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This dissertation is the first analytical and algorithmic work to exhibit the substantial

gains that result from applying site specific knowledge to frequency allocation, transmit power

control, and load balancing in wireless networks. Site specific knowledge refers to the use

of knowledge of the surrounding propagation environment, building layouts, the locations

of access points (APs) and clients, and the locations and electrical properties of physical

objects. We assume a central network controller communicates with all APs, and has site

specific knowledge which enables the controller to differentiate the sources of RF interference

at every AP or user. By predicting the power from each interference source, the controller can

allocate frequency channels, adjust transmit power levels, and balance loads among APs and

clients in order to optimize throughput of the network. When site specific knowledge is not

available, measurement-based algorithms may be used; we present three measurement-based

frequency allocation algorithms that outperform the best published work by 18% for median

user throughput. Then we present two site-specific knowledge-based frequency allocations that

outperform the proposed measurement-based algorithms particularly for uplifting throughputs

of the users who suffer low throughputs, e.g., we have gains of 3.75%, 11.8%, 10.2%, 18.2%,

33.3%, and 459% for 50, 25, 20, 15, 10, and 5 percentiles of user throughputs, respectively,
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over the proposed measurement-based algorithms. Furthermore, we employ transmit power

control to further improve clients’ throughputs achieved by optimal site-specific knowledge-

based frequency allocations; transmit power control can improve the 25, 10, 5, and 3 percentiles

of users’ throughputs by up to 4.2%, 9.9%, 38%, and 110%, and save power by 20%. Finally,

a load balancing algorithm is proposed as an add-on that works seamlessly with frequency

allocation and transmit power control algorithms. The load-balancing algorithm can improve

median user throughput by about 26%. The work in this dissertation shows that site specific

knowledge is an important means for optimizing performance of wireless networks.
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Chapter 1

Introduction

Despite the growth and wide acceptance of wireless technology, fundamental differ-

ences between wireless and wired networks pose challenging issues for wireless network design

and management. Unlike wired networks, where links have stable and fixed rates, the link

bandwidths in wireless networks are somewhat unpredictable, since the bandwidths vary with

many factors, such as transmit power levels, antenna directivity, multipath, and user move-

ment. Moreover, in most wired networks, interference between different links are negligible

unless the insulation around wires is problematic. By contrast, in wireless communications,

physical environment is like an imperfect insulator which causes attenuation of radio signal

powers; therefore, the signal reception at a receiver is affected by interference from undesired

sources in the proximity of the receiver.

In order to resolve the unpredictability of wireless communication, techniques and algo-

rithms for site-specific channel prediction for wireless communications have been developed in

the past decade [4–19]. Propagation characteristics have been found to be highly site specific,

since major propagation mechanisms (e.g. penetration, reflection, and diffraction) are highly

related to obstacles in the surroundings. These algorithms can take a building CAD drawing

or a satellite map and compute the radio propagation loss contours for indoor or outdoor en-

vironments. As of today, these site-specific prediction methods are mainly used in the design

and deployment phase for engineers to pre-configure the network. What if they can be used

at run-time on devices? As the processing power of devices becomes stronger, future devices

(central network controllers, base stations (BS), access points (AP), or end users hand-held

devices/laptops) can be equipped with site-specific prediction engines for instantaneous prop-

agation modeling. Prediction engines may require that these devices have digital maps of
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surrounding terrains, buildings, and other obstacles that may affect radio propagation.

In this dissertation, we exploit the site-specific predictions for optimizing wireless net-

work performances; particularly, by doing frequency allocation, transmit power control, and

load balancing, throughput of network can be improved. Chapter 2 reviews and summarizes

prior research on site specific prediction techniques, frequency allocations, transmit power

control, and load balancing. In Chapter 3, we present improved frequency allocation algo-

rithms that are measurement-based; these algorithms are shown to outperform all published

work on frequency allocations. We outperform the best published work by 15% and 18% for

mean and median user throughputs respectively, and 81%, 168%, and 1011% for 25, 20, and

15 percentiles of user throughputs, respectively. The work in Chapter 3, however, does not

use site specific knowledge. Chapter 4 presents frequency allocation algorithms that exploit

site specific knowledge and show these algorithms even outperform those in Chapter 3 up to

3.75%, 11.8%, 10.2%, 18.2%, 33.3%, and 459% for 50, 25, 20, 15, 10, and 5 percentiles of

user throughputs, respectively. Note that in Chapters 3 and 4 and other published work on

frequency allocations [1, 2, 20–22], the transmit powers of APs are fixed. After the optimal

frequency allocation has been found using the fix transmit power, transmit power control can

further improve network throughput. In Chapter 5, we optimize transmit power and find that

we can improve the 25, 10, 5, and 3 percentiles of users’ throughputs by up to 4.2%, 9.9%,

38%, and 110%, and save power by 20%. Furthermore, when the density of APs increases,

the number of APs to which a client can connect increases. It is important to associate clients

to APs so that the loads on APs are balanced and users are associated with less-congested

APs to increase their throughputs. In Chapter 6, we present a load-balancing algorithm that

allocates bandwidth among APs and users subject to heterogeneous fairness and application

requirements; the proposed load-balancing algorithm achieves at least 26% gain of median

user throughput over other algorithms in the literature. Frequency allocation algorithms in

Chapters 3 and 4, transmit power control in Chapter 5, and the load-balancing algorithm

in Chapter 6 can work seamlessly, since transmit power control improves user throughput

achieved by frequency allocations, and load balancing can be viewed as an add-on to frequency
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allocations and transmit power control to further improve user throughputs. Frequency allo-

cations and transmit power control are performed on a longer time scale (say 5 minutes) to

optimize average throughputs of users, whereas load balancing is performed when any user

joins or leaves, whose time scale is often shorter than that for frequency allocations (say 5,

30, or 60 seconds). Finally, Chapter 7 concludes this dissertation.

In this introductory chapter, we will briefly describe the benefit of using site specific

knowledge in Section 1.1 for practical problems of wireless system design. We will use site

specific knowledge to solve the problems of frequency allocations, transmit power control,

and load balancing in wireless local area networks, as described in Sections 1.2, 1.3, and 1.4,

respectively.

1.1 Why Site Specific Knowledge Instead of Measurement-Based
Techniques?

In brief, the advantage of using site specific knowledge is to predict a priori path

loss1 between any pair of radio frequency (RF) transmitter and receiver, when the locations

of the transmitter and receiver are obtained via GPS (Global Positioning System) or other

position location technologies. More precisely, site specific prediction can predict channel

impulse response between a transmitter and a receiver; a channel impulse response usually

consists of multipaths, where each path has two key parameters: amplitude and the angle

of arrival (or, phase). Suppose multipaths can be resolved at the receiver; then, the total

received power at the receiver is simply the sum of the power of each resolved ray. Then,

the path loss can be computed by dividing the transmit power to the received power. The

resolution of multipaths can be done by using MIMO or other signal processing techniques.

In this dissertation, we assume that the signal processing on multipaths has been done and

consider only path losses, computed with the resolved and combined received power. It is

1Path loss is defined as the ratio of the transmit power of the RF transmitter to the received power at the
RF receiver, when no interference and noise exists in the environment. Path gain is the inverse of the path
loss.
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known that the environment affects the path losses. Nevertheless, empirical results show that

by modeling large fixed partitions and items in the environment (such as walls, book shelves,

and cubicles), the predicted path losses and empirical results are within 4 dB accuracy [4–19].

With the high accuracy, site specific predictions can be a useful means for wireless network

optimization.

Several indoor position location approaches, based on signal strength sensing, are

widely known today and used in some WLANs [23, 24]. Other triangulation methods can

also be used to locate a client. Modern cellular handsets are equipped with GPS chips or

other position location technologies. State-of-the-art GPS can work not only outdoors but

also indoors; various vendors, e.g. Metris and SnapTrack, provide indoor GPS solutions. The

indoor GPS technology by Metris can be compared to the matrix of satellites that create the

Global Positioning System; instead of satellites, Metris’ indoor GPS uses small infrared laser

transmitters that emit laser pulses to create a measurement universe. Then, photo detectors

pick up the signals and compute angle and positions based on the timing of the arriving light

pulses. Later when we mention site specific knowledge in this dissertation, we may implicitly

include the knowledge of the locations of APs and users, if there is no ambiguity.

The strength of centralized site specific predictions is that the central controller can

predict the strength of each individual constituent of the interference on RF devices (APs or

mobile users) in a very short time. Knowing individual constituents of the interference on every

device can help formulate a global optimization problem, thereby maximizing throughputs and

saving power, etc. Distributed measurement-based algorithms (with the knowledge of APs’

transmit powers via message exchanges) can learn individual constituent of interference over

time; nevertheless, the time needed to learn individual components may be too long, when the

number of interfering APs is large, as explained by the following example. We use Fig. 1.1 to

illustrate a simple measurement-based algorithm for learning every individual constituent of

the interference that c1 sees. In this dissertation, we assume that interference from difference

sources are additive. Let Scl,am denote the interference power from am to cl. We can compute

the individual values of Sc1,a2 , Sc1,a3 , and Sc1,a4 by doing three or more measurements. When
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Figure 1.1: We consider downlink traffic only. The interference on c2 is from a2, a3, and a4.

a4 is off, c1 can measure the sum of Sc1,a2 and Sc1,a3 ; say the sum is α. Similarly, c1 can

measure the sum of Sc1,a2 and Sc1,a4 (say the sum is β), as well as the sum of Sc1,a3 and Sc1,a4

(say the sum is γ). Then, we have the following three linear equations.

Sc1,a2 +Sc1,a3 = α

Sc1,a2 +Sc1,a4 = β

Sc1,a3 +Sc1,a4 = γ

(1.1)

Since the three equations above are linearly independent, the individual values of Sc1,a2 , Sc1,a3 ,

and Sc1,a4 can be solved. Suppose the number of base stations or APs is M , a client cl can

learn the individual interference power from M APs after cl performs enough times (at least

M times) of interference measurements to form a linearly independent system of equations

that have M variables. The learning time of this algorithm could become too long as M

becomes large; hence, this algorithm may not scale well. The algorithm can be simplified if

each client learns the interference power from only the APs that are in the range of causing

non-negligible interference at the client. In order to know which base stations are in the

interference range, site specific knowledge (such as the environments and the locations of APs
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and clients) is needed. Saving the learning time for measurement-based algorithms is a topic

for ongoing and future work. In this dissertation, we choose to use site specific knowledge to

predict a priori the interference power between any transmitter and any receiver.

The path loss predictions for all possible transmitter-receiver pairs are useful for inter-

ference management and on-line resource allocation algorithms (e.g. for frequency channels,

bandwidth, power). In the following subsections, we present the ideas of using site specific

knowledge on licensed or unlicensed bands (without or with rogue interferers).

1.1.1 Site Specific Knowledge for Licensed Bands

Let us use the frequency allocation problem as an example. Suppose there are only two

orthogonal frequency channels available, and each AP is assigned with either one of these two

channels. Let us consider the wireless data network in Fig. 1.1, and assume for now there is

much more downlink (from APs to users) than uplink traffic. Hence, we focus on interference

management for downlink traffic. We assume there are no other RF signal emitters other

than the APs and the mobile users shown on Fig. 1.1, since we consider licensed bands in this

subsection. Suppose that a central network controller communicates with all APs via wireline

network and knows the locations of all users and can predict the path losses between every

pair of AP and user. The central controller would like to maximize the average signal-to-

interference-plus-noise ratio (SINR) or throughputs seen across all users.

Site specific knowledge can predict the interference from every single interference, given

that the interfering source is active. The APs and the clients may be on or off and sending

either uplink or downlink traffic. The central network controller could gather the activity

states (on or off) of every AP and client and dynamically change the channels of all APs and

clients whenever the activity states of APs and clients change (e.g. turning on or off) in order

to minimize interference seen by APs and clients and maximize throughputs; however, such

a scheme has a high complexity. In this dissertation, we consider a simpler scheme where

APs and clients use a fixed set of channels during a longer period of time (say 5 minutes).

During this period, APs may turn on and off, but the channels remain the same; by doing
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so, the complexity is much lower, since channel switching occurs less frequently. Then a

question arises: how do we determine the channels that would work well irrespective of APs’

activities (on or off)? Our hypothesis is that we can optimize the channels for a specific case

where all APs are sending downlink traffic; then, the optimal channels for this case can also

work well in other cases. Of course, the channel gains between APs and clients vary from

time to time; hence, in each time period (say 5 minutes), the channel gains are sampled, and

the optimization is performed with respect to the sampled channel gains. Our hypothesis is

based on the empirical results that downlink traffic dominates in WLANs [11, 12, 25]. In this

dissertation, we show by simulation that our hypothesis is correct. So for now, we assume that

the central network controller does not care about the activities of APs, but simply optimizes

the channels assuming all APs are sending downlink traffic.

A central network controller with site specific knowledge can predict the signal power

at each user from the desired AP and the interference power at each user from any interfering

AP, once the locations of users are reported back to APs via short control packets. Then, the

network controller can perform a centralized optimization algorithm to easily maximize the

average SINR at users. In other words, the network controller has a bird’s-eye view on the

entire wireless network and can solve on-line resource allocation problems in a better way. As

the network becomes larger, having site specific knowledge will improve resource allocation,

as will be shown in later chapters of this dissertation.

The benefit of using site specific knowledge is obvious for licensed bands where all RF

signal transmitters are under the control of a single vendor (usually in a bounded geographical

area). There are hardly any rogue RF interference emitters because of the FCC regulation

(or equivalent RF spectrum regulations in other countries). On licensed bands, the central

network controller has complete control on the interference that is generated and can even

‘design’ interference.
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1.1.2 Site Specific Knowledge for Unlicensed Bands

Additional issues arise in unlicensed bands where there are uncontrolled RF interference

emitters; these emitters may be RF transmitter in independent networks. These uncontrolled

RF emitters may be APs from independent networks, microwave ovens, or other RF devices.

From the perspective of our controlled networks, we will call the interference from uncon-

trolled RF emitters background interference or rogue interference, and call the uncontrolled

RF emitters rogue RF interferers. Some measurements need to be performed at APs and

users to determine the background interference. For example, the central network controller

may periodically require the APs to stop transmitting for a short duration of time (say, one

second). In this duration, APs take turns in requiring all users associated with them to

perform measurements of background interference; note that each user needs to measure the

background interference for all available frequency channels. The users then feedback to APs

these measured background interference. Site specific knowledge along with measurements of

background interference make the estimations of SINR at users or APs more accurate. Note

that the measured background interference may consist of interference from a number of rogue

interferers. In this dissertation, we do not separate the constituents of the rogue interference.

Simulation results show that the aggregate background interference is useful enough to im-

prove the throughput of the network. Nevertheless, it is possible to decompose the constituents

of the aggregate background by using triangulation methods, for example [23,24].

We will use the example in Fig. 1.2 to illustrate such measurements of background

interference. We consider the case where multiple APs communicate with multiple users in

an indoor wireless local-area network (WLAN). The framework in Fig. 1.2 can also apply

to wireless metropolitan-area network (WMAN) if the wooden walls and cubicle walls are re-

placed with trees, buildings, mountains, and other common buildings and obstacles in outdoor

environments. First, a1 informs c1 and c2 by broadcasting a short control message; then, c1

and c2 feedback the measured background interference. The background interference at c1

should be the sum of the noise floor of the radio RF environment and the interference from
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Figure 1.2: Desired signals and two different types of interferences.

the uncontrolled RF source arogue, and similarly for c2
2.

Suppose only two orthogonal frequency channels are available, and arogue operates on

the first channel. What is the best frequency allocation for a1 and a2? Again, we would like

to determine the best frequency allocation for the case where all APs are sending downlink

traffic. Suppose a central network controller3 that controls APs a1 and a2 has a propagation

prediction engine with the site-specific knowledge for the particular bounded area shown on

Fig. 1.2. With the site specific knowledge and measured background interference, this network

controller can determine that a1 on the second channel and a2 on the first channel are the

solution that induces the least interference on users, particularly on c1, for the downlink-only

case. In this small example, the optimum frequency allocation may also be obtained by using

distributed measurement-based algorithms. For large networks with many APs and users,

however, site specific knowledge enables the central network controller to know the signal

2In Fig. 1.2, we assume the interference from arogue affects c1 greatly but does not affect c2 or c3.
3The central network controller is not shown on the figure, as this controller communicates with a1 and

a2 via wireline networks (e.g. backbone Internet). For illustration purposes, we assume the site specific
predictions are performed at the central network controller; however, APs that have adequate computing
capabilities may also be equipped with site specific knowledge and perform propagation predictions.
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power or the interference power between any pair of AP and user, thereby producing a better

solution for frequency or other resource allocation problems.

1.1.3 Summary Concerning Using Site Specific Knowledge

We are interested in an enterprise-like network that consists of many APs and clients.

We assume a central network controller can communicate with all controlled APs and know

the locations of all controlled APs and clients. We assume that the central network controller

can predict signal strength between any AP and client, given the AP is active and the central

network controller knows the transmit power of the AP. Note that the central controller must

know the active transmitters at any point in time in order to predict correct interference at all

times; this information may be too costly to obtain, but time sampling may be done. Since

downlink volume presently dominates WLAN traffic, this paper considers a case where all APs

are actively transmitting downlink traffic. It is reasonable to assume that frequency allocation

is optimized with respect to this most active case, since in this case, frequency allocation is

crucial for interference mitigation at users.

Therefore, the central network controller assumes all APs are always sending downlink

traffic, and tries to optimize the frequency allocations and transmit powers for this specific

scenario (downlink-only scenario). Simulation results in this dissertation show that the optimal

channels for the downlink-only scenario works well also in a network mixed with downlink and

uplink traffic, as long as downlink traffic dominates (which is true in most WLANs according

to [11, 12, 25]). Based on the downlink-only assumption, the central controller can use the

knowledge of channel gain between every AP and client to minimize interference seen at

clients and maximize throughputs. In addition, on unlicensed bands, interference from rogue

interference needs to be measured. Periodically APs stop sending traffic and require clients

to measure background interference coming from rogue interferers. Each client measures the

in-situ aggregate background interference. By using the aggregate background interference

and knowledge of channel gain between every AP and client, the central network controller

can estimate accurate SINR at each client with the assumption that all APs are actively
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sending downlink traffic, thereby minimizing interference seen by clients and maximizing the

throughputs of clients. In this dissertation, we consider perfect site specific knowledge; in

other words, we assume that the actual path loss between any transmitter and receiver can

be correctly predicted by the site specific knowledge. The effect of imperfect predictions of

channel gains is an ongoing and future work.

1.2 Frequency Allocation for Wireless Data Networks

For the two frequency allocation examples in Fig. 1.1 and Fig. 1.2, we assume that

downlink traffic volume dominates the total traffic volume, and thus uplink traffic volume is

ignored (according to [11,12,25], the ratio of downlink volume to uplink volume is 5:1 in typical

wireless LAN). The same assumptions will also be used as we describe the frequency allocation

algorithms in Chapters 3 and 4. Under such assumptions, we optimize the frequency allocation

for a most active case where all APs are actively transmitting downlink traffic. It is reasonable

that frequency allocation is optimized with respect to this most active case, since in this case,

proper frequency allocations are crucial for interference mitigation at users. On the other

hand, we consider both downlink and uplink traffic (with ratio 5:1) in a modest case where

APs are sometimes idle; then, interferences are naturally mitigated due to APs’ inactivity. In

such a modest case, frequency allocation plays a less important role in interference mitigation;

hence, the optimality of frequency allocation may not be critical in terms of users’ average

SINR or average throughput. Simulation results in Chapters 3 and 4 show that the frequency

allocation optimized for the most active case still performs very well for the modest scenario

with both downlink and uplink traffic, and also show that the frequency allocation algorithms

based on site specific knowledge outperform the measurement-based approach. When site

specific knowledge is unavailable, our proposed measurement-based algorithms can be used,

since they still outperform other published frequency-allocation algorithms.
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1.3 Transmit Power Control in Wireless Networks

In Chapters 3 and 4, we optimize frequency allocations to minimize co-channel in-

terference and maximize throughput of network, assuming the transmit power of APs and

users are fixed. Increasing the transmit power of an AP can potentially increase the downlink

throughput from this AP to its clients, but also induces larger interference on nearby APs or

clients that are on the same channel, thereby lowering their throughputs. Like Chapters 3

and 4, we focus on optimizing downlink transmissions, i.e., we control the transmit powers

of APs. In a network with multiple APs and clients, optimizing transmit powers requires

the knowledge of path gains between APs and clients, which can be estimated by using site

specific knowledge. A central network controller that communicates with all controlled APs

and has site specific knowledge can optimize transmit powers at APs to maximize and balance

the throughputs of all clients in the network. Our transmit power control works seamlessly

with the best frequency allocation algorithm to date (i.e., the one presented in Chapter 4) to

further improve users’ throughputs, e.g., we improve the 25, 10, 5, and 3 percentiles of users’

throughputs by up to 4.2%, 9.9%, 38%, and 110%, and save power by 20%.

1.4 Load Balancing for Wireless Data Networks

Since base stations or APs can operate on non-overlapping channels to avoid interfering

with one another, people consider increasing the capacity of WLAN by increasing AP density

and configuring channels appropriately. The scheme where neighboring APs provide overlap-

ping coverage in a region also ensures continuity of network access when users roam. This

is made possible by the increase of the number of non-overlapping channels in WLAN stan-

dards; for example, IEEE 802.11a provides up to twelve non-overlapping channels, whereas

802.11b/g provides three. Today’s wireless LANs have the characteristics of user congestions

at certain locations. Due to inappropriate association of users to APs, the bandwidth allo-

cation may be inefficient and unfair among users and across APs. As the number of APs

to which a user can connect increases, an algorithm that efficiently associates users to APs
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Figure 1.3: An example of load balancing. Two mobile users that are pointed by arrows are
not associated with the AP with the strongest signal; rather, these two users are associated
with farther APs to obtain better data transmission throughput. ‘Ch1, Ch2, Ch3’ denote
three orthogonal frequency channels.

becomes critical for power, bandwidth, and quality of service (QoS) management. In most

commercial 802.11 products, however, the default Strongest-Signal-First (SSF) approach, in

which each user chooses an AP with the strongest signal, results in unevenly distributed loads

among APs and poor performance [26]. Therefore, load balancing techniques are needed to

balance the load at APs and to provide fair throughput across all users. In Fig. 1.3, we show

the idea of load balancing. Suppose each AP has been allocated one of the three orthogonal

frequency channels (denoted by Ch1, Ch2, or Ch3) to reduce inter-cell interference. Note that

there are two mobiles users pointed by arrows. These two users are not associated with the

AP with the strongest signal (i.e. a1); rather, they are associated with farther APs (a2, a3) to

obtain better data transmission throughput. By associating these two users to farther APs,

the load of a1 is reduced. Load balancing is crucial when the spatial distribution of users are

non-uniform, which is often the case according to field measurements in [27]. Load-balancing
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can be done in either a distributed or a centralized way; we will present algorithms that can

work in both ways.
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Chapter 2

Literature Review

Past research has shown that RF signal parameters and throughput of wireless links

can be predicted quickly and accurately by using site specific knowledge and position lo-

cation capability. We exploit the site-specific predictions for optimizing wireless network

performances; particularly, by doing frequency allocation, transmit power control, and load

balancing, throughput of network can be improved. We first review prior research on site spe-

cific predictions, and then review the work on frequency allocation, transmit power control,

and load balancing, respectively.

