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A fundamental, yet usually ignored, challenge to evolving data networks is enabling
better Quality of Service (QoS) for best effort traffic. While over-provisioning net-
work resources was considered to be a simple, possibly less expensive solution, the
lack of fairly predictable Internet traffic and growth model makes it almost impos-
sible to ensure an ”efficiently” dimensioned network. Even if a single carrier could
overcome this problem and appropriately provision his network, the heterogeneity
of the inter-networking infrastructure would make coordinating inter-carrier agree-
ments to avoid mismatches exceedingly difficult. Recognizing that over-provisioning
is at most a partial solution, we approach the problem by ”intelligently” share re-
sources that extends the ”dynamic range” of traffic loads where networks can ensure

adequate system and user perceived performance.

Best effort service involves for the most part transfers of files for which the
transmitter has a-priori knowledge of the file’s size. Two plausible QoS measures

for such transfers are delay and bit transmission delay (BTD), i.e., delay/file size,

vi



among which the latter captures more ”savvy” users who recognize that big files
take longer to transfer. In this talk T will discuss how one might design size-based
transport mechanisms and routing algorithms to enhance the overall network and
user performance in a cooperative environment. Our view is that by simply intro-
ducing such size information, one may produce a "robust” best effort network that
achieves better performance for all transfers for a range of traffic loads, even with

the existence of impatient users.
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Chapter 1

Introduction

As evidenced by traffic loads on the Internet, exchanging data files has been,
and will continue to be, a major fraction of the volume carried by data networks. It
has been reported that about 95% of the bytes, 90% of the packets, or 80% of the
flows on the Internet are made up by TCP mediated file transfers [48]. Although
such transfers are referred to as ‘best effort’ traffic, there has been increasing inter-
est in enhancing user perceived performance particularly, but not exclusively, when
interactivity is involved, e.g., web browsing. The traditional approach for achieving
good performance on best effort network has been provisioning more bandwidth.
Overprovisioning might be arguably a less expensive option than deploying advance
technologies on IP-based networks. It is itself however not a simple task to achieve
‘efficient’ overprovisioning, requiring, among other things, fairly predictable traf-
fic and growth models. Recent experience has shown that aggregated data traffic
may exhibit long-range dependency, not to speak of daily non-stationeries as well
as bursty growth on longer time scales [46]. Even if a single carrier could over-
come this problem and appropriately provision his network, the heterogeneity of the
inter-networking infrastructure would make coordinating inter-carrier agreements
to avoid mismatches exceedingly difficult. Moreover, just as ‘nature abhors a vac-

uum’, one should recognize that highly overprovisioned resources will quickly be



filled by increasing user demands or simply ‘garbage’ traffic. Together, these argu-
ments suggest that a better user perceived performance, or quality of service (QoS),
associated with file transfers is not likely to be based on overprovisioning alone. Our
thesis is that it should be complemented by mechanisms to achieve efficient resource

allocation that extend the dynamic range of traffic loads data networks can support.

A file transfer typically corresponds to moving a known amount of data and
is said to be elastic in the sense that it has a wide tolerance to changes in the
transmission rate during the transfer [51]. Since elastic flows/users come and go,
and possibly share the network with other types of traffic, the available network
resources may vary during their lifetimes. In turn, elastic flows can adapt their
transmission rates to dynamically share available resources with contending trans-
fers. From a users’ point of view, a reasonable performance measure may be the
time it takes to complete the transfer. Transfer delays alone however are not nec-
essarily representative of user satisfaction as there may be a wide disparity in the
size of ongoing transfers '. In fact, some transfers may and should be expected
to take longer to complete, e.g., multimedia rich documents or bulk backups, and
thus the sensitivity to delay of such users is likely to be diminishing in file size. In
this case a natural quality of service metric would be the Bit Transmission Delay

(BTD)?, i.e., delay/file size. Note that the reciprocal of a flow’s BTD is the user

perceived throughput. Thus minimizing the average user perceived BTD is coupled

!Studies show that the files being transferred on the Internet exhibit great variability in size,
see e.g., [14, 46].

2The BTD metric is similar to ‘slow-down’ proposed in scheduling research community, with an
additional notion of resource capacity, see e.g., [5, 22, 24].



with increasing the average perceived throughput. Other performance metrics could
and may be considered in the future. In this thesis, we however focus on the average

BTD or delay as reasonable proxies for user perceived performance.

access gateway

/ O
access

networks

~

o

peering points (N

Figure 1.1: A data network abstraction.

The BTD or delay associated with a file transfer clearly depends on what and
how network resources are shared among contending flows. As much traffic may tra-
verse beyond local network domain, it is difficult, or even impossible, for local service
provider or servers to identify and properly dimension the bottleneck(s), even when
they wish to cooperate to establish mutually beneficial service level agreements. For
example, Fig.1.1 shows a typical inter-connection of local area networks with high
capacity links, e.g., OC-3, OC-12, or 100 Mbps/Gigabit Ethernet, possibly accessi-
ble to end users, depending on their end devices, e.g., 28/54 Kbps modems or 10/100
Mbps Ethernet cards. Traffic from these local networks might then be carried by
backbones with more than enough capacity, and/or constrained by small peering
points connecting transit domains. Other scenarios may also exist and present even

more possibilities for bottlenecks to arise. Moreover, by definition, the bottleneck



resource that limits a long lasting transfer may change over time as the traffic pat-
tern changes. Thus to ensure adequate performance for file transfers, we propose to
investigate efficient mechanisms that dynamically share network resources, possibly
based on changing network status, so as to enhance, if not optimize, user perceived

performance.

Several network mechanisms, such as routing, caching, congestion control,
queue management, and packet scheduling, which operate possibly independently
with limited information exchanges, together determine the bandwidth sharing dy-
namics on a network and thus the user perceived performance. On the one hand,
caching and routing schemes determine which network resources will be used to re-
alize a file transfer and thus which flows will contend for network resources. On the
other hand, mechanisms such as the congestion control (TCP), queue management
(Random Early Detection - RED), and packet scheduling (First Come First Serve
- FCFS, or Weighted Fair Queueing - WFQ) together determine how resource ca-
pacity is shared among ongoing flows. A degree of freedom that is usually ignored
by current network protocols is the ‘malleability’ of file transfers. More specifically,
users realizing file transfers are typically concerned with the transfer’s progress over
a perceivable time scale, e.g., what percentage of the file has been transferred over
the past 5 seconds, rather than the ‘instantaneous’ transmission rate. This offers
more flexibility to network mechanisms as a means to differentiate among ongoing
transfers based on their sensitivity, or sense of urgency, to progress, and to allocate
network resources accordingly. For example, downloading a 10 MBytes image in 10

seconds may be great versus transferring a 5 KBytes text message in 10 seconds.



Thus one might choose to first allocate more bandwidth to finish the small text
message, and then work on transferring the big image file. Note that upon initiat-
ing a file transfer the amount to be sent is typically known on the sender side, e.g.,
static web content. In this thesis we investigate how one might employ known file
size information in various network mechanisms so as to enhance the ‘overall’ user

perceived performance.

Achieving good performance on networks supporting file transfers does not
only depend on the network protocols, but may also depend on how users respond
to the transfer experienced. For example, it is not unusual for users to interrupt
a transfer as a result of, say, impatience or perceived poor performance. A recent
study [19] claims that 11% of the TCP mediated file transfers were interrupted, cor-
responding to 20% of the total traffic volume, i.e., 20% of the transmitted data went
to waste. This high percentage of the wasted transmission may not be that surpris-
ing given the excessively bursty, non-stationary, and growth patterns exhibited on
today’s Internet. In fact we believe that even carefully provisioned networks will see
temporarily and eventually systematic overloads until they are re-provisioned. It is
however unclear how users respond to congestion or overloads. Do they interrupt
based on the time they have been waiting? Are impatient users typically aware
of the file size of the transfer or the speed of their transmission media? To our
knowledge, there has been no empirical evidence investigating the possible (types
of) user behavior that result in such aborted transfers. This thesis propose this as
an important research agenda to be pursued in the sequel. From the network’s point

of view, the question is how various resource allocation mechanisms will fare when



users exhibit various possible types of impatient behavior. We take one step in this
direction by investigating the impact of plausible user behaviors on both the system

and user perceived performance under various bandwidth allocation policies.

For analysis purposes, we decouple the complex dynamic resource allocation
problem into two sub-problems, bandwidth allocation and routing. A formal net-
work model and problem statement is presented in Chapter 2. In considering the
bandwidth allocation problem, we assume the path each file transfer traverses is
given and fixed throughout its lifetime. The primary analytical results for band-
width allocation are presented in Chapter 3. Several practical considerations and a
simple implementation of a size dependent bandwidth allocation scheme based on
TCP Reno are illustrated in Chapter 4. A set of generic user impatience models
and an investigation of their impact on performance is presented in Chapter 5. We
will then focus on the routing problem, i.e., fix the underlying bandwidth alloca-
tion scheme and consider various size dependent routing policies, and present our
analysis in Chapter 6. Concluding remarks and future research directions are given

in Chapter 7.



Chapter 2

Network Model

Throughout this dissertation we will consider the following fluid flow network

model and use the corresponding notation unless noted otherwise.

We model a network with a set of nodes IV and a set of links L, where each
link [ € L connects two nodes and has capacity ¢; bps. Each file transfer j € J
is modeled as a fluid flow with a known initial volume of p; bits of data to send
from a source to a destination node. The network routing scheme will assign each
transfer request j a route r;, corresponding to a sequence of links connecting source
to destination, upon its arrival. We assume that once a flow is assigned to a route

it will stick to the same route until it completes. !

We denote the set of possible
routes by R. The set of links traversed by route r € R is captured by a 0-1 matrix

A where Aj, is 1 if router r traverses link [ and 0 otherwise.

Once the route has been selected, a bandwidth allocation policy will de-
termine the bandwidth allocated to all ongoing transfers. We assume that whenever
the network state changes, e.g., there is an arrival or departure, the bandwidth al-
location policy will dynamically and instantaneously adjust the assigned bandwidth

to every ongoing flow. This assumption may be reasonable when the time scale

'On the Internet routes are typically ‘stable’, i.e., for the most part a flow associated with a
given transfer follows the same route [45].



between arrivals and/or departures are significantly larger than the speed at which
the bandwidth allocation mechanism converges. transfer converges - depending on
how actual network mechanisms operate. We let z; = (z;(t), ¢ > 0) denote the
bandwidth allocated to flow j as a function of time. We assume without loss of
generality that it is zero prior to a flow’s arrival and after it departs. Note that in
the context of serving file transfers, there is no queuing or buffering in the network,

i.e., every flow must be assigned a route and a positive bandwidth upon arrival.

The time to complete a flow j, i.e., its transfer delay, is denoted by d; and
depends on its size p; and the possibly time varying bandwidth the flow is allocated.
Clearly the bandwidth allocated to a flow over time depends on both the bandwidth
allocation policy and the routing scheme. Thus the perceived performance of a flow
over its lifetime depends on both types of network controls. As mentioned earlier we
will focus on the Bit Transmission Delay (BTD) as the performance measure
of interest where the BTD for flow j is given by b; = d;/p;. We summarize our

notation in Table 2.1 and formally state our primary objective below.

Table 2.1: Notation Summary

Set of Links: L capacities ¢;,l € L
Set of Routes: R link-route incidence matrix Ay,
Set of Flows: J (aj,pj,r;) for flow j

(arrival time, size, route)
Bandwidth Allocation | x = (z;(t), t >0, j € J)
Performance Metrics | dj, bj = d;/pj, > c;b;
delay, BTD, avg BTD




Objective:

min ﬁ Z bj = ﬁ Z %,
jeJ jeg I
over x=(z;: Ry =Ry, je]),
aj+d;
st.  pj :/ zj(T)dr, Vj € J,

J
> Ayzi(t) <e, VE>0, 1€ L.
JjeJ

This can be used to determine a bandwidth allocation policy, x, as above, or to de-
termine a mapping for each flow j onto a route r; or both. Notice that the problem
stated above aims at minimizing the average BTD for a ‘finite’ set of jobs J with
known arrival times - this is the so called off-line regime, which serves to identify
the best one could do. In practice future arrival times would not be known whence
only policies that depend on past events, i.e., on-line policies are permissible. If
further the arrivals and flow sizes were modeled by stationary stochastic processes,
one can consider optimizing the customer average BTD over stationary causal poli-
cies, i.e., minimize E[B] = lim| 7,0, ﬁ ZjeJ Bj, where B denotes the typical BTD
experienced under a stationary policy. We refer to algorithms that minimize the

average BTD for arbitrary arrivals as BTD-optimal.



Chapter 3

Size-based Adaptive Bandwidth Allocation

3.1 Introduction

Recently much attention has been paid to characterizing how network band-
width is shared among file transfers, i.e., TCP mediated transfers of best-effort flows.
This work has, for the most part, focused on the character of the ‘equilibrium’, e.g.,
fairness, reached by various network/user adaptation mechanisms when a fized set
of flows share the network, see [26, 31,32, 36, 39,41] and references therein. It is
however unclear how ‘fair’ bandwidth allocations impact the user perceived perfor-
mance in a dynamic setting where users come and go. The work in [7, 10, 17, 20, 49]
leads the way in this direction focusing on stability and performance in the dynamic
regime. Our aim in this study is to investigate how one might enhance, if not opti-
mize, average user perceived BTD performance from the ground up through a new
class of bandwidth allocation policies, while assuming that the routes associated
with each flow are pre-determined and fixed throughout the flow’s lifetime, ¢.e., no

routing decisions are involved in minimizing the average BTD.

The work in [7,10, 17,20, 49] considered stochastic models that capture the
dynamic behavior of existing network mechanisms that mediate file transfers, e.g.,
TCP and traditional fairness criteria. One lesson from this body of work is that,

even for a given bandwidth allocation policy, it is difficult to analytically model
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the performance seen by users in a dynamic network setting, except for specially
structured topologies. To our knowledge, the only existing work that attempts
to find a BTD-optimal policy at the network level was conducted in [24]. Their
results however suggest that the problem is NP-hard unless one allows ‘resource
augmentation’. In fact, one can show that even for flows sharing a single link,
there is no online algorithm that minimizes the average BTD [22]. One key idea
drawn from the single link case is that the Shortest Remaining Processing Time first
(SRPT) scheduling discipline performs well for the average delay as well as BTD
metric [4,22,49]. However, to our knowledge, no systematic allocation criterion
and associated transport mechanism have been proposed to enhance user perceived
performance on a network. In this study we take a novel approach by investigating
how one might employ the file size information for a bandwidth allocation policy so

as to optimize the average BTD users will see.

Due to the inherent difficulty of this problem, we will begin by considering
the dynamic bandwidth allocation problem in the ‘transient’ regime where it is
tractable. More specifically, we consider the set of ongoing flows J(t) at time ¢
where some of them may have been partially transferred, and the goal is to minimize
the average ‘residual BTD’, where the residual BTD of flow j at time ¢ is defined
as b;j(t) = (f; — t)/p;, and f; denotes the time at which the transfer completes.
Our investigation of the transient regime provides an avenue for determining greedy
policies for the online problem, where, at each point in time, bandwidth is allocated
so as to complete the current set of ongoing jobs in a BTD-optimal manner. The

insights derived from the transient regime analysis will then be used to construct a
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new class of bandwidth allocation criteria which will be shown to exhibit significant

performance improvements over traditional fairness criteria.

This chapter is organized as follows. In §3.2 we consider a dynamic set of
flows sharing a single bottleneck link, and derive/compare policies that enhance
the average BTD over the commonly used ‘fair sharing’ discipline. Then, in §3.3,
we investigate the interaction among elastic flows on various routes and extend our
qualitative findings to general networks, by considering a prototypical linear network
in detail. Based on these insights we propose and discuss a generalized size depen-
dent bandwidth allocation criterion, SABA. Design options for SABA are discussed
in §3.4. Fluid-flow simulations are presented in §3.5 to exhibit the potential perfor-
mance gains achieved by using SABA over traditional fairness criteria. Conclusions

and final remarks are given in §3.6.

3.2 Optimizing Average BTD: The Single Link Case

We begin by considering the case where flows contend for bandwidth on a
single link. Despite its simplicity this model captures the scenario where a set of

flows are constrained by the same bottleneck, e.g., an access gateway.

3.2.1 Fair sharing

In the context of sharing a single link, traditional fairness criteria, e.g.,
max-min and proportional fair, reduce to fair sharing, i.e., each ongoing flow gets
an equal share of the available bandwidth. A collection of TCP flows with the same

round trip time would approximately realize their fair share of the capacity. For
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simplicity, we consider an idealization where each ongoing flow j € J(t¢) at time ¢ is
assigned a bandwidth z(t) = ¢/n(t) where c is the link capacity and n(t) = |J ()]
is the total number of ongoing flows at time ¢. We shall consider this to be our

baseline bandwidth allocation policy for the single link case.

While ‘fairness’ has been discussed at length, policies that achieve fair shares
do not necessarily achieve good user perceived performance. In particular one can
prove that in the case of a single link, the average BTD (and delay) achieved by
policies that share non-trivial amounts of capacity among multiple flows can always

be improved.

Lemma 3.2.1. Consider a set of flows contending for capacity on a single link.
Any bandwidth allocation policy that allocates positive bandwidths to more than one

flow at a time is not BTD-optimal.

The proof relies on showing that one can always improve upon policies that
share bandwidth among ongoing flows by ‘speeding’ up those that would complete
earlier, i.e., giving them the full link capacity, without penalizing the others — see
the appendix. Note that the flows that will complete earlier are those with smaller
sizes or residual work to be done. This suggests one might consider alternative

bandwidth allocation policies that differentiate based on flows’ (residual) sizes.

3.2.2 Size-dependent differentiation

A well known size-dependent scheduling, or bandwidth allocation, policy is
the Shortest Remaining Processing Time first (SRPT) discipline. Let p;(t) de-

note the residual work associated with flow j at time ¢t. Then SRPT assigns
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the full link capacity to a flow j* € J(t) with the smallest residual work, i.e.,
J* € argminje 5 (p;(t)). SRPT is known to minimize the average delay for flows
sharing a single link (with fixed capacity) [50], and was recently shown to be 2-
competitive for the average BTD metric [22]. With a view on further enhancing
performance and developing allocation policies that can be implemented, below we

propose several other novel policies to realize size-dependent differentiation.

First we shall consider a policy that allocates the full capacity to the flow j*
having the smallest product of original and residual size, i.e., j* = argmin,¢ 5 (pi -
pi(t)). We refer to this as the Shortest Processing Time Product first (SPTP) policy.
The rationale for this can be easily seen by considering the case where two flows
have the same residual size. In this case it should be clear that to minimize the
BTD, one should favor the flow with the smallest original size. In fact one can show
that SPTP corresponds to a greedy policy which at any time seeks to minimize the

overall ‘residual’ BTD assuming there are no future arrivals.

Theorem 3.2.1. At each point in time the SPTP bandwidth allocation policy will
minimize the overall residual BTD for ongoing flows sharing a single fized capacity

link if there were no additional arrivals.

A proof of this result is given in the appendix. Thus one can think of SPTP
as a greedy online policy in the sense that it always seeks to do the best for the flows
that are currently active, i.e., empty the system incurring a minimum average resid-
ual BTD. We will show via simulation that SPTP marginally outperforms SRPT
with respect to the average BTD. We later revisit this policy when we consider a

network scenario.
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Recognizing that allocating bandwidth based on SRPT and SPTP will be
difficult in a decentralized framework, we propose a second class of policies whereby
each active flow j has an associated size-dependent weight w(p;,p;(t)), and band-
width is allocated in proportion to these weights. Thus by appropriately selecting
weight functions that are decreasing in the residual size, e.g., w;(t) = exp(—ap;(t))
where @ > 0, one may approximate the SRPT discipline as @ — oo. Similarly,
SPTP can be approximated by using w;(t) = exp(—a/p;j - p;(t)). We refer to
these two size-dependent weighted fair sharing policies as Remaining Processing
Time Weighted Sharing (RPT-WS) and Processing Time Product Weighted Shar-
ing (PTP-WS). Although Lemma 3.2.1 suggests that one can always improve per-
formance over policies that share bandwidth, such as RPT-WS and PTP-WS, we
will show that they already achieve significant performance improvement over fair

sharing while allowing flows to simultaneously make progress towards completion.

