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Stochastic geometry is a widely accepted mathematical tool used to

analyze cellular networks, where the location of base stations are modeled by

spatial point processes. It is used to derive closed-form or semi-closed-form

expressions for the SINR or for the functions of the SINR which determine var-

ious network performance metrics such as coverage probability, “edge” capac-

ity, 90% quantile rate, spectral efficiency, and connectivity without resorting

to complicated simulation methods.

Predominantly, it is used in deriving marginal distributions of SINR

by considering a typical user assumed to be located anywhere on the plane.

Models beyond the typical user approach have been proposed with the aim

of analyzing QoS metrics of a population of users, and not just a single user.

Most of which include considering networks at certain times by representing
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instances or snapshots of active users as realizations of spatial (usually Poisson)

processes or users occurring at random locations that last for some random

duration. Analyzing the performance of a typical mobile user on the move

or that of a population of such mobile users is complicated since it requires

studying not just the marginal but the spatial stochastic fields associated with

wireless networks.

In this thesis, we model and analyze the fields associated with wire-

less networks where the locations of base stations are distributed according to

a homogeneous Poisson point process. We focus on characterizing the level

crossings, extremes, and variability of the Shannon rate fields in noise limited

(SNR based) environment by establishing a connection to queueing theory.

In interference limited (SIR based) environments, we rely on the theory of

Gaussian random fields which arise as natural limits of standardized interfer-

ence under densification. Using this, we characterize the spatial correlations,

and variability of the Shannon rate fields in the limiting regime. We leverage

the spatial characterization of the fields to study the temporal variations and

various Quality of Service (QoS) metrics seen by the users on the move. The

quantification of such metrics as a function of a small number of network pa-

rameters, e.g., the density of base stations, path loss, should allow network

operators to appropriately tune the density of the base stations to meet the

demands of mobile users for a required performance level.

In noise limited environments, we study the performance of mobile

users in dense networks by incorporating the cost of handovers along with the

x



temporal variability in the Shannon rate. We study the tradeoff between the

cost of handover and the Shannon rate by proposing a new class of association

policies. Associating with a base station that is farthest in the known users’

direction of motion leads to fewer handovers but may lead to a decrease in the

rate. Thus, we attribute a local association region to the mobile user to restrict

the greediness in the association, which also models the constraint on the

available information about the locations of the base stations. We propose a

class of greedy association policies and once again leverage stochastic geometry

to characterize the performance of such policies. We then optimize the shape

and size of the association region by establishing a connection to the theory of

Markov processes and compare the performance of this policy to traditional

association policies.
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Chapter 1

Introduction

The high rate of technological advancement in the wireless industry

has resulted in a substantial increase in the use of mobile devices such as

smartphones and tablets. Indeed cellular traffic generated by mobile devices

has grown 18 fold in the past 5 years and by 63% in 2016 alone [1]. This

growth is driven by increased smartphone subscriptions and increase in the

average data volume per subscription, fueled primarily by more viewing of

video content.

The convenience of mobile devices (smartphones) resulted in their in-

tensive use during commute time. Approximately 20-30% of cellular data is

generated during commute hours by wireless devices on the move [2]. Appli-

cations like video/audio streaming, which accounted for 60% of total mobile

data traffic in 2016 [1], geolocation services/maps, and social media are exten-

sively used by users during commute periods. In the future, with the increase

in the use of public transportation and the emergence of self-driving cars, this

volume could grow substantially.

Mobile users expect excellent coverage with high speeds for their appli-

cations to run smoothly anytime/anywhere. Thus, it is a challenge for service
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providers to deliver high capacity to a large volume of users especially the ones

on the move. To meet with such increasingly stringent performance require-

ments of users along with the increase in traffic volume, various technologies

are being explored for 5G networks. Although millimeter wave and massive

MIMO have been proposed to improve spectral efficiency and exploit wider

bandwidths, it is expected that Ultra Dense Networks (UDNs) will be the key

tool towards boosting capacity and coverage. Thus, it is of utmost importance

to focus on improving the performance seen by users on the move in such

environments, i.e., ultra dense networks.

Given that the quality of experience seen by users on the move depends

on many factors other than the link capacity, we analyze two main contrib-

utors. The first is associated with temporal capacity variations mobile users

would experience. This is particularly the case for applications that are delay

sensitive, e.g., video/audio streaming and for real-time services, e.g., naviga-

tion/augmented reality, which may not be able to smooth substantial capac-

ity variations through buffering. The main challenge in understanding such

temporal variations is in modeling the continuous time stochastic processes

associated with wireless networks such as the Shannon rate and interference

fields.

The second contributor is linked to the cost of frequent handovers.

The high frequency of handovers resulting from mobility in dense networks

can be detrimental to user performance. Unfortunately, the negative impact

of handover overheads in dense networks when serving mobile users is often ig-

2



nored [3]. A high handover rate results in high overhead for both applications

and infrastructure which is, of course, exacerbated in dense networks. In ad-

dition to the handover signaling overheads, the handover procedure interrupts

the data flow to the users due to link termination with the serving base station

and link establishment with the target base station. A recent study [4] showed

that handovers generally cause short-term disruptions in various applications.

Similarly, simulation studies [5] have shown that handovers degrade the per-

formance of real-time applications such as VoIP. Thus, the increased rate of

handovers diminishes the benefits of base station densification.

In this thesis, we focus on analyzing the performance seen by mobile

users by studying the above-mentioned contributors. The first challenge then

is to model the wireless network, the capacity variations, and the handovers

seen by mobile users. Stochastic geometry is a widely accepted mathematical

tool to model and analyze cellular networks which enables performance char-

acterization in terms of the base station intensity, λ as well as other physical

layer parameters (see [6] for a survey). In the sequel, we will consider the sit-

uations where base station locations are distributed according a homogeneous

Poisson point process.

We consider the simplest meaningful model for the tagged mobile user,

i.e., moving along a straight line at a fixed velocity and characterize the tem-

poral stochastic processes as a cross section of the associated random fields in

various environments. Later, we propose mobility-driven association policies

and study the interplay between handover cost and capacity gain as a function
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of the base station intensity. Thus, the aim of this thesis will be to develop

a better understanding of the design challenges for dense wireless networks,

supporting large numbers of mobile users.

1.1 Summary of Accomplished Work

This thesis is organized as follows. The first two chapters focus on

developing a framework to study the variations in the Shannon rate fields of

Poisson wireless networks in various environments such as noise-limited and

interference-limited dense networks. We consider various practical communi-

cations engineering questions where the developed framework can be directly

used such as adaptive coding and modulation for mobile users, the problem

of backhaul provisioning in ultra-dense networks, stored-video streaming, and

WiFi offloading. The last chapter focuses on mobility-driven association poli-

cies and validating their promise and effectiveness.

1.1.1 Chapter 2: Shannon Rate Process in Noise Limited Environ-
ments

In this chapter, we focus our attention on a tagged user in the following

context: (a) the access points/base stations are a realization of a Poisson

point process; (b) other users sharing the network also form a Poisson point

process; (c) in this initial work, we assume users associate with the closest base

station; (d) resources(time) is shared equally among users sharing the same

base station, and (e) a standard distance based path loss is used with neither
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shadowing nor fading. Our goal is to characterize the shared rate process seen

by the tagged user by studying the variations in the SNR and variations in

the number of users sharing the infrastructure.

We begin with a characterization of the SNR process. Given a SNR

threshold, we provide a complete characterization of the on/off level crossing

process as an alternating-renewal process. Equivalently, this characterizes the

duration for coverage/outage events seen by the mobile. We then provide

asymptotics for the likelihood of high and low SNR, and show that, after

appropriate rescaling, the time intervals between up crossings are exponential,

which provides a new illustration of the rarity hence exponentiality principle

[7], [8].

Next, we consider the sharing number process, i.e., the number of other

users which meet an SNR threshold, and share infrastructure nodes with the

tagged user. The contrast between the underlying mechanism leading to the

occurrence of rare events associated with high and low shared rates is high-

lighted. We also provide an asymptotic characterization for the re-scaled inter-

arrival times associated with up-crossings.

Our results are then leveraged to evaluate the QoE experienced by

mobile users in two concrete scenarios, which gives a system-level view on the

performance that mobile users would see.

The first scenario considered is the delivery of streaming video to mobile

users which are able to pre-buffer future video frames to prevent rebuffering.
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The primary question addressed is a characterization of the maximal spatial

density of users that can be supported while ensuring that, in the long term, no

rebuffering is required. Our second application considers the distribution for

the delays experienced by a mobile user attempting to download a large file,

which gives a system-level view on the performance that mobile users would see

when downloading large files opportunistically via some WiFi infrastructure.

We briefly discuss some important extensions of our results to the case

of heterogeneous wireless infrastructures and the case where the locations of

mobile users follow a Cox process associated with a road network. The re-

sults show how the use of heterogeneous technologies will impact the temporal

variations in the mobile users SNR process. The results also show how a mo-

bile user on a roadway is likely to see poorer performance than a static or

pedestrian user.

Results based on discrete event simulation results are also presented.

These are used to assess the robustness of this model to perturbations that were

not yet taken into account in the analysis. For example the relative impact of

variability associated with the changing geometry (proximity of base stations)

seen by a mobile versus that associated with channel variability due to channel

fades. Further, the robustness of our model to changes in the direction of the

motion of the mobile user i.e., versus straight line motion, is studied. We

complete the chapter by discussing proposed future work.
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1.1.2 Chapter 3: Shannon Rate Process in Interference Limited
Environments

In this chapter, we study the spatial characterization of the Shannon

rate field of a Poisson network under densification. To begin with, a scaling

limit for interference field under bounded, non-negative integrable path loss

functions is established. This is then used to approximate the interference field

in dense networks by a stationary Gaussian field which captures the underlying

spatial variations.

Since the interference field primarily depends on the distribution of the

base station locations and the path loss, we classify various existing path loss

models in the literature such as the dual slope models ( [9], [10], [11]) and

observe the impact they have on the various sample path properties of the

field, e.g., continuity and differentiability.

By transforming or taking functionals of the interference field, one can

study various additional properties of such systems. In particular, with an

appropriate bandwidth scaling, we model the Shannon rate field as a stationary

Gaussian field. In turn, relevant functions of the Shannon rate field enable

the study of variability in the spatial average rate, and backhaul capacity

requirements for ultra dense wireless networks. We explore how various sources

of variability impact backhaul dimensioning.

We then study how the spatial variability of the interference and Shan-

non rate field impact the temporal performance variations a mobile user would

see. For certain path loss models, the interference process is nowhere differ-
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entiable, which implies that the mobile experiences high fluctuations in rate

making it difficult to implement adaptive modulation and coding techniques.

To better understand these fluctuations, we quantify their variation via Hölder

exponents [12] and leverage these to bound the time scales over which adaptive

modulation and coding could be performed. Finally we complete our work by

discussing a characterization of the level crossing characteristics, e.g, interfer-

ence, and or rate properties of such fields as experienced by a mobile users is

provided. We complete this chapter by discussing further proposed work in

this area.

1.1.3 Chapter 4: Mobility-driven Association Policies

In this chapter, we study the problem of determining optimal base

station association policies which tradeoff throughput with handover penal-

ties. We consider the noise-limited environment where the base stations are

distributed according to a Poisson point process. We model the cost of a han-

dover by considering the loss in throughput associated with handover delays.

We also introduce an additional fixed loss in the data per handover to model

the packet loss and signaling overhead.

In our first attempt, we consider a setting where the mobile user’s

trajectory is known as well as the direction of motion and the location of all

base stations in space. In this setting, we consider the total volume of data

delivered to the mobile user accounting for handover overheads during the

mobiles’ trajectory as our performance metric. We show that the problem of
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optimizing this metric is challenging and, under some simplifying assumptions,

develop a dynamic programming problem that reduces the above optimization

problem to finding the maximum weight path in a directed acyclic graph.

Given users are often constrained with the information about the base

station, we consider the setting with high handover costs and constrained

information about the base station locations. For this case, we propose a

greedy approach where the user associates with the base station that is farthest

in the direction of its motion, i.e., greedily pick the base station that results

in the maximum connection time. The constraint on the knowledge of base

stations also limits the greediness. We model the information available to

the tagged user with respect to a geometrical region, i.e., all the base stations

within a specific region centered at the user. Here, we consider the time average

of the throughput as the performance metric and optimize it with respect to

the parameter associated with the geometric region.

Under our proposed greedy association policy, using the properties of

Poisson point process, we show that the evolution of the mobile user’s as-

sociation base station is Markovian over time. More precisely, we establish

a connection between the random geometry of base stations and the theory

of Markov processes with respect to time. We then study various properties

of this continuous state space Markov process such as its irreducibility, ape-

riodicity, and characterize its stationary distribution for one specific class of

association policy.

Using various results on Markov processes such as the cycle formula [13],

9



we evaluate the average throughput seen by the mobile user in the closed form.

We show that there exists an optimal size of a given geometric region maxi-

mizing average throughput and evaluate it. We study the trade-off between

the farthest distance and the height of the handover support set with respect

to the performance for the various intensity of base stations. With the help of

simulation, we then compare its performance with the optimal performance of

the previous dynamic programming solution and closest base station associa-

tion policy.
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Chapter 2

Shannon Rate Process in Noise Limited

Environments

2.1 Introduction and Related Work

The primary aim is to model and study the temporal capacity variations

experienced by wireless users moving through space. Our focus on temporal

variability should be contrasted with the extensive work characterizing spatial

variability as seen by randomly located users. The temporal variations are a

result of not just the variability in channel strength such as fading, shadowing

and path loss but also from the geometric variations in the spatial and en-

vironmental relationships (associations) to the infrastructure, the number of

users sharing the network and variations in interference. Although space and

time may be related through averages (when ergodicity holds), the temporal

characteristics of the stochastic processes modeling a mobiles capacity vari-

Portions of this chapter has been published as: Madadi, Pranav, Francis Baccelli, and
Gustavo de Veciana. ”Shared rate process for mobile users in poisson networks and appli-
cations.” IEEE Transactions on Information Theory 64, no. 3 (2017): 2121-2141.
Co-authors have participated extensively in model formulation and research methods, and
have contributed in reviewing the final manuscript.
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ations are relatively unexplored beyond correlation analysis and are of great

practical interest.

Key Questions. Two primary sources of temporal variation in a mobiles

capacity are changes in the SNR which are associated with changes in the users

geometric relationship to the infrastructure, and the sharing number, i.e., the

number of other mobiles sharing the resource. Our goal in this chapter is to

study the relative impacts these have on mobile users QoE. In this setting

several basic questions arise:

1. Characterization of the SNR process. As a mobile user moves

through a wireless network infras- tructure associating with the closest

node, its SNR process and thus associated maximal rate (i.e., without

accounting for sharing) will experience peaks and valleys. What is the

intensity of peaks and valleys? Does it match the rate of cell boundary

crossings? Given an SNR threshold, can one characterize the temporal

characteristics of the on/off level crossing process associated with being

above and below the threshold, i.e., the coverage and outage durations?

2. Characterization of the sharing number process. Assuming a

population of other users sharing the network, what are the character-

istics of the sharing number process seen by a mobile? If the network

is shared by heterogeneous users, i.e., static, pedestrian, and users on

public transport and/or a road system, how will this bias what a mobile

user sees?
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3. Smoothness of the effective rate process. How smooth is the bit

rate obtained by the mobile seen as a function of time? How often

does this rate incur discontinuities, trend changes, large jumps or other

phenomena negatively impacting real time applications?

4. Characterization of rare events. Conditional on a rare event, i.e.,

very poor or very good user rate, what is the relative contribution of

the users location vs network congestion? Can one characterize the time

scales for rare event occurrences?

5. Applications to QoE. What are the implications of the temporal ca-

pacity variations mobiles see on their application-level QoE and system-

level performance, e.g., acceptable density of video streaming users it

can support, or download delays of large files?

To the best of our knowledge the analysis of the SNR and shared rate

processes developed in this chapter for Poisson wireless infrastructure is new

and provides a first order answer to these basic questions. While our models

are simplified they should be viewed as a first, and necessary, step towards

characterizing temporal variability in more complex random structures, e.g.,

SINR variations which, in this chapter, are only explored via simulation for

comparison to SNR process characteristics. Generalizations to SINR processes

would be desirable, particularly for systems operating in the interference lim-

ited regime. Such extensions may be tractable based on results known for shot

noise fields (see [14], Volume 1), yet are beyond the scope of this chapter.
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Related work. There is a rich literature on modeling spatial capacity

variability in wireless services experienced by a randomly located user. Of

particular relevance is that based on stochastic geometry, which captures the

effect of the variability in base station locations, as well as the variability in

the environment through shadowing, and in the channel through fading, see

e.g., [14] for a survey.