2.1 Prior Research on Site Specific Predictions of RF Channels and
Network Throughput

First, Section 2.1.1 presents prior work on site-specific channel prediction techniques.

Then, Section 2.1.2 presents work on throughput prediction.

2.1.1 RF Channel Prediction

Techniques and algorithms for site-specific channel prediction for wireless communi-

cations have been developed in the past decade [4–19]. The work in [4] presents one of the

first models that can predict RF path loss. The prediction is based on the number of walls,

office partitions, and floors between the transmitter and the receiver, as well as the separation

distance between the transmitter and receiver, i.e., T-R separation. Each kind of partition

was found to induce a certain decibel (dB) of signal attenuation. Suppose two kinds of parti-

tions (e.g., soft partitions and concrete walls) have attenuation factors of AFs and AFc in dB,
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respectively. Suppose the path loss at a reference distance d0 is denoted PL(d0), which can

be found by calibration or by the formula given below

PL(d0) = 20 log10

(
4πd0

λ

)
, (2.1)

where λ denotes the wavelength of the radio wave carrier. Then the average path loss in dB

for a T-R separation of d can be modeled as

PL(d)[dB] = PL(d0)[dB] + 10 · n · log10

( d

d0

)
+ p · AFs[dB] + q · AFc[dB], (2.2)

where p and q denote the number of soft partitions and concrete walls between the transmitter

and the receiver, respectively. Other variant forms of (2.2) were introduced in [4]. Path loss

exponents (n) were found to be environment dependent, and statistical data were presented

in [4] for n. Path losses predicted by the models in [4] have about 5.8 dB of standard deviation

from measured data, and can be as small as 4 dB for some data sets. In general, the path loss

prediction models are accurate within 6 dB.

The SMT PlusTM tool is an easy-to-use coverage prediction tool that assists in the

design of indoor wireless systems. SMT PlusTM uses the path loss models introduced in (2.2)

and [4] to predict coverage.

The Site-Specific System Simulator for Wireless communications (S4W ) [7,13] provides

an accurate computation of the path losses as well as an estimate of the performance of a

targeted wireless system (e.g. WCDMA data communication systems). These propagation

modeling techniques require intensive and time-consuming computation. Nevertheless, quick

turn-around models that perform first-order approximations of the site-specific models have

been developed. A commercial product called LANPlannerr [13] uses clever engineering

assumptions and measurement integration to rapidly model indoor and outdoor environments.

2.1.2 Throughput Prediction

The work in [11, 12, 14–17, 23] presents models that can predict user data throughput

in a site specific manner. The work in [11, 12] has conducted the first systematic measure-

ment study for network traffic and users’ throughputs in public wireless local area networks

16



(WLAN). Accurate throughput models have been developed based on extensive measured

data of the public WLAN in Schlotzsky’s Inc., a national restaurant chain, and can be useful

for optimization of throughput and energy in wireless networks. It has been found that mobile

clients’ throughputs with different applications in WLAN can be well modeled by the applica-

tion type and the signal-to-interference-and-noise ratio (SINR) seen by users. The empirical

throughput models were applied to blindly predict throughputs in different environments, and

were shown to have good accuracy. It has also been found that the measured public WLAN

traffic was highly asymmetric with higher traffic from access points (AP) to mobile clients.

In addition, inbound and outbound packet sizes distributed very differently. Although file

downloading and peer-to-peer applications sometimes generated high network demands, the

majority of public WLAN users used HTTP protocol. Knowing the asymmetry helps the

design and optimization of frequency allocations, transmit power control, and other aspects

of wireless networks. In summary, the measurement results and models in [11,12] show that a

key to future WLAN deployment may be to use accurate site-specific propagation algorithms

for design, as well as real-time control of networks.

2.2 Prior Research on Frequency Allocations

Several algorithms in the literature [1,2,20–22] have tried to solve the WLAN frequency

allocation problem in many different ways, but have not found the optimum solution.

The work in [21] assumes each AP has a different fixed traffic load, and defines the

effective channel utilization of an AP as the fraction of time the channel is used for data

transmission or is sensed busy due to interference from other APs; then, the maximum effective

channel utilization among all APs is minimized. AP placement and frequency allocation are

jointly optimized in [22] with the same objective of minimizing the max channel utilization as

in [21].

The frequency allocation problem is modeled as a minimum-sum-weight vertex-coloring

problem in [20] where vertices are APs, and the weight of each edge between two APs denotes
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the number of clients that are associated with either one of these two APs and are interfered

by the other AP. In brief, the objective of the algorithm in [20] is to find a frequency allocation

that minimizes the conditional sum weight (the weight between any two APs is counted toward

the conditional sum weight only if these two APs use the same channel). The authors in [2]

mention that the shortcoming of [20] is the over-estimation of the interference seen by users.

Consider a simple example where the interference regions of four APs overlap and have a single

user that lies in the overlapping region. Then, the algorithm in [20] may assign four channels

to these APs respectively so that the conditional sum weight is zero and thus minimized;

otherwise, the conditional sum weight will be greater than zero. However, the algorithm in [2]

can find the optimum solution for this illustrative example, which is that only two channels

(say channel-1 and channel-2) are needed for zero interference at the only user, when this

user is assigned to an AP on Channel-1 and the other three APs use Channel-2. The vertex-

coloring method is inefficient in that edges between APs over-count the interference at the

single user.

The work in [2] focuses on minimizing the channel conflicts as seen by users and has

been shown to outperform [20]. Two key notions enable conflict minimization: the range set

and interference set of each client. The range set of a client c consists of all APs that c can

associate with. In other words, c can associate with any AP in the range set and form a

client-AP link, and the other APs in the range set may potentially induce interference at c, if

they are on the same channel as c. An AP a is in the interference set of a client c if a is not

in the range set of c, and a or any client within range of a are within communication range

of the client c or an AP within range of c. The interference set captures all possible APs

whose downlink or uplink traffic may interfere with the traffic from or to c. The centralized

algorithm in [2] takes the range set and interference set of all clients as input and maximizes

the number of clients that are conflict free. A client c is conflict free if c is associated to an AP

on channel-j, and no other AP in the range set or interference set of c is on channel-j. The

work in [2] also presents a modified algorithm that incorporates load balancing. Yet [2] lacks

a mechanism to handle rogue RF interferers, i.e., intentional or unintentional RF interferers,
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microwave ovens, or other RF devices that also operate on the same unlicensed bands as

WLAN. Hence the performance of [2] degrades in the presence of rogue interferers. Even with

a few or no rogue interferer, the performance of [2] is not as good as our proposed algorithms

in Chapters 3 and 4 due to the binary interference model used in [2].

The frequency allocation algorithm in [1] is distributed and runs at every AP. Each

AP selects a channel according to a certain probability distribution, and measures the in-

situ interference of the selected channel. If the measured interference at the AP is within a

predefined acceptable level, the AP will stay on this channel; otherwise, this AP will set the

probability of the current channel as zero, increase the probabilities of the other channels, and

then re-select a channel. Suppose there exists a channel configuration for all APs so that the

interference at every AP is within acceptable levels; then, the distributed channel selection

algorithm in [1] is proven to converge to one such proper channel allocation. The weakness

of the convergence result in [1], however, is the assumption that a feasible channel allocation

must exist for all APs to be within acceptable interference. In networks with high density of

APs or high interference from other RF devices, there may be no feasible channel allocation;

in such a case, the algorithm in [1] does not converge. One could in principle set a higher

acceptable level for the algorithm in [1] to work in high-interference regimes, but [1] does not

mention methods to adapt the acceptable level. It is not trivial to adapt this level, since

setting a high level will degrade network performance, but setting a low level will yield no

feasible solutions. The non-convergence result of [1] in the high interference regime is due to

the binary interference model. Our work in Chapters 3 and 4 use a physical rather than binary

model for interference; that is, we assume that interference power is a continuous quantity,

which properly represents the real world.
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2.3 Prior Research on Transmit Power Control

Chiang and Bell [28] present algorithms to solve nonlinear utility1 maximization over

powers and rates for three scenarios of wireless cellular networks: (1) single-cell downlink case

without interference; (2) multi-cell uplink/downlink case with interference; and (3) end-to-end

connections in a hybrid (wireless and wired backbone) network. The second category in [28] is

similar to the multiple-cell system this dissertation is interested. The work in [28] assumes that

a central network controller knows which APs and clients are actively sending data (downlink

or uplink, respectively), and optimizes transmit powers and transmission rates for these active

APs and clients. Whenever the set of active APs and clients changes, the central network

controller has to know the new set and perform the optimization of power and rates again.

Obviously, the overhead induced by [28] is considerable.

Foschini and Miljanic [29] consider that base stations are always sending downlink

traffic, and presents a distributed power control algorithm to minimize transmit powers so

that each user’s SINR meets the minimum SINR requirement. Uplink traffic is not considered

in [29].

Xiao [30] et al focus on a case when no feasible transmit power solution exists to satisfy

the SINR constraints for all clients in the entire wireless network; in such case, [29] does not

converge. The work in [30] may turn off several nodes to reduce interference levels, in order

that a solution that satisfies the SINR constraints can be found.

Hanly [31] and Yates and Huang [32] extend the work in [29] by considering jointly

optimal base-station selection and power control.

1Communication system performances are usually measured by some nonlinear network utility function of
rates. In [28], the sum of all users’ individual utility functions is the network utility In general, a network utility
function need not be a summation of all user’s utility functions, but rather can be a nonlinear combination
of them. For example, a network utility can be defined as the minimum of all users’ utility function. Then,
maximizing the network utility maximizes the bottleneck link in the entire network.
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2.4 Prior Research on Load Balancing

Several heuristic load-balancing schemes for wireless LAN have been presented [26,33–

35]. First, several vendors (such as Cisco, Symbol, Trapeze, Aruba, and Meru) make APs

with load-balancing functionalities; however, there is a paucity of literature on how these

functionalities are designed, and we suspect ad-hoc methods or techniques based on wired-

network literature are used.

Balachandran et al [26] observed that APs with such functionalities periodically send

beacons with current load. Based on the data sheet, the load is denoted by the number of

users, bit error rates, and signal strengths. However, several measurement studies have shown

that the number of users is not a good metric to determine the load [12,27]. Balachandran et

al proposes that each arriving user explicitly asks for a minimum and a maximum bound on

bandwidth/throughput [26]. Then, APs perform admission controls to associate the arriving

user to an AP that is within the user’s radio range and has the most available capacity. The

decision of admissions is made by a centralized admission control server that keeps the load

information of all APs. The protocol design and system architecture for QoS negotiations and

admission controls have been presented in detail in [26] and are shown to improve the degree

of load balance by over 30% and user bandwidth allocation by up to 52% in comparison with

schemes with little load balancing. The work in [33,34] presents a decentralized load balancing

algorithm that can be applied to IEEE 802.11a/b/g without modifying the standards while

being transparent to end users. It was shown by example that the throughput of a station

increases from 1.5 to 2 Mbps, and packet delays can be reduced from 450 to 8 ms. Fukuda et

al provides decentralized AP selection algorithms [35], wherein a user either selects the AP

that would possibly provide her the largest throughput or avoids the AP that has users with

low throughput. Simulation results show that the algorithms in [35] allow approximately five

times more users to achieve a certain throughput (e.g., 300 Kb/s). While work in [26, 33–35]

outperform schemes with little or no load balancing, they are not shown to be optimal. To

the best knowledge of the authors, the only work that achieves some form of optimality in

load balancing is [36], which achieves max-min fairness of user bandwidth.
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We note again that none of the load balancing work takes advantage of site specific

knowledge. We will investigate the benefits and effects of using site specific knowledge on

optimization algorithm designs.
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Chapter 3

Improved Measurement-Based Frequency Allocation

Algorithms for Wireless LAN or Cellular Networks

This chapter1 presents three algorithms that outperform all other published work for

allocating a limited number of orthogonal frequency channels to access points (APs) in wireless

networks. Unlike other work, we minimize interference seen by both users and APs, we use

a physical rather than binary model for interference, and we mitigate the impact of rogue

RF interference. Our three algorithms have different mechanisms of switching the channels of

APs based on the in-situ interference measured at clients and/or APs. The convergence of the

algorithms is proven and characterized. Our algorithms consistently yield high throughput

gains irrespective of network topology, the level of AP activity, and the number of controlled

APs, rogue interferers, and available channels. We outperform the best published work by

15% and 18% for mean and median user throughputs respectively, and 81%, 168%, and 1011%

for 25, 20, and 15 percentiles of user throughputs, respectively.

3.1 Overview, Main Contribution, and Organization of This Chap-
ter

We consider wireless packet-switched networks formed by access points (or base sta-

tions) and their clients (or users). Each access point (AP) transmits downlink traffic or

receives uplink traffic to/from its associated clients. APs can operate on orthogonal frequency

channels to avoid interfering with one another. However, when the number of frequency chan-

nels is limited relative to the number of APs, some APs inevitably use the same channel and

1Part of the work in this chapter has been submitted to IEEE Globecom 2007 [37].
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induce co-channel interference. In order to reduce such interference, judicious channel reuse

mechanisms are necessary. The same problem exists in cellular networks.

Recall that the work in [2] minimizes the number of clients whose transmissions suffer

channel conflicts; a client associated with an AP suffers conflicts if other clients or other APs

interfere with the client or the AP under consideration. The definition of channel conflict in [2]

is more comprehensive than those in [20–22]; the work in [2] has been shown to outperform

[20–22].

None of [2, 20–22] considers that interference from independent, i.e., noncooperative

networks or other RF interferers needs to be detected by sensors and avoided by proper

frequency allocation. (We refer to such RF interferers as rogue interferers or rogues for the sake

of brevity.) Rogue interferers are not uncommon [38], since the frequency bands for WLANs

are unlicensed (2.4 and 5 GHz), and APs deployed by individuals in a spontaneous manner

may induce interference on other noncooperative networks. The only published algorithm

that handles rogue interferers is introduced in [1]; however, it does not converge in high-

interference regime due to the binary model for interference, which is also used in [2, 20–22].

Our work considers a physical rather than binary model for interference; that is, we assume

that interference power is a continuous quantity, which properly represents the real world.

Most traffic in WLANs is downlink [11]; hence, maximizing downlink throughput and

signal-to-interference-and-noise ratio (SINR) seen by users are key to proper network design.

The work in [1,21,22] minimizes the interference at APs rather than minimizes that at users,

as is done in [2, 20], and thus often perform poorer than [2, 20].

The main contribution of this work is our three new algorithms that outperform all

other published work, i.e., those in [1,2,20–22]. The proposed algorithms perform well mainly

because they: (1) minimize interference seen by users rather than that seen by APs ; (2) use

a physical model rather than a binary model for interference; and (3) have the ability to

deal with rogue interferers. We propose that all or a subset of clients measure the in-situ

interference power on all frequency channels periodically when their associated APs are idle,
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and report the average measured power to their associated APs. This technique is used in

mobile-assisted hand-off (MAHO) in the cellular field [10], and results in this chapter may

also be applied to cellular networks. APs also measure in-situ interference power. Since

the measurements at APs or clients are performed during their idle time, the overhead is

negligible. Each AP then computes a metric called weighted interference which captures the

overall interference as seen by itself and its clients, by placing different weights on its and

the clients’ in-situ measurements according to the clients’ traffic loads, signal strengths, and

uplink and downlink traffic volume.

Organization: Section 3.2 introduces the system model and notation, and describes

the weighted interference in detail. The three proposed algorithms, denoted No-Coord, Local-

Coord, and Global-Coord, have different mechanisms for iteratively switching frequency chan-

nels in order to reduce the weighted interference seen in a single cell, a group of nearby cells,

or all cells, respectively, where a cell means an AP (or base station) and its associated users.

Section 3.3 presents the mechanisms used by the three algorithms and their convergence.

Then Section 3.4 shows by simulation that our algorithms substantially outperform those

in [1, 2, 20–22]. Section 3.5 concludes this chapter, followed by the appendix in Section 3.6,

which describes the idea concerning modeling the interference as well as proofs to the theorems

presented in this chapter.

3.2 System Model and Notation

We first describe basic notation; then Section 3.2.1 describes weighted interference,

a metric used in the three proposed algorithms to capture the overall interference of each

cell. The second subsection, Section 3.2.2 defines notation used exclusively for the proposed

Local-Coord algorithm.

Basic Notation: Throughout this dissertation, we interchange the use of the terms

‘frequency channel’ or ‘channel’, whenever there is no ambiguity. Suppose M APs, in-

dexed by M = {1, 2, . . . , M}, operate on K orthogonal frequency channels, indexed by
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K = {1, 2, . . . , K}. By orthogonality we mean that any two APs operating on different fre-

quency channels induce no, or negligible, interference on each other. We index users (or

clients) by L = {1, 2, . . . , L}. We denote the set of identities of APs by Xa = {am : m ∈ M}
and that of clients by Xc = {cl : l ∈ L}, respectively. We assume for this work that the

locations of the APs and the clients do not vary with time. Let X = Xa ∪ Xc, and assume

that no APs or users are at the same location. Let Lm (Lm ⊆ L) denote the set of users that

are associated with the AP am. We assume every user is associated with a single AP; hence
⋃

m∈M Lm = L, and Lm1 ∩ Lm2 = φ, ∀m1,m2 ∈ M, such that m1 6= m2, where φ denotes the

empty set. We define a cell Zm as the set which consists of am and all the users associated

with am, that is, Zm = {am} ∪ Lm.

Let fm (fm ∈ K) denote the channel that am operates on, and let ~f = (f1, f2, . . . , fM)

denote the channels of all M APs. Let Ak(~f) = {m ∈ M : fm = k} denote the set of APs

that use channel k; note that we explicitly write the dependence of Ak on ~f .

3.2.1 Metrics for Measurement-Based Frequency Channel Decisions

In brief, the weighted interference of each cell (say Zm) is intended to capture the

overall interference in the cell, and is therefore defined as a weighted sum of the average in-

situ measurements at am and at all clients associated with am, i.e., at every u ∈ Zm. We

propose that am or the clients associated with am measure their in-situ interference power

when there is no traffic within Cell Zm, i.e., am is neither transmitting or receiving data. The

average in-situ measured interference power at u (for every u ∈ Zm) on channel k is denoted

Iu
k (~f). The averaging period is a design choice and could be the same as the period that an

AP switches its channel, say 1, 2, or 5 minutes. Iu
k (~f) is lower-bounded by noise floor.

An AP can choose a frequency channel in order to reduce the co-channel interference

at the AP or at the users associated with this AP. We assume that each AP, say am, bases

its choices on a particular weighted interference function Wm
k (~f) for different channels k ∈ K.

Note Wm
k (·) is a function of the channel allocation vector ~f . Intuitively, am has a tendency to

choose a channel with a lower Wm
k (~f). In the following, we will describe how Wm

k (~f) captures
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the interference detected at both am and the users associated with am.

Suppose u ∈ Zm denotes either an AP or a user in the cell Zm. When the devices within

Zm are all idle (neither transmitting nor receiving), the device u measures the interference

power at each channel k. Then u computes the average of the measured interference power on

each channel k over a predefined period of time, and define this average as Iu
k (~f), k ∈ K. In

brief, Iu
k (~f) denotes the long-term average interference power that u measures at channel k.

The averaging period TA is a design choice and could be the same as the period that an AP

switches its frequency channel, say 1, 2, or 5 minutes. Iu
k (~f) is lower-bounded by noise floor.

Note that both the AP am and the users {cl : l ∈ Lm} measure interference from all cells

other than Zm; hence, Iu
k (~f) does not include signals generated by devices in Zm. However,

Iu
k (·) depends on fm, i.e., the channel on which the devices in Zm operate. For example, if am

operates on channel k, the devices in Zm induce interference on some devices in other cells

that are also on channel k, which in turn degrade the data transmission rate and prolong

the transmission time. Since the devices in other cells are active for a longer time interval,

the devices in Zm see a larger interference from these other cells. The work in [39] first

studied such mutual coupling phenomenon among multiple cells. Note that the interference

power refers to not only the noise floor but also the interference from co-channel APs, users,

or other rogue RF interferers that happen to be active when the device u is measuring the

interference. Thus, interference, as used here, is actually interference plus noise. If u is an AP,

it is reasonable to assume that u measures the interference power when u itself is idle, since

such measurements would produce negligible overhead. On the other hand, if u is a user, u

knows when am is idle by overhearing the control packets sent by am; it is reasonable for u to

measure the interference only when am is idle, since the transmit power of am or any other

user in Zm should not be counted as the interference on u.

We define a weighted interference function as seen by AP am and its clients on channel

k by

Wm
k (~f) =

∑

u∈Zm

Bu
k (Iu

k (~f)), k ∈ K, (3.1)
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Figure 3.1: An example of measured interference power at a1, c1, c2 for Channels 1 - 4.

where Bu
k (·) is a nonnegative and non-decreasing function that captures the weight of the

in-situ measurement at u. We require that Wm
k (~f) > 0 to capture the noise floor in the

real world. Bu
k (·) should be designed to reflect the difference of clients’ traffic demands,

signal strengths, and uplink and downlink traffic volume. The function Bu
k (·) captures the

importance or weight of the uplink and downlink traffic load and signal strength between

an AP and its users. Note that the weighted interference function defined here depends on

~f , as mentioned earlier, is the case for the measured interference function Iu
k (~f). We will

use an example to explain the significance of Wm
k (~f) and the design of Bu

k (·). Consider

K = 4 and Z1 = {a1, c1, c2} in Fig. 3.1, and they receive interference {Iu
k (~f), u ∈ Z1, k ∈ K}

from uncontrolled APs or RF devices that are not shown in the figure. We have W 1
k (~f) =

Bc1
k (Ic1

k (~f)) + Bc2
k (Ic2

k (~f)) + Ba1
k (Ia1

k (~f)),∀k∈ K = {1, 2, 3, 4}. Suppose c1 receives a stronger

signal from a1 than c2, and thus c1 has a larger tolerance to interference. Therefore, Bc1
k (·)

and Bc2
k (·) should be designed to reflect that Ic2

k (~f) contributes more to W 1
k (~f) than Ic1

k (~f)

does. Also note the interference seen by the AP affects uplink capacity, whereas that seen by

the clients affect downlink capacity. Suppose, for example, the downlink traffic to c1 is greater
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than that to c2, which is also greater than the uplink traffic to a1. Then Bc1
k (·), Bc2

k (·), and

Ba1
k (·) should be designed to reflect that Ic1

k (~f) contributes the most to W 1
k (~f), followed by

Ic2
k (~f), and Ia1

k (~f).

The formulation in (3.1) is intended to be general. Nevertheless, Bu
k (·) should be

designed to reflect the different of clients’ traffic demands, signal strengths, and uplink and

downlink traffic volume. In later sections, we will show that the convergence of two of our

proposed channel allocation algorithms (namely Local-Coord and Global-Coord) is guaranteed

if the weighted interference function has the general form in (3.1). Below we introduce two

simplified forms of Wm
k (·) representing practical metrics. The first form, denoted user-based,

places different weights on the in-situ interference measurements at clients based on the traffic

volume and the signal strength at each client. The user-based form captures the performance

of downlink transmission, which is appropriate for WLANs since traffic measurements show

that downlink traffic volume accounts for more than 84% of total (uplink plus downlink) traffic

volume [11]. The second form, denoted AP-based, includes the interference measurements at

APs only. The AP-based form can be viewed as a simplified version of the user-based one by

considering all users have the same traffic volume and signal strength.

