε1
)S ,

= − S
(
δ1 −

ε2
ε1

(c+ δ1)
)
.

6General conditions for a vector field to form a gradient field can be found in, e.g., [46, pp. 944-
945]. In our case, H(x) is simply additive separable, i.e., H(x) ≡ H1(x1)+H2(x2).
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Fix any positive δ̂2 < δ1, then a sufficiently small ε2 can be chosen to prove the first

statement.

To prove the last statement, we proceed as follows. Without loss of gener-

ality suppose that the GFSP source point of the LFSP being considered satisfies

q1(τ) ≥ q2(τ), and therefore, �h is given by (3.17). That is, ∇1H(·) ≡ �h1(·) = b1 and

∇2H(·) ≡ �h2(·) ≤ b2. Then for any x ≥ y ≥ �q̂(0), we have the upper bound

H(x)−H(y) ≤ 〈b, x− y〉 . (3.22)

If y2 ≥ −�q̂2(0) + 1 (see Fig. 3.4), then for all z ≥ y, we have �h(z) = b and therefore,

H(x)−H(y) = 〈b, x− y〉 . (3.23)

If −�q̂2(0) ≤ y2 < −�q̂2(0) + 1, then we have the lower bound

H(x)−H(y) =

∫ x1

y1

∇1H(z1, y2) dz1 +

∫ x2

y2

∇2H(x1, z2) dz2 ,

≥ b1(x1 − y1) +

∫ x2

−�q̂2(0)+1

b2 dz2 ,

= b1(x1 − y1) +

∫ x2

y2

b2 dz2 −
∫ −�q̂2(0)+1

y2

b2 dz2 ,

≥ 〈b, x− y〉 − b2 . (3.24)

Combining (3.22–3.24), we have the following bounds for any x ≥ y ≥ �q̂(0),

〈b, x− y〉 − (b1 + b2) ≤ H(x)−H(y) ≤ 〈b, x− y〉 .

Using this we get,

−δ̂2S ≥ H
(
�q(S)

)
−H

(
�q(0)

)
,

≥ 〈b, �q(S)− �q(0)〉 − (b1 + b2)

⇒ −δ̂2S

(
1− b1 + b2

S

)
≥ 〈b, �q(S)− �q(0)〉 .

Now one can take S large enough to obtain a δ2.
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Next, using Lemma 3.3 above and identical to the result in Section 11 of [19],

we show that any GFSP that raises the weighted sum queue to unity contains a LFSP

with cost close to that of the GFSP. Subsequently, we will use this lemma on a GFSP

of cost close to J∗∗ (see (3.15)) in order to obtain a LFSP with cost close to J∗∗.

Lemma 3.4 Suppose a GFSP ψ is given that satisfies

q(0) = 0 and 〈b, q(T )〉 = 1 for some T > 0,

and has a cost JT <∞. Then, for an arbitrarily small ε > 0, an LFSP
(
�q, �q̂, �d, �f, �g

)
over an arbitrarily large interval [0, S] can be constructed from the elements of ψ, such

that,

〈b, �q(S)− �q(0)〉 ≥ θS , (3.25)

for some θ > 0 (independent of ε), and cost (per unit increase in weighted sum queue)

of this LFSP is bounded above by JT + ε, i.e.,

JS(�f, �g)− J0(�f, �g)

〈b, �q(S)− �q(0)〉
≤ JT + ε . (3.26)

Proof Components of the given GFSP ψ satisfy,(
JT − J0

)
〈b, q(T )− q(0)〉

= JT . (3.27)

For any 0 < ξ1 < ξ2 < 1, define times t1 < t2 as follows,

t1 = max(t : 〈b, q(t)〉 = ξ1),

t2 = min(t > t1 : 〈b, q(t)〉 = ξ2).

Then for any ε > 0, there must exist 0 < ξ1 < ξ2 < 1 such that,

J t2 − J t1
〈b, q(t2)− q(t1)〉

< JT +
ε

2
, (3.28)
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or (3.27) cannot hold (Dirichlet’s box principle). Fix an S > 0 large enough as

required by Lemma 3.3. Then there exists a sequence {τ (n)} within [t1, t2] such that,

〈
b, q(n)(τ (n) + σnS)− q(n)(τ (n))

〉
> 0 ,

J
(n)

(τ (n)+σnS) − J
(n)

τ (n)

〈b, q(n)(τ (n) + σnS)− q(n)(τ (n))〉
< JT + ε ,

where, as before, σn =

√
q

(n)
∗ (τ (n))

/√
n; such a sequence must exist, otherwise (3.28)

cannot hold (another application of Dirichlet’s box principle, and consequence of the

convergence of J
(n)

and q(n)). The above two inequalities can be re-written as,

〈
b, �q

(n)(S)− �q(n)(0)
〉

> 0 , (3.29)

σ−1
n

(
J

(n)

(τ (n)+σnS) − J
(n)

τ (n)

)
〈b, �q(n)(S)− �q(n)(0)〉

< JT + ε . (3.30)

We also have that q(·) 6= 0 over interval [t1, t2]. Now we can pick a subsequence

in n along which τ (n) → τ ∈ [t1, t2] and
(
�q

(n), �q̂
(n), �d

(n), �f
(n), �g

(n)
)

converge

to
(
�q, �q̂, �d, �f, �g

)
, as described in Section 3.9, thus obtaining a LFSP (with(

q(τ), f(τ), g(τ)
)

being its GFSP source point.) From (3.29) we also have that

〈b, �q(S)− �q(0)〉 ≥ 0. Then by Lemma 3.3, we get,

JS(�f, �g)− J0(�f, �g) > ε2S ,

which, alongside (3.30) and (3.16), further implies that for some θ > 0,

〈b, �q(S)− �q(0)〉 ≥ θS ,

and finally,

JS(�f, �g)− J0(�f, �g)

〈b, �q(S)〉 − 〈b, �q(0)〉
≤ JT + ε .

79



3.10 Proof of Theorem 3.1-(iii): optimality of the p-Log rule

Recall that to prove optimality of p-Log rule (Theorem 3.1-(iii)), we need show

J∗∗ ≥ J∗. We will do this by showing that assuming J∗∗ < J∗ leads to a contradiction

with the definition of J∗.

Suppose J∗∗ < J∗, then by definition of J∗∗ in (3.15), there exists a GFSP ψ

satisfying q(0) = 0, 〈b, q(T )〉 = 1 for some finite T > 0, and having a cost JT < J∗.

Then by Lemma 3.4, from the components of GFSP ψ, we can construct an LFSP(
�q, �q̂, �d, �f, �g

)
satisfying (3.25) and (3.26) for an arbitrarily large S and an ε

small enough so that J∗∗∗ ≡ JT + ε < J∗.

Since �q̂i(·) = ∞ for at least one i ∈ I, without loss of generality sup-

pose �q̂1(·) = ∞, thus all switching curves on the space of �q are parallel to �q1

axis. Recall that the lower boundary of the set �S0 is given by the switching curve

x2 = −�q̂2(0) + b1
b2
rk (see Fig. 3.4). Let S1 and S2 respectively be the first and the

last time in [0, S] such that the trajectory �q2(s) ≤ −�q̂2(0) + b1
b2
rk, with S1 = S2 = S

if �q2(s) never hits [−�q̂2(0),−�q̂2(0) + b1
b2
rk]. Note that the trajectory of �q(s) lies in

�S0 in (0, S1) and (S2, S). Then one of the following must be true over the interval

[0, S1] (similarly [S2, S]):

1. 〈b, �q(0)〉 < 〈b, �q(S1)〉 and the cost per unit increase in weighted-sum-queue

over the interval [0, S1] is less than J∗∗∗, i.e.,

JS1(�f, �g)− J0(�f, �g)

〈b, �q(S1)− �q(0)〉
≤ J∗∗∗ .

2. 〈b, �q(0)〉 < 〈b, �q(S1)〉 and the cost per unit increase in sum-queue over the

interval [0, S1] is strictly greater than J∗∗∗, i.e.,

JS1(�f, �g)− J0(�f, �g)

〈b, �q(S1)− �q(0)〉
> J∗∗∗ .

3. 〈b, �q(0)〉 ≥ 〈b, �q(S1)〉.
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If (a) is true for either one of the intervals (suppose its true for [0, S1],) we

proceed as follows: define vectors γ̂, λ̂, and µ̂ as the average server state distribution,

arrival rate, and service rate respectively over [0, S1], i.e.,(
λ̂, γ̂, µ̂

)
=

1

S1

∫ S1

0

(
f ′(s), g′(s), µ(s)

)
ds.

By Lemma 3.1 and the fact that (�q(s) : 0 < s < S1) lies in �S0, we have that

µ(s) ∈ arg max
v∈Vγ(s)

〈b, v〉 .

This and the linearity of µ(s) in γ(s) (see (3.1)) implies µ̂ ∈ arg maxv∈Vγ̂ 〈b, v〉. Then,

〈b, �q(S1)− q(0)〉 =
〈
b, λ̂− µ̂

〉
S1 ,

≤
〈
b, λ̂− v∗(λ̂, γ̂)

〉
S1 , (3.31)

where v∗(λ̂, γ̂) is as defined in (3.8). Finally,

J∗ > J∗∗∗ ≥
JS1(�f, �g)− J0(�f, �g)

〈b, �q(S1)− �q(0)〉
,

≥

(
L(f)(λ̂) + L(g)(γ̂)

)
S1

〈b, �q(S1)− �q(0)〉
,

≥
L(f)(λ̂) + L(g)(γ̂)〈
b, λ̂− v∗(λ̂, γ̂)

〉 ,

where the first inequality follows from the assumption that (a) is true, the second

from convexity of rate functions, and the last one from (3.31). However, by the def-

inition of J∗ in (3.9), the right side of last inequality cannot be less than J∗, giving

the contradiction we needed; therefore, we must have J∗ = J∗∗.

Now, if (a) is not true for both intervals [0, S1] and [S2, S], then we proceed as

follows. Recall that our LFSP satisfies (3.25) and (3.26), i.e.,

〈b, �q(S)− �q(0)〉 ≥ θS > 0 , (3.32)
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and,

J∗∗∗ ≥
JS(�f, �g)− J0(�f, �g)

〈b, �q(S)− �q(0)〉
,

=
JS1(�f, �g)− J0(�f, �g)

〈b, �q(S1)− �q(0)〉
× 〈b, �q(S1)− �q(0)〉
〈b, �q(S)− �q(0)〉

+

JS2(�f, �g)− JS1(�f, �g)

〈b, �q(S2)− �q(S1)〉
× 〈b, �q(S2)− �q(S1)〉
〈b, �q(S)− �q(0)〉

+

JS(�f, �g)− JS2(�f, �g)

〈b, �q(S)− �q(S2)〉
× 〈b, �q(S)− �q(S2)〉
〈b, �q(S)− �q(0)〉

.

(3.33)

Therefore, if (a) is not true for both intervals [0, S1] and [S2, S] (equivalently, (b)

and/or (c) are true over these intervals), then for (3.33) to hold, we must have,

J∗∗∗ ≥
JS2(�f, �g)− JS1(�f, �g)

〈b, �q(S2)− �q(S1)〉
, (3.34)

and, for some fixed θ1 > 0,

〈b, �q(S2)− �q(S1)〉 ≥ θ1 〈b, �q(S)− �q(0)〉 .

The above, along with (3.32) gives,

〈b, �q(S2)− �q(S1)〉 ≥ θ1θS . (3.35)

Moreover, since 〈b, �q(·)〉 is Lipschitz, for some fixed θ2 > 0,

S2 − S1 ≥ θ2 〈b, �q(S2)− �q(S1)〉 ≥ θ2θ1θS .

This, along with (3.35) and Lemma 3.3, imply,

JS2(�f, �g)− JS1(�f, �g) ≥ ε2 (S2 − S1) ,

≥ ε2θ2θ1θS . (3.36)

Subsequently, we will use (3.35) and (3.36) to make the quantities on the left side of

these inequalities as large as needed by choosing a large S.

Consider the trajectory,

(�q(s), s ∈ [S1, S2]) ,
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Figure 3.5: Illustration of original trajectory (�q(s), s ∈ [S1, S2]) and the extension
(�q(s), s ∈ [S2, S

′
2]), in order to obtain �q2(S ′2) = �q2(S1).

which is an element of the LFSP
(
�q, �q̂, �d, �f, �g

)
over [S1, S2]. For some S ′2 ≥ S2,

we can append to this LFSP an extension over the time interval [S2, S
′
2] so as to

obtain �q2(S ′2) = �q2(S1) (see Fig. 3.5). Moreover, since the terminal values �q2(S1)

and �q2(S2), lie within the bounded interval [−�q̂2(0),−�q̂2(0) + b1
b2
rk], therefore the

extension LFSP can be constructed such that it has a bounded cost, i.e.,

JS′2(�f, �g)− JS2(�f, �g) ≤ ∆ , (3.37)

and a bounded increase in weighted-sum-queue, i.e.,

|〈b, �q(S ′2)− �q(S2)〉| ≤ ∆ , (3.38)

for some large fixed ∆ < ∞ which is independent of any components of the LFSP

over [0, S], (e.g. the value of S or the terminal values �q2(S1) and �q2(S2).) Finally,

the constant S can be chosen large enough such that, by (3.35) and (3.38), we have,

〈b, �q(S ′2)− �q(S1)〉 > 0 ,

and by (3.34)–(3.38), for some small ε4 > 0 that satisfies J∗∗∗ + ε4 < J∗, we have,

JS′2(�f, �g)− JS1(�f, �g)

〈b, �q(S ′2)〉 − 〈b, �q(S1)〉
≤ J∗∗∗ + ε4 < J∗ . (3.39)
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Set c0 = −�q̂2(0) and for each m ∈ {1, · · · , k}, choose a

cm ∈
(
−�q̂2(s) +

b1

b2

rm−1,−�q̂2(s) +
b1

b2

rm

)
such that the counting measure of set {s ∈ [0, S ′2] : �q(s) = cm} is finite; such {cm}

exist since �q is Lipschitz. Lastly, choose a ck+1 <∞ large enough such that

max
s∈[S1,S′2]

�q2(s) < ck+1.

For each m ∈ {1, · · · , k + 1}, define a set

Cm = {s ∈ [S1, S
′
2] : �q2(s) ∈ [cm−1, cm]} .

We make the following three observations which will be used in the sequel: for each

m ∈ {1, · · · , k + 1},

(i) the trajectory (�q2(s), s ∈ [S1, S
′
2]) intersects with end points of interval [cm−1, cm]

only finitely many times, therefore, the corresponding set Cm can be written as

a union of finitely many intervals;

(ii) if set Cm is non-empty, then

�q2(min
s∈Cm

s) = �q2(max
s∈Cm

s);

(iii) the trajectory (�q(s), s ∈ Cm) can intersect with at most one switching curve,

namely x2 = −�q̂2(s)+ b1
b2
rm−1, or equivalently, with at most two adjacent regions

�S(·), (e.g., for m = k+1 the above trajectory can intersect with adjacent regions

�Sk and �S0).

Then using (i) and (ii) above, for all sets Cm, we must have,∫
Cm

�q
′
2(s) ds = 0 . (3.40)
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Moreover, there exists a set Cm such that,∫
Cm

〈b, �q′(s)〉 ds > 0 ,

and, ∫
Cm

(
L(f)

(
�f
′(s)
)

+ L(g)

(
�g
′(s)
))

ds∫
Cm
〈b, �q′(s)〉 ds

< J∗ ,

otherwise (3.39) will not hold. With a set Cm for which the above two hold, let,(
λ̂, γ̂, µ̂

)
=

1

ν(Cm)

∫
Cm

(
�f
′(s), �g

′(s), µ(s)
)
ds .

By (iii) above, (3.18–3.20), and the fact that �d(s) > 0 in [S1, S
′
2], the service vector

µ̂ is a convex combination of at most two adjacent vertices of capacity region Vγ̂ and

lies on the facet with outer normal slope rm−1. That is, µ̂ is necessarily a maximal

element of Vγ̂. This, together with the fact that λ̂2 = µ̂2 which follows from (3.40),

gives µ̂ = arg minv∈Vγ̂

〈
b, (λ̂− v)+

〉
= v∗(λ̂, γ̂), and then,∫

Cm

〈b, �q′(s)〉 ds =
〈
b, λ̂− v∗(λ̂, γ̂)

〉
ν(Cm) .

Finally,

J∗ >

∫
Cm

(
L(f)

(
�f
′(s)
)

+ L(g)

(
�g
′(s)
))

ds∫
Cm
〈b, �q′(s)〉 ds

,

≥
L(f)(λ̂) + L(g)(γ̂)〈
b, λ̂− v∗(λ̂, γ̂)

〉 .

By the definition of J∗, the right side of last inequality cannot be less than J∗, giving

the required contradiction; hence we conclude that J∗ = J∗∗.

3.11 Conclusion and extensions

In order to minimize the asymptotic probability of weighted-sum-queue over-

flow, the desirable mode of overflow is one where queues may build up at different

85



rates, however, the total weighted service rate seen by the queues is the highest

possible, (service rate subject to being not more than the arrival rate.) The p-Log

scheduling rule minimizes the asymptotic probability of weighted-sum-queue overflow

and exhibits such a mode of overflow. This property of p-Log rule is related to the

collapse under fluid scaling of all but one set of the state space partition to either of

the axes; the set that does not collapse is the horn-shaped weighted-max-sum-rate set.

This collapse under fluid scaling is typical of the partition under any radial sum-rate

monotone scheduler. However, the scaling or magnifying factor required to obtain

a useful LFSP, and the shape of the sets of partition on the local fluid state space

will vary for different radial sum-rate monotone schedulers. In this regard, p-Log rule

yields an easily tractable partition of the local fluid space where all switching curves

are parallel to one of the axes.

Recently in [47], the authors have reported a promising framework to relate the

gradient field associated with a MaxWeight-type scheduler to the modes of overflow

and large deviations of the appropriately scaled queue process. They are able to

show that the Log rule indeed minimizes the asymptotic probability of sum-queue

overflow; the framework, however, does not cover the p-Log or Exp rule since the

vector field associated with either of these schedulers is not a gradient field. In this

regard, Lemmas 3.2 and 3.3 of this thesis suggest that it may be possible in some

cases to locally replace the vector field with a gradient field and thus obtain a suitable

Lyapunov function, and relate the negative drift of this Lyapunov function to that of

the quantity of interest (weighted sum-queue in our case).

The following extensions of the main result as well as the system model are

possible without much effort.

First, the lower bound (i.e., Theorem 3.1-i and its proof) goes through without

any changes for any fixed number of queues (instead of only two) sharing the time-
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varying server.

Second, the main result (Theorem 3.1) is also applicable to the following dif-

ferent and simpler system model. Instead of a single server with time-varying state

m(t) ∈ {1, 2, . . . ,M}

having distribution π, suppose there are M distinct servers with fixed but asymmetric

capacities across the two queues; such servers are typically called parallel “unrelated”

machines (see, e.g., [4]). More specifically, the mth server, if allocated to the ith ∈ I

queue, can serve πiµ
m
i ∈ Z+ packets from the queue. The total service offered to a

queue is taken to be the sum of service offered by each server assigned to that queue.

Then the scheduling problem is to dynamically assign the servers to the queues based

on the queue state. When queue is in state Q, the p-Log scheduler in this context

allocates the mth server to the queue i∗pLog(Q,m) as given by (3.6). This system model

is simpler in that the only random process now driving the system are the arrivals,

but is also different from the original model in that there are multiple parallel servers

with each server having asymmetric capacities across the two queues.

Third, the main result also goes through if the capacity regions V m are per-

mitted to be arbitrary convex polyhedra instead of just triangles obtained as a convex

hull of service vectors (0, 0), (µm1 , 0), and (0, µm2 ). That is, in a more general model,

in any server state m, the server can be permitted to operate at any one of the km

service vectors from the set,

{(
µm1 (1), µm2 (1)

)
, · · · ,

(
µm1 (km), µm2 (km)

)}
.

The region V m then will be the convex hull of the km vertices associated with state m.