There is also significant related work on Delay-Tolerant Networks (DTN).

This literature considers mobile nodes, where the contact duration and the

inter-contact times are defined and empirically measured from real traces [15],

[16] as well as through underlying mobility models [17]. However, this work is

geared at studying opportunistic ad-hoc communication networks where the

main question is the end to end delay of a tagged packet, under the assumption

that nodes are moving independently. Our focus is on studying the continuous-

parameter stochastic process experienced by a tagged mobile user traversing a

static pattern of nodes e.g., base stations, modeling the wireless infrastructure.

There certainly is a lot of interest in studying how to design networks

to better address the needs of mobile users or to leverage user mobility for the

offloading/onloading traffic. For example [18] studies how user mobility pat-

terns and user perceived QoE might drive the selection of macro-cell upgrades.

The work in [19] examines the effectiveness of algorithms for optimizing of-

floading to a set of spatially distributed WiFi APs. The work in [20] evaluates

how proactive knowledge of capacity variations could be used in designing new

models for video delivery. These works exemplify applications and engineer-
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ing problems which depend critically on the temporal capacity variability that

mobile users would experience, but do not directly address the characteristics

of such processes.

2.2 System Model

Consider an infrastructure based wireless network consisting of nodes

e.g., base stations/WiFi hotspots, denoted through their locations on the Eu-

clidean plane. The configuration of the nodes is assumed to be a realization of

Poisson point process Φ = {X1, X2, ..} in R2 with intensity λ. We consider a

tagged user moving at a fixed velocity v along a straight line starting from the

origin at time t = 0. The mobile user shares the network with other (static)

users which are spatially distributed according to another independent Poisson

point process of intensity ξ.

All users associate with the closest infrastructure node. For eachXi ∈ Φ

one can define a set of locations which are closer to Xi than any other point

in Φ \Xi. This is a convex polygon known as the Voronoi cell associated with

Xi [14]. The collection of such cells forms a tessellation of the plane called the

Voronoi tessellation see e.g., Fig.2.1. Thus, all the users located within the

Voronoi cell of node Xi associate with Xi.

Let (X(t), t ≥ 0) denote the random process, where X(t) ∈ Φ is the

closest node to the mobile user at time t. Let (L(t), t ≥ 0) be the process

denoting the distance from the mobile user to its closest node.
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Figure 2.1: Mobile user motion in a sample of the Poisson cellular network.

We consider downlink transmissions and assume that all nodes transmit

at a fixed power p. Based on the classical power law path loss model and in

the absence of fading and shadowing, the Signal-to-Noise Ratio (SNR) process

of the mobile user is

SNR(t) =
pL(t)−β

w
, for β > 2, t ≥ 0, (2.1)

where w denotes the noise power.

We assume that users are only served if their SNR exceeds a given

threshold γ. It follows from (2.1) that a user is served if it is within distance

rγ = ( p
wγ

)1/β from the closest node. We refer to rγ as the radius of coverage.

Note that a user may thus associate with a node but not be served.

The Shannon rate process, (R(γ)(t), t ≥ 0), seen by the mobile user is
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directly determined by the SNR process through the relation:

R(γ)(t) =

{
a log (1 + SNR(t)) if L(t) ≤ rγ,

0 otherwise,
(2.2)

where a is a constant depending on the available bandwidth.

We assume that each infrastructure node shares time equally among

the users it serves. We define the sharing number process (N (γ)(t), t ≥ 0),

where N (γ)(t) is the number of static users sharing the infrastructure with the

mobile user if it is served, and 0 if it is not served. In other words, if the

mobile user is served by its closest node X(t) at time t, it shares the resource

with N (γ)(t) static users. The sharing factor (F (γ)(t), t ≥ 0), is then defined

by:

F (γ)(t) =
1

1 +N (γ)(t)
. (2.3)

Finally, the shared rate process seen by the mobile user, (S(γ)(t), t ≥ 0),

is given by

S(γ)(t) = R(γ)(t)× F (γ)(t). (2.4)

Our aim is to characterize this process. In the next two sections, we first

study the two underlying processes namely: (1) the SNR process (SNR(t), t ≥

0) and its level sets, and (2) the sharing number process (N (γ)(t), t ≥ 0).

In the sequel, for any stationary random process, e.g., (S(γ)(t), t ≥ 0),

we let S(γ) represent a random variable whose distribution is the stationary

distribution of the associated process.

A summary of the key notation is provided in Table 2.1.
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Symbol Definition
Φ, λ Poisson point process of nodes and its intensity
ξ Intensity of users
p Constant power transmitted by the nodes

(X(t), t > 0) Random process denoting the closest node to the mobile
(L(t), t > 0) Random process denoting the distance to the closest node

(SNR(t), t > 0) Signal-to-Noise ratio random process

(C(γ)(t), t > 0) Signal-to-Noise ratio level crossing process

(R(γ)(t), t > 0) Shannon rate random process

(N (γ)(t), t > 0) Random process denoting the number of users sharing

(S(γ)(t), t > 0) Shared rate random process
γ Threshold on Signal-to-Noise ratio
rγ Radius of coverage for threshold γ

Table 2.1: Table of Notation.

2.3 Characterization of the Temporal Processes

2.3.1 SNR Process

This section is structured as follows: we start by considering the on-

off coverage structure of the SNR process and then study in more detail the

characteristics of its fluctuations. We then analyze the scale of the inter-

occurrence times of certain rare events.

2.3.1.1 Analysis of the SNR Level Crossing Process

A first order question is whether the mobile is covered or not. To that

end we define the SNR level crossing process as follows:

Definition 1. Given an SNR threshold γ, the SNR level crossing process

(C(γ)(t), t ≥ 0) is defined as C(γ)(t) = 1(SNR(t) ≥ γ) as shown in Fig 2.2.
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Clearly this is an on-off process, where the on and off periods correspond

to coverage and outage periods respectively. The process alternates between

“on” intervals of length (B
(γ)
n , n ≥ 1) and “off” intervals of length (I

(γ)
n , n ≥ 1)

as depicted in Fig. 2.2. We also define the sequence of SNR up-crossing times

(T
(γ)
n , n ≥ 1) for a given threshold γ. Let V (γ) ∼ T

(γ)
n − T

(γ)
n−1 be a random

variable whose distribution is that associated with up-crossing inter arrivals

as illustrated in Fig. 2.2.

In order to characterize the SNR level crossing process, we establish a

connection between the time-varying geometry seen by the mobile user and an

associated queueing process.

Let D(γ)(t) denote the closed disc of radius rγ centered on the mobile

user’s location at time t. This closed disc follows the mobile user’s motion

along the straight line. Let K(γ)(t) = |Φ ∩ D(γ)(t)| denote the number of

infrastructure nodes in the disc.

The following theorem provides a simple characterization of (K(γ)(t), t ≥

0) which in turn will enable the study of the SNR level crossing process.

Theorem 1. The process (K(γ)(t), t ≥ 0) is same as that modeling the number

of customers in an M/GI/∞ queue with arrival rate λ(γ) = 2rγvλ and i.i.d.

service times with density

fW (γ)(s) =

{
v2s

2rγ
√

4r2γ−v2s2
for s ∈ [0, 2rγ/v],

0 otherwise.
(2.5)
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Figure 2.2: Level crossings of the SNR process as an on-off process (bottom)
and the point process of its local maxima χ, denoted by “o” on the x axis,
together with edge crossings, denoted by “×” (top).

Proof. The entry of a node into the closed disc D(γ)(t) can be viewed as an

arrival to the queue. The amount of time spent by the node in D(γ)(t) corre-

sponds to its service time and thus the exit from D(γ)(t) to its departure from

the queue.

We first show that the arrival process to the disc and thus the queue,
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is Poisson. We begin by proving that the arrival process has independent and

stationary increments. The probability that there is an arrival in the next ε

seconds is the probability that there is a node in the set with area A
(γ)
ε = 2rγvε

depicted in Fig. 2.3. Since nodes are distributed according to a homogeneous

Poisson point process of intensity λ, the number of nodes in any closed set of

area b follows a Poisson distribution with parameter λb. Thus, for any ε > 0,

the increments in the arrival process have the same distribution. Also, the

number of nodes in any two disjoint closed sets are independent. Thus, the

arrival process has independent stationary Poisson increments. For a small

value of ε, the probability that there is a single arrival is λA
(γ)
ε + o(ε). Thus,

the arrival process is Poisson with rate 2rγvλ.

Every node that enters the moving closed ball stays in it for a time

that depends on its entry locations and is proportional to the chord length as

shown in Fig. 2.3. This corresponds to its service time in the queue.
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Since the mobile moves at constant velocity, the distribution of the

service times can be derived from the distribution of the chord lengths, see

e.g., 2.3. Without loss of generality suppose the mobile moves along the x-

axis. The y coordinate of a typical node entering the disc, Y (γ), is uniform on

[−rγ, rγ]. The random variable W (γ) representing the typical service time can

be represented as:

W (γ) =
2
√
r2
γ − (Y (γ))2

v
.

The density of W (γ) is then given by (3.21), and has a mean E[W (γ)] = πrγ
2v

.

Thus, the process (K(γ)(t), t ≥ 0) capturing the number of nodes in the

moving disc follows the dynamics of the number of customers in an M/GI/∞

queue with arrival rate λ(γ) = 2rγvλ and i.i.d service times following the

distribution of W (γ). It follows that the stationary distribution for K(γ)(t) is

Poisson with mean πr2
γλ.

Given this connection to an M/GI/∞ queueing model, we can now

characterize the SNR level crossing process as an alternating renewal process

defined as follows:

Definition 2. A process alternating between successive on and off intervals

is an alternating renewal process if the sequences of on period (B
(γ)
n , n ≥ 1)

and off period (I
(γ)
n , n ≥ 1) are independent sequences of i.i.d. non-negative

random variables.

Theorem 2. For any γ > 0, the SNR level crossing process, (C(γ)(t), t ≥ 0),

is an alternating-renewal process. Further, its typical on period, B(γ), and

22



off period, I(γ), are distributed as the busy and idle periods of an M/GI/∞

queue with arrival rate λ(γ) = 2rγvλ and i.i.d. service times with distribution

given in (3.21). Thus, I(γ) ∼ exp(2λvrγ) and the busy period distribution

can be explicitly characterized as in [21]. Also, in the stationary regime, the

probability that the SNR level crossing process is “on” is 1− e−λπr2γ .

Proof. Let us consider the M/GI/∞ queue defined in Theorem 1. If the queue

is idle there are no nodes within a distance rγ of the tagged user. Thus, an

off period of the associated SNR level crossing process is equivalent to an idle

period of the queue. Similarly, the queue’s busy period is equivalent to an on

period.

Since the arrival process is Poisson, the inter arrival times are expo-

nential with parameter λ(γ) = 2λvrγ. Because of the memoryless property, all

idle periods have the same distribution.

Let B̂(γ) denote a random variable representing the forward recurrence

time associated with the on time defined as

P(B̂(γ) > x) =
1

E[B(γ)]

∫ ∞
x

P(B(γ) > z)dz. (2.6)

Using the correspondence of the SNR level crossing process’s on times with the

busy period of an M/GI/∞ queue, its distribution is that given in Theorem

12 in the Appendix 2.7.1 with service time S ∼ W (γ) and

ρ(γ) = 2rγvλE[W (γ)] = λπr2
γ , ν(γ) = 1− e−ρ(γ) . (2.7)
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The busy period B(γ) and idle period I(γ) are independent. Hence, the SNR

level crossing process is an alternating-renewal process. The mean of the busy

period of the queue is given by [21]:

E[B(γ)] =
ν(γ)

2λvrγ(1− ν(γ))
. (2.8)

Thus, the probability that the SNR level crossing process is “on” is 1−e−λπr2γ .

It is easy to see that all path loss functions which are monotonic lead

to an analogue of Theorem 2.

2.3.1.2 Fluctuations of the SNR Process

The SNR process is pathwise continuous and has continuous derivatives

except at a countable set of times corresponding to Voronoi cell edge crossings

where the mobile sees a hand-off and where the first derivative of the SNR

process is discontinuous. Since the mobile is moving at a fixed velocity v, the

intensity of the cell-edge crossings is given by 4v
√
λ/π [22], [23].

As the mobile traverses a particular cell, there is also a time where it

is the closest to the associated node. The SNR process has a local maximum

at these times. Perhaps surprisingly such maxima may happen at the edge of

the cell. Let us denote the point process of times corresponding to interior

maxima by χ. The intensity of χ is given in the following theorem.

Theorem 3. The intensity of the point process χ of the SNR maxima occurring

in the interior of cells is v
√
λ.
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Proof. Let Z ∈ Φ, be a typical associated node to the mobile user at time. Let

us consider the projection Z⊥ of Z onto the straight line (mobile user’s path).

Then, Z⊥, is a point of χ if Z⊥ lies within the Voronoi cell of Z. Thus, the

point process can be characterized by the fact that given a node at a height

h from the straight line, the closed ball Bh(Z
⊥) of radius h centered at the

projection point is empty of nodes. To that extent, consider a rectangle of unit

length and height 2x, with the mobile user’s straight line path passing through

the center. From Mecke’s formula [24], the intensity of the point process χ is

µχ = v lim
x→∞

λ2x

(∫ x

−x
e−λπh

2 1

2x
dh

)
= v lim

x→∞

√
λerf(

√
λπx) = v

√
λ. (2.9)

Thus, the fraction of SNR maxima that happen in the interior of the
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cell is given by π/4. In other words, a proportion 1 − π
4

of the SNR maxima

seen by the mobile occur at the cell edges.

2.3.1.3 Rare Events

In this subsection we consider certain rare events such as the occurrence

of large SNR values. We show that the “rarity hence exponentiality” principle

[7, 8] applies here. We also give the scale at which the inter-arrival times of

high SNR are close to being exponentially distributed. As we shall see in

Section VII, these asymptotic results can also be used for moderate values of

SNR for settings typically found in wireless networks.

The following theorem gives a characterization of the asymptotic be-

havior of the distribution of the random variable V (γ) corresponding to the

up-crossings as γ →∞ and as γ → 0, which can be seen as “good” and “bad”

events respectively.

Theorem 4. For all γ > 0, the up-crossings of the SNR level crossing process,

(T
(γ)
n , n ≥ 1), constitute a renewal process. Let V (γ) be the typical inter arrival

for this process, and let f(γ) = 2λvrγ, then as γ →∞, we have

f(γ)V (γ) d−→ exp(1),

and for g(γ) = 2λvrγe
−λπr2γ , as γ → 0, we have

g(γ)V (γ) d−→ exp(1).

where
d−→ implies convergence in distribution.
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Proof. The proof is given in the Appendix 2.7.2.

The difference in the scales of the inter-event times of “good events”

and “bad events” is due to the fact that the probability of occurrence of a

bad event goes to zero faster than the probability of occurrence of good event.

Since for bad events, as rγ tends to ∞, a disc of radius rγ should be empty,

an event whose probability is e−λπr
2
γ . Conversely, for good events, as rγ tends

to 0, there should be at least one node in the disc of radius rγ, an event whose

probability is given by 1− e−λπr2γ .

2.3.2 Sharing Number Process

In contrast to the SNR or the Shannon rate process, which take their

values in the continuum, the sharing number process is discrete valued and

piece-wise constant. We start with evaluating the frequency of discontinuities

and then introduce an upper-bound process to be used in the sequel. We

conclude this section with a study of rare events.

2.3.2.1 Discontinuities

In the sequel, we will use the following simplified version of the Johnson-

Mehl cell, see [22].

Definition 3. Consider Φ = {Xi} the Poisson point process of nodes on R2.

For any threshold γ, the Johnson–Mehl cell J (γ)(Xi) associated with Xi is the

intersection of the Voronoi cell of Xi w.r.t. Φ with a disc of radius rγ centered

at Xi, see Fig.2.5.
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Figure 2.5: Johnson-Mehl cells.

Thus for a fixed threshold γ, the mobile user is covered/served at time

t if and only if it is within the Johnson–Mehl cell of its associated node X(t)

for the radius rγ. We recall the following definition.

Definition 4. The process (N (γ)(t), t ≥ 0) is defined as the number of static

users present in the Johnson-Mehl cell J (γ)(X(t)) if the mobile is in J (γ)(X(t))

and 0 otherwise.