1) User-based: The user-based weighted interference function for Zm is defined by

W
(C),m
k (~f) =

∑

l∈Lm

Ycl,am

Scl,am

· Icl
k (~f), (3.2)

where Scl,am denotes the average received signal power2 from am to cl, and Ycl,am denotes the

average traffic volume from am to cl. We incorporate the inverse of Scl,am in (3.2) because a

client with a stronger Scl,am has higher tolerance to interference and thus should contribute

less to the overall weighted interference. Ycl,am is included in (3.2) as a scaling factor, since a

client with higher traffic volume should be more important for the weighted interference. In

2Note cl cannot measure Scl,am directly but can estimate Scl,am as follows. The average in-situ SINR at cl

can be measured at cl when am is transmitting to cl, and is denoted γl. We assume the interference at cl is
the same whether am is transmitting to cl or am is idle, i.e., the interference at cl is always Icl

fm
(~f). Then we

estimate Scl,am = γl · Icl

fm
(~f).

29



practice, some users may be sampled to reduce the complexity of computing (3.2), i.e., the

summation in (3.2) may be over a subset of Lm.

2) AP-based: Only APs measure and compute the average interference, and users do

not take interference measurements. The AP-based weighted interference function for am is

defined by

W
(A),m
k (~f) = Iam

k (~f). (3.3)

As seen in (3.3) and (3.2), the computation of the weighted interference involves many

components: measurements of interference, signal strength, traffic load, and so on. Simulation

results show that measurement algorithms perform better with the user-based metric than

the AP-based. In later sections, when we say that we measure or compute the weighted

interference, we imply that we also measure all the components of the weighted interference.

The three proposed measurement-based algorithms in Section 3.3, along with the AP-

based metric in (3.3) and the user-based metric in (3.2), yield six combinations of algorithms.

In the simulation section (Section 3.4), we will evaluate the performance of these six combi-

nations, along with the other two proposed site specific algorithms.

3.2.2 The Set of Interfering and Interfered Cells

The interference as seen by users or APs in Zm,m ∈ M may increase when some APs

or users using the same channel are located within the proximity of Zm. Suppose am currently

operates on channel fm; we would like to formally define the set of cells that may potentially

affect the weighted interference Wm
fm

(·).

Definition 3.1. A cell Zn is an interfering cell of Zm if and only if there exists at least one

pair of (u, v), u ∈ Zm, v ∈ Zn so that ‘v’ induces non-negligible interference on ‘u’, given that

am and an operate on the same channel. In other words, an or a user in cell Zn may interfere

with the signal reception at am or a user in cell Zm, when an and am are on the same channel.

We also say that the cell Zn interferes with the cell Zm.
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Figure 3.2: Potential interferers for transmissions between the AP a1 and the user c1. The set
of interfering cells of Z1 is Q1 = {2, 3, 4, 5}, as covered in the gray area.

Definition 3.2. We define Qm so that n ∈ Qm if and only if Zn is an interfering cell of Zm.

We call Qm the set of interfering cells of Zm.

By non-negligible interference we mean that the level of interference power that can

be detected by RF receivers is non-negligible; for example, this level is more than the noise

floor at an RF receiver.

For example, Fig. 3.2 depictsQ1, the set of interfering cells of Z1; note that four possible

types of interference are shown amongst APs and clients; i.e., between a1 and another AP, a1

and another user, c1 and another AP, c1 and another user. Note that the effect of interference

may or may not be reciprocal, that is, m ∈ Qm does not imply n ∈ Qm. Let us again use

Fig. 3.2 as an example, we observe that a4’s transmission interferes with the signal reception

at c1, but the uplink transmission from c1 to a1 may not interfere the signal reception at a4
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since the transmit power of c1 may be low. In such case, we have ‘4 ∈ Q1’ but ‘1 /∈ Q4’. Hence

we have the following converse definition.

Definition 3.3. We define Gm such that n ∈ Gm if and only if m ∈ Qn. We call Gm the set

of cells interfered by Zm. For any n ∈ Gm, we say that Zn is interfered by Zm.

Note that both Qm and Gm are defined for the worst case where all APs are on the

same channel. The following definition is for the case where APs are on different channels.

Definition 3.4. Suppose the channels on which APs are operating are ~f . The cells interfered

by Zm that are currently on channel k are defined and given by

Gm,k(~f) ≡ Gm ∩ Ak(~f). (3.4)

The interfering cells of Zm that are currently on channel k are defined and given by

Qm,k(~f) ≡ Qm ∩ Ak(~f). (3.5)

Again we explicitly denote the dependence of Gm,k(·) and Qm,k(·) on ~f .

The cells that are actually interfered by Zm are those operating in the same frequency

as am, that is, Gm,fm(~f) = Gm ∩ Afm(~f). Similarly, the cells that interfere with Zm are

Qm,fm(~f) = Qm ∩ Afm(~f). Note that Qm and Gm depend on the locations of APs and

users, as well as on the radio propagation characteristics of the environment; according to the

definition, Qm and Gm do not vary with ~f , although Gm,k(·) and Qm,k(·) depend on ~f . The

concept of the sets of interfering and interfered cells in our work is similar to the notion of

interference set introduced in [2] except that our definitions center on cells rather than clients.

Naturally, the measure of interference should monotonically increase as there are more

interfering cells using the same channel. This is formally stated in the following assumption.

The following proposition introduces a similar property for the weighted interference function.

Assumption 3.1. For any two channel allocations ~f and ~g, ∀m ∈ M, ∀k ∈ K, such that

Qm,k(~f) ⊆ Qm,k(~g), we assume Iu
k (~f) ≤ Iu

k (~g) for all u ∈ Zm. Furthermore, if ~f and ~g satisfy

Qm,k(~f) ( Qm,k(~g), we assume Iu
k (~f) < Iu

k (~g) for all u ∈ Zm.
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Proposition 3.1. For any two channel allocations ~f and ~f ′, ∀m ∈ M, ∀k ∈ K, such that

Qm,k(~f) ⊆ Qm,k(~g), we have Wm
k (~f) ≤ Wm

k (~g). Furthermore, if ~f and ~g satisfy Qm,k(~f) (

Qm,k(~g), we have Wm
k (~f) < Wm

k (~g).

Proof. We will prove the first part, Wm
k (~f) ≤ Wm

k (~g). The proof of the strict inequality can

be done in the same manner.

Wm
k (~f) =

∑

u∈Zm

Bu
k (Iu

k (~f)) (3.6)

≤
∑

u∈Zm

Bu
k (Iu

k (~g)) (3.7)

= Wm
k (~g), (3.8)

where (3.6) and (3.8) hold according to the definition in (3.1). Equation (3.7) holds because

Bu
k (·) is non-decreasing by definition, and Iu

k (~f) ≤ Iu
k (~g) by Assumption 3.1.

Note that having Qm,k(~f) in Proposition 3.1 captures the spatial characteristics that

distinguish wireless from wired communications. In other words, the weighted interference

Wm
fn

(·) is affected only by the APs in the proximity of am; this characteristic will help us

design a scalable and distributed channel-assignment algorithm, namely Local-Coord.

Suppose am switches from channel k to k′, the cells that see changes in their weighted

interference are Zm and the cells indexed by Gm,k(~f) and Gm,k′(~f); hence the weighted in-

terference of the cells indexed by Hm,k,k′(~f) ≡ {m} ∪ Gm,k(~f) ∪ Gm,k′(~f) are examined by

Local-Coord if am switches from channel k to k′.

Another AP an can run Local-Coord simultaneously with am if the channel switching

of an induces negligible change of the weighted interference of the cells that may be examined

by Local-Coord, i.e. Zm and the cells indexed by Gm. We define Vm as the set of the indices

of cells that interfere with Zm or the cells indexed by Gm, i.e. i ∈ Vm if and only if there

exists j ∈ {m} ∪Gm such that Zi interferes with Zj. The cells indexed by Vm include all the

cells that cannot simultaneously change channels with am. The notation of Vm is used for
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the distributed protocol of Local-Coord. Suppose we are given the locations of all controlled

APs and possible locations of clients; then the sets of Gm and Vm can be pre-computed and

pre-configured in the controlled APs or a central network controller that communicates with

the controlled APs, using radio propagation prediction models as described in [10,40,41].

3.3 Three Measurement-Based Algorithms

Three proposed algorithms all have an iterative nature. At each point in time (prede-

fined, randomly chosen, or determined at runtime), say every 1, 2, or 5 minutes, one iteration

of channel switching takes place where one or more APs switch their frequency channels ac-

cording to mechanisms that are specific to the proposed algorithms and are the weighted

interference function as defined in Section 3.2.1, while other APs stay on their current chan-

nels. In hardware, the time needed for channel switching is on the order of milliseconds and

is thus negligible as compared to the time interval between two iterations. APs and clients

measure and average their in-situ interference between every two successive iterations, and

compute the weighted interference function. Iterations keep taking place on different AP(s)

until the number of iterations reaches a limit or the overall AP frequency allocation reaches

a state where no APs will change their channels according to the specified mechanism, which

we refer to as convergence.

Below we describe the three proposed algorithms that all use the metric Wm
k (~f) to

make frequency channel selection decisions. The three algorithms have different levels of

coordination among APs. We call them No-Coord, Local-Coord, and Global-Coord to represent

no coordination, local coordination, and global coordination, respectively. In the description

of the following three algorithms, we suppose that at any point of time, only one AP (say

am) changes its channel. We relax this assumption for Local-Coord to allow multiple APs to

switch their channels concurrently; the relaxation makes the proposed Local-Coord algorithm

scalable. We also study the convergence and the characteristics of convergence points of the

three algorithms.
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Throughout this chapter, ~f ′ ∈ KM denotes a vector of channels selected by APs after

the representative AP am moves from channel fm to f ′m. Hence ~f ′ differs from ~f in only the

m-th element.

To evaluate the gain of using the interference measurements reported from users, we

consider a baseline case where only APs measure in-situ interference. We refer to these two

kinds of interference measurements as user-based and AP-based, respectively. For each of the

three measurement-based algorithms, we compare the user-based with the AP-based. AP-

based measurements may not reflect the interference that users see, since users on different

locations see different interference. Since user-based interference measurements directly affect

the throughput of downlink traffic, which is the majority of WLAN traffic [11, 27], our hy-

pothesis is that the proposed algorithms achieve higher throughput by using the user-based

measurements, as compared to using the AP-based. This hypothesis is corroborated by our

simulation results given in Section 3.4.

3.3.1 The No-Coord Algorithm

In each iteration, one or more APs changes its (or their) channels, and each of these

APs, without coordinating with any other APs, moves to a new channel where the AP and

the users associated with the AP see a lower weighted interference (for simplicity, we say that

the ‘cell’ of the AP sees a lower interference). In other words, each AP makes a simple local

greedy decision for channel selection. Since this algorithm requires no coordination among

APs, it is denoted No-Coord. In other words, a representative AP am will switch from its

current channel fm = k to f ′m = k′ only if

No-Coord Condition: Wm
k (~f) > Wm

k′ (
~f ′). (3.9)

3.3.2 The Local-Coord Algorithm

Assume only one AP, represented by am, changes its channel in each iteration. If am

switches from channel k to k′, Zm and the cells in Gm,k(~f) and Gm,k′(~f) will see changes
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Figure 3.3: The heights of Solid and dotted bars respectively signify the weighted interference
power seen by cells before and after AP-1 switches from Channel 1 to Channel 2. The max
weighted interference seen by Cells 1− 4 decreases after AP-1 switches to Channel 2.

in their weighted interference. If the max interference seen by these cells decreases after am

switches to the new channel k′, am remains on the new channel; otherwise, am returns to the

original channel k. Note am needs to locally coordinate with the APs in Gm,k(~f) and Gm,k′(~f)

for the channel adjustment; hence this algorithm is denoted Local-Coord. The Local-Coord

Condition is

max
i∈Hm,k,k′ (~f)

W i
fi
(~f) > max

i∈Hm,k,k′ (~f)
W i

f ′i
(~f ′), (3.10)

where Hm,k,k′(~f) has been defined in Section 3.2.2. This algorithm is denoted Local-Coord,

since am needs to locally coordinate with the APs indexed by Gm,k(~f) and Gm,k′(~f) via wired

backbone network for the channel switching.

For example, Fig. 3.3 depicts the cells that see changes in weighted interference before

and after AP-1 switches its channel. Since the max weighted interference seen by Cells 1− 4

decreases, AP-1 remains on the new channel.

Section 3.3.2 will describe in detail that every iteration of Local-Coord has such a

decreasing characteristic, or more precisely, the interference seen by APs are lexicographically

decreasing in each iteration. This decreasing characteristic enables us to prove that this

algorithm converges in a finite number of iterations.
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Table 3.1: A variable ψm used in the protocol for Local-Coord.

ψm Channel switching at am Can am be locked?

-1 am is in the process of switching its channel No

0 am can initiate the process of channel switching Yes

1 or more am cannot initiate the process of channel switching Yes

The condition in (3.10) enables us to prove the convergence of the Local-Coord algo-

rithm in Theorem 3.2 and show the characteristics of the convergence point in Section 3.3.6.

This condition also implies that the decision of am is influenced by the weighted interference

of the cells in Gm,k(~f) and Gm,k′(~f). In other words, am needs to locally coordinate with the

APs in Gm,k(~f) and Gm,k′(~f) for the channel adjustment. It is why this algorithm is called

Local-Coord. The nature of local coordination also implies that any cell that does not interfere

with the devices in Zm, Gm,k(~f), and Gm,k′(~f) can switch its channel at the same time as am.

We have the following formal definition.

Definition 3.5. We define Vm as the set of cells that cannot simultaneously change channels

with am, i.e., i ∈ Vm if and only if there exists n ∈ {m} ∪Gm,k(~f) ∪Gm,k′(~f) so that i ∈ Qn.

Since coordination among APs is confined in a local area, multiple APs that are far

apart enough can change their channels in the same iteration if a proper inter-AP protocol

is employed. We define the distance between two cells as the maximum distance between

two devices in the two cells respectively. The distance between Zm and any cell Zn, n ∈ Vm

is upper bounded because of the decaying nature of radio wave propagation. Therefore, the

number of APs that can simultaneously change channels grows linearly (asymptotically) with

the number of total APs and depends on spatial density of APs and propagation characteristics

between APs. Hence, the Local-Coord algorithm is scalable.

Fig. 3.4 presents a protocol for coordination among APs. First we suppose that each

AP has an independent random timer that triggers the AP to initiate the process of switching

its channel. Part (a) of Fig. 3.4 describes the procedure that a representative AP am performs

after the timer at am is triggered. We say an AP am is locked, if am is not allowed to switch
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(a) Suppose a timer triggers am to consider initiating a channel switching. Then am will do
the following procedure.

1: if ψm = 0 then
2: Phase 1 : Set ψm = −1 and send requests to lock all APs indexed by Vm, i.e., {an :

n ∈ Vm}.
3: Phase 2 : Wait for replies from {an : n ∈ Vm}.
4: if If the replies indicate that {an : n ∈ Vm} were all successfully locked by am then
5: am switches its channel from k to k′, and stays at k′ if (3.10) is satisfied; otherwise,

am switches back to channel k.
6: Send messages to unlock {an : n ∈ Vm}.
7: else
8: Send messages to unlock the APs among {an : n ∈ Vm} that were just successfully

locked by am. (Do not need to unlock the APs that could not be locked by am.)
9: end if

10: Set ψm = 0.
11: end if

(b) Upon receiving a locking request from am, an will do the following procedure.

1: if ψn 6= −1 then
2: Increase ψn by one.
3: Reply to am that an was successfully locked by am.
4: else
5: Reply to am that an could not be locked.
6: end if

(c) Upon receiving an unlocking request from am, an will decrease ψn by one.

Figure 3.4: A protocol for the distributed implementation of Local-Coord.
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its channel per other APs’ requests; if am is unlocked, am may switch its channel. If am has

been locked by other APs, am will ignore this trigger and wait for the next time the timer

at am is triggered. The cells indexed by Vm cannot simultaneously change channels with am.

The key idea of this protocol is that am needs to lock all the APs indexed by Vm before it

switches to a new channel, and then unlocks those APs. The procedure to handle locking and

unlocking requests are described in parts (b) and (c) of Fig. 3.4, respectively. Phases 1 and

2 of the proposed protocol make sure that all the APs indexed by Vm can be locked before

am switches its channel. If any AP indexed by Vm cannot be locked, am cannot switch its

channel. When an AP is locked, it cannot initiate a process of channel switching. An AP can

be locked for multiple times by other APs. Let ψm denote the number of times that am has

been locked. Only when ψm = 0 can am initiate the process of channel switching. When am is

in the process of switching its channel (denoted by ψm = −1), it cannot be locked; we denote

this condition by setting ψm = −1. Table 3.1 describes the significance of ψm.

If a distributed protocol is not carefully designed, a problem called deadlock may occur.

In the context of distributed frequency allocation, a deadlock is a situation wherein two or

more APs that have initiated the process of switching their channels are waiting for each other

to finish before any of these APs proceeds to finish the process of channel switching, and thus

none of these APs can ever finish. We have the following theorem.

Theorem 3.1. Deadlocks do not occur in the distributed protocol described in Fig. 3.4.

Proof. The deadlock situation arises only when all of the four necessary conditions described

in [42] are operative. One of the four conditions is the “no preemption” condition, where

resources cannot be forcibly removed from the tasks holding them until the resources are used

to completion. In the context of the protocol in Fig. 3.4, a task is the channel switching at

an AP, and a resource is an AP. Phase-3 of the protocol implies that if not all the resources

can be locked, the task will release locked resources3. Thus, the “no preemption” condition

will not arise.

3Havender has suggested this so-called “all-or-none” approach for deadlock prevention [43].
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3.3.3 The Global-Coord Algorithm

The third measurement-based algorithm considers the sum weighted interference over

all APs on each channel. An AP will switch to a new channel only if the sum interference

on the new channel is lower (after the AP switches there) than the sum interference on its

current channel, i.e., only if the following condition holds.

Global-Coord Condition:
∑

n:fn=k

W n
k (~f) >

∑

n:fn=k′
W n

k′(
~f ′). (3.11)

In other words, am considers a globally ‘good’ channel k′ that has a lower sum weighted

interference, even after am switches to k′. This algorithm requires global coordination among

APs using a central network controller that communicate with all APs, and is thus denoted

Global-Coord.

3.3.4 Implementation Concerns

Note that in the descriptions of the three proposed algorithms, some terms of weighted

interference are unknown before the AP under consideration (say am) switches to the new

channel. An implementation may require am to switch to a new channel by trial, and then

require one or more cells to measure and compute their weighted interference after am switches

to the new channel. Thus, only when all the quantities needed for the channel decisions are

known can am decide whether switching to the new channel complies with the condition

described for each algorithm. If the condition is satisfied, am will accept this channel switch

and stay on the new channel; otherwise, am may switch back to the old channel or try another

possible channel to switch to. No-Coord requires the weighted interference at cell Zm, Local-

Coord at cells {Zi : i ∈ {m} ∪ Gm,k(~f) ∪ Gm,k′(~f)}, and Global-Coord at all cells. Note that

this trial process should not be purely blind guesses, but can be improved by using channel

estimation techniques.
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3.3.5 Convergence

Theorem 3.2. Consider a particular realization of the locations of APs and users (i.e.,

Xa,Xc) and a weighted interference function of the form of (3.1). Given any set of initial AP

channel choices, the channel selection process converges for Local-Coord and Global-Coord

in a finite number of steps.

In proving Theorem 3.2, we will use the following definitions and two lemmas. The

proofs of the lemmas are presented in Section 3.6.2.

Definition 3.6. Suppose we have two vectors with the same length N , say ~v = (v1, v2, . . . , vN)

and ~v′ = (v′1, v
′
2, . . . , v

′
N). We sort the elements of ~v in non-increasing order and denote it as

~u = (u1, u2, . . . , uN), and similarly denote ~u′ as the non-increasing sorted version of ~v′. We say

that ~v lexicographically dominates ~v′ (or ~v Â ~v′) if there exists some index j, where N ≥ j ≥ 1

for which uj > u′j and ui = u′i for all i < j. We also say that ~v has a higher lexicographic

order than ~v′.

Definition 3.7. Two vectors ~v and ~v′ have the same lexicographic order if their non-increasing

sorted versions ~u and ~u′ are element-wise the same.

Definition 3.8. We say ~v º ~v′ if ~v Â ~v′ or ~v and ~v′ have the same lexicographic order.

Lemma 3.1 (The lexicographically decreasing nature of Local-Coord). Suppose am is a rep-

resentative AP switching its channel from k to k′ according to the Local-Coord Condition

in (3.10), and the channels of all the other APs remain unchanged. Let ~f, ~f ′ ∈ KM respec-

tively denote a vector of channels selected by APs before and after the representative AP am

moves from channel fm to f ′m. Hence ~f ′ differs from ~f in only the m-th element, that is,

f ′n = fn,∀n 6= m, and f ′m 6= fm. Define

~α(~f) =
(
W 1

f1
(~f),W 2

f2
(~f), . . . ,WM

fM
(~f)

)
(3.12)

~α(~f ′) =
(
W 1

f ′1
(~f ′),W 2

f ′2
(~f ′), . . . , WM

f ′M
(~f ′)

)
. (3.13)

Then we have ~α(~f) Â ~α(~f ′).
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The proof is in Section 3.6.2.

Lemma 3.2 (The lexicographically decreasing nature of Global-Coord). Suppose am is a

representative AP switching its channel from k to k′ according to Global-Coord Condition in

(3.11), and the channels of all the other APs remain unchanged. Define

~β(~f) =

( ∑

n:fn=1

W n
1 (~f),

∑

n:fn=2

W n
2 (~f), . . . ,

∑

n:fn=K

W n
K(~f)

)
(3.14)

~β(~f ′) =


 ∑

n:f ′n=1

W n
1 (~f ′),

∑

n:f ′n=2

W n
2 (~f ′), . . . ,

∑

n:f ′n=K

W n
K(~f ′)


 . (3.15)

Then we have ~β(~f) Â ~β(~f ′).

The proof is in Section 3.6.2.

Proof of Theorem 3.2. We will first prove the convergence of Local-Coord. We form a directed

graph G with all possible channel vectors ~f as nodes and all channel adjustments that satisfy

Local-Coord Condition in (3.10) as edges (recall that we assume only one AP switches its

channel at any point of time). We will show that this graph is acyclic, then we can conclude

that the algorithms will converge to one of possibly many sink nodes in G. Note that the

number of nodes in G is finite, since the number of channel choices is finite. Since G is acyclic

and finite, any initial channel selection will converge to a sink in a finite number of steps. We

can show the acyclic nature of G by contradiction: First we note that lexicographic order is

a total order [44] and thus possesses the transitive property, that is, if ~v Â ~v′ and ~v′ Â ~v′′,

then ~v Â ~v′′. Suppose there exists a cycle on G. Suppose ~f 0, ~f 1, ~f 2, . . . are nodes on this cycle.

As we travel through this cycle once, we will see that ~α(~f 0) Â ~α(~f 1) Â ~α(~f 2) Â . . . Â ~α(~f 0)

according to Lemma 3.1. This implies ~α(~f 0) Â ~α(~f 0) according to the transitive property of

lexicographic order, which is a contradiction since ~α(~f 0) does not lexicographically dominate

itself (see Definition 3.6).

The proof of Global-Coord is similar to that of Local-Coord except that the edges

of G are all the channel adjustments satisfying Global-Coord Condition in (3.11), and ~α(·)
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is replaced with ~β(·). Based on Lemma 3.2, we can prove the convergence using the same

argument for Local-Coord.