The only change needed is to generalize the definition of p-Log rule as follows. When

the system is in state (Q,m), operate the server at a service vector µ∗pLog(Q,m) ∈ V m
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given by,

µ∗pLog(Q,m) ∈ arg max
y∈Vm

〈y, h(Q)〉 ,

where, in the case of a tie, if Q1 ≥ Q2, then µ ∗pLog (Q,m) maps to the maximizer

with the largest capacity for Queue 1, otherwise µ∗pLog(Q,m) maps to the maximizer

with the largest capacity for Queue 2. This generalization affects the fluid and local

fluid sample paths through (3.20) in Lemma 3.1, which can be shown to hold exactly

as in [48,49].

Besides the above extensions, we will conclude by stating one more interest-

ing application of the p-Log scheduler. A throughput-optimal scheduler can also be

used to offer minimum and maximum average service rate guarantees to infinitely

backlogged queues, referred to as tasks, sharing a time-varying server/wireless chan-

nel [39, 50]. This is done by using virtual token queues that are fed by deterministic

arrivals at a constant rate λi, and making scheduling decisions to serve tasks based

on the virtual token queues (augmented with a scheduling rule to use when all token

queues are empty). If rates λi are feasible (i.e., vector λ lies in the interior of capac-

ity region Vπ associated with the time-varying server), then under any throughput-

optimal scheduler, each task i will be offered an average service rate vi ≥ λi (such

that v ∈ Vπ). However, if rates λi are not feasible, then main result of this chapter

implies that the average service rate vector v has the following interesting and de-

sirable property under p-Log rule: 〈b, v〉 is maximized subject to vi ≤ λi. That is,

p-Log rule splits the tasks in two sets, for one set of tasks vi = λi, whereas for the

other vi < λi, and the sets are chosen such that the total weighted service rate 〈b, v〉

is maximized.
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Appendix – Proof of Theorem 3.2

We begin by developing the necessary results need for the proof of Theorem

3.2. The corresponding proof in [19] has some parts– lemmas and theorems– that are

not specific to the Exp rule; these mostly go through by interpreting q∗(t) (which is

the notation for max-queue in [19]) as weighted-sum-queue
∑

i∈I biqi(t), while other

lemmas and theorems require more work specific to the p-Log rule. We proceed by

stating the following two theorems whose proofs are short and identical to those of

Theorem 8.5 and Theorem 8.6 in [19] by interpreting q∗(t) as
∑

i∈I biqi(t).

Theorem 3.3 (See Theorem 8.5 of [19]) For any fixed T ≥ 0 and 0 ≤ c < 1, let us

denote

J∗∗,≤T,c = inf
ψ

{
J t|ψ :

∑
i∈I

biqi(0) ≤ c and
∑
i∈I

biqi(t) ≥ 1 for some t ≤ T
}
.

Then, we have,

lim sup
n→∞

1

n
log sup∑

i∈I biq
(n)
i (0)≤c

P
(

sup
t∈[0,T ]

∑
i∈I

biq
(n)
i (t) > 1

)
≤ − J∗∗,≤T,c ,

and as c→ 0,

J∗∗,≤T,c ↗ J∗∗,≤T,0 = inf
t≤T

J∗∗,t . (3.41)

Theorem 3.4 (See Theorem 8.6 of [19]) For any fixed C∗ > δ > 0, and T > 0, let

us denote

K(C∗, δ, T ) = inf
ψ

{
JT |ψ :

∑
i∈I

biqi(0) ≤ C∗ and
∑
i∈I

biqi(t) ≥ δ for all t ∈ [0, T ]
}
.

Then, we have,

lim sup
n→∞

1

n
log sup∑

i∈I biq
(n)
i (0)≤C∗

P
(

inf
t∈[0,T ]

∑
i∈I

biq
(n)
i (t) ≥ δ

)
≤ −K(C∗, δ, T ) .

Theorem 3.5 (See Theorem 8.7 of [19]) For any C∗ > 0, there exists ∆1 > 0 such

that for all sufficiently large T and all δ ∈ (0, C∗), we have K(C∗, δ, T ) ≥ ∆1T .
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Proof It is clear that K(C∗, δ, T ) is increasing in δ. We will show that there exists

an ε5 > 0 and δ5 > 0 such that for any GFSP satisfying 〈b, q(·)〉 > 0 over [0, T ],

if JT − J0 ≤ ε5T, then 〈b, q(T )− q(0)〉 ≤ −δ5T , (3.42)

hence for all T > C∗/δ5 and all δ ∈ (0, C∗), we must have K(C∗, δ, T ) > ε5T , thus

the desired result.

Fix S large enough as required by Lemma 2.2 and recall ε2 and δ2 therein.

For each n, define sequence {τ (n)
l , l = 0, 1, ..., l∗} in interval [0, T ] such that τ

(n)
0 = 0,

and,

τ
(n)
l+1 = τ

(n)
l + σn(τ

(n)
l )S ,

where σn(·) =

√
q

(n)
∗ (·)

/√
n, and l∗ is the largest integer (that depends on n) such

that τ
(n)
l∗ ≤ T . Let B

(n)
2 be the union of intervals [τ

(n)
l , τ

(n)
l+1] over which the refined

cost is strictly less than ε2σn(τ
(n)
l )S, i.e.,

B
(n)
2 =

{
∪ [τ

(n)
l , τ

(n)
l+1] : J

(n)

τ
(n)
l+1

− J (n)

τ
(n)
l

< ε2σn(τ
(n)
l )S

}
,

and B
(n)
1 = [0, T ]\B(n)

2 . Now pick a positive ε5 < ε2/2. From this point on, we assume

n large enough. The Lebesgue measures of B
(n)
1 and B

(n)
2 satisfy ν(B

(n)
1 ) ≤ 2ε5

ε2
T and

ν(B
(n)
2 ) ≥ (1− 2ε5

ε2
)T . Moreover, over any interval [τ

(n)
l , τ

(n)
l+1] ⊆ B

(n)
2 , we must have,〈

b, q(n)(τ
(n)
l+1)− q(n)(τ

(n)
l )
〉
≤ −δ2

2
σn(τ

(n)
l )S .

otherwise we could construct a LFSP contradicting Lemma 2.2 by choosing a subse-

quence in n along which the above inequality does not hold and τ
(n)
l converges to some

τ ∈ [0, T ]. Then we have the following bound on the total increment of
〈
b, q(n)(·)

〉
over B

(n)
2 ,

∑
[τ

(n)
l ,τ

(n)
l+1]⊆B(n)

2

〈
b, q(n)(τ

(n)
l+1)− q(n)(τ

(n)
l )
〉
≤ − δ2

2
(1− 2ε5

ε2
)T .
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Also, because we have assumed bounded arrivals, there is a finite c1 > 0 such that

the total increment of
〈
b, q(n)(·)

〉
over [0, T ] \B(n)

2 satisfies,〈
b, q(n)(T )− q(n)(τl∗)

〉
+

∑
[τ

(n)
l ,τ

(n)
l+1]⊆B(n)

1

〈
b, q(n)(τ

(n)
l+1)− q(n)(τ

(n)
l )
〉
≤ c1

2ε5
ε2
T .

Finally, summing the above two inequalities and taking limit, we get,

〈b, q(T )− q(0)〉 ≤ lim sup
n→∞

〈
b, q(n)(T )− q(n)(0)

〉
,

≤ −T
(δ2

2
− ε5
ε2

(δ2 + 2c1)
)
.

Now we can fix a positive δ5 < δ2/2 and choose ε5 > 0 small enough to satisfy (3.42),

completing the proof.

Remark 3.5 While the reader may conclude the throughput-optimality of the p-Log

rule from Lemma 3.2 alone, nevertheless, the throughput-optimality explicitly bears

out as a corollary of the above theorem. Specifically, (3.42) shows that for any zero

cost limiting trajectories (f, g, q)– i.e.
(
f (n), g(n), q(n)

)
converge u.o.c to (f, g, q) with

probability 1– with initial condition 〈b, q(0)〉 = 1, we have 〈b, q(T )〉 = 0 for all

T > 1
δ5

. That is, for any deterministic initial state satisfying 〈b, q(n)(0)〉 ≤ 1, we

have 〈b, q(n)(T )〉 → 0 with probability 1. Convergence with probability 1, along with

the bound 〈b, q(n)(T )− q(n)(0)〉 < C(b1 + b2)(T + 1) (recall the assumption of bounded

arrivals), implies convergence in the mean too, and therefore,

lim sup
n→∞

sup∑
i∈I biq

(n)
i (0)≤1

E

[ ∑
i∈I

biq
(n)
i (T )

]
= 0. (3.43)

By [51] (or see Theorem 4.1 of [11],) this proves the throughput-optimality of p-Log

rule.

Fix a time T > 0 and constants C∗ > δ > 0. Just as (3.43) was obtained from

(3.42), the following too can be shown. For all large n, uniformly on 〈b, q(n)(0)〉 ≤ C∗,
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if 〈b, q(n)(·)〉 > δ over [t, t+ T ], then,

sup
〈b,q(n)(0)〉≤C∗

E
[〈
b, q(n)(t+ T )

〉
−
〈
b, q(n)(t)

〉]
≤ −δ5

2
T .

The above along with Dynkin’s formula (see Theorem 19.1.2 of [69]) implies the

following result.

Lemma 3.5 Let constants C∗ > δ > 0 be fixed. Consider the stopping time,

β(n) = inf
{
t ≥ 0 :

〈
b, q(n)(t)

〉
≤ δ
}
.

Then, for all sufficiently large n, uniformly on the initial states with
〈
b, q(n)(0)

〉
≤ C∗,

we have,

E[ β(n) ] ≤ ∆2C
∗ ,

for some finite ∆2 > 0.

Proof of Theorem 3.2 Now we can proceed with the proof of Theorem 3.2. Con-

sider the scaled (random) process q(n). For any fixed constants

C∗ > 1 > ε∗ > ε > δ > 0,

define the following stopping times,

α(n) = inf
{
t > 0 :

〈
b, q(n)(t)

〉
≥ 1
}
,

β(n) = inf
{
t > 0 :

〈
b, q(n)(t)

〉
≤ δ
}
,

η(n) = inf
{
t > β(n) :

〈
b, q(n)(t)

〉
≥ ε
}
.

Let p(n) denote the stationary distribution of process q(n)(t), p
(n)
x its distribution

conditional on q(n)(0) = x, and Ex expectation under p
(n)
x . Then, for any arbitrary

92



T > 0, it is easy to show (see (8.15) [19]) the following upper bound on the probability

of overflow,

p(n)
(∑

i∈I

biq
(n)
i > 1

)
≤

supy:〈b,y〉≤C∗ Ey
[
β(n)

]
infz:〈b,z〉≥ε Ez

[
η(n)

] sup
x:〈b,x〉≤ε∗

(
p(n)
x

(
β(n) ≥ T

)
+p(n)

x

(
α(n) ≤ T

))
.

(3.44)

Now, by uniform upper bound in Lemma 3.5, we have

lim sup
n→∞

sup
y:〈b,y〉≤C∗

Ey
[
β(n)

]
≤ ∆2C

∗,

and by bounded arrivals, we have the lower bound

lim inf
n→∞

inf
z:〈b,z〉≥ε

Ez
[
η(n)

]
> 0.

Therefore, the terms that are going to decide the limit,

lim sup
n→∞

1

n
log p(n)

(∑
i∈I

biq
(n)
i > 1

)
,

in (3.44) are p
(n)
x

(
β(n) ≥ T

)
and p

(n)
x

(
α(n) ≤ T

)
.

By Theorem 3.5, we can choose T large enough such that

K(ε∗, δ, T ) ≥ K(C∗, δ, T ) ≥ J∗∗.

Then by Theorem 3.4, we have

lim sup
n→∞

1

n
log sup

x:〈b,x〉≤ε∗
p(n)
x

(
β(n) ≥ T

)
≤ −K(C∗, δ, T ) ≤ − J∗∗ .

By (3.41) and the definition of J∗∗ in (3.15), for any ε6 > 0, we can choose an even

larger a T (if required) and an ε∗ > 0 small enough such that J∗∗,≤T,ε∗ > J∗∗ − ε6.

Then by Theorem 3.3,

lim sup
n→∞

1

n
log sup

x:〈b,x〉≤ε∗
p(n)
x

(
α(n) ≤ T

)
≤ − J∗∗,≤T,ε∗ < − (J∗∗ − ε6) .

Since we can choose ε6 arbitrarily small (and subsequently fix constants 1 > ε∗ > ε >

δ > 0), substituting the above two bounds in (3.44) completes the proof.
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Part II

Best-effort scheduling
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Chapter 4

Throughput optimality of delay-driven MaxWeight

scheduler for wireless systems with flow dynamics

4.1 Overview and main contributions

In the second half of this thesis, we consider a wireless link shared by a dy-

namic population of best-effort flows. Flows of random size (bits) arrive at the base

station at random times, and leave when they have been completely transmitted.

The transmission rate supported by the wireless channel of each flow while the flow

awaits transmission varies randomly over time and is independent of that of the other

flows. The scheduling problem in this context is to select which flow to serve based

on the current system state (e.g., residual flow sizes, sojourn times, and channel

states of the contending flows), with the objective of minimizing the sojourn time/file

transfer delay. It has recently been shown that for such a system, the well-known

(backlog-driven) MaxWeight scheduler is not throughput optimal. That is to say, the

MaxWeight scheduler will not stabilize a given system even though it is possible to

construct a stabilizing scheduler using the various flow- and channel-related statistics.

However, in this chapter, we show that the delay-driven MaxWeight scheduler is, nev-

ertheless, throughput optimal for such a system. The delay-driven MaxWeight, like its

backlog-driven version, does not require any knowledge of the flow- or channel-related

statistics.
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Contributions

For a system with flow-level dynamics, [28] recently showed that the queue-

driven MaxWeight scheduler is not throughput optimal.1 In this chapter, we show

that the delay-driven MaxWeight still is throughput optimal in the dynamic flow

setting. The critical observation which explains why the queue-driven version is not

throughput optimal but the delay-driven version is, is as follows. In the setting where

there is a fixed number of flows, a linear relation can be established between the

head-of-line packet delay and the queue length of a flow (Little’s law) as either one

gets large. By contrast, in the setting with dynamic number of flows, while the head-

of-line delay of an un-served flow will continue to increase, its queue length will not

due to the finite size of flows. So, in the former setting, the queue-driven and the

delay-driven versions of MaxWeight are equivalent in some sense, whereas, in the

latter, the queue-driven version may perpetually fail to exploit good channel states of

small queues (i.e. files with few residual bits) irrespective of how long these small files

wait while the bigger newer files may get scheduled (because of their longer queue

lengths) even when their channels are poor; see excellent illustrative examples in [28].

4.2 System model

Let randomA(t) ∈ Z+ denote the number of files arriving in time slot [t, t+1),

these files will not be available for service until the next time slot. We assume

A(·) are i.i.d. and bounded, with mean λ ≡ EA(0). For 0 < i ≤ A(t), let

Bi(t) denote the file size in bits of the ith arriving file. We assume that Bi(t) are

i.i.d. (across both t and i), are bounded, and have mean β ≡ EB1(0). We will use

bold face, e.g. (A(t), t = 0, 1, · · · ), to denote the random process and plain font,

e.g. (A(t), t = 0, 1, . . .), to denote a realization of the process. Also, we will make

1Queue-driven Exponential rule and Log rule can similarly be shown to be not throughput optimal
in the dynamic flow setting.
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a distinction between “increasing” and “strictly increasing” and between “positive”

and “strictly positive” etc.

Let Q(t) ∈ Z+ denote the number of files present in the system at the end

of time slot [t − 1, t). Then in the time slot [t, t + 1), at most one of the Q(t) files

present in the system can be scheduled to receive service. For each file 0 < i ≤ Q(t)

present in the system at the end of time slot [t− 1, t), let

• [Ti(t),Ti(t) + 1) denote the time slot in which the ith file arrived. We index the

files in order of their arrival time, i.e., T1(t) ≤ T2(t) ≤ · · · ≤ TQ(t)(t). Let

T (t) ≡ (Ti(t), 1 ≤ i ≤ Q(t)) and W (t) ≡ (Wi(t), 1 ≤ i ≤ Q(t)) ,

where Wi(t) ≡ t − Ti(t) > 0 denotes the current sojourn time of the ith file.

Also, let W (t) ≡ 0 if Q(t) = 0.

• randomRi(t) denote the maximum number of bits that can be served/transmitted

from file i, if it is scheduled in time slot [t, t + 1). We will sometimes refer to

Ri(t) as the state of the ith files channel. We assume thatRi(t) lies in a finite set

{0, 1, · · · , rmax} and is i.i.d. (across both t and i). Also, let p0 ≡ P (R1(0) > 0)

and p ≡ P (R1(0) = rmax) > 0.

• Li(t) > 0 denote the number of bits left in the ith file at the end of slot [t− 1, t),

or, equivalently, the number of bits available for transmission in time slot

[t, t+ 1). A file leaves the system once all its bits have been served/transmitted.

Also let L(t) ≡ (Li(t), 1 ≤ i ≤ Q(t)).

See Fig. 4.1 for a graphical illustration of the system.

Let γ ≡ E
⌈
B1(0)
rmax

⌉
and ρ ≡ λγ, i.e., the average amount of work (in number

of slots) per slot that is entering the system if the files could always be served at
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Figure 4.1: System model.

rmax bits/slot. We assume that ε0 ≡ 1 − ρ > 0 which is a sufficient condition for

stabilizablility [28].

Remark 4.1 We have assumed that file size and channel state are i.i.d. across files,

however, consider the following generalization. Suppose there are a fixed number K

of classes of files, where the class determines the distribution of the arrival and the

file size processes, as well as the distribution of the channel seen by the file. Then for

each class k ∈ {1, 2, · · · , K}, suppose a file in the kth class sees an i.i.d. channel that

has the same distribution as Rk
1(0). So the distribution of channel state may differ

across classes (as indicated by the superscript k), however, we restrict that for all k,

P(Rk
1(0) = rmax) > 0 and P(Rk

1(0) > rmax) = 0. That is, the highest possible rate

supported by the channel of any file of any class is rmax. Using this rmax, let λk, βk, γk

and ρk respectively denote the mean arrival rate, file size, work load per file, and total

work load associated with the kth class. Then, the results presented in this chapter

are applicable, without modification, to this more general multi-class system model,
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by appropriately defining λ, β, γ, ρ and p as follows:

λ =
K∑
k=1

λk , β =
∑K

k=1
λk
λ
βk , γ =

∑K
k=1

λk
λ
γk ,

ρ =
K∑
k=1

ρk , p = min1≤k≤K P
(
Rk

1(0) = rmax
)
.

4.2.1 Delay-driven MaxWeight scheduler

Definition 4.1 For any time slot [t, t + 1), when there are Q(t) > 0 files present in

the system (at the end of the last slot), and the corresponding sojourn time and chan-

nel state vectors are W (t) = (Wi(t), 1 ≤ i ≤ Q(t)) and R(t) = (Ri(t), 0 ≤ i ≤ Q(t))

respectively, then schedule for service a file i∗ (W (t), R(t)) that satisfies,

i∗ (W (t), R(t)) ∈ arg max
1≤i≤Q(t)

Wi(t)Ri(t) , (4.1)

with ties broken in favor of the smallest index i achieving the max in above.

Remark 4.2 Under MaxWeight, the process Q(·) evolves as follows,

Q(t+ 1) =
(
Q(t)− 11{L∗(t)≤R∗(t)}

)+
+A(t) .

where L∗(·) ≡ Li∗(W (·),R(·))(·) and R∗(·) ≡ Ri∗(W (·),R(·))(·). For later use, let us also

define T∗(·) ≡ Ti∗(W (·),R(·))(·) and W∗(·) ≡Wi∗(W (·),R(·))(·).

Remark 4.3 At any t ∈ Z+, the state, S(t), of the system given by,

S(t) ≡
(
Q(t); W (t) = (Wi(t), 1 ≤ i ≤ Q(t)) ;

L(t) = (Li(t), 1 ≤ i ≤ Q(t))
)
,

forms a discrete time homogeneous Markov chain under the MaxWeight scheduler.