The process (N (γ)(t), t ≥ 0) is an N-valued piece-wise constant process,

with jumps at certain Johnson–Mehl cell edge crossings, see e.g., Fig 2.6.

The value it assumes upon entering a cell is a conditionally Poisson random

variable with a parameter that depends on the area of the cell in question.

The following theorem provides an upper bound for the jump intensity:
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Figure 2.6: Trace of the sharing number and shared rate processes.

Theorem 5. An upper bound for the intensity of discontinuities of the sharing

number process is the intensity of the Johnson-Mehl cell edge crossings, which

is given by:

4v
√
λ

π
(erf(
√
λπrγ − 2

√
λrγe

−λπr2γ ),

where, erf(z) = 2√
π

∫ z
0
e−t

2
dt.

Proof. The intensity of cell edge crossings in a Johnson-Mehl tessellation is

given in [25]. Not all cell edge crossings lead to jumps as the number of static

users can be the same across two adjacent Johnson-Mehl cells, thus the given

intensity is an upper bound.
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Given that the value of N (γ)(t) is a non-zero constant, its time of

constancy is defined as the typical amount of time it remains at that same

constant. This time of constancy is lower bounded by the distribution of in-

tersection of the motion’s line with a typical Johnson–Mehl cell [25]. It is a

lower bound only since the number of static users can be the same across two

adjacent Johnson-Mehl cells.

2.3.2.2 Upper Bound for the Sharing Number Process

Note that the two underlying processes that are used to define the

shared rate process, namely the sharing number process (N (γ)(t), t ≥ 0) and

the SNR process (SNR(t), t ≥ 0), are not independent as is easily seen in the

case where γ = 0. For example, assume that the mobile user experiences a

low SNR, i.e., it is far from its associated node. Then the area of the Voronoi

cell is likely to be large. This in turn implies that the mobile is more likely to

share its infrastructure node with a large number of users.

Fortunately, the sharing number process admits a simple upper bound

which is independent of the SNR process. This upper bound is defined as

follows:

Definition 5. We define an upper bound process,(N̂ (γ)(t), t ≥ 0), on the shar-

ing number process. Let D(x, rγ) denote a disc of radius rγ centered at location

x. Let N̂ (γ)(t), t ≥ 0, be the random process capturing the number of static

users which are in the disc D(X(t), rγ) if the mobile is in J (γ)(X(t)), and 0

otherwise.
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The stochastic process (N̂ (γ)(t), t ≥ 0) enjoys most of the structural

properties of (N (γ)(t), t ≥ 0); in particular, it is piece-wise constant and one

can derive natural bounds on the intensity of its jumps. In addition and more

importantly:

• For all t ≥ 0, P(N̂ (γ)(t) ≥ N (γ)(t)) = 1, i.e., N̂ (γ)(t) is an upper bound

for the sharing number; this bound is tight in the regime where the area

of the typical Voronoi cell ( 1
λ
) is large compared to the area of the disc

of radius rγ;

• When the mobile user is covered, the sharing number N̂ (γ)(t) is Poisson

with parameter ξπr2
γ;

• The stochastic processes (N̂ (γ)(t), t ≥ 0) and (SNR(t), t ≥ 0) are inde-

pendent.

2.3.3 Shared Shannon Rate Process

Recall that the shared rate is given by

S(γ)(t) = R(γ)(t)F (γ)(t) = R(γ)(t)
1

N (γ)(t) + 1
, (2.10)

where R(γ)(t) is the Shannon rate defined in (2.2) and F (γ)(t) the sharing factor

at time t. A realization of this process is illustrated in Fig.2.6. In the sequel,

we use our upper bound process on N (γ)(t) to obtain a lower bound on the

shared rate:

Ŝ(γ)(t) = R(γ)(t)F̂ (γ)(t) = R(γ)(t)
1

N̂ (γ)(t) + 1
, (2.11)
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which is now a product of two independent random variables.

2.3.3.1 Shared Rate Variability

The shared rate process is continuous and differentiable except for a

countable number of points and a countable set of points of discontinuity for

the first derivative. It is equal to zero when the mobile is not covered. The

point process of discontinuities is upper bounded by the Johnson-Mehl cell

edge crossings (see Theorem 5). The point process of its local maxima where

the derivative is zero is the same as that of the SNR process given in Theorem

3.

As can be seen from (2.11), the variability in the mobile user’s shared

rate is driven by two processes: the Shannon rate and the sharing factor

process. It is of interest to understand their relative contributions. To answer

this question, let us consider the variance of Ŝ(γ) which can be written using

the conditional variance formula as:

var(Ŝ(γ)) = var(R(γ))E[F̂ (γ)]2 + var(F̂ (γ))(E[(R(γ))2]). (2.12)

Note that if the density of users increases, the variance of the shared

factor decreases whereas the variance of the Shannon rate remains constant.

Thus, the variance of the shared rate varies approximately linearly with a slope

equal to the second moment of the Shannon rate. By contrast if the density

of nodes increases, the variance of both the sharing factor and the Shannon

rate vary making their relative contributions more complex.
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ξ var(S(γ)) var(F (γ))
5 0.6527 0.0303
25 0.0674 0.0028
50 0.012 0.0016
75 0.0047 0.0006
100 0.0023 0.0001

Table 2.2: Values of variance with increasing user density, ξ, constant density
of nodes, λ = 25/π and constant radius of coverage rγ = 500m.

Let us evaluate empirically what are the contributions of the user and

node density to the variability of shared rate. For a given node density λ =

25/π and radius of coverage rγ = 500m, by increasing the density of static

users, the variance of the shared rate decreases linearly with the variance of

the sharing factor. Table 2.2 gives numerical values evaluated via simulation.

For a given static user density ξ = 50 and radius of coverage of 200m, by

increasing the density of nodes the variance of the sharing factor monotonically

increases, whereas the changes in the variance of SNR process is complicated

due to the way it is defined.Thus, the changes in the variance of the sharing

number process is difficult to characterize with densification of nodes due to

the complex relation given in (2.12). Table 2.3 gives numerical values evaluated

by simulations.

2.3.3.2 Rare Events

Since the mobile user’s shared rate depends on two factors it is of inter-

est to understand their relative contributions towards the events of high/low
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λ var(S(γ)) var(F (γ)) var(R(γ))
5 0.0438 0.0049 0.3325
25 5.1292 0.0576 3.3944
50 0.6351 0.0642 0.9607
75 1.2626 0.0723 0.6926
100 0.9682 0.0756 0.2252

Table 2.3: Values of variance with increasing node density, λ, constant density
of users, ξ = 50 and constant radius of coverage rγ = 200m.

shared rate. The proofs of the following theorems are given in Appendix 2.7.3

and 2.7.4 respectively.

Theorem 6. The likelihood of the rare events associated with high shared rate

is the same (up to a logarithmic equivalence) as that for the high SNR in the

sense that

lim
s→∞
−1

s
log
(
P(S(γ) > s)

)
= lim

s→∞
−1

s
log (P(log(1 + SNR) > s)) =

2

β
.

Notice that as a direct corollary of the last theorem,

lim
s→∞
−1

s
log
(
P(S(γ) > s)

)
= lim

s→∞
−1

s
log
(
P(S(γ) > s|N (γ) = 0)

)
= lim

s→∞
−1

s
log
(
P(S(γ) > s,N (γ) = 0)

)
=

2

β
.

For the rare events associated with a low shared rate, we will consider the

lower bound process (Ŝ(γ)(t), t ≥ 0):

Theorem 7. The rare events associated with achieving low shared rates are

predominantly the same as the rare events associated with high sharing number

given that the mobile is at the covering cell edge, in the sense that for some
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sequence {sn} such that sn log(1 + Kr−βγ ) ∈ Z ∀n and limn→∞ sn → ∞, we

have

lim
n→∞

− 1

sn log(sn)
log

(
P
(
Ŝ(γ) <

1

sn

))
= lim

n→∞
− 1

sn log(sn)
log

(
P

(
log(1 +Kr−βγ )

N̂ (γ) + 1
<

1

sn

))
= log(1 +Kr−βγ ).

Theorem 8. Conditioned on a very good or very bad shared rate, the relative

contribution of the mobile user’s location and the network congestion is as

follows:

lim
s→∞

P(R(γ) > s,N (γ) = 0 | S(γ) > s) = 1, (2.13)

P(N (γ) > as log(1 + γ)− 1 | 0 < S(γ) < 1/s) = 1. (2.14)

Conditioned on a very high shared rate, the mobile user has to be close

to the associated node with no other static users sharing its resources. By

contrast, conditioned on the mobile being served and experiencing a very low

shared rate, it has to share its associated node with a number of users that is

inversely proportional to the desired shared rate.

From the previous theorem, we know that high shared rates are pre-

dominantly the same as the event where the SNR is high and the sharing

number is zero. Thus, for a given threshold δ for the shared rate process, we

can study the asymptotic behavior of the distribution of the inter arrival time

of shared rate up-crossings as δ →∞.

Corollary 1. Let Ẑδ denote the inter arrival time for the good events of the

lower bound process (Ŝ(γ)(t), t ≥ 0) and let f(rδ) = 2λvrδ, then as δ → 0, we
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have

e−ξπr
2
γ Ẑδ

d−→ exp(1).

Proof. The result follows from the fact that Ẑδ =
∑X

i=1 V
rδ , where X is a

geometric random variable with parameter e−ξπr
2
γ and V (rδ) the typical interval

time of the renewal process of up-crossings associated with the SNR process

of threshold δ.

2.4 Simulations and Validation

In this section we evaluate the robustness of our mathematical model

and associated asymptotic results to more realistic settings. We use simula-

tion to study the temporal variations of the SNR process experienced by a

mobile user under various scenarios which are not captured by our analytical

framework. Our model is challenged in various complementary ways: e.g., by

adding fading, accounting for interference from other base stations and relax-

ing the straight line mobility model. In each case the objective is to determine

to what degree our simplified mathematical model is still approximately valid,

providing robust engineering rules of thumb to predict what mobile users see

in practice. In particular, we will answer the following questions:

• How quickly do the SNR up crossings converge to exponential asymp-

totics as a function of the associated thresholds?

• Are the results obtained robust to the presence of fast fading?
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• Are there regimes where the temporal characteristics of the SNR process

are good proxies for those of the SINR process, e.g., high path loss?

• Does the characterization of the SNR level crossing process valid for

other mobility models?

We begin by introducing our simulation methodology and the default param-

eters used throughout this section.

2.4.1 Simulation Methodology

We initially consider a user moving on a straight line (road) at a fixed

velocity of 16 m/s. The base stations are randomly placed according to a

Poisson point process with intensity λ such that the mean coverage area per

base station is equal to that of a disc with radius 200m. Unless otherwise

specified, we consider the path loss function given by Eq. (2.1) with exponent

β = 4 and assume that all base stations transmit with equal power p = 2W.

The signal strength received by the mobile user is recomputed every 10−2

seconds. The total distance traveled by the mobile is 750 km along a straight

line. The number of simulation runs considered to evaluate the means is

1000. The number of handovers experienced by the mobile while traveling this

distance is on average 4269.

We calibrate the thermal noise power to the cell-edge user. Let D

be a random variable denoting the distance of a typical user to the closest

base station. Define dedge by the relation P (D ≤ dedge) = 0.9. Since in our
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simulation setting P (D ≤ d) = 1 − exp(λπd2), we have dedge =
√
− ln(0.1)

πλ
. If

we fix the desired SNR at the cell edge to be SNRedge, this then determines

the noise power to be w =
pd−βedge

SNRedge
. We set the SNRedge to be 1 dB.

In the sequel we evaluate how quickly the convergence to exponen-

tial stated in Theorem 4 arises. To that end we compare the re-normalized

distributions obtained via simulation to a reference exponential distribution

with parameter 1 using the Kolmogorov-Smirnov (K-S) test. The K-S test

finds the greatest discrepancy between the observed and expected cumulative

frequencies– called the “D-statistic”. This is compared against the critical

D-statistic for that sample size with 5% significance level. If the calculated

D-statistic is less than the critical one, we conclude that the distribution is of

the expected form, see e.g. [26].

2.4.2 Convergence of Level-crossing Asymptotics

Theorem 4 shows that as the SNR threshold γ in dB increases, the

rescaled distribution for up-crossings of the SNR process becomes exponential.

The question is how large γ needs to be for this result to hold. To that end

we simulated the level crossing process for various γ and subjected it to the

K-S test as mentioned above.

The Q-Q plots for up-crossing inter-arrivals rescaled by f(rγ) as intro-

duced in the theorem are depicted in Fig. 2.7. As expected, as the threshold

increases, the points become linear, and for a threshold value of γ = 50 or

more, it is accepted as an exponential with unit mean by the K-S test.
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Figure 2.7: Q-Q plot for various thresholds.

In practice a SNR of 50 dB is not realistic for wireless users. However,

as seen from the Q-Q plots in Fig.2.7, for moderate values of γ such as 0.1,

the up-crossing inter-arrivals can be well approximated by an exponential with

parameter 1/f(rγ). Further, the absolute error in the mean of the inter-arrival

of up-crossings for moderate value of γ = 1 is approximately only 9.3 s.

2.4.3 Robustness of Level-crossing Asymptotics to Fading

Next we study the effect that channel fading might have on the level-

crossing asymptotics. We consider channels with Rayleigh fading with unit

mean, so that the SNR experienced by the tagged mobile user at a distance

d from the base station is given by Hpd−β/w, where H is a fading random

variable which is exponential with unit mean. The coherence time is set to
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tc = 0.423/fd, where fd is the Doppler shift given by fd = v
c
fo where v is

the vehicle velocity, c is the speed of light and fo = 900MHz is the operating

frequency. This gives a coherence time tc = 0.007s. Thus, fading (power)

changes every 0.007 seconds. A realization of the SNR process with fading is

exhibited in Fig. 2.8.

If we assume no fast fading, the realizations of the SNR process seen by

a mobile are continuous and differentiable and level crossings are well defined.

However when the fluctuations associated with fast fading are added to the

model, level crossings will exhibit bursts of up-crossings associated with fast

fading when the mean channel gains reach the thresholds, see Fig. 2.8. Thus,

in our simulations, we avoid these bursts of up-crossings by considering the

first up-crossing and by suppressing all subsequent up crossings (if any) for

an appropriate time period. We take a time period for the suppression of

up-crossings equal to twice the expected on time of 2E[B(rγ)] [21].

In order to vary the variance while keeping the mean of the fading

equal to 1, we now consider fading which is a mixture of exponentials. For this

process, we would expect that for fading with mean one, if variance is small, the

appropriately rescaled inter-arrival distribution for up-crossings which are not

suppressed would once again be asymptotically exponential with parameter

1. In other words we expect geometric variations associated with base station

locations to dominate channel variations. Whereas, if the fading variance is

high, one might expect the SNR threshold required to see convergence to an

exponential to increase. Fig. 2.9 exhibits such thresholds as a function of the
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Figure 2.8: SNR process in presence of fading with mean 1.

fading variance. As can be seen for fading variances exceeding 8, the channel

variations dominate the geometric variations and thus up-crossing asymptotics

differ from those of Theorem 4.

2.4.4 Robustness of Level-crossing Asymptotics to Interference

So far we have focused on the SNR process. One might ask to what de-

gree the Signal-to-Interference-plus-Noise Ratio (SINR) process, share similar

characteristics.

To that end we simulated the SINR process for a setting with a high

path loss exponent of β = 4 and found once again that the rescaled distribution

for the up-crossing inter-arrivals converges to an exponential with parameter 1.

The test requires a threshold γ = 31.7dB.We then evaluated, for different path
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Figure 2.9: Threshold above which the inter-arrival of up-crossing converges
to an exponential with parameter 1, for different variance of fading.

loss β, what threshold values are needed to obtain a similar convergence. As

shown in Fig. 2.10, the threshold in question increases as β decreases. Further

we found that for β < 3.5, we no longer have the desired convergence prop-

erty. In summary, for high path-loss exponents β ∈ [3.5, 4], the up-crossing

asymptotics for the SNR and SINR processes are similar.

2.4.4.1 Robustness to Generalized Mobility Models

So far we have focused on a mobile moving strictly along a straight line.

Next we evaluate to what extent one can relax this requirement. To that end

we consider a variant of the random way point model, [27], where a user moves

at a constant velocity, v meters per sec, but every t0 secs, with probability p0

selects a new independent direction (angle) uniformly distributed in (−θ0, θ0).
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Figure 2.10: Threshold above which the inter-arrival of up-crossing converges
to an exponential with parameter 1, for different path loss exponent.