3.2.3 Performance gains of size-dependent differentiation

Recently [4] showed analytical bounds for the performance gains that can be
achieved by SRPT versus fair sharing for heavy tailed flows. In this section we shall
revisit this and briefly evaluate the three new policies proposed above, i.e., SPTP,

RPT-WS, and PTP-WS, versus fair sharing via simulation.

Simulations were conducted for a 10 Mbps link shared by flows arriving
according to Poisson processes and have sizes selected from a bounded Pareto dis-
tribution with mean 5 KBytes [15, 30]. Fig.3.1 shows the average BTD performance

improvement achieved by size-dependent policies over fair sharing. As can be seen
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the four size-dependent policies significantly outperform fair sharing with SPTP
exhibiting the best average BTD. In these simulations we use a moderate value
of &« = 1 in RPT-WS and PTP-WS, and found that they already exhibit 30-60%
improvements over fair sharing. Based on our experiments, the average BTD per-
formance achieved by RPT-WS and PTP-WS improves quickly as one increases the

value of a.
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Figure 3.1: The average BTD improvement achieved by SRPT/SPTP/RPT-
WS/PTP-WS over fair sharing when traffic load increases.

Fig.3.2 further exhibits the average BTD performance of RPT-WS (PTP-
WS) as « varies for a link with an 80% traffic load. Note that abscissa corresponds
to the a on a logarithmic scale. Clearly for « sufficiently large the performance
achieved by RPT-WS and PTP-WS is fairly close to those of SRPT and SPTP.

One can observe that our dynamic weighted bandwidth allocations quickly become

superior to fair sharing as « increases.
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Figure 3.2: The average BTD achieved by RPT-WS/PTP-WS as compared to that
under fair sharing and that under SRPT/SPTP when « increases at 80% traffic
load.

3.2.4 Remarks about size-dependent differentiation

We have explored various bandwidth allocation approaches that favor small
flows, as an avenue towards minimizing the average BTD for the single link case.
More complex policies may be considered. For example, Bender et.al.[5] consider a
Dynamic Earliest Deadline First Policy that attempts to estimate the completion
times associated with serving each flow. Observing that all these policies, including
SRPT and SPTP, commonly aim at finding the flow that can finish the fastest
and incur least overhead to other flows, we believe that only marginal performance

differences will be exhibited there!.

A criticism brought against these SRPT-like polices is their potential to in-

duce starvation for large flows. We will refer the afore-mentioned size-dependent

'Reader may refer to [15] to see an argument comparing SRPT with the Dynamic Earliest
Deadline First policy.
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differentiation schemes as SD, as opposed to FS for fair sharing, since they achieve
similar performance from the starvation perspective. Studies in [4] and [47] have
argued and shown that this conclusion does not apply in the case where the flow
sizes have a large variance - which is typical of files transferred over the Internet
[14, 46]. Our own experiments also confirm that starvation is indeed not a concern,
particularly in comparing with FS. In fact, we found that for most cases (various
simulation runs with different flow size distributions), SD even achieves better per-
formance in terms of the standard deviation for the BTD, the maximum BTD, and
the average BTD for the largest 1% flows. With few exceptions, consisting of only
5% of our simulation runs, we see SD exhibits worse maximum BTD, but with the
same order of magnitude as FS. These exceptions are mostly for the cases where the
flow size distribution is exponential, as opposed to bounded Pareto or deterministic

one, and/or the traffic load is close to 100%.

In order to analyze the starvation problem encountered by ‘all’ flows, we
further propose to examine the percentage of flows that experience starvation. We
shall define starvation as flows that see more than 10 times of the best possible
BTD they could realize on the link. Table 3.1 summarizes the results achieved by
FS and SD schemes with traffic loads of 80% and 90%, respectively. As seen, SD
performs significantly better than FS under all scenarios. In particular when the
flow size distribution is bounded Pareto under SD, we hardly see flows (< 0.01%)

that experience starvation.
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Table 3.1: Percentage of flows experience starvation

Traffic Load Bounded Pareto Exponential Deterministic
80% FS(5%), SD(0.001%) FS(10%), SD(0.6%) FS(10%), SD(4%)
90% FS(15%), SD(0.01%) FS(36%), SD(2.2%) FS(37%), SD(2.1%)

3.3 Optimizing Average BTD: The Network Case

Although the single link case suggests one should ‘always’ favor small flows to
minimize the average BTD, this turns out not to be true in general. In the network
case a flow with a small residual size may contend for bandwidth with multiple sets
of flows on disjoint routes and which can be served in parallel. This leads to a trade
off between giving preferential treatment to flows with smaller residual size versus
maximizing the service parallelism that can be achieved. Consider the symmetric
linear network shown in Fig.3.3 including m links with the same capacity ¢, and
m short and 1 long route. Even if there were a flow with a small residual size on

m-hop jobs (r=0)
7

1-hop jobs (r=1)

Figure 3.3: Linear network: m equal capacity links.

the long route, one may wish not to allocate the full capacity on all the links to it,
since this would temporarily ‘block’ the concurrent service of flows on various short

routes. In the sequel we will consider this linear network in more detail as a means
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to identify the characteristics that a ‘good’ bandwidth allocation might have. We
then formally define a class of dynamic bandwidth allocation criteria that one might

use to enhance the average BTD performance on general networks.

3.3.1 Example: Symmetric Linear Network

To simplify our analysis, suppose that the bandwidth allocation among flows
sharing the same route is independent of the aggregate bandwidth allocated to that
route, and follows the SPTP policy introduced in §3.2. That is, at any given time ¢,
an aggregate route bandwidth y,(¢) will be allocated to the flow that has the smallest
product of original and residual size among all flows on route r, regardless of the
value of y,(t). We shall refer to the SPTP discipline as our ‘intra-route’ bandwidth
allocation policy, i.e., dictating how bandwidth is allocated among flows sharing
the same route. The question then is to identify the aggregate route bandwidths
(yr(t), t >0, r € R) to allocate to each route, i.e., a good ‘inter-route’ bandwidth

allocation.

For succinctness we refer to the long route as the m-hop route and give it
route index r = 0, while the set of short routes are referred to as 1-hop routes and
indexed by r = 1,2,--- ,m. Since link capacities are equal, it should be clear that
each 1-hop route can be allocated the same aggregate route bandwidth without com-
promising optimality, 4.e., ¢ minus that allocated to the m-hop route. This means
that we need only consider bandwidth allocations which give the same bandwidth
to all 1-hop routes. In the sequel we let y;(t) denote the aggregate bandwidth al-

located to any of the 1-hop routes, and yy(¢) be that allocated to the m-hop route.

20



This symmetry in the topology significantly simplifies the state space, and thus the
analysis of interactions among routes. In particular, the dynamics on this network
correspond to m-hop flows contending for a ‘single bottleneck’ resource of capacity
¢ with ‘all’ flows on 1-hop routes, but where some of the 1-hop flows can be served
in parallel. By analogy with Lemma 3.2.1 for flows sharing a single link, one can

show a ‘no-sharing’ result for the symmetric linear network.

Lemma 3.3.1. A BTD-optimal inter-route bandwidth allocation y* for flows on a

symmetric linear network (see Fig.3.3) is such that at any time t either yj(t) = 0

or y3(t) = c.

Combining the necessary condition in Lemma 3.3.1 with the assumption that
flows on the same route are allocated bandwidth according to the SPTP policy, below
we determine a BTD-optimal inter-route bandwidth allocation policy for the linear
network in the transient regime. More specifically, the policy determines whether
to allocate the full capacity ¢ to the m-hop route (or 1-hop route otherwise) at
any time ¢ such that the overall residual BTD is minimized assuming no arrivals
after time ¢. Before presenting this last result we introduce some further notation.
Without loss of generality, we shall separately index the ng(¢) m-hop flows and
all n1(t) 1-hop flows in the network at time ¢ according to their finishing order
assuming that they are served according to SPTP among flows on the same route.
To distinguish the flows that belong to different route types, we use p? and p} to
denote the original size of the jth m-hop and 1-hop flow to complete, respectively.
Similar notation applies to the residual size. Furthermore, We define the cumulative

residual work, ﬁj-(t) = ZK]- & ri=r; pi(t), s = 0,1, as the total residual work that
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needs to complete on the route s prior to completing flow j at time t. We assume

ties are broken arbitrarily. Now we may present our policy.

Algorithm 3.3.1 (Greedy Algorithm for Linear Network). At any time t,

y5(t) = and yi(t) = 0 if

1. e > max (1§k:i)-(k'c) (3.1)
p! PR(t) k=12 () | kS p B(t) '

e

maz-wgt-thruput maz-weighted-throughput

(m-hop route) (1-hop routes)

and y§(t) = 0 and yi(t) = ¢ otherwise.

Theorem 3.3.1. At each point in time the Algorithm 3.3.1 minimizes the overall
residual BTD for flows on the linear network shown in Fig.3.3, assuming that SPTP

is the intra-route policy and there are no future arrivals.

Despite its lengthy proof (given in the appendix), (3.1) in Algorithm 3.3.1
has a fairly simple interpretation. In deciding whether to allocate bandwidth to
the long or short routes, one needs to assess which option will lead to the highest
‘weighted throughput’ considering various finite time windows into the future. More
specifically, the throughput over a time window, measured in flows/sec, is given by
the number of flows that complete service in that window. The weight is given by
the average of the reciprocal sizes for the flows that complete service in the window
under consideration. Intuitively, this weighting factor accounts for the impact that

completing these flows has on BTD.

Consider for example the m-hop route. If the full capacity were allocated to

it, the first flow (in SPTP order) will take p{(t)/c seconds to complete and have a

22



weight 1/p{ - thus a weighted throughput of ¢/(p? - p?(¢)). One can show that this
corresponds to the highest weighted throughput one can achieve by allocating the
full capacity to this route for any time window? - i.e., the left hand side of (3.1). By
contrast, when flows can be served in parallel, e.g., 1 hop flows on distinct routes, one
might achieve the maximum weighted throughput by considering a time window in
which ‘multiple’ flows complete. In particular if the full capacity is allocated to the
1-hop routes, then p}(s)/c is the time to complete k flows (in SPTP order for each
1-hop route) and %Zle(l /p}) is their associated weight. Considering all possible
windows into the future, one will obtain the term on the right of (3.1). Because of
the possibility that one might achieve a higher weighted throughput by serving flows
in parallel, one should not put excessive emphasis on favoring small flows traversing

long routes when deciding inter-route bandwidth allocation.

3.3.2 Size-Based Adaptive Bandwidth Allocation

The above example shows the potential complexity of a BTD-optimal policy
for the transient regime. Even for a simple toy network, one may need to account
for the sizes of almost all flows (the ‘smallest’ m-hop flow and all 1-hop flows) to
determine a bandwidth allocation that minimizes the residual BTD. We will show
later via simulation that this policy exhibits excellent performance as an greedy
online strategy for allocating bandwidth on a symmetric linear network. However it
does require a centralized agent to coordinate across flows and routes to determine

dynamic changes in the bandwidth allocation. As a step towards a more practical

>This fact also implies why SPTP is the greedy policy for the single link case.
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realization, below we propose a general class of bandwidth allocation criteria where
per-user weights that depend on residual sizes are considered. Following [31, 39,
41] we define a class of size-dependent adaptive bandwidth allocations (SABA) as

follows.

Definition 3.3.1 (Size-based Adaptive Bandwidth Allocation). Let J(t) de-
note the set of active flows at time t, and p;(t) be the residual size of flow j € J(t). A
bandwidth allocation, (x*(t),t > 0), is said to satisfy Size-based Adaptive Bandwidth
Allocation (SABA) criterion if and only if at each time t,

x*(t) = argmax g w;(t) - Ug(x;(1))
x(t) .
JeJI()

st > Apmi(t)<c, VIeL,
JeJ(t)

where w;(t) is flow j’s weighting function depending on the residual flow sizes at

time t, and

_ log = B8=1,
Uslw) = { Q=812 B>0 and B#1. (3.2)

is a utility function characterizing the sensitivity of a flow to its bandwidth allocation.
The first order optimality condition can be written as follows: at any time t, x*(t)

is optimal if for any other feasible allocation x(t) we have that

T (t) — 23 (2)
jg%) w](t)i(mj(t))ﬂ < 0.

Bandwidth allocations associated with maximizing the utility functions de-

fined in (3.2) with fized weights have been widely considered [26, 31, 32, 36, 39, 41].
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Notice that maximizing such overall user utility functions subject to resource con-
straints naturally favors flows that use fewer resources, therefore achieving higher
service parallelism. As has been indicated in [7,41], increases in 3, and thus changes
in the utility function to make it grow less rapidly with x, result in less discrim-
ination against flows using more resources and reduce the impact of the weights.
Table 3.2 exhibits the trends by showing several well known criteria associated with
different Os assuming fixed weights. Note that as 8 — oo, the criterion becomes
max-min rather than weighted max-min fair, i.e., the weights have no effect on the

bandwidth allocation. Our premise here is that the introduction of per-low weights

Table 3.2: Impact of 8 on bandwidth allocation.

B Criterion

0 Weighted Maximum Throughput
1

2

Weighted Proportional Fairness
Weighted Potential Delay Fairness
— 00 | Max-min Fairness

depending on the residual size of flows enable SABA to achieve better average BTD.
In the next section we shall discuss how the choice of weight functions might impact

SABA’s performance.

3.4 Role of Residual Size Dependent Weights

The challenge in devising size dependent weights is to provide both appro-

priate intra and inter-route bandwidth allocations, while not precluding possible
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implementation. In particular we propose to parameterize a flow’s weight as

Sk, 1) (Wes (Pr(0)) /7 s
ZkEJrj(t)(wiﬂ(pk(t)))l/,B ;

wi(t) = wilp;(t)) - (3.3)

where J., () is the set of flows sharing route r; with flow j, and the internal (intra-
route) and external (inter-route) weight functions w;, and w,, are non-increasing in
the residual flow sizes. Note that we have selected weights that only depend on the

‘residual’ size3.

Notice that by using the same function for w;, and w,,, the weight of each
flow based on (3.3) will depend on only its own residual size, i.e., w;(t) = w(p;(t)).
If it is permissible to coordinate among flows that share the same route, i.e., have
access to their residual flow sizes, one may employ different functions for w;, and
Wey, in which case a flow’s weight depends on the residual sizes of all flows on the
same route. In the sequel, we will discuss the possible benefits of the latter option

and how one might select w;, and w.,.

3.4.1 Decoupling Intra and Inter-route Bandwidth Allocation

An important character of our proposed weight function in (3.3) is that it
allows one to decouple the impact of residual flow sizes on the intra and inter-route
bandwidth allocation by using different functions for w;, and w... Theorems 3.4.1
and 3.4.2 below characterize how bandwidth would be allocated among flows sharing

the same route and across routes— proofs are given in the appendix.

30ur experience based on simulation suggests that there are only marginal differences in perfor-
mance if one also introduces the original size.
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Theorem 3.4.1. At any time t the SABA bandwidth allocation for two flows, i and

j, sharing the same route satisfies

5t (w(t))”ﬂ _ (M)”

w; () win(p5 (1))

Theorem 3.4.2. Let yr(t) = > c; ) %i(t) be the total bandwidth allocated to the
flows sharing route r at time t. The first order optimality condition associated with
SABA can be restated as, y*(t) = (y}(t), 7 € R) is optimal if for any other feasible

allocation y(t) = (yr(t), 7 € R),

where
B B

wt) = | S w@r] = | Y w.lp0)?

J€Jx(t) JEIR(t)

denotes an ‘aggregate weight’ associated with route .

Note that the relative bandwidth allocated to flows sharing the same route
only depends on the selection of w;,, while the aggregate route bandwidth depends
on w.,. This allows one to use different functions to determine the intra and inter-
route SABA bandwidth allocations. In particular, as the results in §3.2 and 3.3
suggest, one might want to discriminate heavily against large flows for the intra-
route allocation, but trade off such discrimination with parallelism when it comes
to inter-route bandwidth allocation. Our simulations suggest that this decoupling
scheme can achieve a better average BTD than that resulting from using the same

residual size based weight for both the intra and inter-route bandwidth allocations.
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3.4.2 Design of Weights

In this subsection we briefly discuss how w;, and w,, might be selected. The
goal is to provide residual size-based differentiation favoring small flows, thus we
consider decreasing functions in the residual flow size. Two possible candidates are

the exponential and the reciprocal functions, i.e.,

w(p;(t)) = e " and w(p;(t)) = W 0) (3.4)

respectively, where o > 0 allows one to vary the degree of size-based differentia-

tion. In particular, one may use a larger «;, for w;, to provide a more significant

discrimination for intra-route bandwidth allocation, and a smaller «, for w,,.

Despite the fact that both favor flows with smaller residual size, the two
functions shown in (3.4) differ in the way they discriminate. We shall use a simple
example to exhibit this difference. Consider the intra-route bandwidth allocation
characteristics shown in Theorem 3.4.1. By using the two different weight functions,
we get

p;j(t)

respectively. This means that by using the exponential weight function, one will

o * . —in ﬂ
_ e—%(m—p;‘) and T _ pi(t) on/
3 ’

k}i‘? | 8
Uk %

discriminate based on the ‘absolute’ difference in residual flow sizes, while the recip-
rocal weight provides an alternative which depends on the ratio of the residual sizes.
In general, for a given o a more aggressive discrimination is achieved by using the
exponential rather than the reciprocal weight function. Note that above discussion
is for the bandwidth allocation in the static regime, i.e., at a fixed time ¢. However

the dynamics associated with SABA provide a further means of differentiation.
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3.4.3 Dynamic Character of SABA

The above discussions focused on how SABA allocates bandwidth among
flows sharing the network at a fixed time, but the dynamic nature, 7.e., dependence
on the residual flow size, also plays a role. In particular if a flow is given priority,
i.e., more bandwidth, then its residual size is likely to go down quickly, and hence,
its weight or priority to increase further. For example, assuming that w;, = w,, and
considering the two weight functions in (3.4), the change of a flow j’s weight in time
can be expressed by its first derivative, i.e.,

dw;(t " dw;(t i (H)w; (t)
% = ar;(t)w;(t) or jt( ) - ]pj(t; ’

respectively. Note the additional factor of 1/p;(t) for the dynamics associated with
the reciprocal weight function. It is an open question, given the differences in how
they differentiate based on residual size in both the static and dynamic regimes,
which weight function provides a better average BTD. Nevertheless, for both cases,
even if discrimination among flows is small at a given point in time the dynamics are
such that bandwidth allocation will be increasingly biased as flows progress toward
completion. Similarly if a given bandwidth allocation achieves good parallelism,
then it will be reflected in the relative increase in weights for the associated flows,

and this characteristic of the allocation will be further emphasized.

3.4.4 Design Options of SABA

Let us summarize the design options for SABA that achieves good average
BTD performance, i.e., the type of function used for w;, and w.,, the values of «;,

and «.,, and the value of 5. Based on our experiments, we observe that SABA
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in general achieves similar performance, particularly when compared to traditional
fairness criteria, as long as one provides reasonable differentiation in favor of small
flows. In particular, we observe a slightly better performance gain if one decouples
the intra and inter-route bandwidth allocation, by using, for example, a larger value
for ai;, than a,,. Furthermore, due to the fact that increases in 8 reduce the impact of
the size-dependent weights, it is advisable to use a small value of § to achieve a better
average BTD. With the above guidelines in mind, but not aiming at optimizing the
choice of parameters, we consider a version of SABA that employs reciprocal weight
functions with a;, = 5 and a,, = 1 for w;, and w,,, respectively, and 5 = 1 (utility
function associated with proportional fairness), and present simulation results for

this case in the next section.*

3.5 Performance Gains under SABA: Fluid-flow Simulation

We conducted simulations to validate the performance gains of SABA over
traditional fairness criteria, such as max-min, proportional, and potential delay fair
bandwidth allocation [39]. The ‘idealized’ fluid-flow simulations exhibited in this
section are discrete event simulations where events correspond to flow arrivals and
departures and bandwidth allocations were computed and then frozen during inter-
event periods, according to the bandwidth allocation criterion under consideration.
This cuts down simulation time significantly allowing a reasonable exploration of

various system parameters.