4.3 Main result

The main result of this chapter is given below and in the rest of the chapter

we will give the proof of this result.
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Theorem 4.1 Delay-driven MaxWeight scheduler is throughput optimal, i.e., for any

ρ < 1 in the system described in Section 4.2, the delay-driven MaxWeight scheduler

stabilizes the system.

We will need the following quantities all of which are derived from a system

sample-path2 X ≡
(
S(t), A(t), R(t), t ∈ Z

)
.

• Let U(t) ≡ (Ui(t), 1 ≤ i ≤ Q(t)), where Ui(t) ≡
⌈
Li(t)
rmax

⌉
, i.e., the number of slots

it will take to serve the ith present file if served at rate rmax bits/slots.

• Let Ū(t) ≡
∑Q(t)

i=1 Ui(t), i.e., the total unfinished work present in the system

(assuming the service rate is always rmax) at the end of slot [t− 1, t).

• Let L̄(t) ≡
∑Q(t)

i=1 Li(t), i.e., the total number of bits present at the end of slot

[t− 1, t).

In the sequel, we will extend the domain of all discrete time processes and

functions to continuous time: a function originally defined on integer times has the

same value at any real t that it takes at btc. Also, we will extend the definition of

Wi(t) to all i ∈ {1, 2, . . .} by letting Wi(t) = 0 for i ∈ {Q(t) + 1, Q(t) + 2, · · · }.

For each n ∈ Z+, consider a independent and stochastically equivalent system

X (n) ≡
(
S(n)(0); S(n)(t+ 1),A(n)(t),R(n)(t), t ≥ 0

)
under the delay-driven MaxWeight scheduler and where the initial state S(n)(0) is

non-random and satisfies,

||S(n)(0)|| ≡ Ū (n)(0) +W
(n)
1 (0) = n , (4.2)

2Even though (A(t), t ≥ 0) can be inferred from the other components of X , for clarity we
explicitly include (A(t), t ≥ 0) in definition of X .
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i.e., the total work in terms of number of slots it will take to serve the files present

at t = 0 if served at rate rmax per slot, plus the current sojourn time of the oldest file

in the system.

The following proposition is due to [51], and will be used in proving Theorem

4.1.

Proposition 4.1 Suppose there exists an ε > 0 and an integer t1 > 0 such that the

following holds for any sequence of systems
{
X (n), n = 1, 2, . . .

}
satisfying (4.2),

lim sup
n→∞

E
(

1

n
||S(n)(nt1)||

)
≤ 1− ε , (4.3)

then the Markov chain
(
S(t), t ∈ Z

)
is stable.

See [10] for a use of this proposition to show throughput optimality of queue-

and delay-driven MaxWeight in the case of a system with a fixed number of flows

each having a corresponding stationary exogenous packet arrival process.

We will now define the fluid-scaled functions and processes obtained from the

sequence {X (n), n = 1, 2, . . .}; these fluid-scaled functions and their limits will be

used in showing the conditions required for Proposition 4.1, i.e., the existence of ε

and t1 as in (4.3).

4.3.0.1 Fluid limit of the deterministic initial state

For t ∈ (−∞, 0], let F (n)(t) denote the number of files present at time 0 that

had arrived by the end of time slot [btc − 1, btc), i.e.,

F (n)(t) ≡
Q(n)(0)∑
i=1

11{
T

(n)
i (0)≤t−1

} .
Since W

(n)
1 (0) ≤ n, we have that F (n)(−n) = 0 and F (n)(0) = Q(n)(t).

Let,

l̄(n)(0) ≡ 1

n
L̄(n)(0) , ū(n)(0) ≡ 1

n
Ū (n)(0) , q(n)(0) ≡ 1

n
Q(n)(0) ,
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and for t ∈ [−1, 0], let,

f (n)(t) ≡ 1

n
F (n)(nt),

and for x ∈ [0,∞), let3,

w(n)
x (0) ≡ 1

n
W

(n)
bnxc+1(0) ,

where w
(n)
x (0) is decreasing in x. Since,

0 ≤ q(n)(0) ≤ l̄(n)(0) ≤ rmax
(
ū(n)(0) + w

(n)
0 (0)

)
= rmax, (4.4)

therefore, along some subsequence of n (for simplicity still denoted by n), we have,

l̄(n)(0)→l̄(0) , ū(n)(0)→ ū(0) ,

w
(n)
0 (0)→w0(0) , q(n)(0)→ q(0) ,

where ū(0) + w0(0) = 1. With w0(0) and f(0) ≡ q(0) as above, let

(
wx(0), 0 ≤ x ≤ q(0)

)
and

(
f(t), − 1 ≤ t ≤ 0

)
be weak limits of (w

(n)
x (0), 0 ≤ x ≤ q(0)

)
and (f (n)(t), − 1 ≤ x ≤ 0

)
respectively

along a further subsequence of n, i.e.,

w(n)
x (0)→ wx(0) , f (n)(t)→ f(t)

at the points of continuity of w(·)(0) and f(·) respectively. To summarize, the (partial)

initial state of the limiting system is captured by,

(
q(0); w(0) ≡

(
wx(0), 0 ≤ x ≤ q(0)

)
;
(
f(t), − 1 ≤ t ≤ 0

)
; ū(0) + w0(0) = 1

)
.

3(f (n)(t), − 1 ≤ t ≤ 0) and (w
(n)
x (0), 0 ≤ x ≤ q(n)(0)) are related. That is,

w
(n)
x (0) = 1/n− inft(t : f (n)(t) ≥ x+ 1/n).
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4.3.0.2 Deterministic fluid limit of the random state for t ≥ 0

We will also need the following fluid-scaled processes, all defined for t ∈ R+.

Let F (n)(t),F
(n)
l (t), and F

(n)
u (t) respectively be the total files, the total bits,

and the total work arriving up to the end of time slot [btc − 1, [btc), i.e.,

F (n)(t) ≡ Q(n)(0) +
t−1∑
k=0

A(n)(k) ,

F
(n)
l (t) ≡ L̄(n)(0) +

t−1∑
k=0

A(k)∑
m=1

B(n)
m (k) ,

F (n)
u (t) ≡ Ū (n)(0) +

t−1∑
k=0

A(k)∑
m=1

⌈
B

(n)
m (k)

rmax

⌉
.

Then, along a further subsequence of n, we have the following uniform over compact

sets (u.o.c) convergences (see Theorem 4.1 of [52], Lemma 1 of [10]),(
f (n)(t) ≡ 1

n
F (n)(nt), t ≥ 0

)
→

(
f(t) ≡ q(0) + λt, t ≥ 0

)
,(

f
(n)
l (t) ≡ 1

n
F

(n)
l (nt), t ≥ 0

)
→

(
fl(t) ≡ l̄(0) + λβt, t ≥ 0

)
,(

f (n)
u (t) ≡ 1

n
F (n)
u (nt), t ≥ 0

)
→

(
fu(t) ≡ ū(0) + ρt, t ≥ 0

)
.

(4.5)

Let D(n)(τ, t),D
(n)
l (τ, t), and D

(n)
u (τ, t) respectively be the total files, the total

bits, and the total work which

(i) arrived before the end of time slot [bτc − 1, bτc), and

(ii) departed/completed service by the end of time slot [btc − 1, btc).

These can be mathematically defined as follows: for t ≥ 0, t ≥ τ > −∞,

D(n)(τ, t) ≡
t−1∑
k=0

11{
L

(n)
∗ (k)≤R(n)

∗ (k), T
(n)
∗ (k)≤τ−1

} ,
D

(n)
l (τ, t) ≡

t−1∑
k=0

min
(
L(n)
∗ (k),R(n)

∗ (k)
)

11{
T

(n)
∗ (k)≤τ−1

} ,
D(n)

u (τ, t) ≡
t−1∑
k=0

(⌈
L

(n)
∗ (k)

rmax

⌉
−

⌈
L

(n)
∗ (k)−R(n)

∗ (k)

rmax

⌉)
11{
T

(n)
∗ (k)≤τ−1

} .
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For example, D(n)(t, t) is simply the total number of files which have completed

service by the end of slot [btc − 1, btc). Moreover, D(n)(τ, t) is increasing in τ and t

with D(n)(·, 0) = 0, and for any (τ1, t1) ≤ (τ2, t2), we have that

D(n)(τ2, t2)−D(n)(τ1, t1) ≤ max
(
t2 − t1 + 1,F (n)(τ2)− F (n)(τ1)

)
.

Similar bounds hold for D
(n)
l (τ, t) and D

(n)
u (τ, t). Then, along a further subsequence

of n, we have the following u.o.c. convergences to Lipschitz continuous (and hence

differentiable a.e.) limiting functions,(
d(n)(τ, t) =

1

n
D(n)(nτ, nt), t ≥ τ ≥ 0

)
→

(
d(τ, t), t ≥ τ ≥ 0

)
,(

d
(n)
l (τ, t) ≡ 1

n
D

(n)
l (nτ, nt), t ≥ τ ≥ 0

)
→

(
dl(τ, t), t ≥ τ ≥ 0

)
,(

d(n)
u (τ, t) ≡ 1

n
D(n)

u (nτ, nt), t ≥ τ ≥ 0
)
→

(
du(τ, t), t ≥ τ ≥ 0

)
.

The points (τ, t) where the derivatives of the limiting functions exist are called regular.

Then, for all regular t ≥ τ ≥ 0, we have that 0 ≤ ∂d(τ,t)
∂τ
≤ λ and 0 ≤ ∂d(τ,t)

∂t
≤ 1.

Similar bounds hold for the derivatives of dl(τ, t) and du(τ, t).

Let Q(n)(τ, t) denote the number of files which arrived before the end of

slot [τ − 1, τ) but are still present at the end of slot [t − 1, t); so, for example,

Q(n)(t) = Q(n)(t, t). Then using the above defined processes, we have that,

Q(n)(τ, t) = F (n)(τ)−D(n)(τ, t) ,

Q(n)(t) = Q(n)(t, t) = F (n)(t)−D(n)(t, t) ,

L̄(n)(t) = F
(n)
l (t)−D(n)

l (t, t) ,

Ū (n)(t) = F (n)
u (t)−D(n)

u (t, t) ,

W
(n)
i (t) = btc+ 1− inf

τ

(
τ : Q(n)(τ, t) ≥ i

)
, i ∈ {1, · · · ,Q(n)(t)},
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and the following u.o.c. convergences to Lipschitz continuous limiting functions,(
q(n)(τ, t) ≡ 1

n
Q(n)(nτ, nt), t ≥ τ ≥ 0

)
→ (q(τ, t) ≡ f(τ)− d(τ, t), t ≥ τ ≥ 0) ,(

q(n)(t) ≡ 1

n
Q(n)(nt), t ≥ 0

)
→ (q(t) ≡ f(t)− d(t, t), t ≥ 0) ,(

l̄(n)(t) ≡ 1

n
L̄(n)(nt), t ≥ 0

)
→

(
l̄(t) ≡ fl(t)− dl(t, t), t ≥ 0

)
,(

ū(n)(t) ≡ 1

n
Ū (n)(nt), t ≥ 0

)
→ (ū(t) ≡ fu(t)− du(t, t), t ≥ 0) ,

and the following weak convergence,(
w(n)
x (t) ≡ 1

n
W

(n)
bnxc+1(nt), x ≥ 0, t ≥ 0

)
→ (wx(t), x ≥ 0, t ≥ 0) ,

where, if q(t) > 0 = q(0, t), then w0(t) is given by the right-limit of wx(t), i.e.,

w0(t) = lim
x↓0

wx(t) = lim
x↓0

(
t− inf

τ
(τ : q(τ, t) ≥ x)

)
= t− sup

τ
(τ : q(τ, t) = 0) .

4.3.0.3 Dynamics and derivatives of fluid limit for t ≥ 0

The limit point obtained above,
(
q, l̄, ū, w, f, fl, fu, d, dl, du

)
, of the scaled ver-

sion of the sequence {X (n), n = 1, 2, . . .} is not necessarily unique. In particular, the

limit point depends on the sequence of initial states {S(n)(0)} and the convergent

subsequence chosen. However, the following lemmas hold for all limit points of the

scaled version of sequence {X (n), n = 1, 2, . . .}.

Lemma 4.1 Consider any set of limiting functions derived from {X (n), n = 1, 2, . . .}.

For any regular t ≥ τ ≥ 0, if fl(τ)− dl(τ, t) > 0, then,

∂dl(τ, t)

∂t
≥ 1, (4.6)

and,

∂dl(t, t)

∂t
=
∂dl(τ, t)

∂t
. (4.7)
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Remark 4.4 The condition fl(τ)− dl(τ, t) > 0 means that there is a strictly positive

amount of bit fluid with current sojourn time at least t− τ . Then (4.6) ensures that

this fluid will eventually get served, whereas, (4.7) ensures no service is given to any

newer fluid while the older one remains in the system. This lemma however does not

establish that the rate at which the fluid is being served is higher than the rate at which

the fluid is entering the system; that is addressed later in Lemma 4.2.

Proof of Lemma 4.1 Fix a t ≥ τ ≥ 0 such that fl(τ)− dl(τ, t) > 0. Then by

the assumption of bounded file size, we have q(τ, t) > 0. Since q(τ, ·) is Lipschitz

continuous, there exits a δ > 0 and 0 ≤ t1 < t2 such that t ∈ [t1, t2] and for all

t̂ ∈ [t1, t2] we have q(τ, t̂) > 2δ. By uniform convergence of q(n)(τ, ·) → q(τ, ·) over

[t1, t2], for all large n we have that over [t1, t2], q(n)(τ, ·) > δ and w
(n)
x (·) ≥ (τ − ·) for

x ∈ [0, δ]. Finally,

t2 − t1 +
1

n

≥ 1

n

nt2−1∑
k=nt1

11{
i∗

(
W (n)(k),R(n)(k)

)
≤ nδ

}, (4.8)

≥ 1

n

nt2−1∑
k=nt1

11{
max1≤i≤nδW

(n)
i (k)R

(n)
i (k)≥(nτ−k)rmax

},
≥ 1

n

nt2−1∑
k=nt1

11{
max1≤i≤nδR

(n)
i (k)=rmax

} a.s.−→ t2 − t1.

That is,

lim inf
n→∞

d
(n)
l (τ, t2)− d(n)

l (τ, t1) ≥ t2 − t1 a.s.

and

lim
n→∞

(
d

(n)
l (t2, t2)− d(n)

l (t1, t1)
)
−
(
d

(n)
l (τ, t2)− d(n)

l (τ, t1)
)

= 0 a.s.

Corollary 4.1 By (4.4) and (4.6) in Lemma 4.1, for all t > T0 ≡ rmax, we have,

w0(t) < t ,
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i.e., all the fluid initially present in the system (recall l̄(0)) gets served by time T0.

Moreover, by (4.7) in Lemma 4.1, the fluid is served in a FCFS (first-come-first-serve)

manner, therefore, for all t > T0, we have that,

wx(t) =
q(t)− x

λ
, x ∈ [0, q(t)] ; (4.9)

l̄(t) = βq(t) ; (4.10)

ū(t) = γq(t) . (4.11)

Remark 4.5 To see (4.9), pick an x ∈ (0, q(t)) and note that,

τ ≡ t− wx(t) ≥ t− w0(t) > 0 and q(τ, t) ≥ x > 0.

Then f(t)− f(τ) = λwx(t). By Lemma 4.1, this λwx(t) amount of file fluid that has

entered the system since τ must still be queued behind x. That is, q(t)− x = λwx(t).

Equations (4.10) and (4.11) follow similarly.

Lemma 4.2 Consider any set of limiting functions derived from {X (n), n = 1, 2, . . .}.

For any regular t > T0, if q(t) > 0, then,

∂d(t, t)

∂t
= γ−1 ,

∂du(t, t)

∂t
= 1 ,

and hence,
q′(t) = λ− γ−1 < 0 ,

ū′(t) = ρ− 1 < 0 ,

w′0(t) =
q′(t)

λ
< 0 .

(4.12)

Proof of Lemma 4.2 Fix a t > T0 such that q(t) > 0. Since w
(n)
(·) (T0 + ·) con-

verges u.o.c. to Lipschitz continuous w(·)(·) (see (4.9)), we can pick a q(t) > δ > 0

and T0 ≤ t1 < t2 such that t ∈ [t1, t2] and for all large n uniformly over [t1, t2],

we have rmaxw
(n)
δ (·) ≥ (rmax − 1)w

(n)
0 (·). This choice of δ implies that for any

t̂ ∈ {bnt1c, · · · , bnt2c − 1}, if a file in set {1, · · · , bnδc} sees a channel state of rmax,
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then R∗(t̂) = rmax. Rest of the proof proceeds similar to that of Lemma 4.1, except

that we will strengthen the event associated with the Indicator function in (4.8). We

have that,

t2 − t1 +
1

n

≥ 1

n

nt2−1∑
k=nt1

11{
R

(n)
∗ (k)=rmax

},
≥ 1

n

nt2−1∑
k=nt1

11{
i∗
(
W (n)(k),R(n)(k)

)
≤ nδ, R

(n)
∗ (k)=rmax

},
=

1

n

nt2−1∑
k=nt1

11{
max1≤i≤nδR

(n)
i (k)=rmax

},
≥ 1

n

nt2−1∑
k=nt1

11{
max1≤i≤nδR

(n)
i (k)≥rmax

} a.s.−→ t2 − t1.

Then, along with Corollary 4.1, it follows that

lim
n→∞

d(n)
u (t2, t2)− d(n)

u (t1, t1) = t2 − t1 a.s.

and

lim
n→∞

d(n)(t2, t2)− d(n)(t1, t1) = γ−1(t2 − t1) a.s.

Corollary 4.2 There exits a finite T1 (independent of the set {X (n), n = 1, 2, . . .}),

such that for any set of limiting functions and for all t > T1, we have that

ū(t) + w0(t) = 0 .

4.3.0.4 Using Proposition 4.1 to conclude the proof of Theorem 4.1

Corollary 4.2 implies that,

lim
n→∞

1

n
||S(n)(nT1)|| = 0 a.s. (4.13)
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Moreover, the sequence of random variables
{

1
n
||S(n)(nT1)||, n = 1, 2, . . .

}
is uni-

formly integrable since (see [53, p. 351]),

1

n
||S(n)(nT1)|| ≤ 1+f (n)

u (T1)+T1
a.s.−→ E

(
1 + f (n)

u (T1) + T1

)
= 1+(ρ+1)T1 < ∞ .

Then, the almost sure convergence in (4.13) along with uniform integrability implies

the following convergence in the mean,

lim
n→∞

E
(

1

n
||S(n)(nT1)||

)
= 0 ,

thus completing the proof of throughput optimality of the delay-driven MaxWeight.

4.4 Conclusion and extensions

An interesting extension of the system model is to allow that a file may arrive

gradually over time instead of all at once (i.e., similar to the case (ii) of [28]). Assum-

ing the distribution of the time interval over which the first and the last bit of a file ar-

rives has a light tail, the extension of the current result seems possible without much ef-

fort: the fluid limits of the arrival process (e.g., the work arrival process fu) is indistin-

guishable for the two cases. Similarly, the assumption that channelRi(t) be i.i.d. over

time can be relaxed to, e.g., Ri(t) forming a Markov chain in the set {0, · · · , rmax}

with a unique stationary distribution satisfying p = P(Ri(·) = rmax) > 0, and Ri(·)

being drawn from the stationary distribution upon the arrival of a file. Other inter-

esting extensions that seem possible, however, require little more effort are as follows:

allowing for different classes to have a possibly different rmax bits/slot, i.e., the max-

imum rate (with non-zero probability) supported by the channel; and generalizing

the scheduler to weighted-delay-driven MaxWeight, where the current sojourn time of

each file is scaled by a fixed, class-dependant constant (see (4.1)).

Lastly, we would like to point out that the significance of the throughput-

optimality result presented in this chapter is mostly technical: the proof indicates
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that delay-driven MaxWeight scheduler relies on the ratio of sojourn times of a large

number of users becoming close to 1, and at that point the scheduler is able to fully

exploit the opportunistic gain and ensure stability. However, the ratio of sojourn times

may approach unity only when sojourn times are unrealistically large. Moreover, the

relation between the current sojourn time of a flow and its residual size is not clear.

