
Copyright

by

Pablo Caballero Garces

2018

The Dissertation Committee for Pablo Caballero Garces
certifies that this is the approved version of the following dissertation:

Design and Performance of Resource Allocation Mechanisms for

Network Slicing

Committee:

Gustavo de Veciana, Supervisor

Albert Banchs Roca, Supervisor

Jeffrey G. Andrews

Francois Baccelli

Sanjay Shakkottai

John J. Hasenbein

Design and Performance of Resource Allocation Mechanisms for

Network Slicing

by

Pablo Caballero Garces.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2018

Dedicated to my parents, my brother and Ghadi.

Acknowledgments

I would like to express my gratitude to my PhD supervisors Prof. Gustavo

de Veciana and Prof. Albert Banchs. Their masterful and inspiring tutoring have

deeply contributed to my growth, not only professionally but also personally. They

helped and supported me during this fantastic adventure and have always stood by

my side in the difficult moments. Your patience, encouragement and extraordinary

guidance set an example that I would carry on during the rest of my life.

I would also like to thank Dr. Xavier Perex-Costa, Prof. Jeffrey Andrews,

Prof. Francois Baccelli, Prof. Sanjay Shakkottai, Prof. John Hasenbein and Prof.

Evdokia Nikolova for their time and valuable comments on this dissertation that

undoubtedly improved my approach and the final result.

I want also to thank my lab-mates that helped and accompanied me during

these intense years: Arjun, Jiaxiao, Yicong, Saadallah, Jean, Yuhuan, Ambika, Re-

bal, Philippe, Christian, Patricia and many others. Thanks to my friend Dr. Evgenia

Christoforou, you helped me greatly at all times when it was not easy. Also to my

friends Enol, Sofia, Rober, Maria, MJ for showing me that real friendship endures

through distance.

Finally, I will always be indebted to my family: mom, dad, Enrique and

Ghadi, you are the most important pillar in my life and nothing that I achieved

I could have done without you. This milestone is as yours as mine. Also, I am

v

thankful for the rest of my wonderful family: grandpas, Manoli, Charo, Ernesto,

Pedro, Gregorio Pablo, Carlos, Carlota, Pedro; thanks for always being there and

for your love. I would like to dedicate this work to my uncle Gregorio, I hope this

dissertation validate for that field report in Valle and that you are proud of all of us

from up there.

vi

Design and Performance of Resource Allocation Mechanisms for
Network Slicing

Publication No.

Pablo Caballero Garces, Ph.D.

The University of Texas at Austin, 2018

Supervisors: Gustavo de Veciana
Albert Banchs Roca

Next generation wireless networks are expected to handle an exponential

increase in demand for capacity generated by a collection of tenants and/or services

with heterogeneous requirements. Multi-tenant network sharing, enabled through

virtualization and network slicing, offers the opportunity to reduce operational and

deployment costs, and the challenge of managing resource allocations among mul-

tiple tenants serving possibly mobile diverse customers. When designing shared

radio resource allocation mechanisms, it is as important to provide tenants with

customization and isolation guarantees, as it is to achieve high resource utilization

and to do so via low complexity and easy to implement algorithms. This thesis

is devoted to the design and analysis of resource allocation mechanisms that meet

these objectives.

We propose a sharing model in which tenants are assigned a share/budget of

a pool of network resources. This share is then redistributed in the form of weights

vii

amongst users, which in turn drive dynamic resource allocations which are par-

tially able to adapt to the traffic demands on, and requirements of, different slices

customer populations. We propose and analyze two approaches for redistributing

slices’ share among customers which we classify into their associated (i) coopera-

tive, and (ii) competitive resource allocations.

In the cooperative resource allocation setting, a pre-established policy is

proposed, in which resources are eventually assigned in proportion to the slice’s

share and the relative number of active users in currently has at a resource. This

is shown to be socially optimal in a particular setting and simple to implement,

with statistical multiplexing gains that increase with the number of tenants and the

size of the resource pool. These gains stem from the ability of the scheme to adapt

to dynamic loads leading to an up to 50% network capacity savings with respect

to static allocations. We further improve these gains by presenting a framework

that combines resource allocation and wireless user association which uses limited

computational, information, and handoff overheads. However, using our coopera-

tive scheme over a large pool of resources restricts the degree to which a slice can

differentiate its customers’ performance at a per resource level. Thus, we study how

this trade-off affects the network utility and propose a mechanism to determine an

optimal partition the resources into a collection of self-managed pools under coop-

erative resource allocations.

Our competitive resource allocation approach enables tenants to reap the

performance benefits of sharing while retaining the ability to customize their own

users’ allocations. This setting results in a network slicing game in which each ten-

viii

ant reacts to the user allocations of the others so as to maximize its own customers’

utility. We show that, under appropriate conditions, the game associated with such

strategic behavior converges to a Nash equilibrium. At the Nash equilibrium, a ten-

ant always achieves the same, or better, utility than it could achieve under a static

partitioning of resources, hence providing the same level of inter-slice protection

as static resource partitioning. The network utility of the equilibrium allocations is

shown to be, under mild conditions, close to the socially optimal ones. The com-

petitive resource allocation framework is complemented with a study on admis-

sion control policies that enable tenants to ensure minimum rate guarantees to their

users. Our analysis and extensive simulation results confirm that our framework

provides a comprehensive practical solution towards multi-tenant network slicing.

We also discuss how our theoretical results fill a gap in the general resource alloca-

tion literature for strategic players.

ix

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xvi

List of Figures xvii

Chapter 1. Resource Allocation for Network Slicing 1
1.1 The origin of network sharing . 1
1.2 Who shares network resources? . 2
1.3 What resources can be shared? . 3
1.4 How should network resources be shared? 4

1.4.1 Architectural enablers and network slicing 5
1.4.2 Vision and objectives for RAN slicing 6
1.4.3 Virtual pooling resource allocation mechanisms: cooperative

vs competitive . 8
1.5 Outline . 10
1.6 Publications . 11

Part I Cooperative Resource Allocation 13

Chapter 2. Multi-Tenant Radio Access Network Slicing 14
2.1 Related work . 15
2.2 Chapter organization . 18
2.3 System model . 19
2.4 MORA criterion . 20

2.4.1 Properties of MORA resource allocation 24

x

2.4.1.1 Per-base station resource allocation 24
2.4.1.2 User association 25

2.5 Gains and Savings of MORA . 26
2.5.1 Static Slicing (SS) baseline 26
2.5.2 Operator utility gains and protection 28
2.5.3 Capacity Savings . 28

2.6 Approximation algorithm for MORA 31
2.6.1 Complexity and state-of-the-art algorithms 32
2.6.2 Algorithm design . 33

2.6.2.1 Need for reassociations 34
2.6.2.2 Criterion for (re)associations 35
2.6.2.3 Order of reassociations 37
2.6.2.4 Proposed algorithm 38
2.6.2.5 Controlling the number of reassociations 39

2.7 Performance evaluation . 41
2.7.1 Utility gains . 43
2.7.2 Capacity savings . 45
2.7.3 User performance . 47
2.7.4 Computational complexity 49
2.7.5 Impact of non-uniform load distributions 50

2.8 Conclusions . 51
2.9 Proofs of chapter results . 53

2.9.1 Proof of Theorem 1 . 53
2.9.2 Proof of Theorem 2 . 55
2.9.3 Proof of Theorem 3 . 57
2.9.4 Proof of Theorem 4 . 57
2.9.5 Proof of Theorem 5 . 60

Chapter 3. Optimizing Network Slicing via Virtual Resource Pool Parti-
tioning 64

3.1 Related Work . 65
3.2 Chapter organization . 68
3.3 System model . 69

xi

3.3.1 Virtual Resource Pools and resource allocation 70
3.3.2 Benchmark allocations . 72
3.3.3 Share, load and capacity distributions 72

3.4 VRP partitioning . 74
3.4.1 Stochastic network utility 74
3.4.2 Slices protection guarantees 76
3.4.3 Design constraints . 79

3.4.3.1 Pooling management capacity constraints 80
3.4.3.2 Connectivity and locality constraints 80

3.4.4 Optimal VRP Partitioning 81
3.5 Algorithm Design . 82

3.5.1 Greedy algorithm for OVP 82
3.5.2 Greedy algorithm performance 83

3.6 Utility approximation and analysis 85
3.7 Performance evaluation . 93

3.7.1 Numerical evaluation of synthetic scenarios 94
3.7.1.1 Optimal partitions for uniform shares 96
3.7.1.2 Pooling capacity savings 97
3.7.1.3 Optimal partitions for shares/loads proportional net-

works . 98
3.7.2 Performance evaluation in realistic scenarios 100

3.7.2.1 Capacity savings for uniform shares 101
3.7.2.2 User utility in proportional shares/loads scenarios . . 102

3.8 Conclusions . 104
3.9 Proofs of chapter results . 105

3.9.1 Proof of Lemma 1 . 105
3.9.2 Proof of Theorem 6 . 107
3.9.3 Proof of Proposition 1 . 109
3.9.4 Proof of Theorem 7 . 114
3.9.5 Proof of Fact 2 . 117
3.9.6 Proof of Fact 3 . 118

xii

Part II Competitive Resource Allocation 120

Chapter 4. Competitive Slices: Network Slicing Games 121
4.1 Related work . 122
4.2 Chapter organization . 125
4.3 System model . 126

4.3.1 Resource allocation model 126
4.3.2 Network slice utility and service differentiation 128
4.3.3 Baseline allocations . 129

4.4 Strategic behavior and Nash Equilibrium 130
4.4.1 Gain over Static Slicing . 131
4.4.2 Existence and uniqueness of Nash Equilibrium 132
4.4.3 Convergence of Best Response dynamics 134

4.5 Performance bounds analysis . 135
4.5.1 Efficiency: Price of Anarchy 136
4.5.2 Fairness: Envy-freeness . 137

4.6 Performance Evaluation . 138
4.6.1 Overall performance . 139
4.6.2 Fairness . 140
4.6.3 Protection against other slices 141
4.6.4 Convergence speed . 141
4.6.5 Impact of user mobility . 142

4.7 Conclusions . 143
4.8 Proofs of chapter results . 145

4.8.1 Proof of Lemma 2 . 145
4.8.2 Proof of Theorem 8 . 146
4.8.3 Proof of Lemma 3 . 147
4.8.4 Proof of Theorem 9 . 149
4.8.5 Proof of Lemma 4 . 151
4.8.6 Proof of Theorem 10 . 152
4.8.7 Proof of Theorem 11 . 156
4.8.8 Proof of Theorem 12 . 158

xiii

Chapter 5. Inelastic Network Slicing Games: Admission control policies 183
5.1 Related work . 184
5.2 Chapter organization . 187
5.3 System model . 188

5.3.1 Resource allocation model 188
5.3.2 Slice utility . 191
5.3.3 Baseline allocations . 193
5.3.4 Network slicing framework 194

5.4 Admission control for sliced networks 196
5.4.1 Nash Equilibrium existence 197
5.4.2 Worst-case admission control (WAC) 199
5.4.3 Load-driven admission control (LAC) 201

5.5 Weight allocation and user dropping for Network Slicing 204
5.5.1 User subset selection . 204
5.5.2 Weight allocation . 206
5.5.3 Convergence of best response dynamics 207

5.6 Analysis of the NES framework . 209
5.6.1 Gain over static slicing . 209
5.6.2 Loss over the socially optimal allocation 209

5.7 Performance evaluation . 211
5.7.1 Network utility . 212
5.7.2 Throughput gains . 212
5.7.3 Blocking probability . 213
5.7.4 Convergence to the NE . 214
5.7.5 Computational load . 215
5.7.6 Slice differentiation . 215

5.8 Conclusions . 216
5.9 Proofs of chapter results . 218

5.9.1 Proof of Theorem 13 . 218
5.9.2 Proof of Theorem 14 . 218
5.9.3 Proof of Theorem 15 . 219
5.9.4 Proof of Theorem 16 . 220

xiv

5.9.5 Proof of Theorem 17 . 222
5.9.6 Proof of Theorem 18 . 222
5.9.7 Proof of Theorem 19 . 223
5.9.8 Proof of Theorem 20 . 223
5.9.9 Proof of Theorem 21 . 224

Chapter 6. Conclusions and Future work 226
6.1 Conclusions . 226

Bibliography 229

Vita 244

xv

List of Tables

1.1 CAPEX/OPEX savings forecasts [27]. 4

3.1 Table with the protection for all possible combinations of protection
constraints for the problem. 109

4.1 Resource allocation models. 124
4.2 Impact of αo on slice’s Best Responses. 135

xvi

List of Figures

1.1 Thesis Outline Tree Chart . 10

2.1 Normalized utility gain as a function of m. 42
2.2 Utility gains for different approaches as a function of the network

size. 44
2.3 Capacity savings for different scenarios as a function of the number

of operators. 46
2.4 Validation of the theoretical results on capacity savings. 47
2.5 Improvement on the user throughput. 48
2.6 Improvement on the file download time for different file sizes. . . . 49
2.7 Computational complexity of our approaches and state-of-the-art

algorithms. 50
2.8 Capacity savings for different levels of non-uniformity under the

SLAW mobility model. 52
2.9 Capacity savings for different levels of non-uniformity when oper-

ators follow different patterns. 52

3.1 Protection range for different values of sob and s(Pi)− so(Pi) = 0.5. 79
3.2 Load distributions of the illustrative scenarios for L = 4. 95
3.3 Pooling capacity savings of optimal VRP partition vs GPS for 4

network scenarios and varying load L. 98
3.4 Capacity savings of optimal VRP partition vs GPS with propor-

tional rate-share scenarios as a function of the total share for L=5. . 99
3.5 Load distribution of the illustrative scenarios. 101
3.6 Capacity savings for the different scenarios vs GPS and CP for uni-

form shares as a function of the mean offered load per station 102
3.7 Expected user utilities and relative gains of VRP partitioning 103
3.8 Instance of OVP/X3C topology mapping. 108

4.1 Average Gain over Static slicing and Loss against Social optimum
for different scenarios. 140

xvii

4.2 Impact of α3 decision on the slice rate distributions. 142
4.3 Average number of rounds until convergence for different scenarios. 143
4.4 Gain over Static slicing for different traffic models and α values. . . 144

5.1 Performance of NES in terms of network utility as compared to the
two benchmark allocations (SS and SO). 213

5.2 Throughput gains over SS for different traffic types (elastic, inelas-
tic), utility functions (αo) and network load (λ). 213

5.3 Blocking probability for new arrivals for the two policies proposed
and the SS benchmark. 216

5.4 Box plot for the RMSE of the weight allocation at a given round
with respect to the NE weight allocation. 216

5.5 Computational times of the proposed approach as a function of the
number of slices and users in the network. 217

5.6 Blocking probability and empirical CDF of the user rates for a sce-
nario of 4 slices with different requirements. 217

xviii

Chapter 1

Resource Allocation for Network Slicing

1.1 The origin of network sharing

Wireless networks play a key role in today’s infrastructure through enabling

communication and information sharing. Next generation wireless networks are ex-

pected to handle an exponential increase in demand for capacity from a collection of

services with heterogeneous requirements, such as high data rates, very low latency

and massive connectivity. To support the high volume of demand and heterogene-

ity of services, mobile networks are expected to use denser station deployments,

network virtualization and unexploited portions of the spectrum, such as millime-

ter Wave (mmWave) high-frequency bands [14]. This level of sophistication and

densification result in high infrastructure operation and deployment costs.

Using the traditional single ownership infrastructure model, Mobile Net-

work Operators (MNOs) are finding difficulties to justify the required investment

in new network infrastructure technologies deployment. Over-The-Top (OTT) ser-

vice providers obtain the lion’s share of revenues derived from wireless connec-

tivity without incurring any wireless infrastructure cost and the net neutrality prin-

ciple - whereby MNOs are forced to treat packets equally - impedes MNOs from

generating new revenue streams from OTTs. From an OTT perspective, current

1

infrastructure lacks on service differentiation control - which is especially critical

since some of these new services are becoming increasingly complex to manage

and critically rely on the infrastructure to meet their requirements, as for example,

the Ultra-Reliable Low Latency Communications (URLLC) required for vehicular

communications.

This situation fueled the need for improved approaches to network shar-

ing. Mobile network infrastructure sharing provides a mechanism: (i) to share the

operational (OPEX) and capital (CAPEX) expenditures, (ii) to increase resource

utilization via statistical multiplexing of heterogeneous and bursty traffic loads, and

(iii), to provide service providers with operational capabilities to differentiate their

services. In the rest of this thesis, we will use the term multi-tenant network to

denote a network shared by multiple entities, e.g., MNOs, MVNOs, and/or by mul-

tiple OTT services belonging to these or other entities.

1.2 Who shares network resources?

Network sharing is thus as a key business and technological requirement,

where traditional and virtual operators, along with service providers (e.g. OTTs)

share wireless networks. The diversity of tenants opens the possibility for multiple

and flexible use case scenarios, as a function, for example, of who owns the costly

wireless spectrum and the type of tenants. Several possible use cases for multi-

tenant networks are described below:

(a) Multiple traditional MNOs pool their licensed spectrum and share a common

2

pool of resources through Radio Access Network Sharing to obtain mobile op-

erational capabilities, using a shared or private core network.

(b) One or multiple MNOs rent a share of their owned licensed spectrum and/or in-

frastructure to service providers or Mobile Virtual Network Operators (MVNO),

thus, offering them mobile network operational capabilities.

(c) One or multiple tenants deploy mobile network infrastructure to share unli-

censed spectrum or the “shared spectrum” band. Federal Communications

Commission (FCC) has been promoting the use by commercial entities of (i)

unlicensed spectrum in the 2.4GHz and 5GHz bands devices [28], by the so-

called LTE-U and/or (ii) the 3.5 GHz “shared spectrum” band (or the Citizen’s

Broadband Radio Service) [29].

(d) A wholesale company or government (e.g., [88]) deploys mobile network in-

frastructure using (i) their own licensed spectrum, (ii) unlicensed spectrum or

“shared spectrum” or (iii) MNOs purchased proprietary licensed spectrum. The

owner itself absorbs the infrastructure CAPEX and OPEX costs and resells mo-

bile network operational capabilities to MNOs and/or service providers.

1.3 What resources can be shared?

To bring network sharing to fruition, network infrastructure sharing can be

realized in multiple ways, depending on the network elements to be shared. As

classified in [36], network sharing is traditionally divided into roaming, passive

sharing, and active sharing.

3

• Roaming is defined as an agreement that enables customers of a provider,

which does not have coverage in a certain area, to connect to the network of

another provider.

• Passive sharing refers to the sharing of physical components such as physical

sites, tower masts, cabling, cabinets, power supply, air-conditioning, etc.

• Active sharing refers to the sharing of (i) the Transport Network, i.e., back-

haul; (ii) the Core Network and/or (iii) the Radio Access Network (RAN).

As forecasted in [27], the operational cost savings from network sharing can

be as high as 60− 80%. A detailed forecast on CAPEX/OPEX savings per sharing

type is displayed in Table 1.1.

Passive Sharing Active Sharing

Transport Network Core Network RAN

CAPEX 10% 10-20% 15-30% 25-40%
OPEX 15% 10-15% 20-25% 20-30%

Table 1.1: CAPEX/OPEX savings forecasts [27].

The biggest portion of these savings are expected to come from active RAN

sharing which will be the focus of this thesis.

1.4 How should network resources be shared?

Many of the tenants that will want to share resources will serve a spatially

distributed, possibly mobile, population of customers. Thus, a tenant will require a

4

collection of spatially distributed RAN resources to meet their needs. In this thesis,

we propose several sharing criteria to effectively share a collection of resources.

This section provides a high-level perspective on the architectures, vision and ob-

jectives underlying our approach to RAN Sharing.

1.4.1 Architectural enablers and network slicing

The 3GPP Standardization body proposed in [6] two main functional archi-

tectures for active RAN sharing:

• Multi-Operator Core Network (MOCN): Under this architecture, each net-

work provider owns its dedicated Core Network, while the RAN is common.

• Gateway Core Network (GWCN): In this model, in addition to the RAN,

some of the Core Network and Transport Networks elements and functional-

ities can be shared, such as the Mobility Management Entity (MME).

With the emergence of technologies such as Software Defined Networking

(SDN) and Network Function Virtualization (NFV) it is expected that networks will

realize sharing modalities beyond MOCN and GWCN. One of the main concepts

arising from network virtualization, and one of the main enablers for network shar-

ing, is network slicing, a recognized key element in 5G mobile networks [8, 86].

The idea behind network slicing is to allow the physical mobile network

infrastructure to be “sliced” into logical networks, where each logical network is

a collection of resources and functions that are orchestrated to support a specific

service. Each slice may contain software modules running at different locations as

5

well as computational resources and communication resources in the backhaul and

radio network. The intention is to only provision a slice with what is needed for

the service while avoiding unnecessary overheads and complexity. From a RAN

perspective, the virtualization increases flexibility in realizing resource allocation

mechanisms.

Assuming that network slicing is enabled and building on top of its capa-

bilities, this thesis will focus on the task of achieving efficient resource allocation

among participant slices; which is referred to as RAN Slicing. In the sequel, we

will use the terms “slice”, “tenant” and “operator” to refer to the sharing entities

interchangeably.

1.4.2 Vision and objectives for RAN slicing

Our vision for RAN slicing is to engineer a resource allocation mechanism

which enjoy similar features as those in today’s cloud computing infrastructure.

Cloud computing infrastructure uses resource pooling, which aims to make the

computational resources to behave as if they conform a single pooled resource that

can be elastically provisioned to adapt to the demand [75, 105]. The resource pool-

ing can be achieved by a large centralized pool of equipment installed in a data

centers, or by load balancing the demand across distributed server farms.

However, there is a fundamental difference engineering radio resource pool-

ing for mobile networks. The set of resources reachable by a user is restricted due

to physical radio propagation and changes dynamically given that users are mobile,

preventing infrastructure planning to overcome this problem.

6

For parallel resource networks, as described in [56]1, different techniques

can be used to leverage “virtual” resource pooling besides using centralized re-

sources per se, such as for example:

(i) load balancing to control congestion, e.g., through multipath routing, user

association and user admission control [63],

(ii) dynamic resource allocation, e.g., through Dynamic Spectrum Access [101]

or network wide allocations [19, 111], and

(iii) network sharing, e.g, through multi-tenancy [21, 33],

(iv) community sharing/ crowdsourcing, e.g., through Device to Device Commu-

nications and WiFi offloading.

In this thesis, we aim to design a RAN slicing approach that enable virtual

resource pooling through a combination of dynamic resource allocation, network

sharing and load balancing techniques, although we put special emphasis on re-

source allocation and network sharing. In designing such approach among slices,

we face multiple challenges for which the main design objectives (as envisioned

in [30] and inspired by the features of cloud computing [75]) are described next:

• Flexibility: The approach should allow for flexible and dynamic sharing

and resource allocation to meet operators’ heterogeneous requirements and

changes in demands across time and space.

1The reader is referred to [56] for a detailed taxonomy.

7

• Customization: Per slice allocations should be tailored to satisfy the particu-

lar demands of each slice, so the resource allocation mechanism should allow

customization of the service, according to each tenant preferences, allowing

them to differentiate their service from that of other slices.

• Isolation: Although it is desirable to allow a certain degree of customiza-

tion, the resource allocation mechanism should be fair and the slices should

be protected. Each tenant shall receive an amount of resources proportional

or equivalent to their contribution and independent from the customization

choices of other slices.

• Implementability: Designing mechanisms to implement this solution, while

realizing timely adaptation to network changes, is also very challenging.

Given the amount of information involved and its dynamic nature, the so-

lutions should be as distributed as possible while being low in overhead and

complexity and easy to deploy across heterogeneous resources.

1.4.3 Virtual pooling resource allocation mechanisms: cooperative vs com-
petitive

We use the term virtual pool to denote a collection of geographically dis-

persed base stations resources to be shared by multiple tenants. Each slice is as-

signed a share (portion) of a virtual pool, which can be redistributed among its

various customers in the form of weights. Then, at each station of the virtual pool,

resources are distributed in proportion to the weights of its active users. This ap-

proach, in principle, allows resources to be allocated in a manner that tracks the

8

possible spatial variations in customer demands of tenants. Such a dynamic re-

source allocation among heterogeneous slices aims to enable the virtual pool to act

as a centralized resource pool.

As mentioned, our approach is predicated on each slices’ share being subdi-

vided in weights assigned to its users, which in turn determine the resource alloca-

tion per station. In this thesis, we will consider two weight allocation mechanisms.

The first, referred as cooperative resource allocation assumes a predefined

policy where resources are assigned in proportion to the share and the relative num-

ber of active users of a slice at each base station, i.e., that the weight of each user is

equal to the share of its slice divided by the total number of active users of its slice.

The choice to re-distribute a slice’s share (budget) equally amongst its users, can be

viewed as a network mandated policy, but, as shown in the first part of this thesis,

also emerges naturally as the socially optimal weight allocation when slices exhibit

(price taking) strategic behavior in optimizing their own utility.

The second weight allocation mechanism to be considered, hereafter called

competitive resource allocation allows each slice to unilaterally customize its

share allocation amongst users to maximize its own benefit according to its re-

quirements. Such a competitive weight allocation increases the ability of a tenant

to customize but may impact other objectives such as isolation and fairness. Such

unilateral competitive weight allocation lead to a so-called network slicing game,

which is studied in detail in the second part of this thesis.

9

1.5 Outline

The content of the remaining chapters of this thesis is organized in two parts,

as displayed in the conceptual chart of Figure 1.1, each of them described next.

Figure 1.1: Thesis Outline Tree Chart

Part 1: The first part is devoted to study the case of centralized or coop-

erative resource allocation for RAN network slicing. Chapter 2 presents a Multi-

Operator Resource Allocation (MORA) based on a weighted proportionally fair

global objective, which provably achieves desirable fairness/protection across the

network slices of the different tenants and their associated users. Also, a user associ-

ation algorithm is proposed and the performance of the system is evaluated through

performance analysis and simulations. Chapter 3 discusses how to partition the

network stations to create sets of virtual pools that maximize statistical multiplex-

ing and slice differentiation gains while maintaining service isolation among slices,

and proposes an algorithm to determine such partitions.

10

Part 2: By contrast, the second part of this thesis analyzes the case where

slices are competitive and take unilateral weight allocation decisions to maximize

their own benefit. Since the decisions are now decentralized, slices’ interactions can

be viewed as a game. This network slicing game is described and analyzed in Chap-

ter 4 where we show the existence of, and convergence to, a Nash Equilibrium. Our

analytical results show that the price of anarchy associated with measuring the loss

in performance due to competition is bounded and the allocations are envy-free.

Simulation results comparing the performance of cooperative and competitive sce-

narios are presented and confirm our analytical results. In Chapter 5, we expand

this framework to consider slices that support inelastic users, i.e., users with mini-

mum rate requirements. This generates the necessity for admission control and user

dropping mechanisms that ensure the minimum rate requirements are met. Sev-

eral admission control mechanisms are presented and their impact on the blocking

probability and rate distribution across slices is evaluated through simulation.

Finally, in Chapter 6, we conclude by highlighting the main results and

insights of the research conducted along with suggestions for future work to expand

this thesis.

1.6 Publications

Below is a list of conference and journal publications I have co-authored in

the context of this research topic.

11

1. “Network Slicing Games for Guaranteed Rate Services”, P. Caballero, A.

Banchs, G. deVeciana, X. C. Perez, A. Azcorra, IEEE Transactions on Wire-

less Communications, [Accepted, to appear].

2. “Statistical Multiplexing and Traffic Shaping Games for Network Slicing”, J.

Zheng, P. Caballero, G. deVeciana, A. Banchs, ACM/IEEE Transactions on

Networking [Under review].

3. “Statistical Multiplexing and Traffic Shaping Games for Network Slicing”, J.

Zheng, P. Caballero, G. deVeciana, A. Banchs, IEEE WiOPT, 2017.

4. “Network Slicing Games: Enabling Customization in Multi-Tenant Networks”;

P. Caballero, A. Banchs, G. deVeciana, X. C. Perez, ACM/IEEE Transac-

tions on Networking [Under review].

5. “Network Slicing Games: Enabling Customization in Multi-Tenant Networks”;

P. Caballero, A. Banchs, G. deVeciana, X. C. Perez, IEEE INFOCOM, 2017.

6. “Multi-Tenant Radio Access Network Slicing: Statistical Multiplexing of

Spatial Loads”; P. Caballero, A. Banchs, G. deVeciana, X. C. Perez, ACM/

IEEE Transactions on Networking, 2017.

7. “RMSC: A Cell Slicing Controller for Virtualized Multi-Tenant Mobile Net-

works”; P. Caballero, X. C. Perez, K. Samdanis and A. Banchs, IEEE Vehic-

ular Technology Conference VTC, 2015.

12

https://scholar.google.com/citations?user=Ja6dfOIAAAAJ&hl=es
https://arxiv.org/pdf/1705.00582.pdf
https://arxiv.org/pdf/1705.00582
http://arxiv.org/abs/1607.08271
http://arxiv.org/abs/1607.08271
https://arxiv.org/abs/1607.08271
https://arxiv.org/abs/1607.08271
http://www.it.uc3m.es/banchs/papers/vtc15.pdf
http://www.it.uc3m.es/banchs/papers/vtc15.pdf

Part I

Cooperative Resource Allocation

13

Chapter 2

Multi-Tenant Radio Access Network Slicing

This chapter1 proposes a complete solution for multi-tenant network slicing

along with an algorithm to allocate resources accordingly. In this solution, we

assume slices to be cooperative and so resource allocation decisions are taken by

the network infrastructure management entities, with the aim to optimize the global

network utilization through a global network utility function. The main goal is to

analyze whether our model provides to the participant tenants gains with respect to

scenarios where each tenant privately owns network infrastructure (defined as Static

Slicing Benchmark).

We formalize the “Share Constrained Dynamic Network Slicing” formula-

tion for this particular scenario and we propose a criterion, based on share con-

strained proportional fairness, to solve the problem. While similar criteria has been

proposed before, we provide a characterization supporting its use in a multi-tenant

network setting, by (i) presenting a set of desirable properties and (ii) analyzing the

resulting performance benefits. These properties provide insights on the optimality

and fairness of the resulting allocations, and the benefits are studied by characteriz-

1Publications based on this chapter: P. Caballero, A. Banchs, G. de Veciana, and X. Costa-Perez.
Multi-Tenant Radio Access Network Slicing: Statistical Multiplexing of Spatial Loads. IEEE/ACM
Transactions on Networking, 25(5), Oct 2017. All co-authors contributed equally.

14

ing the capacity savings by means of a closed-formula. We show that the criterion

not only improves overall network utility but also that of each individual slice, thus

guaranteeing that slices are not harmed by the sharing of resources amongst slices.

As shown, the proposed criterion corresponds to an NP-hard problem, moti-

vating the need to devise an efficient approximation algorithm which is engineered

in this chapter. The proposed algorithm is semi-online, distributed, incurs low com-

putational complexity, and has been specifically designed to control overheads as-

sociated with handoffs and/or mobile user reassociations. We rely on several inter-

mediate analytical results to drive the key design choices underlying our algorithm.

One of these intermediate results is a variation of the algorithm which achieves

similar performance bounds to state-of-the art algorithms while being distributed –

which is in itself a valuable theoretical contribution on state-of-the-art approaches.

Lastly, a comprehensive performance evaluation based on detailed simula-

tions is provided, showing that (i) slices can save up to 80% capacity while provid-

ing the same quality to their users, and (ii) for a fixed capacity, we improve user

performance in terms of file download times by up to 30%, among other results.

2.1 Related work

We next review and contrast our work to the state-of-the-art in (i) resource

allocation based on proportional fairness, and (ii) resource sharing among opera-

tors.

Considerable research effort has been devoted to address the problem of

15

fair resource allocation in networks. In wireline networks, fair resource allocation

based on utility function maximization has been extensively studied following the

seminal work of [58]. Building on this work, further algorithms for congestion

control in multi-path environments have been proposed [41, 61]. Not unlike our

work, these algorithms are distributed. However, they allow users to decide among

multiple routes while we focus on a wireless setting where each user can only use

one resource (her base station).

In the specific context of wireless networks, several approaches have been

proposed [15, 19, 74] to the problem of resource allocation and user association

based on weighted and unweighted proportional fairness, respectively. The un-

weighted case has been largely studied in the literature in different contexts (e.g.,

power control [70], interference avoidance [100]). The authors of [19] and [100]

analyzed the complexity of the problem and proved the existence of polynomial

time algorithms which provide an exact solution, and [15] designed a distributed

algorithm with convergence guarantees. In contrast to the above, the resource al-

location criterion proposed in this chapter relies on weighted proportional fairness,

with operator-specific weights; this is a more difficult problem as it is NP-hard [19]

and the convergence of distributed greedy algorithms cannot be guaranteed [78].

Weighted proportional fair resource allocation in the context of wireless

networks has also been studied from different angles. In [74], an algorithm with

tight worst-case performance bounds is proposed, while [112] proposes an heuris-

tic algorithm. In contrast to the distributed approach proposed in this chapter, both

algorithms are centralized and require the availability of the full network state infor-

16

mation, which may be very challenging to gather in a timely manner. The authors

of [47, 48] propose a Gibbs-sampling mechanism based on simulated annealing

that converges to an optimal solution. However, the convergence of such mecha-

nisms is known to be very slow and for this reason the authors resort to a more

practical greedy solution. For the proposed greedy solution, the authors neither

provide performance bounds nor analyze convergence; additionally, the overhead

is not controlled, which limits their practical deployment. All the approaches men-

tioned above address the problem of a single-operator network, in contrast to our

work which focuses on the slicing and sharing of resources among multiple opera-

tors.

Multi-operator network sharing has been studied from many different an-

gles, including planning, economics, coverage, performance, etc. (see e.g. [35, 73,

89]). This chapter focuses specifically on the design of algorithms for resource shar-

ing among operators, which has been previously addressed by [20, 22, 43, 76, 77];

however, all these works differ substantially from ours in terms of scope, criterion

or approach. In [22, 43], the optimization of the network utility follows a differ-

ent criterion from the one in this chapter, weighted proportional fairness, which

(as we show) provides many desirable properties. The works of [76, 77] present a

proportional fair formulation similar to ours; however, they do not provide a ratio-

nale for their choice, in contrast to the solid analytical arguments provided here.

Furthermore, [77] does not address the algorithm design, while [76] uses a general

non-linear solver that incurs a very high computational complexity (as confirmed

by our results of Section 2.7.4). Finally, [20] follows a game theoretic approach

17

where operators bid for resources, which results in a fundamentally different prob-

lem from the one addressed here.

In summary: (i) while there has been substantial research on proportional

fair resource allocation, its application to multi-operator settings and the associated

problems have not been studied, and (ii) in spite of the substantial work devoted

to proportional fairness in general settings, there is a gap in the systematic study of

distributed mechanisms for joint resource allocation and user association that build

on analytical results.

2.2 Chapter organization

The organization of the rest of this chapter is as follows. In Section 2.3,

we introduce a criterion for dynamic resource sharing among operators; while the

criterion has been proposed before, we provide a characterization supporting its use

in a multi-tenant network setting. These properties are developed in Section 2.4.1,

providing insights on the optimality and fairness of the resulting allocations, and the

benefits are studied in Section 2.5, by characterizing the capacity savings by means

of a closed-formula. We show that the criterion not only improves overall network

utility but also that of each individual operator, thus guaranteeing that operators are

not harmed by the sharing of resources amongst slices. In Section 2.6.1, we show

the criterion corresponds to an NP-hard problem, motivating the need to devise an

efficient approximation algorithm which is introduced in Section 2.6.2. The pro-

posed algorithm is semi-online, distributed, incurs low computational complexity,

and has been specifically designed to control overheads associated with handoffs

18

and/or mobile user reassociations; we rely on several intermediate analytical results

to drive the key design choices underlying our algorithm. Section 2.7 provides a

comprehensive performance evaluation based on detailed simulations, showing that

(i) operators can save up to 80% capacity while providing the same quality to their

users, and (ii) for a fixed capacity, we improve user performance in terms of file

download times by up to 30%, among other results. The proof of the theoretical

results for this chapter are provided in Section 2.9.

2.3 System model

We start by presenting our system model which was developed with LTE/

LTE-A systems in mind, but is generally applicable to cellular systems. We consider

a network consisting of a set B of base stations (or sectors in case of sector antennas)

that are shared by a set of operators O. At any given time, we let U denote the set

of users sharing the network and Uo, o ∈ O the subsets of users belonging to

each operator. An allocation of resources involves two sets of variables: (i) the

association of users to base stations, denoted by x = (xub : u ∈ U, b ∈ B), where

each user u is associated with a single base station, i.e., xub = 1 for one of the base

stations and 0 otherwise, and (ii) the allocation of the resources of each base station

among its associated users, denoted by f = (fub : u ∈ U, b ∈ B), where fub is the

fraction of the base station b’s resources which are allocated to user u.2 Note that in

our model we ignoring the discrete nature of such resources, and assume that fu,b

2For instance, in LTE/LTE-A fub denotes the fraction of physical Resource Blocks, in FDM the
fraction of bandwidth and in TDM the fraction of time

19

can take any value in the continuous range [0,1].

We let c̃ub denote the average rate per resource unit seen by user u at base

station b under current radio conditions,3 and let Cb be the base station’s total

amount resources. Given that the user is allocated a fraction fub of the base sta-

tion’s resources, her rate is given by fubCbc̃ub. For notational convenience, we de-

fine the achievable rate of the user as cub := c̃ubCb, which yields the following rate

allocation:

ru(x, f) :=
∑
b∈B

xubfubcub.

Note that the definition of cub actually represents an abstraction of the un-

derlying physical resources, accounting for the various physical layer techniques

(such as, e.g., power control or MU-MIMO) as well as the interference from dif-

ferent sources (including that of neighboring base stations). In line with similar

analyses in the literature [43, 76, 77, 97, 108, 109], we shall assume that cub is fixed

for each user and base station pair.

2.4 MORA criterion

In this section, we formulate the optimization problem that will drive (i)

the association of users to base stations, and (ii) the allocation of base stations’

resources to users. Hereafter, we refer to this optimization as the multi-operator

resource allocation (MORA) criterion. We show analytically that the criterion sat-

3Note that such average rates depend on the choice of modulation and coding scheme(s) selected
for the user, after averaging out short-term fluctuations.

20

isfies desirable properties in terms of optimality and fairness, and develop a simple

model to evaluate the potential sharing gains of our network slicing approach.

In line with previous approaches [43, 76, 77], the underlying assumption

behind our criterion is that operators share the cost of deploying and/or maintaining

the infrastructure, and the resources received by each operator should be based

on the level of its (financial) contribution to the shared network: if an operator

contributes twice as much as another, it should roughly get twice the resources.

To this end, each operator is assigned a network share so ∈ [0, 1], to represent its

level of contribution to the network. Without loss of generality, these shares are

normalized so that
∑

o∈O so = 1.

The proposed criterion allocates resources across operators dynamically,

tracking changes in the numbers and locations of operators’ mobile users and the

associated transmission rates cub. When doing this, we need to make sure that (i)

network resources are fairly shared among the various operators according to their

share, and (ii) at the same time, the resources allocated to a given operator are

fairly shared among the users of that operator. To achieve this, we follow an ap-

proach akin to that in [16]4: we maximize the overall network utility resulting from

aggregating operator utilities, where the utility of an operator is in turn the aggre-

gation of its users’ utilities. To this end, we define the overall network utility as the

4Reference [16] addresses a similar problem to ours in the context of users and flows, as it aims
at allocating resources fairly to users while preserving fairness among the flows of each user.

21

sum of operators’ utilities weighted by the shares,

W (x, f) =
∑
o∈O

so Uo(x, f),

and the operator utility as the sum utility of the operator’s users normalized by the

number of users (where a user’s utility is logarithmic in its rate),

Uo(x, f) =
1

|Uo|
∑
u∈Uo

log(ru(x, f)),

By weighting the operator utilities with the shares, we give higher priority

to operators with larger shares, and by normalizing with the number of users, we

avoid that operators with more users are better off. For instance, with this choice,

under uniformly loaded base stations an operator with twice the share of another

one will get twice as many resources, independent of the number of users of each.

Combining the above equations, one can rewrite the network utility as follows:

W (x, f) =
∑
o∈O

∑
u∈Uo

wu log(ru(x, f)), (2.1)

where the user weights wu are defined as the operator network share divided by the

current number of users of the operator, i.e., wu = so/|Uo| (in simple terms, the

network share of an operator is divided equally amongst its current users).5

With the above, we can now formulate the MORA optimization problem as

follows. Such optimization corresponds to the weighted proportional fair criterion

5While our definition of network utility coincides with that for weighted proportional fairness,
the criterion proposed here is fundamentally different: we consider resource allocation across time
and vary the weights with the number of users, while weighted proportional fairness typically fo-
cuses on a static scenario and relies on fixed weights.

22

(see e.g. [58]) extended to a multi-operator setting that considers utilities of the

operators, rather than the ones of the individual users:6

max
x,f

W (x, f), (2.2a)

subject to:

ru(x, f) =
∑
b∈B

xubfubcub, ∀ u (2.2b)∑
b∈B

xub = 1 and xub ∈ {0, 1}, ∀ b, u (2.2c)∑
u∈U

fubxub ≤ 1 and fub ≥ 0, ∀ b, u. (2.2d)

In the sequel we shall let xMORA, fMORA denote a (possibly not unique) optimal

solution to this optimization problem. This formulation provides the optimal re-

source allocation at a given time under the current cub values (given by the selected

modulation-coding schemes); in a dynamic setting, such allocations would be re-

evaluated when any of the cub values change, due to changes in the (average) chan-

nel quality.

Note that, once MORA returns the user association x and resource alloca-

tion f , physical layer techniques (such as MU-MIMO or power control) are em-

ployed to optimize performance, under the constraint that users are provided with

rates proportional to the ru values given by MORA.

6Note that (2.2c) ensures that a user is associated with one (and only one) base station.

23

2.4.1 Properties of MORA resource allocation

Next, we show that the MORA criterion satisfies some desirable properties

both in the way base stations’ resources are allocated to associated users, and the

way users are associated with base stations.

2.4.1.1 Per-base station resource allocation

Let us first consider a general setting, where user associations to base sta-

tions are fixed, to see how MORA allocates base station resources. Let x∗ be the

fixed (not necessarily optimal) user to base station association. If we optimize the

resource allocation f for this user association, i.e., maxf W (x∗, f) subject to (2.2b)

and (2.2c), it can be seen from Lemma 5.1 of [74] that the resulting resource allo-

cation is unique and given by fM(x∗) = (fMub (x∗) : u ∈ U, b ∈ B), where

fMub (x∗) =
wux

∗
ub∑

v∈Uwvx
∗
vb

. (2.3)

Further if x∗ = xMORA, then fM(x∗) = fMORA, i.e., we have MORA

optimal allocation of network resources.

The above result is fairly intuitive. Users associated with a given base sta-

tion are allocated resources proportionally to their weights wu. This can be viewed

as follows. The share of an operator represents the total budget of the operator.

When assigning a weight wu = so/|Uo| to users, this share is distributed among the

operator’s users, and hence the user’s weight represents the budget of a user. As

the resources allocated to a user are inversely proportional to the sum of weights at

her base station, the sum of weights can be viewed as the cost of a unit of resource

24

at the base station. Thus, operators with users associated with heavily loaded base

stations will have to pay a higher cost (e.g, increase their network share or limit

their overall number of users) or receive fewer resources.

The above shows that the number of active users that operators have on

the network and their spatial distribution will impact the resources allocated un-

der MORA. Indeed, allocations across base stations are coupled together through

|Uo|, i.e., an operator with a large number of active users will have lower weights

and likely lower per-user allocations. At the same time, the resources obtained by

an operator heavily depend on the load at base stations to which its users will be

associated with.