3.3.6 Characterization of Convergence Points

We will characterize the convergence of frequency allocations for No-Coord, Local-

Coord, and Global-Coord, respectively. First, we use the well-known Nash equilibria notation

[45] for frequency allocation.

Definition 3.9. A vector of frequency allocations denoted by ~f is a Nash equilibrium (a

concept widely used in game theory [46]), if no single cell can lower its weighted interference

by changing only its own channel.

Then, we define local and global minimums with respect to lexicographic order.

Definition 3.10. We say that a vector of frequency allocations denoted by ~f ∈ KM is at

a local lexicographic minimum with respect to a vector function ~θ(·), if for any vector of

frequency allocations ~f ′ ∈ KM that differs from ~f in only one element, ~θ(~f ′) º ~θ(~f) holds

true.

We have the following results based on Definitions 3.9 and 3.10.

Theorem 3.3. Suppose No-Coord converges to a frequency allocation ~f . Then, ~f is a Nash

equilibrium.

Proof. We will prove this by contradiction. Suppose No-Coord converges at a frequency

allocation ~f , but ~f is not a Nash equilibrium. Then there exists at least one AP, say am,

and one channel f ′m that is different from am’s current channel fm so that am can switch from

its current channel fm to f ′m to strictly decrease the weighted interference of cell Zm, i.e.,

Wm
f ′m

(~f ′) < Wm
fm

(~f). Then, the frequency allocation should not have converged, since am can

switch to channel f ′m according to the No-Coord condition in (3.9).
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Note that No-Coord does not always converge, although simulation results show that

No-Coord converges in most cases. Theorem 3.3 is for the cases where No-Coord converges;

the frequency allocation is converged to a Nash equilibrium. One may limit the number of

iterations or specify a minimum gradient slope to rescue and implement No-Coord.

Below we state a technical assumption useful in proving Theorems 3.4 and 3.5 in

Section 3.3.6.

Assumption 3.2. Since the weighted interference in (3.1) takes a continuum of values, it is

reasonable to assume that the weighted interference values at different cells or channels are

distinct, i.e., ∀k, j ∈ K, ∀m,n ∈M such that k 6= j or m 6= n, we have Wm
k (~f) 6= W n

j (~f) with

probability one.

Theorem 3.4. Suppose Local-Coord converges at a frequency allocation ~f . Then with prob-

ability one, ~f is at a local lexicographic minimum with respect to the vector function ~α(·) as

defined in (3.12).

The proof is in Section 3.6.2.

Theorem 3.5. Suppose Global-Coord converges at a frequency allocation ~f . Then with prob-

ability one, ~f is at a local lexicographic minimum with respect to the vector function ~β(·) as

defined in (3.14).

The proof is in Section 3.6.2.

3.4 Simulation Results

Section 3.4.1 describes the simulation setup, where we consider a scenario with only

downlink traffic and another scenario with downlink and uplink traffic. Sections 3.4.2 and

3.4.3 discuss the simulation results for the two scenarios respectively.
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No. Algorithm Abbr.

1 Local-Coord User-based Lo-U

2 No-Coord User-based No-U

3 Global-Coord User-based Gl-U

4 Local-Coord AP-based Lo-A

5 No-Coord AP-based No-A

6 Global-Coord AP-based Gl-A

7 CFAssign-RaC [2] CF

8 Leith-Clifford [1] LC

Table 3.2: Three proposed measurement-based algorithms and two types of weighted interfer-
ence functions yield six combinations that are shown between the first and the sixth row. The
last two rows show two other published algorithms. The last column shows the abbreviation
of each algorithm.

3.4.1 Simulation Setup

We will compare our proposed algorithms against CFAssign-RaC in [2] and Leith-

Clifford in [1]. Table 3.2 lists all the algorithms to be compared. The three proposed

measurement-based algorithms (presented in Sections 3.3.1, 3.3.2, and 3.3.3, respectively)

with two possible weighted interference functions, namely AP-based in (3.3) and user-based in

(3.2) yield six combinations of algorithms, as shown between the first and the sixth row in Ta-

ble 3.2. Note that the AP-based counterpart of each measurement-based algorithm serves as

a baseline to determine the gain of using the more complicated version of user-based weighted

interference metric. As described in the overview section (Section 3.1), CFAssign-RaC has

been shown to outperform the frequency allocation algorithms in [20–22], yet it does not con-

sider rogue RF interferers. Leith and Clifford in [1] introduced a first frequency allocation

algorithm to deal with rogues, but they did not consider the interference as seen by users.

Our proposed algorithm consider the factors neglected by [1, 2, 20–22] and therefore should

yield better frequency allocation.

According to [11,12,27], the ratio of downlink volume to uplink volume is 5:1 in typical

wireless LAN. In the first part of our simulations, we assume all traffic is downlink, and we
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optimize the frequency allocation for a worst case where all APs are actively transmitting

downlink traffic. It is reasonable that frequency allocation is optimized with respect to this

worst case, since in this worst case, frequency allocation is crucial for interference mitigation

at users. Section 3.4.2 presents numerical results for this downlink-only scenario. Then,

we examine the performance of the optimized frequency allocations in the presence of both

downlink and uplink traffic, and present the results in Section 3.4.3. It has been shown in [39]

that uplink and downlink capacities in multiple cells are mutually coupled due to inter-cell

interference, and no system-level analytic model has been found to model activities of multiple

APs. We consider that time is slotted, and propose an approximate probabilistic model where

APs independently choose one of the three possible activity states at each time slot. An

AP is can be transmitting downlink traffic, receiving uplink traffic, or idle, with probabilities

pd, pu, and pi = 1 − pd − pu, respectively. For any AP that is transmitting downlink traffic

or receiving uplink traffic at a certain time slot, a user is randomly chosen (with uniform

probability distribution) out of all the users associated with this AP to be the recipient or the

sender of the traffic. We fix the ratio of pd to pu as 5:1, and simulate eight cases where pd +pu

(the probability that an AP is active) is 1/8, 2/8, 3/8, . . ., 8/8, respectively. We intend to see

the effect of pd +pu on the performance of the proposed algorithms. For each case we simulate

10 independent runs, each with 100, 000 time slots. Note that we assume that the activity of

each AP is independent from the other APs. This assumption is not true in reality, but it

simplifies the simulations and provides a rule-of-thumb for the performance comparison.

To evaluate the performance of various frequency allocation algorithms, we follow the

same procedure. For each algorithm, we first assign random frequency channels to APs and run

each algorithm mentioned in Table 3.2 until it converges. Then, we compute the performance

metric (e.g. user throughput) at the converged frequency allocation, as can be seen in the next

subsection. Note that for the No-Coord algorithm (either AP-based and user-based) whose

convergence is not guaranteed, we limit the number of iterations, where an iteration denotes

a change of frequency channel at a single AP. In most cases, No-Coord converges quickly, and

the number of iterations is usually less than the number of APs. Therefore we can limit the
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Figure 3.5: The coverage area of each AP is modeled as a hexagon. The separation distance
between two adjacent APs is denoted as d; then the distance from an AP to its farthest user
is d√

3
.

number of iterations to be three or four times the number of APs and determine whether

No-Coord converges in a given setting of APs, users, and interferers, according to whether the

number of actual iterations has reached the limit. In subsequent paragraphs, we will explain

in detail the simulation configuration for APs, users, and interferers.

It is known that the coverage area of an AP can be modeled as a hexagon [10]; for

brevity, we refer to the coverage of an AP as the coverage hexagon of the AP. For example,

Fig. 3.5 shows nine APs and their coverage hexagons. Note that there are three rows, each

row with three APs; for brevity, we call the AP layout on Fig. 3.5 a 3-by-3 layout. The

simulation in this section considers large, medium, or small networks with 100, 49, or 16 APs

on a 10-by-10, 7-by-7, or 4-by-4 layout, respectively.
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We will explain by using Fig. 3.5 how to determine the distance between adjacent APs.

Suppose the separation distance between two adjacent APs a1 and a2 is denoted as d. It is

obvious that the farthest user (denoted as c1) from a1 is located on the vertex of the a1’s

coverage hexagon. From geometry we know that the distance from a1 to c1 is

ds =
d√
3
. (3.16)

We want to design d so that the farthest user still has reasonable SINR and throughput. We

consider only large-scale path losses without small-scale fading. Let Ptx denote the transmit

power of a1 and Prx denote the received power of c1. The path loss formula (cf. [10, 47]) is

Prx = PtxK0

(
d0

ds

)α

, (3.17)

where α is the path loss exponent, K0 is a unitless constant which depends on the antenna

characteristics and the average channel attenuation, and d0 is the close-in reference distance

which is determined from measurements close to the transmitter. We assume that antenna

gains at a1 and c1 are both unity; then the value K0 can be set to the free space path loss at

distance d0 ((cf. [10, 47])):

K0 =

(
λ

4πd0

)2

. (3.18)

For microcellular networks, d0 can be set to 100 meters or 1 meter (cf. [10]); for the simulations

in this section, we sets d0 to 1 m.

We derive ds (the distance between a1 and c1) from (3.17) and (3.18):

ds =

[
Ptxd

α−2
0

Prx

( λ

4π

)2
] 1

α

(3.19)

For the farthest user c1 to be able to decode desired signal from a1, we find from trial

and error that most users (especially the users on the edges of hexagons) can have reasonable

throughputs from APs when the desired signal at c1 is three times the noise power at a receiver

(denoted as Pn):

Prx ≥ 3Pn. (3.20)

48



The thermal noise power (cf. [10]) is modeled as

Pn = kT0B, (3.21)

where k is Boltzmann’s constant (k = 1.3806503× 10−23 Joules/Kelvin), T0 is ambient room

temperature (typically taken as 290 K to 300 K), and B is the equivalent bandwidth of

the measuring device. We assume d0 = 1 m, T0 = 300 K, B = 30 MHz (the bandwidth of

IEEE 802.11b/g systems), λ = 1
8

m (the wavelength for the 2.4 GHz carrier frequency of IEEE

802.11b/g), Ptx = 10 mW, and α = 3 (for indoor environment [10]). In this section, we assume

thermal noise is the only constituent of the ambient noise (or noise floor); Section 3.4.2.1

considers realistic noise floor. Now we set Prx = 3Pn (the equality in (3.20)); then from (3.19)

we obtain ds = 138.46 m. Thus from (3.16) the separation distance between two adjacent

APs is

d =
√

3ds = 239.8 m. (3.22)

We first put APs on a regular 4-by-4, 7-by-7, or 10-by-10 layout, and then randomly

move each AP with a small distance (say 0 ∼ 5 meters) to break symmetry, since symmetric

AP layouts are uncommon in real world. We say such AP layouts are uniform. In order to

model deployment error or irregularity, we also consider a nonuniform AP layout where each

AP is randomly perturbed from the regular 4-by-4, 7-by-7, or 10-by-10 layout by dm = d/4.

The separation distance for the nonuniform AP layout needs to be reduced to dnu = 0.8d in

order to guarantee reasonable throughputs on users.

Then we determine the entire area where users may be located. Let Amin denote the

smallest rectangle area that covers all the APs; Amin may cover only 1/4 of the coverage

hexagon of the AP on the corner of the AP layout. Let Arec denote a rectangle that is a result

of stretching each side of Amin by d/10 (or dnu/10 for nonuniform AP layouts); hence, Arec

covers more of the coverage hexagons of corner APs. As we expand Amin to become Arec, some

region in the expanded rectangle is not covered by any AP’s coverage hexagon. In order to

limit such uncovered area, we cannot expand Amin too much; that is why we choose to expand

each side by d/10 or dnu/10 for nonuniform AP layouts).
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Table 3.3: Scenarios considered in the simulations

Scenario Number AP layout % of rogues Nonuniform or Uniform

1 4x4 10% Nonuniform

2 7x7 10% Nonuniform

3 10x10 10% Nonuniform

4 4x4 40% Nonuniform

5 7x7 40% Nonuniform

6 10x10 40% Nonuniform

7 4x4 70% Nonuniform

8 7x7 70% Nonuniform

9 10x10 70% Nonuniform

10 4x4 10% Uniform

11 7x7 10% Uniform

12 10x10 10% Uniform

13 4x4 40% Uniform

14 7x7 40% Uniform

15 10x10 40% Uniform

16 4x4 70% Uniform

17 7x7 70% Uniform

18 10x10 70% Uniform

Suppose on average, each AP is associated with four users; hence, a total of 400, 196,

or 64 users associate with APs on 10-by-10, 7-by-7, or 4-by-4 layout, respectively. Suppose

users are uniformly distributed on Arec. We assume each user is associated with the AP that

has the strongest signal strength. We do not employ any load balancing algorithms to balance

the load among APs.

We consider the number of rogue RF interferers is low, medium, or high, which denote

10%, 40%, and 70% of the number of controlled APs. For example, for the 10-by-10 AP layout,

we consider 10, 40, or 70 rogues, respectively. We assume rogues are randomly placed in the

area Arec and do not move. We assume that each rogue interferer stays on a single frequency

channel during the period of simulation. For simplicity, we also assume that the transmit
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Figure 3.6: Frequency allocation examples for 49 APs on a 7-by-7 nonuniform or uniform
topology. Three kinds of objects (squares, stars, and circles) signify three orthogonal frequency
channels. Filled back objects denote 49 APs; hollow objects denote 196 users; double-layered
objects with inner part filled with black denote 20 rogues. The units of X and Y axes are
meters.
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powers of rogue RF interferers are all 10 mW, which are the same as those of controlled APs.

Table 3.3 lists the scenarios considered in the simulations. For each scenario, we randomly

generate 10 different cases of the locations of APs, users, and rogues. For each case, we

compute users’ throughput by using algorithms in Table 3.2; then we sort users’ throughput

in ascending order. Then we average the ‘sorted user throughput’ over the 10 different cases

for each scenario. Specifically, we mean that we take the lowest throughput from each of the

10 cases and compute the average; then we average the second lowest throughput, and so on.

By doing this, we can see a typical statistic of users’ throughput after averaging over 10 cases.

If we do not sort users’ throughputs before averaging, the law of large number may smooth

(or flatten) the distribution of users’ throughput.

Fig. 3.6 depicts examples of nonuniform or uniform AP topology (7-by-7) with 196

users and 20 rogues. The frequency allocations in Figs. 3.6(a) and 3.6(b) are computed by

the SS-R algorithm.

We use the empirical model in [11,12,40] to relate throughput to SINR:

rl(γl) = Tmax

(
1− e−Ae(γl−γ0)

)
, (3.23)

where the three constants Tmax, Ae, and γ0 denote peak throughput, slope of throughput

variation, and the cutoff SINR, respectively, as described in [11, 12]. Note that the model in

(3.23) captures the downlink throughput of a client cl when all other clients associated with

the same AP are idle, and the received SINR of this client cl is γl. In our simulation, we use

a time division multiplexing (TDM) model for medium access. Hence, at any point of time,

an AP is sending data to only one client, and the SINR at this client can be computed by

considering interference from all other APs on the same channel. Hence, the model in (3.23)

is valid, as long as we multiply the throughput in (3.23) by the time fraction that AP allocates

to Client cl.

According to the instruction in [11, 12], we set Tmax = 40 (Mbps), Ae = 0.11, and

γ0 = 0 (dB). Note that the throughput expression in (3.23) denotes the achievable throughput

between cl and am when cl is the only client that is associated with AP am. When multiple
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No-U Lo-U Gl-U No-A Lo-A Gl-A LC CF

75P 6.27 5.92 6.06 6.15 6.14 6.10 5.75 5.82
7.69% 1.71% 4.04% 5.68% 5.41% 4.85%

50P 3.81 3.73 3.69 3.76 3.72 3.66 3.27 3.48
9.34% 7.21% 5.96% 8.00% 6.83% 5.14%

25P 2.03 2.04 1.91 1.89 1.85 1.79 1.12 1.59
27.5% 27.9% 19.8% 18.9% 16.0% 12.4%

20P 1.69 1.77 1.51 1.54 1.47 1.40 0.607 1.14
48.2% 55.4% 32.3% 35.0% 29.0% 23.3%

15P 1.32 1.37 1.08 1.05 1.03 0.92 0.0445 0.527
151% 160% 105% 98.6% 95.1% 74.3%

10P 0.855 0.878 0.491 0.426 0.378 0.231 0 0.0113
7480% 7690% 4250% 3680% 3250% 1950%

5P 0.119 0.121 0.005 0 0 0 0 0

3P 0 0 0 0 0 0 0 0

mean 4.79 4.64 4.58 4.68 4.63 4.56 4.13 4.35
10.1% 6.78% 5.35% 7.58% 6.46% 4.99%

Table 3.4: Comparison of the 75, 50, 25, 20, 15, 10, 5, and 3 percentiles (denoted as 75P,
50P, and so on) and the mean of users’ throughputs in Mbps using site-specific prediction
based algorithms, measurement-based algorithms, LC [1], or CF [2]. APs are on a 10-by-10
uniform AP layout with 400 users and 10 rogue RF interferers. The percentages indicate the
throughput gains over CF ; the 5 and 3 percentiles are not compared to CF, since CF yields
zero throughputs at these points. The 50 percentile of course corresponds to the median.

clients are sharing an AP, we assume each client shares an equal amount of time. In other

words, if the number of clients associated with AP am is Lm, the throughput of client cl (cl is

one of the clients associated with am) is rl(γl)
Lm

.

3.4.2 Results and Discussion for Downlink-Only Scenarios

First, we present the simulation results for a particular scenario with a 10-by-10 nonuni-

form AP layout, 400 users, and 10 rogues, which is chosen from Table 3.3. Our simulation

results show that all the other scenarios in Table 3.3 have similar trends of performance, ex-
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(b) 200 users with lower throughputs

Figure 3.7: User throughput (in Mbps) comparison in a setting with APs on a uniform 10-by-
10 layout, 400 users, and 10 rogue RF interferers. Subfigure (b) is part of (a) with only 200
users with the lowest throughputs.
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Figure 3.8: Percent of users that have throughputs higher than 512 kbps. The x-axis represents
the layout of controlled APs and the percentage of rogue APs compared to the controlled APs.
Nonuniform and uniform AP layouts are denoted ‘nu’ and ‘u’, respectively.
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cept that gains over the CF algorithm become larger for scenarios with more rogues. The

number of orthogonal channels (K) is set to 3 to represent 802.11b/g; other larger values of

K produce very similar trends as to the results and figures shown in this subsection, making

our approach applicable to cellular networks and 802.11a. We assume each AP can source

up to 54 Mbps per the 802.11g standard. Fig. 3.7(a) shows users’ throughputs resulted from

different frequency allocation algorithms. Note that the throughputs of 400 users are sorted in

ascending order (the x-axis indicates user index, from the first user with the lowest through-

put to the four-hundredth user with the highest throughput). Recall that in Section 3.4.1

we mentioned that all the algorithms compute users’ throughputs for 10 different cases of

locations of APs, users, and rogues. Then, users throughputs are sorted in ascending order

for each case and averaged. Hence, each curve on Fig. 3.7(a) is an average of 10 cases. We

see difference of throughputs among the curves (each curve denotes the result from an algo-

rithm) on Fig. 3.7(a). We zoom in the left part of Fig. 3.7(a), i.e., the 200 users with lower

throughputs, and show the enlarged plot in Fig. 3.7(b) in order that we can better compare

the performance between algorithms.

In order to quantitatively compare the performance difference between site-specific

knowledge-based algorithms, measurement-based algorithms, LC [1], or CF [2], Table 3.4

compares the 75, 50, 25, 20, 15, 10, 5, and 3 percentiles (denoted as 75P, 50P, and so on),

and the mean of users’ throughputs in Mbps. The 50 percentile of course corresponds to the

median. Note that the mean of users’ throughput is much higher than the median because

some users that are located close to their associated APs have very large throughputs and

thus dominate the mean, as can be seen on the very right side of Fig. 3.7(a). Since the mean

is biased by such users, we believe that the median may better reflect a typical value of user

throughput.

If the number of rogues becomes larger (e.g. 40 or 70), the LC algorithm, which

takes rogues into account, will perform better than CF, which does not consider rogues, yet

our proposed site-specific knowledge-based and measurement-based algorithms perform even

better. Lo-U yields the highest 25, 20, 15, 10, and 5 percentiles in the user throughput among
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all proposed measurement-based algorithms.

If the goal of system design is to bring up users’ throughput to a certain level (e.g.

512 kbps), Lo-U may be the best choice. One can draw a horizontal line on 512 kbps on

Fig. 3.7(a) or Fig. 3.7(b) and then find out the percentage of users that have throughputs

above 512 kbps; Fig. 3.8 shows such percentages for all the scenarios listed in Table 3.3.

Among all the proposed measurement-based algorithms, Lo-U enables most users to have

throughputs above 512 kbps. The second best is No-U. When site specific knowledge is not

available, the measurement-based Lo-U is a very good option. LC and CF perform poorer

than our proposed algorithms.

Although Global-Coord uses global coordination among APs, it does not perform very

well. It may be because the channel adjustment condition of Global-Coord is trying to lower

the sum weighted interference on every channel. Two situations cause the sum weighted

interference on a channel to be low: first, the number of APs and users on this channel is

reduced; second, the interferences experienced by APs and users are reduced. Obviously, the

second situation is desirable to enhance the performance, i.e., users’ throughput. However,

Global-Coord fails to distinguish these two situations by using only a single criterion in (3.11).

In other words, Global-Coord may not minimize the interference that users or APs experience,

but rather minimize the number of APs or users on some particular channel. Therefore, Global-

Coord does not perform as well as No-Coord, Local-Coord, and site-specific knowledge-based

algorithms, although Global-Coord still outperforms LC and CF in most cases.

3.4.2.1 Results with Realistic Noise Floor

In Section 3.4.1, the noise floor consists of thermal noise only. In normal radio frequency

environment, however, the noise floor is above the thermal noise due to citizens band radios,

radars, lightning, power lines, microwave ovens, electrostatic discharges, and other factors.

According to [48], it is reasonable to assume that the noise floor is 10 dB above the thermal

noise in (3.21) (in Section 3.4.1). Because of the increase of the noise floor, the communication

distance between an AP and a client decreases. We shorten the separation distance between
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Figure 3.9: User throughput (in Mbps) comparison in a setting with APs on a uniform 10-by-
10 layout, 400 users, and 10 rogue RF interferers. Only the 200 users with lower throughputs
are shown. Noise floor is 10dB above the thermal noise.

APs to be 106 meters (the original separation distance is shown in (3.22) when the noise floor

is set as the thermal noise.).

Fig. 3.9 shows that Lo-U outperforms the best published work, LC, by 13% and 14.3%

for mean and median user throughputs respectively, and 81%, 168%, and 1011% for 25, 20, and

15 percentiles of user throughputs, respectively. Fig. 3.9 also shows that No-U outperforms LC

by 15% and 18% for mean and median respectively, and 81%, 167%, and 965% for 25, 20, and

15 percentiles of user throughputs, respectively; our algorithms yield significant throughput

gains especially for users with low throughputs. Compared with the results with ideal thermal

noise assumption, the throughput gains of our proposed algorithms are higher when the noise

floor is 10 dB above the thermal noise. This is because the throughput curves used in the

simulations, i.e., the expression in (3.23), are concave. When realistic noise floor is considered,

SINR seen by clients become lower, and the slope corresponding to the SINR on the throughput

curves in (3.23) become higher. Since the slope affects the throughput gains, we see a higher
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Figure 3.10: Percent of users that have throughputs higher than 512 kbps. The x-axis repre-
sents the layout of controlled APs and the percentage of rogue APs compared to the controlled
APs. Nonuniform and uniform AP layouts are denoted ‘nu’ and ‘u’, respectively. Noise floor
is 10dB above the thermal noise.
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Figure 3.11: 50 and 25 percentiles of users’ throughputs (50P and 25P) respectively, including
both downlink and uplink traffic, for 400 users on a 10-by-10 uniform AP layout with 10
rogues.

throughput gains with realistic noise floor than merely the thermal noise.