In the next chapter we investigate schedulers which explicitly use the residual file-size

information and seek to minimize mean sojourn time.
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Chapter 5

Balancing SRPT prioritization vs opportunistic

gain in wireless systems with flow dynamics

5.1 Overview and main contributions

In this chapter, we consider the scheduling of best effort flows1 sharing a time

varying wireless channel, with the objective of minimizing mean sojourn time. The

key tradeoff involved is between prioritizing flows with short residual sizes and maxi-

mizing opportunistic capacity gain by selecting flows that currently see good channels.

This tradeoff is explicitly characterized by introducing a new queueing model that

involves servers with state-dependent capacity regions. In the transient case and for

(bounding) polymatroid capacity regions, the optimal scheduler is given and used

to obtain sub-optimality bounds for various heuristics. Using a mix of analysis and

simulation two regimes are described: one where fully exploiting opportunistic gain is

sufficient and further using residual flow sizes for scheduling will result in only mini-

mal reduction in mean sojourn time, and the other, where the use of this information

can indeed offer significant reduction. A new scheduler is proposed which performs

well in both regimes.

Main contributions

Using a mix of analysis and simulation, we investigate features of the above-

mentioned tradeoff. The main analytical results are given in Theorems 5.2 and 5.3.

1Each flow is associated with a unique user downloading (or uploading) a file from the base
station; the terms flow, user, and file will sometimes be used interchangeably.
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Theorem 5.2 characterizes the competitive ratio of flow-size-oblivious opportunistic

schedulers, like Proportional Fair (PF) [6] or MaxQuantile [30] [31], for a transient sys-

tem, and shows that the presence of opportunistic gain mitigates their sub-optimality.

Using this, we characterize two regimes based on the “degree” of opportunistic gain:

• A regime – marked by high degree of opportunistic gain – where the use of resid-

ual flow-size information in scheduling will not result in a significant reduction

in flows’ mean sojourn time.

• A regime – marked by low degree of opportunistic gain – where optimally us-

ing flow-size information alongside channel state information may result in a

significant reduction in flows’ mean sojourn time.

More specifically, but still informally, if the opportunistic capacity of the wireless

channel increases rapidly in the number of users, e.g., as log(n) or log log(n) where

n is the number of users, then the mean sojourn time under a purely opportunistic

scheduler like MaxQuantile or PF is only about 1–20% higher than the minimum

possible. If, however, the opportunistic capacity increases more slowly (e.g., as 1−an

for a ∈ [0, 1)), a significant reduction in mean sojourn time may be achievable if

schedulers exploit the residual flow-size information. Using these insights, we propose

a class of schedulers which offer good performance irrespective of the operating regime

– this is analyzed in Theorem 5.3.

5.2 System model

We will first define a heterogeneous wireless system where the heterogeneity

in the users’ wireless channels is captured by a single parameter, namely, their mean

supported transmission rate. In the next subsection, we discuss how to convert the

heterogeneous system into an equivalent system with homogeneous wireless channels.
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The latter system permits certain simplifications for subsequent exposition and anal-

ysis. The details are as follows.

5.2.1 Wireless system with heterogeneous channels

We consider a continuous time system. Let X ⊆ R2 denote the connected

coverage area of a base station. New users arrive at random times and random

locations in X , request to download (or upload) a file of random size, and leave once

the download completes. The details are as follows.

Using an index set I = {1, 2, · · · }, we uniquely index each user that enters the

system. For each user i ∈ I, let the random variables Ai ∈ R, Xi ∈ X , and B̃i ∈ R+

denote its arrival time, location, and the size of the file requested, respectively. Users

are indexed in order of their arrival times, i.e., for i < j, we have Ai ≤ Aj. We

assume that,

• (Ai, i ∈ I) correspond to the jump times of a homogenous Poisson process of

intensity λ;

• Xi, i ∈ I are i.i.d. with density fX(·), i.e., for any measurable B ⊆ X , we have

P(X1 ∈ B) =
∫
B fX(x)dx;

• B̃i, i ∈ I are i.i.d. with density fB̃(·).

The time-varying channel state of the ith user is given by a stationary random

process
(
R̃i(t), t ∈ R

)
, where R̃i(t) ∈ R+ denotes the data/service rate supported

by the user’s channel at time t. Note that even though R̃i(t) is defined for all t, it is

relevant only over the time interval that user i spends in the system.

Assumption 5.1 We assume the following regrading the distribution of
(
R̃i(t), t ∈ R

)
.
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(i) Marginal distribution: Conditional on Xi = x, we assume that
(
R̃i(t), t ∈ R

)
has the same marginal distribution as that of m(x)R, where R is a unit mean

random variable and m : X → [ξ1, ξ2] ⊂ (0,∞) is a given continuous function

that captures the impact of pathloss/shadowing on the achievable transmission

rate from the base station to location x ∈ X .

(ii) Separation of time-scales: We assume that the channels change on a much faster

time-scale than that of the user dynamics (arrivals and departures). So, for ex-

ample, the channel coherence time – the smallest τ such that R̃i(t) and R̃i(t+ τ)

are independent – is much smaller than the mean inter-arrival time and mean

sojourn time.

Assumption 5.1(i) will be used in the next subsection to shift the heterogeneity in

the channels of users to their arrival processes, in the same manner as done in [22].

Assumption 5.1(ii) will be used in Section 5.4.2 to remove the randomness due to time-

varying channels without losing any opportunistic gain associated with such channels.

This is perhaps a key assumption which enables most of the results presented in this

chapter and in [22].

Let random set Q(t) ⊂ I denote the set of users with on going file transfers at

time t, i.e., the users which have arrived but have not completed their file download

by time t. We will refer to the users in Q(t) as the users present at time t, and to

Q(t) as the queue at time t. Cardinality of the set Q(t), i.e., the number of users

present in the system at time t, is denoted by |Q(t)|. For any i ∈ Q(t), let Li(t) > 0

denote the ith user’s residual file size.

We will follow the convention that uppercase letters, e.g. Q(·), denote random

quantities, whereas, lowercase letters, e.g. q(·), denote particular realizations. Bold

letters are reserved for vectors. Also, we will make the natural distinction between

“increasing” and “strictly increasing”, and so forth.

114



The state of the system at time t is given by,

St ≡
(
Q(t);

(
Li(t), i ∈ Q(t)

)
;
(
R̃i(t), i ∈ Q(t)

)
;
(
(Xi, Ai), i ∈ Q(t)

) )
, (5.1)

and let S denote the space of all feasible realizations for the state st. We assume that

the current system state is available for making a scheduling decision, and define a

scheduler or a scheduling policy as a mapping i∗ : S → I. That is, when the system

is in state st, the scheduler i∗(·) selects a user i∗(st) ∈ q(t) to receive service. If for a

given sample path we have i ∈ q(·) over some interval [t1, t2], then the total service

received by user i over [t1, t2] is given by
∫ t2
t1
r̃i(t)11{i∗(st) = i}dt.

Remark 5.1 Since R̃i(t) may depend on the past (R̃i(τ), τ < t), the most general

definition for a scheduler would be as a mapping from the entire system sample path

up to the present time (instead of just the current state). However, relying on the

Assumption 5.1(ii) that the coherence time is much smaller than the time-scale of user

dynamics, we restrict our attention to schedulers that use only the current system state

and make no use of the entire history.

5.2.2 Equivalent system with i.i.d. channels but heterogeneous file sizes

In the system described above, the channel state process of a user at location x

has the same marginal distribution as that of m(x)R, and therefore, a mean supported

transmission/service rate ofm(x). Consider a second system (constructed on the same

probability space) where all users’ channels have the same marginal distribution as

that of R, but the file sizes of users at location x are scaled by a factor of 1/m(x). At

any time t, the system state of the second system can be derived from the system state

of the first system by appropriately scaling
(
Li(t), i ∈ Q(t)

)
and

(
R̃i(t), i ∈ Q(t)

)
based on

(
Xi, i ∈ Q(t)

)
, and keeping the remaining elements of St, in particular,

Q(t), unchanged. That is, any scheduler for the first system can be translated into

a scheduler for the second system, such that the user arrival and departure times, as
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captured by Q(t), are identical in the two systems. The second system however has

the advantage that the channel states of the users are independent of their identities

and locations.

Therefore, from this point on, we exclusively focus on the second system where

the user arrivals (Ai, i ∈ I) and locations (Xi, i ∈ I) are statistically identical to

those in the first system, but the user channels
(
(Ri(t), t ∈ R), i ∈ I

)
and file sizes

(Bi, i ∈ I) have the following modified marginal distributions: for all i ∈ I,

• the channel process
(
Ri(t), t ≥ 0) has the same marginal distribution as that

of the random variable R,

• the file size Bi has density fB(·) given by,

fB(b) ≡
∫
X
m(x)fB̃

(
m(x)b

)
fX(x)dx, b ∈ R+.

We continue to model a scheduler i∗(·) as a mapping from the current system state

to the current queue, i∗(st) ∈ q(t).

Next we define a new queueing model using a server with a state-dependent

but deterministic capacity region – such a server will subsequently be used to replace

the randomly-varying channels in the above system without losing the opportunistic

capacity gains associated with such channels.

5.3 Servers with state-dependent capacity regions and M/GI/C
queue

Let C1, C2, . . . be sequence of nested capacity regions with the following prop-

erties:

(i) For any n ≥ 1, Cn is a compact, convex, and coordinate-convex region of Rn
+.
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(ii) Cn is symmetric, i.e., if a rate vector µ ≡ (µ1, · · · , µn) ∈ Cn, then any vector

given by a permutation of µ’s components also lies in Cn.

(iii) For k and n such that 1 ≤ k ≤ n, we have Ck = Rk
+ ∩ Cn.

Let C ≡ (Cn, n ≥ 1). Consider a server with the following property: if there are n

jobs (files) in the system, the server can process them simultaneously according to any

speed (rate) vector from the region Cn. For example, suppose over some interval [t1, t2]

the n files are served at rate µ(t) ∈ Cn, then the file backlog l(t) ≡ (li(t), 1 ≤ i ≤ n)

over t ∈ [t1, t2] evolves as,

l(t) =

(
l(t1)−

∫ t

t1

µ(τ)dτ

)+

.

By replacing the unit capacity server in a conventional M/GI/1 queue with

the server described above, we obtain a new queueing model which we refer to as an

M/GI/C queue. Note that the queues M/GI/1 and M/GI/∞ queues are special

cases of the M/GI/C queue. Indeed the latter reduces to M/GI/1 if Cn is unit

n-simplex, i.e.,

Cn =
{
µ ∈ Rn

+ : ‖µ‖1 ≤ 1
}
, n = 1, 2, . . .

and to M/GI/∞ if Cn is unit n-cube, i.e.,

Cn =
{
µ ∈ Rn

+ : ‖µ‖∞ ≤ 1
}
, n = 1, 2, . . . .

As will become clear in the next section, we will be interested in server capacity

regions that are in between unit simplices and unit cubes.

Next, we will show that the system with time-varying channels and flow dy-

namics, described in Section 5.2.2, can be reduced to an instance of an M/GI/C

queue by appropriately defining the capacity regions Cn, n ≥ 1 (Section 5.4.1), and

using a time-scale separation argument (Section 5.4.2).

117



5.4 Dynamic wireless system as an M/GI/C queue

We will set Cn equal to the opportunistic capacity region of a static wireless

system, i.e., a system with a fixed number n of infinitely-backlogged flows. A formal

description of these regions follows.

5.4.1 Opportunistic capacity region

Throughout this subsection, we consider a static system with a fixed number

n of users. As before, for all i ∈ {1, · · · , n}, the channel processes (Ri(t), t ≥ 0) are

independent, stationary and ergodic with the same marginal distribution as that of R,

and recall that E[R] = 1. We define the opportunistic capacity region Cn ⊂ [0, 1]n of

such a system as the set of long-run average service rates that can be jointly allocated

to the n users2.

Specifically, for any r = (ri, 1 ≤ i ≤ n) ∈ Rn
+, let Cn(r) ⊂ Rn

+ be the convex

hull of the origin and n points,

(r1, 0, · · · , 0), (0, r2, 0, · · · , 0), . . . , (0, · · · , 0, rn).

Note that Cn(r) denotes the set of long-run average service rates that can be jointly

allocated to the n users, conditional on the joint channel being in state

R(t) ≡ (Ri(t), 1 ≤ i ≤ n) = r.

Let Vn be the set of all measurable function v(·) that map a joint channel state r ∈ Rn
+

to an average service rate vector in Cn(r), i.e., V ≡
{
v(·) : ∀r ∈ Rn

+, v(r) ∈ Cn(r)
}

.

Finally, the opportunistic capacity region of n channels, Cn, is defined as,

Cn ≡ {µ ∈ [0, 1]n : µ ≤ E [v(R)] for some v(·) ∈ Vn} , (5.2)

2The capacity region is a function of both the number of users n and the distribution of random
R, however, since the distribution of R is assumed fixed throughout the chapter, the notation Cn
explicitly shows the dependence on n only.
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where expectation is with respect to random R drawn from the n-product of the

distribution of R.

Any extremal point of the capacity region Cn is achievable by a very sim-

ple, distribution-oblivious, opportunistic scheduler; for details see [22, Lemma 2.2] or

Lemma 2.1.

For later use, in the following we define a polymatroid outer bound for the

capacity region Cn.

The tightest polymatroid region containing Cn

Let R1, R2, . . . be i.i.d. copies of R. For any integer k > 0, let

gk ≡ E [ max(R1, · · · , Rk) ] , (5.3)

and let g0 ≡ 0. This function has the following interpretation: no single user can get

an average rate exceeding g1, no two users can get a total average rate exceeding g2,

and so on. We will refer to (gk, k ≥ 0) as the opportunistic capacity function. We

have that gk is concave increasing in k, i.e., for any k ≥ 0, gk+1−gk ≥ gk+2−gk+1 ≥ 0,

and therefore, the capacity per user gk/k is decreasing in k.

Then using (gk, k ≤ n), we can define a polymatroid3 C̄n as follows,

C̄n ≡

{
µ ∈ [0, 1]n : ∀K ⊆ {1, · · · , n},

∑
k∈K

µk ≤ g|K|

}
.

See Fig. 5.1 for an illustration of Cn and C̄n. For any n, we have that Cn ⊆ C̄n. We

also note the following.

• In general, we cannot completely construct Cn from (gk, k ≤ n) alone. Never-

theless, we can completely construct the outer bound C̄n.

3See, e.g., [54, p. 767] for definition of polymatroid.
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Figure 5.1: Capacity region C2 and the tightest polymatroid upper bound C̄2.

• Region C̄n is the tightest polymatroid outer bound for Cn.

In special cases of time-varying channels, e.g., on-off channels or information theoretic

block fading multiaccess channels (as used in [13]), we have Cn = C̄n. In fact, an

alternative way to define the outer bound C̄n is as follows: C̄n is the region obtained

by replacing Cn(r) in the definition of Cn by the tightest polymatroid containing Cn(r).

Let C̄ ≡
(
C̄n, n ≥ 1

)
.

Remark 5.2 We say a vector a ∈ Rn dominates a vector b ∈ Rn if a ≥ b, and

a point is maximal in a region if it is not dominated by any other point of that

region. Note that a polymatroid capacity region has the nice property that all maximal

elements have the same L1 norm (the total service rate). For example, the L1 norm

of all maximal elements of C̄n is gn. Therefore, a scheduler for an M/GI/C̄ queue

will not have to tradeoff maximizing total service rate with prioritizing short files.

Let umax(n) ≡
(
gn
n
, · · · , gn

n

)
∈ Rn. We have that umax(n) lies in Cn, and

gn = ‖umax(n)‖1 = max
µ∈Cn
‖µ‖1 = max

µ∈C̄n
‖µ‖1.
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Therefore, we will refer to umax(n) as the max-sum-rate point of region Cn as well as

C̄n.

5.4.2 Time-scale separation argument and reduction to an M/GI/C queue

We return to the homogeneous dynamic system introduced in Section 5.2.2,

and recall the Assumption 5.1(ii) that channels vary at a much faster time-scale than

that of the user dynamics. Therefore, we can further assume that at any time t,

conditional on |Q(t)| = n, the n users can be jointly served at any rate from the

capacity region Cn. That is, we can redefine the scheduler as a mapping from

(
q(t);

(
li(t), i ∈ q(t)

)
;
(
(xi, ai), i ∈ q(t)

))
to the capacity region C|q(t)|. For example, if for t ∈ [t1, t2], we have |q(t)| = n and

the scheduler serves at rate µ(t) ∈ Cn, then the file backlog l(t) ≡ (li(t), i ∈ q(t1))

over t ∈ [t1, t2] evolves as,

l(t) = l(t1)−
∫ t

t1

µ(τ)dτ .

This new system is simply an M/GI/C queue, where the arrivals are Poisson

with rate λ, the file sizes have density fB(·), and the server capacity region at time t

depends on only the element |q(t)| of the system state. The reason for converting the

original system with heterogeneous channels to the one with homogeneous channels

now becomes clear: it removed the dependence of the server capacity region C|q(t)| on

the locations of the users in q(t).

The work in [22] can be seen as analyzing an M/GI/C queue under the sched-

uler that, conditional on |Q(t)| = n, serves at the max-sum-rate point umax(n) ∈ Cn,

and therefore, simultaneously serves each of the n users in the current queue at rate

gn/n. Following [22], we will call this the Opportunistic Processor Sharing (OPS)

scheduler. This scheduler is clearly oblivious to file sizes.
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Remark 5.3 A few observations regarding the usefulness of the M/GI/C queueing

model are in order. By reducing the original system to an M/GI/C queue, we have

replaced the state-dependent and randomly varying server ( i.e., wireless channel) with

a state-dependent but deterministic server without losing the opportunistic gain as-

sociated with a randomly varying server. In the latter system,

• the tradeoff mentioned in the beginning of Section 5.1 is manifested as a tradeoff

between maximizing total service rate ( e.g., by picking the rate point umax(·))

and giving more rate to shorter files;

• moreover, the extent of opportunistic gain present in the channel is explicitly

characterized by the marginal rate of increase of opportunistic capacity function(
gn, n ≥ 0).

Therefore, the M/GI/C queue is better suited to investigate the scheduling problem,

even if by simulation methods only.

The M/GI/C queue also seems more amenable to an analytical solution than

the original system; indeed, [22] gives analytical results for at least one particular

scheduler for this queue. In the apparently distantly-related problem of admission

control in a web server [55] and that of the microprocessor speed scaling [56] [57],

similar queueing models appeared and perhaps some of the techniques can be borrowed

from (or lent to) these fields – this will be further explored in the future.

We also note that the M/GI/C̄ queue – a simpler to analyze than the M/GI/C

queue due to the absence of above-mentioned tradeoff – can be used to obtain a lower

bound on the optimal mean sojourn time in M/GI/C queue. To this end, in the next

section, we will characterize the optimal scheduler under polymatroid capacity regions

(C̄k, k > 0) for a transient system, and use this to bound the sub-optimality of OPS.
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5.5 Transient system

Throughout this section, we consider a transient system that starts with a

given number n of files, i.e., q(0) = {1, · · · , n}, of arbitrary sizes

l(0) ≡ (l1(0), · · · , ln(0)) ∈ (0,∞)n,

and there are no further arrivals. The opportunistic capacity regions C and C̄, along

with the corresponding concave increasing capacity function (gk, k ≥ 0) with g0 = 0,

are specified. Since there are no further arrivals, the system state at time t is simply

given by
(
q(t);

(
li(t), i ∈ q(t)

))
. When there are k ≤ n files in the system, they can

be served at any rate from the region Ck ⊆ Cn (or C̄k ⊆ C̄n, depending upon the

context). Let Ψ and Ψ̄ be the set of all functions (schedulers) that map any system

state
(
q(t); l(t)

)
to a rate vector in C|q(t)| and C̄|q(t)|, respectively.