4Throughout this dissertation, we will use this design option for all our subsequent discussions
of SABA.
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3.5.1 Linear Network

We first consider a 5-link linear network where each link has capacity 10
Mbps, see Fig.3.3. In this case we can further compare the SABA to the greedy
algorithm suggested in §3.3. We assume that flows arrive to each route according
to Poisson processes with the same arrival rate and the flow size distribution is
bounded Pareto with mean 5 KBytes. Fig.3.4 shows the average BTD achieved by
SABA, the greedy algorithm, and the three traditional bandwidth allocation policies.
Observe that both SABA and the greedy algorithm significantly outperform the
three fair bandwidth allocation policies. In fact they achieve similar performance
improvements of up to 58% when the links are 80% loaded. Note also that the
three traditional criteria result in similar performance with max-min having a slight

advantage over the other two®

. For succinctness and simplicity, in the remainder
of this section we will focus on max-min as our baseline criterion for performance

comparisons on our network.

3.5.2 Star and Random Networks

We have also conducted simulations for additional representative networks,
including the symmetric star network shown in Fig.3.5. The star network is arguably
a good abstraction of current Internet where the bottlenecks reside at the source
and/or destination access links with transparent big backbone pipes [7]. In other

words, the nodes on the spokes can be associated with access domains (both source

5 Authors in [7] also suggested that various traditional fairness criteria achieve similar perfor-
mance in the dynamic regime.
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Figure 3.4: The average BTD achieved by SABA, the greedy algorithm, and various
fairness policies on a 5-link linear network.

and destinations), while the center node represents a high capacity backbone. Again
we shall assume the same bounded Pareto flow size distribution, and Poisson arrivals
with sources and destinations uniformly chosen among the access domains, i.e., no

flow begins or ends at the center node.

*-Access Domain

P T
o o

¥

Figure 3.5: A star network: 6 10 Mbps access links.

We further consider a simple collection of random mesh topologies with 8
nodes and a 40% connectivity, i.e., each node on average connects to 40% of other
nodes, and where link capacities are uniformly distributed between 10 to 20 Mbps.
We assume the arrivals are Poisson with source and destination randomly chosen

among the 8 nodes, and the routes associated with each arrival are determined
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based on a shortest hop routing algorithm. These topologies are meant to capture
the scenario where data transfers may traverse multiple domains (nodes), and the
bottlenecks reside on peering points. The value of capacities we assumed for both
the star and random networks are for simulation purposes. We however believe that

our results are representative of the performance gains that would be achieved.

Fig.3.6 shows the average BTD performance improvements achieved by SABA
versus max-min fair bandwidth allocation on a star network as well as an average

over 15 random topologies as the traffic load increases. In comparison to the linear
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Figure 3.6: The average BTD improvements achieved by SABA against max-min
fair allocation on the star and random networks as the traffic load increases.

network case, we observe a higher performance improvement for the symmetric star
network and a comparable improvements for the simulated random topologies, e.g.,
70%, 57%, and 58% for the star, random, and linear networks at 80% traffic load,
respectively. These results substantiate the potential for performance gains that can

be achieved by using SABA over traditional fairness criteria.
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3.5.3 Remarks on Starvation

We have also examined the set of starvation metrics described in §3.2 along
with the simulations above. As in the single link case, SABA performs well in terms
of starvation metrics as compared to traditional fairness criteria for networks. One
difference is that there are more occasions, about 20% of the total simulation runs
(as compared to 5% for the single link case), where SABA incurs larger maximum
BTDs than, say, under max-min fairness. We believe this is due to large flows
on long routes which are doubly penalized and thus experience very large BTDs.
For example, in examining the starvation problem for flows (recall the metric we
proposed in §3.2) we see significantly lower percentage of starving flows under SABA
(about 0.13%) than under max-min (12%) at 80% traffic load. The above results
confirm that SABA will in fact also perform better than traditional fair bandwidth

allocation in terms of starvation.

3.6 Conclusion

In this chapter, we have proposed a new set of dynamic bandwidth allo-
cation criteria that makes use of the residual flow size to improve user perceived
performance. In particular we have focused on reducing the average BTD seen by
users, and thus effectively also increased the user perceived throughputs. Recogniz-
ing that the difficulty in analyzing performance for networks sharing bandwidth in
a dynamic fashion we have considered simple examples and derived greedy policies
that perform close to optimal. These examples motivate two natural properties that

one would like to achieve in allocating bandwidth to reduce the average BTD: (1)
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favor small flows among those sharing the same route and, (2) tradeoff favoring
small flows and achieving high service parallelism when allocating bandwidth across
routes. We proposed a new class of bandwidth allocation criteria, SABA, which
depends on not only the number of flows on each route but also the residual file
sizes. Our fluid-flow simulations showed that one could achieve a 70% average BTD
performance improvement by using SABA over traditional fairness criteria at 80%

traffic load.

These are encouraging performance gains providing significant evidence on
the possible benefits of size-dependent differentiation, suggesting in our opinion that
this line of research and possibly development warrants further exploration. In the
next chapter we will provide a simple transport layer implementation based on
TCP Reno, and exhibit its performance gain versus Reno. We note that size-based
differentiation can be also realized at the application layer. In fact [21] have proposed
and developed an implementation of SRPT on web servers. However, implementing
differentiation at the transport layer enables one to address network bottlenecks and
or interactions among various flows on the network resources rather than simply on
the end systems. An open question is the stability condition for bandwidth allocation
based on residual flow sizes. We note that allocation based on initial flow sizes can be
shown to be stable via the same method as in [7,17]. Further interesting questions
pertain to the impact of size-based differentiation versus fair sharing when traffic
fluctuation leads to transient overloads, particularly with impatient users. We will

discuss this issue in Chapter 5.
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3.7 Proofs of Theorems

3.7.1 Proof for Lemma 3.2.1

We will prove a more general case where a pre-determined time-varying link
capacity is considered. Let J denote the set of flows that share a single link with
capacity c(t), ¢ > 0. Consider a bandwidth allocation x = (z;(t), j € J, t >
0) that allocates positive bandwidths to more than one flows during some time
interval [t*, t* + 7) for some 7 > 0. We denote the set of flows that receives
positive bandwidth during [t*, t* + 7) as JtT(¢t*,¢* + 7) C J where |J T (t*,t* +
7)| > 1. Furthermore, define A(t,00) = {j|j € J, a; > t*}. Consider the flow
k = argminje j\ a(t,00){fj} where f; is the finishing time of flow j. In the sequel
we will show that one can always improve flow k’s delay and thus its BTD without

increasing any other flow’s delay by slightly altering x.

First, consider the case where k € J*(t*,¢* + 7). Let x' = (}(t), j € J, t >
0) be an alternative feasible bandwidth allocation which only differ from x during the
time interval [t*, f) in that (1) a full ‘reduced’ capacity é(t) = c(t) — ZjeA(t,oo) z(t)
is allocated to flow k until it finishes, (2) arbitrary bandwidths allocated to all flows
j € J\ A(t,) \ k during [t*, fx) requiring that f’:’“ z3(t) = t{k z;(t), and (3) no
changes for flows in A(t,00). Clearly flow k will finish earlier than f; under the new
x', since zi(t) < é(t) during at least [t*, t* 4+ 7). Meanwhile, since other flows in
j € J\ A(t,00) \ k completes the same amount of work during [t*, fx) and none of
them finishes before fj, even under x, they do not see a change in their delay. Finally,
no flow in A(t,00) sees any change under x’ since they have the same bandwidth

allocation.
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Next we consider the impact of x’ for the scenario where k & JT (t*,t* + 7).
Clearly, flow k’s delay is still smaller under x’ since zx(t) = 0 during [t*, t* + 7).

Same arguments apply for the other flows, and thus the theorem follows. O

3.7.2 Proof for Theorem 3.2.1

According to Lemma 3.2.1 we only need to determine the optimal ‘service’
order of the flows in J(¢), the set of ongoing flows at time ¢. Without loss of
generality, we index the flows in J(¢) according to the non-decreasing order of p;-p;(t)
with ties broken arbitrarily, i.e., p; - pi(t) < p; - pj(t), Vi < j. Also for convenience

we assume unit link capacity.

Consider a service order ¥ that does not follow the SPTP rule, i.e., there
exists at least one pair of flows (7, j) such that p;-p;(t) < p;-p;(t) but i is served after
j. For convenience we call such pair to be ‘non-conforming.” Note that there must
exist at least one non-conforming pair that is in consecutive service order within W.
Let 1 and j = 1+ 1 denote one non-conforming and consecutive pair of flows. Now if
we consider a new service order ¥’ that is the same as U except it swaps the service

order of 7 and j. The difference in the residual BTD is

ai'(t) di(t)  pit) ()
2 2 [ pi 0

Dk

keJ(t) keJ(t)
The last inequality is due to that p; - p;(t) < p; - p;(t). Continuing this swapping
procedure one will have a service order within finite steps that satisfies SPTP with

each swapping step resulting in less overall residual BTD. Note that having multiple

service orders satisfying SPTP can only happen when there is a tie in pg(¢)-px. These
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service order however incur no difference in the overall residual BTD. Thus a service

order that follows SPTP must minimize the overall residual BTD. O

3.7.3 Proof for Lemma 3.3.1

First it should be clear that one needs only consider bandwidth allocations
that always allocate the same bandwidth to all 1-hop routes. Otherwise, as long as
there is an 1-hop route that has at least one active flow but receives less bandwidth
than some other 1-hop route at some time ¢, one can always improve the active
flow’s delay (BTD) without compromising others’ performance by increasing its
allocated bandwidth to be the same as others. Furthermore, for a given bandwidth
allocation, one may consider the aggregate bandwidth allocated to any route as a
‘pre-determined time-varying’ capacity shared by the flows on that route. Thus by
Lemma 3.2.1, we know that one can always improve the overall BTD if jobs on the
same route are not served one by one. Based on the above arguments, we only need
to show that “one can always improve the overall delay (BTD) upon any bandwidth
allocation that concurrently allocates positive bandwidth to one m-hop flow and at
least one 1-hop flow”. The rest of the proof is essentially the same as the arguments
given in Lemma 3.2.1, with a new twist that the 1-hop flows, if there are more than

one, see changes in the same manner. O

3.7.4 Proof for Theorem 3.3.1

For convenience we set ¢; = 1 and re-normalize all the parameters accord-
ingly. We decompose the residual delay (and thus the residual BTD) for each flow

into two components: (1) the total service time consumed by the flows on the same
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type of route that finish before that flow completes (thus including itself), and (2)
the service time consumed by the flows on the other route type that are considered to
be served before the given flow. Since the capacity should always be fully allocated
to one of the route types (Lemma 3.3.1) and we assume SPTP to be the intra-route
policy, we can determine the service order for the flows on the m-hop route and that
for the flows on all 1-hop routes regardless of how they are scheduled with respect
to those on the other route type. The service order for route type s = 0,1 thus
follows the non-decreasing order of pj(t), as defined in the text, and p3(¢) is in fact

the first delay component for flow j (the jth flow to finish) on route type s.

Thus to minimize the overall BTD, we should minimize the residual BTDs
due to the second component. Note that the second component is determined by
how one interleaves the two service schedules for the m-hop flows and 1-hop flows.
Without loss of generality we consider when to start serving each of the m-hop
flows among the 1-hop flows one by one. Suppose we start serving m-hop flow j
immediately after £ 1-hop flows finish. The total residual BTD contributed by the
second component to the m-hop flow j and all 1-hop flows is

nl(t)

1
. Pr(1) 3 1
Py i—kit1 Pi

where ]5(1) (t) =0, and k = 0 corresponds to the case where the m-hop flow j is served
before all 1-hop flows. This is true for all j € {1,...,n¢(¢)} and k € {0,...,n1(¢)}.

We now may denote the number of 1-hop flows that should be served be-

h

fore serving the j*® m-hop flow for the purpose of minimizing Ab(j, k) as ki (t) =

argmingc o o 13 [Ab(J, k)]. Simple derivation can show that &k} < k7, Vi < j since
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Y -p}(t) is non-decreasing in j. Thus there exist a set of {k}, j = 1,...,m0(t)} that
minimizes the set of {Ab(j,k), 7 =1,...,n0(t)} as well as Z?i(lt) Ab(j, k), i.e., the

total BTD incurred for all flows due to the second delay component. O

3.7.5 Proof for Theorem 3.4.1

Let x be a feasible bandwidth allocation that only differs from the optimal
x" at #; = 27 + A and z; = 2§ — A for some A € R where r; = rj. Considering the
first order condition, we have

Tj — T
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Since this is true for either A > 0 or A < 0, we have that (;‘,'Zi)ﬂ = @
i J

3.7.6 Proof for Theorem 3.4.2

We may re-write the left hand side of the per-flow basis first order condition

as follows. For convenience, we suppress the time index writing w;,z;,p; and J for
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w;(t),z;(t),p;(t) and J(t), respectively.
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The per-route basis condition thus follows with the aggregate route weight for route

r being vy = (D, w) )P = (2,2, (wen(p)) V)P 0
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Chapter 4

Towards Practical Implementation of SABA

4.1 Introduction

The study presented in Chapter 3 assumes an ideal scenario where the al-
located bandwidth instantaneously tracks the optimal solution to a network opti-
mization problem which in turn depends on the changing network state. In practice,
not unlike other bandwidth allocation criteria, algorithms to achieve SABA in a dy-
namic network would only do so approximately. Recent studies [16, 31, 36,41, 54]
suggest how one might approximately achieve various ‘fixed’ weighted fairness cri-
teria with the utility functions we considered earlier in defining SABA. A common
theme considered in this body of work is the use of a decentralized user (sender)
rate control mechanism with network feedback, such as TCP [29]. In this chapter,
we will consider various practical issues associated with designing a network mech-
anism that approximates SABA, and present a simple preliminary implementation
by incorporating a residual flow size factor into the TCP Reno congestion control

mechanism.

The transfer rate of a file transfer, although elastic, may in practice be
constrained by end system’s interface capacity, e.g., a modem or Ethernet card, or
protocol limitations. In the protocol limitation case, for example, transfers mediated

by TCP with receiver window size of 64 Kbytes and round trip delay of 20 ms can
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only achieve throughput up to approximately (8 x 64 x103)/(20x10~3) = 25.6 Mbps.
Depending on the link (router) capacity along the path a file transfer traverses, the
limitation incurred by the protocols or the end systems may or may not result
in a ‘peak rate constraint’ for the transfer. As pointed out in [23], if the peak rate
constraints associated with elastic flows are small relative to the bottleneck capacity
and the traffic load is low, the average perceived throughput may be close to the
peak rate. With the Internet today being designed and provisioned by independent
entities and the existence of possibly complex service level agreements among them,
it is not an easy task to predict where the bottlenecks for file transfers will be -
see Chapter 1. An interesting question thus may be how the presence of peak rate
constraints under various bottleneck scenarios changes the performance achieved by
both SABA and traditional fairness criteria. We will begin by investigating the
average BTD performance for elastic flows with peak rate constraints under various
bottleneck scenarios when one uses SABA or max-min fair bandwidth allocation. We
take max-min fairness to be our representative traditional fairness criterion. Our
investigation based on fluid approximation will show that by using SABA elastic
flows can achieve BTD close to the best possible, i.e., the inverse of their peak rate
constraints, even in a heavy load regime - this is not the case when bandwidths are

allocated according to max-min fairness.

Given the strong evidence suggesting the potential benefits brought by SABA,
even with the presence of peak rate constraints, we present a simple implementation
of SABA, called SAReno, based on TCP Reno. Recent studies suggested that an

additive increase and multiplicative decrease rate control algorithm, such as TCP,
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achieves approximately weighted proportional fairness [31,41], weighted potential
delay fairness [23], and F% fairness [54], to name a few depending on the modeling
assumptions. The weight associated with a connection in these studies however is
usually found to be fixed and is typically considered to be inversely proportional
to the round-trip time of the transfer. In practice when flows come and go, one
may argue that the user perceived average BTD, or throughput, under TCP is close
to that achieved by any of the afore-mentioned fair bandwidth allocation - recall
that these fairness policies achieve similar performance in the dynamic regime. One
exception, however, is the throughput seen by users transferring small files. Indeed
due to the limitation imposed by the slow start phase of current TCP mechanism,
the transfer rate of small flows is unlikely to reach a good share of bandwidth be-
fore completion, see [6, 12,23, 40, 55, 56] for detailed discussions. In particular [6, 56]
have proposed alternatives to the slow start phase aiming at speeding up transfers
with small ‘initial’ sizes. In this study, we will focus on implementing ‘residual’
size dependent differentiation in the congestion avoidance phase of TCP, which we

believe will benefit ‘all’ transfers.

This chapter is organized as follows. In §4.2 we investigate the performance
impacts of introducing peak rate constrained flows on various bottleneck scenarios
assuming a fluid flow model. The proposed implementation SAReno will be pre-
sented in §4.3 accompanied by several design guidelines. Packet level simulations of
the proposed transport mechanism are conducted using ns-2 [1] to show the gains
achieved by SAReno over Reno, including discussions of several network design issues

and the benefits of ‘gradually’ deploying such a mechanism. Concluding remarks
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are given in §4.4.

4.2 Performance Impact of Peak Rate Constraints

4.2.1 Single Link Model

We begin by considering a single link with capacity ¢, which is shared by
elastic file transfers each with a peak rate limit of Z. For analysis purposes we
again assume the fluid flow model described in Chapter 2. The core question to be
discussed is how Z, as compared to ¢, impacts the average BTD achieved by SABA

versus traditional fair bandwidth allocation mechanisms.

Recall that when there is no peak rate constraint, a single link that uses
fair allocation or SABA can be modeled by an M/G/1-PS or M/G/1-SRPT (in
the limiting regime) queue, respectively. However, if the maximum rate each flow
can accommodate is limited, the system behaves quite differently. In particular the
link capacity may not be fully utilized when the number of flows is less than c¢/z.
We shall assume Z divides ¢ for simplicity. Based on the results in [13], one can
derive the stationary distribution for the number of peak rate constrained flows on
a single link under the fair share discipline. Unfortunately we have not been able
to find an analogous result for the SRPT case. We note, however, that serving
peak rate constraint flows with SRPT policy on a single link may be modeled by a
‘SRPT routing/scheduling on a parallel server network’. That is, flows arrive to a
network with m = ¢/Z servers each with capacity Z. At any given time the m flows
(if there are more than m) with the smallest residual work will be served by the

m, servers, while other flows wait at a central buffer until a flow finishes or another
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smaller one arrives. A flow might be preempted and served on different servers. This
generalized SRPT scheme corresponds to a routing/scheduling policy on a identical
parallel server network [34]. Notice that, in general, a single link with peak rate
constrained flows may not be modeled by the parallel link model described above,
since policies such as fair sharing may allocate 2z capacity equally to 3 flows which
is not permissible by the parallel link model. Nevertheless, as we will show via
simulation below, SABA on a single link with peak rate constrained flows achieves

performance close to the best one can get - the peak rate under various scenarios.

A good indicator that distinguishes the character of a peak rate constrained
system is the probability that the link capacity is fully utilized, i.e., at least m
ongoing flows in the system. Drawing from results for the peak rate constrained fair

sharing link, we can derive this probability as follows:

(mp)™ [m!
(1= p) Sy (mp)k /KL + (mp)™ /m]

ffull(m7 P) =

where p is the traffic load. The value of fr,,(m, p) corresponds to how often the flows
are ‘multiplexed’ through the link. In other words, when no more than m flows are
active, the system behaves like a circuit switched network, which presumably reduces
the value of ‘any’ bandwidth allocation policy that determines the shared bandwidth
to each elastic flow. As we will show in the sequel, the performance gain achieved

by SABA in general grows with fg,(m, p).

To examine the performance achieved by SABA and fair sharing with peak

rate constrained flows, we conducted simulations on a 10 Mbps! link with vari-

!The capacity and peak rate constraints considered in this section are for presentation purposes,

46



ous m and p values. We again assume Poisson arrivals and bounded Pareto flow
size distribution with mean 5 Kbytes. Fig.4.1 and Fig.4.2 show the average BTD
improvement achieved by SABA over fair sharing along with the ‘optimal improve-
ment’ and fg,(m,p) when one varies m or p while fixing the other. The optimal
improvement corresponds to comparing the peak rate under consideration with the

performance achieved by fair sharing.
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Figure 4.1: Average BTD Improvements achieved by SABA over FS, the optimal
improvement over FS, and the probability of saturation when one varies the traffic
load.