2.4.1.2 User association

Next we study the MORA user associations. Building on the optimal-

ity of our formulation, we can show that the resource allocation resulting from

MORA is Pareto-optimal, which means that for any alternative allocation (x′, f ′) for

which ru(x′, f ′) > ru(x
MORA, fMORA) for some u, we necessarily have rv(x′, f ′)

< rv(x
MORA, fMORA) for some v 6= u. Indeed, if this was not the case then

W (x′, f ′) would be larger than W (xMORA, fMORA), which contradicts the fact that

the optimal MORA allocation (xMORA, fMORA) maximizes W (x, f).

Thus, Pareto optimality in this context means that if under some other user

association choice, a user sees a higher throughput than that under MORA then

there must be another user which sees a lower throughput allocation. Note that this

need not always be the case. Consider, for instance, a network with |U| users, such

25

that the largest cub of each user corresponds to a different base station. While the

optimal allocation would associate each user to the base station with largest cub,

a criterion based on local decisions that looks at users one by one may lead to a

different association. The above result guarantees that this will not happen under

MORA.

2.5 Gains and Savings of MORA

In the following we evaluate the benefits of MORA. To that end, we intro-

duce a simple baseline – static slicing (SS), a proxy for not sharing resources at

all.7

2.5.1 Static Slicing (SS) baseline

Suppose each operator contracts for a fixed slice/fraction so of the network

resources at each base station for its exclusive use. The operator can of course still

optimize its users associations, xo = (xub : u ∈ Uo, b ∈ B), and allocation of

resources fo = (fub : u ∈ Uo, b ∈ B), so as to maximize its utility. Specifically

each operator o ∈ O can determine its user association and resource allocations

7By slicing we refer to the way resources are shared (or sliced) among operators (while resource
allocation refers to the allocation of resources to specific users). In contrast to the dynamic nature
of MORA-based slicing, static slicing divides the infrastructure in fixed fractions.

26

based on:

max
xo,fo

Uo(x
o, fo) (2.4)

subject to ru(x
o, fo) =

∑
b∈B

xubfubcub, ∀u ∈ Uo,∑
b∈B

xub = 1, ∀u ∈ Uo,∑
u∈Uo

fubxub ≤ so, ∀b ∈ B,

xub ∈ {0, 1}, fub ≥ 0, ∀b ∈ B, ∀u ∈ Uo.

This is similar to MORA except limited to the operator o’s current users Uo and the

resource constraint corresponds only to the fixed slice so allocated to the operator

at each base station. Although the user associations and resource allocations under

static slicing are independently optimized by each operator, we shall let xSS, fSS be

a (possibly not unique) optimal choice across all operators under static slicing. Also

paralleling our discussion of MORA, it is easy to show that if one fixes a feasible

user association x∗, (2.4) is convex and yields resource allocations given by

fS(x∗) := (f ∗ub(x
∗) : ∀u ∈ U,∀b ∈ B),

where

f ∗ub(x
∗) =

x∗ubso∑
v∈Uo x

∗
vb

1{u ∈ Uo}, (2.5)

i.e., this is again a weighted proportionally fair allocation of the operators’ slice of

the base station resources.

27

2.5.2 Operator utility gains and protection

The overall network utility under MORA is clearly larger than that under the

more constrained allocations possible under SS. This however does not guarantee

that a given operator’s utility under MORA is greater than that under SS. Below we

show that for the same user association an operator utility under MORA exceeds

that under SS, indicating that beyond the overall network utility, we have that each

operator is indeed better off. This shows that MORA effectively protects operators

when sharing their resources with other operators, which is very important to ensure

that operators accept this criterion. Note that the result is completely general and

holds for any possible scenario.8

Theorem 1. For a given user association x, MORA’s resource allocation fM(x)

(see Eq. 2.3) achieves a higher utility than that of SS given by fS(x) (see Eq. 2.5),

i.e., for all o ∈ O

Uo(x, f
M(x)) ≥ Uo(x, f

S(x)).

2.5.3 Capacity Savings

Next we consider the capacity savings resulting from operators sharing in-

frastructure. Specifically, we compare the spectrum capacities, i.e., total amount of

resource, required to achieve the same average utility per operator under MORA

and SS. The aim is to give some intuition on the typical savings one might expect

and its dependence on the network load, number of operators and their shares. For

8The proofs of the theorems are provided in the Appendix.

28

tractability we will examine a scenario where traffic is spatially homogenous and

operators’ network shares are proportional to their load.

We consider a network model in which there is a fixed total number of users

|U| of which each operator contributes a fixed number of users proportional its net-

work share so, i.e., no = so|U| which are assumed to be integer valued. Each

operator’s users are randomly (uniformly) distributed amongst the |B| base sta-

tions, so the number of users of operator o associated with base station b, is given

by a random variable No,b, such that No,b ∼ Binomial(no, 1
|B|). The total number

of users at base station b is denoted by a random variable Nb =
∑

o∈ONo,b ∼

Binomial(|U|, 1
|B|). We also assume for simplicity that users have the same capacity

cub = c to the base stations with which they associate.

Note that under the above traffic model every user u of every slice o have the

same weight wu = so
no

= 1
|U| . Thus expected overall network utility under MORA

is given by:

W̄ = E

[∑
o∈O

∑
b∈B

Nobwu log

(
c

Nb

)]
= E

[∑
b∈B

∑
o∈O

Nob

|U|
log

(
c

Nb

)]

= E

[∑
b∈B

Nb

|U|
log

(
c

Nb

)]
=
|B|
|U|

E
[
Nb log

(
c

Nb

)]
,

where the last equality follows by using the uniformity of traffic across base sta-

tions. Moreover, under our model the network utility W̄ is the average utility across

all users, which by symmetry is equal to the expected utility of a given operator o

under MORA, i.e., ŪMORA
o = W̄ .

Now applying Taylor’s approximation to the function x log(c/x) at E[Nb]

29

we obtain

Nb log

(
c

Nb

)
≈ E[Nb] log

(
c

E[Nb]

)
+

[
log

(
c

E[Nb]

)
− 1

]
· (Nb − E[Nb])

− 1

2E[Nb]
(Nb − E[Nb])

2,

which in turn gives

E
[
Nb log

(
c

Nb

)]
≈ E[Nb] log

(
c

E[Nb]

)
− 1

2E[Nb]
Var(Nb).

Since Nb ∼ Binomial(|U|, 1
|B|) we have that Var(Nb) = |U|

|B|(1−
1
|B|) ≈

|U|
|B| , and so

ŪMORA
o ≈ log

(
c

E[Nb]

)
− |B|

2|U|
. (2.6)

Let ∆o denote the extra capacity that operator o would require under SS to

achieve the above utility. The expected utility experienced by operator o under SS

is given by

ŪSS
o = E

[∑
b∈B

No,b

no
log

(
soc(1 + ∆o)

No,b

)]

=
|B|
no

E
[
No,b log

(
soc

No,b

)]
+ log(1 + ∆o).

Again, using a Taylor expansion this can be approximated as

ŪSS
o ≈ log

(
soc

E[No,b]

)
− |B|

no

Var(No,b)

2E[No,b]
+ log(1 + ∆o).

Noting that Var(No,b) ≈ so
|U|
|B| = no

|B| we have that

ŪSS
o ≈ log

(
c

E[Nb]

)
− |B|

2no
+ log(1 + ∆o). (2.7)

30

Finally equating the expected utilities, i.e., (2.6) and (2.7), we obtain the

following estimate of the necessary extra capacity ∆o required when static slicing

rather than MORA is used:

log(1 + ∆o) ≈
|B|
2no
× (1− so). (2.8)

where under our traffic load model no = so|U|.

This result gives a clear intuition on the possible savings resulting from

sharing the infrastructure with MORA dynamic slicing. In particular, the savings

increase exponentially in the product of two terms. The first is inversely propor-

tional to the average number of users operator o has per base station, i.e., no/|B|;

indeed, if the operator has a large number of users, its multiplexing gain is already

high without sharing the infrastructure, and hence there is little gain from sharing.

The second term is large when the operator has a small network share: if its share is

high, the operator is using most of the network resources and there is little sharing.

In summary, capacity savings will be highest when infrastructure is shared

by a large number of operators each with a small number of users per base sta-

tion. With current trends towards small cells, the number of users per base station

is expected to be small, suggesting that infrastructure sharing may be particularly

beneficial.

2.6 Approximation algorithm for MORA

The analysis in previous section and simulations to be presented in the se-

quel suggest that MORA resource allocation across operators not only has desirable

31

characteristics but will make efficient use of resources while protecting operators

from one another. Unfortunately, as we show below, the complexity and informa-

tion overheads associated with doing so for are already high for a static system, and

excessive when operators’ mobile users and associated channels are subject to con-

stant change. In this section, we further discuss the state-of-the-art algorithms to

tackle MORA, and then propose an approximation algorithm based on a sequence

of theoretical results and insights that support the design.

2.6.1 Complexity and state-of-the-art algorithms

The optimization problem underlying MORA is a non-linear integer pro-

gramming problem, which can be shown to be NP-hard and hence there is no poly-

nomial time algorithm unless P = NP .

Theorem 2. The MORA problem is NP-hard.

There have been a number of works in the literature devoted to solving prob-

lems similar to MORA. In particular, [74] proposes an approximation algorithm

for the single operator case with guaranteed performance bounds. However, their

approach is still computationally demanding; indeed, the results in Section 2.7.4,

show that for a network with only 100 users, the algorithm takes 20 seconds on a

dual-core 2.8GHz processor. Given that this would need to be executed every time

cub values change or new users enter/leave the network, this seems computationally

impractical. Moreover, the proposed approach is centralized, so there would be a

substantial information overhead to gather the cub of each user to each potential

base stations, given the amount of data and dynamic nature of mobile users.

32

In the multi-operator setting, [76] proposes an approach based on using a

standard non-linear solver to address a problem similar to MORA. Unfortunately,

the approach is also very complex and centralized. Indeed, our evaluation of this

proposal in Section 2.7.4, shows that the time required to execute this algorithm

increases sharply with the number of users, making it impractical at about 50 users.

Moreover, [76] does not provide any analytical performance bounds.

In summary, to make dynamic multi-operator resource sharing possible, a

new radically simplified approach is required. It should have low computational

complexity and be based on distributed operation requiring only local information,

to allow near real-time operation.

2.6.2 Algorithm design

In the following, we devise an algorithm for MORA that can be used in prac-

tical deployments. In contrast to previous approaches, our algorithm involves a low

computational complexity and relies on data that can be gathered from neighboring

base stations, allowing for a distributed implementation.9

Given the user dynamics, i.e., joining, moving and leaving the network,

an offline algorithm that computes an optimal resource allocation for a fixed set of

users is impractical. Instead, we will pursue an approach that tracks users dynamics,

and occasionally adjusts resource allocations by modifying current or new users’

9Note that, while the algorithm implementation is distributed, the logic is centralized: i.e., we
assume that the algorithm is run centrally by a single entity, without the intervention of the different
operators.

33

associations. Since reassociations of current users correspond to handoffs, their

number should be kept to a minimum. To design such an algorithm, we need to

answer

• Do we really need to reassociate users?

• Where should users be (re)associated to?

• In which order should users be reassociated?

• How many reassociations do we need?

For each of these questions, in the following we provide some theoretical analysis

that eventually leads to our proposed algorithm. In all cases, once a user association

x is set, resources at each base station are allocated according MORA’s resource

allocation fM(x).

2.6.2.1 Need for reassociations

Following the standard terminology of online algorithms, we say that an

algorithm is online if, upon a user joining the network, it only decides how to asso-

ciate the new user, without triggering any reassociations of existing users. We say

the algorithm is semi-online if it can further trigger reassociations of a limited num-

ber of users. Thus, our first question is whether an online algorithm would suffice.

The following theorem suggests that the performance of an online algorithm can be

arbitrarily bad, motivating us to consider semi-online approaches.

34

Theorem 3. Consider an online algorithm that triggers no reassociations of ex-

isting users. Let (x′, f ′) denote the solution resulting from this algorithm and

(xMORA, fMORA) a MORA optimal solution. Then,W (xMORA, fMORA)−W (x′, f ′)

cannot be bounded.

2.6.2.2 Criterion for (re)associations

Next we address the question regarding how to associate, or reassociate,

users to base stations. In particular, consider a Distributed Greedy algorithm wherein

we iteratively examine (in arbitrary order) if there is a user which could change her

association to increase her rate, and if this is the case, she chooses to re-associate

with the base station providing the largest rate. The following result characterizes

the performance of this algorithm if an equilibrium is reached.

Theorem 4. Let (x′, f ′) be an equilibrium allocation for the Distributed Greedy

algorithm, and (xMORA, fMORA) a MORA optimal solution, then10

W (x′, f ′) ≥ W (xMORA, fMORA)− log(e).

There exists an instance of the problem for which it holds that

W (x′, f ′) = W (xMORA, fMORA)− log(2).

Note that the above bound of log(e) is fairly close to the log(2) bound pro-

vided by [74]. This is quite remarkable, considering that the algorithm proposed

10To gain some intuition on this bound, we note that a log(e) gap is equivalent to reducing the
throughput of each user by a factor of e.

35

in [74] is centralized and much more complex. Furthermore, the theorem shows

that the bound is rather tight, as there exists a problem instance that provides a gap

of log(2), which is quite close to the log(e) bound.

While the above theorem bounds network utility in equilibrium, we have not

established the convergence of this algorithm to an equilibrium. The convergence of

this type of algorithms has received substantial attention in the literature [37,40,78].

Indeed, since the throughput of user u is an increasing function of cub/
∑

v∈Uwvxvb,

the Distributed Greedy algorithm can be viewed as a congestion game in which the

load at a base station is given by the sum of weights of the users at the base station,

lb =
∑

v∈Uwvxvb, and a user seeks to minimize aublb, where aub = 1/cub. This

game falls in the category of a singleton weighted congestion game with player-

specific multiplicative constants and linear variable cost. Based on the lack of a

counter-example and the existence of polynomial-time algorithms for special cases,

[40] conjectures that this type of games have an equilibrium (see Conjecture 3.7

of [40]). Based on the simulations we have run for numerous instances of the game,

we further conjecture that the Distributed Greedy algorithm (which implements a

best response dynamics) converges to this equilibrium.

In particular, Distributed Greedy satisfiesW (x′, f ′) ≥ W (xMORA, fMORA)−

log(e), while [74] proposes an algorithm that provides a throughput larger than

ru(x
MORA, fMORA)/(2 + ε) to all users, which translates into

W (x′, f ′) ≥ W (xMORA, fMORA)− log(2 + ε);

hence, the algorithm of [74] provides only a slightly tighter bound than Distributed

36

Greedy.

2.6.2.3 Order of reassociations

While our analysis of the Distributed Greedy algorithm suggests a user

should (re)associate to maximize her rate, it does not indicate in which order user

reassociations should be considered to speed up convergence. To address this, we

consider the Greedy Largest Gain algorithm, which operates as the Distributed

Greedy algorithm but at each iteration updates the association of the user achiev-

ing the highest gain, i.e., the one achieving the largest rnewu /roldu , where roldu is the

user’s current throughput and rnewu is the throughput she would receive under the

improved association.

The following theorem shows that the Greedy Largest Gain algorithm ex-

hibits a desirable convergence property. In particular, one can guarantee that at

each iteration the network utility increases until it reaches W (xMORA, fMORA) −

2 log(e), and from then on it never decreases below W (xMORA, fMORA) − (2 +

maxuwu) log(e). Note that Distributed Greedy does not exhibit this kind of behav-

ior: if we select users in an arbitrary order, the network utility may decrease at any

iteration (as the increase in utility of the reassociated user may be smaller than the

decrease experienced by the other users).

Theorem 5. Let (xi, f i) be the solution at the ith iteration of the Greedy Largest

Gain algorithm and (xMORA, fMORA) a MORA optimal solution. Then W (xi, f i)

increases at each iteration until W (xi, f i) ≥ W (xMORA, fMORA) − 2 log(e), and

thereafter it never decreases below W (xMORA, fMORA)− (2 + maxuwu) log(e).

37

2.6.2.4 Proposed algorithm

Greedy Local Largest Gain. Based on the above considerations we now

propose our algorithm for MORA, the Greedy Local Largest Gain algorithm. We

shall first describe how it operates at a high level, and then provide a more detailed

algorithmic description. When a user joins the network, she greedily joins the base

station providing the largest throughput. However, as we have seen, we may need to

consider triggering user reassociations. To limit their number and associated hand-

offs overheads we constrain these to at most m. For the first m− 1 reassociations,

users choose the base station that provides the largest throughput, but in the mth

the user chooses the base station so as to maximize the network utility W (x, f). In

each of these steps, we select which user to reassociate (if any) based on Greedy

Largest Gain criterion, but instead of considering all users in the network, involving

possibly a high overhead, we restrict the selection locally to users associated with

only two base stations (see below).

In a dynamic and time-varying setting, the algorithm needs to consider the

following cases: (i) a user joins the network, (ii) leaves, or (iii) changes her loca-

tion. The algorithm for a joining user is detailed in the pseudocode of next page.

The rationale is as follows. In the optimal allocation, users are somehow balanced

among base stations, users’ weights playing a role in this balance. When a new user

joins the network, the balance is broken and the base station with which the user

associates may have too many users. Hence, in the first step we reassociate one

of the users of this base station. In the next step, the base station that received the

reassociated user may have too many users; however, depending on the weights of

38

the joining and reassociated users, the original base station may still have too many

users as well. Hence, we consider the users from the two base stations as candi-

dates for reassociation. We repeat this, considering users from two base stations,

in the subsequent steps. Finally, in the last step, to avoid that the reassociation of

a user harms the overall performance, we select the base station association that

maximizes the overall network utility rather than the throughput of the reassociated

user.

When a user leaves the network, the algorithm is quite similar. When she

moves, her cub values to the neighboring base stations may change; if, as a result

of these changes, at some point the user would receive a larger throughput in a

new base station, we reassociate her to this base station. Then, the old base station

executes the same algorithm as when a user leaves the network while the new base

station executes the algorithm corresponding to a joining user.

2.6.2.5 Controlling the number of reassociations

The remaining question is how to set the limit on the number of reassocia-

tions m, which determines the trade-off between the performance of the algorithm

and reassociation overhead. Such trade-offs have been analyzed for a similar set-

ting in [104], which aims to distribute tasks among servers (where each task can

only be associated to a restricted set of servers) in such a way that the maximum

load across all servers is minimized. This problem is similar to ours, with tasks and

servers corresponding to users and base stations respectively, in the particular case

where all users have the same wu and cub. Not unlike their setting, the performance

39

Algorithm 1: GLLG user joining.
Definitions:
rv,b : throughput of user v if she associates to b;
rv : current throughput of user v;
Ub : set of users associated to b, (u ∈ U s.t. xu,b = 1);
U{c∪p} : set of users associated to c or p;
Wu,q : network utility if user u associates to q;
Input: x
User v joins the network:
b′ = arg max

b∈B
rv,b;

xv,b′ = 1← Associate user v with base station b′;
[u∗, p∗] = arg max

(u,p)∈Ub′×B

ru,p
ru

;

if ru∗,p∗/ru > 1 then
Associate user u∗ with base station p∗, xu∗p∗ = 1;

else
stop

c = p∗ (current base station); p = b′ (previous base station);
for m− 1 times do

[u∗, q∗] = arg max
(u,q)∈U{c∪p}×B

ru,q
ru

;

if ru∗,q∗/ru > 1 then
Associate user u∗ with base station q∗, xu∗q∗ = 1;
c← q∗; p← previous base station of user u∗;

else
stop

W ← current network utility;
[u∗, q∗] = arg max

(u,q)∈U{c∪p}×B

Wu,q

W
;

if Wu∗,q∗/W > 1 then
Associate user u∗ with base station q∗, xu∗q∗ = 1;

in this case is optimized when base station loads are as balanced as possible (i.e., the

highest load is minimized). According to the analysis of [104], the performance in

terms of the highest load with our algorithm (which has a limit of m reassociations)

40

over the highest load with the optimal algorithm (with no constraint m) is given

by O(e1− m
ln|B|). This shows that algorithm’s performance improves rapidly (expo-

nentially) in m, and suggests a small m suffices to achieve near-optimal network

utility.

To further explore the impact of m on network utility, we present the fol-

lowing simulation results (see Section 2.7 for a description of the simulation setup).

Here, W (m) is the network utility achieved for a given m value, W (∞) is the util-

ity with unconstrained overhead, W (0) is the utility with no reassociations, and

GW (m)
.
= 1 − W (m)−W (∞)

W (0)−W (∞)
represents the normalized utility gain with m reasso-

ciations, showing how close we get to the unconstrained overhead utility. Fig. 2.1

depicts this gain as a function of m for different scenarios. As can be seen, utility

gains increase very sharply. Furthermore, for m = 3 the gains are already very

close to their maximum value; based on this, we set m equal to 3 (this is indeed

the value used in the experiments of Section 2.7). With this setting, the proposed

algorithm only introduces a small overhead, since our approach may trigger up to

three handovers for every handover performed by a “traditional” solution [3].

2.7 Performance evaluation

Next, we evaluate the performance of our proposed approach. The mobile

network scenario considered is based on the IMT Advanced evaluation guidelines

for dense ‘small cell’ deployments [1]. It consists of base stations with an intersite

distance of 200 meters in a hexagonal cell layout with 3 sector antennas (thus in this

setting users will associate with sectors rather than the base stations we used in our

41

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

G
W

|U |/|B| = 5 and |O| = 2

|U |/|B| = 5 and |O| = 3

|U |/|B| = 5 and |O| = 5

|U |/|B| = 10 and |O| = 5

|U |/|B| = 15 and |O| = 5

1 2 3
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

m

G
W

Figure 2.1: Normalized utility gain as a function of m.

algorithm description). The Signal Interference to Noise Ratio (SINR) is computed

as in [108], SINRub = Pbgub/(
∑

k∈B,k 6=b Pkguk+σ
2),where Pb is the transmit power

and gub denotes the channel gain between user u and base station b, which includes

path loss, shadowing, fast fading and antenna gain. Following [1], we set Pb = 41

dBm, σ2 = −104dB, path loss equal to 36.7 log10(dist) + 22.7 + 26 log10(fc) for

carrier frequency fc = 2.5GHz, and antenna gain of 17 dBi. The shadowing factor

is given by a log-normal function with a standard deviation of 8dB (as in [108])

updated every second, and fast fading follows a Rayleigh distribution dependent

of the user speed and the angle of incidence (as in [32]). Achievable rates are then

computed with the Shannon formula, BW log2(1+SINRub), for the average SINRub

given by fading and shadowing [97] and a channel bandwidth of BW = 10MHz

42

[97]. Finally, the modulation-coding scheme is selected according to the SINRub

thresholds reported in [7]. Unless otherwise stated (i) users move according to the

Random Waypoint Model (RWP) with speeds uniformly distributed between 0.2

and 4 m/s and pause intervals between 0 and 10 seconds, (ii) network size |B| is 57

sectors, (iii) all operators have the same share, and (iv) the number of users of each

operator is proportional to so, i.e., |Uo| = |U| · so. Confidence intervals are below

1%.

2.7.1 Utility gains

We start by evaluating the gains in terms of the overall network utility. We

consider a scenario with a user density of 10 users/sector and 3 operators, and plot

W (x, f) as a function of the network size |B|. In this setting, we compare the

performance of our algorithm for dynamic sharing, Greedy Local Largest Gain

(‘GLLG’), against the following approaches:

i) SINR-based Static Slicing (‘SINR SS’): the resources of each sector are stati-

cally divided among operators and users associate with the based station with

highest SINR;

ii) Distributed Greedy Static Slicing (‘DG SS’): resources are also sliced statically

and user associations follow the Distributed Greedy algorithm discussed in

Section 2.6.2.2;

iii) Distributed Greedy (‘DG’): this is the algorithm for dynamic sharing presented

in Section 2.6.2.2;

43

21 30 39 48 57
−0.64

−0.62

−0.6

−0.58

−0.56

−0.54

|B|

W

SINR SS

DG SS

GLLG

DG

Centralized

Sharing Gain

Association Gain

Figure 2.2: Utility gains for different approaches as a function of the network size.

iv) Centralized (‘Centralized’): this is the centralized algorithm proposed in [74].

The results are exhibited in Fig. 2.2. We draw the following conclusions: (i)

significant gains result from both improving user association (DG SS vs. SINR SS)

and sharing resources dynamically (DG vs. DG SS); (ii) the Distributed Greedy ap-

proach of Section 2.6.2.2 performs almost at the same level of the baseline approach

of [74] (DG vs. Centralized); and (iii) the proposed approach performs closely to

these two approaches, although it pays a small price for reducing the handoff over-

heads (GLLG vs. DG).

In addition to the overall network gain, it is also interesting to look at the

gains of the individual operators. Theorem 1 showed that the difference in oper-

44

ator’s utility under MORA and SS is positive as long as we have the same user

association in both approaches; however, we would expect this to hold in general,

i.e., even when we have different user associations. To this end, we have evaluated

the difference between the operator’s utility under MORA and SS over a large num-

ber of different scenarios and settings. We have observed that in all cases, MORA

always provides better performance than SS to all individual operators, which con-

firms that MORA effectively protects all operators, ensuring gains to all of them.

2.7.2 Capacity savings

We next evaluate the benefits of our approach to operators based on the

capacity savings they would achieve. Specifically, consider a network operated un-

der our algorithm for dynamic sharing, where the capacity (i.e., total amount of

resource) of each base station is given by CGLLG, and let Cbaseline be the base sta-

tions’ capacity required to achieve the same network utility under two baselines:

(a) static slicing with SINR-based user association, and (b) static slicing with en-

hanced user association (i.e., using our algorithm for user association). These two

baselines allow us to study the potential gains earned due to a smarter user associ-

ation and the gains achieved by dynamic resource sharing. Fig. 2.3 illustrates the

corresponding capacity savings, computed as ∆ = (Cbaseline − CGLLG)/CGLLG, for

different numbers of operators, |O| ∈ {2, . . . , 6}, and three different user densities,

|U|/|B| = 5 (low density), |U|/|B| = 10 (medium) and |U|/|B| = 15 (high). The

results show that substantial gains can be realized, and that gains increase with the

number of operators and decrease with per-sector user load. The latter is indeed

45

2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

∆
(%

)

|O|

|U |/|B| = 5

|U |/|B| = 10

|U |/|B| = 15

}
Static slicing with
enhanced user
association

}
Static slicing with
SINR based user
association

Figure 2.3: Capacity savings for different scenarios as a function of the number of
operators.

rather intuitive, since under light user loads static slicing performs poorly while

MORA obtains substantial benefits from statistical multiplexing.

In order to gain additional insight into the impact of the various factors,

Fig. 2.4 displays the influence of the share of the operator (so) and the average load

per base station sector |U|/|B| in the percent of extra capacity required to achieve

the same utility (∆) with the static slicing with enhanced user association baseline.

Results are also compared with the analytical result of Section 2.5.3, confirming

that the theoretical analysis result holds in real conditions.

Note that in the above experiments all operators always have the same share

so. To illustrate the behavior of MORA under heterogeneous shares, we evaluated

46

|U|/|B|
5 10 15 20 25

∆

0

10

20

30

40

50

60

70

80

90

100

Simulation results

Theoretical results

|O| = 5

|O| = 3

|O| = 2

|O| = 4

Figure 2.4: Validation of the theoretical results on capacity savings.

the performance of a scenario with |U|/|B| = 5 and 2 operators under the following

share settings: (i) s1 = s2 = 1/2 and (ii) s1 = 2/3 and s2 = 1/3. The gains

obtained for operators 1 and 2 in the former case are G1 = G2 = 11.1%, while

in the latter case they are G1 = 5.3% and G2 = 21.6%, respectively. Thus, this

result shows that overall performance remains similar under heterogeneous shares,

but gains are unevenly distributed.

2.7.3 User performance

To illustrate the gains from a user perspective, we compare the per-user

throughput achieved by our approach against the two baselines: static slicing with

SINR-based user association (‘Baseline 1’), and static slicing with enhanced user

47

0

2

4

6

8

10

12

14

16

T
h
ro
u
g
h
p
u
t
(M

b
it
/
s)

Baseline 1
Baseline 2
Online m=3 MORA

|U|/|B| = 5
|O| = 2

|U|/|B| = 5
|O| = 3

|U |/|B| = 5
|O| = 5

|U|/|B| = 10
|O| = 5

|U|/|B| = 15
|O| = 5

Figure 2.5: Improvement on the user throughput.

association (‘Baseline 2’). The resulting box-and-whisker plots are shown in Fig. 2.5

for different user densities and numbers of operators. We observe that our approach

provides substantial gains both in terms of the median values as well as the various

percentiles. Furthermore, as expected, gains increase with the number of operators

but decrease with per-sector user load.

To complement the previous results, we compare the file download times

achieved by our approach against a baseline scenario (static slicing with enhanced

user association), when base stations have the same capacity in both cases and users

are constantly downloading files. Let us define the file download time gain asGD =

(DSS −DGLLG)/DSS , where DSS is the average file download time with the static

slicing approach and DGLLG with ours. The gains achieved are shown in Fig. 2.6

as a function of the file download size, for different user densities and numbers of

48

File size (MB)
5 10 15 20 25 30

G
D
(%

)

0

5

10

15

20

25

30

35

|U|/|B| = 5, |O| = 5

|U|/|B| = 5, |O| = 3
|U|/|B| = 10, |O| = 5

|U|/|B| = 15, |O| = 5

|U|/|B| = 5, |O| = 2

Figure 2.6: Improvement on the file download time for different file sizes.

operators. We observe the gains are substantial, and fairly independent of the file

size.

2.7.4 Computational complexity

As mentioned in Section 2.6.1, one of the key advantages of the proposed

approach over the state-of-the-art is its reduced computational complexity. To quan-

tify this, we have measured the time required to execute the following algorithms

in a dual-core 2.8GHz processor: (i) our algorithm for dynamic sharing (‘GLLG’);

(ii) the Distributed Greedy approach of Section 2.6.2.2, which has unconstrained

overhead (‘DG’); (iii) the centralized algorithm of [74] (‘Centralized’); and (iv) the

non-linear solver used by [76] (‘Non-linear Solver’). Fig. 2.7 shows the resulting

49

0 20 40 60 80 100

0

5

10

15

20

25

30

35

40

45

50

30 40 50 60 70 80 90 100 110

0

0.5

1

1.5

DG

GLLG

Non-linear

Solver

GLLG

DG

Centralized

Figure 2.7: Computational complexity of our approaches and state-of-the-art algo-
rithms.

execution times (in seconds) as a function of the number of users for a fixed net-

work size |B| = 57 and |O| = 4 operators. The results confirm that the algorithms

of [76] and [74] are impractical, especially if we take into account that they have to

be triggered every time the channel quality of a user changes. By contrast, the ex-

ecution time of our Distributed Greedy algorithm remains very low, and it remains

even lower for our GLLG approach (due to the constraint that GLLG imposes on

the number of handovers).

2.7.5 Impact of non-uniform load distributions

All the results shown so far have been based on the RWP mobility model,

which is known to distribute load uniformly across space. To understand the im-

pact of non-uniform load distributions, we have evaluated the capacity savings

50

over a baseline (static slicing with enhanced user association) under the SLAW

model [71], which is a non-uniform human walk mobility model. To show differ-

ent levels of non-uniformity, we have parameterized the SLAW model with five

configurations of increasing non-uniformity, from C1 to C5, whose parameters

{waypoints, clustering range, alpha distance, inverse self-similarity} are set as fol-

lows: C1 = {100, 20, 5, 0.95}, C2 = {85, 40, 4.5, 0.85}, C3 = {75, 60, 4, 0.75},

C4 = {65, 80, 3.5, 0.65} andC5 = {50, 100, 3, 0.55}. The results, given in Fig. 2.8,

show that (as expected) capacity savings decrease if loads are non-uniform, since

when users concentrate around some areas the expected number of users per sec-

tor in those areas increases and thus multiplexing gains are reduced. However, the

decrease is very gradual, which shows that non-uniformity has a limited impact.

The above experiment assumes that all operators follow the same mobility

pattern. Alternatively, we may assume different patterns for different operators,

which may be the case for instance if we consider services of different nature. To

evaluate the performance under such case, we have run additional simulations in

which each operator follows a different instance of the SLAW model, with differ-

ent waypoints. The results, given in Figs. 2.9, show that in this case gains increase

(rather than decrease) with non-uniformity, as each operator may have its users con-

centrated in different areas, thereby maximizing the benefit from resource sharing.

2.8 Conclusions

In this chapter we have addressed the problem of multi-tenant resource slic-

ing. While there has been substantial work towards addressing this problem, most

51

C1 C2 C3 C4 C5

5

10

15

20

25

30

35

Scenario

∆
(%

)

|U |/|B| = 5, |O| = 5

|U |/|B| = 5, |O| = 3

|U |/|B| = 10, |O| = 5

|U |/|B| = 5, |O| = 2

|U |/|B| = 15, |O| = 5

Figure 2.8: Capacity savings for different levels of non-uniformity under the SLAW
mobility model.

Scenario
C1 C2 C3 C4 C5

∆
(%

)

0

20

40

60

80

100

120

|U|/|B| = 5, |O| = 3

|U|/|B| = 5, |O| = 5

|U|/|B| = 5, |O| = 2
|U|/|B| = 15, |O| = 5

|U|/|B| = 10, |O| = 5

Figure 2.9: Capacity savings for different levels of non-uniformity when operators
follow different patterns.

52

has focused on architectural issues, leaving algorithmic aspects open to consid-

eration. The design of algorithms for dynamic resource sharing across slices is

challenging as it involves user association decisions (a difficult problem per se) as

well as multi-operator sharing policies. Our main contribution has been to show

that, despite its complexity, it is possible to design practical solutions that scale to

large networks and can track network load dynamics. Indeed, our analytical results

provide strong evidence that the resulting allocations are near-optimal, and our sim-

ulations confirm robust benefits to operators (in terms of capacity savings) as well

as to users (in terms of improved performance).

2.9 Proofs of chapter results
2.9.1 Proof of Theorem 1

For a given user association x the utility of operator o under SS is maxi-

mized when the resource blocks of each operator at each base station are equally

distributed among the operator’s users. This yields

Uo(x, f
S(x)) =

=
∑
b∈B

∑
u∈Uo

1

|Uo|
xub log

(
1∑

b∈B
∑

v∈Uo xvb

so∑
o′∈O so′

cub

)
=

1

so

∑
b∈B

∑
u∈Uo

wuxub log

(
1∑

b∈B
∑

v∈Uo xvb

so∑
o′∈O so′

cub

)
where the weights are wu = so

|Uo| , u ∈ Uo.

If we multiply the numerator and denominator inside the log() by wu, and

take into account that wu = wv for u, v ∈ Uo and
∑

o′∈O so′ = 1, the above can be

53

rewritten as

Uo(x, f
S(x)) =

1

so

∑
b∈B

∑
u∈Uo

wuxub log(wucub)−

1

so

∑
b∈B

∑
u∈Uo

wuxub log

(∑
b∈B
∑

v∈Uo wvxvb

so

)
.

The utility of operator o with MORA allocation is given by

Uo(x, f
M(x)) =

1

so

∑
b∈B

∑
u∈Uo

wuxub log

(
wucub∑
v∈Uwvxvb

)
,

which can be rewritten as

Uo(x, f
M(x)) =

1

so

∑
b∈B

∑
u∈Uo

wuxub log(wucub)−

1

so

∑
b∈B

∑
u∈Uo

wuxub log

(∑
v∈U

wvxvb

)
.

From the above, if we can show that

∑
b∈B

∑
u∈Uo

wuxub log

(∑
b∈B
∑

v∈Uo wvxvb

so

)
≥
∑
b∈B

∑
u∈Uo

wuxub log

(∑
v∈U

wvxvb

)
,

(2.9)

the theorem is proved.

To show the above, we consider the maximization of function
∑

b∈B yb log(xb)

over xb subject to
∑

b∈B xb = 1. By applying Lagrange multipliers, it can be easily

seen that this function is maximized for xb = yb/
∑

b′∈B yb′ . Since both the left and

right-hand sides of (2.9) conform to this constrained optimization problem, and the

left-hand side of (2.9) corresponds to its optimal solution, the inequality of (2.9)

follows.

54

2.9.2 Proof of Theorem 2

The reduction is via the 3-dimensional matching problem which is known

to be NP-complete. Recall that the 3-dimensional matching problem is stated as

follows. Let us consider disjoint sets C = {c1, . . . , cn}, D = {d1, . . . , dn} and

E = {e1, . . . , en}, and a family T = {T1, . . . , Tm} of triples with |Ti ∩ C| =

|Ti ∩ D| = |Ti ∩ E| = 1 for i = 1, . . . ,m, with m ≥ n. The question is whether

T contains a matching, i.e., a subfamily T ′ for which |T ′| = n and ∪Ti∈T ′Ti =

C ∪D ∪ E.

Our reduction is as follows. We call the triples that contain cj triples of

type j. Let tj be the number of triples of type j for j = 1, . . . , n. Base station

i corresponds to the triples Ti for i = 1, . . . ,m. We create two types of users,

element users and dummy users. We have 2n element users, u ∈ {1, . . . , 2n},

corresponding to the 2n elements of D ∪ E. There are tj − 1 dummy users of type

j for j = 1, . . . , n. Note that the total number of dummy users is m−n, u ∈ {2n+

1, . . . ,m + n}. Element users can connect to the base stations that correspond to a

triple that contains this element, with a transmission rate ofR. Dummy users of type

j can connect (also with a transmission of R) to the base stations that correspond to

triples of type j. Element users have a weight wu = 1/(2m) and dummy users have

a weight wu = 1/m. We claim that a matching exists if and only if the network

utility with the MORA criterion is W = (n/m) log(R/2) + ((m− n)/m) log(R).

The value of the objective function is bounded above by the following opti-

55

mization problem:

max
f

2n∑
u=1

1

2m
log(fuR) +

m+n∑
u=2n+1

1

m
log(fuR),

subject to
∑2n

u=1 fu +
∑m+n

u=2n+1 fu = m, where fu is the fraction of resources as-

signed to user u (the first term of the summation corresponds to the element users

and the second term to the dummy users).

By applying the Lagrange multiplier method, it can be easily seen that

the above optimization problem is solved when fu = 1/2 for the element users

and fu = 1 for the dummy users. This gives an upper bound on W equal to

(n/m) log(R/2) + ((m − n)/m) log(R). This corresponds to a global maximum,

and thus any other set of fu values yields a smaller W .

Assume that there is a matching. For each Ti = (cj, dk, el) in the matching,

we associate element users dk and el with base station i. For each j, this leaves tj−1

idle base stations corresponding to tripes of type j that are not in the matching. We

associate the tj−1 dummy users of type j to these tj−1 base stations. This assign-

ment has an objective function of W = (n/m) log(R/2) + ((m − n)/m) log(R),

which is equal to the upper bound given above. In case there is no matching, it is

not possible to have the 2n element users sharing n base stations with fu = 1/2

each, and therefore we cannot achieve the distribution of fu values that maximizes

W . According to the above result, this imples that we obtain a smaller W value.

Therefore, a matching exists if and only if MORA gives W = (n/m) log(R/2) +

((m− n)/m) log(R), which proves the theorem.

56

2.9.3 Proof of Theorem 3

We prove the theorem by means of the following example. Let us consider a

scenario with |B| base stations in which |B|2 users join the network. All users have

the same weight and can associate with any of the |B| base stations with cub = 1.

Independently of the criterion followed to associate new users, after all users have

joined there must be a base station with at least |B| users. Now, suppose all users

but these |B| leave the network. For this scenario, the network utility provided

by the online algorithm is W (x′, f ′) =
∑|U|

i=1
1
|B| log(1

|B|) = − log(|B|). The opti-

mal solution is that each user associates with a different base station, which yields

W (xMORA, fMORA) = log(1). Thus, we have W (xMORA, fMORA) −W (x′, f ′) =

log(1) + log(|B|), which grows to∞ as |B| → ∞.

2.9.4 Proof of Theorem 4

Since in an equilibrium of the Distributed Greedy algorithm, each user is

associated with the base station that maximizes ru, the following holds for all u:

∑
b∈B

x′ubwu log

(
wucub∑
v∈U x

′
vbwv

)
≥

∑
b∈B

x∗ubwu log

(
wucub∑

v∈U x
′
vbwv + wu

)
, (2.10)

where the base station for which x′ub = 1 is the one with which user u is associated

under Distributed Greedy, and the base station for which x∗ub = 1 is the one with

which it is associated under the optimal allocation (i.e., x∗ = xMORA).

At the base station for which x∗ub = 1 we have
∑

v∈U x
∗
vbwv ≥ wu, so the

57

following also holds:∑
b∈B

x′ubwu log

(
wucub∑
v∈U x

′
vbwv

)
≥
∑
b∈B

x∗ubwu log

(
wucub∑

v∈U x
′
vbwv +

∑
v∈U x

∗
vbwv

)
.

Let us define the load at a base station as the sum of weights of the users at

the base station, lb =
∑

v∈Uwvxvb. Then, the above can be rewritten as∑
b∈B

x′ubwu log

(
wucub
l′b

)
≥
∑
b∈B

x∗ubwu log

(
wucub
l′b + l∗b

)
,

where l′b and l∗b are the load at base station b with the Distributed Greedy algorithm

and the optimal allocation, respectively.

From the above it follows that

wu log(ru(x
∗, f∗))− wu log(ru(x

′, f ′)) ≤∑
b∈B

x∗ubwu log

(
wucub
l∗b

)
−
∑
b∈B

x∗ubwu log

(
wucub
l′b + l∗b

)
,

where f∗ = fM(f∗). The above can be expressed as

wu log(ru(x
∗, f∗))− wu log(ru(x

′, f ′)) ≤ −
∑
b∈B

x∗ubwu log

(
l∗b

l′b + l∗b

)
.

Summing the above over all users yields

W (x∗, f∗)−W (x′, f ′) ≤ −
∑
u∈U

∑
b∈B

x∗ubwu log

(
l∗b

l′b + l∗b

)
.

From the above,

W (x∗, f∗)−W (x′, f ′) ≤ −
∑
b∈B

log

(
l∗b

l′b + l∗b

)∑
u∈U x

∗
ubwu

=

−
∑
b∈B

∑
u∈U

x′ubwu log

(
l∗b/l

′
b

1 + l∗b/l
′
b

)∑
v∈U x∗vbwv∑
v∈U x′

vb
wv

=

−
∑
b∈B

∑
u∈U

x′ubwu log

(
l∗b/l

′
b

1 + l∗b/l
′
b

)l∗b/l′b
.

58

Given that (x/(1 + x))x > 1/e for x ≥ 0, we obtain the following bound:

W (x∗, f∗)−W (x′, f ′) ≤
∑
b∈B

∑
u∈U

x′ubwu log(e) = log(e).

Since x∗ = xMORA and f∗ = fMORA, this proves the first part of the theorem.

To find an instance for which the network utility difference between MORA

and Distributed Greedy Algorithm is log(2), consider the following scenario. Con-

sider a network with 2 base stations B = {1, 2} and 2 operators O = {1, 2} with

equal shares, s1 = s2 = 0.5. Each operator has one user: User 1 belongs to Oper-

ator 1 and User 2 to Operator 2. Let the achievable rates be c1,1 = c2,2 = R and

c1,2 = c2,1 = R/2, i.e, user 1 sees a higher rate with base station 1 and user 2 with

base station 2. Clearly, the optimal MORA solution is to associate user 1 with base

station 1 and User 2 with base station 2, i.e., xM1,1 = 1 and xM2,2 = 1,. This leads to a

network utility W (xM, fM) = 0.5 log(c1,1) + 0.5 log(c2,2) = log(R).