For any scheduler ψ(·) and initial state
(
q(0); l(0)

)
, let

((
qψ(t), lψ(t)

)
, t ≥ 0

)
be the associated system sample path. The total sojourn time (or cost) under ψ(·)

is denoted by cψ(l(0); |q(0)|) and given as follows,

cψ(l(0); |q(0)|) ≡
∫ ∞

0

|qψ(t)|dt. (5.4)

We are interested in schedulers in Ψ that minimize the cost starting in any state(
q(0); l(0)

)
. We naturally have Ψ ⊆ Ψ̄, and therefore,

min
ψ̄∈Ψ̄

cψ̄(·) ≤ min
ψ∈Ψ

cψ(·). (5.5)

However, only schedulers from Ψ are feasible in an actual system which has a server

with capacity region Cn. The rest of this section is organized as follows:

• An optimal scheduler in Ψ̄ along with an expression for optimal cost is given in

Section 5.5.1.

• An expression for cost under OPS, which lies in Ψ (and thus also in Ψ̄), is given

in Section 5.5.2.
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• The competitive ratio of OPS under particular capacity functions is obtained

in Section 5.5.3;

• That the performance under OPS deteriorates as n becomes large and oppor-

tunistic capacity function gn saturates is elaborated in Section 5.5.4.

• A scheduler belonging to the set Ψ but with cost close to the that of the optimal

scheduler in Ψ̄ is proposed in Section 5.5.5.

5.5.1 Optimal scheduler for polymatroid capacity regions C̄

We begin by defining the Shortest Remaining Processing Time - Highest Pos-

sible Rate (SRPT-HPR) scheduler for polymatroid capacity regions, i.e., SRPT-HPR

lies in Ψ̄.

Definition 5.1 Consider a system with a concave increasing opportunistic capacity

function (gk, k ≥ 0) and the associated capacity regions
(
C̄k, k ≥ 0

)
. At any time t

and for any integer n ≡ |q(t)| > 0, let l1(t) ≤ l2(t) ≤ . . . ≤ ln(t) be the remaining file

sizes of the n files. Then SRPT-HPR serves the files at rate vector

s
(
l(t);n

)
=
(
si(l(t);n), 1 ≤ i ≤ n

)
∈ C̄n

given as follows: for any i ∈ {1, · · · , n}, we have,

si
(
l(t);n

)
≡ gi − gi−1 .

Note that service rate allocation under SRPT-HPR depends only on the or-

dering of file sizes, and the shortest file is given as much rate as possible, i.e., g1, and

having made that allocation, the next shortest file is given as much rate as possible,

i.e., g2 − g1, and so on.

Note that a server with a polymatroid capacity region C̄n can be decomposed

into n conventional servers (like the one in queue M/GI/1) with different speeds,
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such servers are usually called parallel uniform servers [4]. More specifically, consider

n servers where the speed of the kth server is given by gk − gk−1. Then each maximal

vertex of the polymatroid C̄n corresponds to an allocation of the n servers to the n

users (with one user per server and one server per user), and vice versa. All other

maximal points of C̄n can further be achieved by preempting and time-sharing the n

servers among the users.

Therefore, the problem of minimizing the total sojourn time under a poly-

matroid capacity region C̄n is the same as minimizing the total sojourn time under

n parallel uniform servers with preemption permitted. For the latter system, [58]

(see [4], pp. 134–136 for a proof) showed that the optimal scheduler is the one which

allocates the fastest available server to the shortest available job/file – this indeed

translates to SRPT-HPR in our setting. An alternative proof of the optimality of

SRPT-HPR with an explicit expression for total sojourn time is given in the ap-

pendix at the end of the chapter. We summarize the results in the following lemma

and theorem.

Lemma 5.1 For a given concave increasing capacity function (gk, k ≥ 0), and initial

state
(
q(0); (lk(0), 1 ≤ k ≤ |q(0)|)

)
, the cost under SRPT-HPR cs(·) is given by,

cs
(
l(0); |q(0)|

)
=

|q(0)|∑
k=1

θkl(k)(0) , (5.6)

where l(k)(0) denote the kth largest file, i.e., l(1)(0) ≥ · · · ≥ l(n)(0), and (θk, k > 0)

are given as follows. Let θ0 ≡ 0 and for k ≥ 0, let ∆k ≡ gk+1 − gk. Then for all

n ≥ 0,

(θ ∗∆)(n) ≡
n∑
k=0

∆kθn−k = n. (5.7)

Using (5.7), θn+1 can be computed from (θk, 0 ≤ k ≤ n) for any given capacity function

(gk, k ≥ 0).
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Remark 5.4 θk can be interpreted as time (or cost) per unit data in the kth file. As

shown in the appendix at the end of the chapter, θk is increasing in k.

Theorem 5.1 Consider a transient system with polymatroid capacity regions
(
C̄k, k ≥ 0

)
and starting with any number |q(0)| > 0 of files of arbitrary sizes l(0) = (lk(0), k ∈ q(0)).

Then SRPT-HPR minimizes the cost given by (5.4), i.e.,

cs
(
l(0); |q(0)|

)
= min
ψ∈Ψ̄

cψ
(
l(0); |q(0)|

)
.

Next, we define OPS scheduler which is not limited to polymatroid capacity

regions.

5.5.2 OPS scheduler for capacity regions C̄ and C

The scheduling decision under OPS depends only on (gk, k ≥ 0) and is the

same for C and C̄. It is defined as follows.

Definition 5.2 Consider a system with a concave increasing opportunistic capacity

function (gk, k ≥ 0) and the associated capacity regions (Ck, k ≥ 0) or
(
C̄k, k ≥ 0

)
. At

any time t and for any integer n ≡ |q(t)| > 0, OPS serves each of the n files at rate

gn
n

. Therefore, the scheduling decision for capacity region Cn is identical to that for

C̄n.

Lemma 5.2 For a given capacity function (gk, k ≥ 0), and initial state(
q(0); (lk(0), 1 ≤ k ≤ |q(0)|)

)
,

the cost under OPS cp(·) is given by,

cp
(
l(0); |q(0)|

)
=

|q(0)|∑
k=1

πkl(k)(0) , (5.8)

where, for any k > 0,

πk ≡
k2

gk
− (k − 1)2

gk−1

. (5.9)

See appendix at the end of the chapter for proof.
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5.5.3 Competitive ratio of OPS

For a given transient system – i.e., a capacity function (gk, k ≥ 0) along with

the actual capacity regions C and the outer bound C̄ – we will refer to the ratio cp(·)
cs(·)

as the competitive ratio of OPS when starting in state (·). When the starting state

or an element of it is not specified, the competitive ratio is intended to mean the

supremum over unspecified elements.

Remark 5.5 Competitive ratio has the following interpretation. Consider a transient

system starting with n files of sizes l = (l1, · · · , ln). In the interest of clarity, we

reiterate that, given only (gk, 0 ≤ k ≤ n), the largest possible capacity region that

the server can have is the polymatroid C̄n. Therefore, the smallest possible cost a

scheduler can have is cs(n; l). Then, the competitive ratio cp(n;l)

cs(n;l)
gives us a bound

on the sub-optimality of OPS when starting in state ({1, · · · , n}; l). Moreover, this

bound is the tightest possible if only (gk, 0 ≤ k ≤ n) is specified instead of the complete

actual capacity region Cn.

It is easy to show that if gk = k for all k ≥ 0 (regions Ck and C̄k are k-cubes),

then θk = πk = 1 and we simply have cp(·)
cs(·) = 1. In the following, we investigate this

ratio for capacity functions of the type gk = 1−ak
1−a (equivalently, ∆k = ak) for any

fixed a ∈ [0, 1). Prior to doing so, we offer three comments on this choice of capacity

function.

First, it corresponds to the capacity function of a system where R is an on-off

random variable, with P (R = 0) = a and P
(
R = 1

1−a

)
= 1− a.

Second, parameter a provides a measure for the opportunistic gain present

in the system: for any fixed k, the higher the value of a, the greater the marginal

opportunistic capacity ∆k. Setting a = 0 corresponds to a non-opportunistic work-

conserving system with a single unit speed server.
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Third, if R takes values in a bounded set [0, rmax], then R is stochastically dom-

inated by an on-off random variable R̃ ∈ {0, rmax} with P
(
R̃ = rmax

)
≡ E[R]/rmax.

Therefore, the capacity function associated withR can be bounded above by (gk, k ≥ 0)

with a = 1− E[R]/rmax. The capacity function associated with R can also be lower

bounded by a scaled version of (gk, k ≥ 0). The significance of the results presented

below is either a monotonicity in a or independence from a, therefore, this simple

choice of capacity function still provides significant insight.

Fact 5.1 With gk = 1−ak
1−a for some fixed a ∈ [0, 1), we can take the z-transform of

both sides of (5.7) and show that the corresponding (θk, k > 0) are given by,

θk =
k

g∞
+ a, (5.10)

where g∞ ≡ 1
1−a .

To indicate the dependence of cost on the parameter a, in this subsection we

will explicitly write cs(·; ·; a) and cp(·; ·; a). Moreover, 1 in c(1;n; ·) will denote an n

dimensional vector of all ones. We have the following result; see appendix at the end

of the chapter for proof.

Theorem 5.2 For any a ∈ [0, 1), let gk = 1−ak
1−a for all k ≥ 0. Let cs(l;n; a) and

cp(l;n; a) be the costs under SRPT-HPR and OPS respectively, for capacity function

parameter a and when starting with n files of sizes given in l ≡ (l1, . . . , ln). Then for

any fixed a,

sup
n≥1,l∈(0,∞)n

cp(l;n; a)

cs(l;n; a)
= sup

n≥1

cp(1;n; a)

cs(1;n; a)
= 2. (5.11)

More precisely, as n→∞, we have,

cp(1;n; a)

cs(1;n; a)
↑ 2.
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Figure 5.2: Competitive ratio of OPS plotted versus (left) n, (right) gn
g∞

.

Also, for any fixed n > 0,

sup
a∈[0,1),l∈(0,∞)n

cp(l;n; a)

cs(l;n; a)
= sup

a∈[0,1)

cp(1;n; a)

cs(1;n; a)
=

2

1 + 1/n
.

More precisely, as a→ 0, we have,

cp(1;n; a)

cs(1;n; a)
↑ 2

1 + 1/n
.

5.5.4 Discussion

The following useful observations can be made based on Theorem 5.2.

(i) For any fixed n, the competitive ratio of OPS decreases as the parameter a – a

measure of opportunistic gain – increases; see Fig. 5.2 (left).

(ii) However, irrespective of a, the competitive ratio of OPS is exactly 2, which is

achieved only as a monotonic limit in n. An intuitive explanation for this is as

follows: the opportunistic capacity gk is bounded above by the limit g∞ ≡ 1
1−a ,

therefore for any fixed a and correspondingly large n (where n is the number

of files), the opportunistic system appears non-opportunistic with constant ca-

pacity g∞; thus the competitive ratio 2 which is the same as in the case of

non-opportunistic systems (a = 0).
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(iii) See Fig. 5.2 (right) for a plot of competitive ratio as a function of n versus the

capacity ratio gn
g∞

. We note that the competitive ratio is under 1.2, for all n

such that gn
g∞
≤ 0.9. But as n becomes larger beyond the point where most of

the opportunistic capacity has already been harvested, the sub-optimality of OPS

over SRPT starts to emerge and the ratio quickly deteriorates.

To summarize: the presence of opportunistic capacity gains mitigates the sub-

optimality of OPS, however, if load increases to a point where opportunistic capacity

function saturates, OPS can become significantly sub-optimal.

This observation naturally leads us to investigate a threshold-based or regulated-

admission scheduler described in the next section – for all sufficiently large thresholds,

the scheduler’s competitive ratio is better than that of OPS.

5.5.5 SRPT-OPS scheduler for capacity regions C and C̄

The SRPT-OPS(n∗) scheduler admits to service at most a fixed number n∗

of users according to SRPT, and serves the admitted users according to OPS. The

details are as follows.

Definition 5.3 Consider a system with a concave increasing opportunistic capacity

function (gk, k ≥ 0) and the associated capacity regions (Ck, k ≥ 0) or
(
C̄k, k ≥ 0

)
.

Set a threshold n∗ > 0. At any time t when there are |q(t)| = n files in the system,

SRPT-OPS(n∗) serves each of the shortest min(n, n∗) files at rate
gmin(n,n∗)
min(n,n∗)

, while the

remaining (n− n∗)+ files wait in a queue.

Lemma 5.3 For any concave increasing capacity function (gk, k ≥ 0), and initial

state
(
q(0); (lk(0), 1 ≤ k ≤ |q(0)|)

)
, the cost under SRPT-OPS(n∗), csp(·), with

threshold parameter n∗ ≥ 1 is given by,

csp
(
l(0); |q(0)|

)
=

|q(0)|∑
k=1

π̂kl(k)(0) , (5.12)

130



where, for any k > 0,

π̂k ≡ π[k] +

⌊
k − 1

n∗

⌋
n∗

gn∗
, (5.13)

where [k] ≡ k mod n∗ (with π0 ≡ πn∗, see (5.9)) and
⌊
k−1
n∗

⌋
is the integer part of k−1

n∗
.

In particular, we note that for multiples for n∗, we have that,

π̂kn∗ = πn∗ +
(k − 1)n∗

gn∗
,

which is affine in k with slope n∗

gn∗
. From (5.10), we have that for gk = 1−ak

1−a , the

coefficient θkn∗ is affine in k with slope n∗

g∞
. Therefore, the ratio π̂kn∗

θkn∗
is monotone in

k and supk≥1
π̂kn∗
θkn∗

= max
(
πn∗
θn∗
, g∞
gn∗

)
. This leads to the following result.

Theorem 5.3 For some fixed a ∈ [0, 1), let gk = 1−ak
1−a for all k ≥ 0. Let cs(l;n)

and csp(l;n) be the costs under SRPT-HPR and SRPT-OPS(n∗) respectively when

starting with n files of sizes given in l ≡ (l1, . . . , ln). Then we have that,

sup
n≥1,l∈(0,∞)n

csp(l;n)

cs(l;n)
≤ max

(
πn∗

θn∗
,
g∞
gn∗

)
. (5.14)

Moreover, for any fixed ε > 0,

lim
n→∞

sup
l∈(ε,∞)n

csp(l;n)

cs(l;n)
=

g∞
gn∗

. (5.15)

See Fig. 5.2 (right) and recall the discussion from Section 5.5.4: we noted that

for n such that gn
g∞

. 0.9 (or g∞
gn

& 1.1), the competitive ratio of OPS (and implicitly

the ratio πn
θn

) was fairly small, i.e., under 1.25.

Therefore, in light of the bound “max
(
πn∗
θn∗
, g∞
gn∗

)
” given in (5.14), if the ad-

mission threshold n∗ is set at a point where most of the opportunistic capacity, say

90%, is useable under SRPT-OPS(n∗), then SRPT-OPS(n∗) will have fairly small

competitive ratio. But unlike SRPT-HPR which allocates service from a fictitious

larger capacity region C̄n, the SRPT-OPS scheduler allocates service from the actual

region Cn and is therefore feasible in a real system.
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In fact, since πk
θk
≤ 2, for any n∗ such that g∞

gn∗
≤ 2, i.e., at least half the

opportunistic capacity is useable under SRPT-OPS(n∗), we have that the competitive

ratio of SRPT-OPS(n∗) is always better than that of OPS. Moreover, by (5.15), as

n→∞, the competitive ratio of SRPT-OPS becomes g∞
gn∗

.

In light of the bound given in (5.14), Fig. 5.2 (right) captures the tradeoff

mentioned in Section 5.1, and gives the cost of compromising opportunistic gain, g∞
gn∗

,

versus that of ignoring file-size information, πn∗
θn∗

.

In the next sections we discuss simulation results for a dynamic system.

5.6 Dynamic system in steady state

In this section, we compare through simulations, the mean sojourn time under

OPS, SRPT-OPS, and SRPT-HPR for a dynamic system in steady state, and under

various fading scenarios. For a system that implements admission control, we also

compare the probability of blocking. We will also comment on the validity of mod-

eling the dynamic system with time varying channels – introduced in Section 5.2.2

– as an instance of M/GI/C queue; recall that an M/GI/C queue is obtained from

the dynamic system with time varying channels by using a separation-of-time-scales

argument.

We begin by presenting “simple” simulation results for the M/GI/C̄ queue

to highlight the key insights, followed by the “detailed” simulations of the dynamic

system with time varying channels.

We proceed by simulating theM/GI/C̄ OPS, SRPT-HPR, and SRPT-OPS(n∗)

queues for lognormal file-size distribution with mean and variance of 1 and 1.7 respec-

tively, and various arrival rates. Recall that M/GI/C̄ OPS and M/GI/C OPS are

indeed identical, and so are M/GI/C̄ SRPT-OPS(n∗) and M/GI/C SRPT-OPS(n∗).

Moreover, for the M/GI/C̄ OPS queue, various quantities of interest including the
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mean sojourn time can also be analytically computed, see, e.g., [22, Proposition 3.1].

Fig. 5.3 shows the simulation results for polymatroid capacity regions C̄(1)

and C̄(2)
corresponding to two unbounded capacity functions g(1) ≡

(
g

(1)
k , k ≥ 0

)
and

g(2) ≡
(
g

(2)
k , k ≥ 0

)
, given by

g
(1)
k = log2(1 + k),

g
(2)
k = log2(1 + log2(1 + k)).

Fig. 5.4 shows the simulation results for capacity regions C̄(3)
corresponding to a

bounded capacity function g(3) ≡
(
g

(3)
k , k ≥ 0

)
, given by

g
(3)
k = 2

(
1−

(
1

2

)k)
.

We make the following observations.

• For the two unbounded capacity functions, as the load increases, the ratio of

mean sojourn time under OPS to that under SRPT-HPR stays around 1.05 and

1.2 respectively for g(1) and g(2).

• For the bounded capacity function, as the load increases, the ratio of mean

sojourn time under OPS to that under SRPT-HPR increases sharply from 1.2

to 2. Whereas, the ratio of mean sojourn time under SRPT-OPS(5) to that

under SRPT-HPR stays under 1.25. Also, see Fig. 5.5 for a plot of the mean

sojourn time versus the threshold n∗ for other values of threshold besides 5,

indicating that the performance of SRPT-OPS is better than OPS for a wide

range of thresholds.

After a caveat, we state our conclusions from these simulation results. As per

Theorem 5.1, SRPT-HPR is optimal only for the transient system with polymatroid

capacity regions C̄. The optimal scheduler for the dynamic system M/GI/C̄ is not
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Figure 5.3: Mean number of users in the system and mean sojourn time for unbounded
capacity functions g(1) and g(2).

Figure 5.4: Mean number of users in the system and mean sojourn time for bounded
capacity function g(3).
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Figure 5.5: Mean sojourn times under SRPT-OPS(n∗), OPS, and SRPT-HPR for
capacity function g(3) and user arrival rate λ = 1.8 user/sec.

known, however, one can expect SRPT-HPR to be close to optimal. Therefore, for-

mally speaking, the mean sojourn time under SRPT-HPR cannot be claimed as the

minimum achievable mean sojourn time in M/GI/C̄ system, or a lower bound for

achievable mean sojourn time in the M/GI/C system. Nevertheless, subsequently we

will compare the performance of various schedulers against that of SRPT-HPR, as

done for the transient system.

Now we are ready to state our conclusions from the results in Figs. 5.3–5.5.

We conclude that for servers/channels with high marginal opportunistic gain (e.g.,

log2(n)), a file-size aware scheduler will not offer a significant reduction in mean so-

journ time over that of the file-size oblivious OPS (or SRPT-OPS with large thresh-

old). Therefore, the only case of interest which offers room for improvement is where

the channels exhibit only moderate marginal opportunistic gains (e.g., 1 − an). In

this case, SRPT-OPS with an appropriate threshold can offer significant improvement

over OPS, e.g., for the shown results, SRPT-OPS is not more than 25% worse than

SRPT-HPR.

Next, we present a detailed simulation of a dynamic system with time varying

channels, as well as the corresponding M/GI/C̄ system.
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5.6.1 Simulation of a dynamic wireless system with time varying channels
and the corresponding M/GI/C̄ queue

We consider a slotted time system with a slot duration ts = 1 ms, where only

a single user can be scheduled over a time slot.