We conducted simulations where for a given SNR threshold,γ, vari-

ous values for the parameters, p0, θ0, v and t0 were varied and the following

quantities were measured:

• The means of the on-off periods;

• The independence of the on-off periods;

• The distribution of the up-crossing inter-arrivals.

We considered three particular sets of values for the parameters (v, t0, p0, θ0),

each reflecting a specific kind of traffic: (1) Car on a highway: (20, 10, 0.001, π/45),

(2) Car in an urban area: (10, 1, 0.1, π/4) and (3) Wanderer: a pedestrian mov-

ing in a city: (1, 0.1, 0.6, π). Fig.2.11 illustrates a snapshot of the paths of the
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Figure 2.11: Three specific mobile user motion paths.

three cases.

The mean of the on-off periods of the SNR process is within a 5 percent

error margin in the case (1) but they do not match for the other two cases for

moderate values of the SNR threshold. However, for certain high threshold

values, γ ∈ [20dB, 60dB] the mean coverage time for the case (2), is within an

acceptable error margin of 10 percent. Further, the mean on time for both the

second and third cases is larger than the mean on time in the case where the

mobile is moving along a straight line.

The on-off periods are also highly correlated for the later two cases,

while independence approximately holds in case (1). The distribution of the

up-crossing inter-arrivals for a specific high threshold value of γ = 50 dB

is now considered. The convergence to an exponential of unit mean is only
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observed for the first case. In summary, the robustness of our model is only

guaranteed for slight changes in the direction. Major changes in the direction

have a strong effect on the characterization of on-off periods as an alternating

renewal process with the proposed distribution.

2.5 Applications

In this section we use our framework to evaluate application-level per-

formance of mobiles in a shared wireless network. In particular we consider

two very different wireless scenarios: (1) video streaming to mobiles sharing

a cellular or WiFi network and (2) large file downloads using WiFi. In both

applications, we consider a service model where the users are served only if

the SNR experienced by them is above a certain threshold. Thus, the users

are served only during the on period of the SNR process. We illustrate how

the characterization of the level-crossing process can be leveraged to improve

the QoE of the tagged user.

2.5.0.1 Stored Video Streaming to Mobile Users

Let us consider a scenario where mobile users are viewing stored videos

which are streamed over a sequence of wireless downlinks. The users are

distributed according to a Poisson point process of density ξ and are moving

independently of each other. Consider a policy where a mobile user is served

by a node only if the SNR experienced is greater than a threshold γ. Thus, the

nodes serve the mobile users within the radius of coverage rγ = (p/(γw))1/β.
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A lower threshold γ corresponds to a lower transmission rate (when served), a

higher probability of coverage and sharing with a large number of other mobile

users. Conversely a higher threshold implies higher transmission rate and

sharing with fewer other mobile users. For simplicity we consider rebuffering

as the primary metric for user’s video QoE [20].

The playback buffer state of the tagged mobile user moving at a fixed

velocity v on a straight line, can be modeled as a fluid queue.The arrival rate to

the queue alternates between an average ergodic rate, h(γ) = E[R(γ)|SNR > γ]

and zero depending on whether the mobile is being served or not. Let η denote

the video playback rate in bits. Hence, as long as the buffer is non-empty, the

fluid depletion rate of the queue is η. Re-buffering of the video is directly

linked to the proportion of time the playback buffer is empty, which is given

by 1− ρ(γ, ξ), where the load factor, ρ(γ, ξ), [24] of the queue is:

ρ(γ, ξ) =
ν(γ)h(γ)

η
E
[

1

N̂
(γ)
p + 1

|SNR > γ

]
. (2.15)

where ν(γ) is the probability that the alternating renewal process associated

with the arrival rate to the fluid queue is “on”.

The first natural question one can ask is whether there is a choice of γ

such that the fluid queue is unstable, thus ensuring no rebuffering in the long

term. In other words, does there exist a γ > 0 such that ρ(γ, ξ) > 1? Given

our policy and the QoE metric, the network provider may choose a lower value

of threshold,γ, as long as the typical mobile user in the long run experiences
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no rebuffering.
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Figure 2.12: The load factor of the fluid queue for a single user (top curve) and
for a positive density of users as a function of γ (curves below the top curve).
For the latter curves, the number of users per base station are ξ/λ = 1, 4 and
10 from top to bottom. Here b = 1. All functions can be multiplied by an
arbitrary positive constant when playing with a and η.

Now, for simplicity let us consider a constant mean transmission rate

κ = a log (1 + γ)E
[

1

N
(γ)
p +1

]
instead of the average ergodic rate. This constant

bit rate is when the network does not rely on adaptive coding/decoding. For

additional motivation for this scenario, see [20]. The load factor ρ(γ, ξ) is then

given by

ρ(γ, ξ) =

a log(1 + γ)

(
1− e

−b
γ2/β

)
η

E
[

1

N
(γ)
p + 1

]
,

(2.16)
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where b = λπ
(
p
w

) 2
β and E[1/(N

(γ)
p + 1)] can be calculated by numerical inte-

gration as described in previous section.

It is easy to check that the function ρ(γ, ξ) has a unique maximum γ∗

on (0,∞). A plot of (2.16) and the value of γ∗ are exhibited in Fig. 2.12.

Notice that for these parameters, the value of γ∗ increases with ξ.

λ
20 40 60 80

ξ

100
200
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400
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600
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900

Figure 2.13: Level set curve of ρ(γ∗, ξ) = 1 for an arbitrary positive constants
a and η.

For a given base station density λ and density of users ξ, one can

evaluate the SNR threshold value γ∗ for which the load factor ρ is maximum.

Fig.2.13 illustrates the level set curve of ρ(γ∗, ξ) = 1 for various values of λ and

ξ. In this setup, given the video consumption rate η, it is possible to answer

questions like what is the minimum density of base stations required to serve

a certain density of users such that in the long term the video streaming is
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uninterrupted for all the users.

Remark 1. In the case where there exists no threshold γ for which the condi-

tion for no long term rebuffering is satisfied and κ > η, the fluid queue alter-

nates between busy and idle period representing the periods when the video is

un-interrupted or frozen, respectively. The distribution of the on periods B(γ)

and that of the off periods I(γ) of the M/GI/∞ queue discussed in Section de-

termine the distribution of the busy period Bf and that of the idle period If of

the fluid queue. When denoting by κ the constant input rate during on period

and by η the constant output rate when the queue is non-empty, the Laplace

transform of Bf is given by [28]

LBf (s) = LB(γ)(sσ + λ(σ − 1)(1− LBf (s))), (2.17)

where σ = κ/η > 1, and the idle period If has an exp(λ(γ)) distribution.

2.5.0.2 WiFi Offloading

WiFi offloading helps to improve spectrum efficiency and reduce cel-

lular network congestion. One version of this scheme is to have mobile users

opportunistically obtain data through WiFi rather than through the cellular

network. Offloading traffic through WiFi has been shown to be an effective

way to reduce the traffic on the cellular network, when available WiFi is faster

and uses less energy to transmit the data.

Let us consider a scenario where the mobile users download a large

file from the service provider, relying on WiFi hotspots, distributed according
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to a Poisson point process of intensity λ, rather than from the cellular base

stations. The users are distributed according to a Poisson point process of

density ξ and are moving independently of each other. Assume that the WiFi

hotspots have a fixed coverage area, i.e., the mobile user connects to WiFi

only if it is within a certain distance r from the hotspot. Thus, higher the

density of hotspots, λ, deployed by the provider the better the performance

experienced by mobile users which rely only on them. We consider the time

it takes to complete the download as the primary metric for user’s quality of

experience.

Consider again the case without adaptive coding/decoding and the

tagged mobile user moving on a straight line at constant velocity v. Then,

the shared rate experienced by the mobile user is the constant

κ = a log (1 + γ)E
[

1

N
(γ)
p + 1

]
as defined above. In addition, the mobile user experiences an alternating on

and off process, as characterized in Theorem 2.

Below, for the sake of mathematical simplicity, we assume that the

file size F is exponential with parameter δ and that the mobile user starts

to download the file at the beginning of an on period. Let T be a random

variable denoting the time taken to download the file. Consider the event

J = {F > κB(λ)}, where B(λ) is a random variable distributed like a typical

on period seen by the mobile (see Theorem 2) independent of F and let

α = P(J) = P(F > κB(λ)) = LB(λ)(δκ). (2.18)
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Now, define the non-negative random variable X as the busy period,

B(λ), conditioned on event J , whose c.d.f. is given by:

P(X < x) =
1

α

∫ x

0

e−δκzfB(λ)(z)dz (2.19)

Conditioned on the event, {F ≤ κB(λ)}, let Y denote the time taken

to download the file, i.e., F
κ

. The c.d.f. of the non-negative random variable

Y is then given by:

P(Y < y) =
1

1− α

∫ yκ

0

δe−δzP(B(λ) >
z

κ
)dz. (2.20)

Notice that

LX(s) =
1

α
LB(λ)(s+ δκ) (2.21)

LY (s) =
1

1− α

∫ ∞
0

δκe−y(δκ+s)P(B(λ) > y)dy. (2.22)

The following representation of the Laplace transform of T is an immediate

corollary of the on-off structure:

Theorem 9. Consider a network of WiFi hotspots distributed according to a

Poisson point process of intensity λ and radius of coverage r shared by mobile

users distributed independently according to a Poisson point process of intensity

ξ. Assuming that the tagged mobile user starts to download the file at the

beginning of an on period, the Laplace transform of the time taken to download

a file of size F ∼ exp(δ) is given by

LT (s) =
(1− α)LY (s)

1− αLX(s) 2λvr
2λvr+s

. (2.23)
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Proof. Proof is given in the Appendix 2.7.7.

It is remarkable that the Laplace transform of T admits a quite simple

expression in terms of that of B(λ). Other and more general file distributions

can be handled as well when using classical tools of Laplace transform theory.

Note that this setting also leads to interesting optimization questions such as

the optimal density of WiFi hotspots needed to be deployed for lower expected

download times.

2.6 Variants

In this section, we consider two generalizations of our framework: (1)

we move from sharing with static users to sharing with mobile users, and (2)

we move from homogeneous to heterogeneous wireless infrastructures.

2.6.1 Sharing the Network with Mobile Users

Until here we have considered a tagged mobile user sharing the network

with static users. We now consider two scenarios: (1) that where the other

users are mobile and are initially distributed according to a homogeneous

Poisson point process, and (2) that where they are mobile but restricted to a

random road network, i.e., form a Cox process.

2.6.1.1 Homogeneous Poisson case

Consider the case where other users sharing the network are initially

located according to a homogeneous Poisson point process of intensity ξ, and
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subsequently exhibit arbitrary independent motion. This is a possible model

for pedestrian motion. It follows from the displacement theorem for Poisson

point processes [14] that the other users at any time instant will remain a

Poisson point process of intensity ξ.

As considered before, the users are served only if they are at a distance

less than rγ from the closest node. Consider a tagged mobile user moving at

a fixed velocity along a straight line. Let us define the mobile sharing number

process (N
(γ)
p (t), t ≥ 0) as the number of users sharing the node associated with

the tagged user when it is served and zero otherwise. Thus, at any given time

t, the tagged user shares its resources with a random number of users N
(γ)
p (t)

which is Poisson with a parameter depending on the area of the Johnson-Mehl

cell.

For simplicity, we define the shared rate process (S
(γ)
c (t), t ≥ 0) as

S(γ)
c (t) =

a log (1 + γ)E
[

1

N
(γ)
p +1

]
if L(t) ≤ rγ,

0 otherwise.
(2.24)

Since the distribution of the area of the Voronoi cell is unknown, we

approximate N
(γ)
p to be Poisson with parameter ξE[Ĵ (γ)], where Ĵ (γ) denotes

the area of the Johnson-Mehl cell of radius rγ, conditioned on the fact that the

tagged user is within a distance rγ from the associated node, which introduces

an additional bias. We can compute the expectation with the help of integral

geometry as shown in Appendix 2.7.5.

We found the value of the expectation using numerical integration and
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compared the mean number of users E[N
(γ)
p ] = ξE[Ĵ (γ)] with the sample mean

obtained from simulation for various parameters λ, rγ. To validate the ap-

proximation of N
(γ)
p by a Poisson random variable with parameter ξE[Ĵ (γ)],

we compared the value of E[1/(N
(γ)
p + 1)] calculated using numerical integra-

tion with that from simulations. We found that the calculated value of the

expectation is within the 95% confidence interval of the simulated mean.

2.6.1.2 Cox process

Let us consider a population model where roads are distributed accord-

ing to a Poisson line process of intensity λr on R2 [29]. Then independently

on each road, we consider users distributed according to a stationary Poisson

point process of intensity λt. This is known as a Cox process and we denote

it by Φu [29]. This model can be used to represent a car motion on a road

network.

For a line L of the line process, let us denote the orthogonal projection

of the origin O on L by (θ, r) in polar coordinates. For θ ∈ [0, π) and r ∈ R,

(θ, r) is unique. Thus, a Poisson line process with intensity λr is the image of

a Poisson point process with the same intensity on half-cylinder [0, π)× R.

Suppose all users on the roads are moving arbitrarily but independently

from each other. Thus, at any instant the distribution of users on a given road

remains Poisson. Consider a tagged user moving along a given road, then we

have the following theorem by [30].

Theorem 10. Φu is stationary, isotropic, with intensity πλrλt. From the
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point of view of the tagged user i.e., under its Palm distribution, the point

process is the union of three counting measures: (1) the atom at the origin,

O, (2) an independent λt-Poisson point process on a line through O with a

uniform independent angle and (3) the stationary counting measure Φu.

Following our previous framework, let us define an another sharing

number process (N
(γ)
d (t), t ≥ 0) as the number of users sharing the node asso-

ciated with the tagged user when it is served and zero otherwise.

Evaluation of the mean of N
(γ)
d . Suppose the tagged user is at the

origin O. Let the associated node X(t) be at a distance x from the origin.

Let d(0, θ) be a line through the origin with θ uniform from [0, π). From the

aforementioned theorem, the number of sharing users N
(γ)
d can be split into

two terms: Ns denoting the number of sharing users from stationary Φu and

Nl denoting the number of sharing users on the line d(0, θ).

Given any convex body Z, Ns(Z) denotes the number of sharing users

from stationary Φu present in Z, and E[Ns(Z)] is given by πλrλtarea(Z) [31].

Let Ĵ (γ) denote the area as defined before. Thus,

E[Ns] = πλrλtE[Ĵ (γ)],

where, E[Ĵ (γ)] is evaluated using integral geometry (see Appendix 2.7.5).

Now, let l(0, θ) denote the length of the line d(0, θ) in the area Ĵ (γ).

Then, Nl, the number of sharing users on the line d(0, θ), is Poisson with

parameter λtl(0, θ). Thus, E[Nl] = λtE[l(0, θ)].
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One can evaluate E[l(0, θ)] using integral geometry (see Appendix 2.7.6).

We have,

E[N
(γ)
d ] = E[Ns] + E[Nl] = πλrλtE[Ĵ (γ)] + λtE[l(0, θ)]. (2.25)

Thus, the mean number of users sharing the tagged user’s association node is

larger when the users are distributed according to a Cox process than when

the users are distributed according to a Poisson point process, assuming that

both have the same mean spatial intensity.

2.6.2 Mixture of Pedestrian and Road Network

Suppose now we have two types of users : drivers who stay on roads,

and pedestrians which are unconstrained. If pedestrians are supposed to follow

a Poisson point process, from their point of view, the number of sharing users

corresponds to the sum of a stationary Poisson point process and a stationary

Poisson line process. On the other hand, from a driver’s point of view, the

number of sharing users corresponds to the same sum, but in addition with a

Poisson point process on a road the driver is taking. Thus, the mean number

of sharing users is always greater for drivers. In other words, pedestrians are

likely to share their infrastructure node with fewer users than drivers.

2.6.3 Heterogeneous Networks

Let us consider a deployment of micro-base stations Φ̂ = {X̂1, X̂2, ..}

distributed according to some homogeneous Poisson process of intensity λ̂

independent of the existing macro-base stations Φ = {X1, X2, ..}. Assume
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that all micro-BS transmit at a fixed power p̂.

Let us consider a mobile user moving at a fixed velocity v along a

straight line. For a given SNR threshold γ, the mobile is served by a micro-

base station if its distance from its closest micro-BS is less than r̂γ = (p̂/wγ)1/β.

Otherwise it is served by a macro-base station provided its distance from the

closest macro-BS is less than rγ.