First observe that the average BTD improvement of SABA in general grows
with fru(m, p), which increases as the traffic load increases and/or as the rate limit
is getting closer to the link capacity. This is expected since the size-based differen-
tiation can only take effect when the number of flows exceeds m - hence achieving

multiplexing gain. Furthermore, the fact that SABA performs close to optimal un-

and may be different from actual systems. We however believe the results provide good qualitative
insights.
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Figure 4.2: Average BTD Improvements achieved by SABA over FS, the optimal
improvement over FS, and the probability of saturation when one varies the rate
limit ratio.

der all scenarios suggests that the SABA scheme fully exploits the multiplexing gain
and achieves almost the best possible BTD for all flows. In the case of a light load or
when the peak rate constraint is much smaller than the link capacity, i.e., fru(m,p)
is small, almost all flows see a throughput close to the peak rate even under fair
sharing, and hence SABA can only manage to improve performance marginally -

which is again the best one can do.

The above results suggest the overall impact of introducing a ‘homogeneous’
peak rate constraint for all flows sharing a single link. In practice, file transfers
going through a bottleneck link might be limited by different peak rates. For exam-
ple, a university access gateway may serve both dial-up and Ethernet users which
see diverse peak rate limits due to the speed of their end systems. Hence we con-
ducted further experiments for such heterogeneous scenarios. We considered the

same simulation setup as above but with flows of different peak rate constraints,
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10 Mbps and 500 Kbps. Fig.4.3 exhibits the average BTD achieved by SABA over
fair sharing for each flow type as well as the overall average BTD when the traffic
load is 80%. As seen, both bandwidth allocation policies achieve almost the best
possible performance for flows with the lower peak rate constraint, while SABA
significantly outperforms fair sharing for those that can send at a higher peak rate.
Overall, SABA achieves increasingly better performance as the percentage of high
peak rate flows increases. The above trend remains true when we experiment with

other combinations of peak rate constraints.
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Figure 4.3: Average BTD achieved by SABA and fair sharing for flows with different
peak rate constraints (10 Mbps and 500 Kbps) as the percentage of high peak rate
constrained flows increases.

4.2.2 Networks as Traffic Concentrators

While the above analysis provides valuable insights on the impacts of in-
troducing the peak rate constrained flows on a single bottleneck link, in practice

a network may have multiple and possibly changing bottlenecks. In particular, a
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typical scenario is that user flows are ‘concentrated’ into increasingly large capacity
links until reaching the backbone, and then go to the destination access network.
We shall consider the simple two-hierarchy network as shown in Fig.4.4, and assume
all elastic flows entering the network have the same peak rate constraint 250 Kbps.
In the considered network, each peak rate constrained flow enters one of the k Level

peak rate constrained flows

level 2
level ;\

concentration points

Figure 4.4: A two-hierarchy network that concentrate peak rate constrained elastic
flows.

1 concentration points (with capacity c¢1), then shares the Level 2 concentration
point (with capacity cz) with all other flows, and finally reaches destination through
one of the destination access links. To achieve fair comparison shall we assume that
the aggregate Level 1 capacity, i.e., kci, remains constant at 10 Mbps - the same
as the single link capacity considered in the previous experiments. We also assume

the same arrival characteristics as before.

Based on our analysis for the single link case, the performance achieved by
SABA or a fair bandwidth allocation, say max-min, will depend on ¢; and ¢o. We

first consider scenarios where we fix ¢ = kcy=10 Mbps but vary k& and thus ¢; to
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observe the impact of the design of concentration points close to the users. Note
that with co = kcy, the Level 2 pipe will not be the bottleneck to constrain the
flow bandwidth. Fig.4.5 exhibits the average BTD achieved by SABA and max-
min bandwidth allocation policy when the number of Level 1 concentration points
increases with total offered load being 8 Mbps (80% of system capacity). As seen,
while using more but smaller Level 1 links aggravates the average BTD drastically
under max-min, one may achieve a relatively constant performance close to the
optimal, i.e., BTD = 4 x 1075 secs/bit = (peak rate) ™' secs/bit, by using SABA.
This suggests SABA’s superior robustness to the system environment, and benefit
when one has limited options to aggregate traffic. In particular, as k grows and ¢;
decreases, resulting in a less effective bandwidth sharing under max-min fairness,
the size-based differentiation achieved through SABA offers increasing performance
improvements, e.g., 28% to 62% when k increases from 5 to 20. We further note that
SABA achieves higher performance improvements here than it would have achieved
on a single link with capacity ¢; and the same peak rate constrained flows - recall
Fig.4.2. This suggests that on a network where bottlenecks change over time, one

will see a higher effect of multiplexing and thus a more significant benefit brought

by SABA.

We next examine the impact of the capacity of the Level 2 link. It is clear
that the smaller ¢y is the more likely it is for the Level 2 concentration point to
become the bottleneck. For this set of experiments, we assume k = 10, ¢c; = 1 Mbps,
a 6 Mbps total offered load, and vary ¢y from 6 to 10 Mbps. We again assume all

flows are constrained at 250 Kbps. Fig.4.6 shows the average BTD of peak rate
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Figure 4.5: Average BTD achieved by SABA and max-min bandwidth allocation on
the network shown in Fig.4.5 when one increases the number of Level 1 links with
8 Mbps offered load.

constrained flows achieved by SABA and max-min as one increases cy. Observe
that the average BTDs achieved under either max-min or SABA remain similar as
long as the Level 2 capacity exceeds the offered load (c2 > 7 Mbps), with SABA
outperforming max-min by about 24% in this case. Again this 24% improvement
is larger than SABA would have achieved on a single link with capacity ¢, and the
same peak rate constrained flows - recall Fig.4.1 and Fig.4.2. Furthermore, as cy
goes to 6 Mbps, i.e., the total offered load goes to 100% of the bottleneck capacity,
the average BTD under max-min quickly explodes while SABA still maintains a

good performance close to the peak rate.

The above experiments suggest that, unlike fair bandwidth allocation, SABA
is ‘robust’ - performs well on various plausible access network scenarios with different

peak rate constraints. In particular, under the fluid flow model almost all flows see
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Figure 4.6: Average BTD achieved by SABA and max-min bandwidth allocation
on the network shown in Fig.4.5 when one increases the Level 2 link capacity with

6 Mbps offered load.

transfer rate close to their peak rates under SABA? for all scenarios we simulated.
The benefit brought by SABA is particularly significant when the offered load is
close to, possibly temporarily, the bottleneck capacity as would be expected in
concentration networks that groom data traffic on scarce broadband links in the

access/metro area networks.

4.3 SAReno: Reno with Size-based Differentiation
4.3.1 Algorithm Description

In this section we present a simple implementation of SABA based on TCP
Reno in the congestion avoidance phase, where the user additively increases his win-

dow size (transmission rate) when receiving acknowledgments and multiplicatively

2As we will discuss in the next section, in practice file transfers with small file sizes are unlike
to achieve good transfer throughput due to current transport protocol limitation.
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decreases it if network feedback indicates congestion, e.g., time-outs or marked pack-
ets. The default linear increase rate and the multiplicative decrease ratio for TCP

Reno are

1
= and k" = 0.5-cwnd,
cwnd

5Reno

respectively, where cwnd is the current congestion window size in packets. In other
words, assuming no loss every round trip time the cwnd increases by approximately

1 packet, while upon an indication of congestion it is reduced by a half.

To realize SABA we propose to modulate the ‘additive increase rate’ and the
‘multiplicative decrease ratio’ at the sender side by the residual flow size. We call this
size-dependent user adaptation mechanism SAReno. We will only consider the case
where each user only has access to his own residual flow size information, i.e., SABA
with wy, = we. A key assumption for SAReno is that the transport protocol can
obtain the initial size information from the application layer. This is a reasonable
assumption since for most file transfers today, the sender knows a-priori the size of
the locally stored files, e.g., static contents associated with web servers. SAReno
then keeps track of the residual size by monitoring the sequence numbers of the
acknowledged packets. For simplicity, we quantize flow sizes into five regions, and
define the residual size dependent linear increase rate and multiplicative decrease
ratio associated with SAReno as in Table 4.1. For example, a SAReno flow with
20 packets unacknowledged at time ¢ has §5*%*°(¢) = 5/cwnd and 547" (¢) = 0.9
cwnd. Recall that the key idea is that the fewer the number of packets left to be
acknowledged by the receiver, the more aggressive (larger § and x) a flow should be,

and vice versa. Based on our experience, we note that one should not use values
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Table 4.1: Parameters for SAReno: § (1/cwnd),  (cwnd)

range of p(t) (packets)
[0,10) [10,50) [50,200) [200,1000) [1000,c0)
FSARems (p(1)) | 10 5 I 05 0.25
KSAReno(p()) | 1.0 0.9 0.5 0.1 0.01

which are too small for the linear increase rate for flows with large residual number of
packets to send. This is because one may still want large flows to increase quickly to
achieve reasonable throughputs when no small flows are present. The decrease ratio
however can be set very small for large flows allowing one to give ‘aggressive’ priority
to small flows during congestion. In fact if flows with a small residual size, say 10
packets yet to be sent and/or acknowledged, do not back off, then they can quickly
complete their transfers without individually experiencing re-occurring congestion.
Note that this is a preliminary design of SAReno. One can certainly engineer the
parameters, or implement SABA based on other versions of TCP or other transport
protocols. Our intent here is to provide a proof-of-concept implementation that

exhibit the benefits by employing the size information.

4.3.2 Performance Evaluation: SAReno vs. Reno

In this subsection we will present our simulation results comparing the av-
erage BTD achieved by SAReno versus Reno using the ns-2 [1] simulator. We focus
on the star network considered in Section 3.5 with 1 ms propagation delay on each
link connecting an access domain to the center backbone node. We assume the same
arrival processes as those used in Section 3.5. The flow size distribution is assumed

to be bounded Pareto with mean 50 KBytes, i.e., 100 packets with 500 bytes per
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packet. Notice that we have selected a larger mean flow size than is currently typi-
cal of TCP transfers on the Internet. This was done in order to clearly exhibit the
performance impacts of SAReno on, say, bulk transfers, ignoring extremely small
flows which may not even enter the congestion avoidance phase, i.e., complete before
reaching the slow-start threshold. In the sequel, in addition to presenting SAReno’s
performance improvements over Reno, we will also discuss additional network issues

that further impact performance.

Fig.4.7 shows the average BTD achieved by SAReno and Reno with various
link packet scheduling mechanisms as the traffic load increases. We consider two
different underlying packet scheduling disciplines: First Come Fist Serve (FCFS)
and Deficit Round Robin (DRR) [52]. While FCFS is considered the ‘default’ dis-
cipline, we also present the results for DRR to show the performance benefits over
FCFS particularly when SAReno is employed. As seen SAReno outperforms Reno

for both the FCFS and DRR cases - by about 30-40% for a range of traffic loads.
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Figure 4.7: The average BTD achieved by various Reno/SAReno and FCFS/DRR
combinations when traffic load increases.
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The 30-40% improvements, though significant, are less than those exhibited
in the fluid-flow simulations presented in Section 3.5. This is partly due to the fact
that we have not introduced size-based differentiation in the slow-start phase? during
which small flows (in the number of total packets to send) will spend most of their
lifetimes. Moreover, as new flows initially start with a window size at one packet, it
is unlikely for small flows to reach a transmission rate (window size) that captures
the preferential treatment they are being given. This lack of differentiation for small
flows compromises the benefits resulting from size-based differentiation introduced
in the congestion avoidance phase. Then again performance improvement for this

type of flows may not be as important.

Observe further from Fig.4.7 that the average BTD performance achieved
with FCFS is much worse than that with DRR, for both Reno and SAReno. This
is because under FCF'S the first few packets of new arrivals often see large initial
queuing delays resulting from the build-up of queues by existing flows. This ‘initial
delay’ hurts performance for almost all flows, particularly for the small ones, which
presumably have relative short lifetimes. To reduce these performance draw-backs,
one may consider alternative packet scheduling mechanisms, e.g., DRR or WFQ.
DRR, as a representative of such ‘fair’ packet scheduler, allows new flows, even
with only one packet in the queue, to quickly catch up with existing ones in win-
dow size and thus achieves better performance. By attempting to achieve ‘packet

level’ scheduling fairness, these policies enhance the size-dependent differentiation

30ne may also consider speeding up small flows by altering the slow-start algorithm, see e.g.,
[6,56] for two proposals that probe and estimate available network resources.
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implemented by the proposed transport level mechanisms.

The last observation on Fig.4.7 is that one would see a relative ‘flat’ per-
formance improvement, about 30%, achieved by SAReno over Reno as traffic load
increases for the FCFS case, while it increases up to 40% with DRR discipline. We
provide an intuitive explanation regarding this matter. Note that as traffic load in-
creases, the impact of the initial delay under FCFS mentioned above becomes more
significant and thus further compromises the benefits of size-based differentiation.
This cancels out the increases in performance improvement that we would have ex-
pected as the load increases. By contrast, DRR eliminates impact of these initial

delays.

A fair share packet scheduling mechanism, such as DRR, exhibits good per-
formance, but requires per-flow state and thus does not scale well when one needs
to support a large number of ongoing flows, e.g., on core routers in the backbone.
Under these circumstances, one may consider a simpler scheduling mechanism, such
as FCFS or a hierarchical implementation of DRR (HDRR) packet scheduler, which
only distinguishes aggregate flows from/to different domains (ingress/egress nodes).
To compare the performance achieved by SAReno with various scheduling policies
implemented at the core router, we considered a simple ‘bridge’ network with small
access links and a larger core pipe in the middle, as shown in Fig.4.8. The four ac-
cess links all use DRR while the center one may choose to use either FCFS, HDRR,

or DRR.

Fig.4.9 shows the average BTD performance under SAReno on the bridge

network when the center node uses either DRR, HDRR, or FCFS as the traffic load
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Figure 4.8: A bridge network with large bandwidth on center (core) link.

increases. One can see that regardless of which scheduling policy is used in the core,

the performance achieved is similar. Thus as expected only the choice of packet
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Figure 4.9: The average BTD performance achieved under SAReno with different
packet scheduling on the center (core) link as traffic load increases on the bridge
network.

scheduler at the bottlenecks, typically at the access networks or peering points , is
important from the point of view of enhancing user perceived performance. Thus
for the case where core routers have much higher capacities than access networks
or peering points, one may choose to deploy simple packet scheduling mechanism,

e.g., FCFS, at the core, and per-flow packet scheduler only at the edges.
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As in the case of the fluid-flow simulations, we have also conducted simula-
tions on random mesh networks. Fig.4.10 shows the average BTD improvements,
with 90% confidence intervals, achieved by SAReno over Reno (with DRR) for these
topologies as the traffic load increases. One can clearly see a 26-38% performance
improvement that is similar to those in the star network. We explicitly plot these
set of results with 90% confidence intervals* to exhibit the consistent performance

gains one can achieve by employing SAReno instead of Reno for data transfers.
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Figure 4.10: The average BTD performance achieved under SAReno over Reno with
DRR for various complex topologies.

4.3.3 Penetration Experiments

An interesting question is how SAReno and Reno flows might fare if they
coexist on a network. We conducted preliminary simulations to examine how the

performance benefits would accrue as the penetration of SAReno flows increases.

“The deviation of results for other plots are relatively smaller than the one shown in Fig.4.10
and thus we omit plotting those confidence intervals for a clear presentation.
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The simulations presented below concern the 6-branch star network.

We first consider a random penetration scenario, where the transfers to be
mediated via SAReno rather than Reno were selected at random according to the
penetration level being simulated. Fig.4.11 shows the normalized average BTD over
all flows, for Reno flows only, and for SAReno flows, as the percentage of SAReno
flows increases. They are normalized by the average BTD that would be achieved
when all flows are mediated via Reno, i.e., 0% SAReno flows. As seen, on average
SAReno flows will see better performance (the normalized BTD is less than one)
for all penetration levels. Moreover Reno flows will also see improved performance
once the penetration of SAReno flows exceeds 20%. The fact that SAReno flows
consistently see better performance than Reno flows suggest that users will have

proper incentives to upgrade from Reno to SAReno.
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Figure 4.11: Normalized BTD (over the case where all flows are Reno) as the per-
centage of (random) SAReno flows increases.

Alternatively SAReno might not be deployed in the homogeneous manner

discussed above, but in a more clustered manner corresponding to, say, access do-
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mains that adopt the new transport service. For example, one might have an in-
creasing number of access domains that use SAReno. We thus examine the average
BTD performance as one increases the number of access nodes on the star network
that mediate transfers via SAReno. Fig.4.12 shows the normalized average BTD
over all flows, Reno flows, and SAReno flows as the number of SAReno domain
increases from 0 (all Reno) to 6 (all SAReno). Again the average BTDs are normal-
ized by that when all flows are mediated via Reno. One can observe that when one
deploys SAReno on a per-domain basis, it has a even quicker impact than the ho-
mogeneous random deployment scenario - see Fig.4.11. This is to be expected since
the intra-route discrimination can be more effective when SAReno flows originate

from the same access domain.
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Figure 4.12: Normalized BTD (over the case where all flows are Reno) when one
increases the number of domains that sends SAReno flows.
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4.4 Concluding Remarks

In this chapter, we have further examined the benefits in performance brought
about through SABA in more practical settings. We have investigated the perfor-
mance impact of introducing peak rate constraints on elastic flows under various
bottleneck scenarios. Our analysis suggests that by contrast to traditional fairness
criteria, SABA provide a ‘robust’ performance close to the best one can achieve -
the peak rate for all bottleneck scenarios. We have also presented a simple imple-
mentation, SAReno, based on TCP Reno, that makes use of the residual flow size
to improve the average user perceived BTD performance. By using ns-2, we have
shown that SAReno can achieve up to 40% performance improvement over Reno at
80% traffic load. The benefit increases with the penetration of SAReno service, and

incentives (in terms of achieved performance) are likely to promote users to upgrade.

These are encouraging gains and provide significant evidence on the pos-
sible benefits of residual size based differentiation, suggesting in our opinion that
this line of research and possibly development warrant further exploration. We
note that size-based differentiation can be also realized on top of other network
mechanisms. For example, [21] have proposed and developed an implementation
of SRPT on web servers. Further examples may be found in [6,40, 55, 56] which
aim at alleviating the limitation imposed by TCP slow-start control to flows with
small ‘initial’ transfer sizes. These proposals either require monitoring and record-
ing network loads and estimating a good initial window size for each flow [6, 56], or
classify TCP flows into two classes, short and long ones, and employ differentiation

in packet scheduling/queue management mechanisms at core routers [40, 55]. While
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the above schemes, including ours, may be complement to each other, we believe
that implementing ‘residual’ file size differentiation at the ‘transport’ layer enables
one to address network bottlenecks and/or interactions among various flows on the
network resources, and thus benefits all flows with different sizes in a variety of

network scenarios.
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Chapter 5

Model of User Impatience

5.1 Introduction

File transfers over the Internet typically adapt their transmission rates to
dynamically share congested links among contending transfers. Investigations on the
performance seen by such transfers has mostly focused on an underloaded regime.
However, as the congestion level goes up, depending on the way bandwidth is shared,
some or all flows may see poor performance, possibly leading to aborted transfers,
i.e., stopped before completion, due to user impatience. Empirical evidence col-
lected from representative servers [2,19,42] suggests that a non-negligible volume of
data may correspond to aborted transfers, e.g., [19] found that 11% of all transfers
were interrupted, corresponding to 20% of the transfered volume. Users may abort
their transfers, e.g., push the stop button on the browser, for various reasons, such
as incorrect document address, long connection setup time, or poor performance
during transfer. Our focus herein is on user impatience with respect to transfer dy-
namics once a connection is established. Of particular interest will be the interaction

between user impatience characteristics and bandwidth sharing policies.

As we have discussed in the previous chapters, introducing residual flow size
differentiation into the transport mechanism can significantly enhance the average

BTD performance for elastic file transfers. By contrast to the traditional fair band-
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width sharing policies, the key to size based differentiation is to exploit the range
of user tolerances to bandwidth or delay in order to benefit the whole. One can
speed up small transfers, while large ones see a negligible performance degradation
so that a better overall system performance can be achieved. Given the difficulties
in traffic modeling, planning, and dimensioning of links for data transfer networks,
transient overloads may be unavoidable. Re-examining the design objectives un-
derlying bandwidth sharing on today’s networks leads to further questions. What
happens to user perceived performance when the system is overloaded? Is a graceful
degradation achieved? How do various bandwidth sharing mechanisms fare when

users are impatient?