Distributed Greedy Algorithm only reassociates a user if this increases her

rate. Let user 1 be associated with base station 2 and user 2 with base station 2.

Since none of the two users can increase her rate by reassociating, they will not

reassociate with the Distributed Greedy Algorithm, and hence this algorithm will

result in a user association decision x′ such that x′1,2 = 1 and x′2,1 = 1. This

yields a network utility W (x′, f ′) = 0.5 log(c1,2) + 0.5 log(c2,1) = log(R/2) =

log(R) − log(2) = W (xM, fM) − log(2), which proves the second part of the

theorem.

59

2.9.5 Proof of Theorem 5

The proof of the theorem is based on the following steps:

Step 1: we first show that while there is some user for which rnewu ≥ e · roldu ,

W (xi, f i) increases at each iteration until we converge to a region that satisfies

rnewu ≤ e · roldu for all u.

Step 2: we then show that if rnewu ≤ e · roldu ∀u, it follows that W (xi, f i) ≥

W (xMORA,xMORA)− 2 log(e).

Step 3: we further prove that if a subsequent iteration i yields rnewu ≥ e · roldu

for some user u, then it must be that W (xi, f i) ≥ W (xMORA,xMORA) − (2 +

maxuwu) log(e).

Step 4: finally, we prove that after an iteration such as the above, in the subse-

quent iterationsW (xi, f i) increases, until we converge once again to a region where

rnewu ≤ e · roldu ∀u.

We next prove each of the above steps.

Step 1: While there is some user for which rnewu ≥ e · roldu , W (xi, f i) in-

creases at each iteration until we converge to a region that satisfies rnewu ≤ e · roldu

for all u.

To prove the above, we consider a variation of the Greedy Largest Gain in

which a user only moves to a new location if rnewu ≥ e · roldu , and show that this

algorithm is guaranteed to converge. To show this, we prove that the network util-

ity function W (x, f) is a generalized ordinal potential for the algorithm variation.

Consider the ith iteration in the algorithm corresponding to a reassociation of user

60

u, and let (xi−1, f i−1) denote the configuration before this iteration and (xi, f i) the

configuration after the iteration. By construction of the algorithm, the following is

satisfied:

ru(x
i, f i) ≥ e · ru(xi−1, f i−1).

Let b be the new base station user u associates with, and a her previous base

station. Then,

W (xi, f i)−W (xi−1, f i−1) =
∑
v∈U

xivawv log

(∑
y∈U x

i
yawy + wu∑

y∈U x
i
yawy

)
+

∑
v∈U\{u}

xivbwv log

(∑
y∈U\{u} x

i
ybwy∑

y∈U\{u} x
i
ybwy + wu

)
+

+ wu log(ru(x
i, f i))− wu log(ru(x

i−1, f i−1))

= lia log

(
lia + wu
lia

)
+ li−1

b log

(
li−1
b

li−1
b + wu

)
+ wu log(ru(x

i, f i))− wu log(ru(x
i−1, f i−1)).

Since lia log
(
lia+wu
lia

)
≥ 0, we have

W (xi, f i)−W (xi−1, f i−1) ≥ wu log

(
li−1
b /wu

1 + li−1
b /wu

) li−1
b
wu

+ wu log

(
ru(x

i, f i)

ru(xi−1, f i−1)

)
> wu log(1/e) + wu log(e) = 0, (2.11)

so that W (x, f) is a generalized ordinal potential. This implies that the potential

game corresponding to the algorithm variation has the finite improvement prop-

erty; therefore, the algorithm variation converges in a finite number of iterations

to a solution that satisfies rnewu ≤ e · roldu ∀u. Also, from (2.11) it follows that

W (xi, f i) > W (xi−1, f i−1), i.e., the network utility increases at each iteration.

61

As the Greedy Largest Gain algorithm always selects the user with the

largest rnewu /roldu , it will select a user for which rnewu ≥ e · roldu , as long as there

is one that satisfies this condition, and hence will follow the same steps as the al-

gorithm variation that we have considered above. This implies that there will be

some iteration i in which the Greedy Largest Gain algorithm will reach a solution

(xi, f i) that satisfies rnewu ≤ e · roldu ∀u and, until reaching this solution, W (xi, f i)

will increase at each iteration.

Step 2: If rnewu ≤ e·roldu ∀u, it follows thatW (xi, f i) ≥ W (xMORA,xMORA)−

2 log(e).

Let (xi, f i) be the solution at the ith iteration which satisfies rnewu ≤ e ·

roldu ∀u. Equation (2.10) for this solution can be rewritten as

∑
b∈B

xiubwu log

(
wucub∑
v∈U x

i
vbwv

)
≥

∑
b∈B

xMORA
ub wu log

(
wucub∑

v∈U x
i
vbwv + wu

)
− wu log(e).

Starting from the above equation and applying the same reasoning as in the

proof of Theorem 4 yields W (xi, f i) ≥ W (xMORA, fMORA)− 2 log(e).

Step 3: If a subsequent iteration i yields rnewu ≥ e · roldu for some user u,

then it must be that W (xi, f i) ≥ W (xMORA,xMORA)− (2 + maxuwu) log(e).

Let us that for some iteration i of the algorithm such that it holds rnewu ≤

e · roldu ∀u for the solution before this iteration, and rnewu ≤ e · roldu , for some u,

for the solution after the iteration. Let (xi−1, f i−1) be the solution before iteration i

62

and (xi, f i) the solution after the iteration. As we have seen above, for the former

it holds W (xi−1, f i−1) ≥ W (xMORA, fMORA) − 2 log(e). Let us consider that at

iteration i user u moves to base station b. Then,

W (xi, f i)−W (xi−1, f i−1) ≥
∑
v∈U

xi−1
vb wv log

(∑
t∈U x

i−1
tb wt∑

t∈U x
i−1
tb wt + wu

)
=

= wu log

(∑
t∈U x

i−1
tb wt/wu

1 +
∑

t∈U x
i−1
tb wt/wu

)∑
t∈U xi−1

tb
wt

wu

≥ −wulog(e) ≥ −max
u

wulog(e).

Thus,

W (xi, f i) ≥ W (xMORA, fMORA)− (2 + max
u

wu) log(e).

Step 4: After an iteration such as the above, in the subsequent iterations

W (xi, f i) increases, until we converge once again to a region where rnewu ≤ e ·

roldu ∀u.

Let us consider that before iteration i there is some u for which rnewu ≥

e · roldu . Then,

W (xi, f i)−W (xi−1, f i−1) ≥ wu log(rnew)− wu log(rold)+∑
v∈U

xi−1
vb wv log

(∑
t∈U x

i−1
tb wt∑

t∈U x
i−1
tb wt + wu

)
> wu log(e)− wu log(e) ≥ 0.

Therefore, if at some iteration we get rnewu ≥ e · roldu for some u, then for

that iteration it will hold W (xi, f i) ≥ W (xMORA, fMORA)− (2 + maxuwu) log(e),

and from this point on W (xi, f i) is going to increase until we reach W (xi, f i) ≥

W (xMORA, fMORA)− 2 log(e) again.

63

Chapter 3

Optimizing Network Slicing via Virtual Resource
Pool Partitioning

Managing a network consisting in a collection of distributed resources is

simple when the load is deterministic and/or predictable, since through network ca-

pacity planning one can in principle provision only the neccesary resources achiev-

ing optimal utilization. However, when serving a spatially distributed set of mobile

customers/demands, this becomes a challenging task. Fluctuations of the network’s

load may result in inadequate or low capacity utilization if the network does not

adapt to these changes. Ideally, network managment should be performed so that

resources behave as if they were a single resource with pooled capacities; this is

referred to as resource pooling [105].

Achieving perfect resource pooling requires the ability to seamlessly shift/

transfer either load or capacity across resources. While “perfect” resource pooling

is often unachievable in practice, particularly in the context of wireless networks,

techniques such as load balancing and dynamic resource allocation, among others

[56], have been traditionally designed to enable a distributed network to appear as

virtual resource pool which achieves improved statistical multiplexing and resource

utilization. When considering a multi-tenant network, virtual resource pools should

64

not only provide the performance/utilization expected from pooled resources, but

should also ensure each tenant the desire degree of isolation and protection from

other tenants’ traffic as ass the ability to differentiate its customers performance.

As discussed in Chapter 1, in this thesis we consider the optimization Vir-

tual Resource Pools (VRPs) and associated joint dynamic resource allocation mech-

anisms among tenants/slices. Although aggregating resources into VRPs may in-

crease statistical multiplexing through more flexible resource allocation, it also de-

grades the ability to differentiate the precise allocations given to tenants. In this

chapter, we consider optimally partitioning a set of resources into a collection of

VRPs which enhances statistical multiplexing while minimizing degradation in the

ability of the system to differentiate and isolate slices. To that end, we present an

optimization problem, Optimal VRP Partitioning (OVP), aimed at guiding the se-

lection of a partition that realizes the best tradeoffs between these two objectives

while ensuring a relaxed notion of isolation among the slices.

3.1 Related Work

As discussed earlier, achieving resource pooling by seamlessly transfering

either load or capacity across resources is unrealistic in a wireless network. How-

ever, resource pooling can still be achieved through different techniques (for a tax-

onomy of these techniques in wireless networks the reader is referred to [56]),

which we classify as being as one of two types: “load allocation” and “resource

allocation” mechanisms. Load allocation may correspond to dynamic routing poli-

cies, such as join the shortest queue, see e.g., [44, 84] or queue with the smallest

65

expected delay, e.g., [68]. Such mechanims have proven to be very effective re-

source pooling enablers. Generalizations of these policies, such as the “supermar-

ket model” [79], that consider that users can join the less loaded out of d random

resources achieve exponential improvements in the maximum resource load when

d = 2 with respect of d = 1. Flexibility in routing wireless customers to resources

(e.g. base stations) is somewhat limited, whence our approach to achieve resource

pooling is focused on multi-tenant sharing and resource allocation.

Regarding resource allocation, per-resource mechanisms that have been de-

signed to achieve fairness among customers, such as Proportional Fairness and

Processor Sharing, and their multi-class equivalents Weighted Proportional Fair-

ness [11] and Generalized Processor Sharing [90] have seen wide applicability in

wireless networks. However, managing resource allocation independently at each

resource does enable pooling across resources, see e.g. [19, 111]. Consequently,

researchers have considered the idea of performing resource allocation across re-

sources [16, 19, 74] and exhibited the effectiveness of resource allocation in en-

abling resource pooling. The above-mentioned approaches address single-tenant

networks, in contrast to our work where we focus on slicing and sharing of re-

sources among multiple tenants. Recently, some extensions of resource allocation

mechanisms for muti-tenant wireless networks were studied in [13,43,72,76,102].

The reader is referred to [93] for a survey on resource slicing techniques for virtual

wireless networks.

These multi-tenant resource allocation mechanisms are targeted to analyze

the case of ‘elastic’ users, i.e., whose sojourn time is dependent on the experienced

66

rate (e.g., users completing a file transfer). In this thesis, instead, we are concerned

on ‘inelastic’ customers whose network activity is independent of their resource

allocation (e.g., video, voice and other rate-adaptive user sessions). In Chapter

2 (and in [21, 111]) we proposed a simple Share-Constrained Proportionally Fair

mechanism with the premise that tenants are allocated a share of a pool of resources,

which is to be redistributed dynamically depending on the system loads. In [111] we

showed that this mechanism achieves improved statistical multiplexing, resulting

in capacity savings versus per-resource mechanisms such as GPS. Moreover, in

[111] we characterized these gains, suggesting that the spatial distribution of the

loads impacts the perceived gains as well as the degree of tenants’ isolation and

performance variability.

Some works have demonstrated that, under mild conditions, using a com-

bination of load and resource mechanisms, a network may indeed behave as a re-

source pool. For example, [68] shows that in stochastic networks with dynamic

routing, in a heavy traffic Brownian motion regime, the network behaves as a single

pool. [57] shows a similar result for a network operating under a fair bandwidth

sharing resource allocation policy, in a heavy elastic traffic regime in which the

average load placed on each resource is approximately equal to its capacity. Simi-

larly, [60] consider a heavy traffic network where resources are shared according to

the proportional fairness criterion. Systems where the distribution of users takes a

product form allow one to characterize the closeness of the system to resource pool-

ing while [54] quantify the performance benefits of using multi-path flow control to

enable resource pooling in stochastic networks.

67

In this chapter, we do not limit ourselves to heavy load regimes for elastic

traffic and we go beyond analyzing how close to a resource pool the network op-

erates. We study how to partition the resources to create virtual pools of jointly

allocated resources that work as close as possible to a single pool, considering the

tenants per resource shares/requests, mean and variability of the loads and resource

capacities. Although optimal network partitioning has the been object of studies for

decades in several contexts with different applications [49,87,95,103], this work is,

to the authors best knowledge, the first attempt at devising an strategy for optimal

VRP partitioning and associated joint resource management.

3.2 Chapter organization

The rest of this chapter is organized as follows. We introduce our system

model and the notion of a Virtual Resource Pool (VRP) in Section 3.3, along with

some benchmark partitions, including fine grain GPS based resource sharing and

coarse grain Complete Pooling (CP). Section 3.4 introduces the Optimal VRP Par-

titioning problem, i.e., an attempt at determining how the network infrastructure

provider should choose a VRP partition of the available resources which ensures

multi-tenant isolation while meeting architectural and geographical constraints. In

Section 3.5, we show that the Optimal VRP Partitioning problem is NP-Hard and

we propose a polynomial time greedy algorithm that determines near optimal par-

titions. In Section 3.6 we present a performance analysis that characterizes the

statistical multiplexing vs differentiation tradeoffs in such networks. Before draw-

ing concluding remarks in Section 3.8, we present a numerical evaluation based

68

on simulations, which complements the analysis Section 3.7. Proofs of theoretical

results in this chapter have been relegated to Section 3.9.

3.3 System model

We start by defining our multi-tenant mobile network model. The network

is comprised of a set B = {1, 2, . . . , |B|} of |B| resources spatially distributed with

capacities given by

c = (cb : b ∈ B), (3.1)

shared by a set O = {1, 2, . . . , |O|} of |O| network tenants (also denoted as network

slices).

The tenants’ traffic load is assumed to be stochastic and the distribution of

the random vector N = (N o
b : b ∈ B, o ∈ O) characterizes the marginal distribution

of the number of active users on the network and

ρ = (ρob : b ∈ B, o ∈ O) (3.2)

denotes the mean loads. The traffic load state at a certain instant is represented by

n = (nob : b ∈ B, o ∈ O), (3.3)

where nob represents the active number of users from slice o at resource b.

Each slice o requests a share sob ∈ [0, 1] of each network resource b ∈ B.

We denote the resource share request by a vector s given by

s = (so : o ∈ O) where so = (sob1 , s
o
b2
, . . . , sob|B|). (3.4)

69

The aggregate share request for a given resource is assumed not exceed 1, i.e., for

all b ∈ B we have that

sb ,
∑
o∈O

sob ≤ 1. (3.5)

This assumption is made without loss of generality, since the shares/demands corre-

spond to relative quantities across entities contending for resources, and can always

be normalized.

3.3.1 Virtual Resource Pools and resource allocation

In this work, we aim to determine a partition P of the resource set B into a

collection of VRPs

P = {Pi | i = 1, . . . , |P|}. (3.6)

Each of the subsets Pi ⊂ B of the partition will act as a VRP [21, 111]. The idea

underlying multi-tenant sharing of a virtual pool is as follows. From a resource al-

location perspective, tenants have a fixed share of the virtual resource pool, which it

is assumed to be equal to the sum of their aggregated shares of the pool’s constituent

resources, i.e., slice o has a share so(Pi) at virtual pool Pi given by

so(Pi) ,
∑
b∈Pi

sob. (3.7)

Note that the sum of shares over a pool are no longer restricted to be less than 1.

As mentioned earlier, only the relative shares of each slices will be relevant in the

sequel. Furthermore, we will let

no(Pi) ,
∑
b∈Pi

nob (3.8)

70

denote the number of active users of slice o at pool Pi.

Next, we formally define our proposed multi-tenant resource allocation for

a VRP.

Definition 1. (VRP resource allocation) Each virtual pool Pi is composed by a

collection of resources shared by several slices, each of them having a share equal

to so(Pi). At any instant, all no(Pi) users of slice o are assigned an equal portion

of so(Pi) as a weight wo(n, Pi), i.e.,

wo(n, Pi) =
so(Pi)

no(Pi)
, ∀o ∈ O, Pi ∈ P. (3.9)

Resource allocation among slices at each resource b in the virtual pool Pi

is performed in proportion to the weights, i.e., the fraction of resource b allocated

to a user of slice o is given by

f ob (n, Pi) =
wo(n, Pi)∑

v∈O
wv(n, Pi) · nvb · 1(nvb > 0)

. (3.10)

Given that the total capacity of the resource is cb when the system is in state n all

nob users of slice o at resource b ∈ Pi are allocated the same rate 1 rob(n, Pi) given

by

rob(n, Pi) = cb · f ob (n, Pi). (3.11)

We note that the notion of a VRP represents an abstraction. Indeed, since its

underlying physical resources might be at different spatial locations they may not be

1Despite in some cases, e.g. wireless networks, the user average peak achievable rate depends
on its channel quality, we average out these variations since they occur in shorter time scales than
our pooling.

71

interchangeable in terms of serving a particular tenants’ users sharing the pool. We

say that virtual pool physical resource capacities may not be transferable to adapt

to spatial variations in the traffic conditions. Additionally, we shall for simplicity

assume that resources a user can only be served by one resource at a time.

3.3.2 Benchmark allocations

In the sequel, we will contrast the performance of a network under VRP

partition P with two benchmarks.

1. Generalized Processor Sharing (GPS) [90]: This corresponds to the partition

of the resources into VRPs each with a single resource each, i.e., PGPS =

{{b} : b ∈ B}.

2. Complete Pooling (CP): This corresponds to the partition with a single into a

VRP containing all of the resources, i.e., PCP = {B}.

3.3.3 Share, load and capacity distributions

Next, we introduce some definitions and notation that will be used in the

sequel.

Definition 2. We define the normalized shares and the normalized active number of

users distributions of slice o on VRP Pi as follows

s̃o(Pi) = (s̃ob(Pi) : b ∈ Pi), where s̃ob(Pi) ,
sob

so(Pi)
,

ño(Pi) = (ñob(Pi) : b ∈ Pi), where ñob(Pi) ,
nob

no(Pi)
.

72

Definition 3. We define the overall normalized share distribution over a partition

P as

ŝ(P) = (ŝoPi : o ∈ O, Pi ∈ P), where ŝoPi ,
so(Pi)

s
,

where s =
∑

o∈O,b∈B
sob is the total share and the normalized load distribution over a

partition P by

ρ̂(P) = (ρ̂o(Pi) : o ∈ O, Pi ∈ P), where ρ̂o(Pi) ,
ρo(Pi)

ρ
,

where ρ =
∑

o∈O,b∈B
ρob denotes the total system mean load.

Definition 4. We let the share weighted normalized relative number of active users

distribution as

ĝ(n,P) = (ĝb(n, Pi) : b ∈ B) where ĝb(n, Pi) ,
∑
o∈O

ŝoPi ñ
o
b(Pi) 1(nob > 0).

We adopt the convention that 0/0 = 1 if nob = no(Pi) = 0. Note that ĝ(n,P)

can also be interpreted as a mixture of the load distributions ño(Pi) with weights

ŝoPi .
2

We define the equivalent share weighted normalized relative mean load dis-

tribution as

ĝ(ρ,P) = (ĝb(ρ, Pi) : b ∈ B) where ĝb(ρ, Pi) ,
∑
o∈O

ŝoPi ρ̃
o
b(Pi). (3.12)

2In the definition of ĝb(n, Pi) we have abused notation when denoting the bth component of the
vector, since for clarity of reading, we identify that ĝb depends only of Pi and not the complete
partition P.

73

3.4 VRP partitioning

The main goal of this study is focused to decide how the network infras-

tructure provider should choose a partition P of VRPs. Creating such VRPs of

many resources enables the ability to absorb bursty traffic variations by exploiting

statistical multiplexing – consequently improving the users expected performance.

However, pooling may reduce the ability of guarantee each slice a desired degree

of protection, e.g., by strictly enforcing sob , the per slices shares, at each resource.

Moreover, geographical and architectural network constraints may need to be incor-

porated which limit the resources that can be pooled together. We propose to have

the Network Infrastructure Provider (NIP) to choose a VRP partition based on max-

imizing an associated expected network utility subject to constraints which ensure

inter-slice isolation and incorporate architectural/geographical system constraints.

3.4.1 Stochastic network utility

The optimal VRP partition will be set to maximize a certain network statis-

tic, which we will define by the means of a utility function. To obtain this function,

first we will define a relevant statistic of utility per slice and pool to continue with

a discussion on how to combine the various utilities along and across slices to gen-

erate a meaningful global network statistic.

Recall that the number of active users on each slice and resource are mod-

eled by a random vector N. We shall define the expected network utility as follows.

We consider, as in [61], the utility of a user as the logarithm of its rate and let U o(Pi)

74

denote the expected utility of a typical user of slice o on partition Pi, i.e.,

U o(Pi) = E

[∑
b∈Pi

N o
b

E[N o(Pi)]
log (rob(N, Pi))

]

= E

[∑
b∈Pi

N o
b

ρo(Pi)
log(rob(N, Pi))

]
.

To deal with the case where the number of active users is zeros, i.e., N o
b = 0 we

have used the convention (see e.g., [25]) 0 · log(0) , 0. Recall that a “typical” users

here should be viewed as a randomly selected user of slice o on partition Pi,whence

the utility of the user is weighted by No
b

ρo(Pi)
to reflect uneven loads on the partition’s

resources.

Then, the overall expected network utility is given by a weighted combina-

tion of the slices’ utilities per partition. We define the overall expected utility to

account for slices shares of the network resources. The typical user utility of a slice

with a higher share per user load, i.e., s
o(Pi)
ρo(Pi)

, should be given a higher weight. Fur-

thermore, if the slice has a higher load ρo(Pi) should be prioritized thus the overall

weight is ρo(Pi)
so(Pi)
ρo(Pi)

= so(Pi), given an overall utility

U(P) =
∑
Pi∈P

∑
o∈O

ŝoPi U
o(Pi) =

∑
o∈O

Uo(P). (3.13)

where we have defined the utility of an operator Uo(P) as the share weighted com-

bination of their expected utility of a typical user per partition Pi,

Uo(P) =
∑
Pi∈P

ŝoPi U
o(Pi) (3.14)

and we have included the division by the normalization constant s, independent of

P for clarity of future results.

75

In summary, the overall expected network utility accounts for the slices

loads and share per load on various resources by weighting the relative importance

of each slices users’ typical utility.

3.4.2 Slices protection guarantees

Classical allocation schemes, such as GPS provide protection, i.e., for slice

o on resource b it ensures an allocation of at least sob (since
∑

o s
o
b ≤ 1). However,

in a multi-resource network, the inability of the resource allocation to adapt to the

traffic variations indicates that fair allocation schemes may consider a network-wide

view [19] where an example of this is the resource allocation proposed for a VRP.

Naturally, adopting a pool-wide allocation scheme may compromise such

guarantees among slices of GPS. Thus, it is desirable to provide slices with a pool-

wide notion of performance isolation. Hereby, we define a VRP notion of protec-

tion.

Definition 5. (Slice protection) We say a slice is protected at a VRP if as long as

the slices’ number of active users is proportional to its share, i.e., if for all b ∈ Pi,

nob ≈ γsob , it is possible to ensure that∑
b∈Pi

nob log (cb · f ob (n, Pi)) ≥
∑
b∈Pi

nob log

(
cb ·

sob
nob

)
(3.15)

i.e., that a slice can obtain, at least, a utility at each pool greater than if the slice

would receive at each resource a fraction of resource equal to its share sob .

We say that a slice is protected at the network if the condition in Eq. (3.15)

is fulfilled for every VRP Pi in P.

76

Note that under this notion of protection, a slice, whose loads align with its

share requests is guaranteed better utility through VRP pools, irrespective of the

number of active users on other slices. A sufficient protection condition (both per

pool and per partition) is presented in the following lemma.

Lemma 1. A sufficient condition to ensure protection for a slice o in a VRP Pi is

H (̃so(Pi)) = −
∑
b∈Pi

sob
so(Pi)

log

(
sob

so(Pi)

)
≥ log(s(Pi)), (3.16)

where H (̃so(Pi)) is the entropy of the normalized share distribution of slice o on

pool Pi and s(Pi) =
∑

o∈O,b∈Pi
sob is the total demand on the partition.

Therefore, the set of partitions that provide protection at the network to slice

o are given by:

Cop = {P ∈ PB | H (̃so(Pi)) ≥ log(s(Pi)),∀Pi ∈ P} (3.17)

We note that protection only depends on the share distribution of slice o, and

aggregated shares of the slices on each pool, and some remarks on the protection

condition are presented next.

Remark 1. Note that the entropy of a discrete distribution is bounded by log of the

cardinality of the support [31]

0 ≤ H (̃so(Pi)) ≤ log(|Pi|).

We can thus conclude that

77

1. If the share distribution of slice o is uniform, the entropy is maximized H (̃so) =

log(|Pi|) and the protection condition will always be fulfilled irrespective of

the aggregate share s(Pi), since s(Pi) ≤ |Pi|

2. If the slice share requests in a pool are maximal, i.e., s(Pi) = |Pi| the protec-

tion condition is only fulfilled if the demand distribution of slice o is uniform,

i.e., H (̃so(Pi)) = log(|Pi|) only if s̃o(Pi) = 1
|Pi| .

3. If s(Pi) ≤ 1, and thus log(s(Pi)) ≤ 0 the protection condition will always be

fulfilled irrespective of the demand distribution of slice o, since the entropy is

positive. In such scenario, there is enough slack in the VRP shares to ensure

protection at all times.

4. The finest grain partition PGPS always achieves protection, as a direct conse-

quence of the previous point.

We can define the set of protection constraints as follows

Definition 6. (Protection constraint set) Considering Ô ∈ O as the set of slices

that demand protection constraints at the network, the protection constraint set can

be defined as

Cp =
⋂
o∈Ô

Cop. (3.18)

The condition in Eq. (3.15) is displayed in Figure 3.1 for a VRP composed

by 2 resources, as a function of the share distribution of the slice, given that the total

78

Figure 3.1: Protection range for different values of sob and s(Pi)− so(Pi) = 0.5.

share of the other slices is equal to s(Pi)− so(Pi) = 0.5. The feasible region deter-

mines the possible values in the share distribution of slice o such that the condition

in Eq. (3.6) is satisfied.

3.4.3 Design constraints

Even with the protection constraints satisfied, some partitions may be im-

practical/inefficient for the NIP. Realizing VRPs requires an exchange of informa-

tion within the resources, in order to establish the joint resource allocation since it

is necessary that every resource in a VRP knows the total number of active users

79

of each slice. This exchange of information, may impose some architectural or de-

sign constraints. For instance, a virtual controller may have capacity to coordinate

a maximum number of resources or the delay for information sharing may make

virtual pooling of distant resources unfeasible.

3.4.3.1 Pooling management capacity constraints

To capture design constraints associated with the limitations of the architec-

ture in terms of pooling management capacity, we will define the following con-

straint

Cc = { P ∈ PB | |Pi| ≤ K̄, ∀Pi ∈ P }. (3.19)

where K̄ represents the maximum number of resources that the NIP can pool to-

gether given the network information sharing capacity.

3.4.3.2 Connectivity and locality constraints

In some settings, it may be desirable to create VRPs based on resources

that are nearby, which decreases the impact of users handoffs, or physically inter-

connected, which increases the information sharing capacity. To that end consider

a graph G(N,E) whose nodes are N = B and the edges ei,j ⊂ N × N denote

resources that are neighbors or interconnected. A partition P = (P1, P2, . . . PP)

can be viewed as the partition of G(N,E) into a collection of subgraphs Gi(N,E)

whose Ei = E ∩ (Pi × Pi). A possible architectural requirement on the partition

could be that Gi(N,E) are connected subgraphs, ensuring that paths to distribute

information are available and/or the associated nodes are geographical networks to

80

each other. We will abstract these constraints as follows

Cl = {P ∈ PB | p(Gi(Pi, Ei)) = 1, ∀Pi ∈ P}. (3.20)

where p(Gi(Pi, Ei)) is equal to 1 if the subgraph is connected. Note that, although

abstracted here for clarity purposes, the connected component restriction can be

formally presented as a set of linear constraints by using an exponential set of

combinations of the edges [55] or by introducing flow variables [82]. Some ge-

ographical/local constraints are reasonable to be expected from the original graph

and can be enclosed by the proper setting of the edges. For instance, it is expected

that in wireless networks base stations can belong to the same pool if they share a

cell edge, resulting in a planar graph or if they share an direct communication link

(e.g., an X2 interface) which will result in a non-fully connected graph, while in

some other environments there may be no constraints imposed resulting into a fully

connected graph.

3.4.4 Optimal VRP Partitioning

Joining the constraints from previous subsections, we can define the parti-

tion constraints as

C = Cp ∩ Cc ∩ Cl (3.21)

where Cp, Cc, Cl are defined in Eqs. (3.18), (3.19) and (3.20) respectively. We can

write the optimal spatial pooling problem as the following optimization problem.

Definition 7. (Optimal VRP Partitioning Problem (OVP)) The Optimal VRP Par-

81

tition is given by

max
P

{ U(P)
∣∣ P ∈ C }. (3.22)

Unfortunately, finding the solution of OVP is a complex problem from sev-

eral reasons: (i) the possible number of partitions that need to be considered in-

crease exponentially and (ii) evaluating the utility function implies finding the ex-

pected value of a non-linear function of random variables, which is per se a hard

problem. Sections 3.5 and 3.6 discuss how to solve these two issues, respectively.

3.5 Algorithm Design

As already mentioned in Section 3.4.4, the possible number of feasible of

partitions that need to be considered in order to find the optimal pooling increase

exponentially with the number of resources (in accordance to the Bell numbers

[17]). In fact, this is already a problem even in the case where the loads are not

stochastic. The combinatorial aspect of this problem can be translated into a more

formal notion of algorithmical complexity, where it shows that the problem is NP-

Hard.

Theorem 6. Optimal VRP Partitioning is NP-Hard.

3.5.1 Greedy algorithm for OVP

In order to overcome the high complexity of an exhaustive search associated

with OVP, we propose a greedy algorithm based on the idea of cost-benefit greedy

algorithm [65].

82

The algorithm is initialized with by GPS partition P(GPS), which is always

feasible Then it iteratively considers merging VRPs so as to ensure the fulfillment of

the constraints while maximizing benefit to cost ratio. We define the benefit as the

utility improvement and the cost H(P̂i,j) as the inverse of the share entropy, i.e.,

H(P) =

(∑
Pi∈P

∑
o∈O

H (̃so(Pi))

)−1

. Therefore, the gain over cost ratio of joining

pools Pi and Pj , is

δU(P̂i,j, P̂) =
U(P̂i,j)− U(P̂)

H(P̂i,j)

where P̂i,j = {P̂ \ {Pi, Pj}} ∪ {Pi ∪ Pj}

This is motivated by the fact that, despite our aim is to maximize network

utility, a low share entropy may impact the ability to meet the protection constraints

in future possible merges. In order to evaluate the utility improvement of a possible

merge, one must evaluate the expected network utility U(P̂i,j), which can be per-

formed by using Monte Carlo sampling methods or via appropriate approximations,

see e.g., Section 3.6.

This is repeated until the algorithm does not find any beneficial merge or all

resources has been aggregated into a single pool, i.e., the partition is equal to PCP .

The pseudocode for the proposed algorithm is exhibited in Algorithm 2.

3.5.2 Greedy algorithm performance

The proposed algorithm is ensured to complete with a worst-case time com-

plexity of O(|B|3), since it can do at most |B| − 1 merges before reaching the stop-

ping condition, each of which requires one to check at most |B|2 possible merges.

83

Algorithm 2: Greedy OVP
Input: s, c,ρ,G
Output: P̂
Initialization: P̂ = B

while |P̂| > 1 do
for Pi ∈ P̂ do

for Pj 6= Pi ∈ P̂ do
P̂i,j = {P̂ \ {Pi, Pj}} ∪ {Pi ∪ Pj}
if P̂i,j ∈ C then

δU(P̂i,j, P̂) = U(P̂i,j)−U(P̂)

H(P̂i,j)

else
δU(P̂i,j, P̂) = 0

if max(δU(P̂i,j, P̂)) ≤ 0 then
return P̂

else
i∗, j∗ = arg max

(
δU(P̂i,j, P̂)

)
P̂ = {P̂ \ {Pi∗ , Pj∗}} ∪ {Pi∗ ∪ Pj∗}

Observing that the most complex operation of algorithm is the computation of the

the expected network utility of a VRP; the algorithm can be greatly improved by

storing and reusing VRP utilities. By doing this, the first iteration of the algorithm

requires to compute
(|B|

2

)
pool utilities, while the ith iteration only requires the com-

putation of (i− 1) pool utilities of the new merged VPP with each of the remaining

subsets, using the precached pool utilities to evaluate the rest of required utilities.

Therefore, the worst-case number of VRP utilities computations required is(
|B|
2

)
+

|B|∑
i=2

(i− 1) = |B|2 − |B| = O(|B|2).

This makes the greedy algorithm feasible at the time scales we envisage optimiza-

tion of VRP partitioning being recomputed, e.g., hourly/daily. The numerical eval-

84

uations performed in Section 3.7.1 show that the algorithm successfully finds the

optimal partition in most of the cases at a much lower computational complexity

than brute force evaluation.

3.6 Utility approximation and analysis

One of the challenges with optimizing the proposed expected network util-

ity U(P) is the evaluation of the function itself, i.e., Eq. (3.13). As mentioned

earlier, this involves computing the expected value of a nonlinear function over the

distribution of N, which itself needs to be estimated or modeled.

In this study, we will use a simple model for the number of active users

per slice and resource. We assume that customers of each slice o arrive at each

resource b according to a Poisson process with rate γob . Upon arrival, each customer

has an independent sojourn time with mean µob. Customer mobility is assumed to

follow a fixed routing matrix, which captures either a departure from the network or

a handoff to another resource. In our considered model, both the sojourn time and

the mobility of a customer are assumed to be independent of the rate allocation re-

ceived by the customer throughout its sojourn. Thus, our setting might be viewed as

associated with a “well engineered” network supporting inelastic and/or rate adap-

tive customers, where a customer utility increases as she receives a greater rate, but

its departure time is fixed. Examples of rate adaptive sessions are, for example, live

video streaming and phone and video calls.

As explained in [111] this model corresponds to a multi-class (multi-tenant)

network of M/GI/∞ queues, which has a product-form stationary distribution [59]

85

where the number of customers of slice o at station b are mutually independent and

Poisson distributed with a mean ρob which depends on the arrival rates, the sojourn

times and the routing matrix.

This traffic model is relatively simple in that it is only necessary to consider

one parameter per slice and resource, i.e., the mean intensities ρob for the Poisson

distributed number of active users that slice o has in station b in steady state. This

assumption is formalized in the following

Assumption 1. (Poisson and independent loads network) We assume a network

supporting a stochastic number of active users N = (N o
b : o ∈ O, b ∈ B) inde-

pendent across slices and resources and Poisson distributed with finite and positive

means ρ = (ρob : b ∈ B, o ∈ O), i.e., where N o
b ∼ Poisson(ρob).

Under Assumption 1 one can develop an approximation for the expected

network utility via a Taylor expansion. This result is stated in the following propo-

sition.

Proposition 1. Under Assumption 1 the expected network utility U(P) for a parti-

tion P is equal to:

U(P) =
∑
Pi∈P

∑
o∈O
b∈Pi

ûob(%
o
b, Pi) +

∑
Pi∈P

∑
o,o′∈O
b,b′∈Pi

σo,o
′

b,b′

2

∂2 (ûob(x, Pi))

(∂xo
′
b′)

2

∣∣∣∣∣
%ob

+R, (3.23)

where the function ûob(x, Pi) is given by

ûob(x, Pi) =
ŝoPi

ρo(Pi)
(1− e−ρob) xob log (rob(x, Pi)) ,

86

and rob(x, Pi) is the extension of Eq. (3.11) to continuous arguments. The vectors

%ob = (%o,o
′

b,b′ : o′ ∈ O, b′ ∈ B) for each o ∈ O and b ∈ B are given by

%o,o
′

b,b′ =

ρo
′

b′

(
1− e−ρo

′
b′

)−1

if o′ = o, b′ = b;

ρo
′

b′ otherwise.

and

σo,o
′

b,b′ =

{
%o,o

′

b,b′

(
1− ρob

e
ρo
b

)
if o′ = o, b′ = b;

%o,o
′

b,b′ otherwise.

Finally, R corresponds to the expected value of the remainder terms in the Taylor

approximations.

In the sequel, we will use the approximation of Eq. (3.23), ignoring the

remainder term R (which is quite complex, see Eq. (3.31)), to rank the different

partitions. This approximation is easier to evaluate than Monte Carlo sampling the

distribution of N to compute the expected network utility.

Still, to better understand the characteristics of partitions that lead to high

expected network utility, we consider a sequence of networks, indexed by β, as

follows.

Assumption 2. (Linear scaling) Consider a load vector ρ > 0 and resource ca-

pacity vector c > 0 and a sequence of networks indexed by β. For the βth network,

the stochastic number of active users N(β) = (N
o,(β)
b : o ∈ O, b ∈ B) are mutually

independent and Poisson distributed with strictly positive means β · ρ, i.e.,

N
o,(β)
b ∼ Poisson(β · ρob)

87

and the resource capacities c(β) = βc such that c(β)
b = βcb. We let U(β)(P) denote

the expected network utility, given Eq. (3.13), of the βth network.

Theorem 7. Under Assumption 2, the expected network utility under partition P is

given by

U(β)(P) = log

(
c

ρ

)
+ D(P)−M(P)− S(P)

β
+ o

(
1

β

)
, (3.24)

where D(P) = DKL (̂s(P)||ρ̂(P)) and M(P) = DKL (ĝ(ρ,P)||ĉ) ; where DKL stands

for the Kullback-Liebler divergence [66].

Also,

S(P) = 〈ŝ(P),q(P)〉+ 〈ρ,h(P)〉 (3.25)

where q(P) =
(
(ρo(Pi))

−1 : o ∈ O, Pi ∈ P
)
, h(P) = (hob(P) : o ∈ O, b ∈ B),

hob(P) =
∑
b′∈B

∂2 (ḡb′(x, Pi) log (ĝb′(x, Pi)))

∂(xob)
2

∣∣∣∣∣
ρob

and ḡb′(x, Pi) =
∑
v∈O

ŝv(Pi)

ρv(Pi)
xvb′ .

To understand the result, we will analyze the impact of the different compo-

nents in the utility function.

Remark 2. The utility U(β)(P) serves to rank a partition P based on the load,

shares and capacity distributions as well as by how statistical multiplexing is

realized in its associated VRPs. Let us consider Eq. (3.24) in more detail

1. The perfect pooling utility log(c/ρ) corresponds to the utility of a system

where the total network capacity c is pooled and equally divided among its

mean total number of users ρ across all slices.

88

2. The slice differentiation gain is such that D(P) = DKL (̂s(P)||ρ̂(P)) ≥ 0

and only equals zero if the per slice and partition normalized shares and loads

ŝ(P) =

(
so(Pi)

s
: o ∈ O, Pi ∈ P

)
,

ρ̂(P) =

(
ρo(Pi)

ρ
: o ∈ O, Pi ∈ P

)
,

distributions coincide. When the two distributions diverge, the term increases

resulting in slice differentiation gains relative to log(c/ρ).

3. The load misalignment loss is such that M(P) = DKL (ĝ(ρ,P)||ĉ) ≥ 0

and equals zero if the weighted normalized load distribution and normalized

capacity distributions

ĝ(ρ,P) =

(
ĝb(ρ, Pi) =

∑
o∈O

ŝoPi ρ̃
o
b(Pi) : b ∈ B

)
,

ĉ =
(cb
c

: b ∈ B
)
,

are equal, otherwise the losses increase as they diverge.

4. The stochastic pooling losses S(P)/β capture a utility loss arising from the

variation in the number of active users relative to their mean loads. Each

partition exploit statistical multiplexing differently, resulting into different

stochastic pooling losses. The losses decrease with β, vanishing as β → ∞,

since under the Poisson distribution as β → ∞ the number of active users

concentrates around the mean.

89

Let us briefly consider various network scenarios. First, a symmetric net-

work, second a share, load and capacities proportional network and finally, the gen-

eral setting.

(Symmetric networks) In this setting we have that for all o ∈ O, b ∈ B,

ρob =
ρ

|O||B|
, sob =

s

|O||B|
and cb =

c

|B|
.

Under the linear scaling the expected network utility is given by

U(β)(P) = log

(
c

ρ

)
− 1

βρ
(|B|+ |P| · (|O| − 1)) + o

(
1

β

)
. (3.26)

In this scenario, D(P) = M(P) = 0, so the network acts as a pool of resources

where each user receives on average equal fraction of the sum network capacity

c, i.e., a typical user has a utility of log (c/ρ) . However, the network experiences

stochastic pooling losses with respect to log (c/ρ) due to variability in the load.

These losses that are minimized when P = B = P(CP), i.e., |P| = 1, as presented

in Eq. (3.26).

The network utility gain of CP versus GPS is

∆GPS(P) = U(β)(PCP)− U(β)(PGPS) ≈ (|O| − 1)(|B| − 1)

βρ
+ o

(
1

β

)
,

which increases with the number of resources and the number of slices and decrease

as the mean network load β ρ increases.

(Proportional networks) A similar trend can be observed in a setting where the

traffic loads are proportional to the shares, i.e., ρob = γsob,∀o ∈ O, b ∈ B and the

90

load per station is proportional to the network capacities ρb =
∑

o∈O ρ
o
b = δcb.

Since D(P) = M(P) = 0, the utility is then given by

U(β)(P) = log

(
c

ρ

)
− 1

β
S (P) .

In this scenario, and the stochastic pooling losses S (P) take a more complex form

that benefits from the aggregation of stations into virtual pools, alike in the sym-

metric network to exploit statistical multiplexing.

(General network) For the general case, the expected network utility of a VRP

partition will reflect the ability to differentiate performance (typical user utilities)

across slices and resources, i.e., inter and intra slice differentiation as well as the

balancing of load and statistical multiplexing losses.

Note that, in general, D(P)−M(P) can be either negative or positive, as we

can observe in the following scenarios.

1. Consider a network where the loads are proportional to the shares, i.e., ρob =

γsob and DKL (̂s(P)||ρ̂(P)) = 0 but the capacities are not aligned with the

share weighted loads. Given the proportionality of loads and shares, the mis-

alignment term M is independent of P.

Fact 1. If the loads are equally in proportion to the shares ρob = γsob, the

share weighted pool load is independent of the partition, i.e.,

ĝ(ρ,P) = ĝ(ρ) =
1

ρ

∑
o∈O

ρob.

91

Then the utility is given by

U(β)(P) = log

(
c

ρ

)
−DKL(ĝ(ρ)||ĉ)− 1

β
S (P) + o

(
1

β

)
.

In this case, we can see that the network deviates from acting as a single

pool since the resource capacities across resources are misaligned with the

share weighted load distribution. Note that this occurs since once deployed

the resources of a network, with their respective capacities, these capacities

are non transferable among resources. However, in cellular networks, cer-

tain resource capacities transferability can be achieved in several ways as for

example by having a C-RAN [26] that use its computational capabilities to

perform Baseband Unit Pool Planning to align the capacities [106] and/or by

appropriate admission control of the number of active users.