Note that the SNR level crossing process as previously defined is again

an alternating renewal process which now depends on the heterogeneous re-

source deployment.

Theorem 11. For heterogeneous networks with preferential association to mi-

cro base stations, the probability that the stationary SNR level crossing process

seen by a tagged user is “on” is 1−e−π(λr2γ+λ̂r̂2γ). Also, the mean time for which

the process is “on” is given by

eπ(λr2γ+λ̂r̂2γ) − 1

2v(λrγ + λ̂r̂γ)
. (2.26)

Proof. In order to characterize the SNR level crossing process, we establish a

connection to a Boolean model. Assume that the mobile user is moving with

unit velocity. Let B(Xi, rγ) denote the closed ball of radius rγ centered at Xi

and B(X̂i, r̂γ) a closed ball of radius r̂γ centered at X̂i. The union of all these

closed balls forms a Boolean model

E =

(
∪Xi∈Φ B(Xi, rγ)

)
∪
(
∪X̂i∈Φ̂ B(X̂i, r̂γ)

)
. (2.27)

57



Now, assume that E is intersected by the directed line ~l. Note that the

Boolean model under consideration has independent convex grains and thus

the intersection E ∩ ~l yields an alternating sequence of “on” and “off” periods

which are independent. Let B
(γ)
h and I

(γ)
h be random variables denoting the

length of a typical on and off periods respectively.

The distribution of the length of off period I
(γ)
h is easy to establish using

the contact distribution functions and is exponential with parameter λ∗ [22]:

f
I
(γ)
h

(l) = λ∗e−λ
∗l,

where, λ∗ is 2(λ + λ̂)E[R
(γ)
h ]. Here R

(γ)
h is the random variable denoting the

radius of the closed ball and is given by

R
(γ)
h =

{
rγ w.p. λ

λ+λ̂
,

r̂γ w.p. λ̂

λ+λ̂
.

(2.28)

Thus, the mean off period under the assumption of unit velocity is

E[I
(γ)
h ] =

1

λ∗
=

1

2(λrγ + λ̂r̂γ)
.

Now, in the stationary regime, the probability that the mobile user is

either within a distance r̂γ from a micro-BS or a distance rγ from a macro-BS

i.e., it’s SNR level crossing process is “on”, is given by the volume fraction [22]:

c = 1− e(−(λ+λ̂)V̄ ), (2.29)

where

V̄ = πE[(R
(γ)
h )2] =

π(λr2
γ + λ̂r̂2

γ)

λ+ λ̂
. (2.30)
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Thus, c = 1 − e−π(λr2γ+λ̂r̂2γ). The probability evaluated above does not depend

on the velocity of the mobile user and thus holds for any constant velocity v.

The mean on period E[B
(γ)
h ] can be evaluated using the following relation

c =
E[B

(γ)
h ]

E[B
(γ)
h ] + E[I

(γ)
h ]

,

which results in

E[B
(γ)
h ] =

eπ(λr2γ+λ̂r̂2γ) − 1

2(λrγ + λ̂r̂γ)
.

Since, the mobile user is moving with a fixed velocity v, the mean time

for which the mobile user is “on” is given by
E[B

(γ)
h ]

v
.

These results provide an analytical characterization of the impact of

heterogeneous densification on the mobile user’s temporal performance. Let

us now compare the performance improvement seen by the mobile user in a

heterogeneous network as compared to that of a homogeneous network. The

graphs in Fig. 2.14 and Fig. 2.15 illustrate the difference in the expected

on-times and volume fraction of the networks respectively.

Notice that as micro-base stations are added, the expected on time

decreases and later increases. The initial decrease is due to the inclusion of

many relatively small length on-times resulting from the micro-base stations in

the voids of the homogeneous network. However, the volume fraction increases

monotonically with the addition of micro-base stations.
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Figure 2.14: Comparing mean-on time for heterogeneous and homogeneous
networks.

2.6.4 Stored Video Streaming in Heterogeneous Networks

Consider a scenario as discussed before where mobile users are viewing

a video being streamed over a sequence of wireless downlinks, but now served

by a heterogeneous network with micro and macro BS. In this setting once

again we consider a fluid queue representing the tagged mobile user’s playback

buffer state similar to Section VII A, and ask whether there is a choice of γ

such that the fluid queue is unstable, thus ensuring no rebuffering in the long

term. Let the event Q denote that the tagged user is served, then

ρ(γ, ξ) =
a log(1 + γ)P(Q)

η

(
E

[
1

N
(γ)
p + 1

|Q

])
. (2.31)

Assuming our approximation is valid, we need to find E[ 1

N
(γ)
p +1

] in the
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Figure 2.15: Comparing volume fraction for heterogeneous and homogeneous
networks.

case of heterogeneous network. Let the events G and H be that the tagged

user is served by micro BS and macro BS respectively.

E

[
1

N
(γ)
p + 1

|Q

]
=

(
E
[

1

N
(γ)
p +1
|G
]
P(G) + E

[
1

N
(γ)
p +1
|H
]
P(H)

)
P(Q)

. (2.32)

Since, the micro and macro base stations are distributed independently,

the mobile user experiences two independent alternating renewal processes.

Thus, in the stationary regime, the probability that mobile is served by macro

BS is the product of the probabilities that the mobile is “on” period of alter-

nating renewal process of macro BS and in “off” period of that of micro BS
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which gives:

P(G) = 1− e−λ̂πr̂2γ ,P(H) = e−λ̂πr̂
2
γ (1− e−λπr2γ ). (2.33)

Let Ĵ
(γ)
1 and Ĵ

(γ)
2 denote the area similar to that of what we considered

before. Given the mobile is served by macro BS, we need to consider the

users which are within the area Ĵ
(γ)
1 excluding the area covered by micro BS

in this area. The area covered by the micro BS in Ĵ
(γ)
1 is approximated to be

ν(r̂γ) × E[Ĵγ1 ], where ν(r̂γ) is the fraction of space associated with micro-BS as

given by (2.7). Then

E

[
1

N
(γ)
p + 1

|G

]
=

1− eξE[Ĵ
(γ)
2 ]

ξE[Ĵ
(γ)
2 ]

,

E

[
1

N
(γ)
p + 1

|H

]
=

1− eξE[Ĵ
(γ)
1 ](λ̂πr̂2γ)

ξE[Ĵ
(γ)
1 ](λ̂πr̂2

γ)
.

For a given density of macro-BS λ, the density of micro-BS λ̂ and the

density of users ξ, we can evaluate the SNR value γ∗ for which the load factor

ρ(γ, ξ) given in (2.31) is maximum. Fig.2.16 illustrates the optimal SNR value

(γ∗) with varying density of micro BS λ̂. Notice that the optimal gamma value

initially decreases with the density of micro-BS.

Since in our setting the micro BS have smaller transmission power, for

a given threshold γ, the radius of coverage for micro BS is smaller than that

of the macro BS .i.e., r̂γ < rγ. Since the micro-BS are given higher preference,

with an increase in their density, the optimal threshold decreases in order

to increase their coverage. Also, the cost incurred by increasing coverage of
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macro-BS is compensated by the increased density and coverage of micro-BS

till a certain density.
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Figure 2.16: γ∗ with increase in micro- BS density for a certain fixed density
of macro-BS for an arbitrary positive constants a and η in heterogeneous case.

Fig.2.17 illustrates the level set curve of ρ(γ∗, ξ) = 1 for various values

of λ̂ and ξ for a given density of macro-BS λ. Given this setup, it is possible to

answer questions like what is the minimum density of micro-base stations that

needs to be deployed by the operator to serve a certain density of users, given

the density of macro-BS λ such that the video streaming is uninterrupted for

all the users. Thus, operators evaluate the cost incurred to serve a higher

density of users by deploying micro-BS and in case the cost incurred is higher,

an operator might consider other technologies.

Remark 2. In heterogeneous networks, the interference from macro-BS to
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Figure 2.17: Level set curve of ρ(γ∗, ξ) = 1 for an arbitrary positive constants
a and η in heterogeneous case.

micro-BS is of major concern. One can introduce blanking, to reduce the ef-

fect of such interference i.e., assume that with certain probability f micro-BS

transmit and with probability 1 − f macro BS transmit. Also, by considering

heterogeneous networks with cellular BS and WiFi hotspots, there is no such

problem of interference since both cellular BS and WiFi hotspots operate at

different frequencies.

2.7 Conclusion and Future Work

As explained in the introduction, the analysis of temporal variations of

the shared rate experienced by a mobile user requires the characterization of

both the functional distribution of a continuous parameter stochastic process

64



(rate process) constructed on a random spatial structure (e.g. the Poisson

Voronoi tessellation) and of another stochastic process (sharing number pro-

cess) constructed on a random distribution of static users. This chapter ad-

dressed the simplest question of this type by focusing on the underlying SNR

process and the sharing number process in the absence of fading. This allowed

us to derive an exact representation of the level crossings of the stochastic pro-

cess of interest as an alternating renewal process with a full characterization

of the involved distributions and of the asymptotic behavior of rare events.

The simplicity and the closed form nature of this mathematical picture are

probably the most important observations of the chapter. We also showed

by simulation that this very simple model provides a good representation of

the salient characteristics which happen for more complex systems, such as

those with fading when the fading variance is small enough, or those based on

SINR rather than SNR when the path loss exponent is large enough or those

with changes in the direction of motion, when the change in direction is small.

This model is hence of potential practical use as is, in addition to being a first

glimpse at a set of new research questions.

The most challenging questions on the mathematical side are as follows:

(1) The understanding of the tension between the randomness coming from

geometry (studied in the present chapter), from sharing the network with other

users (also studied in the present chapter) and that coming from propagation

(only studied by simulation here): it would be nice to analytically quantify

when one dominates the other. (2) The extension of the analysis to SINR
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processes, which are our long term aim and will require significantly more

sophisticated mathematical tools (e.g. based on functional distributions of shot

noise fields), than those used so far.(3) The characterization of the distribution

of the shared rate process. (4) The extension the case where all other users

are mobile. To begin with, we might consider a stationary tagged user, with

an independent homogeneous Poisson point process of mobile users moving

on independent straight lines. Considering the Voronoi cell of the associated

base station of the tagged user, we might try to characterize the number of

mobile users entering and leaving the cell as an M/GI/∞ queue. Thus, the

sharing number process associated with the stationary user will be equivalent

to the number of customers in a queue. Later, one could extend this to the

case where the tagged user is mobile.

On the practical side, the main future challenges are linked to the ini-

tial motivations of this work, namely in the prediction and optimization of

the user quality of experience. Many scenarios refining those studied can be

considered. For instance, the stationary analysis of the fluid queue represent-

ing video streaming should be completed by a transient analysis and by a

discrete time analysis. This alone opens an interesting and apparently unex-

plored connection between stochastic geometry and queuing theory with direct

implications to video QoE.
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Appendix

2.7.1 Busy Period of the M/GI/∞ Queue

Theorem 12. (Makowski [21]) Consider an M/GI/∞ queue with arrival rate

λ and generic service time W . Let M denote an N-valued random variable

which is geometrically distributed according to

P(M = l) = (1− ν)(ν)l−1, l = 1, 2, . . . (2.34)

with

ν = 1− e−ρ and ρ = λE[W ]. (2.35)

Consider the R+-valued random variable U distributed according to

P(U ≤ u) =
1

ν
(1− e−ρP(Ŵ≤u)), u ≥ 0, (2.36)

where, Ŵ is the forward recurrence time associated with the generic service

time W . Let {Un, n ≥ 1} be an i.i.d. sequence independent of the random

variable M . Let B denote a typical busy period. Then the forward recurrence

time B̂ associated with B admits the following random sum representation:

B̂ =d

M∑
i=1

Ui, (2.37)

where =d denotes equality in distribution.

2.7.2 Proof of Theorem 4

Lemma 1. For a R+ -valued random variable U (γ) defined by (2.36) and

service time distribution by (3.21). We have the following limit:

lim
rγ→∞

2λrγvE[U (γ)] = 1.
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Proof. From Equations (2.7) and (2.36):

P(U (γ) > u) =
e−ρ

(γ)

ν(γ)
(eρ

(γ)P(Ŵ (γ)>u) − 1), u ≥ 0, (2.38)

and

E[U (γ)] =

∫ 2rγ/v

0

P(U (γ) > u)du =
e−ρ

(γ)

ν(γ)

∫ 2rγ/v

0

(eρ
(γ)P(Ŵ (γ)>u) − 1)du. (2.39)

Thus,

E[U (γ)] =
e−ρ

(γ)

ν(γ)

(∫ 2r/v

0

eρ
(γ)P(Ŵ (γ)>u)du− 2rγ

v

)
. (2.40)

Since Ŵ (γ) is the forward recurrence time associated with the service

time W (γ) defined in (2.6),

P(Ŵ (γ) > u) =
1

E[W (γ)]

∫ ∞
u

P(W (γ) > t)dt,

where, E[W (γ)] = ρ(γ)

2rγvλ
from (2.7) and P(W (γ) > t) = 1/2rγ

√
4r2

γ − v2t2 from

(3.21). Thus,

E[U (γ)] =
e−ρ

(γ)

ν(γ)

(∫ 2rγ
v

0

eλv
∫ 2rγ

v
u

√
4r2γ−v2t2dtdu− 2rγ

v

)

=
e−ρ

(γ)

ν(γ)

(∫ 2rγ
v

0

eλ
∫ 2rγ
u

√
4r2γ−x2dxdu− 2rγ

v

)

=
1

ν(γ)

(∫ 2rγ
v

0

e
−λ
(

1
2
u
√

4r2γ−v2u2+2r2γarctan( uv√
4r2γ−v2u2

)
)
du− e−λπr2γ 2rγ

v

)

=
1

1− e−λπr2γ

(
rγ
v

∫ 2

0

e−λr
2
γq(z)dz − 2e−λπr

2
γrγ

v

)
. (2.41)
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The second equality is by the change of variables vt = x and the last equality is

by the change of variables z = uv/rγ and q(z) = 1
2
z
√

4− z2 + 2arctan( z√
4−z2 ).

Now, from Equation (2.41) we have,

lim
rγ→∞

E[U (γ)] ∼ rγ
v

∫ 2

0

e−λr
2
γq(z)dz.

Now, the integral rγ
v

∫ 2

0
e−λr

2
γq(z) and rγ

v

∫ 2

0
e−λr

2
γ2zdz are asymptotically equal

as rγ goes to ∞.

The asymptotic equality of the two functions as rγ goes to ∞ means,

that the relative error of the approximate equality goes to 0 as rγ goes to ∞

i.e.,

lim
rγ→∞

∫ 2

0
e−λr

2
γq(z) − e−λr2γ2zdz∫ 2

0
e−λr

2
γ2z

= 0.

With the help of the Taylor series expansion, we get that

lim
rγ→∞

∫ C/r2γ
0

e−λr
2
γq(z) − e−λr2γ2zdz∫ 2

0
e−λr

2
γ2z

= 0,

for some constant C. Thus, we need to prove that

lim
rγ→∞

∫ 2

C/r2γ
e−λr

2
γq(z) − e−λr2γ2zdz∫ 2

0
e−λr

2
γ2z

= 0.

Now let us observe the function h(z) = e−λr
2
γq(z) − e−λr2γ2z. The derivative of

the function h(z) is

h′(z) =
(
−
√

4− z2e−λr
2
γq(z) + 2e−λr

2
γ2z
)
r2
γ

= e−λr
2
γ2zr2

γ

[
2−
√

4− z2e−λr
2[q(z)−2z]

]
.

(2.42)
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Thus by substituting z = C/r2
γ and using the Taylor series expansion of [q(z)−

2z] and
√

4− z2 , we get

lim
rγ→∞

h′(C/r2
γ) = e−2Cλz[o(rγ)] = 0.

The derivative of function h(z) is 0 for z = C/r2
γ as rγ goes to ∞ i.e.,

the function h(z) has a local maximum at C/r2
γ for some constant C and it

can be observed that it is decreasing for C = 3.

Therefore, the function h(z) is a decreasing function from 3/r2
γ to 2

and the area under its curve has an upper bound that goes to 0. Thus, the

two integrals are asymptotically equal as rγ goes to ∞, which implies that

E[U (γ)] ∼ 1
2vrγλ

as rγ goes to ∞.

Proof. V (γ) is the sum of a busy periodB(γ) and idle period I(γ) of anM/GI/∞

queue. We know that the distribution of the idle period is exponential with

parameter 2λvrγ and that the busy period B(γ) and idle period I(γ) are inde-

pendent.