While ‘user impatience’ leads to aborted transfers, the notion of ‘unaccept-
able performance’ may vary among users. For example, one user may expect his
transfer to constantly progress in excess of some rate, while another may only wish
to finish his transfer within a certain time period regardless of how it progresses.
Modeling user impatience can be fairly complicated since it may depend on the size
of the transfer, how long the transfer has lasted, as well as other subjective/semantic
characteristics. The work in [23] independently conducted a preliminary investiga-
tion of the performance impact of user impatience on a single link where the link
capacity is equally shared by on-going transfers, i.e., fair sharing. Their analysis
however only considers one type of impatience behavior where all users have a fixed
delay constraint and assumes fixed bandwidth allocation for all flows throughout
their transfer (before completion or being aborted). Despite their simplified model,

the results shown in [23] suggest that when the system is highly overloaded (190%)
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fair sharing can only achieve a goodput slightly above 50%. Our goal here is to pro-
vide a general model of user impatience and investigate and compare the impacts
on both system and user perceived performance when one employs the residual size

based differentiation or fair share bandwidth allocation.

This chapter is organized as follows. In §5.2 we evaluate two bandwidth
sharing policies, i.e., fair sharing and size-based differentiation, when users are ‘not’
impatient. We intend to exhibit and compare performance degradation incurred by
the two policies when the system is moving from an underloaded to an overloaded
regime. In §5.3 we present two generic models capturing a wide diversity of plausible
user impatience behaviors. Note that in practice user behavior can be very complex.
Our goal is to achieve a better understanding of how the characteristics of user
impatience impact the performance achieved by the two types of bandwidth sharing
schemes. After identifying several performance metrics for evaluating systems with
aborted transfers, we will provide a detailed discussion accompanied by simulation
results in §5.6. An extension of our generic approach to the case where users’
perception of performance is associated with transferring a ‘cluster’ of files, as might
correspond to a single web page access, is discussed in §5.7. Concluding remarks

are given in §5.8.

5.2 Bandwidth Sharing: Underloaded versus Overloaded Regimes

We again consider the fluid flow model defined in Chapter 2. To capture the
performance during transfer, we assume all requests are granted, ¢.e., no incorrect

address or denied access, and the response time from initiation to the time the
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server starts transferring is zero'. Once a transfer is initiated, it contends with

on-going flows on a fixed set of network resources throughout its lifetime, ¢.e., fixed
routing until completion or the user aborts his transfer. For analysis purposes, we
will consider various traditional fairness criteria and SABA on a single bottleneck
link in this chapter, i.e., all data transfers contend for a single resource’s capacity.
Note that this may be a reasonable assumption considering that the bottleneck
of data transfers typically is at the edge of the network, e.g., access routers or
concentration links, and assuming that one can neglect other factors, such as the
heterogeneous round-trip delay, impacting the bandwidth allocation. For the single
link case, various fairness policies considered in the literature essentially correspond
to providing an equal share of the link capacity to all ongoing flows. We shall refer
to these as Fair Sharing policies (F'S). For presentation purposes, we shall also refer
SABA on a single link as Size-based Differentiation (SD) in this chapter. Before
examining the interaction of user impatience with the two bandwidth allocation
policies, we consider how FS and SD perform when moving from an underloaded to

heavy or even overloaded regime assuming no aborted transfers.

5.2.1 Increasing the Dynamic Range of Operation with Acceptable QoS

We begin our discussion by examining two queues, M/G/1-PS and M/G/1-
SRPT, which model FS and SD, respectively. We exhibit the difference in the
traffic load the queues can support while achieving the upper limit on the average

BTD seen by users. We plot two lines in Fig.5.1 that connect points indicating

'In practice the connection setup time also impacts user impatience.
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the maximum load one can support under PS (y-axis) and SRPT (x-axis) given
the required average BTD values. The two lines are associated with the underlying
distributions being bounded Pareto and exponential, respectively. By comparing
with the £ = y line, one can see the increase in the range of loads achieved by using
SRPT versus PS. For example, for the case of bounded Pareto distribution, PS can
support up to a 60% load while SRPT can support up to 90% traffic load, while
meeting the same average BTD. This 30% difference in supportable traffic volume
represents a significant revenue increase, or additional flexibility in provisioning such

networks.
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Figure 5.1: Maximum traffic load one can support under M/G/1-PS (y-axis) and
M/G/1-SRPT (z-axis) for same average BTD requirements.

One may also view the numerical results shown in Fig.5.1 from an alternative
perspective where the performance improvement achieved through SD is translated
to an equivalent capacity increase required for a FS-based system. Fig.5.2 shows
the percent capacity augmentation required for the above two queues to achieve

the same performance as the traffic load on the system increases. The z-axis cor-
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responds to the load in percentage for the system without capacity augmentation.
The results are shown again for the cases of bounded Pareto and exponential flow
size distributions. We also plot a lower bound of the percent capacity augmentation
for any flow size distribution based on [4]. The lower bound is of interest as it is valid
for all flow size distributions, however as can be seen for distributions of practical
interest, e.g., bounded Pareto, it is not tight. For the traffic loads considered in this
regime, one can see that a 40-50% additional capacity might be required, using a

FS type discipline, to achieve the same average BTD under SD.
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Figure 5.2: Percent capacity increase needed for a M/G/1-PS queue to achieve the
same average BTD as a M/G/1-SRPT queue does as the traffic load increases.

5.2.2 Uniform Performance Degradation under Heavy/Overload Regime

We may now present simulation results for flows sharing a single (F'S or SD)
link when the offered load increases from 70%, to 90%, and then to 110%. We
assume that the link capacity is 10 Mbps, the transfer flows arrive according to

Poisson processes, and the file size distribution of the transfers is bounded Pareto
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with mean 5 Kbytes. Note that the results shown for the overloaded cases are
‘transient’ in the sense that they are collected on a finite event simulation for an

unstable system.

Fig.5.3 exhibits the cumulative proportion of flows that perceive a normal-
ized average BTD less than the value shown on the z-axis. We normalize the average
BTD such that the value of 1 indicates the smallest possible BTD one can achieve,

i.e., when a flow has the link capacity to itself. As can be seen, under SRPT (bot-

; | : ‘ FS
'9’ l — Pa—————
E - 70%
§0.5/ / —+— 90% ||
6 —— 110%
o
g o ‘ ‘ | |
5 10 s 1
Normalized Average BTD
: ; ‘ SD
g 1f
S
2095 70% ||
i, —— 90%
: —— 110%
g 0.9 |
o ‘ | ‘
5 10 s -

Normalized Average BTD

Figure 5.3: Cumulative proportion of flows that perceive different BTDs under PS
(top) and SRPT (bottom) with 70%, 90%, and 110% traffic load.

tom) more than 98% of flows can achieve a normalized BTD of 4 or better even
when the traffic load is 110 % — see graph at bottom. By contrast the proportion
of flows achieving good BTD drops dramatically for the PS case — see graph at top.
In particular, the number of flows under PS that experience a BTD that is 20 times
worse than the best drops to more than 80%. This suggests that when the system
is overloaded SRPT can still achieve a reasonable overall performance while it will

quickly become unacceptable using PS.
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To see the role of flow-size differentiation we further compared the average
BTD experienced by sets of flows having different sizes. Fig.5.4 shows the average
BTD (on a logarithmic scale) perceived by sets of flows with increasing size. We
divided flow sizes into 6 bins, where the first bin are the flows that have size in the
interval [103,10*) bits, the second in [10%,10%), and so on. As seen, when moving
from the underloaded to the overloaded regime, SD maintains good performance
for small to medium size flows (graph at bottom), while FS degrades performance
‘uniformly’ for all flows (graph at top). Notice that since most transfers are small in
size, as suggested in by, e.g., [2,14], SD will benefit the majority of demands (99%
of flows fall into the first 5 bins in our simulated case) while incurring comparable

performance degradation to FS for the few very large flows.
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Figure 5.4: Average BTD for different size flows under FS (top) and SD (bottom)
in the underload (70%), heavy-load (90%), and overload (110%) regime.

The above results suggest that, in the regime where users do not abort their

transfers, SD not only increases the acceptable range of traffic loads over FS for a
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given average BTD requirement, but also provides a graceful performance degrada-
tion when the system experiences transient overloads. In practice users may inter-
rupt their transfers before completion due to, say, poor transfer performance, the
‘effective’ traffic load might also be reduced ‘gracefully’ under SD and thus produce
an even better performance for the remaining users. In the next few sections, we will
investigate how user impatience, resulting in aborted transfers, impacts performance

achieved by the F'S and SD policies.

5.3 Modeling User Impatience

In this section we will propose two generic models that capture a range
of plausible user impatience behaviors. There are two types of user sensitivity to
transfer performance: (1) a concern with the received cumulative service, i.e., how
much work has been completed since the transfer is initiated, and (2) a concern
with marginal progress, i.e., how much work is completed over the past u time
units. Without loss of generality, suppose a transfer is initiated at time 0. Let
w(s,t] denote the cumulative work that is completed for a transfer during the time

interval (s,t]. We define the following two models of user impatience.

Definition 5.3.1. We call e.(t) a minimum cumulative service (MCS) curve for a
user if it represents the minimum amount of work that needs to be completed after
t units of time since a transfer was initiated. That is, such a user will abort his

transfer at time t > 0 if and only if w(0,t] < e.(t).

Definition 5.3.2. We call ep(u) a minimum progress service (MPS) curve for a

user if it represents the minimum amount of work that needs to be done during
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any time interval of length u during the transfer. That is, such user will abort his

transfer at time t > 0 if and only if w(s,t] < ey(t — ), for some 0 < s < t.

The key difference between the two models is that the MPS curve captures
a user’s ‘time-invariant’ expectation of perceived performance, and thus can be used
to evaluate the transfer progress at shorter time scales from the current time to
the past, while only the largest time window (0,¢] is used by the MCS users. For
convenience we refer e.(t)/t as the minimum expected ‘cumulative throughput’ at
time ¢, and ep(u)/u as the minimum expected ‘transfer rate’ at time scale u. Fig.5.5
shows an example of how a user might evaluate his transfer performance based on
MCS and MPS curves. Let p denote the total size of the transfer. We consider
two service curves which have the exact same shape but different meanings. We let
e.(t) = rt and e,(u) = ru. This means that the user is expected to have a constant
minimum cumulative throughput for the MCS case and a constant minimum transfer
rate (the slope of w(0,t]) for the MPS case. Observe that the transfer completes for
the MCS case since the cumulative work w(0,t] always stays above e.(t) = rt. By
contrast, the MPS curve imposes a more stringent constraint and thus the transfer
will be aborted when the user perceives a slower transfer rate than r.
nv(0,t] MCS: transfer completes!!

MPS: tx. rate<r g
=> Aborted!! e
- /,//\ e (t) ~ slope=r
-~
-~

i ep(t) ~ slope=r

-~

Figure 5.5: Ex: evaluate transfer performance based on MCS and MPS curves.
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In general e.(t) and e,(u) can be any non-decreasing function with respect to
the ‘elapsed time’ ¢ and the ‘evaluation time window’ u, respectively. Fig.5.6 shows
several characteristic MCS ((a), (b), (c), and (f)) and MPS ((d) and (e)) curves.
The service curves shown in Fig.5.6 (a) and (d) are the ones we considered in the
previous example. Note that for these two cases, users evaluate performance from
the very beginning of the transfer. Furthermore, for the case shown in (d), it is
assumed that the user can monitor the ‘instantaneous’ transmission rate. Typically,
however, users may be patient at the very beginning of a transfer, i.e., there is
some ‘grace period’ before users might start evaluating performance. Drawing on
an analogy from the leaky bucket constraint [11], we can introduce such grace period

by letting
MCS: e.(t) = rt—0, MPS:e.(u) = ru— o, (5.1)

- see Fig.5.6 (b) and (e). Note that for the MPS curves, the introduction of o
not only provides an ‘initial’ grace period but also a ‘time scale’ over which users
evaluate the transfer rate. This is a more reasonable assumption than that used for

the user behavior exhibited in (d).

The leaky bucket type of function can be further generalized to the case
where a user wishes to evaluate his cumulative throughput or transfer rate at mul-

tiple time scales by defining

ec.(t) = max(0, rit — oy, rot — o9, ), (5.2)

ep(u) = max(0, ru— oy, rou— o9, ). (5.3)
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Figure 5.6: Examples of MCS ((a), (b), (c), and (f)) and MPS ((d) and (e)) curves.

When 0 < r; <rjand 0 < 0; < gj forall 0 < i < j <n, the MCS (MPS) curve
is convex, and reflects the scenario where users can tolerate a slower cumulative
throughput (transfer rate) for a small time period, but expect to see a higher one on
larger time scales. Note that a convex MCS curve might be arguably representative
for typical users who are aware of their transfer sizes. More specifically, a user with
a larger file to transfer may expect to wait longer, but not so long in proportional to
the size of the transfer - expecting an increasing throughput at a larger time scale.
Fig.5.6 (f) shows an example where the user evaluates his cumulative throughput

on two time scales.

Another type of user may not be concerned with how exactly his transfer
progresses. Instead, he may only wait for 7 units of time for his transfer to complete,

as shown in Fig.5.6 (c). Note that a user who exhibits such impatience behavior

76



is a limiting case of those shown in (a), (b), and (f), and is more ‘elastic’ in the
sense that he has higher flexibility in allocating bandwidth during the transfer, e.g.,
considering 7 = p/r where p is the size of the transfer and r is the corresponding
parameter for behavior (b). When the value of 7 is independent of the size of the
transfer, we call such users (fixed) delay sensitive. Alternatively, a user may be
aware of that the transfer delay depends on the size of his transfer. To model such
cases, one can set 7 = p/r with a fixed r, which implies that the user expects
a maximum BTD of 1/r regardless of the transfer size. We call such users BTD
sensitive. Similarly, other parameters, such as o, can also depend on the file size to
reflect that the user may evaluate his cumulative throughput or transfer rate less

frequently if the size is larger.

As a final note, we emphasize that a user’s impatience is complex and could
be a combination of the behaviors discussed above. Furthermore, it may change over
time, based on the type of document that is being transferred, etc. Our attempt
is to characterize a broad collection of impatience behaviors so as to assess their

impact on system performance.

5.4 Performance Metrics with Aborted Transfers

Before we discuss the interaction between user impatience behavior and
bandwidth allocation policies, we shall first identify the metrics one may use to
evaluate system as well as user perceived performance when users exhibit impa-
tience behavior. The fact that users may abort their transfers due to unsatisfactory

performance may result in mixed consequences. On the one hand, the aborted
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transfers may be translated to denied service, and the work that was done for those
aborted transfers is wasted? and thus contributes to what one may call ‘badput’.
On the other hand, with some transfers leaving the system prior to completion, the
effective traffic load is reduced and thus the rest of the transfers may see a reason-
able performance even when the system is overloaded. Table 5.1 exhibits several

metrics that we will use to evaluate both user perceived performance and system

efficiency.
Table 5.1: Metrics when users abort transfers

Metrics Description
completion rate number of completed transfers per second
incomplete rate number of aborted transfers per second
goodput rate of completed work in bits per second
badput rate of transferred work for incomplete transfers
residual work rate of transferred work for incomplete transfers
AvgBTD completed | Average BTD perceived by completed transfers

5.5 Analytical Model for M/G/1-SRPT Queue with Homogeneous
Delay Sensitive Users

We supppose all flows will see the delay in the steady state in an M/G/1-
SRPT queue. Let ¢ denote the link capapcity and f(p) and F(p) be the probability
density function and cumulative distribution functions of the flow sizes, respectively.

According to [4], the steady state delay for flow of size p < p* can be expressed as

7

(/P ds A Jy 8°f(s)ds + (F(p*)Q—F(p))pQ) 1
0

EDWl =\, 7o T2 ) c

?Researchers have proposed ways to re-use such partially transferred work by, e.g., caching
schemes. We however assume such work will be discarded.
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where p* = arg{p | p(p) = 1} and p(p) = X [; sdF(s)/c. Notice that the above
equation is also valid for an undeloaded system, i.e., lim, ;o p(p) < 1, in which
case the term F(p*) will be replaced by 1 and all flows will see a finite delay in the
steady state. Now since E[D(p)] is monotinically increasing in p, one can always

find a p for a given d such that

p = argmax{p | E[D(p)] < d}.

Now one may approximate the goodput and throughput associated with a M/G/1-
SRPT queue with homogeneous delay sensitive users by 4 = p(p) and v = A fgj f(s)ds,

respectively.

5.6 Bandwidth Sharing vs. User Impatience

This section investigates, via simulation, how FS and SD perform when
users exhibit different impatience behaviors, i.e., the ones we discussed in §5.3. We
examine various scenarios wherein all users have the same impatience behavior. We

will once again consider the single link case described in §5.2.

We will begin by considering users who are sensitive to cumulative service.
Fig.5.7 through 5.10 show the system performance achieved by SD and FS under
four MCS type of behaviors. The parameters used for each case are shown on top of
the figures. We plot the average completion and incomplete rate on the left and the
goodput, badput, and residual work per second on the right for each behavior. The

results for the FS and SD cases are shown in adjacent bars (FS: left, SD: right).

Observe first that for these behaviors, SD performs mostly better than FS
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Figure 5.7: Performance under FS and SD with cumulative throughput (zero grace
period) sensitive users.
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Figure 5.8: Performance under FS and SD with cumulative throughput (1 sec grace
period) sensitive users.

except for the case shown in Fig.5.7, where users are sensitive to the cumulative
throughput of 50 Kbps with a zero grace period, and in terms of goodput. The
reason is that without the initial grace period, large transfers may be discontinued
early on, e.g., right after initiation, under SD when small ones are also present.
These large files, although only few in number, contribute a large portion of the
total work, hence a reduction in goodput. This is evidenced by the fact that with
such user impatience behavior and in the overload regime, SD can complete more

transfers per second but achieves less goodput. Note however that when the large
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Figure 5.9: Performance under FS and SD with Delay sensitive users.
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Figure 5.10: Performance under FS and SD with BTD sensitive users.

flows stay in the system, they may see a similar performance as they would have
seen under FS - recall our results shown in Fig.5.4. In fact, the zero grace period
is not only unreasonable for users to evaluate throughput but also limits the SD’s

flexibility in allocating bandwidth to various size transfers.

Now if we add a 1 second grace period before users start evaluating through-
put, SD not only catches up but further outperforms FS upon system overloads -
see Fig.5.8. Meanwhile, with the inclusion of a grace period, both FS and SD al-
low almost every job to complete, except some very large ones in the overloaded

regime to reduce the actual traffic load (to be below 1 Mbps). The difference in
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this case between F'S and SD is that upon aborting large transfers, a larger portion
of those files has been transferred under FS, resulting in a more significant badput.
In fact this larger badput phenomenon under FS applies to all cases we explored
below. This suggests that for most cases, SD achieves a more efficient utilization of

resources.

Similar to having a grace period, users who are sensitive to delays also allow
SD to be flexible in allocating bandwidth. As seen, results shown in in Fig.5.9 are
similar to those in Fig.5.8, except less goodput is incurred for the case of delay
sensitive users. This is due to the 5 second limit and 1 Mbps capacity which makes
it impossible to complete transferring files of size larger than 5 Mbits. Note that
the choice of a 1 second grace period for case (b), which allows most small trans-
fers to complete as the 5 second delay constraint does, reflects that users who are
transferring small files are not in a position to assess the ‘cumulative throughput’.
Fig.5.10 further shows an example for the case when users’ delay constraint depends
on file size - constraint equals to file-size/50 Kbps. One can easily see that while
SD maintains a very good system performance, F'S performs poorly in the overload
regime. This is because by providing an equal share of resources to the transfers,
almost every flow fails to complete before its expected size-dependent delay, and,
furthermore, upon abortion a good portion of the file has been transferred, resulting
in a very poor badput. In other words, under FS the transfers will suffer from a

‘uniform’ degradation of performance.