2. If resource capacities were transferable among resources or were engineered

to coincide with the share weighted mean traffic loads, then M(P) = 0 and

the expected network utility is given by

U(β)(P) = log

(
c

ρ

)
+ DKL (̂s(P)||ρ̂(P))− 1

β
S (P) + o

(
1

β

)
.

Fact 2. The term D(P) = DKL (̂s(P)||ρ̂(P)) is maximized when P = PGPS.

Therefore, for large β, an upper bound on the utility is given by

Ū = log (c/ρ) + DKL
(
ŝ(PGPS)||ρ̂(PGPS)

)
.

92

The general expression for the stochastic pooling losses is complex and it is hard

to obtain insight and further close form expressions. Some properties of S(P) are

presented next.

Fact 3. The term S(P) = 〈ŝ(P),q(P)〉+ 〈ρ,h(P)〉, where 〈ŝ(P),q(P)〉 is maxi-

mized when P = PGPS and 〈ρ,h(P)〉 = 0 when P = PGPS.

Given the properties detailed in Fact 3, it is intuitive that the stochastic pool-

ing losses are reduced as the cardinality of the partition grows, i.e., as virtual pools

aggregate resources, resulting in statistical multiplexing gains.

To conclude, we summarize the main observations regarding the character

of optimal VRP partitioning.

Remark 3. The optimal partition is dependent on the capacity, loads and shares

distribution as well as on the variability in the number of active users and it is the

result of a tradeoff between differentiation and statistical multiplexing. On the one

hand, creating large VRPs achieves better statistical multiplexing but on the other

hand creating small VRPs preserves the ability to differentiate slice performance.

Therefore, a partition that includes virtual pools with similar load and share profiles

is most beneficial, since it allows slices to reap the benefits of statistical multiplex-

ing through sharing without compromising their ability to a differentiation.

3.7 Performance evaluation

Next we evaluate optimal VRP partitions through a set of numerical eval-

uations. We will first study a collection of small scenarios for which the optimal

93

partitions can be computed and the results are easy to interpret. This is followed

by a set of more realistic and larger network scenarios, to understand the potential

gains of our pooling solution. To evaluate the performance, instead of looking at the

utility difference, which is hard to interpret in terms of performance improvement,

we will define the effective capacity savings.

Definition 8. We define the effective capacity savings ∆(P, P̂) of a VRP partition P

with respect to P̂ as the extra percent of capacity at each resource that the network

under VRP partition P̂ would require in order to achieve the same expected network

utility as under P.

3.7.1 Numerical evaluation of synthetic scenarios

We shall first consider optimal VRP pooling for a stochastic system with

6 resources, fully interconnected (i.e., where no geographical constraints are im-

posed) and 3 slices and where the number of active users N o
b are stochastic follow-

ing a Poisson distribution with mean ρob. Initially, we will consider both shares and

capacity distributions uniform. Unless otherwise specified, the shares of the slices

are sob = 1/5 for all slices and resources and the capacities for all stations are set to

cb = L · 10.

We will consider four different scenarios, that vary in their mean load dis-

tributions and where L is a configurable parameter that determines the mean load

per station. The illustrative scenarios used in this subsection are detailed next and

a depiction for L = 4 is displayed in Figure 3.2, where each stacked bar represents

the mean load per slice at each resource.

94

1. Uniform loads: all slices have the same mean load at all resources.

2. Complementary loads: slices’ mean load distributions are complementary

with η% of their load is concentrated in 2 out of the 6 resources. Unless

otherwise specified, the value of η = 95%

3. Aligned hotspots: slices’ mean load distributions are aligned and concen-

trated in 2 hotspot resources, that accumulate 50% of the load.

4. Mixed hotspots: combination of complementary loads and hotspots where

the mean load distributions are given by

ρ1 ≈ L

4
· (0.03, 2.98, 0.44, 0.72, 2.05, 1.78)

ρ2 ≈ L

4
· (2.74, 0.58, 0.03, 3.46, 0.67, 0.53)

ρ3 ≈ L

4
· (1.16, 1.62, 1.08, 0.03, 2.18, 1.92)

1 2 3 4 5 6

0

1

2

3

4

5

6

Uniform

slice 3

slice 2

slice 1

1 2 3 4 5 6

0

1

2

3

4

5

6

Complementary

1 2 3 4 5 6

0

1

2

3

4

5

6

Aligned Hotspots

1 2 3 4 5 6

0

1

2

3

4

5

6

Mixed Hotspots

Figure 3.2: Load distributions of the illustrative scenarios for L = 4.

95

3.7.1.1 Optimal partitions for uniform shares

Given the small size of these network scenarios one can easily evaluate the

optimal VRP partition by evaluating all possible partitions. Our greedy algorithm,

was able to determine the optimal partition for all cases, evaluated at different load

values (2 ≤ L ≤ 40), except for the case with L = {9, 10, 11} associated with the

mixed hotspot scenario. The resulting optimal partitions are as follows

1. Uniform loads: The optimal partitions, for all values of L is PCP , as ex-

pected since this scenario coincides with the symmetric case discussed in

Section 3.6.

2. Complementary loads: The optimal solution, for all values of L is to create

VRPs with similar shares/loads distributions, i.e., P∗ = {{1, 4}, {2, 5}, {3, 6}}.

Joining resources with identical load distribution is beneficial in this case,

since it enables the network to achieve higher differentiation gains, and hav-

ing a misalignment loss of 0 while exploiting statistical multiplexing.

3. Aligned hotspots: The optimal solution, for all values of L is again to create

VRPs with similar share/load distributions, i.e., P∗ = {{1, 4}, {2, 3, 5, 6}}.

Again, this allows to achieve higher differentiation gains, although now there

are losses due to load misalignment loss.

4. Mixed hotspots: In this case, there are different solutions depending on

L. For low values of load where L ≤ 11, the optimal solution is P∗ =

{{1, 4}, {2, 5, 6}, {3}} while for L > 11, P∗ = {{1}, {3}, {4}, {2, 5, 6}}.

96

We can see that, the resources with similar load distributions, i.e., 2,5,6 are

joined together in any case and 3, since is not like any other resource is iso-

lated. By contrast, 1 and 4 do have relatively similar distributions, as the

variability of the load decreases, the statistical multiplexing load does not

compensate for the differentiation losses and so resources are not pooled to-

gether.

3.7.1.2 Pooling capacity savings

Although the optimal partitions provide an intuition towards the character of

good VRP partitions, it is unclear what performance gains are brought by optimal

VRP pooling.

Figure 3.3 shows the effective capacity savings as a function of the mean

load per station (L) for the 4 scenarios studied. As might be expected, as the mean

load increases, part of the gain (corresponding to the multiplexing gains) disappear

so higher gains are found for moderate levels of L. Indeed, as L gets close to 0, the

gains over GPS also reduce since the probability of not having any user is increased,

reducing the likelihood that the dynamic allocation in the virtual pool differ at all

from GPS. The minimum gains are attained in the aligned and uniform loads sce-

narios, where maximum savings of 5.5% and 7.5% are achieved, respectively. The

complementary loads scenario exhibits capacity savings up to a 12.5% while the

mixed hotspots reaches more than 25% gain for low loads.

97

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

Figure 3.3: Pooling capacity savings of optimal VRP partition vs GPS for 4 network
scenarios and varying load L.

3.7.1.3 Optimal partitions for shares/loads proportional networks

Next, we will consider same load and capacity scenarios assuming that the

shares sob, instead of being uniform are proportional to the load distributions. More

formally, for all o ∈ O and b ∈ B the shares are given by sob = γ ·ρob.Without taking

into account the protection constraints, the optimal partition for all scenarios given

any value of L > 3 is P∗ = PCP , i.e., to create a single pool with all 6 stations

together. Since shares and loads are proportional, all the first order gains are inde-

pendent of the partition as discussed in Section 3.6 and the gains only come from

multiplexing gains, and therefore are smaller compared with the previous scenarios.

As discussed in Remark 1, the non-uniformity of the shares can result in a

protection constraint violation, which depends on the relative share distribution and

98

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

1

2

3

4

5

6

7

8

9

Figure 3.4: Capacity savings of optimal VRP partition vs GPS with proportional
rate-share scenarios as a function of the total share for L=5.

the total share (controlled by the parameter γ), according to Eq. (3.16). While for

the uniform and aligned hotspots scenarios, P∗ = PCP is always feasible this is not

the case for the complementary and mixed load scenarios.

Figure 3.4 exhibits the capacity savings as well as the optimal partitions

as function of γ for 3 different complementary scenarios, with η = {60, 80, 95}

as well as the mixed hotspot scenario. We can observe that if the overall share,

i.e., γ is low, PCP is feasible but as γ grows the optimal feasible partition changes

including several VRPs and a capacity savings reduction is expected, resulting into

a decreased gain in favor of the slices protection as shown in Figure 3.4.

99

3.7.2 Performance evaluation in realistic scenarios

To complement the previous results, we have conducted a set of simulations

to emulate a cellular network following the IMT Advanced evaluation guidelines

for dense ‘small cell’ deployments [1]. The network is composed by 57 resources

with identical capacities, disposed in a hexagonal cell grid layout with an intersite

distance of 200 meters and shared among four slices. Unless otherwise specified,

shares are configured to be uniform and equal to sob = 1/4.A fixed set of users move

around the network region, by combining users following two mobility models: (i)

Random Waypoint model (RWP) which generates almost uniform distributions of

mobile users over the network [18] and (ii) SLAW model [71] which is a human

walk based mobility model which generates uneven load distributions across space.

These combinations of users generate stations with different load distributions. We

explored 4 different scenarios described next and for which the average load distri-

butions per resource are displayed in Figure 3.5:

1. Uniform: four homogeneous slices with uniform spatial loads.

2. Aligned: four homogeneous slices non-uniform loads.

3. Complementary: four heterogenous slices with orthogonal non-uniform loads.

4. Mixed: two heterogenous slices with complementary non-uniform spatial

loads and two slices with uniform spatial loads.

100

Uniform

0 10 20 30 40 50 60
0

5

10

15
Aligned

0 10 20 30 40 50 60
0

5

10

15

Complementary

0 10 20 30 40 50 60
0

5

10

15
Mixed

0 10 20 30 40 50 60
0

5

10

15

Figure 3.5: Load distribution of the illustrative scenarios.

3.7.2.1 Capacity savings for uniform shares

In Figure 3.6, we display the capacity savings of the optimal VRP partition

versus GPS and CP for the different scenarios. As can be seen, the gains over GPS

are maximized in the scenarios where the mean load distributions across slices do

not coincide, i.e., in the complementary and mixed scenarios and the gains can go

up to 50%.With respect to CP, the capacity savings (except for the uniform case) are

very high since creating a big partition with all the resources eliminate the ability

of slices to differentiate, resulting in resource allocations which exploit statistical

multiplexing but are not able differentiate slices’ users performance.

101

5 10 15 20 25
0

10

20

30

40

50

60

70

5 10 15 20 25
0

50

100

150

200

250

300

350

Figure 3.6: Capacity savings for the different scenarios vs GPS and CP for uniform
shares as a function of the mean offered load per station

3.7.2.2 User utility in proportional shares/loads scenarios

To complement the previous results, we evaluated scenarios with homoge-

neous resource capacities c = 1 and 4 slices. Each slice o requests an equal share

per mean customer load denoted by γo, i.e.,

sob = γoρob where


γ1 = 0.25/ρ̄b,

γ2 = 0.18/ρ̄b,

γ3 = 0.12/ρ̄b,

γ4 = 0.09/ρ̄b.

where ρ̄b = max
b∈B

∑
o∈O

ρob. So we have slices which attempt to differentiate their cus-

tomer’s performance through requesting different shares per mean loads across the

network. The network is evaluated for the 4 previously described load distributions

– uniform, aligned, complementary and mixed; with an average offered load per

station and slice of 5/4, i.e., the total offered load of L = 5.

In the four scenarios evaluated, the optimal partition corresponds to Com-

102

Figure 3.7: Expected user utilities and relative gains of VRP partitioning

plete Pooling. For these scenarios we evaluated the expected user log rate per slice,

i.e.,

Ro(P) = E

[∑
Pi∈P

∑
b∈B

N o
b log(rob(N, Pi))

]
as well as the overall expected user log rate R = 1

|O|
∑
o∈O

Ro(P); for both CP and

GPS. The results for this metric across the 4 scenarios and 4 slices are displayed in

Figure 3.7 (top). From the results, we can conclude that, as expected, the expected

user log rate utility increases with γo, both for CP and GPS and for all scenarios.

Moreover, the gains obtained by CP are positive for every slice, i.e., no slice is

harmed to benefit other.

To understand which slices see a greater gain under optimal VRP partition-

103

ing, we evaluated the relative gain of CP versus GPS as

∆Ro(PCP ,PGPS) = 100 · R
o(PCP)− Ro(PGPS)

|Ro(PGPS)|
(%),

as well as the aggregate relative gain

∆R(PCP ,PGPS) = 100 · R(PCP)− R(PGPS)

|R(PGPS)|
(%),

The results for the aggregate relative gain across the 4 scenarios and 4 slices,

are displayed in Figure 3.7 (bottom). We can observe that, if all slices have the

same load distributions (as in the case of the uniform scenario), the relative gain

is decreasing with γo, indicating that slices with smaller shares benefit more from

statistical multiplexing. For the scenarios where the loads per station are not equal

per slice, despite all of them having a similar aggregated gain, the distribution of

the load impacts on the distribution of the gain per slice. While in the case of

complementary loads the same trend as in the uniform loads scenario hold, in the

case of mixed loads, even slices 3 and 4 (which have complementary loads) have

smaller γo, slices 1 and 2 (which have uniform loads) experience most of the relative

gain.

3.8 Conclusions

In this chapter, we have addressed the problem how to optimally partition

the set of parallel network resources shared by multiple tenants into VRPs. Our

results indicate that in general pooling resources with similar shares and load distri-

butions is beneficial since it does not harm the differentiation ability of slices while

104

allowing the pool to reap benefits from statistical multiplexing. Moreover, the ana-

lytical and numerical evaluations demonstrate that an adequate crafting of the par-

tition provides substantial (up to 40%) performance improvements when compared

to static GPS per resource.

3.9 Proofs of chapter results
3.9.1 Proof of Lemma 1

The VRP protection condition from Equation (3.15) can be rewritten as

∑
b∈Pi

nob log

nob
sob

so(Pi)
no(Pi)∑

v∈O
sv(Pi) ·

nvb
nv(Pi)

 ≥ 0, ∀Pi ∈ P.

or equivalently ∑
b∈Pi

nob log

(
sob

(
1 +

aob(Pi)

so(Pi)ñob(Pi)

))
≤ 0 (3.27)

where ao(Pi) = {aob(Pi) : b ∈ Pi} and aob(Pi) ,
∑

v∈O,v 6=o
sv(Pi)ñ

v
b(Pi).

Claim 1. The slice o utility in the pool is minimized when the weights of the other

slices ao(Pi) are distributed in proportion to the user loads, i.e.,

ao,∗b (Pi) = ñob(Pi) · (s(Pi)− so(Pi)).

Proof. Finding the weights ao(Pi) is equivalent to solving the maximization prob-

lem

max
a

∑
b∈Pi

nob log

(
nob + aob(Pi)

no(Pi)

so(Pi)

)
;

s.t.:
∑
b∈Pi

aob(Pi) =
∑

o′∈O,o′ 6=o

so
′
(Pi).

105

We can construct the Lagrangian function as:

L(ao(Pi), λ) =
∑
b∈Pi

nob log

(
nob + aob(Pi)

no(Pi)

so(Pi)

)
− λ

(∑
b∈Pi

aob(Pi)−
∑
o′ 6=o

so
′
(Pi)

)
.

Using first order optimality conditions,

∂L(ao(Pi), λ)

∂λ
=

(∑
b∈Pi

aob(Pi)−
∑

o′∈O,o′ 6=o

so
′
(Pi)

)
= 0 (3.28)

and

∂L(ao(Pi), λ)

∂aob(Pi)
=

nob
no(Pi)
so(Pi)

(nob + aob(Pi)
no(Pi)
so(Pi)

)
− λ =

1
so(Pi)
no(Pi)

+ aob(Pi)/n
o
b

− λ = 0.

As a result, for any pair aob(Pi), a
o
v(Pi) :

so(Pi)

no(Pi)
+ aob(Pi)/n

o
b =

so(Pi)

no(Pi)
+ aov(Pi)/n

o
v =⇒ aob(Pi)/n

o
b = aov(Pi)/n

o
v

and simplifying for any aov(Pi) in Eq. (3.28):

aov(Pi)
∑
b∈Pi

nob
nov

=
aov(Pi)

nov
no(Pi) =

∑
o′∈O,o′ 6=o

so
′
(Pi) (3.29)

and the claim holds.

Substituting in Eq. (3.27) aob(Pi) by ñob(Pi) (s(Pi) − so(Pi)) and dividing

the left and right hand sides by noPi the condition becomes

0 ≥
∑
b∈Pi

ñob log

(
sob

so(Pi)
s(Pi)

)
,

=
∑
b∈Pi

ñob log

(
sob

so(Pi)

)
+
∑
b∈Pi

ñob log (s(Pi)),

=
∑
b∈Pi

ñob log

(
sob

so(Pi)

)
+ log (s(Pi)).

106

If we assume that the slice load is proportional to the share, i.e., sob/s
o(Pi) =

nob/n
o(Pi) the condition can be rewritten as:

0 ≥
∑
b∈Pi

sob
so(Pi)

log

(
sob

so(Pi)

)
+ log (s(Pi)) ,

so finally, H (s̃o(Pi)) ≥ log(s(Pi)).

3.9.2 Proof of Theorem 6

The proof consists in a restriction of “exact cover by 3 sets” (X3C) problem.

Definition 9. X3C [39]

INSTANCE: A finite set X with |X| = 3q and a collection C of 3-element subsets

of X.

QUESTION: Does C contains an exact cover forX, that is, a subcollection C ′ ⊂ C

such that every element of X occurs in exactly one member of C ′?

We show that OVP is a general version of X3C by showing a method to

build an instance of OVP from any instance of X3C for which finding an OVP

solution would solve X3C. We consider a network of |X|+ |C| resources, for each

subset Cj = {i, k, l} ∈ C we create a set of resources qi ∈ Q and for each element

Xi ∈ X a set of resources bi ∈ B. The underlying network graph G is constructed as

follows, if i ∈ Cj we add a link between qj and bi and no link is created otherwise.

An instance of the topology mapping can can be seen in Figure 3.8.

We assume that architectural constraints limit the number of resources per

partition to 4, i.e., K̄ = 4 and we will define 3 slices with the following demands

107

Figure 3.8: Instance of OVP/X3C topology mapping.

and station capacities

sob =


0.09, o = 1, b ∈ B

1/2, o = 1, b ∈ Q

1/4, otherwise
and cb =

{
100, b ∈ B

200, b ∈ Q
.

Moreover, the number of active users N o
b in the equivalent system is deter-

ministic with value 100 sob − 1 and only slice 1 desires protection. Given the chosen

demands and K̄ = 4, it is easy to show that the protection constraints impose that

the only feasible subsets used to create partitions are composed by 1 element or by

3 resources from B and 1 resource from Q, in particular

{bi, bk, bl, qj such that i, k, l ∈ Cj}.

This is true since the only possible combinations of connected components of four

or less resources are displayed in Table 3.1.

Additionally, it is also direct to observe that the global utility will be max-

imized when the number of subsets of the optimal partition is minimized, since

108



4 res. :

{
3 from B, 1 from Q : H

(
s̃1(Pi)

)
− log(s(Pi)) ≈ 0.0142 ≥ 0 (protected)

2 from B, 2 from Q : H
(
s̃1(Pi)

)
− log(s(Pi)) ≈ −0.0366 ≤ 0 (unprotected)

3 res. :

{
2 from B, 1 from Q : H

(
s̃1(Pi)

)
− log(s(Pi)) ≈ −0.0179 ≤ 0 (unprotected)

2 from Q, 1 from B : H
(
s̃1(Pi)

)
− log(s(Pi)) ≈ −0.0307 ≤ 0 (unprotected)

2 res. :
{

1 from B, 1 from Q : H
(
s̃1(Pi)

)
− log(s(Pi)) ≈ −0.0366 ≤ 0 (unprotected)

1 resource :
{

always protected

Table 3.1: Table with the protection for all possible combinations of protection
constraints for the problem.

for every possible subset of 4 elements, the total utility from the partition subset is

≈ 0.6326 while the utility if this subset is break into 4 subsets of 1 resource each

is ≈ 0.6320. Clearly, any optimal solution for OVP would reveal whether or not

there is a solution for the X3C problem, by observing the final partition. If the final

partition does not contain any resource bi in a separate subset, that implies a “YES”

answer to X3C, while if any bi has been left alone, that implies a “NO” answer to

the X3C problem. Given that X3C is NP-Complete, it can not exist a polynomial

time algorithm to solve OVP, and the proof is complete.

3.9.3 Proof of Proposition 1

As defined in Eq. (3.13), our expected network utility is given by:

U(P) =
∑
Pi∈P

∑
o∈O

∑
b∈Pi

ŝoPi
ρo(Pi)

E [N o
b log(rob(N, Pi))] ,

=
∑
Pi∈P

∑
o∈O

∑
b∈Pi

ŝoPi
ρo(Pi)

P (N o
b ≥ 1)E

[
N o
b log(rob(N, Pi))

∣∣∣∣∣N o
b ≥ 1

]
,

109

where the second equality follows from the convention that when N o
b = 0 and thus

rob(N, Pi) = 0, the utility is 0, i.e., 0 · log(0) = 0.

We prove the proposition by taking a Taylor expansion of the utility func-

tions and compute the conditional expected utility of slice o at resource b, i.e.,

E
[
N o
b log(rob(N, Pi))

∣∣N o
b ≥ 1

]
. We define the utility of slice o at resource b as

U o
b (n, Pi(b)) , nob log(rob(n, Pi)) = nob log

cb so(Pi)/n
o(Pi)∑

o′∈O
so′(Pi)

no
′
b

no′ (Pi)
1(no

′
b > 0)

 ,

= −nob log

(
nob +

no(Pi(b))

so(Pi(b))

∑
o′∈O,o′ 6=o

so
′
(Pi(b))n

o′

b

no′(Pi(b))
1(no

′

b > 0)

)
+ nob log(cb),

where Pi(b) is the subset in the partition P that contains b. We define the continuous

extension of U o
b (·, Pi(b)) : N|O|×|B| → R to R|O|×|B|+ as follows

uob(n, Pi(b)) , −nob log

nob +
no(Pi(b))

so(Pi(b))

∑
o′∈O
o′ 6=o

so
′
(Pi(b))n

o′

b

no′(Pi(b))
1(no

′

b > 0)

+ nob log(cb).

The continuous extension uob(n, Pi(b)) is defined for all R|O|×|B|+ except where no(Pi) =

0. Unfortunately, this extension is discontinuous due to the indicator functions

1(no
′

b > 0). To have a continuous and differentiable approximation, we define a

ε-perturbed version of uob(n, Pi(b)) as follows

u
o,(ε)
b (n, Pi(b)) , −nob log

(
nob +

no(Pi(b))

so(Pi(b))

∑
o′∈O,o′ 6=o

so
′
(Pi(b))n

o′

b

no′(Pi(b)) + ε

)
+ nob log(cb),

which is a continuous and infinitely differentiable function except when no(Pi) = 0.

However, since we will be conditioning on N o
b > 0, which implies N o(Pi) > 0 this

110

discontinuous point does not affect our result. We define the ε-perturbed version of

our overall network utility as follows

u(ε)(P) ,
∑
Pi∈P

∑
o∈O

∑
b∈Pi

ŝoPi
ρo(Pi)

P (N o
b ≥ 1)E

[
u
o,(ε)
b (N, Pi)

∣∣∣N o
b ≥ 1

]
.

To obtain an expression for the overall expected utility u(ε)(P) for the ε-

perturbed rate allocation network, we shall approximate E
[
u
o,(ε)
b (N, Pi(b))

∣∣∣N o
b ≥ 1

]
.

Recall that, according to Assumption 1, the random vector N = (N o
b : o ∈ O, b ∈

B) representing the active number of users are mutually independent Poisson ran-

dom variables, which conditioned on N o
b ≥ 1 have means [99] %ob = (%o,o

′

b,b′ : o ∈

O, b ∈ B),

%o,o
′

b,b′ = E[N o′

b′ |N o
b ≥ 1] =

{
ρob(1− e−ρ

o
b)−1, o′ = o, b′ = b;

ρo
′

b′ , otherwise
,

According to Taylor’s Theorem [46], for the function uo,(ε)b (n, Pi(b)) which is thrice

differentiable we have that for any point n = (nob : o ∈ O, b ∈ B)

u
o,(ε)
b (n, Pi(b)) = u

o,(ε)
b (%ob, Pi(b)) +

∑
o′∈O

b′∈Pi(b)

(no
′

b′ − %
o,o′

b,b′)
∂(u

o,(ε)
b (x, Pi(b)))

∂xo
′
b′

∣∣∣∣∣
%ob

+
1

2

∑
o′∈O

b′∈Pi(b)

∑
o′′∈O

b′′∈Pi(b)

(no
′

b′ − %
o,o′

b,b′)(n
o′′

b′′ − %
o,o′

b,b′)
∂2(u

o,(ε)
b (x, Pi(b)))

∂xo
′
b′ ∂x

o′′
b′′

∣∣∣∣∣
%ob

+
1

6

∑
o′∈O

b′∈Pi(b)

∑
o′′∈O

b′′∈Pi(b)

∑
o′′′∈O

b′′′∈Pi(b)

(no
′

b′ − %
o,o′

b,b′)(n
o′′

b′′ − %
o,o′

b,b′)(n
o′′′

b′′′ − %
o,o′′′

b,b′′′)
∂3(u

o,(ε)
b (x, Pi(b)))

∂xo
′
b′ ∂x

o′′
b′′ ∂x

o′′′
b′′′

∣∣∣∣∣
ξ(n)

where ξ(n) is a point in the segment connecting %ob and n.

111

After taking expectation in both sides of the Taylor expansion of the function

u
o,(ε)
b (n, Pi(b)) and using the mutually independence of N conditioned on N o

b ≥ 1,

we have that

E
[
u
o,(ε)
b (N, Pi(b))

∣∣∣N o
b ≥ 1

]
= u

o,(ε)
b (%ob, Pi(b))

+
∑
o′∈O

b′∈Pi(b)

Var
(
N o′

b′ |N o
b ≥ 1

)
2

∂2(u
o,(ε)
b (x, Pi(b)))

(∂xo
′
b′)

2

∣∣∣∣∣
%ob

+R
o,(ε)
b ,

where

R
o,(ε)
b =

1

6

∑
o′∈O

b′∈Pi(b)

∑
o′′∈O

b′′∈Pi(b)

∑
o′′′∈O

b′′′∈Pi(b)

E

[
(No′

b′ − %
o,o′

b,b′)(N
o′′
b′′ − %

o,o′

b,b′)(N
o′′′
b′′′ − %

o,o′′′

b,b′′′) ·
∂3(u

o,(ε)
b (x, Pi(b)))

∂xo
′
b′ ∂x

o′′
b′′ ∂x

o′′′
b′′′

∣∣∣
ξ(N)

∣∣∣∣∣No
b ≥ 1

]
.

Given the Poisson assumption on N the conditional variances can be computed

based on the original Poisson mean loads ρ and are given by [99],

σo,o
′

b,b′ = Var
(
N o′

b′ |N o
b ≥ 1

)
=

{
ρob

1−e−ρ
o
b

(
1− ρob

e
ρo
b

)
, o′ = o, b′ = b;

ρo
′

b′ , otherwise
.

Using the Taylor expansions of E
[
u
o,(ε)
b (N, Pi(b))

∣∣∣N o
b ≥ 1

]
for all o ∈ O, b ∈ B,

the final expression for the expected ε-perturbed utility is given by

u(ε)(P) =
∑
Pi∈P

∑
o∈O

ŝoPi
ρo(Pi)

∑
b∈Pi

(1− e−ρob)uo,(ε)b (%ob, Pi(b))

+
∑
Pi∈P

∑
o∈O

ŝoPi
ρo(Pi)

∑
b∈Pi

∑
o′∈O
b′∈Pi

(1− e−ρob)
σo,o

′

b,b′

2

∂2(u
o,(ε)
b (x, Pi(b)))

(∂xo
′
b′)

2

∣∣∣∣∣
%ob

+
∑
Pi∈P

∑
o∈O

ŝoPi
ρo(Pi)

∑
b∈Pi

(1− e−ρob)Ro,(ε)
b

112

However, our goal is to compute the expression for the unperturbed rate allocation

mechanism. To that end, let us consider any decreasing sequence εn of perturbed

networks such that εn ↓ 0. For every n, u
o,(εn)
b (n, Pi(b)) → uob(n, Pi(b)), and the

εn-perturbed sequence is monotone increasing with n, i.e.,

u
o,(εn)
b (n, Pi(b)) ≤ u

o,(εn+1)
b (n, Pi(b)).

Therefore, according to the monotone convergence theorem as εn ↓ 0 the ε-perturbed

conditional expected utility converges to the original expected utility

E
[
u
o,(εn)
b (N, Pi(b))

∣∣∣N o
b ≥ 1

]
↑ E

[
U o
b (N, Pi(b))

∣∣∣N o
b ≥ 1

]
.

and consequently it holds true that lim
εn↓0

u(εn)(P) = U(P).

Moreover given that %ob is a strictly positive vector, according to Assumption

1 we have that

lim
εn↓0

u
o,(εn)
b (%ob, Pi(b)) = uob(%

o
b, Pi(b))

and computing the derivatives one can show that for all o′ ∈ O and b′ ∈ Pi(b)

lim
εn→0

∂2(u
o,(εn)
b (x, Pi(b)))

(∂xo
′
b′)

2

∣∣∣∣∣
%ob

=
∂2(uob(x, Pi(b)))

(∂xo
′
b′)

2

∣∣∣∣∣
%ob

Therefore,

U(P) = lim
εn↓0

u(εn)(P) =
∑
Pi∈P

∑
o∈O
b∈Pi

(1− e−ρob)
ŝoPi

ρo(Pi)
uob(%

o
b, Pi)

+
∑
Pi∈P

∑
o∈O
b∈Pi

∑
o′∈O
b′∈Pi

(1− e−ρob)
ŝoPi

ρo(Pi)

σo,o
′

b,b′

2

∂2 (uob(x, Pi))

(∂xo
′
b′)

2

∣∣∣∣∣
%ob

+ lim
εn↓0

∑
Pi∈P

∑
o∈O

ŝoPi
ρo(Pi)

∑
b∈Pi

(1− e−ρob)Ro,(εn)
b

113

and redefining ûob(x, Pi) =
ŝoPi

ρo(Pi)
(1− e−ρob)uob(x, Pi)

U(P) =
∑
Pi∈P

∑
o∈O
b∈Pi

ûob(%
o
b, Pi) +

∑
Pi∈P

∑
o∈O
b∈Pi

∑
o′∈O
b′∈Pi

σo,o
′

b,b′

2

∂2 (ûob(x, Pi))

(∂xo
′
b′)

2

∣∣∣∣∣
%ob

+R, (3.30)

where

R = lim
εn→0

∑
Pi∈P

∑
o∈O
b∈Pi

ŝoPi
ρo(Pi)

(1− e−ρob)Ro,(εn)
b

=
1

6

∑
Pi∈P

∑
o,o′,o′′,o′′′∈O
b,b′,b′′,b′′′∈Pi

ŝoPi
ρo(Pi)

(1− e−ρob)E

[
(N o′

b′ − %
o,o′

b,b′)(N
o′′

b′′ − %
o,o′

b,b′)(N
o′′′

b′′′ − %
o,o′′′

b,b′′′)·

· lim
εn→0

∂3(u
o,(ε)
b (x, Pi(b)))

∂xo
′
b′ ∂x

o′′
b′′ ∂x

o′′′
b′′′

∣∣∣
ξ(N)

∣∣∣∣∣N o
b ≥ 1

]
. (3.31)

Given that U(P) is bounded, then given Eq. (3.30) R is well-defined.

3.9.4 Proof of Theorem 7

The proof of this theorem goes along the lines of the proof of Proposition

1. The sequence of linearly scaled networks described in Assumption 2 we define a

new stochastic load process X(β) where, X(β) = N(β)

β
and recall that c(β) = βc. We

shall again extend the notation defined for the discrete vector N to the continuous

vector X(β).

114

Using these we can rewrite the expected network utility as follows.

U(β)(P) =
∑
Pi∈P
o∈O

ŝoPiE

[∑
b∈Pi

N
o,(β)
b

β ρo(Pi)
log
(
c

(β)
b · f

o
b (N(β), Pi)

)]

=
∑
o∈O
Pi∈P
b∈Pi

so(Pi)E

[
N
o,(β)
b

βρo(Pi)
log

(
ŝo(Pi) c

(β)
b

N o,(β)(Pi) ĝb(N(β), Pi)

)]

=
∑
o∈O
Pi∈P
b∈Pi

so(Pi)

ρo(Pi)
E

[
N
o,(β)
b

β
log

(
ŝo(Pi) cb

No,(β)(Pi)
β

ĝb(
N(β)

β
, Pi)

)]

=
∑
o∈O
Pi∈P
b∈Pi

so(Pi)

ρo(Pi)
E
[
X
o,(β)
b log

(
ŝo(Pi) cb

Xo,(β)(Pi) ĝb(X(β), Pi)

)]

= E
[
u(P,X(β))

]
(3.32)

where Xo,(β)
b for all o ∈ O, b ∈ B has mean

E[X
o,(β)
b] = E

[
N
o,(β)
b

β

]
= ρob,

and variance

Var(X
o,(β)
b) = Var

(
N
o,(β)
b

β

)
=

Var
(
N
o,(β)
b

)
β2

=
ρob
β
.

We can, therefore consider that our linear scaling is equivalent to using the stochas-

tic fluid model in [62], which can be thought as β → ∞ as a law of large number

approximation for the stochastic network model. Using again a Taylor expansion

U(β)(P) = u(P, ρ) +
∑
o∈O
b∈B

Var(X
o,(β)
b) · ∂

2(u(P,x))

(∂xob)
2

∣∣∣∣∣
ρ

+ o

(
1

β

)

115

The o(1/β) is given by the fact that the third central moment of Xo,(β)
b for all b and

o is equal to

E
[(
X
o,(β)
b − E

[
X
o,(β)
b

])3]
= E

[(
X
o,(β)
b

)3]
− 3E

[
X
o,(β)
b

]
E
[(
X
o,(β)
b

)2]
+ 2

(
E
[
X
o,(β)
b

])3
= E

[(
X
o,(β)
b

)3]
− 3

(
(ρob)

2

β
+ (ρob)

3

)
+ 2 (ρob)

3

=
1

β3
E
[(
N
o,(β)
b

)3]
− 3

(ρob)
2

β
− (ρob)

3

=
1

β3

(
β3 (ρob)

3 + 3β2 (ρob)
2 + β (ρob)

)
− 3

(ρob)
2

β
− (ρob)

3
=

1

β2
ρob

and therefore the error is in o(1/β) since

lim
β→∞

mo
b E
[(
X
o,(β)
b − E

[
X
o,(β)
b

])3
]

1/β
= lim

β→∞

1
β2ρ

o
b

1/β
= 0

which holds since the third derivative mo
b = ∂3(u(P,X(β)))

(∂xob)
3

∣∣
ρ

is finite and independent

of β. The same argument can be used in order to prove the same argument for the

rest of higher order derivatives.

Moreover, given our pool resource allocation mechanism and normalizing

over the total mean loads and capacities

u(P, ρ) =
∑
Pi∈P
o∈O

∑
b∈Pi

ŝo(Pi) ρ̃
o
b(Pi) log

 cb
so(Pi)
ρo(Pi)∑

o′∈O
so′(Pi)ρ̃o

′
b (Pi)


=
∑
Pi∈P
o∈O

ŝo(Pi) log

(
ŝo(Pi)

ρo(Pi)

)
−
∑
Pi∈P
b∈Pi

ĝb(ρ, Pi) log

(
ĝb(ρ, Pi)

cb

)

=
∑
Pi∈P
o∈O

ŝo(Pi) log

(
ŝo(Pi)

ρ · ρ̂o(Pi)

)
−
∑
Pi∈P
b∈Pi

ĝb(ρ, Pi) log

(
ĝb(ρ, Pi)

c · ĉb

)

= log

(
c

ρ

)
+ DKL (̂s(P)||ρ̂(P))−DKL (ĝ(ρ, Pi)||ĉ) .

116

Regarding the second order term,

∑
o∈O
b∈B

ρob
β
· ∂

2(u(P,x))

(∂xob)
2

∣∣∣∣∣
ρ

=
1

β

∑
o∈O
b∈B

ρob ·
∑
Pi∈P
v∈O
d∈Pi

ŝv(Pi)

ρv(Pi)

∂2xvd log
(
ŝv(Pi) cd
xv(Pi)

)
∂(xob)

2

∣∣∣∣∣
ρ

− 1

β

∑
o∈O
b∈B

ρob ·
∑
Pi∈P
v∈O
d∈Pi

ŝv(Pi)

ρv(Pi)

∂2xvd log (ĝb(x, Pi))

∂(xob)
2

∣∣∣∣∣
ρ

= − 1

β

∑
o∈O
b∈B

ρob ·
∑
Pi∈P
d∈Pi

ŝo(Pi)

ρo(Pi)

∂2xod log (xo(Pi))

∂(xob)
2

∣∣∣∣∣
ρ

− 1

β

∑
o∈O
b∈B

ρob ·
∑
b′∈B

∂2ḡb′(x, Pi) log (ĝb′(x, Pi))

∂(xob)
2

∣∣∣∣∣
ρ

= − 1

β

∑
o∈O
Pi∈P

ŝo(Pi)

ρo(Pi)
− 1

β

∑
o∈O
b∈B

ρob ·
∑
b′∈B

∂2ḡb′(x, Pi) log (ĝb′(x, Pi))

∂(xob)
2

∣∣∣∣∣
ρ

where ĝb(x, Pi) =
∑
o∈O

ŝo(Pi)x̃
o
b(Pi) and ḡb(x, Pi) =

∑
o∈O

ŝo(Pi)
xob

ρo(Pi)
.

3.9.5 Proof of Fact 2

We will show D(P)−D(PGPS) ≤ 0 as follows

D(P)−D(PGPS) =
∑
Pi∈P

∑
o∈O

so(Pi)

s
log

(
so(Pi)

s

ρ

ρo(Pi)

)
−
∑
b∈B

∑
o∈O

sob
s

log

(
sob
s

ρ

ρob

)
=
∑
Pi∈P

∑
o∈O

∑
b∈Pi s

o
b

s
log

(
so(Pi)

s

ρ

ρo(Pi)

)
−
∑
b∈B

∑
o∈O

sob
s

log

(
sob
s

ρ

ρob

)
=
∑
b∈B

∑
o∈O

sob
s

log

(
so(Pi(b))

s

ρ

ρo(Pi(b))

)
−
∑
b∈B

∑
o∈O

sob
s

log

(
sob
s

ρ

ρob

)

117

where Pi(b) is the VRP in P that contains station b. Joining the logarithms

D(P)−D(PGPS) =
∑
b∈B

∑
o∈O

sob
s

log

(
so(Pi(b))

s

ρ

ρo(Pi(b))

)
−
∑
b∈B

∑
o∈O

sob
s

log

(
sob
s

ρ

ρob

)
=
∑
b∈B

∑
o∈O

ŝ(PGPS
i) log

(
1

ŝ(PGPS
i)

ŝo(Pi(b))
ρob

ρo(Pi(b))

)

=
∑
b∈B
o∈O

ŝ(PGPS
i) log

(
l̂ob(P)

ŝ(PGPS
i)

)
= −DKL

(
ŝ(PGPS)||̂l(P)

)
≤ 0

where l̂(P) = (lob(P) : o ∈ O, b ∈ B) and lob = ŝo(Pi)ρ̃
o
b(Pi) and the last inequality

holds given the positivity of the Kullback-Leibler divergence.

3.9.6 Proof of Fact 3

The term S(P) = 〈ŝ(P),q(P)〉+ 〈ρ,h(P)〉, where 〈ŝ(P),q(P)〉 is maxi-

mized when P = PGPS and 〈ρ,h(P)〉 = 0 when P = PGPS.

To show that 〈ŝ(P),q(P)〉 is maximized when P = PGPS we will show that

〈ŝ(PGPS),q(PGPS)〉 − 〈ŝ(P),q(P)〉 ≥ 0

118

Note that:

〈ŝ(PGPS),q(PGPS)〉 − 〈ŝ(P),q(P)〉 =
∑

o∈O,b∈B

sob
s ρob
−

∑
o∈O,Pi∈P

ŝoPi
ρo(Pi)

=
∑

o∈O,b∈B

sob
s ρob
−

∑
o∈O,Pi∈P

∑
b∈Pi s

o
b

s ρo(Pi)

=
1

s

 ∑
o∈O,b∈B

sob
ρob
−
∑
o∈O
Pi∈P

∑
b∈Pi

sob
ρo(Pi)


=

1

s

(∑
o∈O,b∈B

(
sob
ρob
− sob
ρo(Pi)

))
≥ 0

Finally, to see that 〈ρ,h(P)〉 = 0 when P = PGPS, it is enough to observe that

ĝb(x, {b}) = 1
s

∑
o∈O

sob, therefore independent of x, making every hob term equal zero.

119

Part II

Competitive Resource Allocation

120

Chapter 4

Competitive Slices: Network Slicing Games

This chapter 1 presents a solution for multi-tenant network slicing where

slices are competitive and tend to optimize how they distribute their share amongst

their users to satisfy their own needs. This mechanism enables tenants to reap

the performance benefits of sharing, while retaining the ability to customize their

own users allocation. This setting results in a network slicing game in which each

tenant/slice exhibit strategic behavior, by adjusting its preferences depending on

perceived congestion at resources, so as to maximize its own utility.

We show that, under appropriate conditions, the game associated with such

strategic behavior converges to a Nash equilibrium. Further, at the Nash equilib-

rium, a tenant can always achieve the same, or better, performance than under a

static partitioning of resources irrespective on how other slices behave hence pro-

viding the same level of protection as such static partitioning. We further analyze

the efficiency and fairness of the resulting allocations, providing tight bounds for

the price of anarchy and envy-freeness.

1Publications based on this chapter: Pablo Caballero, Albert Banchs, Gustavo de Veciana, and
Xavier Costa- Perez. Network slicing games: Enabling customization in multi-tenant networks.
In IEEE INFOCOM 2017 and under review for ACM/IEEE Transactions on Networking. All co-
authors contributed equally.

121

Our analysis and extensive simulation results confirm that the mechanism

provides a comprehensive practical solution to realize network slicing resource al-

location. The situation where, in addition to the resource allocation, the user asso-

ciation is decided by the slices is, unfortunately, not ensured to converge to a Nash

Equilibrium suggesting that this decision should perhaps remain in the control of

the network infrastructure provider. Our theoretical results also fill a gap in the

literature regarding the analysis of such resource allocation models for the case of

strategic players.

4.1 Related work

The resource allocation mechanism informally described above corresponds

to a Fisher market, which is a standard framework in economics. In such markets,

buyers (in our case slices) have fixed budgets (in our case network shares) and

(according to their preferences) bid for resources within their budget, which are then

allocated to buyers proportionally to their bids. Analysis of the Fisher market shows

that, as long as buyers are price-taking (i.e., they do not anticipate the impact of their

bids on the price – in our case, the impact of the slices’ preferences on the overall

congestion), the Nash equilibrium is socially optimal, and distributed algorithms

can be easily devised to reach it [110]. This assumption may be reasonable for

markets where the impact of a single buyer on a resource’s price is negligible, but

does not apply to our case where a relatively small number of active tenants might

be sharing resources.