The Laplace transform of the random variable V (γ) scaled by 2λvrγ is

given by

ΦV (γ)(f(γ)s) = ΦB(γ)(f(γ)s)ΦI(γ)(f(γ)s), (2.43)

where,

ΦI(γ)(f(γ)s) =
1

1 + s
. (2.44)

So, asymptotically, as rγ goes to 0 , ΦI(γ)(f(γ)s) converges in distribution to

an exponential random variable with unit mean.
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Next, we need to prove that asymptotically, the busy period B(γ) scaled

by f(γ) goes to one. Let us consider the forward recurrence time of the busy

period, B̂(γ) which is defined in (2.6). From Theorem 2 we get,

E[e−sB̂
(γ)

] = E[e−s
∑M(γ)

i=1 U
(γ)
i ] =

(1− ν(γ))E[e−sU
(γ)

]

1− ν(γ)E[e−sU(γ) ]
,

and it follows that

E[e−sf(γ)B̂(γ)

] =
(1− ν(γ))E[e−sf(γ)U(γ)

]

1− ν(γ)E[e−sf(γ)U(γ) ]
. (2.45)

Further, we have that

E[e−sf(γ)U(γ)

] =
∞∑
k=0

lk(s, rγ), (2.46)

where

lk(s, rγ) =
(−1)k(2λvsrγ)

kE[(U (γ))k]

k!
.

Given that the support of service times W (γ) is [0, 2rγ/v], it follows

from (2.36) that the support of the random variable U (γ) is also [0, 2rγ/v] and

all its moments are bounded E[(U (γ))k] < (2rγ/v)k. Thus, for all values of s,

we get that limrγ→0 lk(s, rγ) = 0. For all k = 2, 3.. we also have that

|lk(s, rγ)| ≤
(2λvsr2

γ)
k

k!
.

Therefore, for all values of s, limrγ→0

∑∞
k=2 lk(s, rγ) = 0. Thus, Eq (2.46) can

be written as

E[e−sf(γ)U(γ)

] = 1− s2λrγvE[U (γ)] + o(rγ).
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Now, substituting into Eq (2.45) we have

E[e−sf(γ)B̂(γ)

] =
1− ν(γ) + 2sλvrγE[U (γ)](1− ν(γ)) + o(rγ)

1− ν(γ) + 2ν(γ)sλvrγE[U (γ)] + o(rγ)
, (2.47)

from which it follows that

lim
rγ→0

E[e−sf(γ)B̂(γ)

] = 1. (2.48)

From the results in [21] we have that

E[e−sf(γ)B(γ)

] = 1− sf(γ)E[B(γ)]E[e−sf(γ)B̂(γ)

], (2.49)

and also that

E[B(γ)] =
ν(γ)

2λvrγ(1− ν(γ))
. (2.50)

Thus, we get

E[e−sf(γ)B(γ)

] = 1− s1− e−λπr2γ
e−λπr

2
γ

E[e−sf(γ)B̂(γ)

].

Using the limit in (2.48), we get

lim
rγ→0

E[e−sf(γ)B(γ)

] = 1. (2.51)

Thus, the distribution of the random variable V (γ) scaled by f(γ) =

2λvrγ converges in distribution to an exponential random variable with unit

mean.

Now, consider a continuous function g(γ) such that limrγ→∞ g(γ) = 0.

The Laplace transform of the random variable V (γ) scaled by g(γ) is given by
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ΦV (γ)(s) = ΦB(γ)(g(γ)s)ΦI(γ)(g(γ)s), (2.52)

where,

ΦI(γ)(g(γ)s) =
1

1 + sg(γ)(1/2vrγλ)
. (2.53)

Asymptotically, as rγ goes to∞, ΦI(γ)(g(γ)s) goes to 1. By the same arguments

as those for the up-crossing case we have that

E
[
e−sg(γ)B̂(γ)

]
=

(1− ν(γ))E
[
e−sg(γ)U(γ)

]
1− ν(γ)E

[
e−sg(γ)U(γ)

] ,
where,

E
[
e−sg(γ)U(γ)

]
=
∞∑
k=0

(−1)k(2λvsrγ)
k(e−ρ

(γ)
)k

k!
E
[
(U (γ))k

]
. (2.54)

Let mk(s, rγ) = (−1k)(2λvsrγ)k(e−ρ
(γ)

)k−1

k!
E[(U (γ))k]. The moments of the

random variable U (γ) are bounded E[(U (γ))k] < (2rγ/v)k. Thus, for all values of

s, we get that limrγ→∞mk(s, rγ) = 0, because ρ(γ) = λπr2
γ and the exponential

term (e−ρ
(γ)

)k−1 dominates. Also for k = 2, 3, ... we have that

|mk(s, rγ)| ≤
(2λvsr2

γ)
k(e−ρ

(γ)
)k−1

k!
.

Therefore for all values of s,

lim
rγ→∞

∞∑
k=2

mk(s, rγ) = 0.

Thus, Eq (2.54) can be written as

E[e−sf(γ)U(γ)

] = 1− se−ρ(γ)2vrγλE[U (γ)] + e−ρ
(γ)

o(rγ),
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where, limrγ→∞ o(rγ) = 0.

From Lemma 1 we have that, limrγ→∞ 2λrγvE[U (γ)] = 1. Putting these

results together we have that

E[e−sg(γ)B̂(γ)

] =
e−ρ

(γ) − se−2ρ(γ)2vrγλE[U (γ)] + e−2ρ(γ)o(rγ)

e−ρ(γ)
[
1− e−ρ(γ)

][
s2vrγλE[U (γ)]− e−ρ(γ)o(rγ)

]
+ e−ρ(γ)

,

(2.55)

so that

lim
rγ→∞

E[e−sg(γ)B̂(γ)

] =
1

1 + s
. (2.56)

Now, from Eq (2.49) and (2.50) we get,

E[e−sf(γ)B(γ)

] = 1− s(1− e−λπr2γ )E[e−sf(γ)B̂(γ)

].

Thus from the limit in (2.56), limrγ→∞ E[e−sg(γ)B(γ)
] = 1

1+s
.

Thus, the random variable V (γ) scaled by g(γ) = 2λvrγe
−λπr2γ converges

in distribution to an exponential random variable with unit mean.

2.7.3 Proof of Theorem 6

Let us first prove the second relation. Let K = p/w and let D denote

the distance to the closest base station. We have

P((log(1 + SNR) > s) = P
(
KD−β > es − 1

)
= P

(
Dβ <

K

es − 1

)
= P

(
D2 <

(
K

es − 1

) 2
β

)
= 1− exp

(
−λπ

(
K

es − 1

) 2
β

)
,
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where we used the fact that D2 is an exponential random variable with pa-

rameter λπ. The result then follows from the bound a ≥ 1− e−a ≥ a + a2/2,

for a ≥ 0.

We now prove the first relation. Since Ŝ(γ) ≤ S(γ) ≤ log(1 + SNR), in

order to prove the first inequality, it is enough to show that

lim
s→∞
−1

s
log
(
P(Ŝ(γ) > s)

)
≤ 2

β
. (2.57)

We have

P(Ŝ(γ) > s) = P(log(1 +KD−β) > s(1 + N̂γ)),

hence

P(Ŝ(γ) > s) = P
(
KD−β > exp

(
s(1 + N̂γ)

)
− 1
)

≥ P
(
KD−β > exp

(
s(1 + N̂γ)

))
= P

(
Dβ < K exp

(
−s(1 + N̂γ)

))
= P

(
D2 < K

2
β exp

(
−s 2

β
(1 + N̂γ)

))
= P

(
D2 < K

2
β e−s

2
β e−s

2
β
N̂γ
)
.

Using now the fact that D2 is an exponential random variable with parameter

λπ, independent of N̂γ, we get

P(Ŝ(γ) > s) ≥ 1− E
(

exp
(
−λπK

2
β e−s

2
β e−s

2
β
N̂γ
))

≥ λπK
2
β e−s

2
β exp

(
−ξπr2

γ

(
1− e−s

2
β

))(
1 + o

(
e−s

2
β

))
,

where we used again the bound 1 − e−a ≥ a + a2/2 and the fact that N̂ (γ) is

Poisson with parameter ξπr2
γ.

75



Taking the log, multiplying both sides by −1
s

and letting s go to infinity

gives (2.57).

2.7.4 Proof of Theorem 7

Let us first prove the last relation. Using the Chernoff’s bound for the

Poisson random variable N̂ (γ), we get

P
(
N̂ (γ) + 1 > sn log(1 +Kr−βγ )

)
≤ e−θ

(
eθ

sn log(1 +Kr−βγ )

)s log(1+Kr−βγ )

,

with θ = ξπr2
γ, which shows that

lim
n→∞

− 1

sn log(sn)
log
(
P
(
N̂ (γ) + 1 > sn log(1 +Kr−βγ )

))
≥ log(1 +Kr−βγ ).

The converse inequality follows from the bound

P
(
N̂ (γ) + 1 > sn log(1 +Kr−βγ )

)
≥ e−θ

θk

k!
,

with k = sn log(1 +Kr−βγ ) and Stirling’s bound on the Gamma function.

Let us now prove the first relation. We have

P
(
Ŝ(γ) <

1

sn

)
=

∫ r2γ

0

e−λπvP
(
N̂ (γ) + 1 > sn log

(
1 +Kv−

β
2

))
dv.

For sn large enough,

P
(
Ŝ(γ) <

1

sn

)
≤ P

(
N̂ (γ) + 1 > sn log

(
1 +Kr

−β
2

γ

))∫ r2γ

0

e−λπvdv,

which allows one to conclude that

lim
n→∞

− 1

sn log(sn)
log

(
P
(
Ŝ(γ) <

1

sn

))
≥ log(1 +Kr−βγ ).
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Figure 2.18: Tagged user at origin, its serving base station Xj at distance x
and a point Q at a distance u along with discs Bx(0) and Bz(Q).

The upper bound follows from the inequality:

P
(
Ŝ(γ) <

1

sn

)
=

∞∑
l=0

e−θ
θl

l!
P

(
D2 >

(
K

e
l+1
s − 1

) 2
β

)

≥ e−θ
θk

k!
P

(
D2 >

(
K

e
k+1
s − 1

) 2
β

)
,

where k = sn log(1 +Kr−βγ ).

2.7.5 Integral Geometry I

Consider a tagged user at the origin, and let the serving BS Xj be at a

distance x from the origin. Let Q denote a point a distance u from the origin.

We need to consider all points Q that are within a distance r from the serving

BS Xj i.e., z = |XjQ| =
√
u2 + x2 − 2uxcos(α) < r, where α = ∠XjOQ as

shown in Fig.8.

Let Bx(0), Bz(Q) be two discs with centers at the origin and Q, and
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radii x and XjQ, respectively.

The conditional probability that a point at distance u from origin is

within the Voronoi cell of the BS serving the user at the origin given it is at

a distance x is the probability that there is no other BS in the area of disc

Bz(Q) excluding the area of Bx(0). Then the conditional expectation is:

E[V ∗|D = x] = 2

∫ π

0

∫ x cos(α)+
√
r2−x2 sin(α)

0

e(−λl(Bz(Q)−Bx(0)))ududα, (2.58)

where, D is a random variable denoting the distance to the closest BS. Thus,

E[V ∗] =

∫ r

0

E[V ∗|D = x]
fD(x)∫ r

0
fD(y)dy

dx =

∫ r
0
E[V ∗|D = x]2λπxe−λπx

2
dx

1− e−λπr2

=
1

1− e−λπr2
∫ r

0

2

∫ π

0

∫ x cos(α)+
√
r2−x2 sin(α)

0

e(−λl(Bz(Q)−Bx(0)))ududα2λπxe−λπx
2

dx

=
1

1− e−λπr2
4λπ

∫ r

0

∫ π

0

∫ x cos(α)+
√
r2−x2 sin(α)

0

e(−λl(Bx(0)∪Bz(Q)))uxdudαdx.

(2.59)

The last equality is because l(Bx(0)) = πr2 and l(Bx(0) ∪ Bz(Q)) =

ux sin(α) + (π−α)x2 + (π−f(α, x))(u2 +x2−2ux cos(α)) with cos(f(α, x)) =

u−x cos(α)√
u2+x2−2ux cos(α)

.

2.7.6 Integral Geometry II

Let us consider a point U at a distance u from the origin on the line

d(0, θ) as shown in the figure. Then, the probability that the point is in the

Voronoi cell of the BS Xj is given by e−λl(C(u,θ)), where l(C(u, θ)) is the area
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Figure 2.19: The tagged user at the origin, its serving base station Xj at
distance x and a point U at a distance u on the line d(0, θ).

of the shaded region in the figure. The conditional expectation is given by:

E[l(0, θ)|D = x] =
1

π

∫ π

0

∫ x cos(θ)+
√
r2−x2 sin(θ)

0

e(−λl(C(u,θ)))dudθ, (2.60)

where, D is the random variable denoting the distance to the closest BS.

Let Bx(0), Bz(U) be two discs with centers at the origin and U , and

radii x and XjU , respectively. Thus,

E[l(0, θ)] =

∫ r

0

E[l(0, θ)|D = x]
fR(x)∫ r

0
fD(y)dy

dx =

∫ r
0
E[l(0, θ)|D = x]2λπxe−λπx

2
dx

1− e−λπr2

=
1

π(1− e−λπr2)

∫ r

0

∫ π

0

∫ x cos(θ)+
√
r2−x2 sin(θ)

0

e(−λl(C(u,θ)))dudθ2λπxe−λπx
2

dx

=
1

π(1− e−λπr2)
2λπ

∫ r

0

∫ π

0

∫ x cos(θ)+
√
r2−x2 sin(θ)

0

e(−λl(Bx(0)∪Bz(U)))xdudθdx.

(2.61)

The last equality is because l(Bx(0)) = πr2 and l(Bx(0)∪Bz(U)) = ux sin(θ)+

(π−θ)x2+(π−f(θ, x))(u2+x2−2ux cos(θ)) with cos(f(θ, x)) = u−x cos(θ)√
u2+x2−2ux cos(θ)

.
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2.7.7 Proof of Theorem 9

Proof. Let Z be a geometric random variable given by:

P (Z = l) = (1− α)αl. (2.62)

Then, the random variable T representing the time taken to download

the file is the geometric sum of independent random variables given by

T =
Z∑
i=0

(Xi + I
(γ)
i ) + Y. (2.63)

Thus, the Laplace transform of T is

LT (s) =
[
(1− α) + (1− α)αLX(s)LI(γ)(s) + ..

]
LY (s)

=
(1− α)LY (s)

1− αLX(s)LI(γ)(s)
=

(1− α)LY (s)

1− αLX(s) 2λvr
2λvr+s

.

(2.64)

The last equality follows from the fact that I(γ) is exponential with

parameter 2λvr.
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Chapter 3

Shannon Rate Fields in Interference Limited

Environments

3.1 Introduction and Related Work

The aim in this chapter is to study the characteristics of spatial fields

associated with ultra dense wireless networks and leverage them to study the

temporal characteristics of mobile users. We also link them to basic engineer-

ing questions such as: (1) What are the variations in interference over a time

period, since such variability can be a challenge to techniques such as adaptive

modulation and coding which rely on the predictability of SINR over time pe-

riods, and (2) how the backhaul capacity requirement per base station scales

with densification?

We focus on studying scaling limits for ultra dense networks for more

Portions of this chapter has been published as: Madadi, Pranav, Franois Baccelli, and
Gustavo de Veciana. ”On Spatial and Temporal Variations in Ultra Dense Wireless Net-
works.” In IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp.
2663-2671. IEEE, 2018.
Co-authors have participated extensively in model formulation and research methods, and
have contributed in reviewing the final manuscript.
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realistic models. With the increases in density, the distance between the users

and their associated base stations reduces leading to an increase in the signal

strength, but there is also an increase in interference. Together this effectively

reduces the impact of thermal noise. Thus, ultra dense networks can be inter-

ference limited networks1. Further, for these short range inter-site distances,

the unbounded path loss models often used in the literature are clearly no

longer physically relevant as they are singular at the origin. More realistic and

practical models would be based on bounded path loss functions.

Related Work. Cellular network performance has been extensively stud-

ied by modeling the network using stochastic geometry [32], [6]. With the

help of scaling limits for the interference, network performance has been eval-

uated under densification for various modeling assumptions ([33], [34], [35],

[36], [37], [38]). Coverage probability and area spectral efficiency analysis have

mostly been used as the main performance metrics. The findings are some-

times conflicting and suggest that densification may eventually stop delivering

significant throughput gains.