Fig. 3.10 shows the percentage of users with throughputs larger than 512 Mbps when

noise floor is set to be 10 dB above the thermal noise. Note that our proposed algorithms

outperform other published algorithms (represented by CF and LC ) for all cases. Note that

the gains of our proposed algorithms over LC or CF are slightly higher in Fig. 3.10 than in

Fig. 3.8 by up to 5.5%; it implies that our proposed algorithms can work well in real world,

since the noise floor in real world is approximately 10 dB above the thermal noise [48].

3.4.3 Results and Discussion for Downlink-and-Uplink Scenarios

We present the simulation results for a particular scenario with a 10-by-10 uniform AP

layout, 400 users, and 10 rogues, which is chosen from Table 3.3. The noise floor is also set to

be 10 dB above the thermal noise. Simulation results of all the other scenarios in Table 3.3
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have similar trends of performance as in Fig. 3.11. Fig. 3.11 shows the 25 and 50 percentiles of

users’ throughputs resulted from Lo-U, No-U, Gl-U, LC, and CF, including both downlink and

uplink. As the probability of AP activity increases, we see a stable increase of the throughputs.

Therefore, when a network has higher traffic load and the AP is more active, better frequency

allocations are crucial for interference mitigation and throughput improvement. Lo-U yields

the highest throughput. Note Fig. 3.11 includes both downlink and uplink traffic; downlink

or uplink alone has similar trends of performance.

3.5 Conclusions of This Chapter

The three proposed algorithms substantially outperform all other published ones irre-

spective of the numbers of controlled APs and rogue interferers, nonuniform or uniform AP

placement, and the level of AP activity. Among the three algorithms, Local-Coord is the best

in uplifting the throughputs of users that suffer low throughputs. A distributed protocol is

also introduced to make Local-Coord scalable. Furthermore, the convergence of Local-Coord

is guaranteed. Therefore Local-Coord should be the best algorithm for WLAN frequency al-

location. However, if coordination among APs can not be realized as required in Local-Coord,

No-Coord is also a good option, since it does not need coordination among APs. Although

No-Coord is not guaranteed to converge, simulations show that it converges in most cases and

has comparable throughput gain as Local-Coord, and practical way to implement is given.

3.6 Appendix

3.6.1 Modeling Measured Interference

The measured interference at an AP or a user is a function of the loads/activities of

interfering APs or users. We define Jk
u,v, u, v ∈ X as the interference power that v causes on

u given that v is active and is on channel k ∈ K; Jk
u,v depends on v’s transmit power and the

path loss between u and v, which is determined by the environment. Let tu (u ∈ X) denote the

average time fraction (over a unit time) that u is actively transmitting data; again u can be
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Figure 3.12: The activities of AP a2 and user c2 affect the interference on a1 and c1.

an AP or a user. In Figure 3.12, we model the average interference at a1 as Jk
a1,a2

ta2 +Jk
a1,c2

tc2 ,

and the average interference at c1 as Jk
c1,a2

ta2 + Jk
c1,c2

tc2 . Note that ta2 is the time fraction

of the transmissions from a2 to all users associated with it (c2 and c3, in this example). On

the other hand, the activities at a2 and c2 also affect data transmissions on a1 and its users.

In [39], Bonald et al has modeled such multi-cell wireless data networks as mutually-coupled

processor-sharing queues.

3.6.2 Proofs of Lemmas 3.1 and 3.2, and Theorems 3.4 and 3.5

We will use the following lemma to prove Lemmas 3.1 and 3.2, and Theorems 3.4 and

3.5.

Lemma 3.3. Suppose two vectors ~v = (v1, v2, . . . , vN) and ~v′ = (v′1, v
′
2, . . . , v

′
N) differ in

at least one element. Assume all elements in ~v are distinct, and so are those in ~v′. Let

D denote indices where ~v and ~v′ differ, i.e., D = {i : vi 6= v′i}. Then we have ~v Â ~v′ if

maxi∈D vi > maxi∈D v′i.

Proof. Denote ~u = (u1, u2, . . . , uN) and ~u′ = (u′1, u
′
2, . . . , u

′
N) as the non-increasing sorted

versions of ~v and ~v′, respectively. Suppose vm∗ is the largest among the elements in ~v that

differ from ~v′, i.e., m∗ = argmaxm∈D vm. Let Ψ denote the set of indices where the elements

in ~v are larger than vm∗ ; note all these elements come from those that are equal in ~v and ~v′,

since the different elements are not larger than vm∗ . Hence Ψ = {i : vi = v′i > vm∗}. The first

Γ = |Ψ| elements in ~u are the those in ~v indexed by Ψ, and uΓ+1 = vm∗ . Note the elements in
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~v′ that differ from ~v are all less than vm∗ according to the assumption stated in the lemma.

Hence, the elements in ~v′ that are greater than vm∗ are those in ~v′ indexed by Ψ, which are also

the first Γ elements in ~u′. Consequently we have u′Γ+1 ≤ vm∗ . Note u′Γ+1 = vm∗ = uΓ+1 cannot

hold; otherwise, m∗ would not have been in D. Thus we have u′Γ+1 < vm∗ = uΓ+1. Finally

since the first Γ elements in ~u and ~u′ are equal and uΓ+1 > u′Γ+1, ~v Â ~v′ holds according to

the definition of lexicographic dominance in Definition 3.6.

Proof of Lemma 3.1. Recall that we assume a representative AP am switches its channel

from fm = k to f ′m = k′ according to Local-Coord Condition in (3.10), and the channels of

all the other APs remain unchanged. Let ~f, ~f ′ ∈ KM respectively denote a vector of channels

selected by APs before and after the representative AP am moves from channel k to k′. Hence

~f ′ differs from ~f in only the m-th element, that is, f ′n = fn,∀n 6= m, and f ′m 6= fm. We define

~α(~f) =
(
W 1

f1
(~f),W 2

f2
(~f), . . . ,WM

fM
(~f)

)
(3.24)

~α(~f ′) =
(
W 1

f ′1
(~f ′),W 2

f ′2
(~f ′), . . . , WM

f ′M
(~f ′)

)
. (3.25)

Note that each element (say, the n-th) of the vector ~α(~f) signifies the weighted interference

that the AP an and its users see on their current channel fn. Each element in ~α(~f ′) in (3.25)

denotes the weighted interference as seen by each AP and its users after the representative

AP am switches to channel k′.

If am switches from channel k to k′, cell Zm and some surrounding cells that are on

either k or k′ will experience changes in their weighted interference, i.e., the cells in Gm,k(~f)

and Gm,k′(~f). All other cells will not experience such changes. Specifically, between ~α(~f)

and ~α(~f ′), the different elements are the m-th and those indexed by Gm,k(~f) and Gm,k′(~f).

According to Lemma 3.3, it suffices to show that the maximum of these different elements in

~α(~f) is greater than the maximum of those in ~α(~f ′). Recall the i-th element of ~α(~f) is W i
fi
(~f)

and that of ~α(~f ′) is W i
f ′i

(~f ′), for all i ∈M. Therefore, it suffices to show that

max
i∈{m}∪Gm,k(~f)∪Gm,k′ (~f)

W i
fi
(~f) > max

i∈{m}∪Gm,k(~f)∪Gm,k′ (~f)
W i

f ′i
(~f ′). (3.26)

Equation (3.26) is equal to the Local-Coord condition in (3.10). Hence, the proof is done.
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Proof of Lemma 3.2. Recall that we assume a representative AP am switches its channel

from fm = k to f ′m = k′ according to Global-Coord Condition in (3.11), and the channels of

all the other APs remain unchanged. Let ~f, ~f ′ ∈ KM respectively denote a vector of channels

selected by APs before and after the representative AP am moves from channel k to k′. Hence

~f ′ differs from ~f in only the m-th element, that is, f ′n = fn,∀n 6= m, and f ′m 6= fm. We define

~β(~f) =

( ∑

n:fn=1

W n
1 (~f),

∑

n:fn=2

W n
2 (~f), . . . ,

∑

n:fn=K

W n
K(~f)

)
(3.27)

~β(~f ′) =


 ∑

n:f ′n=1

W n
1 (~f ′),

∑

n:f ′n=2

W n
2 (~f ′), . . . ,

∑

n:f ′n=K

W n
K(~f ′)


 . (3.28)

The j-th element in ~β(~f) denotes the sum weighted interference over all cells on channel j.

When am switches from channel k to k′, the cells on channels k and k′ will see changes of

weighted interference. All the other cells do not see such changes. Therefore, between ~β(~f)

and ~β(~f ′), only the k-th and the k′-th elements are different. According to Lemma 3.3, it

suffices to show that the maximum of the k-th and k′-th elements in ~β(~f) is greater than that

of ~β(~f ′), i.e., it suffices to show that

max
j∈{k,k′}

∑

n:fn=j

W n
j (~f) > max

j∈{k,k′}

∑

n:f ′n=j

W n
j (~f ′). (3.29)

First, we consider the sum weighted interference on channel k before and after the represen-

tative AP am switches to channel k′, i.e., we compare
∑

n:fn=k W n
k (~f) and

∑
n:f ′n=k W n

k (~f ′).

When am switches to channel k′, the sum weighted interference on channel k loses one positive

term that is contributed by am and its users, and moreover, some surrounding cells on channel

k that were originally interfered by am and its users see less interference. Hence we conclude

that the sum interference on channel k decreases after am switches to channel k′. Formally
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we write
∑

n:fn=k

W n
k (~f) = Wm

k (~f) +
∑

n:fn=k,n 6=m

W n
k (~f) (3.30)

≥ Wm
k (~f) +

∑

n:f ′n=k,n 6=m

W n
k (~f ′) (3.31)

> 0 +
∑

n:f ′n=k,n6=m

W n
k (~f ′) (3.32)

=
∑

n:f ′n=k

W n
k (~f ′), (3.33)

where (3.30) holds by taking one term Wm
k (~f) out of the summation. When am has switched

from k to k′, some surrounding cells on channel k may see one less interfering cell (i.e., Zm),

and all the other farther cells see the same interfering cells (since the cell Zm is far from them

and does not induce noticeable interference on them). In general, the set of interfering cells

for any cell on channel k either remains the same or has one less element, after am switches to

channel k′, i.e., Qn,k(~f ′) ⊆ Qn,k(~f), for all n ∈ {n : fn = k, n 6= m}. We apply Proposition 3.1

and obtain that W n
k (~f) ≥ W n

k (~f ′), ∀n ∈ {n : fn = k, n 6= m}; therefore, (3.31) holds. Since

Wm
k (~f) > 0 by definition, (3.32) holds. The n 6= m part of the subscript is not needed in (3.33)

since AP am has switched to channel k′ and does not operate on channel k, i.e., f ′m = k′ 6= k.

If
∑

n:f ′n=k W n
k (~f ′) is the larger one among the two terms on the right-hand side (RHS)

of (3.29), we are done with the proof of (3.29). This is because we know the maximum of

the LHS terms is greater than or equal to the first LHS term,
∑

n:fn=k W n
k (~f), which is then

greater than the first RHS term,
∑

n:f ′n=k W n
k (~f ′), by (3.33). In general, however, we have to

show the LHS of (3.29) is greater than the second RHS term, i.e., it suffices to show that

max
j∈{k,k′}

∑

n:fn=j

W n
j (~f) >

∑

n:f ′n=k′
W n

k′(
~f ′). (3.34)

Recall that the Global-Coord condition that am would switch from k to k′ is that the sum

weighted interference on channel k′ after am switches to channel k′ is lower than the sum

weighted interference on channel k when am is on channel k, which we rewrite here
∑

n:fn=k

W n
k (~f) >

∑

n:f ′n=k′
W n

k′(
~f ′). (3.35)
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Note that the maximum of the LHS two terms in (3.34) is greater than or equal to the first

LHS term,
∑

n:fn=k W n
k (~f), which is also greater than the RHS term in (3.34) according to

the Global-Coord condition in (3.35). Formally, we write

max
j∈{k,k′}

∑

n:fn=j

W n
j (~f) ≥

∑

n:fn=k

W n
k (~f)

>
∑

n:f ′n=k′
W n

k′(
~f ′).

Hence, we have proven (3.34) and can conclude that ~β(~f) Â ~β(~f ′).

Proof of Theorem 3.4. Let ~f, ~f ′ ∈ KM respectively denote a vector of channels selected

by APs before and after the representative AP am moves from channel k = fm to k′ = f ′m.

Hence ~f ′ differs from ~f in only the m-th element, that is, f ′n = fn, ∀n 6= m, and f ′m 6= fm. It

is equivalent to prove that ~α(~f ′) º ~α(~f) holds with probability one for every AP am,m ∈ M
and every new channel k′ (k′ 6= k), according to the definition of local lexicographic minimum

in Definition 3.10.

Recall from the proof of Lemma 3.1 that ~α(~f) differs from ~α(~f ′) only in the elements

indexed by {m} ∪ Gm,k(~f) ∪ Gm,k′(~f). In order to prove that ~α(~f ′) º ~α(~f) holds with

probability one, it suffices to show that

max
i∈{m}∪Gm,k(~f)∪Gm,k′ (~f)

W i
fi
(~f) < max

i∈{m}∪Gm,k(~f)∪Gm,k′ (~f)
W i

f ′i
(~f ′). (3.36)

holds with probability one, according to Lemma 3.3.

Since Local-Coord converges at ~f , no AP can move to a new channel so that the Local-

Coord condition in (3.10) is satisfied. In other words, for every AP am,m ∈ M (say, it is

currently on channel k) and every new channel k′ (k′ 6= k), the converse of (3.10) holds. The

equality in the converse of (3.10) holds with probability zero according to Assumption 3.2.

Therefore, the converse of (3.10) without the equal sign, which is the same as (3.36), holds

with probability one. Thus, the proof is done.
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Proof of Theorem 3.5. Let ~f, ~f ′ ∈ KM respectively denote a vector of channels selected

by APs before and after the representative AP am moves from channel k to k′. Hence ~f ′

differs from ~f in only the m-th element, that is, f ′n = fn,∀n 6= m, and f ′m 6= fm. It is

equivalent to prove that ~β(~f ′) º ~β(~f) holds with probability one for every AP am,m ∈M and

every new channel k′ (k′ 6= k), according to the definition of local lexicographic minimum in

Definition 3.10.

Recall from the proof of Lemma 3.2 that ~β(~f) differs from ~β(~f ′) in only the k-th and

the k′-th elements. In order to prove that ~β(~f ′) º ~β(~f) holds with probability one, it suffices

to show that

max
j∈{k,k′}

∑

n:f ′n=j

W n
j (~f ′) > max

j∈{k,k′}

∑

n:fn=j

W n
j (~f), (3.37)

holds with probability one, according to Lemma 3.3.

First, we consider the sum weighted interference on channel k′ before and after am

switches to channel k′, i.e., we compare
∑

n:fn=k′ W
n
k′(

~f) and
∑

n:f ′n=k′ W
n
k′(

~f ′). When am

switches to channel k′, the sum weighted interference on channel k′ adds one positive term

that is contributed by am and its users, and moreover, some surrounding cells on channel k′

see more interference from am and its users. Hence we conclude that the sum interference on

channel k′ increases after am switches to channel k′. Formally we write

∑

n:f ′n=k′
W n

k′(
~f ′) = Wm

k′ (
~f ′) +

∑

n:f ′n=k′,n6=m

W n
k′(

~f ′) (3.38)

≥ Wm
k′ (

~f ′) +
∑

n:fn=k′,n6=m

W n
k′(

~f) (3.39)

> 0 +
∑

n:fn=k′,n6=m

W n
k′(

~f) (3.40)

=
∑

n:fn=k′
W n

k′(
~f), (3.41)

where (3.38) holds by taking one term Wm
k′ (

~f ′) out of the summation. When am has switched

from k to k′, some surrounding cells on channel k′ may see one more interfering cell (i.e.,

Zm), and all the other farther cells see the same interfering cells (since the cell Zm is far from
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them and does not induce noticeable interference on them). In general, the set of interfering

cells for any cell on channel k′ either remains the same or has one more element after am

switches to channel k′, i.e., Qn,k′(~f) ⊆ Qn,k′(~f ′), for all n ∈ {n : f ′n = k′, n 6= m}. We apply

Proposition 3.1 and obtain that W n
k′(

~f) ≤ W n
k′(

~f ′),∀n ∈ {n : f ′n = k′, n 6= m}; therefore,

(3.39) holds. Since Wm
k′ (

~f ′) > 0 by definition, (3.40) holds. The n 6= m part of the subscript is

not needed in (3.41) since AP am has switched to channel k′ and does not operate on channel

k, i.e., fm = k 6= k′.

Since Global-Coord converges at ~f , no AP can move to a new channel so that the

Global-Coord condition in (3.11) is satisfied. In other words, for every AP am,m ∈ M (say,

it is currently on channel k) and every new channel k′ (k′ 6= k), the converse of (3.11) holds.

We write the converse of (3.11) below without the equality and claim that it still holds with

probability one, since Assumption 3.2 assumes that the equality holds with probability zero.

∑

n:f ′n=k′
W n

k′(
~f ′) >

∑

n:fn=k

W n
k (~f) (3.42)

Then we have

max
j∈{k,k′}

∑

n:f ′n=j

W n
j (~f ′) ≥

∑

n:f ′n=k′
W n

k′(
~f ′) (3.43)

> max
j∈{k,k′}

∑

n:fn=j

W n
j (~f) (3.44)

with probability one, where (3.43) holds because the RHS is one of the two terms of the LHS,

(3.44) holds by (3.42) and (3.41).
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Chapter 4

Site Specific Knowledge for Improving Frequency

Allocations in Wireless LAN and Cellular Networks

This chapter1 exhibits the substantial gains that result from applying site specific

knowledge to frequency allocation in wireless networks. Two site-specific knowledge-based

frequency allocation algorithms are introduced, and are shown to outperform all other pub-

lished work. We assume a central network controller communicates with all APs, and has site

specific knowledge which enables the controller to differentiate the sources of RF interference

at every AP or user. By predicting the power from each interference source, the controller opti-

mizes user throughputs. Our algorithms yield significant throughput gains, especially for users

with low throughputs, e.g., this work reveals algorithms that outperform the measurement-

based algorithms in Chapter 3 by up to 3.75%, 11.8%, 10.2%, 18.2%, 33.3%, and 459% for 50,

25, 20, 15, 10, and 5 percentiles of user throughputs, respectively, and outperform all other

published work on frequency allocations even more. Simulations also show consistently high

gains irrespective of nonuniform or uniform AP topology, the level of AP activity, and the

number of controlled APs, rogue interferers, and available frequency channels.

In this chapter we use site specific knowledge to improve on-going frequency allocation

in WLANs. We consider WLANs formed by APs and their clients (e.g. users). When the

number of orthogonal frequency channels is limited relative to the number of APs, some nearby

APs inevitably use the same channel and induce co-channel interference. Judicious channel

reuse mechanisms are necessary to reduce such interference, particularly for the case of mobile

users, such as in enterprise voice over IP networks or in cellular networks.

1Part of the work in this chapter has been submitted to IEEE Vehicular Technology Conference 2007 [41].
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A number of WLAN frequency allocation schemes have been proposed thus far. The

work in [21] defines the effective channel utilization of an AP as the fraction of time at which

the channel is used for the AP’s data transmission or is sensed busy due to interference from

other APs; then, the maximum effective channel utilization among all APs is minimized.

AP placement and frequency allocation are jointly optimized in [22] with the same objective

of minimizing the max channel utilization as in [21]. The frequency allocation problem is

modeled as a minimum-sum-weight vertex-coloring problem in [20] where vertices are APs,

and the weight of each edge between two APs denotes the number of clients that are associated

with either one of these two APs and are interfered by the other AP. The work in [2] minimizes

the number of clients whose transmissions suffer channel conflicts; a client associated with an

AP suffers conflicts if other clients or other APs interfere with the client or the AP under

consideration. The definition of channel conflict in [2] is more comprehensive than those

in [20–22]; the work in [2] has been shown to outperform [20–22].

However, none of [2, 20–22] presents mechanisms to detect and reduce the negative

impact from rogue interferers, which refer to intentional or unintentional RF interferers in

noncooperative networks, microwave ovens, or other RF devices that also operate on the

unlicensed bands as WLAN. Only the work in [1] and Chapter 3 (also in [37]) handle rogue

interferers. In [1], each AP senses interference and independently selects a channel whose

measured interference power is below a predefined threshold, without coordinating with other

APs. The work in Chapter 3 (also in [37]) assumes that clients periodically report in situ

interference measurements to their associated APs, and presents three iterative algorithms

that use the reported measurements to minimize interference seen by clients. In each iteration,

these three different algorithms reduce the overall interference (computed by some weighted

function defined in Chapter 3, which is also in [37]) seen in a single cell, a group of nearby

cells, or all cells, respectively, where a cell means an AP and its associated users. The second

algorithm with local coordination among nearby APs has been shown to be the best among

the three in Chapter 3 (also in [37]).

Most traffic in WLANs is downlink [11,12,25]; hence, maximizing downlink throughput
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and signal-to-interference-and-noise ratio (SINR) seen by users are key to proper network

design. The work in [1, 21, 22] minimizes the interference at APs rather than minimizes that

at users, as is done in [2, 20, 37]. The work in [1, 2, 20] use a binary model for interference,

which has been shown to be inferior than physical model, as used in Chapter 3 (also in [37]).

Since the measurement-based algorithms in Chapter 3 also have the ability to deal with

rogue interferers, they have been shown to outperform [1, 2, 20–22]. Despite their success,

the measurement-based algorithms in Chapter 3 (also in [37]) can still be improved if we

assume that a central network controller has and uses site specific knowledge to optimize

frequency allocation of each AP and each user. The advantage of using site specific knowledge

is to predict a priori path loss between any pair of AP and user, when the user’s location is

obtained via GPS (Global Positioning System) or other known position location technologies2,

as described in Chapter 1.

Note that the central controller must know the active transmitters at any point in time

in order to predict correct interference at all times; this information may be too costly to

obtain, but time sampling may be done. Since downlink traffic presently dominates WLAN

traffic, this chapter considers a case where all APs are actively transmitting downlink traffic.

It is reasonable to assume that frequency allocation is optimized with respect to this most

active case, since in this case, frequency allocation is crucial for interference mitigation at

users. Simulations show that our algorithms also perform well in scenario with both downlink

and uplink traffic and with different levels of AP activities.

We present system models, notation, and assumptions, followed by the details of the

two algorithms based on site specific knowledge. Then we show by simulations that our

algorithms substantially outperform the others in [1, 2, 20–22,37].