There is a substantial literature on Fisher markets with strategic buyers,

122

which, as will be studied in this chapter, anticipate the impact of their bids [34].

The analysis, so far, has been limited to the case of buyers with linear utility func-

tions of the allocated resources, which can lead to extremely unfair allocations.

While such utility functions may be suitable for goods, they are not an appropriate

model for tenants wishing to customize allocations amongst their customers. This

chapter includes a comprehensive analysis for a wide set of slice utility functions,

including the convergence of best response dynamics and other results which to our

knowledge are new.

A related resource allocation model often considered in the networking field

is the so-called ‘Kelly’s mechanism’ [61]; this mechanism allocates resources to

players proportionally to their bids and, assuming that they are price-taking, con-

verges to a social optimum. Follow-up work has considered price-anticipating play-

ers in this setting; for example, [52] analyze efficiency losses, while [107] devise

a scalar-parametrized modification that is once again socially optimal for price-

anticipating players. However, in Kelly’s mechanism players respond to their pay-

off (given by the utility minus cost) whereas in our model tenants’ behavior is only

driven by their utilities (since they have a fixed budget: the network share). Con-

sequently, results on the analysis of Kelly’s mechanism are not applicable to our

setting.

Table 4.1 capture the main resource allocation models for this problem high-

lighting some of the most relevant work for each problem and situating the contri-

bution of this work.

From a more practical angle, multi-tenant sharing has been studied from

123

price taking price anticipating

scalar bid scalar bid vector bid

non [61] Kelly’s VCG-Kelly mechanism Johari/Tsitsiklis
fixed mechanism [107] Hajek/Yang [52] Efficiency of

budget (conv, efficiency) [53] Johari/Tsitsiklis congestion games

concave utilities linear utilities concave utilities

fixed [110] Zhang [34] Zhang This work
budget (convergence) (conv, efficiency) (conv, efficiency)

Table 4.1: Resource allocation models.

different points of view, including planning, economics, coverage, performance,

etc. [35, 73]. This chapter focuses specifically on the design of algorithms for re-

source sharing among tenants, which has been previously addressed by [43, 76, 77,

92]. The work of [92] considers sharing via a bid-based auction, which may incur

substantial overhead and complexity; in contrast, our approach relies on fixed (pre-

negotiated) network shares. The works of [43, 76, 77] also fix a network share per

slice, but consider approaches where the infrastructure makes centralized decisions

on the resources allocated to each tenant’s customers; hence, these approaches do

not enable tenants to make their own decisions on how to allocate resources to their

customers.

Network slicing has emerged as a desirable feature for 5G [86]. 3GPP

has started work on defining requirements for network slicing [8], whereas the

Next Generation Mobile Network (NGMN) alliance has identified network sharing

among slices as a key issue [85]. In spite of these efforts, most of the work so far

124

has addressed architectural aspects with only a limited focus on resource allocation

algorithms [96, 113]. To the best of our knowledge, this is the first work inves-

tigating how to enable tenants to customize their allocations in a dynamic slicing

model; there is wide consensus that such an ability to customize tenants’ alloca-

tions is needed to efficiently satisfy their very diverse requirements (see, e.g., [10]

for examples of vertical tenants).

4.2 Chapter organization

The rest of the chapter is organized as follows. After introducing our sys-

tem model (Section 4.3), we show that with the resource sharing model under study,

each slice has the ability to achieve the same or better utility than under static re-

source slicing irrespective of how the other slices behave, which confirms that this

model effectively protects slices from one another (Section 4.4.1). Next we show

that if tenants exhibit strategic behavior (i.e, optimize their utilities), then (i) a Nash

equilibrium exists under mild conditions; and (ii) the system converges to such an

equilibrium when tenants sequentially take their best response (Sections 4.4.2 and

4.4.3). The resulting efficiency and fairness among tenants are then studied, pro-

viding: (i) a tight bound on the Price of Anarchy of the system, and (ii) a bound

on the Envy-freeness (Section 4.5). Our results are validated via simulation, con-

firming that the approach provides substantial gains, protects network slices from

each other, operates close to optimal performance and is effectively envy-free (Sec-

tion 4.6). The proof of the theoretical results for this chapter are provided in Section

4.8.

125

4.3 System model

We consider a wireless network consisting of a set of resources B (the base

stations or sectors) shared by a set of network slices O (the tenants). At a given point

in time, the network supports a set of users U (the customers or devices), which can

be subdivided into subsets Ub (the users at base station b), Uo (the users of slice o)

and Uo
b (their intersection). We further assume that a user u ∈ U has a mean peak

capacity cu depending on the choice of modulation and coding at the base station it

is associated with. For any user u, we let b(u) denote the base station it is currently

associated with.

4.3.1 Resource allocation model

As indicated in the introduction, we focus on a well-established resource

sharing model known in economics as a Fisher market. Hereafter, we will refer to

this model as the ‘Share-Constrained Proportional Allocation’ (SCPA) mechanism.

In our setting, each slice o is allocated a network share so (corresponding

to its budget) such that
∑

o∈O so = 1. The slice is at liberty in turn to distribute its

share amongst its users, assigning them weights (corresponding to the bids): wu for

u ∈ Uo, such that
∑

u∈Uo wu = so. We let wo = (wu : u ∈ Uo) be the weights of

slice o, w = (wu : u ∈ U) those of all slices and w−o = (wu : u ∈ U \ Uo) the

weights of all users excluding those of slice o.

We shall assume users are allocated a fraction of resources at their base

126

station proportionally to their weights wu. Thus the rate of user u is given by

ru(w) =
wu∑

v∈Ub(u)
wv
cu =

wu
lb(u)(w)

cu

where lb(w) =
∑

u∈Ub wu denotes the overall load at b (recall that cu is the achiev-

able rate if the user had the entire base station to itself).

To implement the above resource allocation, a slice needs to communicate

the weights of its users wo to the infrastructure. When selecting its weights, we

assume that the slice is aware of the overall load at each base station (indeed, a slice

could infer these by varying its users’ weights and observing the resulting resource

allocations).2

In the case where a slice o is the only one with users at a given base station

b, we shall assume that the slice’s users are allocated the entire capacity at that

base station independent of their weights. Thus, such a slice would set wu = 0 for

these users, allowing them to receive all the resources of this base station without

consuming any share. To avoid dealing with this special case, and without loss of

generality, we will make the following assumption for the rest of the chapter.

Assumption 3. (Competition at all resources) We assume that all resources have

active users from at least two slices.

2It is worth noting that, with the SCPA mechanism under study, the weights of a given tenant are
not disclosed to the others, which only see the overall load at each base station.

127

4.3.2 Network slice utility and service differentiation

Network slices may support services and customers of different types and

needs. Alternatively, competing slices with similar customer types may wish to

differentiate the service they provide. To that end, we assume each network slice has

a private utility that reflects the benefit obtained by the slice from a given allocation

and is given by

U o(w) =
∑
u∈Uo

φufu(ru(w)),

where φu is the relative priority of user u, with φu ≥ 0 and
∑

u∈Uo φu = 1, and

fu(·) is a (concave) utility function associated with the user. In the sequel, we will

often focus on the following well-known class of utility functions [80].

Definition 10. A network slice o has a homogenous αo-fair utility if for all u ∈ Uo

we have that

fu(ru) =

{
(ru)1−αo

(1−αo) , αo 6= 1

log(ru), αo = 1.

Thus, in our setting, a slice is free to choose different fairness criteria in al-

locating resources across its users, by selecting the appropriate αo parameter. Note

that αo = 1 corresponds to the widely accepted proportional fairness criterion,

while αo = 2 corresponds to potential delay fairness, αo →∞ to max-min fairness

and αo = 0 to linear sum utility.

A slice can also ‘strategically’ optimize the weight allocation of its users

to maximize its own utility. We will consider such strategic behavior of weight

allocations in Section 4.4.

128

4.3.3 Baseline allocations

Next we introduce two natural resource allocation comparative baselines:

socially optimal allocations and static slicing.

Socially Optimal Allocations (SO) If slices were to share their utility functions

with a centralized authority, one could in principle consider a socially optimal al-

location of weights and resources. These would be given by the maximizer to the

overall network utility U(w) given by (see [76]):

max
w≥0

U(w) :=
∑
o∈O

soU
o(w)

s.t. ru(w) =
wu

lb(u)(w)
cu, ∀u ∈ U∑

u∈Uo
wu = so, ∀o ∈ O.

Note that (as in [76]) we have weighted the slices’ utilities to reflect their shares

(thus prioritizing those with higher shares). We shall denote the resulting optimal

weight and resource allocations under the socially optimal allocations by w∗ and

r∗ = (r∗u : u ∈ U), respectively.

Static Slicing (SS) By static slicing (also known as static splitting [30]) we refer

to a complete partitioning of resources based on the network shares so, o ∈ O.

In this setting, each slice o receives a fixed fraction so of each resource and can

129

unilaterally optimize its weight allocation as follows:

max
w0≥0

U o(wo) =
∑
u∈Uo

φufu(ru(w
o))

s.t. ru(w
o) =

wu∑
v∈Uo

b(u)
wv
socu ∀u ∈ Uo

∑
u∈Uo

wu = so,

where we have abused notation to indicate that, in this case, U o and ru depend only

on wo. We shall denote the resulting optimal weight and resource allocations under

static slicing for all slices by wss and rss = (rssu : u ∈ U) respectively, where

rssu =
wssu∑

v∈Uo
b(u)

wssv
socu ∀u ∈ Uo,∀o ∈ O. (4.1)

4.4 Strategic behavior and Nash Equilibrium

Under the SCPA resource allocation model, it is reasonable to assume that a

player (network slice) would choose to adjust its weights so as to optimize its utility

(and thus the service delivered to its customers). Since the resources allocated to a

user depend on the weight allocations of the other slices, such behavior would be

predicated on the aggregate weight of the other slices at each resource. From the

point of view of slice o, the overall load at resource b can be decomposed as

lb(w) = aob(w−o) + dob(wo)

where

aob(w−o) =
∑

o′∈O\{o}

∑
u∈Uo′b

wu and dob(wo) =
∑
u∈Uob

wu,

130

correspond to the aggregate weight of the other slices and that of slice o, respec-

tively. As indicated in Section 4.3, we assume ao(w−o) = (aob(w−o) : b ∈ B) are

readily available to slice o.

4.4.1 Gain over Static Slicing

We first analyze if strategic behavior on the part of network slices may result

in allocations that are worse that those under static slicing. Note that static slicing

provides complete isolation among slices but potentially poor utilization. A critical

question is whether dynamic sharing, which achieves a higher resource utilization,

also provides the same level of protection. This is confirmed by the following re-

sult.3

Lemma 2. Consider slice o and any feasible weight allocation w−o for other slices

satisfying the network share constraints. Then, there exists a weight allocation wo

for slice o, possibly dependent on w−o, such that the resulting weight allocation w

satisfies ru(w) ≥ rssu for all u ∈ Uo .

This lemma is easily shown by choosing wo such that

wu =
wssu∑

u∈Uo
b(u)

wssu

aob(u)(w−o)∑
b′∈Bo a

o
b′(w−o)

so, ∀u ∈ Uo

where Bo is the set of base stations where slice o has users. The intuitive interpre-

tation for this choice is that by distributing its weights proportionally to the load at

each base station, slice o can achieve the same resource allocation as static slicing

3The proofs of all lemmas and theorems are provided in the Appendix.

131

at each base station. Further, by redistributing these allocations amongst its user in

the same manner as static slicing, it achieves at least as much rate per user.

It follows immediately from this lemma that under the SCPA resource al-

location model, if all slices exhibit strategic behavior attempting to maximize their

utilities, they necessarily achieve a higher utility than under static slicing.

Theorem 8. If the game where each network slice maximizes its utility has a Nash

equilibrium, then each slice achieves a higher utility than under static slicing.

Note this result does not require slices to have homogenous or concave util-

ities, just that they be increasing in the users’ rate allocations.

4.4.2 Existence and uniqueness of Nash Equilibrium

Next we study whether there exists a Nash equilibrium (NE) under which

no slice can benefit by unilaterally changing its weight allocation. To that end, we

first characterize the best response of a slice.

Given the weights of the other slices, w−o, the best response of slice o is the

unique maximizer wo of its utility, i.e.,

max
w′o≥0

∑
u∈Uo

φufu

(
w′ucu

aob(u)(w
−o) + dob(u)(w

′o)

)
s.t
∑
u∈Uo

w′u = so.

The following lemma characterizes the best response for a network slice

with homogenous αo-fair utility (see [34] for the best response when αo = 0).

132

Lemma 3. Suppose slice o has a homogeneous αo-fair utility (with αo > 0). Given

the weights of the other slices w−o > 0, slice o’s best response wo is the unique

solution to the following nonlinear set of equations:

wu =

βu
(aob(u)

(w−o))
1
αo(

ao
b(u)

(w−o)+do
b(u)

(wo)
) 2
αo
−1

∑
v∈Uo

βv

(
ao
b(v)

(w−o)
) 1
αo(

ao
b(v)

(w−o)+do
b(v)

(wo)
) 2
αo
−1

so, ∀u ∈ Uo, (4.2)

where βu := (φu)
1
αo (cu)

1
αo
−1.

Note that slice o need only know ao(w−o) to compute its best response.

Building on this characterization, we will study the game in which all slices choose

to allocate their weights based on their best response. The following theorem proves

that this game admits a Nash equilibrium, i.e., there is a weight allocation w such

that no slice can improve its utility by modifying its weights unilaterally.4

Theorem 9. Suppose all slices have homogenous αo-fair utilities (with possibly

different αo > 0). Then, there exists a (not necessarily unique) Nash equilibrium

satisfying (4.2) for each slice.

The above theorem covers any finite αo value, but leaves out the case αo →

∞, which yields a utility function U o(w) = minu∈Uo (ru(w)) and corresponds to

max-min fairness. The following lemma shows that in this case the existence of a

NE is not guaranteed.

4The existence of a NE had already been proven by [110] for the case αo = 0 ∀o. Here we
extend this result to any combination of αo values.

133

Lemma 4. Let U o(w) = minu∈Uo (ru(w)) for two or more slices. Then, the exis-

tence of a NE cannot be guaranteed.

4.4.3 Convergence of Best Response dynamics

Below we will consider a best response game wherein slices realize their

best responses in rounds, either (i) updating their weights (wo) sequentially, one at

a time and in the same fixed order, in response to the other slices’ weights (ao); or

(ii) having all slides update their weights simultaneously in each round in response

to the other slices’ weights in the previous round.

Theorem 10. If slices have homogeneous αo-fair utilities, possibly with different

αo ∈ [1, 2] for o ∈ O, then the best response game converges to a Nash equilibrium.

This result holds both for sequential and for simultaneous updates.

Note that the value of αo impacts a slice’s best response and consequently

the game dynamics. As seen in Lemma 3, the best response weights are propor-

tional to:

wu ∝ g(aob, d
o
b) :=

(aob)
1
αo

(aob + dob)
2
αo
−1
,

where we have suppressed the dependency of aob on w−o and dob on wo. The function

g(·, ·) has different properties depending on αo which are shown in Table 4.2. The

regime where 1 ≤ αo ≤ 2, considered in Theorem 10, is of particular interest

since it includes proportional (αo = 1) and potential delay (αo = 2) fairness. It

is known that convergence is not ensured when αo = 0 for all slices (see [34]);

for other regimes, we resort to the simulations results of Section 4.6, which suggest

134

convergence for any αo > 0 since they are different problems in nature and therefore

the analysis requires a distinct approach.

αo = 0 0 < αo < 1 1 ≤ αo ≤ 2 2 < αo <∞

g w.r.t. dob linear convex convex concave

g w.r.t. aob linear convex concave concave

NE existence X [34] XTheorem 9 for heterogeneous αo
convergence × [34] Xsimulations XTheorem 10 Xsimulations

Table 4.2: Impact of αo on slice’s Best Responses.

Perhaps surprisingly, the above result is quite challenging to show. The

key challenge lies in the “price-anticipating” aspect of the best response, in which

players anticipate the impact of their own allocation (indeed, as mentioned in the

introduction, there are very few results in the literature on the convergence of price-

anticipating best response dynamics).

4.5 Performance bounds analysis

In this section, we analyze the performance of the Nash equilibrium in terms

of two standard metrics for efficiency and fairness: (i) the price of anarchy, which

gives the loss in overall utility resulting from slices’ strategic behavior, and (ii)

envy-freeness, which captures the degree to which a slice would prefer another

slice’s allocations across the network resources. We will focus on the case where

slice utilities are 1-fair homogeneous i.e., U o(w) =
∑

u∈Uo φu log(ru(w)) ∀o ∈ O

– a widely accepted case leading to the well-known proportionally fair allocations.

135

4.5.1 Efficiency: Price of Anarchy

The following result characterizes the socially optimal allocation of resources

defined in Section 4.3.3 (see [74]).

Fact 1. For slices with 1-fair homogenous utilities, the socially optimal allocation

of resources w∗ is such that w∗u = φuso, ∀u ∈ Uo and ∀o ∈ O.

The following theorem bounds the difference between the overall network

utility resulting from the socially optimal allocation, U(w∗), and that obtained at a

Nash equilibrium of the SCPA resource allocation mechanism, U(w) – the proof is

provided in the Appendix.

Theorem 11. If all slices have 1-fair homogenous utilities, then the Price of Anar-

chy (PoA) associated with a Nash equilibrium w satisfies

PoA := U(w∗)− U(w) ≤ log(e).

Furthermore, there exists a game instance for which this bound is tight.

Note that, with 1-fair utilities, if we increase the capacity of all resources

by a factor ∆c, we have a utility increase of log(∆c). Thus, the performance im-

provement achieved by the socially optimal allocation over SCPA is (in the upper

bound) equivalent to having a capacity e times larger, i.e., almost the triple capacity.

While there are some (pathological) cases in which such a bound can be achieved,

our simulation results show that for practical scenarios the actual performance dif-

ference between the two allocations is much smaller, confirming that (for αo = 1)

the flexibility gained with the SCPA mechanism comes at a very small price in

performance.

136

4.5.2 Fairness: Envy-freeness

Next we consider a Nash equilibrium w and analyze whether a slice, say o,

with utility U o(w), might have a better utility if it were to exchange its resources

with those of another slice, say o′. To that end, we denote by w̃ the resulting weight

allocation when the users of slices o and o′ exchange their allocated resources. It is

easy to see that w̃o is such that

w̃ou =
φu∑
v∈Uob

φv
do
′

b (w) for all b ∈ B and all u ∈ Uo
b, (4.3)

i.e., slice o takes the aggregate weight of o′ at base station b under the Nash equi-

librium, do′b (w), and allocates it proportionally to its user priorities. Clearly, w̃o′ is

defined similarly and the remaining slices weights remain unchanged under w̃.

We define the envy of slice o for o′’s resources under the Nash equilibrium

w by

Eo,o′ := U o(w̃)− U o(w).

Note that envy is a “directed” concept, i.e., it is defined from slice o’s point of view.

When Eo,o′ ≤ 0, we say slice o is not envious. The following theorem provides a

bound on Eo,o′ .

Theorem 12. Consider a slice o with 1-fair homogeneous utilities and the remain-

ing slices O\{o} with arbitrary slice utilities. Consider a slice o′ such that so = so′ .

Let w denote a Nash equilibrium and w̃ denote the resulting weights when o and o′

exchange their resources. Then, the envy of slice o for o′ satisfies

Eo,o′ = U o(w̃)− U o(w) ≤ 0.060.

137

Furthermore, there is a game instance where 0.041 ≤ Eo,o′ .

Given that, if one increases the rates of all users by a factor ∆r this yields a

utility increase of log(∆r), one can interpret this result as saying that, by exchang-

ing resources with o′, slice o may see a gain equivalent to increasing the rate of all

its users by a factor between 4.1% and 6.1% (given by the lower and upper bounds

of the above theorem). This is quite low and, moreover, simulation results show

that in practical settings there is actually (almost) never any envy, confirming that

our system is (practically) envy-free.

4.6 Performance Evaluation

Next, we evaluate the performance of the SCPA resource allocation mech-

anism via simulation. The mobile network scenario considered is based on the

IMT-A evaluation guidelines for dense ‘small cell’ deployments [1], which consider

base stations with an intersite distance of 200 meters in a hexagonal cell layout with

3 sector antennas.5 The network size |B| is 57 sectors and, unless otherwise stated,

users move according to the Random Waypoint Model (RWP). Users’ Signal Inter-

ference to Noise Ratio (SINRu) is computed based on physical layer network model

specified in [1] (which includes path loss, shadowing, fast fading and antenna gain)

and user association follows the strongest signal policy. The achievable rate for

users, cu, are determined based on the thresholds reported in [7]. For all our simu-

5Note that, in this setting, users associate with sectors rather than the base stations we used in
the mechanism description and analysis.

138

lation results, we obtained 95% confidence intervals with relative errors below 1%

(not shown in the figures).

4.6.1 Overall performance

Throughout the chapter we have used static slicing and the socially optimal

resource allocations as our baselines. To confirm our analytical results and gain

additional insights, we have evaluated the performance of the SCPA mechanism

versus these two baselines via simulation. As an intuitive metric for comparison,

we have used the extra capacity required by these baseline schemes to deliver the

same performance as SCPA: (i) Gain over SS: additional resources required by

static slicing to provide the same utility as SCPA (in %); and (ii) Loss versus SO:

additional resources required by SCPA to provide the same utility as the socially

optimal allocation (in %). Note that the latter metric is closely related to the Price

of Anarchy analyzed in Section 4.5.1.

The results shown in Figure 4.1 are for different user densities (|U|/|B|) and

different slice utilities (αo parameter). As expected, the SCPA mechanism always

has a gain over static slicing and a loss over the social optimal. However, for αo = 1

the loss is well below the bound given in Section 4.5.1. We further observe that

performance is particularly good as long as αo does not exceed 1 (Gain over SS up

to 50% and Loss over SO below 5%), and it degrades mildly as αo increases.

139

|U|/|B|
3 5 7 9 11

L
os
s
v
s
S
O

(%
)

G
ai
n
ov
er

S
S
(%

)

30

20

10

0

10

20

30

40

50 1
3

1
2

1 2 3

1
3

1
2

1 2 3

Gain αo = 1

Loss αo = 1

Loss αo = 3

−

αo

+Gain αo = 3

αo =

αo =

Figure 4.1: Average Gain over Static slicing and Loss against Social optimum for
different scenarios.

4.6.2 Fairness

In addition to overall performance, it is of interest to evaluate the fairness

of the resulting allocations. While in Section 4.5.2 we derived analytically a bound

on the envy, we have further explored this via simulation by evaluating up to 107

randomly generated scenarios, with parameters drawn uniformly in the ranges:

|O| ∈ [2, 12], |B| ∈ [10, 90], |U|/|B| ∈ [3, 15], αo ∈ [0.01, 30] and φ vectors

in the simplex. Our results show that Eo,o′ < 0 holds for all the cases explored,

confirming that in practice the system is envy-free.

140

4.6.3 Protection against other slices

One of the main objectives of our proposed framework is to enable slices

to customize their resource allocations. This can be done by adjusting (i) the user

priorities φu, and (ii) the parameter αo, which regulates the desired level of fairness

among the slice’s users. In order to evaluate the impact that these settings have

amongst slices, we simulated a scenario with three slices: Slice 1 has α1 = 1, Slice

2 has α2 = 4, and Slice 3 has α3 with varying values. For simplicity, we set the

priorities φu equal for all users.

Figure 4.2 shows the rate distributions of the 3 slices. We observe that the

choice of α3 is effective in adjusting the level of user fairness for Slice 3; indeed, as

α3 grows, the rate distribution becomes more homogeneous. Such customization at

Slice 3 has a higher impact on Slice 1 than on Slice 2. This is the case because, as

α2 is quite large, the distribution of Slice 2’s rates remains homogeneous, making

the slice fairly insensitive to the choices of the other slices. As can be seen in the

subplots, the utilities of Slices 1 and 2 are not only larger than the utility of static

slicing, but remain fairly insensitive to α3, showing that in both cases we have a

good level of protection between slices.

4.6.4 Convergence speed

The existence of a Nash equilibrium and the convergence of Best Response

Dynamics are essential for the system stability. While the existence of a Nash equi-

librium has been proven for all αo values, convergence has only been shown for

αo ∈ [1, 2]. In order to confirm the convergence for other αo values, we have con-

141

rate
0 0.1 0.2 0.3

em
p
ir
ic
al

cd
f(
ra
te
)

0

0.2

0.4

0.6

0.8

1

Slice 1: α1 = 1

rate
0 0.1 0.2 0.3

em
p
ir
ic
al

cd
f(
ra
te
)

0

0.2

0.4

0.6

0.8

1

Slice 2: α2 = 4

rate
0 0.1 0.2 0.3

em
p
ir
ic
al

cd
f(
ra
te
)

0

0.2

0.4

0.6

0.8

1

Slice 3: α3 variable

α3 = 1
α3 = 1.5
α3 = 2
α3 = 5
α3 = 10
α3 = 20

α31 5 10 20

U2
×107

-3

-2

-1

0

SCPA
SS

α31 5 10 20

U1

-1200

-1000

-800

SCPA
SS

α3 = 1

α3 = 20 α3 = 1

α3 = 20

For all figures

Figure 4.2: Impact of α3 decision on the slice rate distributions.

ducted extensive simulations implementing sequential best response updates for up

to 107 randomly generated scenarios within the same parameter space as in Section

4.6.2. Our results confirmed the convergence of the best response game in all cases.

Moreover, they also showed that convergence speed mainly depends on αo, while it

is fairly insensitive to the user priorities and the network size. According to the re-

sults, convergence is very quick for αo ≤ 1 (about 8 rounds) and increases slightly

as αo grows (about 16 rounds for αo = 3). The average number of rounds needed

for the Best Response dynamics to converge are shown in Figure 4.3.

4.6.5 Impact of user mobility

The above results assume a Random Waypoint mobility model where users

are (on average) uniformly distributed across space. To understand the impact of

other user distributions, we evaluated the Gain over SS for the following user mo-

bility patterns: (i) uniform: all slices with a uniform spatial load distribution; (ii)

overlapping hotspots: all slices with the same non-uniform spatial load distribution;

(iii) non-overlapping hotspots: different slices with different non-uniform spatial

142

Figure 4.3: Average number of rounds until convergence for different scenarios.

load distributions; and (iv) mixed: half of the slices with a uniform spatial load dis-

tribution and the other half with a non-uniform one. In all cases, we have 4 slices

with equal shares. The results, depicted in Figure 4.4, show that the gains are larger

for scenarios with uneven and complementary traffic loads; indeed, in this case dif-

ferent slices need their resources at different base stations and thus there is a higher

gain from dynamically sharing the resources. We further observe that larger α val-

ues result in smaller gain; this is because slices are less elastic with larger α, which

limits the ability to exploit statistical multiplexing.

4.7 Conclusions

In this chapter we have analyzed a ‘share-constrained proportional alloca-

tion’ framework for network slicing. The framework allows slices to customize the

143

α

1 1.25 1.5 1.75 2

G
ai
n
ov
er

S
S
(%

)

0

10

20

30

40

50

Scenario 1: Uniform

Scenario 4:
Mixed

Scenario 3:
Non-overlapping
hotspots

Scenario 2:
Overlapping Hotspots

Figure 4.4: Gain over Static slicing for different traffic models and α values.

resource allocation to their users, leading to a network slicing game in which each

slice reacts to the settings of the others. Our main conclusion is that the framework

provides an effective and implementable scheme for dynamically sharing resources

across slices. Indeed, this scheme involves simple operations at base stations and

incurs a limited signaling between the slices and the infrastructure. Our results

confirm system stability (best response dynamics converge), substantial gains over

static slicing, and fairness of the allocations (envy-freeness). Moreover, as long as

the majority of the slices do not choose αo values larger than 1 (i.e., they do not all

demand very homogeneous rate distributions), the overall performance is close to

optimal (price of anarchy is very small). Thus, in this case the flexibility provided

by this framework comes at no cost. If a substantial number of slices choose higher

αo’s, then we pay a (small) price for enabling slice customization.

144

4.8 Proofs of chapter results
4.8.1 Proof of Lemma 2

Given the weight allocation under static slicing, wss, and the weights of

the other slices under dynamic sharing, w−o, we consider the following weight

allocation for slice o:

wu =
wssu∑

u∈Uo
b(u)

wssu

aob(u)(w−o)∑
b′∈Bo a

o
b′(w−o)

so, (4.4)

where Bo is the set of base stations where slice o has customers.

We define ρou(w
ss) as the ratio between the weight of user u under static

slicing and the sum of the weights of all the users of the same slice in the base

station, i.e.,

ρou(w
ss)

.
=

wssu∑
u∈Uo

b(u)
wssu

where we have dropped the terms w−o and wss from aob(u)(w−o) and ρou(w
ss) for

readability purposes.

With the allocation given by (4.4), for two users u and u′ of slice o it holds

wu
wu′

=
ρou
ρou′

aob(u)

aob(u′)
(4.5)

Furthermore, it also holds that

dob =
∑
u∈Uob

wu =
∑
u∈Uob

ρou
aob(u)∑

b′∈Bo
aob′
so =

aob(u)∑
b′∈Bo

aob′
so =

wu
ρou

for u ∈ Uo
b. From the above expression, we have

ρoulb(u)(w)

ρou′lb(u′)(w)
=

ρou

(
aob(u) + dob(u)

)
ρou′
(
aob(u′) + dob(u′)

) =
ρou

(
aob(u) + wu

ρou

)
ρou′
(
aob(u′) +

wu′
ρo
u′

) ,

145

and combining this with (4.5):

ρoulb(u)(w)

ρou′lb(u′)(w)
=

ρou

(
aob(u) +

ao
b(u)

ao
b(u′)

wu′
ρo
u′

)
ρou′
(
aob(u′) +

wu′
ρo
u′

) =

ρoua
o
b(u)

(
1 +

wu′
ao
b(u′)ρ

o
u′

)
ρou′a

o
b(u′)

(
1 +

wu′
ao
b(u′)ρ

o
u′

) =
ρoua

o
b(u)

ρou′a
o
b(u′)

From the above,

wu =
wu∑

u′∈Uo wu′
so =

so∑
u′∈Uo

wu′
wu

=
so∑

u′∈Uo

ρo
u′a

o
b(u′)

ρoua
o
b(u)

=
so∑

u′∈Uo

ρo
u′ lb(u′)(w)

ρoulb(u)(w)

=
ρoulb(u)(w)∑

u′∈Uo ρ
o
u′lb(u′)(w)

so =
ρoulb(u)(w)∑
b′∈Bo lb′(w)

so

Since Bo ⊆ B: ∑
b∈Bo

lb(w) ≤
∑
b∈B

lb(w) = 1

and thus

wu ≥ ρoulb(u)(w)so,

from which

ru(w) =
wu

lb(u)(w)
cu ≥

ρoulb(u)(w)so
lb(u)(w)

cu = ρousocu = rssu .

The above holds for all u ∈ U, which proves the lemma.

4.8.2 Proof of Theorem 8

This result follows from Lemma 2. Given the configuration of the other

slices, there exists a configuration for a given slice under which all its users obtain

at least the same throughput as with static slicing, and thus the slice’s utility with

this configuration is at least as high. As a consequence, in a NE the slice will receive

a utility no smaller than this value.

146

4.8.3 Proof of Lemma 3

Let us start for αo 6= 1. The best response of slice o is given by

wo = arg max
w′o

∑
u∈Uo

φu
1− αo

(
w′ucu

aob(u)(w
′−o) + dob(u)(w

′o)

)1−αo

subject to:
∑
u∈Uo

w′u = so, w′u ≥ 0, ∀u ∈ Uo

The Lagrangian for this optimization problem is given by

L(w, λ) =
∑
u∈Uo

φu
1− αo

(
wucu

aob(w
−o) + dob(w

′o)

)1−αo
− λo

(∑
u∈Uo

wu − so

)

The partial derivative of the above function with respect to wu is given by

∂L(w, λ)

∂wu
=
φuc

1−αo
u · (lb(w)− wu)
wαou · lb(w)2−αo

−
∑

u′∈Uo
b(u)
\{u}

φu′c
1−αo
u′ w1−αo

u′

lb(w)2−αo
− λo

=
φuc

1−αo
u · lb(w)

wαou · lb(w)2−αo
−

∑
u′∈Uo

b(u)

φu′c
1−αo
u′ w1−αo

u′

lb(w)2−αo
− λo

From the above, for two users u, u′ in the same base station we have

wαou =
φu
φu′

(
cu
cu′

)1−αo
wαou′ (4.6)

Combining the above two equations yields

∂L(w, λ)

∂wu
=

φu · c1−αo
u

wαou · lb(w)2−αo

lb(w)−
∑

u′∈Uo
b(u)

φu′c
1−αo
u′

φuc1−αo
u

w1−αo
u′ wαou

− λo
=

φu · c1−αo
u

wαou · lb(w)2−αo

lb(w)−
∑

u′∈Uo
b(u)

wu′

− λo.

147

Equaling the above expression for two different users u and u′ at different

base stations, we obtain the following expression, which holds for any pair of users

of slice o (at the same or different base stations):

wu
wu′

=
βu
βv

(aob(u)
(w−o))

1
αo(

ao
b(u)

(w−o)+do
b(u)

(wo)
) 2
αo
−1

(
ao
b(u′)(w

−o)
) 1
αo(

ao
b(u′)(w

−o)+do
b(u′)(w

o)
) 2
αo
−1

(4.7)

where βu := (φu)
1
αo (cu)

1
αo
−1. From the above, we obtain (4.2) by normalizing.

In order to prove that the resulting non-linear system of equations has a unique

solution, we proceed as follows. Let dob =
∑

u∈Uob
wu. From (4.6),

dob = wu
∑
u′∈Uob

βu′

βu

Combining the above with (4.7) yields

dob
dob′

=
βu
βv

∑
v′∈Uo

b′

βv′
βv∑

v′∈Uob
βv′
βu

(aob(w−o))
1
αo

(aob(w−o)+dob)
2
αo
−1

(aob′ (w
−o))

1
αo

(aob′ (w
−o)+do

b′)
2
αo
−1

which is equivalent to

dob
(
aob(w

−o) + dob
) 2
αo
−1

= Kdob′
(
aob′(w

−o) + dob′
) 2
αo
−1

where K is some constant. Then, if we fix dob to some positive value, there exists

a unique positive value of dob′ that satisfies the above equation. Indeed, the lhs of

the equation will be fixed to some finite value larger than 0, while the rhs grows

from 0 to∞ as we increase dob′ . Moreover, the larger the value of dob , the larger the

148

resulting dob′ , since both the lhs and the rhs of the equation are increasing functions

of dob and dob′ , respectively.

From the above, we can compute the dob′ value of each base stations as a

function of a single dob . Once we have all dob′ values, we can uniquely compute the

user weights wu, which are an increasing function of dob′ (and thus of dob). Inserting

the resulting weights into
∑

u∈Uo wu(d
o
b) = so, we have an equation with a sin-

gle unknown, dob . This equation has a unique solution, as the lhs is an increasing

function of dob and the rhs is constant. Computing the resulting dob value, and obtain-

ing from this value the corresponding wu values, we have a solution to the system.

Since all relationships are bijective, this is the only solution of the system.

The case αo = 1 is proven employing a similar argument. Indeed, by re-

peating the same steps as above for for Uo(w) =
∑

u∈Uo φu log ru(w), it is easy to

verify the best response for this case corresponds to the expression given by (4.2)

for αo = 1.

4.8.4 Proof of Theorem 9

Let Ro be the implicit function that denotes the best response of slice o, i.e.,

wo = Ro(w
o,w−o). We start by proving that Ro is a continuous and differentiable

function for aob 6= 0 ∀b. Note that Ro is a continuous and differentiable function

of ao = (aob : b ∈ Bo) when wo is fixed. So it follows from the implicit function

theorem that the best response is continuous and differentiable in ao. As ao is

continuous function of w−o, it follows that the best response is a continuous and

differentiable function of the other slices’ weights.

149

Now, let us define a perturbed game G(ε) for some ε > 0, in which there is

an additional slice which places a weight of ε in each base station.6 The existence

of a NE for this perturbed game is guaranteed by the result of [94] since (i) the

utility is a concave function, (ii) it is continuous (as given by the previous lemma),7

and (iii) the game strategy space set of a slice, given by So = {wo ∈ Ro | wo ≥

0 and
∑

u∈Uo wu = so}, is compact and convex.8 Moreover, Lemma 5 (provided

with the supplementary material) shows that the weights in the NE must be greater

than or equal to a value δ for any ε < εmax.9 Building on the result of this lemma,

we proceed as follows. Let us consider a decreasing sequence εk → 0, where

ε0 ≤ εmax, and let w(εk) denote the Nash Equilibrium of game G(εk). Since the

strategy space S = S1 × ... × S|O| is a compact set, there exists a subsequence εkn

such that εkn → 0 and w(εkn) → w(0). Note that w(εkn)
u ≥ δ ∀u and therefore

w
(0)
u ≥ δ ∀u. Now, let us define function

g(ε,w) = R(ε)(w)−w

where R(ε)(w) is the best response to w in the game G(ε). Note that g(ε,w) is

equal to zero at the NE of the perturbed game G(εk). Furthermore, from the above

lemma we have that at this NE it holds wu > 0 ∀u (even as ε → 0), and we

6In the perturbed game, the shares are rescaled so that they still sum 1, i.e.,
∑
o∈O so+ |B|ε = 1.

7Note that in the perturbed game aob ≥ ε > 0.
8The statement of the theorem of [94] requires that Uo(w) is defined in the strategy space So,

which is not satisfied for αo = 1 since in this case Uo(w) → −∞ when wu = 0 for some u ∈ Uo.
However, the proof of this theorem only requires that the mapping wo = Ro(w

−o) is defined in
So, which is satisfied for αo = 1 (and indeed this mapping never yields wu = 0, as this would not
maximize the slice’s utility).

9Note that, as the sum of the weights of all players in the game is 1, i.e.,
∑
o∈O so + |B|ε = 1,

we have the following upper bound for ε: ε ≤ ε̂ = 1/|B|.

150

further have that this function is continuous and differentiable for wu > 0 ∀u. Thus,

g(εkn ,w(εkn)) = 0 and

lim
εkn→0

g(εkn ,w(εkn)) = g(0,w(0)) = 0

implying that indeed w(0) exists and is a Nash Equilibrium of our (non perturbed)

game.

4.8.5 Proof of Lemma 4

We prove the lemma by showing that there exists a scenario for which there

is no NE. Let us consider a network with two slices, 1 and 2, each of them with two

users (u11 and u12 for slice 1 and u21 and u22 for slice 2) and with s1 = s2 = 1/2.

Let users u11 and u21 be associated with one base station (base station 1) and the

other two users (u12 and u22) associated to base station 2. Furthermore, let cu of

all users be equal to 1 except for u22, for which cu = 2.

With utility functions U o(w) = minu∈Uo (ru(w)), it follows that the best

response of slice 1 to a given allocation of slice 2 satisfies

w11

w11 + w21

=
w12

w12 + w22

. (4.8)

Similarly, the following equation holds for the best response of slice 2:

w21

w11 + w21

= 2
w22

w12 + w22

. (4.9)

From (4.8) it follows that

w21

w11 + w21

=
w22

w12 + w22

.

151

and combining the above with (4.9) we obtain

w22

w12 + w22

= 2
w22

w12 + w22

.

Note that there exists no w22 that satisfies the above equation (except w22 =

0 which is not a possible setting for the weight best response). We therefore con-

clude that there exists no NE.

4.8.6 Proof of Theorem 10

Let us first focus on the case with sequential updates. We shall denote time

as slotted {0, 1, ..., t, ...} and assume a single slice makes an update each time slot.

Without loss of generality, we will index slices {1, 2, ..., |O|} = O according to

their updating order in a round. We let w(t) = (wo(t) : o ∈ O) be the weights of all

slices at the end the time slot t update, where wo(t) = (wu(t) : u ∈ Uo). Suppose

that slices have arbitrary positive initial weight vectors at time zero denoted w(0) =

(w1(0),w2(0), ...,w|O|(0)). Consequently, slice 1 will update its weights at time

slots: {1, |O|+ 1, ..., r · |O|+ 1}, corresponding to rounds {0, 1, ..., r, ...}.

We will further define ∆wo(t+1) = (∆wu(t+1): u ∈ Uo), where ∆wo(t+

1) = (∆wu(t+ 1): u ∈ Uo) such that,

wu(t+ 1) = wu(t)(1 + ∆wu(t+ 1)), ∀o ∈ O, u ∈ Uo

where 1 + ∆wu(t + 1) captures the relative change in slice o’s weight update at

time slot t+ 1. Furthermore, to capture the overall changes in slices weights at the

end of each round, we shall define ω(0) = w(0), ω(r) = (ωo(r) : o ∈ O) where

152

ωo(r) = wo(r · |O| + 1) and ∆ωo(r) such that ∆ω(r) = (∆ωo
u(r) : u ∈ Uo).

For all o ∈ O, we define

∆ωo(r) := max
u∈Uo

∆ωo
u(r), ∆ωo(r) := min

u∈Uo
∆ωo

u(r).

The slices responses at the end of each round are captured by the sequence

ω(r) for r = 1, 2, ... and the dynamics are given by ω(r + 1) = R(ω(r)), where

R(ω(r)) is the result of applying sequentially the best response for each of the

slices. Note that ω(r) is in the set S = S1 × S2 × ...× S|O| where:

So = {ωo ∈ Ro |ωo ≥ 0 and
∑
b∈B

nobω
o
b = so}.

Let us define a function:

V (ω(r)) := max
o∈O

(
1 + ∆ωo(r + 1),

1

1 + ∆ωo(r + 1)

)
− 1

Notice that V (ω(r)) is a function of the relative weight changes at round

r + 1 given the weights at round r, ω(r).

Note that, unless algorithm converged (i.e., ω(r+1) = ω(r) and V (ω(r)) =

0), there should at least one slice with a user u for which ∆ωo
u(r + 1) > 0 and a

user v for which ∆ωo
v(r + 1) < 0. Thus, in this case it must be that V (ω(r)) > 0

and

max
o∈O

(
1 + ∆ωo(r + 1),

1

1 + ∆ωo(r + 1)

)
> 1

Note also that by Lemma 6 (provided as supplementary material) it follows

that if ω(r + 1) 6= ω(r), then

max
o∈O

(
1 + ∆ωo(r + 1),

1

1 + ∆ωo(r + 1)

)
< max

o∈O

(
1 + ∆ωo(r),

1

1 + ∆ωo(r)

)
,

(4.10)

153

which is equivalent to V (ω(r + 1)))) < V (ω(r)).

Note that, since ∆ωo > −1, V (ω(r)) is continuous. Furthermore, the best

response functions governing ∆ are also continuous, as shown in Theorem 3.

In summary, the above results show that V (ω(r)) is continuous, non-negative

and decreasing each round. So, we might expect it to converge to 0 in which case

the slices weights must have converged. We show this by contradiction. Suppose

V (ω(r)) converges instead to ε > 0, so V (ω(0)) ≥ V (ω(r)) ≥ ε for all r. Let us

define V = {ω|V (ω(0)) ≥ V (ω) ≥ ε} and let C = {ω|ω ∈ S ∩ V}. From this,

V is closed, and since S is compact, so is C. From the continuity of V we have that:

δ = max
ω∈C

V (R(ω)))− V (ω) < 0

Clearly it is not possible V (ω(r)) ≥ ε since each round it decreases by at least δ. It

follows that the weights must converge when V (ω(r)) = 0, which terminates the

proof for the case with sequential updates.

Let us now focus on the case of simultaneous updates. The proof goes along

the lines of the proof for the above case.