Most prior work focuses on either studying the scaling limits of the

SINR at a typical location, or on the two-point correlations of interference and

shadowing. [39], [40], [41]. Although [42] studies the scaling limit of the inter-

ference field with power law path loss and Rayleigh fading, to our knowledge,

1An argument can be made that beamforming can mitigate this in part. Here we will
assume such narrow band beamforming, if present is still broad and focus on omni-directional
transmissions for simplicity.
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a spatial characterization of the limiting interference field for bounded path

loss models is lacking.

There is a broad body of relevant work in the field of mathematics of

shot noise and Gaussian fields. These are of interest to the class of problems

considered here since the interference fields in large wireless systems can be

viewed as shot noise fields, where the path loss function is equivalent to the

kernel function of the shot noise field. Further, the infinite divisibility property

of Poisson point processes allows one to establish convergence of the shot

noise field to a Gaussian field as the intensity tends to infinity ([43] [44]).

Precise sample path properties, especially level crossings of shot noise fields

have been extensively studied in, e.g., [45], [46], [47], [48]. General results are

known concerning the level crossings of smooth Gaussian processes ([45], [49]).

However, with closest base station association, the interference is not a shot

noise field but a protected shot noise field (defined below). Thus, most of the

results in the literature are not directly applicable.

Given the importance of backhauling for 5G small cell networks, many

researchers have studied centralized and distributed architectures for the back-

hauling gateways, see, e.g., [50]. Simulation results suggest that a distributed

wireless backhaul network architecture is more suitable for future 5G networks

employing massive MIMO and/or millimeter wave communication technolo-

gies. Millimeter wave communication has been considered as the wireless back-

haul solution for small cell networks in 5G communication systems. However,

most studies on millimeter wave backhaul technologies focus on the design of
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the antenna array and radio frequency (RF) components of transceivers, such

as beamforming and modulation schemes [51], [52]. To our knowledge, a sys-

tem level investigation of ultra-dense cellular networks backhaul requirements

such as that in this paper is novel.

Adaptive modulation and coding is a critical technique for adapting to

time varying channels resulting from, say fading, path loss and interference,

see, e.g., [53], [54] and the references therein. Most of the work focuses on

channel quality estimation or various adaptive modulation techniques. In this

paper, we characterize the time periods over which we can predict SINR with

some success and study their dependence on various system parameters.

3.2 System Model

Consider a cellular network where the base stations are distributed ac-

cording to a homogeneous Poisson Point Process (PPP) Φ = {X1,X2, ..} in

R2 of intensity λb. Let l : R2 → R+ be a deterministic non-negative function.

Consider downlink transmissions and assume all base stations transmit at a

fixed power p. Then, the total power received from all base stations at a loca-

tion y ∈ R2 is Poisson shot noise field [55], given by Iλb(y) =
∑

Xi∈Φ pl(Xi−y).

Assuming that a user associates with the closest base station, the total

interference seen by the user is given by the protected shot noise field:

Jλb(y) =
∑

Xi∈Φ\Xλb
(y)

pl(Xi − y), (3.1)

where, Xλb(y) ∈ Φ denotes the closest base station in Φ to location y. Given
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the interference field, one can study the SIR field and Shannon rate field expe-

rienced by a user at a given location. In the absence of fading and shadowing,

the SIR field (SIRλb(y),y ∈ R2) is given by

SIRλb(y) =
p ∗ l(y−Xλb(y))

Jλb(y)
. (3.2)

In the interference limited regime, the Shannon rate field, (Sλb(y),y ∈

R2) can be defined from the SIR field through

Sλb(y) = w log(1 + SIRλb(y)), (3.3)

where, w is the wireless system bandwidth.

In the sequel we will also consider a tagged user moving at a fixed unit

velocity along a straight line starting from the origin at time t = 0. We will

denote the interference and the Shannon rate experienced by the mobile user

by the stochastic processes (Jλb(t), t ≥ 0) and (Sλb(t), t ≥ 0), respectively.

Note that Jλb and Iλb correspond to spatial processes or fields while Jλb and

Iλb are temporal processes. Table 3.1 summarizes the notation used in the

chapter.

In order to explore the limiting characteristics of the random fields asso-

ciated with dense networks, we will need to properly define weak convergence

notations for the two-dimensional processes. Recall that the D1 functional

space is the set of functions defined on reals that are right continuous with left

limits, also referred to as cadlag functions. Note that the space of continuous

functions is in D1. Similarly, if T is the unit square [0, 1]2, then the functional
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space D2 is the uniform closure, in the space of all bounded functions from

T to R, of the vector subspace of simple functions which are coordinate wise

D1 [56]. The reason for this choice is that weak convergence of stochastic pro-

cesses can be studied in this functional space under the S-topology [56]. We

further classify the path loss functions in the D2 functional space as follows:

1. Class-1 Functions : functions that are smooth, twice differentiable, l ∈

C2(R2), i.e., l belongs to functional space of continuous functions that has

continuous first 2 derivatives, and integrable, l ∈ L2(R2), l
′
, l” ∈ L1(R2),

i.e., l belongs to a Lebesgue functional space Lp, where pth power of the

absolute value is Lebesgue integrable. The stretched exponential path

loss function [57], l1(y) = e−a1||y||
4
, for all positive constants a1, provides

an example of Class-1 function.

2. Class-2 Functions : functions that are continuous, piece-wise C2 on R2,

with discontinuities in their first derivative. Multi-slope path loss func-

tions provide examples of Class-2 [35]:

l2(y) =


1 for ||y|| ≤ r0,

a1/||y||β1 for r0 < ||y|| ≤ r1,

a2/||y||β2 for ||y|| > r1.

(3.4)

where, 0 < r0 < r1, a1 and a2 are constants such that the function is

continuous.

3. Class-3 Functions : functions with discontinuities but in D2. Out-of-

sight path loss models studied in [58], where there is a sudden drop
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System Parameters λb Density of base stations w System bandwidth
p Transmit power l(y) Path loss

Spatial Processes Model Gaussian Limits

Interference Jλb ; Jcλb(re-scaled) Ĵλb ; Ĵc (re-scaled)

Shannon rate Sλb Ŝλb
Temporal Processes Model Gaussian Limits

Interference Jλb Ĵλb ;Ĵ c (re-scaled)

Shannon rate Sλb Ŝλb

Table 3.1: Key Parameters and Processes.

in the power due to blockages in urban/sub-urban areas with buildings

provide examples for this class of functions. An example of such a path

loss function is:

l3(y) =

{
1 for − r0 ≤ y1 < r0,−r0 ≤ y2 < r0,

0 otherwise,
(3.5)

where y = (y1, y2) and r0 > 0. A discussion of the approximation of

radial discontinuous functions by functions that belong to the D2 class

is given in Appendix 3.7.1.

3.3 Scaling Limit of the Interference Field

Under our modeling assumptions we have E[Iλb(0)] = λbp
∫
R2 l(y)dy <

∞, so we can consider the following re-scaling of the interference field:

Icλb(y) =
1√
λb

(Iλb(y)− E[Iλb(0)]). (3.6)

It is well known that as λb → ∞, the scaled field Icλb converges to a

stationary Gaussian random field Îc. Given two locations z1, z2 ∈ R2, if the
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function l is radial, then the covariance kernel c(z1, z2) depends only on the

Euclidean distance t = ||z1 − z2|| and is given by:

c(t) = E[Îc(z1)Îc(z2)] =

∫
R2

p2l(y− z1)l(y− z2)dy. (3.7)

Theorem 13. For bounded path loss functions that satisfy Lipschitz conditon,

consider the re-scaling of the interference field, Jλb given by:

Jcλb(y) =
1√
λb

(Jλb(y)− E[Jλb(0)]). (3.8)

Then, as λb →∞, Jcλb converges weakly to a stationary Gaussian random field,

Ĵc. Further, in the limit, the expectation of the interference field scales with

λb as

E[Jλb(0)] = λbκ, (3.9)

where

κ = p

∫
R2

l(y)dy. (3.10)

In particular, we have convergence in the sense of finite dimensional dis-

tribution, i.e., for all z1, z2, ..., zn ∈ R2, the random vector (Jcλb(z1), Jcλb(z2), ....., Jcλb(zn))

converges to a centered Gaussian vector (Ĵc(z1), Ĵc(z2), ....., Ĵc(zn)) for any

n ≥ 1 with covariance kernel, c(t) given by (3.7). In addition, the tightness

condition given in [56] can be shown to hold which in turn suffices to show

weak convergence of the rescaled interference fields. Proof is given in Appendix

3.7.2.
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r0 values in meters Base station density( λb) per Km2

10 3× 104

25 104

50 8× 103

100 3× 102

Table 3.2: The minimum density of base stations such that the scaled inter-
ference is a Gaussian field for various values of r0 of the considered path loss
function.

For bounded path loss funtions in the D2 functional space as defined

in [56], we prove the finite dimensional convergence as above, but verify the

tightness condition with the help of simulations.

We would like to characterize the interference and the Shannon rate

fields. For this we use the above scaling to approximate the interference field.

Given the central limit Gaussian field (Ĵc(y),y ∈ R2), for a large values of λb,

from (3.8), the interference field at location y, Jλb(y), can be approximated as

follows:

Jλb(y) ∼
√
λbĴ

c(y) + E[Jλb(0)] + o(
√
λb). (3.11)

Since the expectation of the interference scales linearly with λb as seen in

Theorem 13, the Gaussian approximation for the interference field Ĵλb =

(Ĵλb(y),y ∈ R2) is given by:

Ĵλb(y) =
√
λbĴ

c(y) + λbκ. (3.12)

Let us illustrate the convergence of the interference field considering a

dual-slope path-loss model of Class-2 (3.4) and for λb = 104. The Kolmogorov-
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Smirnov test (K-S test) is used to compare the marginal empirical CDF with

the Gaussian cummulative distribution. For a given r0 value in the considered

path loss function, there exists a minimum value for the base station density,

λb, such that the scaled interference is a Gaussian field when using the K-S

test. Table 3.2 lists the minimum density needed for various values of r0. Fig

3.1 illustrates the comparison of the marginal CDF of the scaled interference

field Jcλb(0) with the CDF of the Gaussian random variable. We also compare

the empirical mean of the interference field Jλb(0) with the approximate mean

given in (3.9).The approximate mean is within the 99% confidence interval.
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Figure 3.1: Comparing the marginal empirical CDF of Jcλb(0) with CDF of a
Gaussian.

Now, we focus on certain fundamental questions about the Gaussian

field (Ĵc(y),y ∈ R2), such as its continuity and differentiability. Recall that for
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a Gaussian field, these are determined by the mean and covariance kernel given

in (3.7). We leverage some well known results regarding the continuity and

differentiability of Gaussian fields as stated in the lemmas given in Appendix

3.7.3. The following theorem states the result for the path loss functions of

Class-1.

Theorem 14. For Class-1 radial path loss functions, if for some η > 0 and

all t ∈ [−η, η], the following integral in polar coordinates∫ 2π

0

∫ ∞
0

l(r)l
′
(
√
r2 + t2 − 2rt cos(θ))×

(
t− r cos(θ)√

r2 + t2 − 2rt cos(θ)

)
rdrdθ

(3.13)

is uniformly convergent, and in addition the covariance kernel c(t), defined in

(3.7), is convergent, then, c(t) is continuous and twice differentiable. Thus,

the limiting Gaussian field, (Ĵc(y),y ∈ R2) is mean square and almost surely

continuous and differentiable.

The proof is given in Appendix 3.7.4.

Note that the covariance kernel c(t) is symmetric about t = 0 for all

considered path loss functions. Thus the limiting Gaussian fields are always

mean square continuous. However when relaxing the conditions on the path

loss functions given in the above theorem, mean square differentiability, sample

path continuity and differentiability may not hold. We illustrate the math

involved in verifying the continuity of the fields for radial path loss functions

that belong to Class-2 in Appendix 3.7.5.
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Figure 3.2: Level sets of the limiting Gaussian field, Ĵc, of Class-1 path loss
function for different thresholds.

Figure 3.2 and 3.3 illustrate the level sets of the limiting Gaussian field

for Class-1 and Class-3 radial path loss functions respectively. One can notice

an increase in the spatial variability for the discontinuous path loss functions,

which stems from the no-where differentiability property of the field.

3.4 Shannon Rate Field and its Applications

Recall that the Shannon rate field, (Sλb(y),y ∈ R2), is defined as:

Sλb(y) = w log

(
1 +

p ∗ l(y−Xλb(y))

Jλb(y)

)
. (3.14)

By contrast with the traditional polynomial path loss model, for bounded

path loss models, the received signal power does not grow to infinity with densi-
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Figure 3.3: Level sets of the limiting Gaussian field, Ĵc, of Class-3 path loss
function for different thresholds.

fication as users get closer to their associated base stations, but the interference

keeps growing. Thus, in this regime, the Shannon rate field decreases to zero

as the base station density grows. A regime of interest in this setting is one

where one densifies and increases the operational bandwidth of the system. In

this section, we study this regime obtaining a Gaussian approximation for the

Shannon rate field and show its applicability in studying the variability of the

spatial average rate and the cost of backhauling in dense networks.

3.4.1 Gaussian Approximation for the Shannon Rate Field

Under the bounded path loss models given in (3.4), as λb tends to

∞, l(y −Xλb(y)) tends to a constant almost surely, i.e., all users eventually

have good signal path to their closest or more generally the best among the
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set of possible base stations they can associate with. For simplicity, we then

assume this constant is 1. However the interference will be high, thus we can

approximate the Shannon rate field as:

w log(1 + p/Jλb(y)) ∼ wp

Jλb(y)
. (3.15)

Now based on our characterization of the interference limit as in (3.12)

we can approximate the Shannon rate field as:

Sλb(y) ∼ wp
√
λbĴc(y) + λbκ

,

where κ is defined in (3.10).

Using a Taylor series expansion, one obtains

Sλb(y) ∼ wp

κλb
− wp

√
λbĴ

c(y)

κ2λ2
b

+ o(1/λ
3/2
b ). (3.16)

Thus to compensate for the increase in interference, the Shannon rate

must be scaled by a system bandwidth w scaling linearly in λb. We let w = aλb

and define our Gaussian model for the Shannon rate field as follows Ŝλb =

(Ŝλb(y),y ∈ R2), where

Ŝλb(y) ∼ ap

κ
− ap

κ2
√
λb

Ĵc(y), (3.17)

with mean and covariance kernels given by:

E[Ŝλb(y)] = µ =
ap

κ
,

Cov(Ŝλb(y), Ŝλb(x)) =
a2p2

λbκ4
c(||y − x|)),
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where c(.) is given in (3.7).

Note that the variability of the field decreases with the intensity of base

stations λb. Fig. 3.4 exhibits the marginal empirical CDF of the Shannon

rate field along with that of the Gaussian approximation for the case where

λb = 104 per Km2 and dual-slope path loss function as in (3.4). As can be

seen the match is very good. Similar observations apply in looking at the finite

dimensional distributions of these processes.
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Figure 3.4: Comparing the marginal empirical CDF of the Shannon rate with
a Gaussian.

3.4.2 Variability of the Spatial Average Rate (SAR)

Given a Gaussian field such as Ŝλb = (Ŝλb(y),y ∈ R2), one can now

consider various relevant functions of the spatial process. For example, below

95



we define the spatial average rate over a fixed region.

Definition 6. The spatial average of the Shannon rate field Ŝλb over a set

A ⊂ R2 is defined by

Xλb(A) =
1

|A|

∫
A

Ŝλb(y)dy,

where |A| denotes the area of A.

It follows immediately from the properties of Gaussian processes that

Xλb(A) is Gaussian and such that

E[Xλb(A)] = µ,

Var(Xλb(A)) =
µ2

κ2λb|A|2

∫
A

∫
A

c(||y− z||)dydz,

where, κ = p
∫
R2 l(y)dy.

For a fixed region A one might ask how densification will impact vari-

ability in the spatial average rate. Our analysis suggests the standard deviation

is inversely proportional to
√
λb, i.e., leads to concentration in the rates users

will see. Fig 3.5 illustrates such decreases in variability for Class 2 and 3 path

loss models. Perhaps as expected, scenarios with more discontinuous path loss

characteristics see higher variability but still with similar decays.

3.4.3 Backhaul Capacity Dimensioning

The cost and provisioning of backhauling resources is one of the key

issues associated with deploying dense networks. In this subsection we shall
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Figure 3.5: Standard deviation of the spatial average rate with increasing
density of base stations.

study how densification impacts the cost of backhauling, leveraging again func-

tionals of our Gaussian model for the Shannon rate field.