2Several indoor position location approaches, based on signal strength sensing, are widely known today
and used in some WLANs [23, 24]. Other triangulation methods can also be used to locate a client. Modern
cellular handsets are equipped with GPS chips or other position location technologies. State-of-the-art GPS
can work not only outdoors but also indoors; various vendors, e.g. Metris and SnapTrack, provide indoor GPS
solutions.
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4.1 Notation and Assumptions

We use the same notation as the previous chapter for consistence. We briefly review

the notation used in this chapter. Suppose M APs, indexed byM = {1, 2, . . . , M}, operate on

K orthogonal frequency channels, indexed by K = {1, 2, . . . , K}. We index users (or clients)

by L = {1, 2, . . . , L}. We denote the identity of an AP and a client by am (m ∈ M) and cl

(l ∈ L), respectively. We assume for this work the locations of the APs and the clients do not

vary with time, and no APs or users are at the same locations, although the algorithms given

here also apply for mobile APs and/or clients. We assume every user is associated with a single

AP. Let fm (fm ∈ K) denote the channel that am operates on, and let ~f = (f1, f2, . . . , fM)

denote the channels of all M APs. We define the set of interfering cells of am and the users

associated am as Qm,fm(~f), so that n ∈ Qm,fm(~f) if and only if an operates on channel fm, and

an or a user associated with an induces non-negligible interference at am or a user associated

with am.

We assume that the central network controller periodically (say every 5 minutes) re-

quires the APs to stop transmitting for a short duration of time (say, one second). In this

duration, APs take turns in requiring all users associated with them to perform measurements

of background interference, which includes both noise floor of the RF environment and rogue

interference from RF devices outside the controlled network. Note that each user needs to

measure the background interference for all available frequency channels. The users then

feedback to APs these measured background interference. Site specific knowledge along with

measurements of background interference make the estimations of SINR at users or APs much

more accurate. Let σl denote the background interference measured at client cl.

4.2 Site-Specific Knowledge-Based Algorithms

4.2.1 The Site-Specific SINR (SS-S) Formulation

First, we optimize the sum of utility functions for all the users’ SINR, assuming all

APs are actively transmitting downlink traffic (but not uplink traffic). That is, we optimize
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the following problem over ~f ∈ KM , which is denoted Site Specific SINR or SS-S in the rest

of this chapter:

max
∑

l∈L
U(γl) (4.1)

γl =
Scl,am

σl +
∑

n∈Qm,fm (~f) Scl,an

(4.2)

where am in (4.2) denotes the AP with which cl is associated, σl denotes background inter-

ference power that client cl measures (as described in Section 4.1), γl denotes the SINR at

user cl as shown in (4.2), Scl,am denotes the average received signal power from am to cl. Note

that the objective in (4.1) is not optimizing ‘sum SINR’, since such an objective may favor

users that are closer to APs and may cause users which are further away to suffer low SINR.

A fair SINR distribution can be achieved if we optimize the sum of utility functions in (4.1),

where the utility function U(·) in (4.1) can be any function that is concave, continuously

differentiable, and strictly increasing. For example, Mo and Walrand have proposed a class

of utility functions that capture different degrees of fairness parameterized by q [49], which

takes positive integer values:

U(γl) =





(1− q)−1γ
(1−q)
l , if q 6= 1

log γl, if q = 1
, γl ∈ (0,∞). (4.3)

This family of utility functions is concave, continuously differentiable, and strictly increasing.

Intuitively, as q increases, the degree of fairness increases, but the sum of SINR decreases. The

trade-off between sum SINR and the individual SINR of users that are further away from a

serving AP can be observed. By increasing the degree of fairness, we imply that users that are

further from APs have increasingly higher SINR (which is needed to provide high throughput

to distant users). The work in [49] shows that if q → ∞, the formulation in (4.1) becomes

a special case that achieves max-min fairness. At max-min fairness, the degree of fairness is

the highest; however, the sum SINR is the lowest. Simulation results in Section 4.3 show that

q = 2 may be a good parameter for the trade-off between the sum SINR and the SINR for

farther users, and is a topic for further research.
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As described in Section 4.1, we assume that the APs or the users in the controlled

network periodically measure the background interference; hence, σl in (4.2) is known. We

assume the central network controller has site specific knowledge and locations of all APs and

users, and can predict signal power for any pair of AP and user, and can compute Scl,an for all

cl, an in the denominator of (4.2). Then all the quantities in the optimization problem in (4.1)

are known, yet measurement-based algorithms in Chapter 3 (also in [37]) may need to take a

longer time to learn each individual component of Scl,an in (4.2) and thus are not able to solve

(4.1) without adequate time of learning (as described in Chapter 1). Because the optimization

in (4.1) is a combinatorial problem, there is no fast algorithm (polynomial-time algorithms)

that can solve (4.1) [50]. Therefore, we propose an efficient heuristic in Section 4.2.3 that

can find the locally optimal solution of (4.1); simulations show that the algorithm in 4.2.3

outperforms the measurement-based algorithms in Chapter 3 (also in [37]) as well as all other

frequency allocation algorithms in [1, 2, 20–22].

4.2.2 The Site-Specific Rate (SS-R) Formulation

The formulation in (4.1) in Section 4.2.1 strives to provision fair SINR across users.

From the users’ perspective, however, throughput may be a better metric than SINR for users’

performance. Below we formulate another problem that aims at provisioning fair throughput

across users, and this formulation may be denoted Site Specific Rate or SS-R.

max
∑

l∈L
U(χl) (4.4)

χl =
rl(γl)

Lm

, (4.5)

where Lm denotes the number of clients that are associated with am, χl denotes the throughput

of cl from am (cl is associated with am), rl(γl) denotes the long-term average data rate that cl

receives from am if cl is the only user associated with am; rl depends on the SINR seen at user

cl, i.e., γl, as defined in (4.2). rl(γl) may also be viewed as the achievable capacity between

cl and am. We assume that the AP am evenly distributes its resource (e.g. time) amongst its
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Lm users and therefore has the denominator in (4.5). There are several ways to model rl(γl);

for example, we may use Shannon capacity

rl(γl) = log2 (1 + γl) (4.6)

or an empirical model, e.g., such as introduced in [11,12,40] to relate throughput to SINR:

rl(γl) = Tmax

(
1− e−Ae(γl−γ0)

)
, (4.7)

where the three constants Tmax, Ae, and γ0 denote peak throughput, slope of throughput

variation, and the cutoff SINR, respectively, as described in [11,12]. Section 3.4.1 has justified

the usage of this model.

4.2.3 A Local Optimization Algorithm for SS-S and SS-R

The optimization problems in (4.1) and (4.4) are combinatorial; solving them exhaus-

tively requires exponential computation time (exponential in the number of APs). Hence, we

present an iterative local optimization procedure that yields rapid and nearly-optimal solu-

tions of (4.1); the same procedure can also solve (4.4). At the beginning of each iteration, a

frequency allocation ~f is given, and at the end of the iteration, we find a better frequency

allocation ~g that improves the objective in (4.1); ~f and ~g may differ in several elements,

which means that the channels of several APs may change. During each iteration, we do the

following steps. First, we select an AP, say am. We find V − 1 other APs that produce the

strongest interference on am, assuming these V −1 other APs and am are on the same channel;

for example, V = 7 implies that we find 6 other APs that are in the vicinity of am so that

they will likely interfere with am’s clients the most. We try all possible KV permutations of

channels for these V APs, while fixing the channels at the other M − V APs. We can find

the best out of the KV permutations so that (4.1) is maximized and is strictly larger than

the value before this iteration; then we change the corresponding V elements in ~f and thus

form ~g. If these V APs have operated on the best channel allocation before this iteration,

we have ~f = ~g; in this case, another AP (instead of am) and its V − 1 neighboring APs
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will be selected to restart this iteration. The iterative algorithm runs until every set of V

neighboring APs reaches the best frequency allocation. This iterative algorithm converges in

a finite number of steps, since the number of channel permutations is finite, and each iteration

strictly increases the objective in (4.1). In practice, one may limit the number of iterations

or specify a minimum gradient slope due to time constraints. We expect that the channel

allocation found by this local optimization algorithm will be close to the optimum if V is

large enough, since the exhaustive search can explore more possible allocations with a larger

V . Nevertheless, simulations in Section 4.3 shows that this local optimization algorithm with

V = 7 outperforms all other algorithms [1, 2, 20–22,37].

The algorithm proposed above solves the SS-S formulation in (4.1) and the SS-R in

(4.4). When it is applied to solve SS-S, we refer to the algorithm as the SS-S algorithm;

similarly, when the algorithm is used to maximize throughput (rate), we refer to it as the

SS-R algorithm.

4.3 Simulation Setup and Results

The algorithm in [2], denoted as CF, has been shown to outperform [20–22]. Hence,

we compare our proposed algorithms against CF, the algorithm in [1], and the two better

measurement-based algorithms Lo-U and No-U in Chapter 3 (also in [37]).

The simulation setup in this chapter is the same as that in Section 3.4.1. For conve-

nience, we review some relevant elements of the setup below. First, we consider a saturated

network where all APs are transmitting downlink traffic. We set the number of orthogonal

channel (K) to 3 to represent 802.11b/g; other larger values of K produce very similar results

as shown in Fig. 4.2 and Fig. 4.3, making our approach applicable to cellular networks and

802.11a. We consider three network sizes, three levels of rogue interference, and two network

topologies, and thus have eighteen combinations (3×3×2), as shown in the x-axis of Fig. 4.3.

The three network sizes include a 4-by-4 AP layout with 64 users, a 7-by-7 layout with 196

users, and a 10-by-10 layout with 400 users; the numbers of users are chosen so that every AP
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Figure 4.1: Frequency allocation examples for 49 APs on a 7-by-7 nonuniform or uniform
topology. Three kinds of objects (squares, stars, and circles) signify three orthogonal frequency
channels. Filled back objects denote 49 APs; hollow objects denote 196 users; double-layered
objects with inner part filled with black denote 20 rogues. The units of X and Y axes are
meters.
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Figure 4.2: User throughput (in Mbps) comparison in a setting with APs on a uniform 10-by-
10 layout, 400 users, and 10 rogue RF interferers. Only the 200 users with lower throughputs
are shown.
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Figure 4.3: Percent of users that have throughputs higher than 512 kbps. The x-axis represents
the layout of controlled APs and the percentage of rogue APs compared to the controlled APs.
Nonuniform and uniform AP layouts are denoted ‘nu’ and ‘u’, respectively.
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SS-R SS-S No-U Lo-U LC CF

75P 5.98 6.18 6.27 5.92 5.75 5.82
2.72% 6.11% 7.69% 1.71%

50P 3.73 3.87 3.81 3.73 3.27 3.48
7.00% 11.1% 9.34% 7.21%

25P 2.13 2.28 2.03 2.04 1.12 1.59
33.5% 43.1% 27.5% 27.9%

20P 1.80 1.95 1.69 1.77 0.607 1.14
57.8% 71.6% 48.2% 55.4%

15P 1.48 1.62 1.32 1.37 0.0445 0.527
181% 207% 151% 160%

10P 1.13 1.17 0.855 0.878 0 0.0113
9950% 10200% 7480% 7690%

5P 0.676 0.532 0.119 0.121 0 0

3P 0.385 0.180 0 0 0 0

mean 4.71 4.84 4.79 4.64 4.13 4.35
8.33% 11.3% 10.1% 6.78%

Table 4.1: Comparison of the 75, 50, 25, 20, 15, 10, 5, and 3 percentiles (denoted as 75P,
50P, and so on) and the mean of users’ throughputs in Mbps using site-specific prediction
based algorithms, measurement-based algorithms, LC [1], or CF [2]. APs are on a 10-by-10
uniform AP layout with 400 users and 10 rogue RF interferers. The percentages indicate the
throughput gains over CF ; the 5 and 3 percentiles are not compared to CF, since CF yields
zero throughputs at these points. The 50 percentile of course corresponds to the median.

is associated with four users in average. We consider low, medium, and high interference from

rogue interferers, where the ratio of the number of rogue interferers to the number of APs is

10%, 40%, and 70%, respectively. We consider a uniform topology where APs are regularly

located as illustrated in Fig. 4.1(a), and a nonuniform topology, where APs are perturbed

from the uniform layout with a small random distance (up to 25% of separation), as shown

in Fig. 4.1(b). The transmit powers at APs are 10 mW. Noise floor is the thermal noise.

For example, Fig. 4.2 considers 100 controlled APs with 10 rogues, and Table 4.1

compares the 75, 50, 25, 20, 15, 10, 5, and 3 percentiles (denoted as 75P, 50P, and so on) and

the mean of users’ throughputs in Mbps in the case of 100 controlled APs with 10 rogues.
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CF is known to be the best prior to our previous work in Chapter 3 (also in [37]).

Fig. 4.2 shows that SS-R and SS-S outperform CF by 8.33% and 11.3% in terms of mean user

throughput, 7.00% and 11.1% in terms of median, 33.5% and 43.1% in terms of 25-percentile,

and 181% and 207% in terms of 15-percentile user throughputs. Lo-U is known to be the

best overall algorithm, especially in uplifting throughputs for users with low throughputs.

Nevertheless, Fig. 4.2 shows that SS-S outperforms Lo-U by 3.75%, 11.8%, 10.2%, 18.2%,

33.3%, and 340%, and SS-R outperforms Lo-U by 0.00%, 4.41%, 1.69%, 8.03%, 28.7%, and

459%, in terms of 50, 25, 20, 15, 10, and 5 percentiles of user throughputs, respectively. SS-R

yields the highest 5 and 3-percentile throughput. Generally, SS-R sacrifices the users with

higher throughput to improve the users with lower throughput. Although SS-R is worse than

SS-S for users with high throughput, SS-R is still better than Lo-U, the best algorithm in

the literature. Our algorithms yield significant throughput gains especially for users with low

throughputs. We assume each AP can source a max of 54 Mbps per the 802.11g standard.

Fig. 4.3 shows that our algorithms enable more users to operate above 512 kbps irrespective

of the number of APs and rogues; this trend is true for other throughput thresholds, as well.

Fig. 4.3 shows that SS-R accommodates up to 18% and 7% more users than CF and Lo-U,

respectively.

In the first part of our simulations, we assume all traffic is downlink, and we optimize

the frequency allocation for the most active case where all APs are actively transmitting

downlink traffic. It is reasonable that frequency allocation is optimized with respect to this

most active case, since in this case, frequency allocation is crucial for interference mitigation

at each user. Then, we examine the performance of the optimized frequency allocations in

the presence of both downlink and uplink traffic. It has been shown in [39] that uplink and

downlink capacities in multiple cells are mutually coupled due to inter-cell interference, and no

system-level analytic model has been found to model activities of multiple APs. We consider

that time is slotted, and propose an approximate probabilistic model where APs independently

choose one of the three possible activity states at each time slot. An AP can be transmitting

downlink traffic, receiving uplink traffic, or idle, with probabilities pd, pu, and pi = 1−pd−pu,
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respectively. For any AP that is transmitting downlink traffic or receiving uplink traffic at a

certain time slot, a user is randomly chosen (with uniform probability distribution) out of all

the users associated with this AP to be the recipient or the sender of the traffic. We fix the

ratio of pd to pu as 5:1 [11,12,25], and simulate eight cases where pd +pu (the probability that

an AP is active) is 1/8, 2/8, . . ., 8/8, respectively. We intend to see the effect of pd + pu on

the performance of the proposed algorithms. The assumption that the activity of each AP is

independent from the other APs simplifies the simulations and provides a rule-of-thumb for

the performance comparison.

4.3.1 Simulation with Realistic Noise Floor

Note that the simulation results presented before this section are based on the assump-

tion that the noise floor consists of thermal noise only. In this subsection we consider that the

noise floor is 10 dB above the thermal noise, which properly represents the real world [48].

Fig. 4.4 shows users’ throughputs in a saturate network where all the APs are transmit-

ting downlink traffic; the setup for Fig. 4.4 is similar to that for Fig. 4.2 except the separation

between APs is now 106 meters and the noise floor is changed. The noise floor is 10 dB

above the thermal noise for Fig. 4.4, whereas the noise floor consists of only thermal noise for

Fig. 4.2.

The gains of our proposed algorithms over LC are higher in Fig. 4.4 than in Fig. 4.2,

which shows that our proposed algorithms can work well in real world.

Fig. 4.5 shows the percentage of users with throughputs larger than 512 Mbps when

noise floor is set to be 10 dB above the thermal noise. Note that our proposed algorithms

outperform other published algorithms (represented by CF and LC ) for all cases. Note that

the gains of our proposed algorithms over LC or CF are slightly higher in Fig. 3.10 than in

Fig. 3.8 by up to 9.4%; it implies that our proposed algorithms can work well in real world

with the realistic noise floor.

Fig. 4.6 shows that our algorithms consistently yield throughput gains (including both
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Figure 4.5: Percent of users that have throughputs higher than 512 kbps. The x-axis represents
the layout of controlled APs and the percentage of rogue APs compared to the controlled APs.
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downlink and uplink) irrespective of the probability of AP activity; particularly the gains

are high when APs are highly active, and the network traffic load is heavy. In Fig. 4.6 we

still see the same trend as in Fig. 4.4 that SS-S and SS-R performs well in providing higher

throughputs for users who suffer low throughputs.

4.4 Conclusions of This Chapter

A central network controller with site specific knowledge can predict the path loss

between any AP and client, and therefore predicts the impact of SINR and throughput on every

AP and user when the channel of any AP is changed. This site specific knowledge leads to vast

network improvements which we have demonstrated by using two specific-specific algorithms

that use fairness parameters. These algorithms substantially outperform all other published

ones irrespective of the numbers of controlled APs and rogue interferers, nonuniform or uniform

AP placement, and the level of AP activity. Our proposed algorithms are particularly useful

when the traffic load of the network is high and APs are highly active. The two algorithms,

SS-S and SS-R, are better in uplifting the throughputs of users that suffer low throughputs

when particular utility functions are chosen. Judicious selection of utility function is a topic

of future research. We believe that site specific knowledge is also useful for other wireless

communication problems in both cellular networks and WLANs, which will be validated by

ongoing and future work.
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Chapter 5

Power Control with Site Specific Knowledge for

Maximizing Throughput of the Network

In Chapters 3 and 4, we optimize frequency allocations to minimize co-channel interfer-

ence and maximize the throughput of the network, assuming the transmit power of APs and

users are fixed. Increasing the transmit power of an AP can potentially increase the downlink

throughput from this AP to its clients, but also induces larger interference on nearby APs or

clients that are on the same channel, thereby lowering their throughputs. Since most traffic in

wireless LANs is downlink, we focus on controlling the transmit powers of APs. In a network

with multiple APs and clients, optimizing transmit powers requires knowledge of path gains

between APs and clients, which can be estimated by using site specific knowledge. A central

network controller that communicates with all controlled APs and has site specific knowledge

can optimize transmit powers at APs to maximize and balance the throughputs of all clients

in the network.

The main contribution of this chapter1 is a transmit power control scheme that works

seamlessly with the best frequency allocation algorithms to date (i.e., the algorithms in Chap-

ter 4) to further improve users’ throughputs, e.g., we improve the 25, 10, 5, and 3 percentiles of

users’ throughputs by up to 4.2%, 9.9%, 38%, and 110%, and save power by 20%. Section 5.1

contrasts our work with prior related work. Section 5.2 introduces notation and assumptions

used in this chapter, and Section 5.3 describes the formulation, algorithms, and implemen-

tation concerns for our proposed transmit power control problem. Then, Section 5.4 shows

simulation results, followed by conclusions for this chapter.

1Part of the work in this chapter has been submitted to IEEE Globecom 2007 [51].
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5.1 Contrast with Prior Related Work

We have reviewed prior work in [28–32] in Chapter 2.3; we now contrast these with our

work on power control.

Recall that [28] assumes that a central network controller knows which APs and clients

are actively sending data (downlink or uplink, respectively), and optimizes transmit powers

for these active APs and clients. Whenever the set of active APs and clients changes, the

central network controller has to know the new set and optimize the power and rates again.

Obviously, the overhead of this scheme is considerable. Unlike [28], we will only consider

optimizing transmit power for downlink transmissions. Recall that in Chapters 3 and 4 we

have shown that the frequency allocations optimized for the downlink-only case also perform

well in networks with both uplink and downlink traffic, as long as downlink traffic dominates.

By doing so, the complexity of the algorithm is reduced.

The work in [29–32] enables clients to meet minimum SINR requirements, but does

not mention the characteristics of clients that have high SINRs. In this chapter, we achieve

proportional fairness for the SINR distribution for all clients, thereby yielding significant

throughput gains, especially for users that suffer low throughputs.

Like the algorithms in Chapters 3 and 4, the work in this chapter has the ability to

mitigate the impact of rogue interference, i.e., interference from outside the controlled network.

By contrast, [28–32] do not mention mitigating the negative impact of rogue interference.

5.2 Notation and Assumptions

We shall use the same notation as in the previous chapters for consistency, but we

briefly review the notation used in this chapter below.

Suppose M APs, indexed by M = {1, 2, . . . , M}, operate on K orthogonal frequency

channels. We index users (or clients) by L = {1, 2, . . . , L}. We denote the identity of an AP

and a client by am (m ∈ M) and cl (l ∈ L), respectively. We assume no APs or users are at

the same locations. We assume every user is associated with a single AP; m(l) (depending on

88



l) denotes the index of the AP with which cl is associated, i.e. am(l) is associated with cl. Let

fm (fm ∈ K) denote the channel that am operates on, and let ~f = (f1, f2, . . . , fM) denote the

channels of all M APs. Let Pn denote the transmit power of AP an.

We assume that the central network controller periodically (say every 5 minutes) re-

quires the APs to stop transmitting for a short duration of time (say, one second). In this

duration, APs take turns in requiring all users associated with them to perform measurements

of background interference, which includes noise floor of the RF environment and interference

from rogue RF devices outside the controlled network. Note that each user needs to measure

the background interference for all available frequency channels. The users then feedback

these measurements to the APs. Site specific knowledge along with measurements of back-

ground interference make the estimations of SINR at users or APs much more accurate. Let

σl denote the background interference measured at client cl. The ability to deal with rogue

interferers is critical since WLANs share unlicensed bands; however, [28–32] do not address

the negative impact of rogue RF interferers.

The RF channel gain between any AP and client can be predicted by using site specific

knowledge [4,9,11,12,52]; let hl,n denote the RF channel gain (the inverse of path loss) between

the client cl and the AP an, i.e., hl,n is defined as the ratio of the received power at cl divided

by the transmit power of an if no other RF interference or noise exists in the environment.

5.3 Transmit Power Control Problem

Recall that Chapter 4 assumes the transmit power of each AP is fixed (denoted P0)

and maximizes the sum of utility of each user’s SINR in a case where all APs are actively

transmitting downlink traffic, since downlink traffic volume presently dominates WLAN traffic

[11,12,25]. More precisely, Chapter 4 maximizes the following optimization problem2 over all

2Note that we slightly modify the expression of (4.1) in Chapter 4 to point out the significance of the
transmit power.
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possible frequency allocations ~f ∈ KM .

max
~f

∑

l∈L
U(γl) (5.1)

subject to γl =
hl,m(l)P0

σl +
∑

n:fn=fm(l),n6=m(l) hl,nP0

~f ∈ KM

The SINR at client cl is denoted γl in (5.1); the denominator of γl in (5.1) consists of back-

ground interference (denoted σl) and co-channel interference from other APs on the same

channel
∑

n:fn=fm(l),n6=m(l) hl,nP0. Let ~f ] denote an optimal frequency channel vector for (5.1),

which can be found by using the algorithm in Chapter 4, for example.