Similarly to the previous case, we shall denote time as slotted {0, 1, ..., t, ...}.

With simultaneous updates, every slice makes an update each time slot. We let

w(t) = (wo(t) : o ∈ O) be the weights of all slices at the end the time slot t

update, where wo(t) = (wu(t) : u ∈ Uo). As before, we define ∆wo(t + 1) =

(∆wu(t + 1): u ∈ Uo), where ∆wo(t + 1) = (∆wu(t + 1): u ∈ Uo) and

∆w(r) = (∆wo(r) : o ∈ O) such that,

wu(t+ 1) = wu(t)(1 + ∆wu(t+ 1)), ∀o ∈ O, u ∈ Uo

154

where 1+∆wu(t+1) captures the relative change in slice o’s weight update at time

slot t+ 1. For all o ∈ O, we define

∆wo(t) := max
u∈Uo

∆wou(t), ∆wo(t) := min
u∈Uo

∆wou(t).

We first show that if the game has not converged to a Nash equilibrium, i.e.

∆w(r) 6= 0 for r > 1, then:

max
o∈O

(
1 + ∆w(t+ 1),

1

1 + ∆w(t+ 1)

)
< max

o∈O

(
1 + ∆w(t),

1

1 + ∆w(t)

)
.

The above can be seen as follows. Defining ∆ao(t) = (∆aob(t) : b ∈ B)

such that aob(t) = aob(t− 1)(1 + ∆aob(t)), from the proof of Lemma 6 we have:

max
o∈O

(
1 + ∆wo(t+ 1),

1

1 + ∆wo(t+ 1)

)
< max

o∈O

(
1 + ∆ao(t),

1

1 + ∆ao(t)

)
,

where ∆ao(t) = max
o∈O

∆ao(t) and ∆ao(t) = min
o∈O

∆ao(t). Also, it holds that

1 + ∆ao(t) ≤ max
o′∈O,o′ 6=o

1 + ∆wo
′
(t).

and similarly:

1 + ∆ao(t) ≥ min
o′∈O,o′ 6=o

1 + ∆wo
′
(t).

Therefore:

max
o∈O

(
1 + ∆w(t+ 1),

1

1 + ∆w(t+ 1)

)
< max

o∈O

(
1 + ∆ao(t),

1

1 + ∆ao(t)

)
≤ max

o∈O

(
1 + ∆wo(t),

1

1 + ∆wo(t)

)

155

Taking into account that in the case of simultaneous updates each time slot

corresponds to a round (where all slices update their weights), the above result is

equivalent to the result given by (4.10) for the case of sequential updates. The rest

of the proof then follows exactly the one for sequential updates.

4.8.7 Proof of Theorem 11

We first show that an optimal (not necessarily unique) solution to the cen-

tralized problem is given by w∗ which assigns weights to all users of a given slice

proportionally to their priorities, i.e., w∗u = φuso, ∀u ∈ Uo. To prove this we only

need to show that U(w∗) ≥ U(w) for any other feasible weight vector w . To that

end, consider

U(w∗)− U(w) =
∑
o∈O

∑
u∈Uo

φu

(
log

(
w∗ucu
lb(w∗)

)
− log

(
wucu
lb(w)

))

Let us denote the distributions induced by w∗ and w respectively as: pb(w) =

(pbu(w) = wu
lb(w)

: u ∈ Ub) and pb(w∗) = (pbu(w
∗) = wu

lb(w∗)
: u ∈ Ub). Since

φ = w∗, we have

U(w∗)− U(w) =
∑
b∈B

lb(w
∗)
∑
o∈O

∑
u∈Ubo

pbu(w
∗) log

(
pbu(w

∗)

pbu(w)

)
=
∑
b∈B

lb(w
∗)D(pb(w∗)||pb(w))

where D(pb(w∗)||pb(w)) is the Kullback-Leibler divergence, between the

distributions induced by w∗ and w respectively, i.e., pb(w∗) and pb(w). It is known

[66] that D(pb(w∗)||pb(w)) ≥ 0 and 0 only when pb(w) = pb(w∗) Hence it

follows that w∗ is optimal.

156

We next show that U(w∗)− U(w) ≤ log(e) holds when w is a Nash Equi-

librium of the distributed resource allocation game and w∗ an optimal solution. To

show this, we proceed as follows. Since in the Nash Equilibrium each slice maxi-

mizes its utility given the allocation of the other slices,∑
u∈Uo

φu log

(
wu

lb(u)(w)

)
≥
∑
u∈Uo

φu log

(
w∗u

dob(u)(w
∗) + aob(u)(w)

)
Given that dob(u)(w

∗) + aob(u)(w) ≤ lb(u)(w) + lb(u)(w
∗),∑

u∈Uo
φu log

(
wu

lb(u)(w)

)
≥
∑
u∈Uo

φu log

(
w∗u

lb(u)(w) + lb(u)(w∗)

)
From the above it follows that∑

u∈Uo
φu log(ru(w

∗))−
∑
u∈Uo

φu log(ru(w))

≤
∑
u∈Uo

φu log

(
w∗ucu

lb(u)(w∗)

)
−
∑
u∈Uo

φu log

(
w∗ucu

lb(u)(w) + lb(u)(w∗)

)
= −

∑
u∈Uo

φu log

(
lb(u)(w

∗)

lb(u)(w) + lb(u)(w∗)

)
Summing the above over all slices weighted by the corresponding shares yields

U(w∗)− U(w) ≤ −
∑
u∈U

φuso log

(
lb(u)(w

∗)

lb(u)(w) + lb(u)(w∗)

)
Given w∗u = φuso, we have

U(w∗)− U(w) ≤ −
∑
b∈B

log

(
lb(w

∗)

lb(w) + lb(w∗)

)∑
u∈Ub

w∗u

= −
∑
b∈B

∑
u∈Ub

wu log

(
lb(w

∗)

lb(w) + lb(w∗)

)∑
v∈Ub

w∗v∑
v∈Ub

wv

= −
∑
b∈B

∑
u∈Ub

wu log

(
lb(w

∗)/lb(w)

1 + lb(w∗)/lb(w)

) lb(w
∗)

lb(w)

157

and, given that (x/(1 + x))x > 1/e for x ≥ 0, this yields

U(w∗)− U(w) ≤
∑
b∈B

∑
u∈Ub

wu log(e) = log(e).

Finally, we show that there exists some scenario for which U(w∗)−U(w) =

log(e). Let us consider a scenario with two slices with shares s1 and s2, respectively.

There are two base stations. Slice 1 has m+ 1 users, m associated to base station 1

and one associated to base station 2. Slice 2 has one user associated to base station

2. All users have cub = 1. Under the optimal allocation:

U(w∗) =
s1

m+ 1
m log

(
1

m

)
+

s1

m+ 1
log

(
s1
m+1

s1
(m+1)

+ s2

)
+ s2 log

(
s2

s1
(m+1)

+ s2

)
,

and under the Nash equilibrium

U(w) =
s1

m+ 1
m log

(
1

m

)
+

s1

m+ 1
log

(
s1

s1 + s2

)
+ s2 log

(
s2

s1 + s2

)
.

For m→∞ this yields U(w∗) = s1 log
(

1
m

)
+ s2 log(1) and U(w) = s1 log

(
1
m

)
+

s2 log
(

s2
s1+s2

)
. From this,

U(w)− U(w∗) = s2 log

(
s2

s1 + s2

)
which tends to − log(e) when s1 → 1 and s2 → 0.

4.8.8 Proof of Theorem 12

Let us consider two slices, o and o′, that have the same share so. Let the

utility function of slice o be U o =
∑

u∈Uo φu log(ru). We first show that it holds

U o(w̃o)− U o(wo) ≤ 0.060

158

In order to bound the envy U o(w̃) − U o(w) at the NE, we will construct a

weight allocation m that satisfies U o(m) ≤ U o(w) and U o(m̃) ≥ U o(w̃) – where

w̃ and m̃ are the allocations resulting from exchanging the resources of slices o and

o′ in w and m, respectively. It then follows that U o(m̃)−U o(m) is an upper bound

on the envy.

Specifically, the weight allocation m will be chosen such that: (i) for all

slices different from o, the weights remain the same as in the NE, i.e, m−o = w−o;

and (ii) the weights of slice o are chosen so as to maximize U o(m) subject to

dob(m
o) =

∑
u∈Uob

mu ≤ aob(m
−o) ∀b ∈ B and slice o’s share constraint. Note

that with this weight allocation we have aob(u)(m
−o) = aob(u)(w

−o) – for readability

purposes, we will use just aob(u). Note also that the weights that slice o would have

with the resources of o′ remain the same, i.e. m̃o = w̃o.

By following a similar argument to that of Lemma 2, it can be seen that the

above leads to the weights mu for u ∈ Uo solving the set of equations below, which

have a feasible solution as long as so <
∑

u∈Uo a
o
b(u)(m

−o) (we deal with the case∑
b∈Bo a

o
b < so later).

mu =



aob(u)

φu∑
v∈Uo

b(u)
φv
, aob(u) = dob(u)(m

o)

φu
ao
b(u)

ao
b(u)

+do
b(u)

(mo)∑
v∈Ûo

φv
ao
b(v)

ao
b(v)

+do
b(v)

(mo)

s′o, aob(u) > dob(u)(m
o)

where Ûo is the set of users of slice o for which aob(u) > dob(u)(m
o) and s′o = so −∑

u∈Uo\Ûomu.

159

It is clear that with this weight allocation we have U o(m) ≤ U o(w). Indeed,

only the weights of slice o have changed and (as mentioned before) wo is the best

response of the slice o, hence any other weight setting for this slice will provide a

lower utility.

To show U o(m̃) ≥ U o(w̃) we proceed as follows. The base stations that

initially had a load for operator o larger than aob (dob(u)(m
o) > aob) decrease their

load with the new allocation, while the others increase it. Let us denote the first

set of base stations as B1 and the other set as B2. Since the base stations of set B1

decrease their load in the new allocation and the base stations of set B2 increase it,

we can move from the initial allocation to the new one by iteratively selecting one

base station of set B1 and one of set B2 and moving load from the first one to the

second until one of them reaches its target load. When decreasing the load of base

station b and increasing that of base station b′ by δ we have

dU o(w̃)

dδ
= −

∑
u∈Uo

b′

φu

lb′(w̃)
+

∑
u∈Uob

φu

lb(w̃)

If we can show at the beginning (before increasing/decreasing the load of any base

station), for any b ∈ B1 and b′ ∈ B2 it holds∑
u∈Uob

φu

lb(w̃)
≥

∑
u∈Uo

b′

φu

lb′(w̃)
(4.11)

we will have the value of
∑

u∈Uob
φu
lb

for any base station of set B1 will always be

larger than for any base station of set B2, since it are larger at the beginning and it

increases in the intermediate steps, while it decreases for a base station of B2. With

160

this, dU o(m̃)/dδ is positive at the beginning and will continue to be positive in the

intermediate steps, yielding to an increase in dU o(m̃).

To show (4.11), we proceed as follows. It holds that

dob(m
o)

dob′
=

∑
u∈Uob

φu∑
u′∈Uo

b′
φu′

1
1+dob(m

o)/aob
1

1+do
b′ (m

o)/ao
b′

=

∑
u∈Uob

φu∑
u′∈Uo

b′
φu′

1 +
do
b′ (m

o)

ao
b′

1 +
dob(m

o)

aob


For b ∈ B1 and b′ ∈ B2 (since aob < dob(m

o) and aob′ > dob′(m
o))

dob(m
o)

dob′(m
o)
<

∑
u∈Uob

φu∑
u′∈Uo

b′
φu′

and thus

lb∑
u∈Uob

φu
=
aob + dob(m

o)∑
u∈Uob

φu
<

2dob(m
o)∑

u∈Uob
φu

<
2dob′(m

o)∑
u∈Uo

b′
φu
≤ aob′ + dob′(m

o)∑
u∈Uo

b′
φu

=
lb′∑

u∈Uo
b′
φu

which proves (4.11), and thus U o(m̃) ≥ U o(w̃).

We now go back to the case
∑

b∈Bo a
o
b < so. Following the above procedure,

in this case we can find an allocation mo that satisfies: (i) U o(m) ≤ U o(w), (ii)

U o(m̃) ≥ U o(w̃) and (iii) dob(m
o) ≥ aob ∀b. In this case we then have U o(w̃) −

U o(w) ≤ U o(m̃)− U o(m) ≤ 0.

To find an upper bound on U o(m̃)− U o(m), recall that

U o(m̃) =
∑
u∈Uo

φu log

(
m̃ucu
lb(m̃)

)
,

and

U o(m) =
∑
u∈Uo

φu log

(
mucu
lb(m)

)
.

161

Given that lb(m̃) = lb(m) and m̃u = mu for u /∈ Ûo, this yields

U o(m̃)− U o(m) =
∑
u∈Ûo

φu log(m̃u)−
∑
u∈Ûo

φu log(mu).

Since
∑

u∈Ûo log(m̃u) subject to
∑

u∈Ûo m̃u = s′o takes a maximum at m̃u =

φ̂us
′
o (where φ̂u = φu/

∑
v∈Ûo φv),

U o(m̃)− U o(m) ≤
∑
u∈Ûo

φu log(φ̂us
′
o)−

∑
u∈Ûo

φu log(mu)

≤
∑
u∈Ûo

φ̂u log(φ̂us
′
o)−

∑
u∈Ûo

φ̂u log(mu) (4.12)

In order to bound the term
∑

u∈Ûo φ̂u log(mu) above, we look for a bound

on mu
mv

. Given that aob ≥ dob(m
o) holds for all b, we have for u, v ∈ Ûo:

mu

mv

=
φu
φv

ao
b(u)

ao
b(u)

+do
b(u)

(mo)

ao
b(v)

ao
b(v)

+do
b(v)

(mo)

>
φu
φv

ao
b(u)

ao
b(u)

+ao
b(u)

ao
b(v)

ao
b(v)

=
1

2

φ̂u

φ̂v
.

It can be seen that
∑

u∈Ûo φ̂u log(mu) subject to mu
mv
≥ 1

2
φ̂u
φ̂v

and
∑

u∈Ûo φ̂u =

1 is maximized when the mu
φ̂u

of all users but one is equal to the lower bound given

by the constraint, which yields

mu

φ̂u
=

1

2

mv

φ̂v
, ∀u 6= v. (4.13)

This is shown by contradiction. Let us imagine that in the weight allocation

that maximizes (4.12) there exists some other user u for which mu
φ̂u

> mv
2φ̂v

, where v

is the user with the largest mv/φ̂v of that allocation. Then, if we increase mv by δ

162

and decrease mu by δ we have

d

dδ

∑
u∈Uo

φ̂u log

(
φ̂us

′
o

mu

)
= − φ̂v

mv

+
φ̂u
mu

> 0

and thus (4.12) increases, which contradicts our assumption that (4.12) was already

maximum. From (4.13) we have

mu =
φ̂uso∑

u′∈Uo\{v}
φ̂u + 2φ̂v

, and mv =
2φ̂vso∑

u′∈Uo\{v}
φ̂u + 2φ̂v

Combining this with (4.12) we obtain

U o(w̃∗o)− U o(w∗o) ≤
∑

u∈Uo\{v}

φ̂u log

 ∑
u′∈Uo\{v}

φ̂u + 2φ̂v


+ φ̂v log

1

2

∑
u′∈Uo\{v}

φ̂u + 2φ̂v


= log(1 + φ̂v) + φ̂v log(1/2)

If we now compute the φ̂v that maximizes this expression we obtain φ̂v =

1
log 2
− 1, and substituting this value

U o(w̃∗o)− U o(w∗o) ≤ − log(log 2)−
(

1

log 2
− 1

)
log 2

As mentioned at the beginning, the above bounds also applies to U o(w̃o)−U o(wo).

We next show that the worst case envy is lower bounded by 0.041, by finding

a game instance for which U o(w̃o) − U o(wo) = 0.041. Let us consider a scenario

with 2 base stations. Let slice o have a share of so and one user at each base station

with priorities φ1 and φ2. Let the loads of the other slices in these two base stations

163

be a1 = 1 − so − xφ2so and a2 = xφ2so. for a fixed x > 0 . Let so be sufficiently

small such that a1 > φ2so.

In this setting, the weights of slice o at each station are given by

d1
1 =

soφ1
a1

a1+d1
1

φ1
a1

a1+d1
1

+ φ2
a2

a2+d1
2

, and d1
2 =

soφ2
a2

a2+d1
2

φ1
a1

a1+d1
1

+ φ2
a2

a2+d1
2

We distinguish the cases (i) x ≥ 1 and (ii) x < 1.

(i) For x ≥ 1, we consider slice o′ with share so′ = so with priorities φ̃1 and

φ̃2, where

φ̃1

φ̃2

=
φ1

φ2

a2−φ2so+d1
2

a2+d1
2

a1−φ1so+d1
1

a1+d1
1

We further consider a third slice with only one user in the first base station with

s3 = a1 − φ1so and a fourth slice with a one user in the second base station with

s4 = a2 − φ2so. This leads to d2
1 = φ1so and d2

2 = φ2so.

If we now let so → 0,

d1
2 =

φ2xφ2so
φ1(xφ2so + d1

2) + φ2xφ2so
so = φ2

xφ2so
xφ2so + d1

2

so

From the above, d1
2 = x̂φ2so, where x̂ is the unique solution to the equation x =

(x+ x̂)x̂. Then, d1
1 = so − x̂φ2so. From this, we have that in this case

U o(w̃)− U o(w) = φ1 log

(
φ1so

so − x̂φ2so

)
+ φ2 log

(
φ2so
x̂φ2so

)
= φ1 log

(
φ1

1− x̂+ x̂φ1

)
− (1− φ1) log(x̂)

(ii) In case that x < 1, we consider slice o′ has priorities φ̃1 and φ̃2, where

φ̃1

φ̃2

=
φ1

φ2

a2−xφ2so+w2

a2+w2

a1−so−xφ2so+w1

a1+w1

164

which leads to w̃1 = (1−xφ2)so and w̃2 = xφ2so. We further consider a third slice

in the first base station with s3 = a1 − (1− xφ2)so. If we now let so → 0, we have

the same expressions as above for w1 and w2, from which

U o(w̃o)− U o(wo) = φ1 log

(
so − xφ2so
so − x̂φ2so

)
+ φ2 log

(
xφ2so
x̂φ2so

)
= φ1 log

(
1− x+ xφ1

1− x̂+ x̂φ1

)
− (1− φ1) log

(x
x̂

)
By putting together the cases x ≥ 1 and x < 1, we can obtain a lower bound

for the worst-case envy by finding the values of x and φ1 over x > 0 and φ1 ∈ [0, 1]

that minimize the following expressionφ1 log
(

φ1

1−x̂+x̂φ1

)
− (1− φ1) log(x̂), for x ≥ 1

φ1 log
(

1−x+xφ1

1−x̂+x̂φ1

)
− (1− φ1) log

(
x
x̂

)
, for x < 1

Performing the above search numerically, we find a scenario with the following

envy level:

U o(w̃o)− U o(wo) = 0.041

which terminates the proof of the theorem.

Lemma 5. For any NE weight allocation of gameG(ε), there exists a constant δ > 0

such that wεu ≥ δ ∀u ∈ U and ε < εmax.

Proof. According to Lemma 3, the best response of a user u ∈ Uo in the ε perturbed

165

game is given by

wu =

(ε+ao
b(u)

)
1
αo

(ε+ao
b(u)

+do
b(u)

)
2
αo
−1

∑
v∈Uo

(
βv
βu

)
(ε+ao

b(v)
)

1
αo

(ε+ao
b(v)

+do
b(v)

)
2
αo
−1

so. (4.14)

In order to derive a bound for wu, we proceed along the following steps.

First, we obtain a bound for wu as a function of lb. Second, we derive a bound for

lb. Finally, by combining the results of the first and the second steps, we obtain a

bound for wu.

Bound for wu as a function of lb

We will first prove the existence of a bound for the case of αo ≥ 1 and then

for the case αo < 1. Let us start with the case αo ≥ 1. From Eq. (4.14) it follows

wu ≥

(ε+ao
b(u)

)
1
αo

(ε+ao
b(u)

+do
b(u)

)
2
αo
−1

max
v∈Uo

[
βv
βu

] ∑
v∈Uo

(ε+ao
b(v)

)
1
αo

(ε+ao
b(v)

+do
b(v)

)
2
αo
−1

so

166

Let us define the constant mo
u = max

v∈Uo

[
βv
βu

]
. Then,

wu ≥

(ε+lb(u)−dob(u)
)

1
αo

(ε+lb(u))
2
αo
−1

mo
u

∑
v∈Uo

(ε+lb(v)−dob(v)
)

1
αo

(ε+lb(v))
2
αo
−1

so ≥

(lb(u)−dob(u)
)

1
αo

(lb(u))
2
αo
−1

mo
u

∑
v∈Uo

(ε+ lb(v))
− 1
αo

+1
so

≥

(lb(u)−dob(u)
)

1
αo

(lb(u))
2
αo
−1

mo
u

∑
v∈Uo

(
(ε)−

1
αo

+1 + (lb(v))
− 1
αo

+1
)so ≥

(lb(u)−dob(u)
)

1
αo

(lb(u))
2
αo
−1

mo
u

∑
v∈Uo

(
1 + (ε)−

1
αo

+1
)so

≥ so
2mo

u|Uo|
(lb(u) − dob(u))

1
αo

(lb(u))
2
αo
−1

We next focus on the case αo < 1. From (4.14) it follows that

(wu)
αo

(wv)αo
=

(ε+lb(u)−dob(u)
)

(ε+lb(u))
2−αo

(ε+lb(v)−dob(v)
)

(ε+lb(v))
2−αo

≥
(lb(u)−dob(u)

)

(lb(u))
2−αo

(ε+lb(v)−dob(v)
)

(ε+lb(v))
2−αo

From the above,

(wu)
αo ≥

(lb(u) − dob(u))

(lb(u))2−αo

(ε+ lb(v))
2−αo

(ε+ lb(v) − dob(v))
(wv)

αo

≥
(lb(u) − dob(u))

(lb(u))2−αo
(ε+ lb(v))

1−αo(wv)
αo

≥
(lb(u) − dob(u))

(lb(u))2−αo
wv

(
wv
lb(u)

)1−αo

≥
(lb(u) − dob(u))

(lb(u))2−αo
wv

Given that the sum of the weights of all the users of slice o is equal to so,

there needs to be at least one user v for which
∑

u′∈Uo
b(v)

wu′ = dvwv ≥ so
|Uo| . If we

take such a user v, from the above we obtain

(wu)
αo ≥

(lb(u) − dob(u))

(lb(u))2−αo

so
|Uo|

, ∀u ∈ Uo

167

Isolating wu from the above yields

wu ≥
(

so
|Uo|mo

u

) 1
αo (lb(u) − dob(u))

1
αo

(lb(u))
2
αo
−1

≥ so
2mo

u|Uo|
(lb(u) − duwu)

1
αo

(lb(u))
2
αo
−1

Putting together the bounds obtained for αo ≥ 1 and αo < 1 leads to the following

expression which holds for any αo > 0:

wu ≥
so

2mo
u|Uo|

(lb(u) − duwu)
1
αo

(lb(u))
2
αo
−1

, for αo > 0 (4.15)

Bound for lb

We will now provide a bound for lb. Let us define U∗b as a subset of U that

contains a representative user of each slice at base station b. Let us further define

sets U(∗,≥1)
b and U

(∗,<1)
b as the subsets of U∗b corresponding to the slices with αo ≥ 1

and αo < 1, respectively. Note that

lb(u) =
∑

u∈U(∗,≥1)
b(u)

duwu =
∑

u∈U(∗,≥1)
b(u)

duwu +
∑

u∈U(∗,<1)
b(u)

duwu.

Let us denote the largest αo of the slices with αo ≥ 1 by αo and and the

smallest αo of these slices by αo. Similarly, let α′o denote the largest αo of the slices

with αo < 1 and α′o the smallest. Let us further define η = min
o∈O,u∈U(∗,≥1)

b(u)

sodu
2mou|U|

.

168

Then, using the bound for wu in (4.15), we obtain∑
u∈U(∗,≥1)

b(u)

duwu ≥ η
∑

u∈U(∗,≥1)
b(u)

(lb(u) − duwu)
1

αo(u)

(lb(u))
2

αo(u)
−1

≥ η(lb(u))
1− 1

αo

∑
u∈U(∗,≥1)

b(u)

(1− duwu
lb(u)

)
1
αo

≥ η(lb(u))
1− 1

αo

 ∑
u∈U(∗,≥1)

b(u)

1−
∑

u∈U(∗,≥1)
b(u)

duwu
lb(u)


1
αo

≥ η(lb(u))
1− 1

αo

 ∑
u∈U(∗,≥1)

b(u)

1−
∑

u∈U∗
b(u)

duwu
lb(u)


1
αo

≥ η(
∑

u∈U(∗,≥1)
b(u)

duwu)
1− 1

αo

[
(|U(∗,≥1)

b(u) | − 1)
] 1
αo

where the third inequality holds from concavity.

Isolating
∑

u∈U(∗,≥1)
b(u)

duwu from the above yields∑
u∈U(∗,≥1)

b(u)

duwu ≥ (η)αo(|U(∗,≥1)
b(u) | − 1)

αo
αo (4.16)

Applying the same reasoning to set U(∗,<1)
b(u) , we obtain∑

u∈U(∗,≥1)
b(u)

duwu ≥ (η)α
′
o(|U(∗,≤1)

b(u) | − 1)
α′o
α′o (4.17)

Putting together (4.16) and (4.17) yields

lb(u) =
∑

u∈U(∗,≥1)
b(u)

duwu +
∑

u∈U(∗,<1)
b(u)

duwu

≥ (η)αo(|U(∗,≥1)
b(u) | − 1)

αo
αo + (η)α

′
o(|U(∗,≤1)

b(u) | − 1)
α′o
α′o

169

The above gives a lower bound for lb as long there are at least two slices

with αo ≥ 1 or αo < 1 in base station b. We next deal with the case in which there

are two slices in base station b, o and o′, one with αo < 1 and the other with αo′ ≥ 1.

It follows from the previous analysis that for this case we have

wu ≥
so

2mo
u|Uo|

(dvwv)
1
αo

(lb)
2
αo
−1

(4.18)

and

wv ≥
so′

2mo′
v |Uo′ |

(duwu)
1
αo′

(lb)
2
αo′
−1

(4.19)

Combining (4.18) and (4.19) we obtain

wαou ≥
(

so
2mo

u|Uo|

)αo dv
(lb)2−αo

so′

2mo′
v |Uo′|

(duwu)
1
αo′

(lb)
2
αo′
−1

from which

l
1−αo+2/αo′
b (wu)

αo− 1
αo′ ≥

(
so

2mo
u|Uo|

)αo dv(du) 1
αo′ so′

2mo′
v |Uo′ |

and thus

l
1+1/αo′
b

(
wu
lb

)αo−1/αo′

≥
(

so
2mo

u|Uo|

)αo dv(du) 1
αo′ so′

2mo′
v |Uo′|

.

Multiplying each side by dαo−1/αo′
u we obtain

l
1+1/αo′
b

(
duwu
lb

)αo−1/αo′

≥
(

so
2mo

u|Uo|

)αo dv(du)αoso′
2mo′

v |Uo′ |

from which

lb

(
dob(u)

lb

)αo−1/αo′

≥
(

so
2mo

u|Uo|

)αo dv(du)αoso′
2mo′

v |Uo′ |
.
= µ1 (4.20)

170

By following the same reasoning as above but isolatingwv instead ofwu from (4.18)

and (4.19), we obtain

lb

(
dob(v)

lb

)αo′−1/αo

≥
(

so′

2mo′
v |Uo′ |

)αo′ sodu(dv)αo
2mo

u|Uo|
.
= µ2 (4.21)

If αo − 1/αo′ > 0, it holds
(
do
b(u)

lb

)αo−1/αo′
≤ 1, and then from (4.20) we obtain

lb ≥
(

so
2mo

u|Uo|

)αo so′dv(du)αo
2mo′

v |Uo′|

Otherwise (i.e., in the case αo− 1/αo′ < 0), by taking the minimum of both

sides of (4.20) and (4.21), we obtain the following inequality

lb min

((
dob(u)

lb

)αo− 1
αo′

,

(
dob(v)

lb

)αo′− 1
αo

)
≥ min (µ1, µ2)

From the above,

lb min

 1(
do
b(u)

lb

)α̂o , 1(
do
b(v)

lb

)α̂o
 ≥ min (µ1, µ2)

where α̂o = max(−αo + 1
αo′
,−αo′ + 1

αo
). The above is equivalent to

lb
1(

max
(
do
b(u)

lb
,
do
b(v)

lb

))α̂o ≥ min (µ1, µ2)

Noting that either
do
b(u)

lb
≥ 1

2
or

do
b(v)

lb
≥ 1

2
,

lb ≥
(

1

2

)α̂o
min (µ1, µ2)

.
= lb > 0

The above proves that lb is bounded in the perturbed game. Hereafter, we

denote this bound by lb > 0.

171

Bound for wu

Let us start with the case αo ≥ 1. Combining (4.15) with the bound for lb

gives

wu ≥
so

2mo
u|Uo|(lb)

2
αo
−1

(lb − duwu)
1
αo ≥ so

2mo
u|Uo|(lb)

2
αo
−1

[
(lb)

1
αo − (duwu)

1
αo

]
Since w

1
αo
u ≥ wu, it follows that

w
1
αo
u +

so(duwu)
1
αo

mo
u|Uo|(lb)

2
αo
−1
≥

so(lb)
1
αo

mo
u|Uo|(lb)

2
αo
−1

from which

wu ≥

 so(lb(u))
1
αo

mo
u|Uo|(lb(u))

2
αo
−1 + so(du)

1
αo

αo

which provides a lower bound on wu for this case. We next look at the case αo < 1.

Combining again (4.15) with the bound for lb gives

(wu)
αo ≥

(
so

2|Uo|mo
u

)
(lb − duwu)

which yields

(wu)
αo + (wu)

αo
sodu

2|Uo|mo
u

≥ (wu)
αo + wu

sodu
2|Uo|mo

u

≥
solb(u)

|Uo|mo
u

≥
solb

2|Uo|mo
u

Isolating wu from the above equation, we obtain the following lower bound

for this case:

wu ≥
(

solb

(2|Uo|mo
u + sodu)

) 1
αo .

= δ

With the above, we have obtained a lower bound on wu for all possible

cases. Hereafter we denote this lower bound by δ.

172

Lemma 6. Let us consider the game with sequential updates. If the game has not

converged to a Nash equilibrium, i.e. ∆ω(r) 6= 0 for r > 1, then:

max
o∈O

(
1 + ∆ωo(r + 1),

1

1 + ∆ωo(r + 1)

)
< max

o∈O

(
1 + ∆ωo(r),

1

1 + ∆ωo(r)

)
.

(4.22)

Proof. We consider the following two cases: (i) ∆ω(r+ 1) = 0 and (ii) ∆ω(r+

1) 6= 0.

Case 1: ∆ω(r + 1) = 0.

From ∆ω(r + 1) = 0, we have that the lhs of (4.22) is equal to 1. Further-

more, from ∆ω(r) 6= 0 it follows that the rhs must be strictly greater than 1. The

inequality for this case follows from these two results.

Case 2: ∆ω(r + 1) 6= 0.

Let us define ∆ao(t) = (∆aob(t) : b ∈ B) such that

aob(t) = aob(t− |O|+ 1)(1 + ∆aob(t)).

Note that, if operator o updates its best response at time t, then aob(t) is the con-

gestion that operator o sees upon making its update, and ∆aob(t) corresponds to the

congestion variation relative to its previous update slot.

In order to prove (4.22) we will begin by showing that for any slice o updat-

173

ing its weights in round r + 1, say at time t+ 1, the following holds:

max

(
1 + ∆wo(t+ 1),

1

1 + ∆wo(t+ 1)

)
(4.23)

< max
t′∈{t−|O|+1,...,t}

(
1 + ∆wo(t

′)(t′),
1

1 + ∆wo(t′)(t′)

)
where o(t′) denotes the slice updating its weights at time t′. The above means that

the “relative change” in weights for slice o is strictly smaller than that seen by the

other slices in the previous |O| updates.

To prove (4.23), we will consider two additional subcases: (i) ∆ao(t) = 0,

and (i) ∆ao(t) 6= 0.

Subcase 2.1: ∆ao(t) = 0.

To prove (4.23) for this case, we will show that the lhs of (4.23) is equal to

1 and the rhs is strictly greater than 1. To show that the lhs is equal to 1, we proceed

as follows. Note that, as ∆ao(t) = 0, the congestion seen by slice o at time t+ 1 is

unchanged with respect to its previous update, and therefore ∆wo(t + 1) = 0. As

a result of this, the lhs of (4.23) is equal to 1.

The proof that the rhs of (4.23) is strictly greater than 1 follows by contra-

diction. Suppose that the rhs is equal to 1. This implies that ∆wo(t′)(t′) = 0 for

t′ ∈ {t − |O| + 1, ..., t}, where o(t′) denotes the slice that changes its weights at

time t′. This yields ∆ao(t+2)(t + 1) = 0, since there have not been any changes

in the weights since its last update, which in turn leads to ∆wo(t+2)(t + 2) = 0.

Applying this argument recursively, it can be shown that ∆wo(t′)(t′) = 0 for

any t′′ > t + 1. This in turn implies that there is now weight change in round

174

r + 1, i.e., ∆ω(r + 1) = 0, which contradicts the fact that we are looking at case

∆ω(r + 1) 6= 0.

Subcase 2.2: ∆ao(t) 6= 0.

In order to show (4.23) for this case, we will start by proving the following

intermediate result

max

(
1 + ∆wo(t+ 1),

1

1 + ∆wo(t+ 1)

)
< max

(
1 + ∆ao(t),

1

1 + ∆ao(t)

)
,

(4.24)

where ∆ao(t) = max
b∈B

∆ao(t) and ∆ao(t) = min
b∈B

∆ao(t).10

If ∆wo(t + 1) = 0, (4.24) follows from the fact that the lhs of (4.24) is

equal to 1 and the rhs is strictly greater than 1 (given that ∆ao(t) 6= 0).

We next consider the case where ∆wo(t + 1) 6= 0. For this case, we prove

(4.24) by showing that the each of two terms of the lhs of (4.24) is strictly lower

than the rhs. First, we show this for the first term, i.e.,

(
1 + ∆wo(t+ 1)

)
< max

(
1 + ∆ao(t),

1

1 + ∆ao(t)

)
. (4.25)

We prove (4.25) by contradiction: we suppose that

1 + ∆wo(t+ 1) ≥ max

(
1 + ∆ao(t),

1

1 + ∆ao(t)

)
. (4.26)

and show that this yields a contradiction.

10Note that we are defining ∆ao(t) and ∆ao(t) across all base stations, and not only those where
slice o has users; for the base stations where slice o does not have users, ao(t) will simply be the
load of the base station.

175

Let u, v ∈ Uo be, respectively, the user for which ∆wu(t + 1) takes the

largest value and the one for which it takes the smallest value. Then,

wu(t+ 1)

wv(t+ 1)
=
wu(t)(1 + ∆wo(t+ 1))

wv(t)(1 + ∆wo(t+ 1))
(4.27)

where ∆wo(t+ 1) = ∆wu(t+ 1) and ∆wo(t+ 1) = ∆wv(t+ 1)

For readability purposes, let us denote the base station of user u by b and

the base station of user v by b′. From (4.2), we have

wu(t+ 1)

wv(t+ 1)
=

βu(aob(t−|O|+1)(1+∆aob(t)))
1
αo

(aob(t−|O|+1)(1+∆aob(t)))+duwu(t)(1+∆wu(t+1))
2
αo
−1

βv(aob′ (t−|O|+1)(1+∆ao
b′ (t)))

1
αo

(aob′ (t−|O|+1)(1+∆ao
b′ (t))+dvwv(t)(1+∆wv(t+1))

2
αo
−1

=

βu(aob(t−|O|+1)(1+∆aob(t)))
1
αo

(aob(t−|O|+1)(1+∆aob(t))+duwu(t)(1+∆wo(t+1)))
2
αo
−1

βv(aob′ (t−|O|+1)(1+∆ao
b′ (t)))

1
αo

(aob′ (t−|O|+1)(1+∆ao
b′ (t))+dvwv(t)(1+∆wo(t+1)))

2
αo
−1

By taking the largest and smallest values in ∆ao(t), we obtain the following

inequality:

wu(t+ 1)

wv(t+ 1)
≤ βu
βv

(aob(t−|O|+1)(1+∆ao(t)))
1
αo

(aob(t−|O|+1)(1+∆ao(t))+duwu(t)(1+∆wo(t+1)))
2
αo
−1

(aob′ (t−|O|+1)(1+∆ao(t)))
1
αo

(aob′ (t−|O|+1)(1+∆ao(t))+dvwv(t)(1+∆wo(t+1)))
2
αo
−1

=
βu
βv

(aob(t−|O|+1))
1
αo(

aob(t−|O|+1)
(1+∆ao(t))

(1+∆ao(t))
1

2−αo
+duwu(t)

(1+∆wo(t+1))

(1+∆ao(t))
1

2−αo

) 2
αo
−1

(aob′ (t−|O|+1)(1+∆ao(t)))
1
αo

(aob′ (t−|O|+1)(1+∆ao(t))+dvwv(t)(1+∆wo(t+1)))
2
αo
−1

176

From our assumption, we have that 1 + ∆wo(t + 1) ≥ 1 + ∆ao(t), from

which it follows that:

wu(t+ 1)

wv(t+ 1)
≤

βu(aob(t−|O|+1))
1
αo

(aob(t−|O|+1)+duwu(t))
2
αo
−1

(
(1+∆ao(t))

(1+∆ao(t))
1

2−αo

) 2
αo
−1

βv(aob′ (t−|O|+1)(1+∆ao(t)))
1
αo

(aob′ (t−|O|+1)(1+∆ao(t))+dvwv(t)(1+∆wo(t+1)))
2
αo
−1

≤

βu(aob(t−|O|+1))
1
αo (1+∆ao(t))

1− 1
αo

(aob(t−|O|+1)+duwu(t))
2
αo
−1

βv(aob′ (t−|O|+1)(1+∆ao(t)))
1
αo

(aob′ (t−|O|+1)(1+∆ao(t))+dvwv(t)(1+∆wo(t+1)))
2
αo
−1

<

βu(aob(t−|O|+1))
1
αo (1+∆ao(t))

1− 1
αo

(aob(t−|O|+1)+duwu(t))
2
αo
−1

βv(aob′ (t−|O|+1)(1+∆ao(t)))
1
αo

(aob′ (t−|O|+1)+dvwv(t))
2
αo
−1

=

βu(aob(t−|O|+1))
1
αo

(aob(t−|O|+1)+duwu(t))
2
αo
−1

βv(aob′ (t−|O|+1))
1
αo

(aob′ (t−|O|+1)+dvwv(t))
2
αo
−1

(1 + ∆ao(t))1− 1
αo

(1 + ∆ao(t))
1
αo

=
wu(t)

wv(t)

(1 + ∆ao(t))1− 1
αo

(1 + ∆ao(t))
1
αo

.

where the third step holds since ∆ao(t) < 0 and ∆wo(t + 1) < 0, and the last one

follows from the fact that wu(t) = wu(t− |O| + 1) (as slice o does not updated its

weights in the time interval {t− |O| + 2, ..., t}). Combining (4.27) with the above

yields

wu(t)(1 + ∆wo(t+ 1))

wv(t)(1 + ∆wo(t+ 1))
<
wu(t)

wv(t)

(1 + ∆ao(t))1− 1
αo

(1 + ∆ao(t))
1
αo

.

177

From the fact that xayb ≤ max(x, y) for x, y ≥ 1 and a+ b = 1 we have

(1 + ∆ao(t+ 1))1− 1
αo

(1 + ∆ao(t))
1
αo

≤ max

(
1 + ∆ao(t),

1

1 + ∆ao(t)

)
.

From the above two equations we have

1 + ∆wo(t+ 1)

1 + ∆wo(t+ 1)
< max

(
1 + ∆ao(t),

1

1 + ∆ao(t)

)
.

and combining this with (4.26) yields

1

1 + ∆wo(t+ 1)
< 1

which contradicts 1
1+∆wo(t+1)

> 1, thus proving (4.25).

The next step to prove (4.24) is to show that the second term of the lhs of

(4.24) is strictly lower than the rhs, i.e.,

1

1 + ∆wo(t+ 1)
< max

(
1 + ∆ao(t),

1

1 + ∆ao(t)

)
. (4.28)

The proof is analogous to the one for (4.25) and proceeds again by contra-

diction: we suppose that

1

1 + ∆wo(t+ 1)
≥ max

(
1 + ∆ao(t),

1

1 + ∆ao(t)

)
, (4.29)

and show that this yields a contradiction.

Employing a similar argument to the one above, we have:

wu(t+ 1)

wv(t+ 1)
<

βu(aob(t−|O|+1))
1
αo

(aob(t−|O|+1)+duwu(t))
2
αo
−1

βv(aob′ (t−|O|+1))
1
αo

(aob′ (t−|O|+1)+dvwv(t))
2
αo
−1

(1 + ∆ao(t+ 1))
1
αo

(1 + ∆ao(t))1− 1
αo

=
wu(t)

wv(t)

(1 + ∆ao(t))
1
αo

(1 + ∆ao(t))1− 1
αo

.

178

Combining (4.27) with the above yields

wu(t)(1 + ∆wo(t+ 1))

wv(t)(1 + ∆wo(t+ 1))
<
wu(t)

wv(t)

(1 + ∆ao(t))
1
αo

(1 + ∆ao(t))1− 1
αo

.

Again from xayb ≤ max(x, y) for x, y ≥ 1 and a+ b = 1 we have

(1 + ∆ao(t))
1
αo

(1 + ∆ao(t))1− 1
αo

≤ max

(
1 + ∆ao(t),

1

1 + ∆ao(t)

)
.

From the above two equations

1 + ∆wo(t+ 1)

1 + ∆wo(t+ 1)
< max

(
1 + ∆ao(t),

1

1 + ∆ao(t)

)
.

Combining the above with (4.29) leads to (1 + ∆wo(t + 1)) > 1, which

contradicts the fact that ∆wo(t+ 1) is necessarily strictly greater than 1.

The above proves our intermediate step (4.24). Next, building on this inter-

mediate result, we shall show that (4.23) holds.

Recall that o(t′) denotes the slice that updates its weights at time slot t′. We

have that

aob(t) =
∑

u∈Ub\Uob

wu(t) =
∑

u∈Ub\Uob

wu(t(u))

=
∑

u∈Ub\Uob

wu(t(u)− 1)(1 + ∆wu(t(u)))

where t(u) represents the time when user u updates its weights within the interval

{t− |O|+ 2, ..., t}.

If we take the maximum ∆wu(t(u)) over all users, we obtain the following

179

inequality

aob(t) ≤ max
u∈Ub\Uob

(1 + ∆wu(t(u)))
∑

u∈Ub\Uob

wu(t(u)− 1)

= max
u∈Ub\Uob

(1 + ∆wu(t(u)))aob(t− |O|+ 1).

where the second inequality follows from the fact that we are taking the weight

values prior to their update. Given that aob(t) = aob(t − |O| + 1)(1 + ∆aob(t)), the

above leads to

1 + ∆aob(t) ≤ max
u∈Ub\Uob

(1 + ∆wu(t(u)))

From the definition of ∆wo(t) we have that ∆wo(t) ≥ ∆wu(t) for u ∈ Uo, from

which

1 + ∆aob(t) ≤ max
t′∈{t−|O|+2,...,t}

1 + ∆wo(t
′)(t′)

Since the above inequality holds for all b ∈ B, it also holds if we take the maximum

value over all b in the rhs, which leads to

1 + ∆ao(t) ≤ max
t′∈{t−|O|+2,...,t}

1 + ∆wo(t
′)(t′).