Next we turn our focus to users who are sensitive to the marginal progress

being made, i.e., those modeled by MPS curves. We consider users whose minimum
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Figure 5.11: Performance under FS and SD with transfer rate (zero grace period)
sensitive users.
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Figure 5.12: Performance under FS and SD with transfer rate (1 sec grace period)
sensitive users.

expected transfer rate is 50 Kbps, but at different time scales and under different cir-
cumstances. Paralleling the previous comparisons, we plot the system performance
achieved by F'S and SD in Fig.5.11 through 5.14. The results shown in Fig.5.11 are
for the case where users have a minimum ‘instantaneous’ transfer rate requirement,
i.e., zero grace period for evaluating the transfer rate. These results are similar
to those in Fig.5.7, but with less goodput and more severe badput. This is due
to the fact that the transfer rate constraint is more stringent than the cumulative

throughput. Again as we introduce a 1 second time scale for users to evaluate the
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Figure 5.13: Performance under FS and SD with transfer rate (size dependent grace

period) sensitive users.
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Figure 5.14: Performance under FS and SD with transfer rate (1 sec grace period)
sensitive users (exponential flow size distribution).

transfer rate, the system performance can be brought back to a reasonable level,
as shown in Fig.5.8. We further consider the case where the time scale to evaluate
performance is, instead of fixed for all transfers, proportional to the file size, i.e.,
users who transfer larger files will evaluate their transfer rates less frequently. The
results for this case are shown in Fig.5.13. Interestingly, they are similar to those of
BTD sensitive users, i.e., the system performance degrades dramatically in terms

of all metrics under FS, but not for the SD case.

The last scenario we explored for the case of transfer rate sensitive users is
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the impact of file size distributions on performance. The results shown in Fig.5.14
were obtained with the same parameters used for those in Fig.5.12, but instead of
bounded Pareto size distribution an exponential distribution with the same mean
size is used. As seen the performance degrades under FS. We believe this is due
to the fact that exponential distribution results in more similar mid-size file sizes
than the bounded Pareto case. In turn, more transfers suffer a uniform performance

degradation and thus are unable to achieve the minimum transfer rate.

Overall these results exhibit the performance impacts of various user impa-
tience behaviors from the system’s point of view. From the users’ point of view, it
may be important to maintain a good average BTD for completed transfers. Fig.5.15
shows the average BTD performance of completed transfers achieved under FS and
SD for all impatience behaviors discussed above. As predicted, SD reduces the aver-
age BTD ranging from 1/3rd to less than 1/10th of that under F'S when traffic load
increases. Note that although for few impatience behaviors SD performs worse than
FS in terms of goodput, the completed transfers indeed see an order of magnitude

better performance in terms of BTD when the system is heavily loaded.
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Figure 5.15: Average BTD for completed transfers under FS and SD.
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5.7 Extension to Aborting Clusters of Files

Our approach can be further extended to the case where each user’s percep-
tion of performance is associated with transferring ‘a cluster of files’, as opposed to
‘individual’ files. This models certain data transfer applications, such as web brows-
ing, where each user access, e.g., a web page, may contain several simultaneous? file
transfers. A possible user perception of performance for an access, or a cluster of
files, may be based on the ‘completely transferred work’ associated with the whole
cluster. The completely transferred work at time ¢ for a cluster of files is the total
size of files within the cluster that were completed up to time ¢, and is denoted by
w'(0,t] assuming the access is initiated at time 0. Note that this definition models
users who are able to process the information provided by a file only after the whole
file is downloaded. As a user continuously receives completed files, i.e., the web
page starts coming together, his notion of acceptable performance may require that
the completely transferred work exceeds the minimum expected cumulative work.
We once again apply our MCS curve model introduced in §5.3 to capture such user
impatience behavior associated with a cluster of files by letting w'(0,¢] < e.(t) be

the condition to aborted not-yet-completed transfers within the cluster at time ¢.

We shall use an example to illustrate the user aborting behavior with respect
to the completely transferred work when FS or SD is used. Consider a batch request
that arrives at time 0 and consists of three files of size 1, 2, and 3. Assume the

service capacity is 1. Fig.5.16 shows w'(0,¢] under FS and SRPT (the extreme case

3Modern web browser initiates ‘threads’ to download remote files while reading a main page.
One may view those threads as simultaneous transfers.
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of SD), along with a sample MCS curve. One can see that the completely transferred
work under SRPT is always above that achieved by FS. Indeed this is always true
assuming the service capacity is fixed. This fact implies that under SRPT, or SD
type of policies, a user who is sensitive to cumulative service is more likely to be
satisfied with his performance.

w'(0,4 lX 7 Files: {1,2,3}
— Complete all
1~

— SRPT

. < aport23 | TT S

Figure 5.16: Example: User aborting behavior with respect to the completely trans-
ferred work under FS and SD.

Simulations were also conducted for this scenario with various user impa-
tience behaviors and the two bandwidth sharing schemes as in §5.6. We shall present
a representative set of results in Fig.5.17. As seen, SD performs better than FS for
all traffic loads and for all performance metrics even for the case of zero grace period,
recall Fig.5.7. This observation extends to other user behavior considered previously,
and suggests that SD is even more beneficial when users evaluate performance on a

higher level where transfers are correlated.

5.8 Concluding Remarks

Our study addressed an important yet usually neglected question: how users’
response to transfer performance impacts the design of bandwidth sharing schemes.
We found that with most characteristic user impatience behaviors, SD is more effec-

tive at reducing the traffic load than F'S when the system is heavily or overloaded,
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Figure 5.17: Performance achieved by FS and SD when users evaluate performance
of transferring clusters of files.

and thus leads to a better network efficiency as well as user perceived performance.
In particular, for a typical impatience behavior where users expect their transfer
delays to be (concave) increasing in the file size, e.g., BTD sensitive users, SD sig-
nificantly outperforms FS by orders of magnitude in terms of, say, goodput when
the system is overloaded at 140%. As network resources can be periodically, but
temporarily, overloaded with data transfers, our approach ensures that users will

not perceive performance degradation too badly.

Recognizing that user impatience behavior can be very complicated, an em-
pirical study that possibly captures when and what drives users to abort their trans-
fers will be valuable. In particular, our extension provided in §5.7 suggests that a
possible research direction is to consider and validate experimentally the existence
of high level or application specific user impatience models. Moreover, one may
view user impatience as criteria for user self-admission control - the higher value a
transfer possesses for a user, the more patient the user is. This is clearly, in our

opinion, a better approach to alleviate transient overloads on best effort networks
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than, say, network administered admission control, which can only maintain ‘finite’
number of transfer classes, presumably to capture how users value their transfers.
One may refer to [8] for a discussion on measurement-based admission control for
elastic flows. The results discussed in this chapter exemplify the possible impact a

self admission control might have on system performance as well as network revenue.
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Chapter 6

Routing

6.1 Introduction

‘Static’ shortest hop path routing has been employed to route elastic file
transfers, i.e., best effort traffic, since near the beginning of the Internet. With
the increasingly dynamic traffic loads and user demands for performance, one might
advocate the use of a ‘dynamic’ routing scheme that adapts to the changing network
states, e.g., the distribution of traffic loads, and enhances the average user perceived
performance. In this chapter, we investigate what good state dependent routing
algorithms for elastic lows might be, assuming one has a good knowledge of various
aggregate state information. In particular we consider the degree of improvement

in the average BTD performance that can be achieved over known approaches.

Dynamic routing for elastic flows has drawn relatively little attention as
compared to that for QoS stream flows. A fundamental challenge in routing elastic
flows is the inter-play between routing decisions, i.e., with which other flows a new
arrival will contend for bandwidth, and how network bandwidths are shared among
contending flows. It is not clear whether the same routing algorithm performs well
when the network bandwidths are shared according to different policies. Consider for
example a parallel link network with 5 identical links, each with the same capacity of

1 Mbps. Suppose elastic flows arrive according to Poisson processes and the flow size
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distribution is assumed to be bounded Pareto with mean 5 KBytes. Fig.6.1 shows
the average BTD performance achieved by two routing algorithms when the flows
on each link are served according to fair sharing (F'S) (see Chapter 3 for definition)
or First Come First Serve (FCFS), as the traffic load increases. One can see that
the ‘Min-Flow’ algorithm, which dynamically sends arrivals to the link with fewest
ongoing flows, achieves better performance for the FS case. By contrast, the ‘D-
Size’ routing mechanism proposed in [27] for assigning jobs on parallel FCFS server
networks, is clearly a better choice for the FCFS case. Without going into details the
above example clearly exhibits that the choice of routing algorithm heavily depends

on the underlying bandwidth allocation policy. Note that FCFS may not be a

gX 10° ‘ ‘ __Fair Shairing
EG’ e DfSiZe
o —— MinElow
e
g
L2
<
— ]
%0 60 0 - )
- . 0
(X210 5 | Traffic |-‘0ad %) -
[a] —+ D-Size /
[
m —— MinFlow /,,/
) 05 ) |
0

(=4
o
[o2]
o

Figure 6.1: Average BTD achieved by two routing algorithms on a parallel FS or
FCFS link network as the traffic load increases.

reasonable ‘bandwidth allocation policy’ for transferring elastic files, since files are
in fact transferred on a packet by packet basis, and thus at a larger time scale they
are expected to be served simultaneously towards completion. The above simple

example solely illustrates that a routing algorithm must be compatible with the
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bandwidth allocation policy.

Various fairness bandwidth allocation criteria have been proposed and sug-
gested to approximate how current network bandwidth is shared among, say, TCP
sessions [7,28,31]. Although the bandwidth allocations associated with these fair-
ness criteria are different in the static regime, i.e., for a fixed number of flows, the
average user perceived performance achieved by them has been shown to be similar
- see Chapter 3 and [7]. In this study we will focus on networks that allocate band-
width according to max-min fairness and our proposed SABA criterion, which we

have shown to achieve a significantly different (better) average BTD performance.

Note that for networks supporting elastic flows the routing mechanism is
typically decoupled from network mechanisms that determine how bandwidth is
allocated among flows. Without explicitly knowledge of the possibly time-varying
bandwidth a flow will see if placed on a given route, a routing algorithm can only
estimate the expected performance based on the current ‘state’ and the underlying
bandwidth allocation policy. Studies in [38] and [43] considered networks that allo-
cate bandwidth according to the max-min fairness criterion, and proposed heuristic
routing algorithms that estimate the ‘max-min fair share rate’ associated with each
arrival on a per link or per route basis. Unlike QoS stream flows where each flow
reserves the bandwidth it needs, the path an elastic flow is routed impacts not only
the bandwidth allocated to itself but also that of existing flows. Thus, in order to
achieve a better ‘overall’ performance, we propose to further estimate the impact of

route selection on not only the new arrival but also the ongoing flows.

In order to estimate the impact of routing decisions on all flows, we pro-
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pose to incorporate flow size information into a dynamic state dependent routing
algorithm. In particular, we will begin by examining possible routing mechanisms
assuming one knows the exact size of all flows. The rationale for doing so is to
understand the desired properties of a ‘good’ routing algorithm associated with a
given bandwidth allocation policy, and how one might approximately achieve such
properties in practice. Because it is difficult to analyze routing algorithms on general
networks, our analysis for optimal routing focuses on a ‘parallel link network’ in the
‘transient’ regime. The parallel link model may be viewed as a simplified scenario
where one chooses among parallel routes where each route has a single bottleneck
with no interference traffic whatsoever. These results may then be extended to the
general network case by adding controls that prevent excessive use of network re-
sources. Alternatively, one may consider the parallel link setup as a plausible model
for a ‘server farm’, which consists of a set of servers that run in parallel to serve
file transfer requests. The transient regime analysis allows one to characterize the
transient behavior of flows with different sizes, and thus provides an avenue for de-
termining online greedy policies, where each arrival is routed so as to minimize the
overall BTD for the current set of ongoing flows. With analytical results for optimal
routing, even in this simplified scenario, we are more confident on the closeness of
the performance improvement achieved by our proposed heuristics for more general

scenarios.

This chapter is organized as follows. Related work is summarized in the next
section, followed by our investigation of optimal routing for parallel link networks in

§6.3. We then discuss how one may realize our findings via practical routing algo-
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rithms for parallel link networks and general topologies in §6.4 and §6.5, respectively.

Concluding remarks are given in §6.6.

6.2 Problem Description and Related Work

We assume the fluid flow model defined in Chapter 2 with the same notation.
We focus on a routing problem that determines a set of links, 4.¢., the route, to which
a new transfer will be assigned upon arrival. Flows are assumed to remain on the
same route until completion. The primary goal is to minimize the average BTD
experienced by all transfers for a given underlying bandwidth allocation policy. In
particular we will consider networks that allocate bandwidth according to max-min

fairness and SABA.

To our knowledge the only work that aims at finding ‘optimal’ routing for
elastic flows on general networks is [25]. This work however considers a different
framework where the routing algorithm also determines how much bandwidth is
allocated to each arrival, either by assigning a weight or explicitly computing the
bandwidth. Furthermore, they consider a ‘pseudo dynamic’ regime where flows ar-
rive sequentially to the network but do not exit!, and the objective is to achieve
‘global fairness’ and maximize ‘total throughput’ (the sum of ‘static’ bandwidth al-
locations to flows in the network). By carefully examining their proposed somewhat
complex approach, one finds that their key idea is similar to that in heuristic algo-

rithms proposed in [38,43], i.e., to provide load balancing without excessive use of

'A comment was made at the end of [25] to suggest that their algorithm also works in a true
dynamic regime. It is however not clear how the algorithm performs in such scenario.
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network resources.

The heuristic algorithms proposed in [38] and [43] perform well for elastic
flows on max-min fair networks when compared with commonly considered short-
est hop path, shortest-widest path?, and widest-shortest path® routing algorithms.
Algorithm in [38] finds the route which has the smallest additive link cost 1/rf
where 7; is the estimated max-min fair share rate on link [ and 0.5 < k < 2is a
constant. It was then further discussed in [37] how one may use such an algorithm
in a multi-service network setup where QoS stream flows and elastic flows coexist
but use different routing schemes. Algorithm proposed in [43] alternatively employs
a ‘per-route’ basis max-min fair share rate, i.e., the minimum max-min fair share
rate one may see on any link along a given path, and explicitly accounts for the
hop count associated with each route. A comparative study later conducted in [44]
showed that no clear winner between the two max-min fair share rate dependent
algorithms can be identified in terms of the average throughput performance under

various scenarios.

The above mechanisms provide great performance improvements over tradi-
tional approaches. It is however not clear how they perform on a SABA network,
and how close they are to the optimal assuming that one knows apriori the flow size
of new arrivals and possibly some aggregate ‘flow-size’ information associated with

each link, e.g., the total residual work to be done and/or the total original size of

2The shortest-widest algorithm finds the route(s) with the largest minimum max-min fair share
rate along the route, and if there are more than one it will choose the one with the smallest hop
count.

3The widest-shortest algorithm finds the shortest hop count route(s), and if there are more than
one it will choose the one with the largest minimum max-min fair share rate
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active flows. To investigate how one might incorporate such size information into a
routing algorithm, we consider the optimal routing problem for a simpler scenario
where flows arrive to a parallel link network, as shown in Fig.6.2. Note that when
max-min fair bandwidth allocation (as well as other traditional fairness policies) is
applied to parallel link network, this is equivalent to a Fair Sharing (FS) discipline
on each link. By contrast, in the SABA case, link capacities will be shared based
on residual size dependent weights of the flows on each link. For analysis purposes,
we will consider the limiting regime where each link employs Shortest Remaining
Processing Time First (SRPT) policy, i.e., an infinite weight will be given to the

flow with the smallest residual size, with ties broken arbitrarily.

FS/SRPT links

Elastic Flow

—

b4

routing

Figure 6.2: A m parallel FS/SRPT link network.

The parallel link (server) topology has been thoroughly studied in the con-
text of the classical scheduling problems. For the most part this body of work either
assumes the service discipline on each link is First Come First Serve (FCFS) or
considers algorithms that determine both where to send the arrivals and how they
should be served on each link. Recall our example illustrated in §6.1. The ‘D-Size’

algorithm proposed in [27] is a recent example of studies investigating how to send
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jobs to parallel FCFS links. As we have shown in Fig.6.1, this particular good al-
girthm for FCFS links does not work well when the links are using, say, FS. For
the latter case, it has been shown that the offline problem is NP-hard [18]. Among
the various approximations, see [33] for a survey, Awerbuch et.al.[3] proposed an
algorithm which achieves logarithmic competitiveness. This work is closest to ours.
We will later compare our proposed algorithm with theirs to exhibit how close our
algorithm performs to this best known algorithm. To our knowledge there has been
no study that investigate routing problems on parallel link networks assuming each
link employ either FS or SRPT policy. In the next section we will consider parallel
FS and SRPT link networks and investigate the routing algorithms that minimize

the average BTD for both cases under various scenarios.

6.3 Optimal Routing on Parallel Link Networks
6.3.1 Non-existence of Online Optimal Routing

We will begin by presenting a simple example which shows that there is
no online BTD-optimal routing policy for flows arriving to a parallel FS or SRPT
link network. Consider a network with 2 parallel links where both links have unit
capacity, as shown in Fig.6.3. Suppose at time 0 a request with size 5 arrives and sees
two existing flows with size 2 and 3 which were routed to each of the two links but
have not been served - see Fig.6.3. Now consider two scenarios where another request
with size 4 arrives either at time 1 or time 3, and there are no additional arrivals
after that. A simple calculation shows that the BTD-optimal routings for the two

new requests under the two scenarios are different if the bandwidth allocation policy
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used on the links are either SRPT or FS.* The solid arrows in Fig.6.3 correspond to
the optimal routing when the size 4 flow arrive at time 1, while a totally opposite
routing decision, indicated by the dashed arrows, gives the minimum overall BTD if
the size 4 flow has arrived at time 3. This exemplifies the fact that, without knowing
future arrivals, one cannot determine the best routing strategy in a online manner.

We formally state this fact as follows.

Fact 6.3.1. There is no online BTD-optimal routing for arbitrary flow arrivals on

a parallel FS or SRPT link network.

optimal routing:
a(4)=1— a(4)=3-~>

\
time

Figure 6.3: BTD-optimal routings for a 2-parallel FS/SRPT link network with
different arrival times for flow with size 4.

6.3.2 Optimal Routing in the Transient Regime

The above example shows that the manner in which flows of different sizes
are mixed impacts the overall performance. Since there is no online BTD-optimal

policy, we shall investigate in the sequel the optimal routing for flows on parallel FS

*Note that in general the BTD-optimal routing on a parallel F'S link network may be different
from that for the SRPT case.
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or SRPT link networks in the ‘transient’ regime, where all flows arrive and are ready
to be routed/served at a given time and there are no additional arrivals thereafter.
It is our intention to understand, via the transient regime analysis, what type of
mixture of flow sizes might achieve good average BTD (and delay) performance, and
thus to develop effective and practical routing algorithms for elastic flows, when and

if the sizes are known.

We begin by discussing the similarities and differences in the overall BTD
for flows on a FS or SRPT link in the transient regime. Suppose n flows arrive at
time 0 to a single link with capacity c¢. Without loss of generality, we index the flows
according to the non-decreasing order of their sizes - recall our notation defined in
Chapter 2. The overall BTD for these n flows in the transient regime under SRPT

and FS are given by

n srpt

n

srt 1

U S S

j=1 = Pi-¢

and
n de n 1
b1 = Z — Z[P1+p2+"'+pj("_j+1)]'p..c’
=1 !

respectively. Note that FS incurs an extra overall BTD of

ST .
dobE = > Pt = EE:(n—j). (6.1)
j=1 j=1 7j=1

Thus for the same number of flows, i.e., n, the overall BTD in the transient regime
under FS differs from that under SRPT by a ‘constant’, i.e., independent of the
flow sizes. Despite that this constant is large, on the order of O(n?), the fact that it

only depends on 7 leads to, as we will discuss in more detail below, a good transient
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regime routing algorithm for parallel link networks with SRPT links also works well

for those with F'S links.

Identical Parallel Link Networks

Let us first consider the case where the parallel links are identical, i.e., have
the same capacity. Suppose there are m parallel links, indexed from 0 to m — 1. The
routing algorithm Permutation A described below is BTD-optimal in the transient

regime for both the FS and SRPT link scenarios.

Algorithm 6.3.1 (Permutation A).

1. Sort the n flows from the smallest to the largest; with ties broken arbitrarily.

2. Assign the jth smallest flow to link | = mod (j,m).

Theorem 6.3.1. On a network with m identical parallel SRPT links, Permutation

A minimizes the overall BTD for flows in the transient regime.

Theorem 6.3.2. On a network with m identical parallel FS links, Permutation A

minimizes the overall BTD for flows in the transient regime.

The key to the proof (given in the appendix) relies on the observation that
the smaller a flow is the more sensitive it is to delay, and thus one should route
fewer flows with smaller sizes than that flow to the same route with it. Notice that
the above observation applies not only to the case where the bandwidth allocation
policy is SRPT, which gives priority to small flows, but also to the FS case in the

transient regime, since smaller flows also finish earlier when link capacity is equally
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shared among ongoing flows. This similarity between FS and SRPT results in the
constant difference in (6.1), and hence the same routing algorithm works well for

both cases.