Model for time varying channels: The time varying wireless channel of user i,

denoted by (Ri(t), t ∈ Z), has the same distribution as that of random R, which in

turn is given by,

R = 106 × log2(1 +H) bps, (5.16)

where H denotes the random SNR. If user i is scheduled over the time slot [t, t + 1)

(of duration 1 ms), then Ri(t)ts bits can be served from its queue. We will consider

the following two scenarios for the distribution of SNR H.

(A) Rayleigh fading:
√
H has a Rayleigh distribution with a mean of 1 dB.

(B) Rician fading with quantization: H is a quantized version of Ĥ, where
√
Ĥ has a

Rician distribution with a mean of 1 dB and K factor of 10, and the quantization

levels are as prescribed for the modulation and coding schemes available in an

HDR system; see [32, Table 2].

Recall the definition of opportunistic capacity function from (5.3), and let
(
g

(A)
k , k ≥ 0

)
and

(
g

(B)
k , k ≥ 0

)
denote the capacity functions corresponding to the fading scenarios

(A) and (B) respectively. See Fig. 5.6 for a plot of the normalized capacity functions,

i.e.,

(
g

(A)
k

g
(A)
1

, k ≥ 0

)
and

(
g

(B)
k

g
(B)
1

, k ≥ 0

)
where g

(A)
1 ≈ 106 and g

(B)
1 ≈ 1.06 × 106. We

note that the normalized capacity function associated with Rayleigh fading matches(
g

(2)
k , k ≥ 0

)
, and the normalized capacity function associated with quantized Rician

fading matches
(

1−ak
1−a , k ≥ 0

)
for a = 0.33. For any n > 0, let C̄(A)

n denote the poly-

matroid capacity region defined by
(
g

(A)
k , k ≥ 0

)
and let C̄(A) ≡

(
C̄(A)
n , n > 0

)
. The

regions C̄(B)
are defined similarly.
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Figure 5.6: Normalized capacity functions associated with various fading scenarios,
and their approximate matches.

Model for user/file arrivals: New users/files arrive in the beginning of a

time slot as a Bernoulli process of rate λ; simulated values of λ will be specified later.

File sizes are lognormally distributed with mean β = 106 bits (122 KB) and variance

1.72β2. We have that β

g
(·)
1

is approximately 1 second.

Model for admission control: Most systems handling best-effort traffic im-

plement admission control due to constraints on memory or computational resource,

and/or to manage overheads and user-perceived performance [59, 60]. We model ad-

mission control by limiting the system to at most 25 users, and any users that arrive

when there are already 25 users in the system are blocked and rejected.

Schedulers: In this slotted time system with time varying channels, the OPS

scheduler corresponds to scheduling in each time slot a file/user with the best channel,

with ties broken uniformly at random. Similarly, SRPT-OPS(n∗) corresponds to

scheduling according to OPS from amongst (at most) n∗ files with the shorter residual

sizes.
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Simulated system loads: We simulate the dynamic system with time vary-

ing channels under fading scenario (A) (DSwTC-A for short) and the corresponding

M/GI/C̄(A)
system for the following system loads:

λβ ∈
{
g

(A)
1 , g

(A)
2 , g

(A)
5 , g

(A)
10 , g

(A)
15

}
, (5.17)

see Fig. 5.6 for reference. We simulate DSwTC-B and the corresponding M/GI/C̄(B)

system for the following system loads:

λβ ∈
{
g

(B)
1 , g

(B)
2 , g

(B)
3 , g

(B)
5

}
. (5.18)

Figure 5.7: Mean number of users in the system and mean sojourn time under various
schedulers, plotted versus carried load.

Fig. 5.7 gives the plots for mean sojourn time and mean number of users in

the system under the following schedulers:
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• DSwTC-A and DSwTC-B under schedulers OPS and SRPT-OPS(n∗) with var-

ious load-dependent thresholds n∗ (specified later).

• M/GI/C̄(A)
and M/GI/C̄(B)

under schedulers OPS, SRPT-HPR, and SRPT-

OPS(n∗).

Note that the x-axis in the plots is the carried rate
(

1− P (·)
b

)
λ (instead of the

offered rate λ), where P
(·)
b for (·) ∈ {OPS, SRPT-HPR, SRPT-OPS(n∗)} denotes the

probability that an arriving user is blocked under scheduler (·). For a fixed arrival

rate λ, the probability of blocking and thus the carried rate is different for different

schedulers. We make the following observations.

Validity of modeling DSwTC-(·) as queue M/GI/C̄(·)

We note that the simulation results for the M/GI/C̄(·) OPS system are nearly

identical to those for the corresponding DSwTC-(·) OPS system.4 The same also

holds for SRPT-OPS. This further validates the reduction of a wireless system with

time varying channels to an instance of the queue M/GI/C for appropriately defined

capacity regions C. The latter system offers certain analytical simplifications which

were discussed in Remark 5.3.

Opportunistic gain mitigates sub-optimality of OPS

For the fading scenario (A) (Rayleigh fading), we note that the sub-optimality

of OPS versus SRPT-HPR – measured from the “vertical” separation between the

curves corresponding to OPS and SRPT-HPR – is under 20%. Whereas, for the fading

scenario (B), the sub-optimality of OPS versus SRPT-HPR is 40% to 75%, depending

on the load. We conclude that for a system where the opportunistic capacity increases

4This is also shown in [22] for the case of Rayleigh fading.
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rapidly with the number of users, no significant reduction in mean sojourn time is

achievable over the file-size-oblivious and purely-opportunistic OPS scheduler.

We would like to add that in a heterogeneous wireless system where the as-

sumption of identically distributed channels (modulo scaling) is generally not true,

OPS is perhaps better implemented as MaxQuantile scheduler rather than Propor-

tional Fair. Moreover, [31] shows through extensive simulations that the performance

under MaxQuantile is better than that under Proportional Fair.

SRPT-OPS(n∗) reduces sojourn time as well as blocking probability

For fading scenario (A), we observed that under SRPT-OPS(n∗) for any thresh-

old n∗ such that λβ
gn∗
≥ 0.85, the performance of SRPT-OPS was marginally better

or identical to that of OPS. The results plotted in Fig. 5.7 are for the following load-

dependent thresholds: for the five system loads given in (5.17), the threshold n∗ is

set to 5, 5, 12, 20 and 25 respectively. For these thresholds, the means under SRPT-

OPS are consistently about 1–3% lower than those under OPS, which is a negligible

improvement.

For fading scenario (B), the results plotted in Fig. 5.7 are for the following

load-dependent thresholds: for the four system loads given in (5.18), the threshold n∗

is set to 3, 5, 5 and 8 respectively. The means under SRPT-OPS are roughly half-way

between those under OPS and SRPT-HPR, and about 10% to 30% worse than those

under SRPT-HPR. Moreover, we note that the probability of blocking is about ten

times lower under SRPT-OPS than that under OPS. For example, when λβ = g
(B)
5 ,

about 2.3% users are blocked under OPS versus 0.23% under SRPT-OPS(8).

Lastly, for the DSwTC-B system with an offered rate of λ = 1.41 files/sec (or

λβ = g
(B)
3 ), Fig. 5.8 gives the plots of mean sojourn time under OPS and SRPT-

OPS(n∗) for various values of threshold n∗, indicating that for a wide range of thresh-
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Figure 5.8: Mean sojourn time for DSwTC-B under OPS and SRPT-OPS(n∗).

olds, the performance under SRPT-OPS is better than that under OPS. For a fair

comparison, the following method was used to maintain the same probability of block-

ing under all schedulers: whenever an arriving user is blocked in any one system, it

is also blocked from all other systems even if those systems had fewer than 25 users

at that time. The carried rate thus achieved is about 1.39 files/sec.

5.7 Extensions and comments

Consider, for example, the queue M/GI/C(A) without any admission con-

trol/blocking of users. Then for this queue, the SRPT-OPS(n∗) scheduler for any

fixed threshold is not throughput-optimal. In particular, if the load λβ > g
(A)
n∗ , then

the queue will be unstable under SRPT-OPS(n∗). While throughput-optimality of

a scheduler may not be of much relevance in a wireless system like the one consid-

ered in this work, we nevertheless can ensure throughput-optimality of SRPT-OPS

by introducing the following modification. Instead of a fixed threshold n∗, one can

make the threshold a function of the number of users in the system. For example,

when there are n users in the system, at most n∗(n) ≡ 7 + n
4

users (with the shorter

residual file sizes) are admitted for service, and the remaining are made to wait in

a queue. That is, we need to have n∗(n) ↑ ∞ with n. Moreover, along the lines of

the throughput-optimality result in the previous chapter, one can show that for any
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file-size distribution with finite support, the modified SRPT-OPS scheduler will be

throughput-optimal also for the corresponding DSwTC.

5.8 Conclusion

We presented new results and insights regarding the key tradeoff involved in

scheduling best effort flows over time varying channels. Just as importantly, we re-

duced the complex scheduling problem to a simpler system, namely queue M/GI/C,

which explicitly captures the tradeoff and other salient features of the original schedul-

ing problem. For a given system load (number of users in the system), if the oppor-

tunistic capacity does not saturate, then the sub-optimality of file-size oblivious OPS

(or SRPT-OPS with large threshold) is only minimal. If however the opportunis-

tic capacity saturates at the given load, then OPS can be significantly sub-optimal,

whereas, SRPT-OPS, which makes use of file-size information, can still offer near

optimal performance. SRPT-OPS is simple to implement, reduces the amount of

channel state feedback from users to the base station, and offers service at a nearly

constant rate to the admitted users.

Appendix

Proof of Lemma 5.1

For n = 1 file of size l1, we trivially have cs
(
(l1); 1

)
= l1

g1
. For n = 2, let

l1 ≥ l2 > 0 be the initial sizes of the two files. SRPT-HPR serves according to the

rate vector (g2−g1, g1) until file 2 (the smaller file) departs, leaving behind file 1 with

residual size l1 − (g2 − g1) l2
g1

. We have,

cs
(
(l1, l2); 2

)
= 2

l2
g1

+
1

g1

(
l1 − (g2 − g1)

l2
g1

)
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Re-arranging the above, we get,

cs
(
(l1, l2); 2

)
=

l2
g1

(
3− g2

g1

)
+
l1
g1

,

=
l2
g1

(
2−

(
g2

g1

− g1

g1

))
+
l1
g1

,

≡ θ2l2 + θ1l1g1, (5.19)

where coefficients θk are given as follows. Set θ0 = 0 and for any n > 0, let

θn ≡
1

g1

(
n−

n−1∑
l=1

θl (gn+1−l − gn−l)

)
, (5.20)

which is equivalent (5.7) with g0 ≡ 0. So, for 2 files, the cost under SRPT is given

by (5.19). Suppose for some n ≥ 2 files l1 ≥ · · · ≥ ln, the cost under SRPT-HPR is

given by

cs
(
(l1, · · · , ln);n

)
=

n∑
k=1

θklk,

then we will show that the cost under SRPT-HPR for n + 1 files l1 ≥ · · · ≥ ln+1 is

given by 1
g1

∑n+1
k=1 θklk. We proceed with the induction.

With n+ 1 files, the SRPT-HPR scheduler will allocate rates

(gn+1 − gn) ≤ (gn − gn−1) ≤ · · · ≤ (g2 − g1) ≤ g1

to files with original sizes l1 ≥ l2 ≥ · · · ≥ ln+1 respectively. The file n+ 1 will be the

first to finish (after taking ln+1/g1 units of time) and leave behind n files of size,

l1 − (gn+1 − gn)
ln+1

g1

≥ l2 − (gn − gn−1)
ln+1

g1

≥ · · · ≥ ln − (g2 − g1)
ln+1

g1

.
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Therefore, the cost under SRPT-HPR is,

cs
(
(l1, · · · , ln+1);n+ 1

)
= (n+ 1)

ln+1

g1

+

n∑
k=1

θk

(
lk − (gn+2−k − gn+1−k)

ln+1

g1

)
,

=
n∑
k=1

θklk +

ln+1

g1

(
n+ 1−

n∑
k=1

θk (gn+2−k − gn+1−k)

)
,

=
n+1∑
k=1

θklk.

Proof of Theorem 5.1

To prove Theorem 5.1, first we will need to show that θk given by (5.7) is

increasing in k. We proceed as follows.

θk is increasing in k It is clear that θ1 = 1 > θ0 = 0. Suppose for some n ≥ 1, we

have that θk − θk−1 ≥ 0 for all k ≤ n. Then we will show that θn+1 − θn ≥ 0. By

(5.7), we have,

1 = (θ ∗∆)(n)− (θ ∗∆)(n− 1) ,

=
n−1∑
k=0

∆k (θn−k − θn−1−k) , (5.21)

and,

1 = (θ ∗∆)(n+ 1)− (θ ∗∆)(n) ,

=
n∑
k=0

∆k (θn+1−k − θn−k) . (5.22)
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Substituting l = k − 1 in (5.22) and rearranging,

(θn+1 − θn)∆0 = 1−
n−1∑
l=0

∆l+1 (θn−l − θn−1−l) ,

≥ 1−
n−1∑
l=0

∆l (θn−l − θn−1−l) ,

= 0

where the inequality above follows from the induction assumption that θk+1− θk ≥ 0

for 0 ≤ k < n and the fact that ∆l ≥ ∆l+1, and the last equality from (5.21).

Now we can continue with the proof of the optimality of SRPT-HPR (Theorem

5.1).

Proof of Theorem 5.1 (cont.) Due to convexity of C̄n for all n > 0, it suf-

fices to consider schedulers ψ(s(t)) that do not vary over an epoch. That is, given

|q(t)| = k > 0 over some interval [t1, t2], we only need consider schedulers under which

the service rate allocation ψ(s(t)) ∈ C̄k is constant over [t1, t2].

Let l1 ≥ l2 ≥ · · · ≥ ln be initial sizes of the n given files. For n = 1, the

minimum cost c∗ is simply,

c∗
(
(l1); 1

)
=
l1
g1

= cs
(
(l1); 1

)
.

Next we consider the case for n = 2. Consider a schedule that picks rate vector

ψ(s(0)) ≡ (r1, r2) ∈ C̄2 – i.e., serves files 1 and 2 at rates r1 and r2 respectively –

until the first departure, then serves the remaining file (if any) at optimal rate g1.

Let (i, j) = (1, 2) if file 1 completes service before (or at the same time) as file 2,

otherwise (i, j) = (2, 1), i.e.,

(i, j) =

{
(1, 2) if l1

r1
≤ l2

r2
,

(2, 1) otherwise.
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Therefore we have li
ri
≤ lj

rj
and ri 6= 0. Then we have,

cψ
(
(l1, l2); 2

)
= 2

li
ri

+
1

g1

(
lj − rj

li
ri

)
,

≥ 2
li
ri

+
1

g1

(
lj − (g2 − ri)

li
ri

)
,

where the inequality is obtained by noting rj ≤ g2 − ri. Re-arranging above, we get,

cψ
(
(l1, l2); 2

)
≥

(
2− g2

g1

)
li
ri

+
li
g1

+
lj
g1

,

(i)

≥
(

2− g2

g1

)
li
g1

+
li
g1

+
lj
g1

,

=

(
3− g2

g1

)
li
g1

+
lj
g1

,

(ii)

≥
(

3− g2

g1

)
l2
g1

+
l1
g1

,

= cs
(
(l1, l2); 2

)
,

where inequality (i) is obtained by noting that 2− g2

g1
≥ 0 and ri ≤ g1, and replacing

ri with g1; and inequality (ii) by noting that l1 ≥ l2 and

3− g2

g1

≥ 1.

Since rate vector (r1, r2) ∈ C̄2 was arbitrary, it follows that SRPT-HPR is optimal

when starting with n ≤ 2 files. Next, suppose SRPT-HPR is optimal for n ≥ 2 files,

i.e.

c∗
(
(l1, · · · , ln);n

)
= cs

(
(l1, · · · , ln);n

)
,

we will show that SRPT-HPR is also optimal when starting with n+ 1 files.

We start with n + 1 files l1 ≥ · · · ≥ ln+1. Consider a scheduler ψ(·) which

picks a rate vector r ∈ C̄n+1 until the first departure. Let i ∈ {1, · · · , n + 1} be the

first to finish file under vector r, i.e., for all k ∈ {1, · · · , n+ 1},

τi ≡
li
ri
≤ lk
rk
,
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(and therefore, ri 6= 0). Then at time τi, each file k has size lk − rkτi. For k ≤ n,

let o(k) denote the index of the kth largest file in the system at time τi (ties broken

arbitrarily), i.e.,

lo(1) − ro(1)
li
ri
≥ lo(2) − ro(2)

li
ri
≥ · · · ≥ lo(n) − ro(n)

li
ri
≥ 0.

Also, for k < i, let i(k) = k, and for k ≥ i, let i(k) = k+ 1. Then the cost cψ(·) under

the scheduler ψ satisfies,

cψ
(
(l1, · · · , ln+1);n+ 1

)
(i)

≥ (n+ 1)
li
ri

+ c∗
(
lo(1) − ro(1)

li
ri
, · · · , lo(n) − ro(n)

li
ri

)
,

= (n+ 1)
li
ri

+
n∑
k=1

θk

(
lo(k) − ro(k)

li
ri

)
,

=
n∑
k=1

θklo(k) +
li
ri

(
n+ 1−

n∑
k=1

θkro(k)

)
,

(ii)

≥
n∑
k=1

θkli(k) +
li
ri

(
n+ 1−

n∑
k=1

θkro(k)

)
,

(iii)

≥
n∑
k=1

θkli(k) +
li
ri

(
n+ 1−

n−1∑
k=1

θk
(
gn+2−k − gn+1−k

)
− θn(g2 − ri)

)
,

=
n∑
k=1

θkli(k) +
li
ri

(
n+ 1−

n∑
k=1

θk
(
gn+2−k − gn+1−k

)
− θng1

)
+ θnli,

=
n∑
k=1

θkli(k) +
li
ri
g1(θn+1 − θn) + θnli,

≥
n∑
k=1

θkli(k) + θk+1li,

(iv)

≥
n+1∑
k=1

θklk,

= cs
(
(l1, · · · , ln+1);n+ 1

)
,

where the inequalities follow respectively from,

(i) replacing the cost over time (τi,∞) with the optimal cost;

(ii) noting that θk is increasing while li(k) is decreasing in k.
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(iii) the greedy maximization of linear functions on a polymatroid region [54, The-

orem 44.3], and noting that the service vector (ro(1), · · · , ro(n)) lies in a n-

polymatroid defined by (gk+1 − ri, 1 ≤ k ≤ n).

(iv) noting that θk is increasing and lk is decreasing in k.

Proof of Lemma 5.2

For n = 1 file with initial size l1, we simply have cp
(
(l1); 1

)
= l1

g1
. For n = 2

files with initial sizes l1 ≥ l2 > 0, we have,

cp
(
(l1, l2); 2

)
= 2

l2
g2/2

+
1

g1

(l1 − l2) ,

=

(
22

g2

− 1

g1

)
l2 +

1

g1

l1,

≡ π2l2 + π1l1,

where coefficients πk are given as follows: π1 = 1
g1

, and for any k > 1,

πk ≡
k2

gk
− (k − 1)2

gk−1

.

It will be useful to note that for any n > 0, we have
∑n

k=1 πk = n2

gn
. Now suppose the

cost under OPS when starting in state
(
{1, · · · , n}; l ≡ (l1, · · · , ln)

)
for some n ≥ 2

and l1 ≥ . . . , ln is given by,

cp(l;n) =
n∑
k=1

πklk ,

then we will show that the cost when starting in state
(
{1, · · · , n+1}; l ≡ (l1, · · · , ln+1)

)
with initial sizes l1 ≥ . . . ≥ ln+1 is given by

∑n+1
k=1 πklk.