Similarly, it can be shown that

1 + ∆ao(t) ≥ min
t′∈{t−|O|+2,...,t}

1 + ∆wo(t
′)(t′).

Combining the above with (4.24) yields

max

(
1 + ∆wo(t+ 1),

1

1 + ∆wo(t+ 1)

)
< max

t′∈{t−|O|+2,...,t}

(
1 + ∆wo(t

′)(t′),
1

1 + ∆wo(t′)(t′)

)

180

If we add the term t − |O| + 1 in the max operation of the rhs, the inequality still

holds, thus

max

(
1 + ∆wo(t+ 1),

1

1 + ∆wo(t+ 1)

)
< max

t′∈{t−|O|+1,...,t}

(
1 + ∆wo(t

′)(t′),
1

1 + ∆wo(t′)(t′)

)
With the above we have proven (4.23). In the next (and last) step of the

proof, we now show (4.22) building on this result. For conciseness, we define:

f(t) = max

(
1 + ∆wo(t)(t),

1

1 + ∆wo(t)(t)

)
. (4.30)

With the above definition, (4.23) can be rewritten as

f(t+ 1) < max
t′∈{t−|O|+1,...,t}

f(t′). (4.31)

Applying the same argument to the update at time slot t+ 2 yields

f(t+ 2) < max
t′∈{t−|O|+2,...,t+1}

f(t′) = max
[

max
t′∈{t−|O|+2,...,t}

f(t′), f(t+ 1)
]

and combining the above with (4.31) we obtain

f(t+ 2) < max
t′∈{t−|O|+1,...,t}

f(t′).

If we now apply the above argument recursively for t+3, t+4, t+5, . . ., we obtain

f(t+ i) ≤ max
t′∈{t−|O|+1,...,t}

f(t′), i < 1. (4.32)

Without loss of generality, let assume that t+ 1 coincides with the start of a

round; then from the above it follows that

max
i∈{1,...,|O|}

f(t+ i) < max
j∈{1,...,|O|}

f(t− |O|+ j) (4.33)

181

where the max on the lhs includes the updates corresponding to round r + 1, while

those on the rhs correspond to round r.

Finally, expressing the above equation in terms of ∆ωo
u(r) leads to (4.22).

182

Chapter 5

Inelastic Network Slicing Games: Admission control
policies

When employing dynamic sharing mechanisms, tenants may exhibit strate-

gic behavior, optimizing their choices in response to those of other tenants. While

this problem has been studied in Chapter 4 for the case of elastic users, this chapter

analyzes dynamic sharing in network slicing when tenants support inelastic users

with minimum rate requirements. When attempting to satisfy such user require-

ments, tenants’ behavior may differ substantially from that in Chapter 4, affecting

both network efficiency and stability. The focus of this chapter 1 is thus on the

analysis of resource allocation for network slicing when tenants support inelastic

users and to deal with this problem, we propose a NEtwork Slicing (NES) frame-

work combining (i) admission control, (ii) resource allocation and (iii) user drop-

ping. We model the network slicing system with admitted users as a network slicing

game; this is a new class of game where the inelastic nature of the traffic may lead to

dropping users whose requirements cannot be met. We show that, as long as admis-

sion control guarantees that slices can satisfy the rate requirements of all their users,

1Publications based on this chapter: Pablo Caballero, Albert Banchs, Gustavo de Veciana,
Xavier Costa-Perez and Arturo Azcorra. Network Slicing Games for Guaranteed Rate Services. In
IEEE Transactions on Wireless Communications, [Accepted, to appear]. All co-authors contributed
equally.

183

this game possesses a Nash Equilibrium. Admission control policies (a conserva-

tive and an aggressive one) are considered, along with a resource allocation scheme

and a user dropping algorithm, geared at maintaining the system in Nash Equilib-

ria. We analyze our NES framework’s performance in equilibrium, showing that it

achieves the same or better utility than static resource partitioning, and bound the

difference between NES and the socially optimal performance. Simulation results

confirm the effectiveness of the proposed approach.

5.1 Related work

The resource allocation mechanism analyzed in this chapter, as in the one

analyzed in Chapter 4 corresponds to a Fisher market, which is a standard frame-

work in economics. In such markets, buyers (in our case slices) have fixed bud-

gets (in our case corresponding to pre-agreed network shares) and bid for resources

within their budget (according to their preferences), which are then allocated to

buyers proportionally to their bids [110]. Within the Fisher Market framework, our

model falls in the category of buyers that anticipate the impact of their bids [34].

The analysis of Fisher markets under such price-anticipating buyers has been lim-

ited, so far, to the case of buyers with linear [34] or concave [20, 94] utility func-

tions.

A related resource allocation model often considered in the networking field

is the so-called ‘Kelly’s mechanism’, which allocates resources to players propor-

tionally to their bids [61]. This model has also been analyzed for price-anticipating

players [52]. However, in Kelly’s mechanism players respond to their payoff (given

184

by the utility minus cost) whereas in our model tenants’ behavior is only driven by

their utilities (since they have a fixed budget, i.e., the network share). Moreover,

Kelly’s model has mainly been studied for concave utility functions.

The topic of network slicing is currently attracting substantial attention from

the research community. One of the main issues investigated is the resource alloca-

tion across different slices, which is the focus of this chapter. A number of works

have been devoted to the resource allocation among different operators or tenants

sharing the same wireless infrastructure (see e.g. [21, 76, 111]), and in [72], the

authors focus on resource allocation of processing resources in network slicing in

the context of C-RAN; see [93] for a survey on resource slicing in virtual wireless

networks. In contrast, all these works have focused on elastic traffic.

In the context of network slicing, there are some works which have con-

sidered inelastic traffic. The algorithm proposed in [67] attempts to satisfy the

demands of all slices but does not account for the resources each slice is entitled to.

Similarly, [42, 50, 83] propose algorithms to meet requests from all tenants, but do

not account for elastic demands and do not consider budget constraints. In [12], the

authors propose an algorithm to trade resources among tenants, but their approach

involves complex negotiations and relies on heuristic considerations rather than a

well-established analytical framework. In contrast to all these works, our approach

supports both elastic and inelastic services and is based on fixed budgets, corre-

sponding to the network shares; this is in line with one of the scenarios considered

in 3GPP [5] and does not involve pricing individual requests, which may represent

an advantage in practical deployments.

185

In this work, we build on the Fisher Market mechanism for resource allo-

cation across slices and analyze the game resulting from the interaction of several

non-cooperative slices aiming to maximize their own network utility given a fixed

budget. This problem has been addressed in the context of concave utility func-

tions: [94] ensures the existence of Nash Equilibria (NE) for this type of utility

functions, [110] proves the existence of a NE for price-taking players, [20] shows

the convergence of Best Response Dynamics for certain classes of concave func-

tions and [34] shows they may not converge for linear utilities. Much less attention

has been paid to non-concave utility functions; among the few works on this topic it

is worth mentioning [81], which uses potential games to prove convergence of Best

Response Dynamics to a region around the NE for finite strategy games [24].

In the specific context of Fisher market-like frameworks, to the best of our

knowledge our work is the first attempt to analyze resource allocation for inelastic

traffic. This work addresses the following gap in the literature of resource alloca-

tion models: the analysis of budget-constrained resource allocation under price-

anticipating users with inelastic utilities. The nature of inelastic utility functions

leads to a new class of non-cooperative games, where a slice prefers to drop users

whose rate requirements cannot be met, rather than allocating them insufficient re-

sources. The nature of such games differs substantially from the ones previously

analyzed in the literature for elastic traffic.

On the 5G standardization front, network slicing is currently being specified

by 3GPP [8]. In particular, 3GPP’s SA5 is working on the definition of a manage-

ment and orchestration framework to support network slicing [4, 9]. While these

186

efforts do not specifically address dynamic resource allocation, which is our focus

here, the algorithms we propose are in line with this framework. One of the key fea-

tures of our approach is the ability of tenants to customize their allocations; there is

wide consensus in the standardization community that this is needed to efficiently

satisfy their very diverse requirements (see, e.g., [10] for examples of possible ver-

tical tenants).

5.2 Chapter organization

The remaining content of this chapter is organized as follows. In Section 5.3

we present our system model, and propose the Network Slicing (NES) framework

to address resource allocation in such system. NES consists of three modules: ad-

mission control, weight allocation and user dropping. Section 5.4 focuses on the

admission control module: it finds the requirements to ensure stability and proposes

two policies, a conservative and an aggressive one, to perform admission control.

Section 5.5 presents the other two modules: a resource allocation mechanism and

a strategy to drop users when rate guarantees are infeasible, and analyzes the con-

vergence of the resulting dynamics. We then study in Section 5.6 the performance

of NES versus two benchmark allocations: static resource partitioning and the so-

cial optimal. Throughout the chapter, we present analytical results that support the

design of NES, including (i) the existence of a Nash Equilibrium and the conver-

gence of Best Response Dynamics, (ii) the effectiveness of admission control and

protection from other slices, (iii) the user selection and weight allocation choices,

and (iv) the gains over static slices and loss over social optimal. We further evaluate

187

the performance of NES via simulation in Section 5.7, confirming that it provides

substantial gains in terms of utility, throughput performance and reduced blocking

probability while incurring an acceptable complexity. The proof of the theoretical

results for this chapter are provided in Section 5.9.

5.3 System model

We consider a wireless network consisting of a set of resources B (the base

stations or sectors) shared by a set of network slices O (each operated by a different

tenant). At a given point in time, the network supports a set of active users U

(the customers or devices), which can be subdivided into subsets Uo
b , Ub and Uo,

corresponding to the users of slice o at base station b, the users at base station b,

and the users of slice o, respectively. We consider that the association of users with

base stations is fixed (e.g., by a pre-specified user association policy) and let b(u)

denote the base station that user u is (currently) associated with.

5.3.1 Resource allocation model

Following a similar approach as in Chapter 4, in our model each slice o is

allocated a network share so (corresponding to its budget) such that
∑

o∈O so = 1.

The slice is at liberty to distribute its share amongst its users, assigning them non-

negative weights (corresponding to the bids):

wu for u ∈ Uo, such that
∑
u∈Uo

wu ≤ so.

188

We let wo = (wu : u ∈ Uo) be the weights of slice o, w = (wu : u ∈ U) those of all

slices and w−o = (wu : u ∈ U\Uo) the weights of all users excluding those of slice

o. We further let lb(w) =
∑

u∈Ub wu denote the load at base station b, dob(w
o) =∑

u∈Uob
wu the aggregate weight of slice o at b, and aob(w

−o) =
∑

u∈Ub\Uob
wu the

aggregate weight of all other slices (excluding o) at b. We shall allocate each user a

fraction of the base station’s resources in proportion to her weight wu.

We let cu denote the achievable rate for user u, defined as the product of (i)

the average rate per resource unit achieved by the user, and (ii) the total amount of

resources available at the base station. Note that this depends on the modulation and

coding scheme selected for the current radio conditions, which accounts for noise

as well as the interference from the neighboring base stations. Following similar

analyses in the literature [43, 76, 97], we shall assume that cu is fixed for each user

at a given time.

We further let ru denote the rate allocated to user u. Under our model, ru is

given by cu times the fraction of the base station’s resources allocated to the user.

Given that users are allocated a fraction of resources proportional to their weights,

we have that ru is a function of the weights w given by:

ru(w) =
wu∑

v∈Ub(u)
wv
cu =

wu
lb(u)(w)

cu. (5.1)

When implementing the proposed resource allocation mechanism, a slice

may assign a non-zero weight to some users while others may be dropped. To

decide the setting of the users’ weights, we assume that each slice o is aware of the

aggregate weight of the other tenants at each base station, i.e., aob(w
−o). It is worth

189

noting that for the mechanism under study we have that (i) a slice only sees the

aggregate weight of the other slices, and hence can learn very limited information

about the other slices; in particular, the weights of each tenant are not disclosed,

and (ii) the mechanism needs to store very limited data; indeed, it is sufficient to

keep the total load of each base station, as a tenant can obtain aob(w
−o) by simply

subtracting its weight from the base station’s load. Such information is already

considered within the network slicing management system defined by 3GPP [4],

and hence should be readily available.

To avoid the indeterminate form resulting from having all the weights at a

base station equal to 0 in (5.1), we will require weights to exceed a fixed lower

bound (i.e., wu ≥ δ, ∀u). This bound can be arbitrarily small; indeed, in practice

it should be set as small as possible, to allow slices the highest possible flexibility

while avoiding zero weights. Accordingly, in the rest of the chapter we assume that

δ is so small that its effect can be neglected, except for Theorem 14, where this

assumption is required to prove the existence of a Nash Equilibrium.

In the case where a slice o is the only one with users at a given base station

b, such a slice would simply set wu to the minimum possible value for these users,

allowing them to receive all the resources of this base station while minimizing the

consumed share. To avoid dealing with this special case, hereafter we shall assume

that all base stations have users from at least two slices. Note that this assumption is

made to simplify the expressions and discussion, and does not limit the generality

of our analysis and algorithm, which indeed supports base stations with all users

from the same slice.

190

5.3.2 Slice utility

Network slices may support services and customers with different needs, or

may wish to differentiate the service they provide from competing slices. To that

end, we assume that each slice has a private utility function, U o, that reflects the

slice’s performance according to the preferences and needs of its users. The slice

utility consists of the sum of the individual utilities of its users, Uu, i.e.,

U o(w) =
∑
u∈Uo

Uu(ru(w)).

For inelastic traffic, we assume each user u requires a guaranteed rate γu,

hereafter referred to as the user’s minimum rate requirement. Following standard

practice, we shall model inelastic traffic utility functions as2

Uu(ru(w)) = φufu(ru(w)), for ru(w) ≥ γu,

where fu(·) is a concave3 utility function associated with the user, and φu is the

relative priority of user u (where φu ≥ 0 and
∑

u∈Uo φu = 1). The relative

priorities reflect the importance that users are given by the tenant of their slice; they

drive, jointly with the load at the respective base stations, the weights assigned to

the users, which in turn determine the rate allocation.

Note that the above utility function is only defined for rates above the min-

imal requirement, as performance degrades drastically if this guarantee is not met.

2Inelastic traffic utility functions are typically modeled as a discontinuous function [98] or a
sigmoidal one [45]. In this chapter we adopt the former model, which aims at providing users with
a guaranteed rate, and thus is aligned with the Guaranteed Bit Rate (GBR) class of 3GPP [2].

3Note that, even when fu(·) is concave, we are dealing with non-concave utilities, due to the
minimum rate requirement.

191

Note also that the above definition includes elastic traffic, which corresponds to the

special case γu = 0; thus, the results of this chapter apply to mixes of elastic and

inelastic traffic.

While most of our results hold for arbitrary fu(·) functions, in some cases

we will focus on the following widely accepted family of utility functions (see α-

fairness, [80]):

fu(ru) =

{
(ru)1−αo

(1−αo) , αo 6= 1

log(ru), αo = 1,
(5.2)

where the αo parameter sets the level of concavity of the user utility functions,

which in turn determines the underlying resource allocation criterion of the slice.

Particularly relevant cases are αo = 0 (maximum sum), αo = 1 (proportional fair-

ness), αo = 2 (minimum potential delay fairness) and αo →∞ (max-min fairness).

In our model for slice behavior, a tenant proceeds as follows to optimize its

performance. First, it maximizes the number of users that see their rate requirement

met, selecting as many users as can be possibly served. Second, it maximizes the

utility U o(w) obtained from the users that have been selected.

Note that the above framework is sufficiently flexible to accommodate dif-

ferent network slicing models, including those under study in 3GPP [4]. For in-

stance, in the case where tenants are Mobile Virtual Network Operators (MVNOs),

the users of a tenant may have different service demands (e.g., elastic and inelastic

users). Alternatively, we can also support a model where different slices are de-

ployed for specific services; in this case, we may have some slices with only elastic

users and others with only inelastic users.

192

5.3.3 Baseline allocations

Below we introduce two approaches to resource allocation that we will use

as benchmarks to assess the performance of the proposed framework. For now, we

shall assume the users’ rate requirements can be met, and thus focus on the weight

allocation that maximizes the slice’s utility.

Socially Optimal Allocation (SO) If slices were to share their utility functions

with a central authority, one could in principle consider a (share-constrained) al-

location of weights (and resources) that optimizes the overall performance of the

network, expressed in terms of the network utility U(w) defined as the sum of the

slices’ utilities (see [76], Chapter 4):

U(w) :=
∑
o∈O

U o(w).

The above is referred to as the socially optimal allocation, which is given by

the following maximization:

max
w≥0

U(w)

s.t.
∑
u∈Uo

wu = so, , ∀o ∈ O, wu ≥ δ, ru(w) ≥ γu, ∀u ∈ U.

We shall denote the resulting optimal weights and resource allocation in the

socially optimal setting by w∗ and r∗ = (r∗u(w
∗) : u ∈ U), respectively.

Static Slicing Allocation (SS) By static slicing (also known as static splitting [30])

we refer to a complete partitioning of resources based on the network shares so, o ∈

193

O. In this setting, each slice o receives a fixed fraction so of each resource, which is

shared among its users proportionally to their weights,

rssu (wo) =
wu∑

v∈Uo
b(u)

wv
socu ∀u ∈ Uo,∀o ∈ O, (5.3)

where we note that, in this case, the rate of a user depends only on the weights of

the other users in her slice, i.e., wo. A slice can then unilaterally optimize its weight

allocation as follows:

max
wo≥0

U o(wo)

s.t.
∑
u∈Uo

wu = so, r
ss
u (w) ≥ γu, ∀u ∈ Uo.

where we have abused notation to indicate that in this case the slice’s utility, given

by U o(wo) =
∑

u∈Uo Uu(r
ss
u (wo)), depends only on wo. We shall denote the result-

ing optimal weights resulting from static slicing by wo,ss.

5.3.4 Network slicing framework

In this chapter, we introduce our NEtwork Slicing (NES) framework to ad-

dress the resource allocation problem in the context of the above system. NES

manages both users and resources in network slices, as mobile users come and go.

The proposed framework comprises the following modules:

1. Admission control: the purpose of this module is to ensure that admitted users

will see their rate requirements met during their lifetime with a sufficiently

high probability, even after there are changes in the network.

194

2. Weight allocation: this module determines how to allocate weights to the

users, with the goal of maximizing the slice’s utility.

3. User dropping: while admission control aims at ensuring that all rate require-

ments are always met, when users re-associate or see a change in their radio

conditions, or when other slices admit more users, it could happen that a slice

can no longer keep all its users while meeting their requirements; in that case,

this module decides which users to drop.

The design of the admission control module is presented in Section 5.4,

while that of the weight allocation and user dropping modules is presented in Sec-

tion 5.5.

To analyze the stability of the NES framework, we assume that slices are

competitive (strategic and selfish), i.e., each attempts to unilaterally optimize its

own utility, and model the behavior of the weight allocation and user dropping

modules as a non-cooperative game. Note that this game only considers admitted

users, i.e., admission control is not part of the game. It may be played at a point

in time when admitted users may have re-associated or seen a change in their radio

conditions, or new users may have been admitted; as a result, when playing the

game we may not be able to meet all rate requirements. Thus, the game involves

slices deciding (i) which set of users to serve when the rate requirements of all

users cannot be met, and (ii) how to allocate weights amongst the slice’s users, in

response to other slices’ decisions. Hereafter we refer to this game as the network

slicing game; its formal definition is stated as follows:

195

Definition 11. Consider a set of slices o ∈ O, each with a set of admitted users

u ∈ Uo. In the network slicing game, each slice selects which subset of users to

serve within the set Uo and their associated weight allocation wo such that (i) as

many users as possible are served (meeting their rate requirements), and (ii) the

slice’s utility U o is maximized for the selected subset of users.

5.4 Admission control for sliced networks

To meet user rate requirements, NES needs to apply admission control on

new users, rejecting them when the slice cannot guarantee with a very high proba-

bility that it will be able to satisfy the rate requirements of all its users during their

lifetime. Note that this only applies to new users; in case the user rate requirements

can no longer be satisfied as a result of users moving, or other tenants changing their

allocations, this is handled by the user dropping module described in Section 5.5.1.

In the following, we analyze the implications of applying admission control

on the system stability, and propose two different admission control algorithms,

WAC and LAC, which correspond to different trade-offs between slice isolation

and efficiency: while WAC provides perfect isolation, guaranteeing that a slice will

never need to drop users because of changes in the other slices’ loads, LAC achieves

a higher efficiency at the cost of providing more relaxed guarantees on isolation (yet

ensuring that the probability of dropping a user remains sufficiently low).

196

5.4.1 Nash Equilibrium existence

A critical question is whether the network slicing game defined in Sec-

tion 5.3.4 possesses a Nash Equilibrium (NE), i.e., there exists a choice of users and

associated weight allocation w such that no slice can unilaterally modify its choice

to improve its utility. In the following, we analyze the requirements on admission

control policies to ensure that a NE exists after admission control is applied. Note

that, if the game does not have a NE, strategic slice behavior may lead to system

instability affecting the practicality of the proposed approach.

The following theorem shows that if admission control cannot ensure that

slices can satisfy the rate requirements of all their users, the network slicing game

may not have a NE. The proof of the theorem exhibits a case where instability arises

when there is no weight allocation such that the rate requirements of all the users

of a given slice are met given feasible allocations for the other slices. Note that in a

dynamic setting such a situation could arise, when a slice initially admits users for

which the requirements are feasible, and subsequently other slices admit additional

users to their slice, making some of the users in the first slice infeasible (see the

Appendix for the proof of all the theorems).

Theorem 13. When slices cannot satisfy all of their users’ rate requirements, the

existence of a NE cannot be guaranteed for the network slicing game.

The problem identified by the above theorem can be overcome by applying

an admission control scheme that avoids such situations. According to the follow-

ing theorem, a NE exists as long as admission control is able to guarantee that a

197

slice can satisfy the rate requirements of all its users under any feasible weight al-

location of the other slices (including future allocations when possibly new users

may have been admitted). Note that in this case the resulting game focuses on max-

imizing slice utilities while meeting the rate requirements of all users. This result

implies that, as long as proper admission control is implemented and ensures that

rate requirements can always be satisfied, the stability of the system can be guaran-

teed.

Theorem 14. Suppose admission control ensures that, for any feasible weight allo-

cation of the other slices, each slice o has a weight allocation wo such that its users’

rate requirements are met. Then, the network slicing game has a (not necessarily

unique) NE.

Note that the above theorem guarantees the existence of a NE when all slices

are elastic; indeed, elastic slices have a rate requirement equal to 0, and therefore

their rate requirements can always be satisfied. This leads to the following result.

Corollary 1. When all slices are elastic, the network slicing game has a NE.

In the following, we propose two alternative admission control policies (one

more aggressive and one more conservative) that aim at ensuring that the conditions

given by Theorem 14 are met. Note that it is ultimately up to the tenant to choose

and customize its admission control strategy, and hence each tenant may indepen-

dently apply its own admission control policy.

198

5.4.2 Worst-case admission control (WAC)

The WAC policy is devised to ensure that the rate requirements of all users

are always met, independently of the behavior of the other tenants. To that end,

under the WAC policy a slice admits users as follows: it conservatively assumes it

has access to only a fraction so of resources at each base station, and admits users

only if their requirements can be satisfied with these resources. Given that a user

needs a fraction γu/cu of the base station’s resources to meet her rate requirement,

this policy imposes that for slice o the following constraint is satisfied at each base

station b: ∑
u∈Uob

γu
cu
≤ so. (5.4)

The WAC policy aims at ensuring that (5.4) is satisfied at all times. How-

ever, even if this condition holds when a new user is admitted, it may be subse-

quently violated upon changes in the slice, e.g., due to mobility of users or changes

in their cu. To provide robustness against such changes, we follow the approach

in [91] for single-tenant networks. Specifically, we add a guard band to (5.4) aimed

at ensuring that the condition will continue to hold with high probability after any

changes. Thus, a slice admits a new user request as long as the following holds

∑
u∈Uob

γu
cu
≤ ρw · so,

where ρw < 1 parametrizes the guard band: the smaller this parameter, the larger

the guard band. In practice, this parameter may be set to different values by different

slices based on the slice specifics, such as the fluctuations of cu or user association

199

(where larger fluctuations will require a larger guard band) or the desired level of

assurance to its users (stricter guarantees will require a larger guard band). The

reader is referred to [91] for a discussion on how to set this parameter.

In the following, we analyze the properties of WAC under the assumption

that (5.4) is satisfied with this policy. The theorem below shows that, as long as this

condition is satisfied, a slice will always be able to meet its users’ rate guarantees

independent of the setting of the other slices. Thus, a high degree of protection

to the choices and changes in other slices is provided. The theorem also shows

that if the slice deviates from the proposed policy, it is not protected from the other

slices’ choices, implying that this policy represents a necessary condition to provide

protection.

Theorem 15. Consider a slice owith users having rate requirements γo = (γu : u ∈

Uo), then the following hold:

1. If (5.4) is satisfied, there exists at least one weight allocation wo such that

∀u ∈ Uo ru(w) ≥ γu, for any feasible allocation of the other slices’ aggre-

gate weights ao.

2. If (5.4) is not satisfied, slice o is not protected, as there is a feasible ao alloca-

tion such that slice o is not able to meet the rate requirements of its admitted

users.

Note that combining this result with Theorem 14, it follows that a NE exists

when all slices run WAC. Indeed, the above theorem ensures that a slice can find

200

an allocation that meets the rate requirements of all its users for any feasible ao,

which comprises all the possible allocations of the other slices w−o. Theorem 14

guarantees that when this holds, a NE exists. Thus, we have the following corollary:

Corollary 2. If (5.4) is satisfied by all slices, then the network slicing game has a

NE.

Note that Corollary 2 imposes more conservative conditions than Theo-

rem 14; for instance, if a slice never has users at a given base station, according

to Theorem 14 such a slice cannot place any weight on this base station; in con-

trast, the arguments behind (5.4) account for, and protect the slice against, such

possibility.

5.4.3 Load-driven admission control (LAC)

While the WAC policy protects a given slice from the others, it may be

overly conservative in some cases where base stations are lightly loaded or where

some slices are unlikely to use resources at certain base stations. In those cases,

one may opt to be more aggressive in admitting users without running significant

risks. To this end, we propose the Load-driven Admission Control (LAC) policy,

where a slice measures the current load across base stations and performs admission

control decisions based on the measured loads (assuming that they will not change

significantly).4

4Note that many similar (load-driven) admission control algorithms have been proposed in the
literature [23, 64] in the context of single-tenant networks. In this chapter, we apply this concept to
a network slicing setting.

201

The following theorem provides a basis for the design of the LAC policy.

It gives a necessary and sufficient condition that has to be satisfied to meet the rate

requirements of the slice’s users, given the current weight allocations of the other

slices. This constraint is shown to be less restrictive than the one imposed by (5.4),

implying that LAC (potentially) allows the admission of more users than WAC.

Theorem 16. Consider a slice o comprising users with rate requirements γo =

(γu : u ∈ Uo), and suppose the aggregate weight of the other slices is given by

ao. Then, a weight allocation wo that meets slice o’s rate requirements exists if and

only if the following is satisfied:

∑
b∈B

∑
u∈Uob

γu/cu

1−
∑

u∈Uob
γu/cu

aob ≤ so. (5.5)

where Uo
b is the subset of users of slice o associated with base station b, according

to the given user association policy.

Moreover, if the rate requirements satisfy (5.4), then the above condition is

satisfied.

The central idea of the LAC policy is as follows. Upon receiving a request of

a new user u with a rate requirement γu, slice o assesses the current ao values in the

network and checks whether (5.5) would be satisfied with the new user. According

to the theorem, as long as (5.5) is satisfied, the rate requirements can be met if the

ao values do not change. However, in practice ao may change due to the response

of the other slices to slice o, or to changes in the other slices (e.g., the admission

of new users). We shall address this uncertainty by following a similar approach to

202

WAC: when admitting a new user, we verify that (5.5) is satisfied with a sufficiently

large guard band, i.e.,

∑
b∈B

∑
u∈Uob

γu/cu

1−
∑

u∈Uob
γu/cu

aob ≤ ρl · so, (5.6)

where ρl < 1 is the parameter providing the guard band for LAC. Note that, in

addition to other considerations, in this case the setting of ρl will need to account

for observed statistical fluctuations of ao, larger fluctuations requiring a larger guard

band.

The following theorem shows that, as long as the chosen value for ρl is

sufficiently conservative, LAC is effective in guaranteeing that the rate requirements

of all users are met.

Theorem 17. There exists a ρl value sufficiently small such that the rate require-

ments of all the users of slice o can be met independent of how the other slices

change their weights.

The following corollary follows from the above result and Theorem 15. In-

deed, as long as every slice satisfies either (5.4) and (5.6), Theorems 15 and 17

guarantee that all slices can choose a weight allocation that satisfies the rate re-

quirements of all their users. Furthermore, Theorem 14 guarantees that when this

holds there exists a NE. These implies that, as long as all slices run either WAC or

LAC, the system can be expected to be stable.

Corollary 3. If either (5.4) or (5.6) holds for every slice (the latter with a suffi-

ciently small ρl), then there exists a NE.

203

5.5 Weight allocation and user dropping for Network Slicing

Once a slice decides which users to admit, possibly following one of the

admission control policies presented above, it needs to determine the weight allo-

cation of the admitted users. In NES, this is determined based on a sequence of best

responses, where in each round a slice chooses its best response given the choices

of the other slices. A slice’s best response involves the following two steps: (i) user

subset selection, to determine which subset of users to serve, and (ii) weight alloca-

tion, to set the weights of the users in the selected subset. In the following, we first

present the algorithms to perform the user subset selection and weight allocation,

and then analyze the convergence of the sequence of best responses.

5.5.1 User subset selection

When a slice cannot satisfy the rate requirements of all its users, it needs to

decide which subset to serve. Note that, while admission control aims at ensuring

that rate requirements of all users can always be satisfied, in practice this can only be

ensured with a (very) high probability due to the unpredictable nature of the mobile

network; thus, in some unlikely cases it may happen that the rate requirements of

some users cannot be met. When this happens, the slice must drop those users.

Note that this yields a novel paradigm for managing the resources of a slice, where

changes in one part of the network may lead to dropping users in another part.

Below we present the algorithms for two possible approaches for user se-

lection: (i) MaxSubsetSelection, which maximizes the cardinality of the subset

of served users (thus minimizing user dropping); and (ii) PriorityUserSelection,

204

which uses a priority ordering on a slice’s users (enabling a slice to customize its

users’ service).

To realize MaxSubsetSelection we use a greedy algorithm which at each step

adds the user which needs the smallest additional weight to meet the selected users’

rate requirements. To that end, let Ũo be a candidate subset of the admitted users by

slice o, Uo, and let ωob (Ũ
o) be the minimum aggregate weight required to satisfy the

rate requirements the candidate subset’s users on base station b, Ũo
b. The value of

ωob (Ũ
o) can be computed as follows. The minimum weight wu needed to satisfy the

rate requirement of user u ∈ Ũo
b must satisfy wucu/lb = γu; summing these over

u ∈ Ũo
b and isolating

∑
u∈Ũo wu yields

ωob (Ũ
o) = aob(w

−o)

∑
u∈Ũob

γu/cu

1−
∑

u∈Ũob
γu/cu

.

where we are assuming
∑

u∈Ũo γu/cu ≤ 1 (otherwise we let ωob (Ũ
o) =∞).

We further let ωo(Ũo) =
∑

b∈B ω
o
b (Ũ

o) denote the aggregate minimal weight

requirement for the slice, and for any user u′ ∈ Uo we define the marginal aggregate

weight of the user u′ given candidate subset Ũo as

∆ωo(Ũo, u′) = ωo(Ũo ∪ {u′})− ωo(Ũo).

Building on the above notation, we present a greedy solution in Algorithm

3, which provides as output the set of selected users Ũo.

The following theorem confirms the effectiveness of this algorithm.

205

Algorithm 3: MaxSubset Algorithm.

Initialize: Ũo = ∅
while Ũo 6= Uo do

u∗ = argminu′{∆ωo(Ũo, u′) | u′ ∈ Uo \ Ũo}
if ωo(Ũo ∪ {u∗}) ≤ so then

Ũo := Ũo ∪ {u∗}
else return;

Theorem 18. The MaxSubsetSelection algorithm results in a subset of users that

maximizes the number of users the slice can serve and still meet their minimal rate

requirements.

Alternatively, slices might apply a PriorityUserSelection algorithm to cus-

tomize their user subset selection policy by assigning users a priority order. Such

an ordering may depend, e.g., on the users’ traffic class, the revenue they generate,

how long users have been in the system, and/or their current signal to noise ratio,

among other factors. To this end, the algorithm simply adds users sequentially to

the subset to be served in order of decreasing priority until no more can be added,

i.e., ωo(Ũo ∪ {u∗}) > so.

5.5.2 Weight allocation

Once a slice has selected a set of users whose requirements can be satisfied,

it sets their weights as follows. Given the aggregate weights of the other slices,

206

aob(w
−o), a slice chooses wo such that the its utility is maximized, i.e.,

wo = arg max
w′o

∑
u∈Ũo

U o(w′
o
,w−o),

s.t.:
w′u

aob(w
−o) + lob(w

′o)
≥ γu
cu
, w′u ≥ δ, ∀u ∈ Ũo,

∑
u∈Ũo

w′u ≤ so.

where, for convenience, we write U o(w′o,w−o) = U o(w) to highlight dependen-

cies on other slices weights.

Note that as long as utility functions fu(·) are concave in the allocated user

rates, the above maximization corresponds to a (computationally tractable) convex

optimization problem.

5.5.3 Convergence of best response dynamics

With NES, we determine users’ weight allocation based on a sequence of

best responses. The proposed algorithm implements the best response computed

above in rounds: slices update the weight allocation of their users wo, sequentially,

one at a time and in the same fixed order, in response to the other slices weights ao.

Following standard game theory terminology, we refer to this iterative process as

Best Response Dynamics.

The following theorem shows that the above dynamics may not converge.

In particular, the proof of the theorem considers an instance satisfying the condi-

tions of Theorem 14, i.e., a feasible instance under admission control, and shows

that, even though a NE is guaranteed to exist under such conditions, Best Response

Dynamics do not converge.

207

Theorem 19. Consider a game instance such that, for each slice o ∈ O there

exists an allocation satisfying the rate requirements of all its users for any possible

allocation of the other slices. Even though a NE is guaranteed to exist under these

conditions, Best Response Dynamics may not converge.

While the above theorem shows that convergence cannot be ensured, our

simulation results show that in practice Best Response Dynamics converge quickly

to a region close to the NE, and hence we can simply force the system to halt after

a number of best response rounds and use the weights obtained in the last round.

Specifically, following the results provided in Section 5.7.4, in our simulations we

halt the system after 7 rounds.

From the above, it can be seen that NES incurs an acceptable computational

load, as its execution involves solving a sequence of convex optimization problems

(each of which scales with the number of users of the slice and number of base

stations) for a limited number of times (namely, the number of slices in the network

multiplied by 7). Moreover, the above computations may be possibly performed at

centralized controllers, as the resource allocation does not need to be implemented

in the base stations before the sequence of optimizations converges or stops. Also,

resources may be re-allocated only periodically to alleviate the overhead associated

to the reconfiguration of base stations. Quantitative results on the computational

load are provided in Section 5.7.5.

208

5.6 Analysis of the NES framework

In the following, we analyze the performance achieved by the NES approach

proposed above as compared to the two baseline allocations given in Section 5.3.3:

(i) the socially optimal allocation, and (ii) static slicing. Our analysis assumes that

NES reaches a Nash equilibrium.

5.6.1 Gain over static slicing

The result below shows that NES outperforms static slicing.

Theorem 20. For the same set of admitted users, the utility achieved by an operator

under NES is never lower than the utility that this operator would obtain under

static slicing.

While the theorem assumes the same set of admitted users for static slicing

and NES, we argue that the result holds in general. Indeed, a tenant is free to choose

any admission control policy, including that employed by static slicing, and it is to

be expected that it will apply the policy that maximizes its utility. Thus, it follows

that the level of satisfaction of the tenant will be greater with NES, under the chosen

admission policy, than with static slicing.

5.6.2 Loss over the socially optimal allocation

We now study the difference in the utility achieved under socially optimal

resource allocation vs. that achieved under NES. We focus on the case where fu(·)

follows (5.2) for αo = 1 and αo = 2, which are two highly relevant settings in

209

practice (corresponding to proportional and minimum delay potential fairness, re-

spectively). To perform the comparison, we define the Loss over the Social Optimal

(LSO) as follows. For αo = 1 we define LSO .
= U(w∗) − U(ŵ), where w∗ is the

socially optimal weight allocation and ŵ is the weight allocation with NES, while

for αo = 2 we define it as LSO .
= U(ŵ)

U(w∗)
. Note that these definitions are adjusted

to the type of utility function: for αo = 1, utilities are logarithmic in the rate, and

hence by subtracting utilities we capture the ratio between rates, while for αo = 2

utilities are inversely proportional to the rates, and hence the ratio between rates is

obtained by dividing utilities.

The following theorem provides a bound on the LSO and gives an instance

for which the LSO is close to this bound, showing that the bound is tight.

Theorem 21. Let user utilities fu(·) follow (5.2),
¯
γu be the minimum rate guarantee

in the network, c̄u be the largest possible achievable rate and ε =
¯
γu/c̄u. Under a

given set of admitted users, we have that:

1. If αo = 1 ∀o ∈ O, then LSO ≤ − log(ε) and there is an instance for which

LSO ≥ −1
2

log(2ε).

2. If αo = 2 ∀o ∈ O, then LSO ≤ 1
ε

and there is an instance for which LSO ≥
1
3ε

.

Note that, according to the above results, the bound on the LSO relaxes as

we decrease the minimum rate requirement in the network, and becomes unbounded

in the case where we have elastic traffic with no rate guarantees, i.e., γu = 0.

210

However, in a well provisioned network all users should experience a sufficiently

large rate, and in this case the LSO should be low according to the above result.

This is corroborated by our simulation results, which show that in practice NES

performance is close to optimal and LSO is very small.

5.7 Performance evaluation

We next evaluate the performance of NES via simulation. Unless otherwise

stated, the mobile network setup of our simulator follows the IMT-A evaluation

guidelines for dense ‘small cell’ deployments [1], considering a network with 19

base stations disposed in a hexagonal grid layout with 3 sectors, i.e., |B| = 57.

User mobility follows the Random Waypoint (RWP) model. The users arrive to the

network following a Poisson Process with intensity λ arrivals/sec, and their holding

times are exponentially distributed. Users’ SINR is computed based on physical

layer network model specified in [1] (which includes path loss, shadowing, fast

fading and antenna gain) and user association follows the strongest signal policy.

The achievable rate for a user u, cu, is determined based on the thresholds reported

in [7]. Unless otherwise stated, the rate requirement of the inelastic users is set to

γu = 0.5 Mbps, we have αo = 1 for all slices, there are 5 slices in the network with

equal shares, the arrival rate is λ = 5 (equally split among slices) and the average

holding time is 1 minute. In the simulations, we consider both slices with mixed

traffic of different types (Sections 5.7.1 and 5.7.3) as well as slices dedicated to one

specific traffic type (Section 5.7.2). All confidence intervals are below 1%.

211

5.7.1 Network utility

We first analyze the network utility achieved by NES as compared to the two

benchmark solutions presented in Section 4.3.3 (namely, SS and SO). To ensure that

the rate requirements of admitted users are always met, we adopt the WAC admis-

sion control policy with ρw = 1 and suppress user movements yielding changes in

base station associations and/or cu values. To analyze the impact of inelastic traffic,

we vary the fraction of inelastic traffic arrivals, θ, yielding an arrival rate of θλ for

inelastic users and of (1 − θ)λ for elastic ones. The results, depicted in Fig. 5.1,

show that (i) NES outperforms very substantially SS, providing very high gains,

and (ii) it performs almost optimally, very close to the SO. Moreover, this holds

independently of the mix of elastic and inelastic users present in the network.

5.7.2 Throughput gains

To give a more intuitive measure of the gains achieved by NES, we define

the throughput gain over SS, ∆, as follows: it is the value such that, if we increase

the rate of all users in SS by ∆, we reach the same network utility as NES (e.g.,

∆ = 100% means that SS achieves the same utility as NES when multiplying all

user rates by 2). Fig. 5.2 illustrates the throughput gains for (i) αo = 1 and αo = 2,

which are the two most relevant αo values in practice, (ii) elastic and inelastic

slices, where all users are either elastic and inelastic, and (iii) different arrival rates

λ, yielding different network loads. We conclude from the results that (i) gains are

very substantial, ranging from 100% to 20%, (ii) they decrease with the load, as

already observed in Chapter 4, and (iii) they are fairly insensitive to the fraction of

212

0 25 50 75 100

14.4

14.5

14.6

14.7

14.8

14.9

15

15.1

15.2

15.3

Figure 5.1: Performance of NES in terms
of network utility as compared to the two
benchmark allocations (SS and SO).

3 4 5 6 7 8 9 10

0

20

40

60

80

100

Figure 5.2: Throughput gains over SS for
different traffic types (elastic, inelastic),
utility functions (αo) and network load
(λ).

inelastic traffic and choice of utility function.

5.7.3 Blocking probability

In addition to improving the performance of admitted users, one of the key

advantages of the dynamic resource allocation implemented by NES is that it allows

admitting more users while meeting their rate requirements. To assess the achieved

improvement, we evaluate the blocking probability (i.e., the probability that a new

user cannot admitted) under NES versus SS. For NES, we consider the two admis-

sion policies proposed in Section 5.4 (WAC and LAC), while for SS we apply the

policy given in [91]. For all settings, we drop users based on the MaxSubsetSelec-

tion algorithm, and adjust the guard bands to ensure that the probability of dropping

an admitted user is no more than 1%. To increase the offered load sufficiently so

that we can observe the behavior of the blocking probability, we set γu = 1 Mbps

213

and an average holding time of 2 minutes. The results are given in Fig. 5.3 as a

function of the fraction of inelastic user arrivals (θ). They show very high gains

over SS for both approaches (WAC and LAC), and confirm that, by behaving more

aggressively, LAC is able to admit many more users than WAC.

5.7.4 Convergence to the NE

To better understand the dynamics of NES, we have evaluated a very large

number of randomly generated scenarios (namely 104 scenarios) with the following

settings: (i) a uniform number of slices between 2 and 10, i.e., |O| ∼ U(2, 10),

(ii) a number of users per slice of |Uo| ∼ U(0, 350), (iii) inelasticity level θ ∼

U(0, 100)(%), (iv) minimum rate requirements γu ∼ U(0, 3) Mbps, and (v) the

shares so proportional to the number of users. We have found that a vast majority

(97.6%) of scenarios converge to the NE after 100 rounds. For such scenarios,

Fig. 5.4 shows the difference between the weight allocation at a given round and

the one at the NE in terms of mean squared error (RMSE), providing a box plot

with the median (red), 95% percentile (box), 99% percentile (whisker) and outliers

(red crosses). We observe that the RMSE decreases exponentially in the number of

rounds. After 7 rounds we are already very close to the NE (the median is below

10−4), which justifies our choice in Section 5.5.3. Additional results, not included

for space reasons, show that user rates exhibit a very similar behavior to the weights.

214

5.7.5 Computational load

Next we evaluated the computational complexity of the NES algorithm when

the system halts after 7 rounds (as given by the configuration chosen). Fig. 5.5

shows the computational times for a dual-core 2.9GHz i7 processor for elastic and

inelastic traffic and different numbers of slices and users, when the number of base

stations is scaled with the number of users and admission control is adjusted to en-

sure that dropping probabilities below 1%. Results confirm that NES can be applied

to practical settings, as complexity is roughly linear with the size of the network

and computational times remain low even for large size problems; for instance, for

a network with 9000 users the time falls below 2.5 seconds. We further observe that

inelastic traffic slightly increases complexity but does not challenge the practical-

ity of the approach. Finally, we note that the computational time values provided

here could be further improved by optimizing the code, parallelizing tasks and/or

increasing the machine computational power.