Permutation A also minimizes the overall delay of the flows on the identical
parallel link network in the transient regime. One can however find a more relaxed

routing algorithm that minimizes the overall delay but not the overall BTD.

Algorithm 6.3.2 (Permutation B).

1. Sort the n flows from the largest to the smallest; with ties broken arbitrarily.

2. Make [ -] groups of m flows selected consecutively from the ordered sequence;

if the last group has fewer than m flows, include ‘dummy’ zero-size flow(s).

3. Assign one flow from each group to each of the m links.

Theorem 6.3.3. On a network with m identical parallel SRPT links, Permutation

B minimizes the overall delay for n flows in the transient regime.

Theorem 6.3.4. On a network with m identical parallel FS links, Permutation B

minimizes the overall delay for n flows in the transient regime.

Permutation B is a relaxed version of Permutation A in the sense that no
restriction is placed on how flows in the same group, i.e., with similar flow sizes,
should be routed to the m links. Intuitively, one needs a more restrictive mechanism
when considering the BTD (rather than delay) metric since the difference in delays
for flows that are similar in size impacts the overall BTD but not the overall delay.

A detailed proof is given in the appendix.
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Arbitrary Parallel Link Networks

Theorem 6.3.3 and 6.3.4 for the overall delay metric can be further extended
to the case where the links have arbitrary capacities. The key idea in the proof
of the two theorems is to let larger flows contribute less in the overall delay. The
delay that might be incurred by a flow is indicated by a ‘coefficient’ that depends
on the number of flows that are larger than that flow and are assigned to the same
link according to a given routing policy. Now with general link capacities, one can
incorporate the link capacities to each coefficient, and, by following the same rule

as before, find the optimal routings stated below.

Algorithm 6.3.3. Generalized Permutation B-SRPT

1. Compute the coefficients cl,’ c%, C%, ... for each link [.

2. Find the smallest n coefficients, and sort them from the smallest to the largest

with ties broken arbitrarily.

3. Assign the largest flow to the link associated with the smallest coefficient, the
second largest to the link with the second smallest, and so on, with ties broken

arbitrarily.

Theorem 6.3.5. On a network with m parallel SRPT links each having arbitrary
capacity, Generalized Permutation B-SRPT minimizes the overall delay for flows in

the transient regime.

Algorithm 6.3.4. Generalized Permutation B-FS
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1. Compute the coefficients cl,’ c%, cé,’ ... for each link l.

2. Find the smallest n coefficients, and sort them from the smallest to the largest

with ties broken arbitrarily.

3. Assign the largest flow to the link associated with the smallest coefficient, the
second largest to the link with the second smallest, and so on, with ties broken

arbitrarily.

Theorem 6.3.6. On a network with m parallel FS links each having arbitrary ca-
pacity, Generalized Permutation B-FS minimizes the overall delay for flows in the

transient regime.

We have not found an analogous extension to the non-identical link network
case for Theorem 6.3.1 and 6.3.2 where the target performance metric is the overall

BTD.

6.3.3 Diverse Mixture of Flow Sizes for FS and SRPT Links

The transient regime BTD-optimal routing algorithms presented in the pre-
vious section suggest that by distributing flows such that each link obtains one flow
from each ‘size range’, i.e., a ‘diverse’ mixture of flow sizes, the system performs well
in terms of minimizing overall BTD and delay. This result is somewhat opposite
to the case of parallel links supporting FCFS scheduling discipline. In fact for such
a network [27] proposed to distribute flows such that flows with similar sizes go to
the same link while each link has roughly the same total load. The rationale is that

for M/G/1-FCFS queues the average delay is proportional to the variance of flow
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size distribution, and such strategy in fact reduces the variance on each queue and
thus performs well. By contrast, the dynamics for flows on a FS or SRPT link is
such that smaller flows will finish earlier and induce waiting/delay times for larger
flows. To reduce the impact of such waiting/delay times to a given set of flows, one
should prevent large flows from routed to the same link. Otherwise, the smaller
ones in the set of large flows will incur excessive waiting times for the even larger
ones in the same set. This suggests a diverse mixture of flow size is good for the
case of FS or SRPT links. We note that for the special case where the arrivals to
each FS link are Poisson, the links can be modeled by M/G/1-PS queues, and thus
the average delay (or average BTD) may only depend on the mean flow size, regard-
less of the exact distribution. While the M/G/1-PS queue appropriately captures
the stationary behavior of ‘randomly’ routed arrivals to parallel FS links, possibly
with different probabilities, it does not apply to the case where routing mechanisms

determine where to send arrivals based on, say, link loads.

Suppose one can manipulate the flow size distribution entering each link by
using a routing algorithm. A reasonable question would be what types of flow size
distributions lead to better average BTD for a SRPT link. As an attempt to answer
this difficult question, below we pose a similar problem in the transient regime, and

present our solution.

Problem 6.3.1 (Optimal Flow Size Vector). Given a number of flows n, a total
work load w = Z;-LZI pj, and the minimum flow size pyin, find an ordered flow size
vector p = (p1,+++ ,pn) where p; < pj, Vi < j such that the overall BTD of these

flows on a SRPT link, i.e., by =7, :D%,(Zi:l Pr) 18 minimized.
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The solution to this optimization problem is stated below.

Theorem 6.3.7. The solution p* to the Optimal Flow Size Vector problem is such
that
Ciarh _ (M) ) Vi=1,...,n—1 (6.2)
il w ’ -

where p} = pmin- The corresponding minimum overall BTD is

. _1
ball = n+ (n — 1) (p_zzn) not .

Intuitively, one may view the n flow sizes in the Optimal Flow Size Vector
problem as n samples from a flow size distribution F}5,(p) = P(P < p). Consider that
k out of n samples are no less than pj, one can let Fp(p)) = % and construct such
a distribution function. Interestingly, if one follows the above mapping scheme, a
good approximate distribution function matching (6.2) can be found by considering
a ‘bounded Pareto’ flow size distribution. For example, consider the optimal solution
when n = 10, ppin = 10% bits, and w = 10° bits. Fig.6.4 plots the corresponding
F3(p) and Fp(p) of three bounded Pareto distribution with flow size bounded by
[103,10°] bits and o = 0.1, 0.05, 0.01. Note that these o values exhibit very heavy
tail as compared to the typical case where 1 < a < 2. This example suggests that
for a given total work load and number of flows, the set of contending flows that has
a ‘diverse’ mixture of flow sizes may exhibit a good ‘transient performance’, i.e., the

overall BTD in the transient regime.
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Figure 6.4: Comparing the solution of Optimal Size Vector Problem with several
bounded Pareto flow size distribution functions.

The above results and our routing algorithms for parallel link networks in the
transient regime suggest that one should design a routing algorithm that distributes
flows on a network such that each link/route has flows with diverse mixture of
flow sizes contending for bandwidth. In the next two sections we will discuss how
one might implement such routing algorithms for parallel link networks and general

topologies.

6.4 Flow Size Dependent Routing on Parallel Link Networks

To investigate the potential benefits of ‘diverse mixture of flow sizes on each
link’, in this section we propose and evaluate, via simulation, an online routing algo-
rithm that depends on flow size information on parallel FS or SRPT link networks.
We emphasize that, as we suggested in §6.1, the parallel link setup not only provides

insights to developing effective routing algorithms for general topologies, but also
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is a plausible model of a ‘server farm’. Note that servers in a server farm can be
physically located close to each other and access a commonly shared file pool, or
they may reside in different location (proxy servers or caches) and maintain their
own copies of files. For the latter case, a more practical model may account for the
consistency of the file copies and access times to geographically distributed servers.
We however focus on a simplified parallel link network scenario as a mean to explore

the performance impact of size-dependent routing algorithms.

6.4.1 Algorithm Description

We consider ‘practical’ routing algorithms that depend only on the ‘present’
network state, i.e., on-line algorithms, and assume no buffering or re-routing of
elastic flows, i.e., new arrivals must be assigned to a link upon arrival and stick
with it. We propose heuristic algorithms that aim at finding the link on which each
new arrival will be routed such that the overall increase in BTD, i.e., including
that of the new arrival and those of all ongoing flows, is minimized. This type of
algorithm may be considered as greedy in that it minimizes the overall ‘cost’ (in
BTD) when there is no knowledge of the future arrivals. We define the overall BTD
increase incurred by a new arrival with arrival time ¢ as

Ab(t)= D bilt+e) — Y b(t),
)

jEJ(t+e) JEJ(t

where € > 0 is an arbitrarily small value, J(t) is the set of active flows that have
been routed at time ¢, and b;(t) = (dj + aj —t)/p; denotes the residual BTD of flow
j if it were served according to the underlying bandwidth allocation policy, e.g., FS

or SRPT, with no additional arrivals after time ¢. Notice that for the parallel link
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network the increase arises solely on the link to which the new arrival is assigned.
Without loss of generality, suppose that the size p* of the new arrival is the k;jth
smallest when compared to the remaining flow sizes of the ongoing n,(t) flows on
link [, and we index the ongoing flows on link / and the new arrival according to
their residual sizes in non-decreasing order with ties broken arbitrarily®. Thus the
increase in the overall BTD if the new arrival were assigned to link [ at time ¢ can

be written as

¢ 1 kl nl(t)—}—l 1 1
AP = [ = i(t * —|-=, 6.3
;P p*Zpg()er Z o (6.3)
J=1 Jj=ki+1
and
AR _ srpt p;(t) 1
Ct) = AbT(H) + Z T + (m(t) — ki) | - o’ (6.4)
j

J#k
for the FS and SRPT link cases, respectively. One may then consider Ablsrpt(t)
(Abfs(t)) as the link cost associated with a SRPT (FS) link and assign the new

arrival to the link with the smallest cost.

Notice that the two link costs defined in (6.3) and (6.4) provide differentia-
tion to new arrivals based on their flow sizes. For example, in the SRPT case, a new
flow which is smaller than all existing flows will find Ab™* () = (X740*! L)p*/e;,
(the second term in the parenthesis) as the cost of using link /. Assuming the links
have the same capacity, the link that incurs the least cost is the one currently serv-

ing fewer flows with larger sizes. This matches our intuition where a small flow

should find a link with fewer flows such that it can obtain higher bandwidth, and/or

SWith this indexing rule, p* = py = p(t).

108



a link that has ongoing flows with larger original size such that it will incur less
penalty to these large flows in terms of BTD. By contrast, a new arrival that is
larger than all existing flows will be assigned to the link which has the smallest
Ab?rp‘C = (E?’:(?H pj(t))/(p*ci), (the first term in the parenthesis) in which case
the total residual work to be done on each link is the key concern. Hence, a large
flow is likely to be assigned to a link that has less overall residual work to be done.
Similar differentiation is provided by the use of the link cost for the F'S case, but
with more emphasis on the number of ongoing flows. This higher emphasis on the
number of ongoing flows for the F'S case is expected since the bandwidth allocated to
each flow depends heavily on the total number of active flows on a link. The above
differentiation attempts to, in addition to balancing the link loads, send small flows
to links with large flows and large flows to links with small ones in a dynamic fash-

ion, i.e., based on the changing network state. This provides the ‘diverse mixture

of flow size’ as suggested in the previous section in an online fashion.

The link costs shown in (6.3) and 6.4 however require one to determine the
‘rank’ of a new arrival, i.e., how its flow size compares to all ongoing flows on each
link. This may not be feasible in practice, since one needs to maintain an O(n) states
for each link and the computation complexity to obtain the link cost is O(n log(n)),
where n is the number of ongoing flows. We thus consider an approximation to
these link costs by using only a constant number of aggregate link states. More
specifically, we propose the following ‘unified’ approximate link costs for both the

FS and SRPT cases. Considering the aggregate link states shown in Table 6.1, we
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define

Agl(t) = (051 . w;)it) + a9 -p’x< -ﬁl(t) + @nﬂﬂ) cll, (6.5)

where a1 and a9 are two ‘weighting factors’ ranging in [0, 1] that capture the impact
of the rank of a new arrival among existing flows on link /. Notice that the first
two terms in the parenthesis approximate the two terms in the parenthesis of (6.3),
respectively, and the last term captures the different emphasis one may place on
the number of ongoing flows on each link based on the flow size of the new arrival.
As we will show via simulation in the next sub-section, using this unified link cost

provides good performance for both the FS and SRPT link cases.

n(t) = |y (t)] number of ongoing flows
wit) = e, Pi(t) total residual work
2(t) =X jenw B total reciprocal of flow sizes

Plimaz(t) = maxje s, (pi(t)) | maximum residual flow size
Plmin(t) = minje 5, (p(¢)) | minimum residual flow size

Table 6.1: Aggregate Link State Information

Clearly, the key challenge of this approximation is to determine, with the
aggregate link states and flow size of the new arrival, appropriate a; and as to
achieve similar differentiation as that by using the ‘exact’ total BTD increase link
costs defined in (6.3) and 6.4. More specifically, if the new arrival is larger than
most of the flows, one should use a larger a; to emphasize the total residual work
wy(t), and a smaller ay to de-emphasize the total reciprocal flow size p;(t) and total

number of ongoing flows (), and vice versa. We propose the following functions
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that derive the two weight factors based on the available aggregate information.

0 . if p* < DPiymin (t)
ay (p*apl,min (t)apl,maw(t)) = (pl,mpaz(t) )2 if pl,min(t) < p* < Dimaz (t) (66)
1
0

if p* > DPimax (t)

if p* < DPiymin (t)

a2 (p*apl,min (t)apl,mam(t)) = pz,%’?(t) if pl,min(t) <p*< Plymax (t) (67)

1 if p* > Pimax (t)

Notice that we design the two functions such that they are convexly increas-
ing and decreasing with respect to p* in the range of [py min(t), Pi,maz(t)] for a given
pair of p; ;maz(t) and py min(t). This is to reflect how ‘the total residual work of flows
small than the new arrival’ and ‘the total reciprocal sizes of flows that are larger
than the new arrival’ varies from zero to w;(t) and p;(t), respectively, as the flow size
of a new arrival increases. For example, using the afore-mentioned indexing rule,
since wy(t) = Z;'LI:(PHPj(t) and p;(t) < pj(t), Vi < j, one should use a convexly

increasing weight factor oy multiplying w;(¢) to approximate fl: 1 p;()

We now may formally state our proposed flow size dependent routing algo-

rithm for a parallel SRPT (FS) link network.

Algorithm 6.4.1 (Minimum Estimated BTD Increase (MEBI)).

1. for each link 1
2. compute Ab for the new arrival;
3. find I* such that Abp is the smallest;

4. assign the new arrival to link [*.
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6.4.2 Simulation Results

We compare MEBI with several commonly considered routing algorithms
and a ‘close-to-optimal’ algorithm proposed by Awerbuch et.al.[3]. Although Awer-
buch’s algorithm also assumes SRPT at each link®, it requires an additional buffer
to store arrivals that are not significantly smaller than those that are currently being
served, and compares flow sizes again whenever a flow completes, see [3] for details.
Although their algorithm may not be realistic for serving elastic file transfers, we
considered it in order to evaluate how our algorithm compares with an approach

which has been analytically proven to be close to optimal.

Below we summarize the algorithms under consideration. For simplicity we
assume the link capacities are the same. Suppose there are m parallel links, indexed

from 0 to m — 1.

Random Route each arrival randomly (with equal probability) to one of the m

links.

Round-Robin Given that last arrival was sent to link /, send the new one to link

mod((!l + 1), m).
Min-Flow Route each arrival to the link that has fewest ongoing flows.

Min-Work Route each arrival to the link that has the least total residual work.

5The problem discussed in [3] is a job scheduling problem where the algorithm determines both
where to assign each job and how they are served. Their proposed algorithm coincides with our
model in the sense that jobs (flows) are served according to SRPT on each of the parallel servers
(links).
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Awerbuch Route each arrival to an empty link; if all links have at least one flow in
service, route the arrival to the link that are currently serving a flow that has
the smallest residual work if the new arrival flow size are significantly smaller
than that residual size; otherwise, store the new arrival in a central buffer
until one of the flows completes and then treat the smallest flow in the central

buffer as a new arrival. See [3] for details.

MEBI See Algorithm MEBI and the associated link costs defined in (6.5).

For algorithms that compare link states, i.e., Min-Flow, Min-Work Awerbuch, and
MEBI, we resolve ties by choosing the link with the smallest index. Note that
in addition to the link-state dependent algorithms, we also consider two non-state
dependent algorithms, namely, Random and Round-Robin routing. We do so to
examine the degree of performance improvements achieved under various scenario

for systems using link state routing algorithms versus non-state dependent ones.

We conduct fluid flow simulation on a network with 5 parallel links each
with a 1 Mbps capacity. The arrivals are assumed to be Poisson, with the files size
distribution is either bounded Pareto or exponential, both with the same mean of
5 KBytes. The capacity of each link is shared by ongoing flows based on either
FS or SABA. Recall that we consider SRPT, the limiting regime of SABA, for our
theoretical analysis, but here we step back to assume SABA 7 links to present a

more realistic scenario, where all ongoing file transfers may continuously progress,

"The weight functions and parameters for SABA used in this chapter is the same as we suggested
in Chapter 3.
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i.e., with positive bandwidth, towards completion. Note that we only extrapolate
the routing part of Awerbuch algorithm, i.e., where to route requests, and assume
that once a request is assigned to a link, it will share the link capacity with others
according to SABA. We will not examine the Awerbuch routing algorithm with FS

links since it does not present a fair comparison.

Superior performance achieved by MEBI

Fig.6.5 through 6.8 exhibit the average BTD performance achieved by var-
ious algorithms under various scenarios as the traffic load increases. The assumed
bandwidth sharing policy and file size distribution is indicated on the top of each
plot. We first note that MEBI performs ‘consistently’ better than all other algo-
rithms under all scenarios. In particular it is even slightly better than the Awerbuch
algorithm - one that has been analytically proven to be competitive but is complex,
perhaps unrealistic for elastic file transfers. Further we note that MEBI works well
for both the SABA and FS link cases. This is expected since both bandwidth

allocation policies exhibit similar transient behavior as discussed in §6.3.8

We further plot in Fig.6.9 the average performance improvement achieved by
MEBI over the Min-Flow algorithm, which is generally considered as a good heuristic
‘state dependent’ routing algorithm for elastic flows. As seen MEBI improves the
average BTD performance ranging from 1-8% as compared with Min-Flow under all
scenarios as traffic load increases. Although the improvement is marginal, to our

knowledge, MEBI is the only routing algorithm that ‘consistently’ performs better

$We have also fine tuned the link cost Ab; separately for the FS and SABA link case and observed
slightly better average BTDs for both cases.
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Figure 6.5: Average BTD achieved by various Routing Algorithms on SABA links
and with Pareto flow size distribution.

than Min-Flow.

Consistent Performance across Links

Another benefit exhibited by MEBI is that it provides consistent average
BTD performance across the parallel links. Table 6.2 below shows the coefficient
of variance (CoV) with respect to the average BTD of flows across the 5 parallel

links under various scenarios when the traffic load is 80%. As seen, MEBI clearly

SABA-Pareto SABA-Exp Maxmin-Pareto Maxmin-Exp
Min-Flow 0.0287 0.0731 0.0629 0.0805
MEBI 0.0019 0.0103 0.0521 0.0417

Table 6.2: CoV of average BTD across links at 80% traffic load.

provides better consistency for the average BTD performance across parallel links
than Min-Flow. This may be important if, for example, one wish to provide ‘fair’

transfer performance experience for elastic flows sent to different servers.
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Figure 6.6: Average BTD achieved by various Routing Algorithms on SABA links

and with exponential flow size distribution.

Min-Work is not robust

Next we notice that the Min-Work algorithm performs better than the open-
loop algorithms but worse than the other three link state dependent ones when
the file size distribution is exponential under all traffic conditions (see Fig.6.5 and
Fig.6.7), but quickly becomes unacceptable as the traffic load increases for the case of
bounded Pareto size distribution (see Fig.6.6 and Fig.6.8). We provide an intuitive
explanation for this observation. Note that by choosing the link with the least
residual work, one might send new arrivals to links that have many small flows rather
than links with one or few large flows. When this happens, the BTD performance
for all those small flows degrades dramatically while only one or few large flows
maintain good performance. This phenomenon happens more often and aggravates
when the file size distribution is bounded Pareto, since in this case most flows are

small but with few very large ones.
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Figure 6.7: Average BTD achieved by various Routing Algorithms on FS links and
with Pareto flow size distribution.