When starting with n + 1 files, each file is served at rate gn+1

n+1
until the first
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Figure 5.9: Plot of
(
πk
θk
, k > 0

)
for various values of a ∈ [0, 1).

departure, leaving behind n files of sizes l1 − ln+1, . . . , ln − ln+1. We have,

cp(l;n+ 1) = (n+ 1)2 ln+1

gn+1

+
n∑
k=1

πk (l1 − ln+1) ,

=

(
(n+ 1)2

gn+1

−
n∑
k=1

πk

)
ln+1 +

n∑
k=1

πklk,

=
n+1∑
k=1

πklk .

Proof of Theorem 5.2

With g =
(

1−ak
1−a , k ≥ 0

)
for some fixed a ∈ [0, 1), we have θ1 = π1 = 1 and

for all k > 1,

θk = (1− a)k + a and πk = (1− a)

(
k2

1− ak
− (k − 1)2

1− ak−1

)
.

It is easy to show that,

lim
k→∞

πk
θk

= 2. (5.23)

We will also need that πk
θk

is increasing in k for all k > 0. It can shown that, for any

k ≥ 0, we have

gk+1gk+2(k + g∞)(k + g∞ + 1)

g∞

(
πk+2

θk+2

− πk+1

θk+1

)
= (2g∞ − 1)gkgk+1 + akk2(k + g∞ + 1)gk+2 −

ak+1
(
(k + 1)2(k + g∞) + (2k + 1)(k + g∞ + 1)

)
gk,
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where the second and third terms of the summation on the right side of the equality

are ak
(
gk+2k

3 + O(k2)
)
− ak+1

(
gkk

3 + O(k2)
)
. Therefore, for large k, we have that

πk
θk

is increasing in k. To show that πk
θk

is increasing in k for all k > 0, we resort to

numerical computation and refer to Fig. 5.9 which gives the plots of
(
πk
θk
, k > 0

)
for

various values of a ∈ [0, 1). Monotonicity of πk
θk

gives the following result,

cp(l;n; a)

cs(l;n; a)
=

∑n
k=1 πklk∑n
k=1 θklk

,

=
πn
θn

∑n
k=1

πklk
πnln∑n

k=1
θklk
θnln

. (5.24)

But for any k < n, since πk
πn
≤ θk

θn
, therefore,∑n

k=1
πklk
πnln∑n

k=1
θklk
θnln

≤ 1.

Using this along with (5.24) and (5.23) we get, for any n ≥ 1,

cp(l;n; a)

cs(l;n; a)
≤ πn

θn
≤ 2. (5.25)

We will also need the following fact which can be verified using simple calculus.

Fact 5.2 For any positive constants a, b, c, d,

ax+ b

cx+ d

is increasing in x if and only if a
c
≥ b

d
.

Recall the assumption l1 ≥ . . . ≥ ln. For any fixed l1, . . . , ln−1, let us examine

the ratio cp(l;n)

cs(l;n)
as a function of ln (which can take values in [0, ln−1]). Then using

Fact 5.2, along with (5.25) (for n− 1) and monotonicity of πk
θk

, we have that, cp(l;n)

cs(l;n)
is

maximized at ln = ln−1. Proceeding in this way, we can show that,

sup
l∈Rn+

cp(l;n; a)

cs(l;n; a)
=

cp(1;n; a)

cs(1;n; a)
=

∑n
k=1 πk∑n
k=1 θk

=

n2

gn
1−a

2
n2 + 1+a

2
n

=
2

(1− a)gn + (1 + a)gn
n

.

(5.26)

Moreover, it can be verified that right side of (5.26),
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• monotonically increases to 2 as n ↑ ∞. Therefore, for any fixed a ∈ [0, 1),

sup
n>0,l∈Rn+

cp(l;n; a)

cs(l;n; a)
= lim

n→∞

cp(1;n; a)

cs(1;n; a)
= 2. (5.27)

• monotonically increases to 2
1+n−1 as a ↓ 0. That is, for any fixed n > 0,

sup
a∈[0,1),l∈Rn+

cp(l;n; a)

cs(l;n; a)
= lim

a→0

cp(1;n; a)

cs(1;n; a)
=

2

1 + n−1
. (5.28)

Proof of Lemma 5.3

The expression for cost under SRPT-OPS, csp(·), i.e.,

csp(l;n) =
n∑
k=1

π̂klk

can be verified using induction, in the same way as that for SRPT-HPR in the proof

of Lemma 5.1 and OPS in the proof of Lemma 5.2.

Proof of Theorem 5.3

It can be shown that,

lim
k→∞

π̂k
θk

=
g∞
gn∗

, and (5.29)

sup
k>0

π̂k
θk

= max

(
πn∗

θn∗
,
g∞
gn∗

)
. (5.30)

Then (5.15) follows directly from (5.29), whereas (5.14) follows by an application of

Fact 5.2 and (5.30), i.e.,

sup
n≥1,l∈(0,∞)n

csp(l;n)

cs(l;n)
≤ sup

k>0

π̂k
θk

= max

(
πn∗

θn∗
,
g∞
gn∗

)
.
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Conclusion
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To conclude, we review the main results of the thesis and discuss some of the

remaining challenges.

First, we review our results on QoS scheduling and in doing so, present an

alternative view of the thesis. The complexity in this problem has two aspects to it:

(1) complexity due to the fact that the opportunistic capacity region (see (2.4)) is

typically not a simplex or a polymatroid, but instead a general convex, coordinate

convex set;

(2) complexity due to the fact that the opportunistic capacity region is realizable only

on sufficiently long time scales, as an average of the time-varying instantaneous

capacity regions.

So, Chapter 2 and Appendix A can be viewed as focusing on the first aspect of

complexity and ignoring the second by using a time-scale separation argument. That

is, we investigated the control of parallel queues, where the queues can be served

simultaneously at any rate vector from a fixed convex capacity region. If the capacity

region is not a simplex or a polymatroid, then there is a tradeoff between maximizing

total service rate and balancing unequal queues. Numerical computation of the mean

delay optimal policies for various capacity regions, as well as an investigation of the

corresponding fluid models, led to the discovery of a key property we named radial

sum-rate monotonicity (RSM). RSM pertains to the above-mentioned tradeoff, and

an RSM policy, such as the Log rule, can be viewed as perturbing a greedy policy –

greedy with respect to the service rate – just enough to make it throughput optimal.5

As mentioned above, both Chapter 2 and Appendix A ignore the second as-

pect of complexity, i.e., the fact that only the long-run average service rate offered to

5By contrast, Exp rule can be viewed as perturbing the “serve the longest queue” policy just
enough to make it throughput optimal.
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the contending queues/users lies in the opportunistic capacity region. Nevertheless,

a functional law of large numbers suggests that under an appropriate scaling of time

and queue state-space, the second source of complexity should vanish and the scaled

queues should appear as if they can be served at any rate vector from a fixed capac-

ity region. This observation was formalized in Chapter 3, where we investigated the

scheduling problem in all its complexity, and showed that a candidate RSM policy

minimizes the asymptotic probability of sum-queue overflow. Moreover, in conjunc-

tion with the results of [19] and [47], we note that the mode of overflow under an RSM

policy translates to a more graceful degradation of service under transient overloads.

Second, we review our results on best-effort scheduling. The main result of

Chapter 4 was motivated by [28], and stated that a MaxWeight-type scheduler which

prioritizes flows that are experiencing long delays is throughput optimal. However,

the relationship between the residual flow size and its current delay is unclear, and

the performance of delay-driven MaxWeight may typically be worse than a purely

opportunistic schedulers. Therefore, in Chapter 5 we explicitly investigated the im-

pact of using residual flow size information for scheduling. We found that in fading

scenarios where the opportunistic capacity grows sharply with the number of users –

Rayleigh fading for example – the use of residual flow size information does not result

in a significant decrease in mean flow transfer delay. In such fading scenarios, purely

opportunistic schedulers like MaxQuantile or Proportional Fair perform very well.

By contrast, in fading scenarios where the opportunistic capacity grows slowly with

the number of users, the use of residual flow size information may offer a significant

reduction in mean flow transfer delay. We proposed a threshold-based scheduler that

performs well in all fading scenarios, would be “simple” to implement, and exhibits

robustness in that its performance is better than purely opportunistic schedulers for

all sufficiently large thresholds.

Finally, we comment on some of the remaining challenges. In the first half
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of the thesis, as well as in other works [13, 18, 19, 47, 61, 62], the performance im-

provement offered by the proposed schedulers – which are optimal in their respective

settings – over previously known heuristics is often determined through simulations.

The analytical sub-optimality bounds for various schedulers largely remain an open

problem, except for some limited results given in [8]. It would be interesting to ex-

tend the Lyapunov function techniques of [8] to more general systems, or investigate

alternative techniques such as those introduced in [63] to obtain performance bounds

for some representative, insightful examples.

This leads us to the next open problem: a good measure of robustness for

schedulers in wireless systems. In this thesis, we used a somewhat informal notion of

robustness, namely, sensitivity of performance to scheduler parameters and graceful

degradation of service (which we subsequently related to the mode of queue overflow).

The large deviations or asymptotic optimality results in this thesis as well as those

in [18,19,47,62] are insensitive to the choice of the respective scheduler’s parameters

– this can be viewed as a strength and a weakness of these results, at the same time.

It is a strength because the asymptotic optimality holds irrespective of the choice of

the scheduler parameters, and a weakness because the performance over the regime

of interest – non-asymptotic performance – typically depends significantly on the

scheduler parameters.

In the second half of the thesis when investigating the scheduling of best-

effort flows, we explicitly focused on obtaining sub-optimality bounds. However, the

analytical bounds developed were applicable only to a transient system. For the

dynamic system in steady state, a straight-forward lower bound on the achievable

mean delay is given in [64], however, this bound perhaps is not sufficiently tight for

most cases of interest in our setting. Therefore, good sub-optimality bounds for the

dynamic system in steady state still remain an open problem.
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Appendix A

Fluid-scale asymptotic optimality and RSM

policies

In Section 2.4.1, we observed that optimal policies µ∗ for the MDP, computed

through relative value iteration for different capacity regions and arrival vectors, sat-

isfied condition (a) in the definition of RSM (see Definition 2.1). In this appendix,

we will consider if and when RSM polices are fluid-scale asymptotic optimal (FSAO),

which is formally defined in Section A.0.2. Roughly speaking, the asymptotic slopes

of the switching curves under µ∗ and FSAO policies are identical.

For the MDP, we have already defined an optimal policy µ∗ by (2.12) and

(2.13), and a representative RSM policy, namely, the Log rule µL by (2.26). Paral-

leling this, next, for a deterministic fluid model, we will introduce an optimal fluid

policy µF∗ and a greedy fluid policy µFg. The two policies for the MDP are related to

the two policies for the fluid model, as shown in Fig. A.1. Using these relationships,

one can show the following.

(1) If µFg is not an optimal policy for the fluid model, then µ∗ does not satisfy

condition (b) in the definition of RSM.

(2) Otherwise, RSM policies like the Log rule are FSAO. Furthermore, if µFg is the

unique optimal policy for the fluid model, then it follows that µ∗ and µL have

similar switching curves on the state-space of appropriately scaled queue process.

The formal description of the above follows. Subsequently, we will also consider

examples of fluid models where the greedy policy may or may not be optimal.

157



Figure A.1: The Relation between policy µ∗ for MDP and policy µF∗ for fluid model,
and between policy µL for MDP and policy µFg for fluid model.

A.0.1 Deterministic Fluid Model

One can associate a fluid model (see, e.g., [38, 65]) with the MDP defined in

Section 2.3, as follows. Let (x(t), t ≥ 0) be a deterministic continuous trajectory

starting at point x(0) = y ∈ Rn̄
+ and evolving as,

x(t) = y + λt−
∫ t

0

u(τ)dτ ,

where the control u(·) ∈ C and the control policy (u(t), t ≥ 0) is measurable and

keeps x(·) in Rn̄
+. To indicate the dependence of the trajectory on the control policy

and initial condition, subsequently we will write xu(t;y) instead of x(t). The cost of

trajectory (xu(t;y), t ≥ 0) in turn is given by,

JFu (y) ≡
∫ ∞

0

〈w,xu(t;y)〉 dt . (A.1)

Since λ lies in the interior of C (see (2.7)), there exists at least one control

policy (u(t), t ≥ 0) under which the cost is finite for all finite starting points x(0).

If u(t) = µF (x(t)), then we will refer to µF : Rn̄
+ → C as a state-feedback

control policy for the fluid model. It is shown in [65] that there exists a state-feedback

policy µF∗ with the following properties:
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• For any starting point y ∈ Rn̄
+, the trajectory (xµ

F∗
(t;y), t ≥ 0) is absolutely

continuous (and thus differentiable a.e.) and satisfies for all regular t,

d

dt
x(t) = λ− µF∗(x(t)).

• The policy µF∗ is optimal for the fluid model. That is, for any admissible policy

(u(t), t ≥ 0), we have,

JFµF∗(y) =

∫ ∞
0

〈
w,xµ

F∗
(t;y)

〉
dt ≤ JFu (y). (A.2)

Moreover, any state-feedback optimal fluid policy µF∗ must satisfy the Hamilton-

Jacobi-Bellman equation (see [38, Proposition 4.3.2]), i.e., for all x ∈ Rn̄
+,

µF∗(x) ∈ arg max
u∈Cx

〈
∇JFµF∗(x),u

〉
, (A.3)

where Cx = {u ∈ C : ∀n ∈ N , if xn = 0⇒ un ≤ λn} is the set of admissible con-

trols in state x. Subsequently we will use (A.3) to test a candidate fluid policy for

optimality.

A.0.2 Fluid-scale asymptotic optimality

For each integer θ > 0, consider an independent Markov chain, (Q
(θ)
k , k ≥ 0),

starting in state q(θ)(0) = (bθync, n ∈ N ) ∈ Zn̄+ and evolving under a scheduling pol-

icy µ. Let Q̄(θ)(t) denote the fluid-scaled version of the Markov chain, i.e.,

Q̄(θ)(t) ≡ 1

θ
Q

(θ)
bθtc, t ∈ R+.

Then the policy µ is said to be FSAO if it satisfies the following [65]:

lim
t→∞

lim
θ→∞

Eµ
q̄(θ)(0)

[∫ t

0

〈
w, Q̄(θ)(τ)

〉
dτ

]
= JFµF∗(y). (A.4)

A.0.3 Relation between µ∗ and µF∗

The optimal policies µ∗ for the MDP are FSAO; see [38, Theorem 10.0.5 and

Section 10.6.2].
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A.0.4 Relation between RSM Policy for MDP and Greedy Policy for
Fluid Model

For ease of exposition, we assume that the capacity region C and vectors λ

and w are such that the arg maxu∈Cx〈w,u〉 is unique for all x ∈ Rn̄
+. Let us define a

policy µFg which is greedy with respect to the weight vector w. More precisely, µFg

is given as follows: for any x ∈ Rn̄
+, we have,

µFg(x) ≡ arg max
u∈Cx
〈w,u〉. (A.5)

For example, for any x > 0, the control µFg(x) is equal to the (weighted) max-sum-

rate vertex arg maxu∈C〈w,u〉.

Next, we describe the relation between the RSM policy and the greedy policy.

For each integer θ > 0, consider an independent Markov chain, (Q
(θ)
k , k ≥ 0), start-

ing in state q(θ)(0) = (bθync, n ∈ N ) ∈ Zn̄+ and evolving under an RSM policy. The

analysis in Lemmas 3.1–2.2 and [47] shows that under an RSM policy like the Log

rule, µL, we have the following uniform convergence over compact sets along some

subsequence {θj}, (
Q̄(θj)(t), t ≥ 0

)
→ (q̄(t), t ≥ 0),

where the fluid-limit (q̄(t), t ≥ 0) with q̄(0) = y satisfies,

d

dt
q̄(t) = λ− arg max

u∈Cq̄(t)

〈w,u〉 . (A.6)

Subsequently we will write (q̄(t;y), t ≥ 0) to explicitly indicate the starting point of

the fluid-limit trajectory. By comparing (A.5) and (A.6), we have that the fluid limit

under the RSM policy and the fluid trajectory under the greedy policy are identical,

i.e.,

xµ
Fg

(t;y) = q̄(t;y), t ≥ 0. (A.7)

The following observation captures the intuition: recall the weighted max-rate horn

described in Section 2.4.1; for any point of the fluid-limit trajectory in the interior
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Figure A.2: Fluid model: (a) capacity region C, (b) fluid trajectory xµ
Fg

(·;y) starting
at point y with y1 > y2.

of Rn̄
+, i.e., q̄(t) > 0, the unscaled queue, θjQ̄

(θj)(t), for large enough θj lies in the

weighted max-rate horn.

Lastly, we have the following convergence in the mean,

lim
t→∞

lim
θ→∞

Eµ
L

q̄(θ)(0)

[∫ t

0

〈
w, Q̄(θ)(τ)

〉
dτ

]
=

∫ ∞
0

〈w, q̄(τ ;y)〉 dτ = JFµFg(y). (A.8)

A.0.5 Main Result

See Fig. A.1 and recall the relation between µ∗ and µF∗, and between µL and

µFg. Suppose that for a given fluid model, the greedy policy µFg is optimal, i.e.,

JFµF∗(·) = JFµFg(·). Then it follows from (A.4) and (A.8) that µL is FSAO. Further-

more, suppose µFg is the unique (a.e.) optimal policy. Then, since µ∗ is also FSAO,

the fluid limit (q(t; ·), t ≥ 0) of the queue process under µ∗ (if the limit exists) and

under µL will be identical, and in turn, identical to the deterministic fluid trajectory(
xµ

Fg
(t; ·), t ≥ 0

)
. In other words, the switching curves under µ∗ and µL on the

state-space of fluid-scaled queue will be identical and, in turn, identical to the switch-

ing curves under the greedy policy µFg. Next, we show through a representative

example that, if λ is not too small, then µFg is indeed the unique optimal policy for

the fluid model.

To simplify the exposition, we restrict the system to n̄ = 2 users, weight vector
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w = (1, 1), and a capacity region C ∈ Rn̄
+ depicted in Fig. A.2(a). That is, C has a

unique max-sum-rate vertex (a, a), with the two adjacent vertices (a1, a2) and (a2, a1)

satisfying a1 + a2 < 2a. Let the point (0, b̂) be such that the line segment joining

points (a, a) and (0, b̂) passes through vertex (a1, a2). Then, the region C intercepts

with the two axes at points (b, 0) and (0, b) for some b ∈ (a, b̂). The remaining shape

of C is unspecified and can be anything (as long as C remains convex).

Consider any symmetric vector λ in the shaded region of C in Fig. A.2, i.e.,

λ1 = λ2 ∈ [a2, a).

Fig. A.2 depicts the trajectory
(
xµ

Fg
(t;y), t ≥ 0

)
starting from some point y > 0

such y1 > y2. The trajectory evolves as follows: if xµ
Fg

(t;y) > 0, then

d

dt
xµ

Fg

(t;y) = λ− (a, a);

and if xµ
Fg

1 (t;y) > 0, xµ
Fg

2 (t;y) = 0, then

d

dt
xµ

Fg

(t;y) = λ− (c(λ2), λ2),

where c(λ2) is the first coordinate of the point (c(λ2), λ2) on the boundary of C. Then,

for any starting point y such that y1 ≥ y2, it is easy to show that,

JFµFg(y) =
(y1 − y2)2

2(c(λ2)− λ1)
+

y1y2

a− λ2

.

Note that JFµFg(·) is homogenous, i.e., JFµFg(θy) = θ2JFµFg(y), and so

∇JFµFg(y) ∝∇JFµFg(θy).

Now we are ready to test the policy µFg for optimality using (A.3). Let s denote the

slope of the outer-normal to the facet joining the vertex (a, a) and (a1, a2) of C, i.e.,

s = a1−a
a−a2

; see Fig. A.2. It can be shown that for any y > 0 such that y1 ≥ y2, the

slope of gradient ∇JFµFg(y) lies in (s, 1], i.e.,

∇2J
F
µFg(y)

∇1JFµFg(y)
∈ (s, 1],
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whereas, on the x1-axis, the slope is equal to s. Then by (A.3), we have that µFg

is the unique optimal policy. In fact, along the lines of [66], one can show that µFg

is the optimal policy for any λ, not necessarily symmetric, that lies in the shaded

region of C. Therefore, for the corresponding MDP with λ, C, and w as described

above, µL is FSAO and has same switching curves on the state-space of fluid-scaled

queue as those of µ∗.