In this chapter, we fix the frequency channel vector as an optimal one, i.e., ~f ], and

control APs’ transmit powers to further improve clients’ throughputs. Simulation results in

Section 5.4 show the throughput gains achieved by employing transmit power control, as

compared with using fixed power. We intend to solve the following problem.

max P1, P2, . . . , PM

∑

l∈L
U(γl) (5.2)

subject to γl =
hl,m(l)Pm(l)

σl +
∑

n:f]
n=f]

m(l)
,n6=m(l) hl,nPn

Pmin ≤ Pn ≤ Pmax, ∀n ∈M.

The variables in (5.2) are all M APs’ transmit powers {Pn : n ∈ M}. The transmit power

ranges between Pmin and Pmax, which are specific to hardware of APs, e.g., Pmin = 1mW and

Pmax = 100mW may be reasonable values for IEEE 802.11a/b/g APs [53]. The objective in

(5.2) does not maximize sum SINR, since maximizing sum SINR may favor users with high

RF channel gains from their associated APs and cause users with low channel gains to suffer

very low SINR. The work in [49] can be applied to show that the SINR distribution of clients

exhibits q-proportional fairness in SINR, if the utility function in (5.2) has the following form
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in (5.2), where q is a fairness parameter that captures degrees of fairness.

U(γl) =





(1− q)−1γ
(1−q)
l , if q 6= 1

log γl, if q = 1
, γl ∈ (0,∞). (5.3)

Generally, as q gets larger, the SINR distribution becomes fairer, i.e., the difference of SINR

between clients becomes smaller; especially the SINRs of the users that have low channel

gains from APs become larger. In the mean time, however, the average SINR becomes lower

as q gets larger. Trade-off between fairness and average SINR can be adjusted by changing

q. The work in [49] shows that if q → ∞, the distribution of clients’ SINR achieves max-

min fairness. Before presenting a key theorem to characterize and solve (5.2), we introduce

geometric programming.

5.3.1 Background on Geometric Programming

We first present some definitions; then, the description of geometric programming

follows. This section is based on the work in [54,55].

Let x1, . . . , xn denote n real positive variables, and x = (x1, . . . , xn) a vector with

components xi. A real valued function g of x, with the form

g(x) = cxa1
1 xa2

2 · · · xan
n , (5.4)

where c > 0 and ai ∈ R, is called a monomial function, or a monomial (of the variables

x1, . . . , xn).

A sum of one or more monomials, i.e., a function of the form

g(x) =
J∑

j=1

cjx
a1j

1 x
a2j

2 · · · xanj
n , (5.5)

where cj > 0 and aij ∈ R, is called a posynomial function, or a posynomial (with J terms, in

the variables x1, . . . , xn).
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According to [54,55], if an optimization problem has the following form, it is a geometric

program.

minimize e0(x)

subject to ei(x) ≤ 1, i = 1, . . . , n (5.6)

gi(x) = 1, i = 1, . . . , p

where gi(x) are monomials, ei(x) are posynomials, and xi are the optimization variables. n

and p denote the number of inequality and equality constraints, respectively. There is an

implicit constraint that the variables are positive, i.e., xj > 0. The problem in (5.6) is referred

to as a geometric program in standard form.

5.3.2 Algorithms for Transmit Power Control

Theorem 5.1. If the fairness parameter ‘q’, as introduced in (5.3), is an integer and q ≥ 2,

the optimization problem in (5.2) can be converted to a geometric program in standard form.

Proof. If q = 2, we have U(γl) = −1/γl. Hence maximizing the objective in (5.2) is equivalent

to minimize the following expression:

∑

l∈L

1

γl

=
∑

l∈L

{σl +
∑

n:fn=fm(l),n6=m(l) hl,nPn

hl,m(l)Pm(l)

}
(5.7)

=
∑

l∈L

{ σl

hl,m(l)

P−1
m(l)

+
1

hl,m(l)

∑

n:fn=fm(l),n6=m(l)

hl,nPnP
−1
m(l)

}
, (5.8)

which is a posynomial in P1, P2, . . . , PM . Similarly, when q = 3, 4, . . . , maximizing the objec-

tive in (5.2) can still be written as minimizing a posynomial. Below we present a proof for any

integer value of q that satisfies q ≥ 2. For convenience, let i = q−1. Since U(γl) = (−i)−1γ−i
l ,

maximizing
∑

l∈L U(γl) is equivalent as minimizing −∑
l∈L U(γl), which is equivalent as the
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following expressions:

−
∑

l∈L
U(γl) =

∑

l∈L

1

i
· 1

γi
l

(5.9)

=
1

i

∑

l∈L

{σl +
∑

n:fn=fm(l),n6=m(l) hl,nPn

hl,m(l)Pm(l)

}i

(5.10)

=
1

i

∑

l∈L

P−i
m(l)

hi
l,m(l)

{
σl +

∑

n:fn=fm(l),n6=m(l)

hl,nPn

}i

(5.11)

=
1

i

∑

l∈L

P−i
m(l)

hi
l,m(l)

i∑
j=0

(
i

j

)
σi−j

l

[ ∑

n:fn=fm(l),n6=m(l)

hl,nPn

]j

(5.12)

where (5.12) holds by binomial theorem [56], and
(

i
j

)
= i!

j!(i−j)!
. Note that the term

[ ∑

n:fn=fm(l),n6=m(l)

hl,nPn

]j

in (5.12) is a posynomial (for any j = 0, 1, . . . , i) by multinomial theorem [57]. Since summa-

tion of posynomials scaled by positive numbers is still a posynomial, the term

i∑
j=0

(
i

j

)
σi−j

l

[ ∑

n:fn=fm(l),n6=m(l)

hl,nPn

]j

in (5.12) is a posynomial. Then it is straightforward to see that the whole term in (5.12) is a

posynomial; therefore, the objective in (5.2) is a posynomial.

After examining the objective function, we check the optimization constraints in (5.2),

which can be rewritten as

PminP
−1
n ≤ 1 (5.13)

(1/Pmax)Pn ≤ 1, (5.14)

which complies with the standard form of geometric programs, as described in Section 5.3.1.
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A geometric program, such as (5.2), can be transformed into a convex program. Effi-

cient algorithms exist to solve geometric and convex programs (see [54,55]); these algorithms

are called geometric optimization algorithms. Any such geometric optimization algorithm can

be used to solve our problem formulation in (5.2). A central network controller that has site

specific knowledge and communicates with all the controlled APs can perform the geometric

optimization algorithms to solve the transmit power control problem in (5.2).

5.3.3 Implementation Concerns: Block Processing, Overhead, and Discrete Power
Levels

Note that the problem formulation in (5.2) needs the knowledge of path gains between

APs and clients. Since clients may be moving, joining, or leaving the network, the path

gains vary over time. We assume that block processing is used for obtaining path gains, i.e.,

path gains are sampled and updated periodically. When the path gains are updated, optimal

transmit powers at APs, i.e., the solution to (5.2) must be recomputed. The period of sampling

path gains and recomputing transmit powers is a design choice and could be the same as the

period that frequency allocation algorithms are performed, as described in Chapter 4 (say 1,

2, or 5 minutes).

Simulations show that the computation time needed for solving (5.2) is on the order

of seconds in the MATLAB programming language. Implementation in low-level languages

such as C or Assembly may reduce the computation time to be tens of milliseconds, which

are much less than the period of sampling path gains and performing transmit power control.

Hence, the overhead is negligible.

Note that the transmit power considered in (5.2) takes a continuum of values between

Pmin and Pmax. In practice, however, the transmit power takes discrete values. We may

quantize the optimal transmit power obtained from solving (5.2). Quantization clearly loses

the optimality. Nevertheless, if the separation between discrete power levels is small enough,

the quantization loss may be negligible. Therefore, we would like to determine a practical

separation of power levels; results in Section 5.4.2 show that a separation of 2.5dB or 4dB is
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Figure 5.1: Frequency allocation examples for 25 APs on a 5-by-5 nonuniform or uniform
topology. Three kinds of objects (squares, stars, and circles) signify three orthogonal frequency
channels. Filled back objects denote 25 APs; hollow objects denote 100 users; double-layered
objects with inner part filled with black denote 10 rogues. The units of X and Y axes are
meters.

a good option.

5.4 Simulation Setup and Results

Section 5.4.1 describes the simulation setup, and Section 5.4.2 presents and discusses

the simulation results.

5.4.1 Simulation Setup

The frequency allocation algorithm in Chapter 4 has been shown to outperform all

other published work on WLAN frequency allocations. However, in Chapter 4, all APs use a

constant transmit power. The results in Chapter 4 are considered as our baseline case, but

we set the transmit power of every AP to be the maximum power (100 mW), as opposed to

10 mW, as used in Chapter 4; this adjustment is based on the data sheet in [53], which states

that the transmit power of APs ranges between 1 and 100 mW. We compare the baseline case

with the optimal transmit power obtained by solving (5.2). Users’ throughputs are the metric

for comparison. Note that for both the baseline case and our power control case, we use the

optimal frequency channel vector obtained by solving (5.1), i.e., the vector ~f ] mentioned in
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Figure 5.2: Gains of median, and 25, 10, 5, and 3 percentiles (denoted 25P, 10P, 5P and 3P) of
users’ throughputs when transmit power control is employed, as compared with using constant
transmit power of 100 mW at every AP. The x-axis represents the layout of controlled APs
and the percentage of rogue APs compared to the controlled APs. Nonuniform and uniform
AP layouts are denoted ‘nu’ and ‘u’, respectively.

(5.2).

We consider 2 network sizes, 3 levels of rogue interference, and 2 network topologies,

and thus have 12 combinations (2× 3× 2), as shown in the x-axis of Fig. 5.2. The 2 network

sizes include a 4-by-4 AP layout with 64 users and a 5-by-5 layout with 100 users; the number

of users are chosen so that every AP is associated with 4 users on average. We consider low,

medium, and high interference from rogue interferers, where the ratio of the number of rogue

interferers to the number of APs is 10%, 40%, and 70%, respectively. We consider a uniform

topology where APs are regularly located as illustrated in Fig. 5.1(a), and a nonuniform

topology, where APs are perturbed from the uniform layout with a small random distance (up

to 25% of separation), as shown in Fig. 5.1(b). The separation between adjacent APs is 106

meters, which is the same as the setup in Chapters 3 and 4. Noise floor is set to be 10 dB

above the thermal noise to properly represent the RF environment [48]; the thermal noise is

modeled as kT0B, where k is Boltzmann’s constant (k = 1.3806503 × 10−23 Joules/Kelvin),

T0 is ambient room temperature (typically taken as 300 Kelvin), and B is the equivalent

bandwidth of the measuring device (B = 30 MHz for the bandwidth of IEEE 802.11b/g
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Table 5.1: Power saving for different network sizes, rogue interference, and network topologies.

5x5, nu 5x5, u 4x4, nu 4x4, u

10% Rogue 19.2% 19.3% 17.3% 15.5%

40% Rogue 20.7% 19.0% 19.9% 16.6%

70% Rogue 20.4% 17.5% 18.8% 16.5%

systems). We consider saturated networks where all APs are transmitting downlink traffic.

For the numerical results shown in this section, the fairness parameter q is set to 2. Higher

values of q uplift throughputs of the users that suffer low throughputs, while sacrificing the

high-throughput users. Judicious selection of the fairness parameter q depends on application

requirement and is a topic of ongoing and future research. We set the number of orthogonal

channels (K) to 3 to represent 802.11b/g; other larger values of K produce very similar trends

as to those shown in Fig. 5.2, making our approach applicable to cellular networks and 802.11a.

5.4.2 Simulation Results and Discussions

Fig. 5.2 shows the throughput gains of using optimal transmit power, as compared

with using constant power, i.e., the baseline case. The results of each of the 12 combinations

shown on Fig. 5.2 are averaged from 10 randomly generated networks. Although the work

in Chapter 4 has been shown to be able to improve the throughputs of users with poor

throughputs, the results in this section show that transmit power control can improve even

more. Throughputs of the users that suffer low throughputs are greatly uplifted, i.e., our

transmit power control algorithm improves the algorithm in Chapter 4 by up to 4.24%, 9.87%,

37.9%, and 109% for the 25, 10, 5, and 3 percentiles of clients’ throughputs. The median and

75, 60, 20, and 15 percentiles of clients’ throughputs are improved by up to 1.69%, 1.46%,

1.97%, 5.74%, and 5.29% (these percentiles are not shown on Fig. 5.2 due to lack of space).

Our results show that transmit power control built upon frequency allocations allows more

users to have satisfactory quality of service.

In addition to throughput gains, our transmit power control also saves the transmit
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Table 5.2: Percentiles of throughput gains with continuous power levels, or 2, 2.5, 4, 5, or 10
dB of separation between discrete power levels.

continuum 2dB 2.5dB 4dB 5dB 10dB

25P 3.28% 3.00% 2.92% 3.40% 3.73% 1.45%

20P 5.74% 5.17% 3.78% 5.59% 5.46% 1.43%

10P 9.87% 9.87% 8.91% 9.68% 10.3% 3.86%

5P 33.9% 27.4% 32.7% 31.5% 13.9% 0.985%

3P 109% 103% 109% 65.9% 24.1% 4.52%

power. The intuition is that the inter-cell interference is reduced by lowering the transmit

power of some APs; thus, some clients’ throughputs are uplifted. Table 5.1 shows that the

saving of power expenditure for each of the 12 combinations; the transmit power is reduced

by about 20%, i.e., the average transmit power is about 80mW instead of 100mW.

Quantization: For practical implementation, we have to quantize the transmit power

level. We study several different values of separation between discrete power levels, namely,

2, 2.5, 4, 5, and 10 dB. For example, if the separation is 4 dB, the actual transmit power

levels are 0, 4, 8, 12, 16, and 20 dBm (recall the maximum and minimum transmit power

levels are 1 and 100 mW, which are equivalent to 0 and 20 dBm, respectively). We consider

the case of 4x4 AP layout, 11 rogue interferers, and nonuniform AP topology, and compute

the 25, 20, 10, and 5 percentiles of throughput gains with continuous or discrete power levels,

as shown in Table 5.2. Table 5.2 shows a large drop of 3 and 5 percentiles of throughput

gains from 2.5dB to 5dB. Therefore, 2.5dB or 4dB is a practically good option for separation

between discrete power levels. Other cases of AP layouts, rogue interference, and topology

produce very similar trends as to those shown in Table 5.2, making our choice of 2.5dB or

4dB applicable for various network conditions.
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5.5 Conclusions of This Chapter

A central network controller with site specific knowledge can predict the path loss

between any AP and client, and therefore predicts the impact of SINR and throughput on

every AP and user when the transmit power of any AP is changed. This site specific knowledge

leads to vast network improvements which we have demonstrated by using a transmit power

control algorithm, which can work seamlessly with site-specific based frequency allocation

algorithms. Practical discrete power levels are given, i.e., 2.5dB or 4dB separation. Our power

control scheme is better at uplifting the throughputs of users that suffer low throughputs when

particular utility functions are chosen. We believe that site specific knowledge is also useful

for other wireless communication problems in both cellular networks and WLANs, which will

be validated by ongoing and future work.
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Chapter 6

Load Balancing for Wireless Data Networks

This chapter1 presents an efficient iterative load-balancing algorithm for time and band-

width allocation among access points (APs) and users subject to heterogeneous fairness and

application requirements. The proposed load-balancing algorithm can work seamlessly with

the frequency allocation algorithms in Chapters 3 and 4, and the transmit power control al-

gorithm in Chapter 5, and can be viewed as an add-on to frequency allocations and transmit

power control to further improve user throughputs. Frequency allocations are performed dur-

ing a longer time scale (say 5 minutes) to optimize average throughputs of users, whereas load

balancing is performed when any user joins or leaves, whose time scale is often shorter than

that for frequency allocations (say 5, 30, or 60 seconds).

The proposed load-balancing algorithm can be carried out either at a central network

controller with site-specific propagation predictions, or in a decentralized manner. The algo-

rithm converges to maximum network resource utilization from any starting point, and usually

converges in 3 to 9 iterations in various network conditions including users joining, leaving,

and moving within a network and various network sizes. Such a fast convergence allows real-

time implementations of our algorithm. Simulation results show that our algorithm has merits

over other schemes especially when users exhibit clustered patterns. Our algorithm, when as-

suming multiple radios at each user, achieves 48% gain of median throughput as compared

with the max-min fair load-balancing scheme (also with the multi-radio assumption) while

losing 14% of fairness index; we also achieve 26% gain of median throughput and 52% gain

of fairness index over the Strongest-Signal-First scheme (which assumes each user has only

1Part of the work in this chapter has been presented in IEEE Vehicular Technology Conference, Melbourne,
Australia, May 2006 [58].
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a single radio). When only a single radio is used, our algorithm is similar to the max-min

fairness scheme, and is still better than SSF with 44% gain of 25-percentile throughput and

37% gain of fairness index.

6.1 Introduction

Cellular networks and converged cellular/WLAN networks are sure to proliferate as

multi-mode devices enter the enterprise and homes. People consider increasing the capacity

of WLAN or microcellular networks by increasing AP density and assigning proper non-

overlapping frequency channels to APs. As the number of APs to which a user can connect

increases, an algorithm that efficiently associates users to APs becomes critical for bandwidth

and quality of service (QoS) management. However, the default Strongest-Signal-First (SSF)

approach used in 802.11 products, in which each user chooses an AP with the strongest signal,

results in unevenly distributed loads among APs and poor performance [26].

In addition, mobile users need to re-associate and re-authenticate with the network as

they leave the coverage of one AP and enter into the next. Hence, vendors have introduced

centralized controllers or switches wherein mobility, handoffs, QoS, reliability, and security

are overlaid on the existing WLAN infrastructure. The role of WLAN or cellular switches

is evolving to have network-layer controls over the AP’s normal processing in physical layers

today. The implementations and limitations of centralized switches vary with vendors. For

example, the wireless LAN services module with a single Cisco catalyst 6500 switch can

support up to 6000 wireless LAN users and 300 APs [59]. Other vendors such as Trapeze,

Aruba, Meru, and Symbol have similar architectures.

Suppose a central switch or network controller has the knowledge of the walls, building

layouts, and obstacles in the surrounding environment, as well as the locations of all APs

and users. Then, site-specific prediction models can provide the central switch with accurate

and detailed RF predictions and real-time optimization from measurements for path loss,

throughput, as well as the received SINR and the achievable capacity for each wireless link
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[5,12,14–17]. Because the number of disjoint channels is limited, APs reuse the same frequency

channel, thus causing co-channel interference. Note that the prediction of capacity and SINR

takes into account the co-channel interference. Nevertheless, such interferences are negligible

when the number of disjoint frequency bands is large enough (e.g., IEEE 802.11a systems have

12 non-overlapping channels) or CDMA is used for single-cell reuse [10]. Past research [5, 12,

14–17] on site-specific propagation modeling has reported good agreements with measurements

of received signal strength intensity (RSSI), and end-user throughput can be estimated to high

degree of accuracy [12,16,17]. The average and the standard deviation of the RSSI difference

between site-specific predictions and measurements are less than 1 and 5 dB, respectively [5].

The correlation coefficient between predicted and measured throughput is 85% [12].

In order to better balance loads, vendors such as Cisco, Trapeze, Aruba, Meru, and

Symbol have introduced central switches to have network-layer controls (e.g. load balancing

and handoffs) over the AP’s normal processing in physical layers today.

This chapter presents a load-balancing algorithm that can be carried out either in a

distributed way with some message exchange between APs and mobile users, or at a central

switch with site-specific predictions (such predictions can provide the central switch with

detailed RF parameters, the received SINRs, and estimate the achievable capacity for each

wireless link; see [11, 14, 15] and references therein). The centralized version with the site

specific predictions does not have the overhead of message exchange as in the distributed

version of the proposed algorithm.

Several heuristic load-balancing schemes have been presented. As described in Chap-

ter 2, the work in [26, 33–35] outperform schemes with little or no load balancing, but are

not shown to be optimal. To our best knowledge, the only work that achieves some form of

optimality in load balancing is [36], which achieves max-min fairness of user bandwidth. Our

work extends [36] and can achieve different degrees of fairness.

This chapter considers a network with multiple APs and users, as depicted in Fig. 6.1

and tries to answer a fundamental question: which AP(s) should be connected with a par-

ticular user, and how much time should the specific AP(s) allocate to this user in order to
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Figure 6.1: A simple network with 3 APs and 5 users. Three APs, denoted by a1,a2,and
a3, use disjoint channels. Five users are denoted by c1 − c5. Rm,l denotes the long-term
transmission rate between am and user cl. Tm,l denotes the time fraction allocated to cl over
the RF channel of am. The aggregate rate that c4 receives from a2 and a3 are denoted b4.

achieve optimal network utilization subject to heterogeneous fairness and application require-

ments. Section 6.2 describes the system model and notation in detail. Section 6.3 presents

the formulation and an iterative algorithm for the optimal allocation of channel usage time.

Simulation results are presented in Section 6.4.

6.2 System Model and Notation

A WLAN card today can only choose one AP. Nevertheless, The max-min load-

balancing work in [36] has suggested a model where each user possesses multiple radio in-

terfaces at different frequency bands and thus can communicate with multiple APs simul-

taneously. We adopt the same assumption in [36]: we assume a multi-radio capability that

allows multiple channels to be received and decoded in parallel by each user It is suggested

in this chapter that the multiple-radio assumption simplifies the computation to be efficient

(the problem formulation is convex). Our approach can also be used for multi-radio APs. Our

algorithm allows up to an unlimited number of radios on a user; however, 2 to 4 radios suffice

in practice, since a user in an actual WLAN or microcellular network is usually surrounded

103



by at most 4 APs.

We assume that users exhibit a quasi-static mobility pattern (a model that has been

adopted in [36]) where users can move from place to place, but they tend to stay in the

same physical places for long periods of time [27]; the median of such a staying period is

about 20 minutes according to the WLAN measurements in [27]. This model allows us to

consider long-term averaged link capacities over a time scale of about 20 minutes (denoted as

TAVG); the proposed load-balancing algorithm is executed based on average link capacities.

Due to interference or changes in user applications, user locations, or transmission states,

link capacities may change. Our algorithm may use an exponential average of link capacities,

which have higher weights on recent or current capacities and lower weights on past capacities.

We expect the resource re-allocation will not occur too often due to the quasi-static mobility

model. Moreover, this chapter will show that the proposed load-balancing algorithms are very

fast and are suitable for real-time computing. The notation in Chapter 3, which is given in

Section 3.2, will still be used in this chapter. We will introduce new notation below.

The link capacity Rm,l (e.g. throughput) between an AP am, and a user, cl, is de-

termined by the peak throughput for a single (unshared) user, and also determined from

predicted, measured, or optimized throughput estimates based on site specific information.

As described in Chapter 4, SINR at every user can be predicted using site specific prediction

techniques (e.g. those in [4, 9, 11, 12, 52]), given the knowledge of the surrounding propaga-

tion environment, building layouts, the locations and electrical properties of physical objects,

transmit powers of APs, and the locations and frequency channels of APs and users. The

work in [11, 12] presented an empirical model to relate throughput to SINR; hence, Rm,l can

be predicted using site specific knowledge.

For the case where multiple users share a single AP over an RF channel, the throughput

between the AP, am, and a user, cl, is a fraction (the time fraction of channel usage) of the link

capacity, that is, Throughputm,l = Tm,lRm,l, where Tm,l is the fraction of channel usage time

between am and cl. Let Ml denote the set of indices of APs from which the user cl receives

positive throughput, i.e. Ml = {m : m ∈ M,Rm,l > 0}. During a TAVG interval, even though
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users may join/leave the network, or RF noise sources may emit interfering signals, the effects

of these transient events on link throughputs are quantized and sampled every TAVG (e.g.

block processing is used). In the beginning of every TAVG interval, our iterative load balancing

algorithm re-adjusts the time/bandwidth resource allocation over all users and APs.