Non-state dependent algorithms

Realizing that it might be not permissible to implement state dependent
routing algorithms, we also consider the performance achieved by two common non-
state dependent routing algorithms versus the state dependent ones. As seen, while
the performance achieved by random routing may be far away from that under the
state dependent ones, the Round-Robin routing can achieve relatively close perfor-
mance to those schemes. For example at 80% traffic load, the average BTD achieved
by Round-Robin can be as close as 1.08 times that under MEBI (see Fig.6.5), and
as far as about twice (see Fig.6.7). We have also tried to realize the ‘diverse mix-
ture of flow sizes’ with size-dependent Round-Robin algorithms, but so far the trials
perform similar to that under the above vanilla Round-Robin routing. The superior
performance exhibited by Round-Robin as compared to random routing is likely to

be due to that it ‘stretches’ the inter-arrival times for each link, thus is less likely to
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Figure 6.8: Average BTD achieved by various Routing Algorithms on FS links and
with exponential flow size distribution.
have many flows sharing the same link, and in turn achieves a better load balanc-
ing.? We thus conclude that if it is not permissible to use state dependent routing,
one may choose Round-Robin or weighted Round-Robin for a FS or SRPT parallel

link network.

Impact on number of links

We have also conducted simulation on parallel link networks with different
number of links. In general if one fixes the total traffic load and the aggregate
capacity of the parallel links, the average BTD increases as the link number increases
for all algorithms and for all scenarios. The observations and comparisons among

different algorithms described above however remain the same.

“Round-Robin routing has also been shown [35] to be the optimal non-state dependent policy on
a parallel FCFS server network with respect to the delay time when the flow sizes are independent
and identically distributed according to an increasing failure rate distribution.
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Figure 6.9: Average BTD improvement achieved by MEBI over Min-Flow under
various scenarios as traffic load increases.

6.5 Flow Size dependent Routing on General Networks

In this section we extend our proposed flow size dependent routing algorithm
from parallel link networks to more general topology networks. For succinctness,
we will refer to networks that allocate bandwidth according to max-min fairness as

max-min networks, and likewise for SABA networks.

6.5.1 Algorithm Description

A direct approach to extend our greedy algorithm from a parallel link net-
work to a general topology is to compute the total increase in the residual BTD
assuming the new arrival were routed on each possible path, and choose the one
resulting in a minimum cost. This however requires an extremely high compu-
tational effort upon each arrival. For example the worst case complexity would be

O((m+mn)™) for the max-min case where m is the number of links and n is the max-
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imum number of ongoing flows on the network. Instead one may draw an analogy
from commonly known approaches that compute a ‘shortest distance path’ based

on advertised link costs as described below.

It is well known that a key to developing a good routing algorithm on a
general network is to prevent excessive use of network resources while dynamically
balancing the traffic loads. A typical approach to compromise load balancing with
efficient use of network resources is to utilize a ‘shortest distance path’ routing algo-
rithm, where the distance associated with a path is the sum of the link costs along
the path and the link cost accounts for the traffic load on each link. Alternatively,
one might explicitly account for the hop counts along with the traffic load on each
path to derive the path distance [43], or use ‘trunk reservation’ to reserve certain
amount of network resources for flows traversing the ‘shortest hop path’ [9]. In this
study, we will focus on the minimum additive link cost approach and consider a link
cost that not only finds a good tradeoff between load balancing and efficient use of
resources, but also account for the aggregate flow size information such that a ‘di-
verse mixture of flow sizes’ on each link/route can be achieved. We believe that the
impact of incorporating the aggregate flow size information into other approaches

will be similar to what we found earlier for parallel link networks.

Recall the link cost defined in (6.5). We shall present our proposed flow size

dependent routing algorithm for general networks as follows.

Algorithm 6.5.1 (Shortest Estimated BTD-Increase Routing (SEBI)).

1. Compute Aby(t) for each link I.
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2. Use Bellman-Ford algorithm to find the path
r* € argmin{r € R(s;,d;) | Z Aby(t)}
Ap=1

where R(s;,d;) is the set of possible routes connecting s; to d;.

3. Route the new job on path r*.

6.5.2 Simulation Results

We compare SEBI with a ‘Shortest Max-min Fair-share Rate (SMFR)’ rout-

ing algorithm which finds the route
r* € argmin{r € R(si,d;) | Y (m(t) +1)/ci}.
Ap=1

The shortest MFSR path routing is a generalization of the Min-Flow algorithm dis-
cussed for the parallel link network case, and mimics the routing algorithm proposed
by in [38]. Refer to [44] for a comparative simulation study of various routing alter-
natives, including algorithm in [38] as well as commonly considered widest-shortest
path and shortest-widest path routing. Our focus here is to evaluate the performance
impact of introducing the aggregate flow size information into a general framework
of shortest path routing, and exhibit the performance improvements achieved by the
two state dependent shortest path routing algorithms versus non-state dependent

ones.

Two non-state dependent routing algorithms are considered: Fixed Shortest
Hop Path (Fix-SHP) and Round-Robin Shortest Hop Path (RR-SHP) routing. The

Fix-SHP is the well know static routing algorithm that routes each arrival to the
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path with the smallest number of hops between the source and the destination,
with ties broken arbitrarily. We also evaluate a RR-SHP algorithm which may be
considered as an improvement over Fix-SHP since it finds all possible paths that has
the same minimum number of hops for a given source-destination pair, and routes
arrivals to these paths in a round-robin fashion - recall that round-robin routing

performs well for the parallel link network case.

We conducted simulations on two representative networks, namely, the US
and Europe topology [44] shown in Fig.6.10. We again assume, for all cases, Pois-
son arrivals and bounded Pareto or exponential flow size distribution with mean 5
KBytes. The source and destination of each arrival are chosen uniformly from all

nodes in a given network.

US Topology Europe Topolog

Figure 6.10: US and Europe topologies: equal capacity of 100 Mbps on each link.

Fig.6.11 through 6.14 exhibit the average BTD achieved by four afore-mentioned
routing algorithms on the US and Europe topologies under various scenarios, as the
total flow arrival rate increases. For each topology we consider the scenarios where

the bandwidth allocation policy follows either SABA or max-min fair, and the flow
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size distribution is either bounded Pareto or exponential.
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Figure 6.11: Average BTD achieved by Fix-SHP, RR-SHP, SMFR, and SEBI on
the US topology with SABA bandwidth allocation as the total flow arrival rate
increases.

As expected, SEBI consistently outperforms the SMFR routing under var-
ious scenarios, however the improvement is marginal - ranging from 2% to 10%.
We have also conducted simulations on various arbitrary topologies as well as ran-
domly generated ones, and similar performance improvements were observed for
those (more than 10) topologies. In general, we observe more significant improve-
ments on max-min networks than on the SABA ones. This is also expected since by
using SABA, one already achieves a very good average BTD performance. Note that
as exhibited in, e.g., [38,44], routing algorithms that depend on traffic load (load
balancing) and number of hops on each path (efficient use of resources) achieves
close performance, and none of the algorithms can outperform the others under all
scenarios. The key contribution here is that our flow size dependent routing algo-

rithm performs almost consistently better than the SMFR algorithm. Based on our
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Figure 6.12: Average BTD achieved by Fix-SHP, RR-SHP, SMFR, and SEBI on
the US topology with max-min bandwidth allocation as the total flow arrival rate
increases.

simulations, only in about 1% cases (various topologies, traffic loads, random seeds,

etc), the SEBI routing performs slightly worse than SMFR.

Also can be seen in this set of results is that the RR-SHP routing provides an
non-negligible enhancement over the traditional Fix-SHP scheme, especially for the
Europe topology. Considering that it requires no link state, the RR-SHP routing
scheme might be a good option when it is not permissible to do state dependent
routing. In fact, for the scenarios we simulated, the average BTD exhibited by
RR-SHP is at most 1.5 (and as close as 1.08) of that under SMFR. We believe a
further enhancement of RR-SHP may achieve even closer performance to the state-
dependent ones by sending flows over a larger set of ‘short’ paths, e.g., with hop
counts within constant difference of the shortest hop count [53], in a ‘weighted’

round robin fashion - longer paths have smaller weights.
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Figure 6.13: Average BTD achieved by Fix-SHP, RR-SHP, SMFR, and SEBI on
the Europe topology with SABA bandwidth allocation as the total flow arrival rate
increases.

6.6 Conclusion

We have investigated the routing problem for elastic flows on networks that
allocate bandwidth according to either max-min fair or SABA criterion. By ex-
amining possible optimal routing policies on parallel link networks in the transient
regime, we identified that routing algorithms that aim at producing a ‘diverse’ mix-
ture of flow sizes at each link may achieve a better average user perceived BTD
performance. An online routing algorithm in conjunction with a novel link cost
is then proposed for parallel link networks to differentiate arrivals based on their
sizes so as to mix flows with various sizes on each link. Via simulation we show
that our proposed algorithm outperforms all other schemes we considered, includ-
ing one that is analytically proven to be competitive to the offline optimal. We
further extend our routing scheme to the general topology case, where using our

proposed link cost allows one to achieve a good balance among ‘load balancing’,
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Figure 6.14: Average BTD achieved by Fix-SHP, RR-SHP, SMFR, and SEBI on the
Europe topology with max-min bandwidth allocation as the total flow arrival rate
increases.

‘efficient use of network resources’, and ‘diverse mixture of flow sizes’, and thus a
better performance. Simulation results show that one can achieve a 2-10% aver-
age BTD performance improvement by using our proposed scheme over the best
known heuristic routing algorithm for elastic flows on max-min networks. The im-
provements, although marginal, are consistent for all scenarios we have considered.
Based on our theoretical analysis and the simulation results showing the superior
performance over a competitive algorithm, we are confident that our proposed rout-

ing algorithm achieves performance close to the best one can achieve.

Knowing the best possible performance one might achieve via a state depen-
dent routing algorithm, an interesting question to ask is whether one can achieve
the same performance by using non-state dependent routing schemes for elastic
flows. This problem is worth investigation especially since in practice it might not

be desirable to implement expensive routing schemes that require maintenance and
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advertising of link states for best effort file transfers. We conducted a preliminary
investigation towards this end. We show that a routing scheme that sends flows
in a round-robin fashion has the potential to achieve a close performance to state
dependent ones. However further investigation on how one might enhance a vanilla

round-robin routing are needed to answer the question of how close one can get.

6.7 Proofs of Theorems

A lemma will be used to prove Theorem 6.3.1 through 6.3.6.
Definition 6.7.1. For two vectors z,y € (RT)", we say x is cumulatively smaller
than or equal to y, denoted by x Cugm y, if Zi:l T < Zi:l yr forallj=1,...,n.
Lemma 6.7.1. Consider an ordered vector o € (RY)"™ where V1 <i < j<mn, a; >
aj, and two other vectors B, ' € (RT)". E;L:l a;fB; < Z;-lzl ;B if B is cumu-

latively smaller than [3'.

Proof:
Let Aj=pB; — B and A; = Y05 Ay
n n n
B — D B, = > on(Br—B) = QTYAVS
k=1 k=1 k=1 k=1
= ap- (A1t +Ap) + (an-1—an) - (A1 +---+Apq).
+ (2 —a3) - (A1 + A2) + (a1 — a2) - (Ay),
= anAn + (an—l - an)An—l + e+ (al - QQ)Al,
< 0.
The last inequality is due to that a;, > 0,and Vj =1,...,n -1, aj — a1 > 0 and

Aj=Y0_(Br— ) <0. O
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6.7.1 Proof of Theorem 6.3.1

Without loss of generality, we assume that each of the m identical links has
capacity 1, and index the flows in the non-decreasing order of their sizes with ties
broken arbitrarily. Let [T denote the link that flow j will be assigned to based on a

routing algorithm 7. The overall BTD can be expressed as

Z D e

=PI <= 7

n

>

i= 2
Now since pij is non-decreasing in j, then according to Lemma 6.7.1, a routing
algorithm 7* is BTD-optimal if it always finds the cumulatively smallest vector
d™ = (d;-r*, j=1,...,n), ie., Zi:l i < Zi:l d, for any other 7. Clearly, the
smallest possible d] is p;, the smallest possible Ei:l dy is p1 +p2 (assuming m > 2),
m+1

, the smallest possible ) ;=" df is p1 + prm1, and so on. This rule is equivalent

to Permutation A and thus the theorem follows. O

6.7.2 Proof of Theorem 6.3.2

According to (6.1), the overall BTD of flows on a FS link is more than that
on a SRPT link by A; = %{’}:1), where n; is the total number of flows on link [
and ¢; is the link capacity. With the link capacities being identical, say ¢, we can
write the increase in overall BTD if one use FS instead of SRPT links but with the
same routing algorithm as

ZAI:ZM annl—l

=1 =1

Since 37", ny = n and my(n; — 1) is a convex increasing in ny, o= S my(ng — 1) is

minimized when the number of flows on each link are ‘balanced’, i.e., the same n,
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if m divides n or they differ by at most 1 otherwise. Clearly Permutation A gives
the most possible ‘balanced’ n;s, and, according to Theorem 6.3.1, it also minimizes

the overall BTD for the SRPT link case, hence the theorem follows. O

6.7.3 Proof of Theorem 6.3.3

We again assume unit link capacities and use the notation defined in the
proof for Theorem 6.3.1. Let 8 = [{k|k < j,If = {7}|, the number of flows on the
same link as j and are served no earlier than itself (thus includes itself) according
to SRPT, associated with a routing 7. We may re-write the overall delay of the n
flows associated with 7 as Z?:l pj - Bj - Notice that 87 =1 if flow j were the largest
flow on its link according to 7, and similarly 87 = 2 if it were the second largest,
and so on. Now define the vector p = (pn,pn—1,--- ,p1), where the values of the
elements are non-increasing. According to Lemma 6.7.1, a BTD optimal routing 7*
should find the cumulatively smallest vector ™ = (B7,--- , 7). Clearly, this can
be accomplished by sending each of the m largest flow to one of the m links, each
of the next m largest to one of the m links, and so on. Note that since the (s are
the same for the flows in each m flow group, how exactly these flows are assigned to
the m links does not change the overall delay. The flow assignment described above

is equivalent to Permutation B and thus the theorem follows. O

6.7.4 Proof of Theorem 6.3.4

The proof is essentially the same as that for Theorem 6.3.3. The only differ-
ence is that the values of s are such that, instead of ks for the kth largest flows on

each SRPT link, they are 1s for the largest flows on each FS link, 3s for the second
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largest, ..., (2k — 1)s for the kth largest, and so on. This is due to that the total
delay of flows on a FS link can be written as Y, , p} - (2k — 1), where pl, is the size
of the kth largest flow on link /. The above difference does not impact the argument

provided in the proof for Theorem 6.3.3. Thus Permutation B also minimizes the

overall delay for flows on parallel FS links in the transient regime. O

6.7.5 Proof of Theorem 6.3.5

Again the theorem is similar to that for Theorem 6.3.3, but now with the
coefficients being such that the 5 of the kth largest flow on link [ is k/¢; where ¢; is
the capacity of link /. One should easily see that the BTD-optimal routing 7* that
finds the cumulatively smallest vector 5™ is one that assigns the kth overall largest

flow to the link that has the kth smallest 3 coefficient. O

6.7.6 Proof of Theorem 6.3.6

The proof is the same as that for Theorem 6.3.5, with the coefficients being
such that the 3 of the kth largest flow on link [ is (2k — 1) /c; where ¢; is the capacity

of link /. O

6.7.7 Proof of Theorem 6.3.7

Through a change of variables, w; = Zizl P, we may re-state the ‘Optimal

Flow Size Vector’ problem defined in 6.3.1 as to minimize

w1 w2 Wn—1

+ + —
w2 — Wy w3 — W2 Wp — Wp—1
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such that ppin < wy < 7, kwy <wp <w, Vk: 2<k <n-1, and w, = w.
Note that since %b—ﬂ > 0 and %‘%u > 0, we know that by is strictly increasing in
wi. Thus we may set wi = p; = ppin. Now the problem becomes an optimization
problem of n — 2 variables, ws,...,wp_1. By examining the Hessian of b,;; with
respective to these n — 2 variables, one can show that V2b, is positive definite.
Hence the minimizer of the problem is the solution of Vb,; = 0 with respect to
wa, ..., Wn—1, and by simple calculation one can show that it is equivalent to the

following condition

* *
wi _ wj Wit

* * *
wy w3 wy,

with w] = ppin and w;, = w. This clearly gives an unique optimal solution to

the original problem by letting w} = ppin ( ni/3 w_)k=1 " and the minimum is thus
min

1
ball = n-+ (TL — 1) (p_min) not . ]

w
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Chapter 7

Conclusion

In this thesis we address the question of how to optimize both network and
user perceived performance on best effort networks. Although at first glance this
question might seem paradoxical, in fact it is not. A key property of a typical
‘best effort’ transfer, e.g., mediated by TCP, is that it is malleable in the sense
that throughput variations throughout the transfer are tolerable, as long as the
overall delay or BTD is adequate. This tolerance to throughput variations, underlies
the traditional notion of ‘best effort’ where it is often stated that the goal is to
achieve a ‘fair’ allocation of available resources among ongoing transfers. However,
taking a user centric point of view, a more natural design objective would be to
optimize the user perceived performance rather than achieve an artificial notion
of fairness. Keeping with the spirit of ‘best effort’ performance it makes sense to
design networks so as to optimize the average performance seen by users rather
than making individual guarantees. Thus both from a network’s and users’ points
of view, realizing network mechanisms that achieve enhancements in the average

delay, BTD, etc., for best effort networks makes perfect sense.

Our approach to optimizing the average performance seen by users on a
network is by differentiation based on the initial or residual size of the transfer.

This provides a means to exploit the malleability of transfers in order to benefit
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the whole. In fact, for more savvy users who expect longer delays when transferring
larger files, our proposed residual size-based differentiation provides a good match of
overall user/network ‘utility’. Realizing a better match between users needs/wants
and network allocations becomes increasingly critical when users are highly sensitive
to the performance they are experiencing. Indeed in the context of interactive ap-
plications, or even web browsing, users may eventually become impatient leading to
transfer interruptions, which in turn can result in poor network resource utilization.
Accounting for such behavior in optimizing best effort networks is quite challenging.
On the one hand, users that abort presumably have a low utility for the transfer
being realized, and free up resources for others. This type of self admission con-
trol based on utility provides a good use of network resources that matches users’
expectation, and perhaps leads to a higher revenue. On the other hand, when and
how users interrupt their transfers depends on how resources are allocated in the
network. In Harnessing this complex interaction between bandwidth allocation and
user impatience behavior, we found again that exploiting the malleability, ¢.e., size-
based differentiation, offers good middle ground between complexity and enhancing

both system and user perceived performance.

Various possibilities, in addition to our proposed transport level and rout-
ing mechanisms, exist to realize size-based differentiation. Preserving the spirit of
‘simplicity’ that has been used to implement control mechanisms on best effort net-
works, we believe end-system controls of file transfers are more appropriate, i.e.,
rather than introducing complexity in the core of the network, e.g., per-flow state.

For example, one may employ SRPT scheduling for packets of ongoing transfers
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on the server side [21], or initiate parallel connections of different numbers through
browser implementation, both depending on the file size or even the congestion
status. These approaches exhibit various pros and cons, but presumably achieve
more or less the same potential benefit we have exhibited through our fluid flow
simulations of transport level differentiation. Further extensions of size-based dif-
ferentiation may account for, say, application level utility, e.g., user might be more
sensitive in delay while retrieving an instant message than downloading a backup file.
Our study provides an avenue and framework for further investigation of possible

implementations of such extensions.

Our thorough investigation of size-based differentiation under various scenar-
ios have qualified its performance benefits, as compared to traditional approaches
emphasizing on instantaneous fairness. While the performance gains range from
very marginal (2%) to impressively significant (80%), it promises a robust perfor-
mance under various traffic load conditions, peak rate constraints, and bottleneck
scenarios. Furthermore, it offers a graceful performance degradation when facing
transient overloads, which may be unavoidable on today’s and future Internet due to
the (multi-scale) burstiness of the traffic load. As long as the global exchange of files
is built upon a heterogeneous environment, which is a key to its success, providing
a robust and good performance through size-based differentiation is perhaps one of

the simplest approaches to better their overall operation.
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