5.7.6 Slice differentiation

We next analyze the ability of NES to deploy slices providing a customized

service. To this end, we consider a scenario with 4 slices with different require-

ments: (i) slice 1 provides rate requirements of γu = 1 Mbps with WAC, (ii) slice

2 provides γu = 0.5 Mbps with WAC, (iii) slice 3 provides γu = 0.5 Mbps with

LAC, and (iv) slice 4 provides no minimum rate requirements. All slices have the

same share, the arrival rate is of λ = 10 equally split among the slices, and ad-

mission control is configured to provide dropping probabilities below 1%. Fig. 5.6

215

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

Figure 5.3: Blocking probability for new
arrivals for the two policies proposed and
the SS benchmark.

Figure 5.4: Box plot for the RMSE of the
weight allocation at a given round with
respect to the NE weight allocation.

shows the empirical CDF of the user rates for each slice as well as the blocking

probabilities (≈ 47.2%, 16.7%, 3.58% and 0%, respectively). We observe that (i)

the minimum rate requirements are satisfied for all slices; (ii) as the rate require-

ments increase, so does the blocking probability, yielding an overall improvement

of the user rate distribution, and (iii) by employing LAC, we achieve a dramatic re-

duction of the blocking probability while paying a small price in terms of user rate

distribution. We conclude that NES is effective in enabling slice differentiation.

5.8 Conclusions

In this chapter, we proposed and analyzed a framework for network slicing

that relies on network shares and allows slices to customize resource allocations

to their users. This framework results in a network slicing game where each slice

unilaterally reacts to the settings of the others. While this game has been previously

216

100 300 500 700 900 100 300 500 700
0

0.5

1

1.5

2

2.5

2 slices, elastic

5 slices, elastic

10 slices, elastic

2 slices, inelastic

5 slices, inelastic

10 slices, inelastic

Figure 5.5: Computational times of the
proposed approach as a function of the
number of slices and users in the network.

0.2 0.5 1 2 3 4 5 10

0

0.2

0.4

0.6

0.8

1

Figure 5.6: Blocking probability and em-
pirical CDF of the user rates for a sce-
nario of 4 slices with different require-
ments.

studied for elastic traffic, the slices’ behavior changes substantially when users have

minimum rate requirements, and so does the outcome of the game. Indeed, we have

shown that (in contrast to the elastic case) this game may not have a Nash Equilib-

rium and, even when it has a NE, Best Response Dynamics may not converge to the

equilibrium. Despite this (apparently) negative result, we have shown that as long

as admission control is applied (which is to be expected under inelastic traffic), we

can guarantee that a NE exists. We have proposed algorithms for admission control,

weight allocation and user dropping, which jointly bring the system to a NE. We

have further analyzed performance at the equilibrium, showing that it is close to

the social optimal and provides substantial gains over static slicing. Based on these

results, our main conclusion is that the proposed NES framework provides an ef-

fective and implementable scheme for dynamically sharing resources across slices,

both for elastic and for inelastic traffic.

217

5.9 Proofs of chapter results
5.9.1 Proof of Theorem 13

Consider a setting with two base stations (a and b) and two slices (1 and

2), each slice with one user associated to base station a and another user associated

to base station b. We refer to these users as U = {1a, 1b, 2a, 2b}. Let the rate

requirements of slice 1 be γ1a = γ1b = 2C/3, the users of slice 2 have no minimum

rate requirements, and s1 = s2 = 1/2. We show that this game has no NE by

contradiction. We necessarily have that either w2a ≤ 1/4 or w2b < 1/4. Let us

assume that w2a < 1/4 and w2b > 1/4. Since in this case slice 1 can only meet

the rate requirements of user 1a, its best response will concentrate its weight on this

user, w1a = 1/2. However, the best response of slice 2 to such allocation of slice

1 is to concentrate its share on user 2a. Thus, w2a > 1/4, which contradicts the

initial assumption. Following a similar argument, it can be seen that if we assume

w2a = 1/4 or w2a > 1/4, we also reach a contradiction.

5.9.2 Proof of Theorem 14

Let W be the convex and compact set of feasible weights w satisfying (i)

wu ≥ δ ∀u, and (ii)
∑

u∈Uo wu = so ∀o and let us consider the mapping w →

w̃ = Γ(w), where w̃o is the best response of slice o to w−o. We next show that

this mapping satisfies the conditions of Kakutani’s theorem: i) Γ(w) is non-empty,

ii) Γ(w) is a convex-valued correspondence, and iii) Γ(w) has a closed graph.

Conditions i) and ii) follow from the fact that the best response of a slice to w−o

is a unique allocation w̃o. This implies that that w̃ exists and is a single point (and

218

hence a convex set). Condition iii) is shown by proving that w̃o is a continuous

function of w−o for all slices. Consider the set of users for which ru > γu and the

set for which ru = γu. As long as these sets do not change, w̃o can be expressed as a

continuously differentiable function of {w̃o,w−o}, and it follows from the implicit

function theorem that w̃o is a continuous function of w−o. When some user moves

from set ru > γu to ru = γu (or viceversa), such user satisfies both the equation for

ru = γu and the one for ru > γu, providing continuity over the transitions. Since

all the conditions of Kakutani’s theorem are satisfied, we have that the mapping Γ

has at least one fixed point, which implies that at least one NE exists.

To show that the NE is not necessarily unique, we provide an example with

multiple NEs. Consider a scenario with three slices (1,2,3) and three base stations

(a,b,c). Let the first slice have users in base stations a and c (users 1a, 1c), the

second slice in a and b (2a, 2b) and the third slice in b and c (3b, 3c). Let φ1a =

φ1b = 1/2, φ2a = φ3c = 1 and φ2b = φ3b = 0. Also, let γu = 1/2 for users

2b and 3b, γu = 0 for all other users and cu = 1 for all users. It can be seen

that all the weight allocations satisfying w1a = w1b = 1/6, w2b = w3b = w and

w2a = w3c = 1/3 − w for w ∈ [δ, 1/3 − δ] correspond to a NE, which shows that

multiple NE exist for this example.

5.9.3 Proof of Theorem 15

The result of 1) follows directly from Lemma 2 in Chapter 4. If users are

admitted at base stations such that under static slicing their rate guarantees are met,

i.e. rssu ≥ γu, then it follows by the above mentioned lemma that there exists an

219

allocation satisfying ru ≥ rssu ≥ γu, which proves the first part of the theorem.

To prove 2), we proceed as follows. Suppose slice o admits users are such

that their associated rate requirements violate (5.4) at some base station b, i.e.,∑
u∈Uob

γu/cu > so. If all other slices place their entire share at that base station, we

have ∑
u∈Uob

ru
cu

=

∑
u∈Uob

wu∑
u∈Uob

wu + 1− so
≤ so,

which implies
∑

u∈Uob
ru/cu <

∑
u∈Uob

γu/cu and hence necessarily ru < γu for

some u, proving the second part of the theorem.

5.9.4 Proof of Theorem 16

Recall that the rate of user u is given by ru = wucu/lb(u). If we add the rates

of the users of slice o at a given base station b and isolate
∑

u∈Uob
wu, we obtain

∑
u∈Uob

wu =

∑
u∈Uob

ru/cu

1−
∑

u∈Uob
ru/cu

aob.

By summing the above over all base stations and noting that
∑

u∈Uo wu =

so, we obtain ∑
b∈B

∑
u∈Uob

ru/cu

1−
∑

u∈Uob
ru/cu

aob = so. (5.7)

We now prove that as long as (5.5) is satisfied, there exists a weight allo-

cation wo that meets the rate requirements of all users. Let us consider the weight

220

allocation satisfying5

wu =
(γu/cu)lb(u)∑
v∈Uo (γv/cv)lb(v)

so, ∀u ∈ Uo. (5.8)

Note that with the above weight allocation, the rates ru are proportional to

γu, which means that either we have ru ≥ γu ∀u or ru < γu ∀u. The latter yields a

contradiction; indeed, if ru < γu ∀u it follows that

∑
b∈B

∑
u∈Uob

γu/cu

1−
∑

u∈Uob
γu/cu

aob >
∑
b∈B

∑
u∈Uob

ru/cu

1−
∑

u∈Uob
ru/cu

aob = so,

which contradicts (5.5). Hence, it follows that ru ≥ γu ∀u.

We next prove that if (5.5) is not satisfied, then there exists no weight al-

location meeting the rate requirements. The proof goes by contradiction. Assume

(5.5) is not satisfied but ru ≥ γu ∀u. From the latter, it follows that
∑

u∈Ub ru/cu ≥∑
u∈Ub γu/cu ∀b. Combining this with (5.7) yields

∑
b∈B

∑
u∈Uob

γu/cu

1−
∑

u∈Uob
γu/cu

aob ≤ so,

which contradicts that assumption that (5.5) is not satisfied.

Finally, we show that if the rate requirements satisfy (5.4), then they surely

satisfy (5.5). The lhs of (5.5) increases with
∑

u∈Uob
γu/cu. As long as this value is

no larger than so, we have that the following equation gives a sufficient condition

for (5.5) to be satisfied: so
1−so

∑
b∈B a

o
b ≤ so.

5The existence of such an allocation follows from applying Brouwer fixed-point theorem to the
function f : W → W, where wu = fu(w) is given by (5.8) and W is the set of weights satisfying∑
u∈Uo wu = so and wu ≥ (γu/cu)aobso/

∑
v∈Uo(γv/cv) (recall that aob 6= 0 ∀b, as weights cannot

be zero).

221

The above is surely satisfied since
∑

b∈B a
o
b = 1 − so. As (5.4) imposes∑

u∈Uob
γu/cu ≤ so, it follows that as long as (5.4) is satisfied, (5.5) is also satisfied.

5.9.5 Proof of Theorem 17

Let us take ρl = minb
aob

1−
∑
u∈Uo

b
γu/cu

. Then, from (5.6) it follows that∑
b∈B
∑

u∈Uob
γu/cu ≤ so. From this, we have that condition (5.4) is satisfied. Ac-

cording to Theorem 15, as long as this condition is satisfied, there exists a choice

of wo that satisfies the rate requirements of all users of slice o independent of the

weight setting of the other slices, which completes the proof.

5.9.6 Proof of Theorem 18

The proof goes by contradiction. Let Ũo be the set of users selected by the

MaxSubsetSelection algorithm, and let us assume that there exists an alternative

feasible user selection Ûo such that |Ûo| > |Ũo|. If we take the set Ûo and substitute

each user by another one in the base station with smaller γu/cu, the resulting set

Ūo is feasible and has the same number of users as the original one. Note that set

Ūo necessarily has some base station b with more users than set Ũo – otherwise

|Ûo| > |Ũo| would not hold. Let us assume that there exists some other base station

b′ with fewer users. In this case, let us remove user u from one of the base stations

with more users, b, and add user u′ in one of the base stations with fewer users,

b′. The resulting set remains feasible, as ∆ωob′(Ū
o, u′) ≤ ∆ωob′(Ū

o, u) – otherwise

MaxSubsetSelection would have chosen a different subset of users. We can do this

222

until there are no base station with fewer users than in Ũo. The result of these

operations is a feasible set where all base stations have as many users or more than

Ũo, and overall it has more users. However, this yields a contradiction: if such set

was feasible, the MaxSubsetSelection algorithm would have selected more users.

5.9.7 Proof of Theorem 19

Let us consider a scenario with three base stations (a,b,c) and three slices

(1,2,3), with s1 = s2 = s3 = 1/3 and any arbitrary α1, α2, α3 values. Let slice

1 have two users associated to base stations a and b (u1a,u1b), slice 2 two users

associated to base stations b and c (u2b,u2c) and slice 3 two users associated to base

stations a and c (u3a,u3c). Let cu = 1 ∀u, γ1a = γ2b = γ3c = 1/2, γ1b = γ2c =

γ3a = 0, φ1a = φ2b = φ3c → 0 and φ1b = φ2c = φ3a → 1. The NE of this instance

is wu = 1/6 ∀u. However, if we start with w3c = w < 1/6 and w3a = 1/3 − w,

and perform a best response cycle starting starting with slice 1 followed by 2 and

3, it can be seen that this leads to an endless cycle where each slice takes a weight

allocation of either {w, 1/3 − w} or {1/3 − w,w} at each step (none of which

corresponds to the NE). Hence, Best Response Dynamics do not converge for this

instance of the game.

5.9.8 Proof of Theorem 20

The proof follows from Lemma 2 in Chapter 4, which shows that, given

a slice o and a feasible weight allocation w−o for the other slices, there exists a

weight allocation wo for slice o, possibly dependent on w−o, such that the resulting

223

weight allocation w satisfies ru(w) ≥ rssu for all u ∈ Uo. Therefore, there exists a

weight allocation that provides the same utility as static slicing. Since the weight

allocation chosen by NES is the one that maximizes the slice’s utility, it surely

provides a utility no smaller than that under static slicing.

5.9.9 Proof of Theorem 21

We start for αo = 1. To prove the bound on the LSO, we first note that

U(w∗) =
∑
o∈O

∑
u∈Uo

soφu log

(
w∗u∑

u′∈Ub(u)
w∗u′

cu

)
≤
∑
o∈O

∑
u∈Uo

soφu log (c̄u) .

Furthermore, from the minimum rate constraint it follows that

U(ŵ) =
∑
o∈O

∑
u∈Uo

soφu log

(
ŵu∑

u′∈Ub(u)
ŵu′

cu

)
≥
∑
o∈O

∑
u∈Uo

soφu log
(
¯
γu
)
.

Combining the above two equations, we obtainU(w∗)−U(ŵ) ≤ log(c̄u/
¯
γu) =

− log(ε), which completes the first part of the proof.

To show that the above bound is tight, we consider the following network

instance. We have two slices with shares s1 = s2 = 1/2 and two base stations. The

first slice has two users in the first base station (weightsw11 andw12) and the second

slice has one user in the first base station (w21) and another one in the second base

station (w22). All users have cu = c̄u, and the rate requirements are γ11 = c̄u(1/2−

ε) for the first user and γu =
¯
γu = c̄uε for the other ones. Furthermore, let φ11 → 0,

φ12 → 1, φ21 → 0 and φ22 → 1. In the allocation employed by NES (which

corresponds to the NE) we have w11 = 1/2− ε, w12 = ε, w21 → 1/2 and w22 → 0,

which yields U(ŵ) = 1
2

log(εc̄u) + 1
2

log(c̄u). In the social optimal, we have the

224

following weight allocation: w11 =
(

1
2
− ε
) (

1
2

+ ε
2(1−ε)

)
, w12 = 1/2−w11, w21 =

ε
2(1−ε) and w22 = 1/2−w21, from which U(w∗) = 1

2
log ((1/2)c̄u)+ 1

2
log(c̄u). This

yields U(w∗)− U(ŵ) = −1
2

log (2ε) , which terminates the proof for αo = 1.

To prove the LSO bound for αo = 2, we note that

U(w∗) ≥ −
∑
o∈O

∑
u∈Uo

soφu
1

c̄u
and U(ŵ) =≤ −

∑
o∈O

∑
u∈Uo

soφu
1

¯
γu
.

Combining these two equations we obtain U(ŵ)
U(w∗)

≤ 1
ε
, which completes the first part

of the proof. The tightness of the bound is proven by considering the same network

instance as for αo = 1:

U(ŵ)

U(w∗)
=
−1

2
1
εc̄u
− 1

2
1
c̄u

−1
2

1
(1/2)c̄u

− 1
2

1
c̄u

=
1
ε

+ 1
1

1/2
+ 1
≥ 1

3ε
.

225

Chapter 6

Conclusions and Future work

6.1 Conclusions

In this thesis, we have demonstrated that substantial performance improve-

ments (up to 50% capacity savings) are achievable by properly engineering multi-

tenant RAN virtual pools. The cooperative dynamic resource allocation, proposed

in Part 1 of this thesis, trades-off statistical multiplexing and slice performance

differentiation. In this setting we showed that it is appropriate to perform virtual

pooling of resources where slices have similar share and load profiles to exploit

multiplexing while maintaining the ability to achieve a degree of tenant isolation

and differentiation. The gains achieved by our cooperative scheme increases in the

number of slices and the size of the network and as seen in Chapter 2 can be further

improved by optimizing user association.

Given the possible requirement to allow tenants more freedom in allocating

their resources, Part 2 of this thesis demonstrates that competitive dynamic resource

allocation, under mild conditions, results in a network slicing game which has many

desirable properties. The game is ensured to have a Nash Equilibrium allocation,

which is reachable through Best Response updates and which has a low price of

anarchy. This makes the framework also a good candidate to realize multi-tenant

226

RAN slicing. Note that if customers require minimum rate guarantees, admission

control and user dropping mechanisms would be required. We propose a low com-

plexity and reliable worst case admission control mechanism, as well as a more

aggressive load-based admission control, allowing tenants to make opportunistic

use of network resources under the network slicing game.

Overall, in this thesis we presented two different frameworks to realize RAN

slicing. Our cooperative allocation framework stands out for its simplicity, imple-

mentability and for its ability to dynamically allocate resources across tenants while

preserving slice isolation. However, the predefined allocation policy limits tenants’

customization. The competitive framework enables a higher degree of customiza-

tion at the expense of a small network performance degradation (price of anarchy)

and a higher implementability cost. While the work in this thesis does not cover all

possible settings, it provides a possible framework for RAN architects to consider

along side an initial understanding of the tradeoffs among resource utilization, cus-

tomization, isolation and implementability in multi-tenant scenarios and presents

different solutions that help meeting various network design goals.

As a consequence of the research conducted in this thesis, we see further

research directions that are open for future work. Two key main research directions

that would complement this work are briefly described next.

1. Coupled resources network slicing. In this thesis, we have focused on

RAN resource allocation. In particular, we focused on a setting where, resources

are decoupled, i.e. a user is not using radio resources from multiple locations at the

same time. A generalized version of this problem would involve joint resource allo-

227

cation of multiple possibly heterogeneous resources, such as RAN, computational

and memory resources. Although some of our work can be used in this relevant

generalization, the problem is different in nature, since resources are coupled, i.e.

the same user will be simultaneously using radio, computational and memory re-

sources. Although some joint schedulers have been proposed, see e.g., [51,69], this

area is still understudied and current solutions do not share the same vision and

objectives drawn in this thesis regarding network slicing resource allocation.

2. Elastic applications performance analysis. The expected performance/

utility of the proposed mechanisms were evaluated in the setting where users were

rate-adaptive (with minimum rate requirements in Chapter 5.) and full-buffer ap-

plications. The key assumption is that the time of an active user in the system does

not depend on the resources it was allocated, i.e., “a well-engineered” network for

voice, video, etc. In the case of elastic applications, the performance and dynamics

of the system is fundamentally different. It would be of great interest to extend our

results on network slicing to capture the interactions (or lack thereof) among slices

supporting elastic customers (some results on stability can be found in [38]) and its

study is worth of a separate research effort.

228

Bibliography

[1] ITU-R. Report ITU-R M.2135-1, Guidelines for evaluation of radio interface

technologies for IMT-Advanced. Technical Report, 2009.

[2] 3GPP. Technical Specification Group Services and System Aspects; Policy

and charging control architecture. 3GPP TS 23.203, Jun. 2016.

[3] 3GPP. Evolved Universal Terrestrial Radio Access Network (E-UTRAN);

Self-Configuring and Self-Optimizing Network (SON) Use Cases and Solu-

tions. 3GPP TS 36.902 v9.3.0, March 2011.

[4] 3GPP. Management of 5G networks and network slicing; Concepts, use

cases and requirements (Release 15). TS 28.530, v0.6.0, Apr. 2018.

[5] 3GPP. Study on Radio Access Network (RAN) Sharing Enhancements.

3GPP TR 22.852, v12.0.0, Jun. 2013.

[6] 3GPP. Network Sharing; Architecture and Functional Description. 3GPP

TS 23.251, v12.1.0, Jun. 2014.

[7] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical

layer procedures. TS 36.213, v12.5.0, Rel. 12, Mar. 2015.

[8] 3GPP. Study on Architecture for Next Generation System. TR 23.799,

v0.5.0, May 2016.

229

[9] 3GPP. Study on management and orchestration of network slicing for next

generation network (Release 15). TR 28.801 V1.2.0, May 2017.

[10] 5GPPP White paper. 5G Empowering vertical industries. 2016.

[11] R. Agrawal, A. Bedekar, R.J. La, and V. Subramanian. Class and channel

condition based weighted proportional fair scheduler. In Teletraffic Science

and Engineering, volume 4, pages 553–567. Elsevier, 2001.

[12] O. U. Akguel, I. Malanchini, V. Suryaprakash, and A. Capone. Service-

Aware Network Slice Trading in a Shared Multi-Tenant Infrastructure. In

Proc. of IEEE GLOBECOM, December 2017.

[13] S. A. AlQahtani. Adaptive rate scheduling for 3g networks with shared re-

sources using the generalized processor sharing performance model. Com-

puter Communications, 31(1):103–111, 2008.

[14] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong,

and J. C. Zhang. What Will 5G Be? IEEE Journal on Selected Areas in

Communications, 32(6):1065–1082, June 2014.

[15] E. Aryafar, A. Keshavarz-Haddad, M. Wang, and M. Chiang. RAT selection

games in HetNets. In Proc. of IEEE INFOCOM, April 2013.

[16] A. Banchs. User fair queuing: fair allocation of bandwidth for users. In

Proc. of IEEE INFOCOM, Mar. 2002.

230

[17] E. T. Bell. The iterated exponential integers. Annals of Mathematics,

39(3):539–557, 1938.

[18] C. Bettstetter, H. Hartenstein, and X. Pérez-Costa. Stochastic properties of

the random waypoint mobility model. Wireless Networks, 10(5):555–567,

2004.

[19] T. Bu, Li Li, and R. Ramjee. Generalized Proportional Fair Scheduling in

Third Generation Wireless Data Networks. In Proc. of IEEE INFOCOM,

April 2006.

[20] P. Caballero, A. Banchs, G. de Veciana, and X. Costa-Pérez. Network slic-

ing games: Enabling customization in multi-tenant networks. In INFO-

COM 2017-IEEE Conference on Computer Communications, IEEE, pages

1–9. IEEE, 2017.

[21] P. Caballero, A. Banchs, G. de Veciana, and X. Costa-Prez. Multi-Tenant

Radio Access Network Slicing: Statistical Multiplexing of Spatial Loads.

IEEE/ACM Transactions on Networking, 25(5), Oct 2017.

[22] P. Caballero, X. Costa-Perez, K. Samdanis, and A. Banchs. RMSC: A Cell

Slicing Controller for Virtualized Multi-Tenant Mobile Networks. In Proc.

of IEEE VTC, May 2015.

[23] R.D. Callaway, M. Devetsikiotis, and C. Kan. Design and implementation

of measurement-based resource allocation schemes within the realtime traffic

flow measurement architecture. In Proc. of IEEE ICC, June 2004.

231

[24] O. Candogan, A. Ozdaglar, and P. A. Parrilo. Dynamics in near-potential

games. Games and Economic Behavior, 82:66 – 90, 2013.

[25] S.H. Cha. Comprehensive survey on distance/similarity measures between

probability density functions. International Journal of Mathematical models

and Methods in Applied Sciences, 1(4):300–307, 2007.

[26] China Mobile White paper. C-RAN The Road Towards Green RAN. 2011.

[27] Coleago consulting. Mobile network sharing report, September 2015.

[28] Federal Communications Commision. The Next Step for LTE-U: Con-

ducting Limited LTE-U Performance Tests, January 2016. Available at

https://www.fcc.gov/news-events/blog/2016/01/29/next-step-lte-u-conducting-

limited-lte-u-performance-tests.

[29] Federal Communications Commision. 3.5 GHz Band / Citizens Broadband

Radio Service, July 2016. Available at https://www.fcc.gov/rulemaking/12-

354.

[30] X. Costa-Perez et al. Radio access network virtualization for future mobile

carrier networks. IEEE Communications Magazine, 51(7):27–35, July 2013.

[31] T.M. Cover and J.A. Thomas. Elements of information theory 2nd edi-

tion. Wiley Series in Telecommunications and Signal Processing. Wiley-

interscience, 2 edition, July 2006.

232

[32] H.S. Dhillon, R.K. Ganti, F. Baccelli, and J.G. Andrews. Modeling and

Analysis of K-Tier Downlink Heterogeneous Cellular Networks. IEEE Jour-

nal on Selected Areas in Communications, 30(3):550–560, April 2012.

[33] L. Doyle, J. Kibida, T. K. Forde, and L. DaSilva. Spectrum without bounds,

networks without borders. Proceedings of the IEEE, 102(3):351–365, March

2014.

[34] M. Feldman, K. Lai, and L. Zhang. The Proportional-Share Allocation Mar-

ket for Computational Resources. IEEE Transactions on Parallel and Dis-

tributed Systems, 20(8):1075–1088, Aug. 2009.

[35] P. Di Francesco, F. Malandrino, T. K. Forde, and L. A. DaSilva. A Sharing-

and Competition-Aware Framework for Cellular Network Evolution Plan-

ning. IEEE Transactions on Cognitive Communications and Networking,

1(2):230–243, June 2015.

[36] T. Frisanco, P. Tafertshofer, P. Lurin, and R. Ang. Infrastructure sharing

and shared operations for mobile network operators From a deployment and

operations view. In Proc. of IEEE NOMS, Salvador, Brazil, April 2008.

[37] M. Gairing, B. Monien, and K. Tiemann. Routing (un-) splittable flow in

games with player-specific linear latency functions. Lecture Notes in Com-

puter Science, 4051:501–512, 2006.

[38] A. Ganesh, S. Lilienthal, D. Manjunath, A. Proutiere, and F. Simatos. Load

233

balancing via random local search in closed and open systems. SIGMET-

RICS Perform. Eval. Rev., 38(1):287–298, June 2010.

[39] Michael R. Garey and David S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,

NY, USA, 1979.

[40] C. Georgiou, T. Pavlides, and A. Philippou. Network uncertainty in selfish

routing. In Proc. of IEEE IPDPS, Apr. 2006.

[41] R. J. Gibbens and F. P. Kelly. Resource Pricing and the Evolution of Con-

gestion Control. Automatica, 35(12):1969–1985, 1999.

[42] W. Guan, X. Wen, L. Wang, Z. Lu, and Y. Shen. A Service-oriented Deploy-

ment Policy of End-to-End Network Slicing Based on Complex Network

Theory. IEEE Access, to appear.

[43] A. Gudipati, L. Li, and S. Katti. RadioVisor: A Slicing Plane for Radio

Access Networks. In Proc. of HotSDN, Aug. 2014.

[44] V. Gupta, M. H. Balter, K. Sigman, and W. Whitt. Analysis of join-the-

shortest-queue routing for web server farms. Performance Evaluation, 64(9-

12):1062–1081, 2007.

[45] P. Hande, S. Zhang, and M. Chiang. Distributed rate allocation for inelastic

flows. IEEE/ACM Transactions on Networking, 15(6):1240–1253, Decem-

ber 2007.

234

[46] F. B. Hildebrand. Advanced calculus for applications. 1962.

[47] I. Hou and C.S. Chen. Self-organized resource allocation in LTE systems

with weighted proportional fairness. In Proc. of IEEE ICC, May 2012.

[48] I. Hou and P. Gupta. Proportionally fair distributed resource allocation

in multiband wireless systems. IEEE/ACM Transactions on Networking,

22(6):1819–1830, December 2014.

[49] P. A. Jensen. Optimum network partitioning. Operations Research, 19(4):916–

932, 1971.

[50] M. Jiang, M. Condoluci, and T. Mahmoodi. Network slicing management

& prioritization in 5G mobile systems. In Proc. of European Wireless, May

2016.

[51] M. Jiang, M. Condoluci, and T. Mahmoodi. Network slicing in 5g: An

auction-based model. In 2017 IEEE International Conference on Communi-

cations (ICC), pages 1–6, May 2017.

[52] R. Johari and J.N. Tsitsiklis. Efficiency Loss in a Network Resource Allo-

cation Game. Mathematics of Operations Research, 29(3):407–435, August

2004.

[53] R. Johari and J.N. Tsitsiklis. Efficiency of scalar-parameterized mecha-

nisms. Operations Research, 57(4):823–839, August 2009.

235

[54] V. Joseph and G. de Veciana. Stochastic networks with multipath flow con-

trol: Impact of resource pools on flow-level performance and network con-

gestion. SIGMETRICS Perform. Eval. Rev., 39(1):61–72, June 2011.

[55] R. Jovanovic, A. Bousselham, and S. Voß. A heuristic method for solv-

ing the problem of partitioning graphs with supply and demand. Annals of

Operations Research, 235(1):371–393, Dec 2015.

[56] J.Qadir, A. Sathiaseelan, L. Wang, and J. Crowcroft. Resource Pooling for

Wireless Networks: Solutions for the Developing World. ACM SIGCOMM

Computer Communication Review, 46(4):30–35, 2016.

[57] W. N. Kang, F. P. Kelly, N. H. Lee, and R.J. Williams. State space collapse

and diffusion approximation for a network operating under a fair bandwidth

sharing policy. The Annals of Applied Probability, 19(5):1719–1780, 2009.

[58] F. P. Kelly. Charging and rate control for elastic traffic. European Transac-

tion Telecommunications, 8(1):33–37, Feb. 1997.

[59] F. P. Kelly. Reversibility and stochastic networks. Cambridge University

Press, 2011.

[60] F. P. Kelly, L. Massoulié, and N.S. Walton. Resource pooling in congested

networks: proportional fairness and product form. Queueing Systems, 63(1-

4):165, 2009.

236

[61] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate Control for Communica-

tion Networks: Shadow Prices, Proportional Fairness and Stability. Journal

of the Operational Research, 49(3):237–252, March 1998.

[62] F. P. Kelly and R. J. Williams. Fluid model for a network operating under

a fair bandwidth-sharing policy. Ann. Appl. Probab., 14(3):1055–1083, 08

2004.

[63] P. Key, L. Massoulie, and D. Towsley. Combining multipath routing and

congestion control for robustness. In 2006 40th Annual Conference on In-

formation Sciences and Systems, pages 345–350, March 2006.

[64] J. Kim and A. Jamalipour. Traffic management and QoS provisioning in

future wireless IP networks. IEEE Personal Communications, 8(5):46–55,

October 2001.

[65] A. Krause and D. Golovin. Submodular function maximization.

[66] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math.

Statist., 22(1):79–86, 03 1951.

[67] J. Kwak, J. Moon, H. W. Lee, and L. B. Le. Dynamic network slicing and

resource allocation for heterogeneous wireless services. In Proc. of IEEE

PIMRC, October 2017.

[68] CN. Laws. Resource pooling in queueing networks with dynamic routing.

Advances in Applied Probability, 24(3):699–726, 1992.

237

[69] M. Leconte, G. Paschos, P. Mertikopoulos, and U. Kozat. A resource alloca-

tion framework for network slicing, 2017. submitted.

[70] J. W. Lee, R. R. Mazumdar, and N. B. Shroff. Joint resource allocation and

base-station assignment for the downlink in CDMA networks. IEEE/ACM

Transactions on Networking, 14(1), February 2006.

[71] K. Lee et al. SLAW: self-similar least-action human walk. IEEE/ACM

Transactions on Networking, 20(2):515–529, April 2012.

[72] Y.L. Lee, J. Loo, T.C. Chuah, and L. Wang. Dynamic Network Slicing for

Multitenant Heterogeneous Cloud Radio Access Networks. IEEE Transac-

tions on Wireless Communications, to appear.

[73] B. Leng, P. Mansourifard, and B. Krishnamachari. Microeconomic Analysis

of Base-station Sharing in Green Cellular Networks. In Proc. of IEEE

INFOCOM, April 2014.

[74] L. Li, M. Pal, and R. Yang. Proportional fairness in multi-rate wireless

LANs. In Proc. of IEEE INFOCOM, April 2008.

[75] B. Loeffler. Cloud computing: What is infrastructure as a service. Microsoft

TechNet Magazine, October 2011. Available at https://technet.microsoft.com/en-

us/library/hh509051.aspx.

[76] R. Mahindra, M.A. Khojastepour, Honghai Zhang, and S. Rangarajan. Ra-

dio Access Network sharing in cellular networks. In Proc. of IEEE ICNP,

Oct. 2013.

238

[77] I. Malanchini, S. Valentin, and O. Aydin. Generalized resource sharing for

multiple operators in cellular wireless networks. In Proc. of IWCMC, Aug.

2014.

[78] M. Mavronicolas, I. Milchtaich, B. Monien, and K. Tiemann. Congestion

games with player-specific constants. In Proc. of Mathematical Foundations

of Computer Science, August 2007.

[79] M. Mitzenmacher. The power of two choices in randomized load balancing.

IEEE Transactions on Parallel and Distributed Systems, 12(10):1094–1104,

2001.

[80] J. Mo and J. Walrand. Fair end-to-end window-based congestion control.

IEEE/ACM Transactions on Networking (ToN), 8(5):556–567, October 2000.

[81] D. Monderer and L.S. Shapley. Potential games. Games and economic

behavior, 14(1):124–143, 1996.

[82] M. Morgan and V. Grout. Finding optimal solutions to backbone minimi-

sation problems using mixed integer programming. In INC, pages 53–63,

2008.

[83] O. Narmanlioglu, E. Zeydan, and S. S. Arslan. Service-Aware Multi-Resource

Allocation in Software-Defined Next Generation Cellular Networks. IEEE

Access, 6(1):1–15, February 2016.

[84] M. Neely, E. Modiano, and C. Rohrs. Packet routing over parallel time-

varying queues with application to satellite and wireless networks. In Proc.

239

of ALLERTON Conf., volume 39, pages 1110–1111. The University; 1998,

2001.

[85] NGMN Alliance. 5G White paper, February 2015.

[86] NGMN Alliance. Description of Network Slicing Concept. NGMN 5G P1,

Jan. 2016.

[87] D. Nicoara, S. Kamali, K. Daudjee, and L. Chen. Hermes: Dynamic par-

titioning for distributed social network graph databases. In EDBT, pages

25–36, 2015.

[88] C. Ovando, Z. Frias, and JC. Bocarando. Connecting the unconnected: The

case of mexicos wholesale shared network. SSRN Electronic Journal, 2017.

[89] J. S. Panchal, R. D. Yates, and M. M. Buddhikot. Mobile Network Re-

source Sharing Options: Performance Comparisons. IEEE Transactions on

Wireless Communications, 12(9):4470–4482, September 2013.

[90] A. K. Parekh. A Generalized Processor Sharing Approach to Flow Control

In Integrated Services Networks. PhD thesis, Massachusetts Institute of

Technology, 1992.

[91] R. Ramjee, D. Towsley, and R. Nagarajan. On Optimal Call Admission

Control in Cellular Networks. Wireless Networks, 3(1):29–41, March 1997.

[92] S. Rathinakumar and M. K. Marina. GAVEL: strategy-proof ascending bid

auction for dynamic licensed shared access. In Proc. of ACM MobiHoc, July

2016.

240

[93] M. Richart, J. Baliosian, J. Serrat, and J. L. Gorricho. Resource slicing in

virtual wireless networks: A survey. IEEE Transactions on Network and

Service Management, 13(3):462–476, Sept 2016.

[94] J. B. Rosen. Existence and uniqueness of equilibrium points for concave

n-person games. Econometrica, 33(3):520–534, Jul. 1965.

[95] K. Samdanis and A. H. Aghvami. Load balancing through dynamic parti-

tioning for hierarchical cellular networks. In 2008 International Conference

on Telecommunications, pages 1–6, June 2008.

[96] K. Samdanis, X. Costa-Perez, and V. Sciancalepore. From Network Sharing

to Multi-tenancy: The 5G Network Slice Broker. IEEE Communications

Magazine, 54(7):32–39, Jul. 2016.

[97] V. Sciancalepore et al. Interference coordination strategies for content up-

date dissemination in LTE-A. In Proc. of IEEE INFOCOM, 2014.

[98] S. Shenker. Fundamental Design Issues for the Future Internet. IEEE

Journal of Selected Areas in Communications, 13(7):1176–1188, September

2006.

[99] J. Singh. A characterization of positive poisson distribution and its statistical

application. SIAM Journal on Applied Mathematics, 34(3):545–548, 1978.

[100] K. Son, S. Chong, and G. D. Veciana. Dynamic association for load balanc-

ing and interference avoidance in multi-cell networks. IEEE Transactions

on Wireless Communications, 8(7):3566–3576, July 2009.

241

[101] M. Song, C. Xin, Y. Zhao, and X. Cheng. Dynamic spectrum access: from

cognitive radio to network radio. IEEE Wireless Communications, 19(1):23–

29, February 2012.

[102] S. Valentin, W. Jamil, and O. Aydin. Extending generalized processor shar-

ing for multi-operator scheduling in cellular networks. In Wireless Commu-

nications and Mobile Computing Conference (IWCMC), 2013 9th Interna-

tional, pages 485–490. IEEE, 2013.

[103] L. Wang and A. Chen. Optimal radio resource partition for joint contention-

and connection-oriented multichannel access in ofdma systems. IEEE Trans-

actions on Mobile Computing, 8(2):162–172, 2009.

[104] J. Westbrook. Load Balancing for Response Time. In Proc. of the Third

Annual European Symposium on Algorithms, Sep. 1995.

[105] D. Wischik, M. Handley, and M.B. Braun. The resource pooling principle.

SIGCOMM Comput. Commun. Rev., 38(5):47–52, September 2008.

[106] S. Xu and S. Wang. Baseband unit pool planning for cloud radio access

networks: An approximation algorithm. IEEE Communications Letters,

21(2):358–361, Feb 2017.

[107] S. Yang and B. Hajek. VCG-Kelly Mechanisms for Allocation of Divisible

Goods: Adapting VCG Mechanisms to One-Dimensional Signals. IEEE

Journal on Selected Areas in Communications, 25(6):1237–1243, August

2007.

242

[108] Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. G. An-

drews. User association for load balancing in heterogeneous cellular net-

works. IEEE Transactions on Wireless Communications, 12(6):2706–2716,

June 2013.

[109] D. Yuhuan and G. de Veciana. Wireless networks without edges: Dynamic

radio resource clustering and user scheduling. In Proc. of IEEE INFOCOM,

Apr. 2014.

[110] L. Zhang. Proportional response dynamics in the Fisher market. Theoretical

Computer Science, 412(24):2691–2698, May 2011.

[111] J. Zheng, P. Caballero, G. de Veciana, S.J. Baek, and A. Banchs. Statistical

multiplexing and traffic shaping games for network slicing. In Proc. of

WiOpt 2017, Paris, France, May 2017.

[112] T. Zhou, Y. Huang, W. Huang, S. Li, Y. Sun, and L. Yang. Qos-aware user

association for load balancing in heterogeneous cellular networks. In Proc.

of IEEE VTC Fall, September 2014.

[113] X. Zhou, R. Li, T. Chen, and H. Zhang. Network slicing as a service: en-

abling enterprises’ own software-defined cellular networks. IEEE Commu-

nications Magazine, 54(7):146–153, July 2016.

243

Vita

Pablo Caballero Garcs received his B.S. in Telecommunications Engineer-

ing and M.S. in Telematics Engineering from the University Carlos III of Madrid in

2013 and 2015 respectively. In 2015, he joined the Wireless Networking and Com-

munications Group (WNCG) at the University of Texas at Austin to pursue his PhD

degree under the supervision of Prof. Gustavo de Veciana and Prof. Albert Banchs

while serving as an external PhD student at IMDEA Networks Institute. Prior to

that, Pablo served as research assistant at IMDEA Network Institute from 2013 to

2015 and as a Research Intern at NEC Laboratories Europe during 2013. His main

research interests lie on the design and performance evaluation of communication

networks with a special focus on game theory and algorithm analysis.

Permanent address: pablo.caballero@utexas.edu

This dissertation was typeset by the author.

244

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Resource Allocation for Network Slicing
	The origin of network sharing
	Who shares network resources?
	What resources can be shared?
	How should network resources be shared?
	Architectural enablers and network slicing
	Vision and objectives for RAN slicing
	Virtual pooling resource allocation mechanisms: cooperative vs competitive

	Outline
	Publications

	Part I Cooperative Resource Allocation
	Chapter 2. Multi-Tenant Radio Access Network Slicing
	Related work
	Chapter organization
	System model
	MORA criterion
	Properties of MORA resource allocation

	Gains and Savings of MORA
	Static Slicing (SS) baseline
	Operator utility gains and protection
	Capacity Savings

	Approximation algorithm for MORA
	Complexity and state-of-the-art algorithms
	Algorithm design

	Performance evaluation
	Utility gains
	Capacity savings
	User performance
	Computational complexity
	Impact of non-uniform load distributions

	Conclusions
	Proofs of chapter results
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	Chapter 3. Optimizing Network Slicing via Virtual Resource Pool Partitioning
	Related Work
	Chapter organization
	System model
	Virtual Resource Pools and resource allocation
	Benchmark allocations
	Share, load and capacity distributions

	VRP partitioning
	Stochastic network utility
	Slices protection guarantees
	Design constraints
	Optimal VRP Partitioning

	Algorithm Design
	Greedy algorithm for OVP
	Greedy algorithm performance

	Utility approximation and analysis
	Performance evaluation
	Numerical evaluation of synthetic scenarios
	Performance evaluation in realistic scenarios

	Conclusions
	Proofs of chapter results
	Proof of Lemma 1
	Proof of Theorem 6
	Proof of Proposition 1
	Proof of Theorem 7
	Proof of Fact 2
	Proof of Fact 3

	Part II Competitive Resource Allocation
	Chapter 4. Competitive Slices: Network Slicing Games
	Related work
	Chapter organization
	System model
	Resource allocation model
	Network slice utility and service differentiation
	Baseline allocations

	Strategic behavior and Nash Equilibrium
	Gain over Static Slicing
	Existence and uniqueness of Nash Equilibrium
	Convergence of Best Response dynamics

	Performance bounds analysis
	Efficiency: Price of Anarchy
	Fairness: Envy-freeness

	Performance Evaluation
	Overall performance
	Fairness
	Protection against other slices
	Convergence speed
	Impact of user mobility

	Conclusions
	Proofs of chapter results
	Proof of Lemma 2
	Proof of Theorem 8
	Proof of Lemma 3
	Proof of Theorem 9
	Proof of Lemma 4
	Proof of Theorem 10
	Proof of Theorem 11
	Proof of Theorem 12

	Chapter 5. Inelastic Network Slicing Games: Admission control policies
	Related work
	Chapter organization
	System model
	Resource allocation model
	Slice utility
	Baseline allocations
	Network slicing framework

	Admission control for sliced networks
	Nash Equilibrium existence
	Worst-case admission control (WAC)
	Load-driven admission control (LAC)

	Weight allocation and user dropping for Network Slicing
	User subset selection
	Weight allocation
	Convergence of best response dynamics

	Analysis of the NES framework
	Gain over static slicing
	Loss over the socially optimal allocation

	Performance evaluation
	Network utility
	Throughput gains
	Blocking probability
	Convergence to the NE
	Computational load
	Slice differentiation

	Conclusions
	Proofs of chapter results
	Proof of Theorem 13
	Proof of Theorem 14
	Proof of Theorem 15
	Proof of Theorem 16
	Proof of Theorem 17
	Proof of Theorem 18
	Proof of Theorem 19
	Proof of Theorem 20
	Proof of Theorem 21

	Chapter 6. Conclusions and Future work
	Conclusions

	Bibliography
	Vita