The algorithm converges to optimum in merely 3 to 9 iterations irrespective of network

sizes, although the computation time of each iteration grows linearly with the number of users

multiplied by the number of APs controlled by the switch. On a 2GHz Intel Pentium computer

with Windows XP, each iteration in MATLAB takes 30 milliseconds for a network with 36

APs and 300 users. Code implemented in assembly or C language would be much faster and

is very suitable for real-time implementations of our algorithms on hardware/firmware, as

contemplated in [14,15].

With the above mentioned assumptions, the real throughput that a user experiences

mainly depends on the channel usage time allocated from the APs to this user. For instance,

in Fig. 6.1, suppose a2 and a3 allocate T2,4 = 20% and T3,4 = 40% of their time (over disjoint

channels 1 and 2, respectively) to c4, respectively. The total bandwidth that c4 obtains is

b4 = 20
100

R2,4 + 40
100

R3,4; the bandwidths of other users can be computed in a similar way.

we consider an infinite backlog of packets (full and ready queues on every channel) for every

user. Hence a user’s throughput is the same as the bandwidth allocated to her. We maximize

the sum utility of throughput, which means maximizing
∑3

l=1 Ul(bl) over the channel usage

time in this example. If utility functions are properly chosen, users will be allocated different

notions of fair allocation when the network reaches maximum sum utility [49].

We made the assumption that all APs are under the control of a network switch.

However, some rogue APs or RF noise sources may emit interfering signals in the coverage

area of the controlled APs. In this case, some controlled APs or overlay sensors can detect

signals from rogue APs. With detected signal parameters and site specific knowledge, position

location techniques can locate the rogue APs [14, 15]. Then, AP channel assignments are

changed so that the APs near the rogue APs operate at orthogonal RF channels in order

to eliminate most interference from rogue APs. Then, the switch will predict SNR and link
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capacities between users and controlled APs using site specific models for the rogue locations

and transmit properties, and apply our algorithm to find the optimal resource allocation

accordingly. This chapter assumes the frequency band of each AP has been properly assigned

[14, 15], and focuses on finding the optimal bandwidth/time allocation in a fully-controlled

network.

With an assigned allocated frequency channel, each AP serves its user by time sharing.

The fraction of time resource dedicated for payload transmissions between users and an AP,

am, over an RF channel is denoted as T frac
m (0 ≤ T frac

m ≤ 1) (e.g., it ranges from 59% to

88% in 802.11a). The subscript m in T frac
m is used, since the payload time fractions may

differ from AP to AP. We suppose that each user shares her utility function to all the APs

that transmit signals strong enough to reach her. Then, each AP allocates its time resource

(over its assigned RF channel) to users based on the information of the utility functions of

all the users within its coverage area, based on site specific knowledge [11, 14, 15]. In this

chapter, utility functions are assumed to be concave, continuously differentiable, and strictly

increasing [54] for simplicity of analysis. User cl is said to be within the coverage of AP am

if Rm,l > 0; otherwise, Rm,l = 0. Each entry in the rate matrix can be predicted from a

site-specific prediction engine [11,14,15]. Within a unit time period, suppose AP am allocates

a time fraction Tm,l (over the assigned RF channel of AP am) to user cl (0 ≤ Tm,l ≤ 1). The

actual bandwidth that user cl gets from AP am is Tm,lRm,l. Since allocating time between

am and cl does not improve any throughput when the capacity between am and cl is zero, we

assert that

Tm,l = 0 if Rm,l = 0,∀m ∈M,∀l ∈ L. (6.1)

.
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6.3 Maximum Sum Utility with Time Allocation

The optimal AP-user association can be formulated as the sum utility maximization

problem in (6.2) over time resources from APs on different RF channels to users.

max
∑

l∈L
Ul(

∑

m∈Ml

Tm,lRm,l)

subject to
∑

l∈Lm

Tm,l ≤ T frac
m , ∀m ∈M, (6.2)

Tm,l = 0, if Rm,l = 0, ∀m ∈M,∀l ∈ L
over Tm,l ≥ 0,∀m ∈M,∀l ∈ L

It is hard to find a closed-form expression of the optimal channel usage time allocation for

(6.2). Nevertheless, if the optimization is over the time resources of only a single AP (over

one channel), assuming the other APs’ time allocations are fixed, closed-formed expressions

for each AP’s optimal time allocation have closed-form expressions, shown in (6.13) which are

solutions to formulation (6.4). Theorem 6.1 discussed below shows that the original multiple

AP problem in (6.2) reaches the optimum if and only if the time allocation from every AP

simultaneously has the closed-form expressions as in (6.13). Hence, the optimization of the

multiple-AP problem can be done by successively optimizing each AP’s time resources, as

presented in the algorithm in Fig. 6.2 as an efficient iterative algorithm. Our derivation and

proofs extend [60] to a wide class of utility functions (beyond logarithmic) for different degrees

of fairness and application needs. The sole constraint in (6.2) means that the total channel

usage time used at each AP is upper bounded. The objective is to maximize the network

utility
∑

l∈L Ul(
∑

m∈Ml
Tm,lRm,l). Mo and Walrand have proposed a class of utility functions

that capture different degrees of fairness and model applications with heterogeneous needs

parameterized by ql [49]:

Ul(bl) =





(1− ql)
−1b

(1−ql)
l , if ql 6= 1

log bl, if ql = 1
, bl ∈ (0,∞). (6.3)

The parameter ql has an index l because each user cl may have a different application/fairness

requirement. This family of utility functions is concave, continuously differentiable, and
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strictly increasing [49]. The sum of concave functions is still a concave function; hence,

problem (6.2) is convex since a concave function is to be maximized over a convex constraint

set [54]. The work in [49] shows that if ql →∞, the formulation in (6.2) becomes a special case

that achieves max-min fairness, as studied in [36]. Within every TAVG, R remains constant

after block processing, and the optimal sum utility and T will be determined accordingly.

Suppose the sum utility optimization is performed over the channel usage time resources

of only AP am, Tm,• = [Tm,1,Tm,2, . . . ,Tm,L], assuming that the time allocations from the

other APs to users are fixed. Then the formulation in (6.2) is reduced to

max
∑

l∈Lm

Ul(Tm,lRm,l + cm,l)

subject to
∑

l∈Lm

Tm,l ≤ T frac
m , (6.4)

Tm,l = 0, if Rm,l = 0,∀l ∈ L
over Tm,l ≥ 0 ∀l ∈ L,

where cm,l =
∑

n∈Ml\{m}
Tn,lRn,l are fixed.

The objective should have been
∑

l∈L Ul(Tm,lRm,l + cm,l), but we note that

∑

l∈L
Ul(Tm,lRm,l + cm,l) =

∑

l∈Lm

Ul(Tm,lRm,l + cm,l) +
∑

l∈L\Lm

Ul(
∑

n∈Ml

Tn,lRn,l). (6.5)

If l ∈ L \ Lm, then m /∈ Ml. Hence, Tn,l is fixed for all n ∈ Ml, which also implies that the

second term in (6.5) is fixed. Therefore, maximizing
∑

l∈L Ul(Tm,lRm,l + cm,l) is equivalent to

maximize the first term in (6.5), i.e., maximizing
∑

l∈Lm
Ul(Tm,lRm,l + cm,l).

Denote by λm the Lagrange multiplier for the constraint in (6.4). Then, the Lagrangian

[54] is given by

L(Tm,•, λm) =
∑

l∈Lm

Ul(Tm,lRm,l + cm,l)− λm

(∑

l∈Lm

Tm,l − T frac
m

)
. (6.6)

Since utility functions Ul(·) are increasing, it is natural to exhaust the time resource for

maximizing sum utility [54]; therefore, at the maximum of (6.4), we have
∑

l∈Lm
Tm,l = T frac

m .
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Then, the sufficient and necessary optimality conditions (KKT conditions) [54] for (6.4) can

be written as:

Rm,lU
′
l (Tm,lRm,l + cm,l) = λm if Tm,l > 0, ∀l ∈ L (6.7)

< λm if Tm,l = 0, ∀l ∈ L (6.8)

∑

l∈Lm

Tm,l = T frac
m (6.9)

Tm,l ≥ 0, ∀l ∈ L; λm > 0. (6.10)

It is obvious that no time is allocated to links with zero capacity (i.e. Tm,l = 0 if Rm,l = 0).

Therefore, we focus on deriving the optimal Tm,l for Rm,l > 0. For general utility functions,

the optimal time fraction can be derived from (6.7):

Tm,l =
{ 1

Rm,l

U ′−1
l

( λm

Rm,l

)− cm,l

Rm,l

}+

. (6.11)

While closed-form solutions of Tm,l do not exist for general utility functions, they can be

obtained for the family of utility functions in (6.3), for which (6.7) becomes

∂L

∂Tm,l

=
Rm,l

(Tm,lRm,l + cm,l)ql
− λm (6.12)

Equating (6.12) with zero gives the optimal time allocation (note that for completeness we

include the case where Tm,l = 0.):

Tm,l =





{
λ

(− 1
ql

)

m R
( 1

ql
−1)

m,l − cm,l

Rm,l

}+

, if Rm,l 6= 0

0, if Rm,l = 0

(6.13)

In (6.11) and (6.13), the notation {x}+ is needed because Tm,l is nonnegative: {x}+ = x if x ≥
0 and {x}+ = 0 otherwise. By substituting (6.13) or (6.11) into

∑
l∈Lm

Tm,l = T frac
m in (6.9), λm

for each AP am can be numerically solved [54,60]. In each iteration of our algorithm, finding

the time resources of each AP requires solving a single-variable (λm) polynomial equation with

L terms; hence, the time complexity of each iteration is O(ML). If the parameter ql = 1, the

expression of Tm,l in (6.13) is the water-filling expression, where the constant λ−1
m is known

as the water-filling level [60].
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Theorem 6.1. {Tm,l : m ∈ M, l ∈ L} is an optimal solution to (6.2) if and only if

{Tm,1,Tm,2, . . . ,Tm,L} is the solution in (6.13) for AP am with the time allocation from the

other APs {Tn,l : ∀n 6= m, ∀l} fixed, for all m = 1, 2, . . . , M .

Proof. This proof is inspired by Theorem 1 in [60]. First, the “only if” part is proven by contra-

diction. Suppose at the optimum of (6.2), {Tm,l : m ∈M, l ∈ L} is an optimal time allocation,

but there exists an AP am such that {Tm,1,Tm,2, . . . ,Tm,L} does not satisfy the single-AP

water-filling condition in (6.13). Fix all other time fractions {Tn,l : n ∈ M, n 6= m, l ∈ L}
and let {TW

m,1,T
W
m,2, . . . ,T

W
m,L} be the single-AP water-filling time vector computed by (6.13),

where the constants {cm,l : l ∈ L} that are needed to compute the water-filling expression

are obtained from the other fixed time fractions {Tn,l : ∀n 6= m, ∀l}. Since the time fractions

{Tn,l : ∀n 6= m,∀l} are fixed, the multi-AP optimization problem in (6.2) is reduced to a

single-AP problem in (6.4). Thus, changing {Tm,1,Tm,2, . . . ,Tm,L} to {TW
m,1,T

W
m,2, . . . ,T

W
m,L}

increases the sum utility objective of the single-AP problem, as well as the multiple-AP prob-

lem, thus contradicting the optimality of {Tm,l : m ∈M, l ∈ L}.
The proof of the “if” part is given here. Since the formulation in (6.2) is convex, the

KKT conditions for (6.2) are necessary and sufficient for optimality. Hence, it suffices to prove

that if {Tm,1, . . . ,Tm,L} is a single-AP water-filling time allocation according to (6.13) for all

m, the KKT conditions for (6.2) hold.

If {cm,l : m ∈M, l ∈ L} are properly defined according to (6.4), the KKT conditions for

(6.2) are the same as those from (6.7) to (6.10) except for the fact that the former conditions

are for all APs but the latter ones are for a single AP. Hence, the single-AP water-filling time

allocations in (6.13) satisfy the KKT conditions for the multiple-AP optimization problem.

This concludes the proof of the “if” part.

As described in Theorem 6.1, the time allocations from each AP to users can be solved

by (6.13), assuming time allocations from the other APs are fixed. Hence, the optimal time

allocation for the multiple-AP optimization problem (6.2) can be found by an iterative algo-

rithm (see Fig. 6.2).
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1: Given a rate matrix {Rm,l, ∀m, l}.
2: Start with a valid time allocation {Tm,l,∀m, l}.
3: repeat
4: for each AP m = 1, 2, . . . , M do
5: Compute {cm,l,∀l} by (6.4).
6: Compute {Tm,l,∀l} by (6.13) or (6.11).
7: end for
8: until the sum utility converges
9: Output {Tm,l,∀m, l}.

Figure 6.2: An iterative algorithm to solve (6.2)

Theorem 6.2. The algorithm in Fig. 6.2 results in an optimal sum utility and causes {Tm,l, ∀m, l}
to converge to an optimal time allocation for Formulation (6.2).

Proof. This proof is similar to that of Theorem 2 in [60]. At each water-filling step in the

algorithm in Fig. 6.2, the optimal time allocations from one AP to users are found while

regarding the time allocations from other APs as fixed. The sum utility objectives of the

multi-AP problem and the single-AP problem are the same except that in the single-AP

optimization, only the time fractions from one AP can be changed; therefore, the multi-AP

sum utility objective is non-decreasing within each water-filling step. The sum utility objective

is bounded because every time fraction is between 0 and 1. Hence, the sum utility converges

to a limit.

The time fractions from each AP, {T1,•,T2,•, . . . ,TM,•}, also converge. For the single-

AP optimization problem, the water-filling solution is unique; hence, at a water-filling step for

AP am, the time allocation Tm,• either strictly increases the sum utility or remains the same.

At the convergence limit, all Tm,•’s are simultaneously single-AP water-filling expressions.

According to Theorem 6.1, such a time allocation is the optimal one for the multiple-AP

optimization problem. Note that the proof holds for any initial time allocation.

The algorithm in Fig. 6.2 can be carried out in a decentralized manner: each AP am

computes the optimal time allocation {Tm,l : l ∈ L} only for those users who are in the
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coverage of this AP. For the computation of each user’s Tm,l, a constant cm,l needs to be

known, which in turn requires the knowledge of the bandwidth that this user cl receives from

APs other than AP am. In a realistic WLAN setup, a user is under the coverage of no more

than 4 APs; hence, the computation of cm,l at each user is efficient. APs sequentially perform

such decentralized computing. When the sum utility converges, a control message may be

sent to APs to stop the decentralized computing.

6.4 Simulation Results

In this section, we compare the throughput and fairness performance of our maximum

utility (denoted as MaxUtil) scheme with the max-min fairness scheme in [36], denoted as

MaxMin, and the Strongest-Signal-First scheme in current 802.11 implementations. We con-

sider a simplified scenario of free-space propagation model where no obstacles exist in the

vicinity of APs. It is clear that our algorithm can utilize site specific information, which will

be considered in future work. We consider different percentages (between 1% and 5%) of

users joining, leaving, or moving within the network; hence, the link capacities change over

time. We sample R for every TAVG, and within this time interval, R is fixed. Two kinds of

user distributions, namely uniform and cluster (or hotspot), are considered. First, users are

uniformly distributed in a 600 meters by 600 meters square that encompasses the 36 APs.

Second, we consider that a hotspot at the center attracts more people: users are distributed

in a circle-shaped area centered at the middle of the APs with a radius of 250 meters. Users

are randomly located on this circle based on their uniformly generated polar coordinates (the

distance from the center and the polar angle are uniformly distributed between (0, 250) and

(0, 2π), respectively). From the viewpoint of the Cartesian coordinate, the user density is

higher near the center than near the circumference of the circle. Each point on the figures

is an average over 100 independent runs. In the SSF case, each user (whose transceiver can

handle only a single channel) associates with the strongest AP, and then each AP evenly

distributes its time resources to the associated users. Simulations show that the number of

iterations (mostly between 3 and 9) does not grow with the number of users. Our algorithm
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converges quickly even for large networks.

Figs. 6.3 and 6.4 show the medians and the 25-percentiles of user throughputs, respec-

tively. Table 6.1 presents fairness indices (see [3] for this metric) for cases with 400 users;

scenarios with different number of APs and users are omitted, since their fairness index values

are similar to those in Table 6.1. Both MaxUtil and MaxMin assume that each user has mul-

tiple radios. For fair comparisons with SSF, we also compute single-radio results by properly

rounding multi-AP time allocation; MaxMin-R denotes the results produced by the rounding

method in [36]. The MaxUtil-R results were obtained by a different rounding method: we

first compute normal multiple-radio time allocation; then, if any user indeed uses multiple

APs, this user simply chooses the AP that supplies her with the most bandwidth. Finally, if

any AP has any time resource remained not allocated, this AP allocates the remaining time

proportionally to its associated users. For example, if the rate matrix R =

[
7 5 6 3

4 1 4 4

]

and all users’ utility parameters, q, are 1, then the optimal time fraction (allowing multi ra-

dios) is T =

[
0.417 0.417 0.166 0

0 0 0.375 0.625

]
. Each user chooses only one single AP; then the

time matrix becomes T =

[
0.417 0.417 0 0

0 0 0.375 0.625

]
. Then, since the first AP has time

fraction (16.6%) remained, the remaining time is proportionally distributed to users 1 and 2;

finally the time matrix for the single-radio case is T =

[
0.5 0.5 0 0

0 0 0.375 0.625

]
.

A trade-off between throughput and fairness can be seen in multi-radio cases MaxUtil

and MaxMin. Our MaxUtil has very good performance in cluster case: in Fig. 6.3(b), MaxUtil

exhibits about 48% higher median throughput over MaxMin while sacrificing only 14% of

fairness as in Table 6.1. It is because MaxMin tends to achieve absolute fairness (its fairness

index is almost 100% as in Table 6.1) by sacrificing throughput (giving more time resource to

users with poor link capacities). Our MaxUtil trades throughput with fairness; even in uniform

case in Fig. 6.3(a), MaxUtil yields 9% higher median throughput than MaxMin while losing

2% of fairness as in Table 6.1. Our algorithm, with multiple radios at each user, outperforms

SSF by 26% and 52% in terms of median throughput and fairness index, respectively, as in
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Figure 6.3: The median of user throughput.

Table 6.1: Fairness index (cf. [3]) of user throughput allocation for two kinds of user distribu-
tions (cluster and uniform) in a network with 36 APs and 400 users. (Unit: %)

MaxMin MaxMin-R MaxUtil MaxUtil-R SSF

Cluster 99.6 97.9 85.7 71.4 34.2

Uniform 100 99.3 98.2 95.7 85.5

Fig. 6.3(b) and Table 6.1.

Surprisingly, the single-radio scheme MaxUtil-R yields worse median throughput than

SSF, mainly because our rounding method (as presented in the numerical example above)

makes users choose stronger APs, thereby causing unbalanced loads on APs. The rounding

method in [36] may be modified to be imposed upon MaxUtil for better rounding performance;

this is a subject for future research. Nevertheless, MaxUtil-R yields similar 25-percentile user

throughputs as MaxMin-R, and is 44% and 17% higher than SSF in cluster and uniform cases,

respectively (as seen in Fig. 6.4). Moreover, Table 6.1 indicates that SSF has poor fairness

indices as compared with all other schemes (37% lower than MaxUtil-R in cluster case, for

example). In summary, our method, MaxUtil-R, outperforms SSF in terms of 25-percentile

throughput and fairness index with small sacrifice of median throughput.
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Figure 6.4: The 25-percentile of user throughput.

6.5 Conclusions of This Chapter

We find analytical expressions for the optimal channel usage time allocation and present

a fast iterative algorithm to achieve the optimum. Simulation results show that when users

are clustered, our utility maximization formulation yields substantial throughput gain over

both the max-min scheme in [36] and the SSF scheme, which is currently being used in WLAN

products. When users are uniformly distributed in space, our max utility scheme is similar as

the scheme in [36], and achieves better fairness than SSF. Regardless of the number of APs or

users in a network, the convergence of the sum utility is fast in various network conditions such

as users joining, leaving, or moving within the network. Therefore, the iterative algorithm

has good scalability and can be implemented in real time.
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Chapter 7

Conclusions

In this dissertation, we have examined the benefit of applying site specific knowledge

to frequency allocation, transmit power control, and load balancing in wireless networks. A

central network controller equipped with site specific knowledge is able to differentiate the

sources of RF interference at every AP or client. By predicting the power from each interfer-

ence source, the controller has a bird’s eye view of the entire wireless network that consists

of multiple APs and clients; therefore, the controller can perform centralized optimization for

frequency allocation, transmit power control, or load balancing.

We also present measurement-based frequency allocation algorithms that can be used

when site specific knowledge is available; the algorithms require that a subset of APs and

clients measure their in-situ interference power at all available channels. We have presented

three different algorithms that adjust APs’ frequency channels based on the measured interfer-

ence. We have shown in Chapter 3 that the proposed measurement-based algorithms achieve

substantial throughput gains over all other published work on frequency allocations in wireless

networks. Nevertheless, it may take a long time for measurement-based algorithms to learn

the interference power between any transmitter and any receiver. Since site specific knowl-

edge is able to quickly predict each individual interference component a priori, site-specific

knowledge-based algorithms can better mitigate the negative impact from strong RF interfer-

ence sources. Simulation results in Chapter 4 corroborate our hypothesis, and show that the

our site-specific knowledge-based frequency allocation algorithms perform even better than

the measurement-based algorithms.

In Chapters 3 and 4, we optimize frequency allocations to minimize co-channel inter-

ference and maximize the throughput of the network, assuming the transmit power of APs
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and users are fixed. Chapter 5 studies the benefit of adjusting the transmit power to further

reduce co-channel interference and maximize network throughputs. Increasing the transmit

power of an AP can potentially increase the downlink throughput from this AP to its clients,

but also induces larger interference on nearby APs or clients that are on the same channel,

thereby lowering their throughputs. Since site specific knowledge enables the central network

controller to predict path losses between every AP and client, we formulate a centralized

transmit power control problem in Chapter 5 in order to optimize clients’ throughputs in the

entire wireless network. We have shown that the formulated problem is a geometric program;

thus, off-the-shelf algorithms may be used to optimize transmit powers efficiently, and real-

time implementation is possible. Simulation results show that we improve the 25, 10, 5, and

3 percentiles of users’ throughputs by up to 4.2%, 9.9%, 38%, and 110%, and save power by

20% with transmit power control, as compared with using fixed transmit powers.

In Chapter 6, we present an efficient load-balancing algorithm that optimally associates

clients with APs. This algorithm is useful when most clients are within coverage of more than

one AP, since in such a case clients may not simply choose the AP with the strongest signal

but instead should take traffic loads into account. The proposed load-balancing algorithm

is very efficient and produces little overhead. Our algorithm can be carried out either at

a central network controller with site-specific propagation predictions, or in a decentralized

manner. Our algorithm yields substantial throughput gain over the state of the art.

Note that practical ways to implement the proposed algorithm in real time are given for

each algorithm in this dissertation. We are familiar with the example that vehicle drivers can

find optimal route to the destination if the vehicle is equipped with a GPS. Site specific knowl-

edge to wireless network management is like GPS is to driving. We believe that site specific

knowledge can be used more extensively to solve and optimize other wireless communication

systems in both cellular networks and WLANs.
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