However, it can also be shown that for any λ < (a2, a2), the policy µFg

is not optimal for the fluid model. That is, there exist states x ∈ Rn̄
+ for which

JFµFg(x) > JFµF∗(x). It follows from (A.4) and (A.8) that RSM policies like µL will

not be FSAO. Since the optimal policies µ∗ are FSAO, they cannot be RSM.
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Appendix B

A note on delay-optimal opportunistic schedulers

for multichannel systems

To analyze the queueing system embedded in a centralized, OFDMA-based,

multiuser wireless system, a few recent works [42, 61, 62] have introduced a model

with multiple parallel servers, where the speed/capacity of a server for each user

varies over time, independently of that of other users.1Using the classical terminology

(see, e.g., [4]), such servers can perhaps be termed “time-varying” unrelated parallel

processors, “unrelated” refers to the fact that the speed at which the server can

process one user can be different from that of another user. This model provides a

method of abstracting out the Physical layer and focusing on structural properties of

delay-optimal control/scheduling of the parallel contending queues. A closely related

model is used in [67] for a multibeam satellite communication systems, the difference

being that the parallel servers are uniform rather than unrelated.

Various analytical and optimality results in [42, 61, 62] are all restricted to

servers with on-off capacities and under certain symmetry assumptions. Moreover,

all proposed schedulers are described as solutions of certain bipartite matching prob-

lems (e.g., finding the maximum-weighted matching). Arguably, such a presentation

of a scheduler offers little hint at generalizing the result to more realistic heteroge-

neous systems with multi-speed servers (equivalently, systems that support adaptive

1In this model, each server is often viewed as an integral component of bandwidth, e.g., a resource
block (RB) in LTE, and therefore, can only be allocated to at most one user over a transmission
time interval (TTI). A server can also be viewed as a subband, i.e., a collect of few consecutive RBs,
in which case the server can be allocated to multiple users over a TTI.
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modulation and coding), instead of just on-off servers.

In this appendix, we give an alternative description of the scheduling problem

discussed in [42,61,62,67], this description can be related to the dual of the bipartite

matching problem. The alternative description offers the following.

i. Certain proofs can be drastically shortened.

ii. The fact that even though mean-delay optimal schedulers for single-server systems

(see [12]) can be described as a linear convex program, such schedulers become

a nonlinear convex program for multi-server systems.

iii. Immediate extension of the schedulers to more realistic systems with multi-speed

servers and heterogeneity.

iv. Methods of implementation in real systems, taking into account practical limits

on the spectral granularity of channel feedback, and leveraging vast literature on

optimization and resource allocation in OFDMA.

B.1 System Model

In the following we describe a slotted-time multi-queue multi-server system.

Let the positive integer n̄ denote the total number of users, or equivalently, the number

of parallel queues, and let N ≡ {1, 2, · · · , n̄}. Let P(N ) denote the set of probability

mass functions on N and P0(N ) ⊂ P(N ) the set of Dirac measures. For any t ∈ Z+

and n ∈ N , let the random variable An(t) denote the number of packets arriving in

the nth queue in the beginning of time slot [t, t+ 1). We assume that for each n and

t, An(t) is drawn independently from the same distribution as that of random A, and

takes values in a finite subset of Z+. Let A(t) ≡ (An(t), n ∈ N ). Also, let Qn(t)

denote the number of packets in the nth queue at the end of time slot [t − 1, t) and

let Q(t) ≡ (Qn(t), n ∈ N ).
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Let a positive integer m̄ denote the number parallel servers and let the set

M≡ {1, · · · , m̄}. At any time t ∈ Z+, let the random variable Rmn(t) ∈ Z+ denote

the state (or speed) of the mth server for nth user over time slot [t, t+ 1). That is, if

the mth server is allocated to the nth user at time t, then Rmn(t) number of packets

can be served from the nth user’s queue. We assume that for each m,n and t, the state

Rmn(t) is independently drawn from the same distribution as that of random R. Let

the matrix R(t) ≡ (Rmn(t), (m,n) ∈M×N ); we will refer to R(t) as the servers’

state at time t. We will enumerate some assumptions regarding the servers, in the

sequel we will investigate the system under various combination of these assumptions:

• Assumption B.1 On-off server – the random variable R takes values in set

{0, 1}.

• Assumption B.2 Multi-rate server – the random variable R takes values in a

finite subset of Z+.

• Assumption B.3 Integral server – a server can only be allocated to at most

one user over a time slot.

• Assumption B.4 Divisible server – a server can be shared by multiple users

over a time slot.

Let S(t) ≡ (Q(t),A(t),R(t)) denote the random system state at time t ∈ Z+,

that takes values in space S. The scheduling problem in this context is to allocate the

m̄ servers to n̄ users based on the current system state, such that a given optimality

criterion is achieved. More precisely, a scheduling policy or scheduler is described as

a mapping

s(t)→ π(s(t)) ≡
(
πmn(s(t)), (m,n) ∈M×N

)
,

where, for all m ∈M,
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• under Assumption (B.3), we have that
(
πmn(s(t)), n ∈ N

)
∈ P0(N ), and

πmn
(
s(t)
)
∈ {0, 1} denotes whether or not the mth server is allocated to the nth

queue;

• under Assumption (B.4), we have that
(
πmn(s(t)), n ∈ N

)
∈ P(N ) and

πmn
(
s(t)
)
∈ [0, 1] denotes the fraction of the time slot [t, t + 1) over which

the mth server is allocated to the nth user.

Under a policy π(·), the total service offered to the nth queue, conditional on the

system being in state s ≡
(
q,a, r

)
, is given by,

µn(s) =
∑
m∈M

rmnπmn(s), n ∈ N . (B.1)

Let µ(s) ≡
(
µn(s), n ∈ N

)
, and let Γ denote the functional defined by (B.1), i.e.,

µ(·) ≡ Γπ(·). Under the policy
(
π(s), s ∈ S

)
, the queue process evolves as follows,

Qn(t+ 1) = (Qn(t) + An(t)− µn(s))+ , n ∈ N .

Let Π be the set of all admissible scheduling policies under Assumption (B.4) and

Π0 ⊂ Π that of under Assumption (B.3). Note that under Assumption (B.3), the

queue process is restricted to Zn̄+, whereas under Assumption (B.4), it can lie in Rn̄
+.

This concludes the description of system model which, under Assumption

(B.1), captures the models in [42, 61, 62]. The next section is the departing point

from these works.

B.2 Alternative view of the system

Assumption (B.1) holds throughout this section.
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Figure B.1: Illustration of C(r) for a n̄ = 2 user m̄ = 6 server system.

B.2.1 From “On-Off servers” to “polymatroid service regions”

For any servers’ state r = (rmn, (m,n) ∈M×N ), define a set function

gr : 2N → Z+ as follows: for any N ′ ⊆ N ,

gr(N ′) =
∑
m∈M

11{rmn=1 for some n∈N ′},

(with gr({}) ≡ 0.) In words, gr(N ′) denotes the number of server that are “On” for

at least one user in set N ′. The total service rate (in number of packets per slot) that

can be offered to the users in set N ′ is bounded above by gr(N ′). Moreover, it is easy

verify that for any r, the function gr(·) is submodular and increasing. Therefore, the

region C(r) ∈ Rn̄ defined as,

C(r) ≡

{
x ∈ Rn̄ : ∀N ′ ⊆ N ,

∑
n∈N ′

xn ≤ gr(N ′)

}

and the region

C+(r) ≡ C(r) ∩ Rn̄
+ (B.2)
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form an extended polymatroid and a polymatroid, respectively; (see, e.g., [54, p. 767]

). See Fig. B.1 for an illustrative example. Also, let

C0(r) ≡ C(r) ∩ Zn̄ and C+
0 (r) ≡ C(r) ∩ Zn̄+, (B.3)

i.e., the subset of integer points of the extended polymatroid and the polymatroid

respectively.

The region C+(r) has the following interpretation: conditional on the servers

being in state r, the region C+(r) denotes the set of service rates that can be jointly

offered to the n̄ queues by server allocations that are admissible under Assumption

(B.4) (divisible server). That is to say, under any scheduling policy π(·) ∈ Π and for

any system state s ≡
(
q,a, r

)
, we have that µ(s) ≡ Γπ(s) (see (B.1)) lies2 in C+(r).

Similarly, the region C+
0 (r) denotes the set of service rates that can be jointly

offered to the n̄ queues by server allocations that are admissible under Assumption

(B.3) (integral servers). That is, under any scheduling policy π(·) ∈ Π0 and for any

system state s ≡
(
q,a, r

)
, we have that µ(s) ≡ Γπ(s) ∈ C+

0 (r).

Therefore, we will refer to C+(r) and C+
0 (r) as service regions and to C(r)

and C0(r) as extended service regions, associated with servers’ state r. Polymatroids

are well-studied objects in the context of combinatorial optimization, and all results

presented in subsequent sections follow from this polymatroid structure of service

regions, by leveraging the results obtained/summarized in, e.g., [68].

B.2.2 From “server allocation through bipartite matching” to “service
allocation”

In light of the above subsection, instead of defining a scheduling policy as

picking a server allocation π(s) based on the current system state s, one can define

2The mapping from π(·) to µ(·) defined by (B.1) is surjective.
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it as picking a service allocation µ(s) ∈ C(r) based on the current system state

s ≡ (q,a, r). That is, a scheduling policy can be redefined as a mapping

(
q(t),a(t), r(t)

)
→ µ

(
(q(t),a(t), r(t))

)
∈ C+(r)

or C+
0 (r), as appropriate. We will denote the set of service allocation policies that are

admissible under Assumption (B.3) as Π̄0 and that of those under Assumption (B.4)

as Π̄.

B.2.3 Main Result

Let us formally define the notion of “least weakly submajorized element” of a

subset of Rn̄.

Definition B.1 For any x ≡ (xn, n ∈ N ) ∈ Rn̄, let x[n] denote its nth largest

component with ties broken arbitrarily, i.e., x[1] ≥ x[2] ≥ · · · ≥ x[n̄]. Then for any x

and y ≡ (yn, n ∈ N ) in Rn, we say that x is weakly submajorized by y, x � y, if

for all n ∈ N ,
n∑
k=1

x[k] ≤
n∑
k=1

y[k].

Moreover, for any subset R of Rn̄, we say a point x ∈ R is a least weakly subma-

jorized element of R if x� y for all y ∈ R.

Let s(t) =
(
q(t),a(t), r(t)

)
denote the system state at time t and let Q(s(t))

denote the set of all possible queue states at the end of time slot [t, t+1) (i.e. q(t+1))

that are achievable under scheduling policies in Π̄, i.e.,

Q
(
s(t)
)

=
{
q(t) + a(t)− C+(r(t))

}
∩ Rn̄

+,

= {q(t) + a(t)− C(r(t))} ∩ {y ∈ Rn̄ : 0 ≤ y ≤ q(t) + a(t)} . (B.4)

The set

{q(t) + a(t)− C(r(t))}
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in (B.4) is a contra-polymatroid and the set

{y ∈ Rn̄ : 0 ≤ y ≤ q(t) + a(t)}

is simply a cuboid, and their intersection, that is the set Q(s(t)), is a generalized

polymatroid (see, e.g., [68]). Similarly, the set Q0(s(t)) ≡ Q(s(t)) ∩ Zn̄+ (with q(t) ∈

Zn̄+) denotes the set of queue states achievable under scheduling policies in Π̄0. Then,

by Theorem 2.3, 3.2, and Section 4 of [68], we have the following results.

Theorem B.1 For any s ≡
(
q,a, r

)
, the following hold.

(i) There exits a service allocation µ∗(s) ∈ C+(r) such that the next queue state,

q∗ = (q + a− µ∗(s))+ ∈ Q(s)

is the unique least weakly submajorized element of Q(s).

(ii) For all nondecreasing convex functions f : R→ R, we have that,∑
n∈N

f(q∗n) = min
y∈Q(s)

∑
n∈N

f(yn). (B.5)

(iii) In the case of integral servers and assuming q ∈ Zn̄+, there exits a service allo-

cation µ∗(s) ∈ C+
0 (r) such that the next queue state,

q∗ = (q + a− µ∗(s))+ ∈ Q0(s)

is the a least weakly submajorized element of Q0(s); moreover, we have that,∑
n∈N

f(q∗n) = min
y∈Q0(s)

∑
n∈N

f(yn). (B.6)

See Fig. B.2 for an illustration of the weakly least majorized point of set Q(·),

and that the set Q0(·) may not have a unique such point (see the region that intersects

with the line q1 = q2).

Theorem B.1 has following important implications.
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Figure B.2: Illustration of Q(s(t)) for various states s and the corresponding least
weakly submajorized element q∗(t+ 1).

B.2.3.1 Absence of tradeoff between maximizing total service rate and
balancing unequal queues

In general, opportunistic scheduling involves a tradeoff between maximizing

total current service and balancing unequal queues (see Chapter 1 or [61]). However,

Theorem B.1(i) immediately shows that in the case of on-off servers, the above men-

tioned tradeoff is absent. That is, in any system state, there exists a server allocation

such the the next queue state (queue state after receiving service) is weakly subma-

jorized by that under any other server allocation. This was originally shown in [61]

using the existence and certain properties of a bipartite matching.

Moreover, the above-mentioned tradeoff is clearly absent in the case of a single

(m̄ = 1) integral on-off server, because the objective of balancing queues and maximiz-

ing total current service is simultaneously achieved by allocating the server to a longest

“On” queue; this is the Longest Connected Queue (LCQ) policy from [12]. [12] shows

through a coupling argument that under LCQ policy, the queue process is stochasti-

cally weakly submajorized. It is noteworthy that the coupling argument used in [12]
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to prove this strong optimality of LCQ policy has no known extension to the case

of multiple on-off servers (whether integral or divisible). That is, for m̄ > 1, it is

not known if the policy µ∗(·) – which can be viewed as an extension of LCQ for the

case of multiple parallel servers – leads to stochastic weak submajorization of Q(·).

However, for the case of divisible servers, µ∗(·) does minimize various functionals of

(Q(t), t ≥ 0) – we discuss this next.

B.2.3.2 Restatement of the delay-optimal policy MTLB for divisible servers

Through this subsection, we assume a stabilizable system with divisible servers

(Assumption (B.4)). The policy “maximizing throughput (while simultaneously) load

balancing” (MTLB), introduced in [61], is indeed the policy µ ∗ (·) ∈ Π of Theorem

B.1(i). Using dynamic programming, [61] shows that for all convex increasing func-

tions f : R+ → R,

Eµ∗
(∑
n∈N

f(Qn)

)
= min
µ(·)∈Π̄

Eµ
(∑
n∈N

f(Qn)

)
,

where the expectation Eµ
(∑

n∈N f(Qn)
)

is with respect to random Q drawn from

the stationary distribution of queue process under a stable policy µ(·)).

In [61], the optimal policy µ∗(s) is described as a maximum weighted matching

on a bipartite graph constructed from the elements of state s = (q,a, r). However,

Theorem B.1(ii) gives us an alternative method of solving for the optimal queue state

q∗ ∈ Q(s) (and implicitly µ∗(s)). That is, the queue state q∗ is the unique solution

of the following convex program for any strictly convex f : R→ R:

minimizey
∑
n∈N

f(yn)

subject to y ∈ Q(s).

(B.7)

For example,
∑

n∈N f(yn) = ‖y‖pp for any p ∈ (1,∞). Equivalently, for any strictly

convex f such that f(0) ≤ f(y) for all y ∈ R, we have,

µ∗(s) = argmin
µ∈C+(r)

∑
n∈N

f(qn + an − µn). (B.8)
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Unlike the construction of bipartite matching problem in [61], this convex program

representation is readily extendable to a system with multi-rate servers (Assumption

B.2) by appropriately redefining the convex region C(r) or Q(s); this will be further

explored in Section B.3.

B.2.3.3 Nonlinearlity of delay-optimal policy for multiserver

For m̄ > 1, the optimal service allocation policy µ∗(·) (see (B.8)) is a non-

linear convex program (recall that f(·) is strictly convex). Whereas, the (even more

strongly) optimal scheduler in the case of a single, integral, on-off server, namely

LCQ, is a linear program given by replacing the objective function in (B.8) with

〈q,µ〉.

B.2.3.4 Restatement of the delay-optimal policy for integral servers

[61] also shows the optimality of policy µ∗(·) ∈ Π̄0 given in Theorem B.1(iii)

for a n̄ = 2 user stabilizable system with integral severs (Assumption (B.3)). As noted

in Theorem B.1(iii), in particular (B.6), the optimal next queue state q∗ ∈ Q(s) is still

a solution of the convex program (B.7) with the set Q(s) replaced by the set Q0(s).

However, the solution of this integer program may not be unique, nevertheless, all

solutions are optimal.

B.2.3.5 “Server-side greedy” policy

The sever-side greedy (SSG) policy was introduced in [43] as an extension of

MaxWeight policy to multiserver systems, and shown in [42] to minimize the asymp-

totic probability be max-queue overflow in the more relevant small buffer regime, as

the number of queues and servers increase. The SSG policy can be viewed as a (sub-

optimal) greedy algorithm for solving (B.8). That is, SSG policy iterates over servers

in an arbitrary order and allocates the next available server to a queue so as to bring
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about the greatest decrease in the objective function.

B.3 Extending the schedulers for on-off servers to multi-rate
servers

When the divisible servers are in state r = (rmn, (m,m) ∈M×N ) where

rmn ∈ {0, 1}, the set of all feasible service allocations is given by the polymatroid

C+(r) (see B.2). Next, we define the set of feasible service allocations for the case of

multi-rate servers, i.e., where rmn can be any nonnegative integer.

B.3.1 Service region associated with multi-rate servers

More generally, when rmn ∈ Z+, the set of all feasible service allocations, still

denoted by C+(r), can be given as follows. Recall that (rm,n, n ∈ N ) ∈ Zn̄+ denotes

the state of the mth server. Let conv(rmn, n ∈ N ) denote the convex hull of origin

and the following n̄ points in Rn̄
+:

rm1e1, rm2e2, . . . , rmn̄en̄,

where en is the nth standard basis vector. Then C+(r) is given by,

C+(r) ≡ conv(r1n, n ∈ N ) ⊕ conv(r2n, n ∈ N ) ⊕ · · · ⊕ conv(rm̄n, n ∈ N ),

where ⊕ denotes Minkowski sum. The region C+(r) is a compact, convex, coordinate

convex polytope in Rn̄
+. It can be verified that if rmn ∈ {0, 1}, the above definition of

C+(r) is equivalent to the one in (B.2).

B.3.2 Scheduling policies for systems with multi-rate servers

For any convex f : R → R with f(0) ≤ f(y) for all y ∈ R, let µf (·) be any

service allocation policy that satisfies the following: for any s = (q,a, r),

µf (s) ∈ argmin
µ∈C+(r)

∑
n∈N

f(qn + an − µn). (B.9)
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That is, the queue state after service,
(
q + a− µf (s)

)+ ∈ argminy∈Q(s)

∑
n∈N f(yn).

In general, since the region Q(s) is not a generalized polymatroid, it may not

have a least weakly majorized element. Therefore, different choices for f will lead to

different scheduling policies and different tradeoffs between maximizing total service

rate, ‖µf (·)‖1, and balancing unequal queues.

In fact, the objective function in (B.9),
∑

n∈N f(qn + an − µn), can be seen as

an estimate for the relative cost function h(·) on the state space of queue process (see

(2.12) and Lemma (2.2)). For any α > 0, by setting

∑
n∈N

f(qn + an − µn) = ‖q + a− µ‖(α+1)
(α+1)

in (B.9), one obtains a class of policies which can be seen as an extension of single-

channel MaxWeight policy with exponent α (see (2.17)). Similarly, by replacing the

objective function in (B.9) by hL(y) (see (2.29)), one obtains the multi-channel version

of the Log rule, which was proposed in Section 2.7. Recall that the multi-channel Log

rule is RSM whereas multi-channel MaxWeight is not.
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