We consider a simple backhauling infrastructure based on a grid tessel-

lation, where each cell (square) is associated with a gateway which provides

backhauling for the users in it. We assume that the spatial density of users

the network serves grows along with the density of base stations. We consider

this setting as one of the aims of densification is to provide individual users

high throughput which is achieved by cell densification. Although more gen-

eral models could be considered, we shall assume that backhauling technology

is such that each gateway can handle roughly a fixed number of users say

m. Hence, as we density, the cells’ area |Aλb| is inversely proportional to the
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base station density i.e., |Aλb| = m
λb
. We assume that neither the link from the

base station to the gateway nor the backhaul to the Internet are a bottleneck.

That is, base stations are connected to the gateway via high capacity links,

e.g., mmWave, links. Here the key question is hence about the capacity that

should be provisioned from the gateway to the Internet.

There are various sources of variability which impact the provisioning

of the gateway to the Internet backhaul capacity: (1) variability in the peak

rate of users, (2) correlations amongst users’ peak rates, (3) variability in the

number of active users, and (4) sharing of base station resources by one or

more users (which limits their peak rate).

Let us first ignore the impact of variability in the number of users.

To that end, we consider user locations Φg corresponding to a grid with den-

sity λu = λb. This scenario might correspond to a deterministic deployment

e.g., a video surveillance system with a fixed set of active users. Further,

ignoring the sharing of base station resources, we model the aggregate peak

rate requirement at a typical gateway cell for a base station density λb as:

Rλb(Φg) =
∑

Yj∈Φg∩Aλb
Ŝλb(Yj).

Lemma 2. Define the gateway capacity ρ(δ) capable of serving the aggregate

peak rate Rλb(Φg) with overflow probability δ as

ρ(δ) = argminρ{ρ | P(Rλb(Φu) ≥ ρ) ≤ δ}. (3.18)

Then, ρ(δ) = µ̃ +
[√

2erf−1(1− 2δ)
]
σ̃, µ̃ = E[Rλb(Φg)] = µm, and σ̃2 =
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Var(Rλb(Φg)) which is given by

σ̃2 =
µ2m

κ2λb
c(0) +

µ2

κ2λb

m∑
i,j=1,i 6=j

c(||g(i)
λb
− g

(j)
λb
||),

with g
(j)
λb
, j = 1, . . .m corresponding to the m grid points in the gateway’s

square cell.

Proof. In our grid model, the aggregate peak rate, Rλb(Φg), is the sum of m

jointly Gaussian (positively correlated) random variables associated with the

grid locations Φg in the gateway cell. Thus, Rλb(Φu) is Gaussian (µ̃, σ̃2) and

the result in the Lemma follows.

Note that the first term in the variance captures the spatial variations

in the users’ peak rate while the second term captures correlations amongst

the users peak rates. See Appendix 3.7.6 for a derivation of the above variance

formula.

Remark 3. (Variability in number of users.) We shall consider the scenario

where users’ locations Φr correspond to a Poisson process with intensity λu =

λb, which model variations in both the number and locations of active users. Let

Rλb(Φr) correspond to a random sum of random variables corresponding to a

Poisson distributed number of users in the gateway cell, having Gaussian peak

rates which are correlated. Such a mixture of Gaussian random variables is no

longer Gaussian but is reasonably well approximated by a Gaussian Random

variable with the same mean as Rλb(Φg) and with

Var(Rλb(Φr)) = µ2m+
µ2m

κ2λb
c(0) +

µ2λb
κ2

∫
Aλb

∫
Aλb

c(||y− z||)dydz.
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See Appendix 3.7.6 for a derivation of the above variance formula.
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Figure 3.6: Comparing the empirical distribution of the sum rate with a Gaus-
sian distribution with empirical mean and variance.

The first term in the above variance captures the variability in the num-

ber of users, the second is associated with variability in user’s peak rate while

the third again captures correlations amongst the users peak rates. Fig 3.6

illustrates the empirical distribution of Rλb(Φr) with that of the approximated

Gaussian random variable to validate this approximation.

In addition to determining the required backhaul capacity for the above

two scenarios, Grid and Random, we can also determine the capacity one would

provision if one ignored the terms in their variance corresponding to positive

spatial correlations in users peak rates. We refer to the latter as Grid-simple

and Random-simple.

100



λb Class-1 Class-2 Class-3
Φg 8.9% 22% 19.2%

100 Φr 0.8% 8.1% 9.6%
Φg 5.3% 21.2% 22.9%

300 Φr 0.2% 5.6% 8.5%
Φg 4.1% 19.2% 22.7%

500 Φr 0.1% 4.3% 7.3%

Table 3.3: The values of the relative increase in the required backhaul capacity
for various classes of path loss functions.

We evaluated the required backhaul capacity according to Lemma 1,

for δ = 0.01, λb|Aλb| = m = 20 and dual slope path loss with r0 = 100m

for all the above mentioned scenarios and Fig 3.7 gives the required backhaul

capacity when increasing λb. We have the following observations:

• Since a single gateway serves approximately a fixed number of base sta-

tions, m, the capacity can be viewed as the required backhaul capacity

per unit base station. As seen in Fig.3.7, in all cases, the cost of provid-

ing the backhaul capacity decreases with densification due to decrease

in the variance of the Shannon rate.

• As seen in Fig.3.7, the positive correlations of the rate impacts the ca-

pacity requirements differently for random and grid users. The relative

increase in the capacity ranges from 22% - 19.2% for grid users and 8.1%

- 4.3% for random users. The user variability dominates the variability

due to correlations. Thus the relative increase in the required capacity

is higher for grid users.
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• The positive correlations in the rate also impacts differently for various

path loss models. Table 3.3 gives the values of the relative increase in

the required backhaul capacity for various classes of path loss functions.

• The required capacity is higher for random users due to the additional

contribution of user location variability.
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Figure 3.7: Required backhaul capacity with increasing density of base sta-
tions.

3.5 Temporal Characteristics of the Shannon Rate Pro-
cess

Definition 7. Given a stationary spatial field, such as the interference field

Jλb, the temporal stochastic process seen by a mobile moving at a constant
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velocity, v along a straight line, (Jλb(t), t > 0) is defined as:

Jλb(t) = Jλb(yv(t)), (3.19)

where yv(t) = (vt, 0).

Similarly, we can define the temporal Shannon rate process, (Sλb(t), t >

0). Given the fields are stationary and isotropic, without loss of generality,

assume that the user is moving along the x-axis starting from the origin at

time t = 0. The results obtained here are generic: starting from another

point and moving in one direction with velocity v would lead to the same

distribution. First, we consider that the mobile user is moving at a fixed unit

velocity.

Given the asymptotic characterization of the interference and Shan-

non rate fields as Gaussian fields, one can asymptotically characterize the

above stochastic processes as stationary Gaussian processes, (Ĵλb(t), t > 0)

and (Ŝλb(t), t > 0). The continuity and differentiability properties of these

processes follow immediately from those of the fields.

Note that, as the mobile moves through space, the variations in the

rate it experiences depend on the path loss functions. For Class-1 functions,

we have smooth variations in the interference and rate i.e., differentiable pro-

cesses. For Class-3 functions we have no-where differentiable processes with

high variations as illustrated in Fig 3.8. To analyze the high temporal varia-

tions in the rate, we characterize them with the help of Hölder exponents [12].
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Figure 3.8: Sample path of Interference processes for various path loss func-
tions.

3.5.1 Hölder Exponents

Definition 8. [12] A function g : R → R has a Hölder exponent α if there

exists a constant k such that for any k̂ > k and all sufficiently small h,

|g(t+ h)− g(t)| < k̂|h|α,

uniformly with respect to all t lying in any finite interval. We then say that

g(t) ∈ H(α, k).

The Hölder exponent, 0 < α < 1, provides a measure of local path-

irregularity or roughness: sample paths exhibit more and more roughness as

α decreases from 1 to 0.
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Lemma 3. [12] For a given stationary continuous Gaussian process (Ĵ c(t), t ≥

0) with covariance kernel, c(t) if, for all sufficiently small h,

E[(Ĵ c(t+ h)− Ĵ c(t))2] = 2(c(0)− c(h)) ≤ k|h|2α

| log |h||
, (3.20)

then almost surely all sample paths of Ĵ c(t) belong to H(α,
√

2k/kα), where

kα = 2α−1
21+2α . Further, the Hölder exponent of the stochastic process as defined

above is α.

Remark 4. Consider the path loss model defined in (3.47) with f(r0) = 0. The

interference experienced by the mobile user moving with unit velocity along a

straight line is a stochastic process that is equivalent to the number of users in

an M/GI/∞ queue, with service rate given by

fW (γ)(s) =

{
s

2rγ
√

4r2γ−s2
for s ∈ [0, 2rγ],

0 otherwise
(3.21)

(see [59]). The limiting process of the re-scaled version of the process tracking

the number of users in an M/GI/∞ queue, is a Gaussian process that is

almost sure continuous, no where differentiable with covariance kernel given by

c′(t) =
∫∞

0
[1−FW γ (t−u)]du ( [60], [61]), which is the same as the covariance

given by (3.7) for the given path loss function. Thus, the Hölder exponent of

the process is 1/2 in this case.

For certain Class-2 and Class-3 path loss functions of interest, we could

verify that they satisfy the above condition by numerically evaluating the

covariance kernel.
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3.5.2 Time Scales in Adaptive Modulation and Coding

In our environment, i.e., dense networks with the bounded path loss

functions considered here and no fading, the signal power is asymptotically a

constant, and the variability in the Shannon rate is primarily due to varia-

tions in the interference. In this section, we discuss ways to cope with such

interference variations in the context of adaptive modulation and coding.

Adaptive modulation and coding is a technique used to adapt to vari-

ations in signal quality (SINR), where it dynamically selects the best mod-

ulation and coding scheme (MCS) based on estimates of current conditions.

For simplicity, in our model, we assume uniform binning of the Shannon rate

itself with bin size ∆. Let b0, b1, . . . , bn be the discrete rates defining the bins,

where bin i is associated with rate bi and |bi − bi−1| = ∆. This is a simplified

model, as in practice, the range of the estimated channel state information

(CSI) (e.g., SINR) is divided into non-uniform bins, each corresponding to a

MCS, which are then mapped to a transmission rate by a non-linear function.

We now explore the timescales on which the adaptive modulation and

coding (AMC) should operate. Slower rate of adaptation leads to difficulties

in keeping up with the local variations. The user may experience conditions

worse than those required for the selected rate, which should be avoided. At

the same time a significant amount of overhead is involved in estimating the

interference power and selecting a new rate. Thus one should try to limit the

rate of adaptations.
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We use our model to provide an understanding of the rate of adapta-

tion and its dependence on various system parameters. Assume that adaptive

coding takes place periodically every h seconds. Namely, every h seconds, the

transmitter selects a particular rate, bσ ∈ {b1, . . . , bn} bits/sec based on the

estimate of the instantaneous Shannon rate σ at the given time. The selected

rate bσ is then used for the next h seconds.

In order to cope with variations, we consider a conservative approach

where, if the current rate σ belongs to bin i, then we pick a code rate cor-

responding to bin (i − 1)+, i.e., bσ = b(i−1)+ . Then we have the following

theorem which gives a way to choose h such that the chance that the selected

modulation and coding rate is fine for the next h seconds.

Theorem 15. For our adaptive modulation and coding model, if the centered

Gaussian process, (Ĵ c(t), t ≥ 0) satisfies the condition given in Lemma 3, then

for all |h| ≤ gλb(α, k) with:

gλb(α, k) =

(
∆κ2
√
λb

apk̂

)1/α

, (3.22)

and k̂ any number such that k̂ >
√

2k
kα

, where kα = 2α−1
21+2α , almost surely, all

the sample paths satisfy |Ŝλb(t + h) − Ŝλb(t)| < ∆, where Ŝλb is the Gaussian

approximation of the Shannon rate process.

Proof. For h small, from (3.17), |Ŝλb(t+h)− Ŝλb(t)| < ∆ if and only if |Ĵ c(t+

h) − Ĵ c(t)| < ∆κ2
√
λb

ap
. If the limiting Gaussian interference process, Ĵ c(t),

satisfies the conditions of Lemma 3, then for all sufficiently small h and k̂ >
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√
2k/kα almost surely, all sample paths satisfy |Ĵ c(t + h) − Ĵ c(t))| < k̂|h|α.

Thus, for all |h| ≤ gλb(α, k), almost surely for all the sample paths, |Ŝλb(t +

h)− Ŝλb(t)| < ∆.

Role of velocity. Let us now assume that the mobile user is moving

with constant velocity v instead of unit velocity. From Definition 7, we have

|Ĵ c(t+ h)− Ĵ c(t))| = |Ĵc(yv(t+ h))− Ĵc(yv(t))|, (3.23)

where yv(t) = (vt, 0). Further, since bin size has to be in the same order of

magnitude as the Shannon rate, it makes sense to assume that the bin size is

a fraction of the mean Shannon rate, i.e., ∆ = 1
η
E[Sλb(0)] for some η ∈ R+

e.g., η = 10. Then, the function gλb(α, k, v) is now given by:

gλb(α, k) =
1

v

(
κ
√
λb

ηk̂

)1/α

. (3.24)

The time period at which AMC should operate at primarily depends

on: (1) the intensity of base stations (λb), (2) the velocity (v), and (3) the

path loss models through κ, k̂, α. We study these various dependencies by

considering a specific set of values for parameters: Intensity of base stations,

λb = 300, 1000 per Km2; Bandwidth, w = 900 MHz; transmitted power, p = 1

Watt and velocity, v = from 1 to 10 m/s.

Further, we consider the dual slope path loss function of Class-2 and

a discontinuous path loss function. We then numerically estimate the Hölder

exponents to be 1 and 0.5 with constant values k of 5 and 50 respectively.

Then, for k̂ =
√

2k
kα

, the function gλb(α, k) is given in Table 3.4.
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λb v m/s Class-2 Class-3
1 ∼ ms ∼ 10µ s

300 10 ∼ 10−1 ms ∼ µs
1 ∼ 10−1 s ∼ ms

1000 10 ∼ 10−2 s ∼ 10−1 ms

Table 3.4: Time scales determined by Theorem 3, equation (3.24).

From the numerical evaluation and (3.24), we have the following obser-

vations:

• We get a lower rate of adaptation when increasing the density of base

stations, λb, since the variance of the process decreases as studied in

the previous section. The magnitude of the rate is due to the fact that

function g in (3.24) is polynomial in λb which is in per Km2.

• Increasing the velocity increases the rate of adaptation. For the same

set of parameters, if one considers unit velocity we have that gλb(α, k) ∼

ms for Class-2 path loss models.

• Higher variability in the Shannon rate, i.e., lower values of α in case of

discontinuous path loss models, leads to higher rates of adaptation.

Table 3.4 illustrates the time scales determined by Theorem 3, equation

(3.24), at which adaptive modulation and coding should operate for the above

mentioned network parameters. We validated this result with the help of sim-

ulations, by considering uniform binning of a fixed bin size ∆ of the Shannon

rate seen by a user moving at a constant velocity v = 1 m/s with λb = 300 and
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Time Scale 10µs 1 ms 10−1s
Class-2 0.07 0.09 0.21
Class-3 0.12 0.26 0.5

Table 3.5: Fraction of time periods in error for class-2 and class-3 path loss
functions at various time scales.

the network parameters as above. We considered three different time scales,

10µs, 1ms and 10−1s, for adaptive modulation and evaluated the fraction of

the time periods that are in error when applying the technique defined above.

The simulation values are in agreement with our numerical result given by the

Hölder exponent analysis, since the fraction of error is considerably lower for

Class-2 path loss functions at 1ms and for Class-3 path loss functions at 10µs

as can be seen in Table 3.5. The fraction of error is higher if one considers

time scales greater than the values determined by (3.24).

Thus, this provides an understanding of how h scales with different

system parameters like the environment through the path loss l(r), density of

base stations, λb and velocity v.

3.5.3 Level-crossings of the Scaled Interference Process

In this subsection, we study the expected number of up-crossings in an

interval of the stationary differentiable Gaussian process (Ĵ c(t), t ≥ 0). We

assume that this process is a.s differentiable. This also gives the expected up-

crossings for the approximated interference, (Ĵλb(t), t ≥ 0) and Shannon rate

processes, (Ŝλb(t), t ≥ 0).
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Given a threshold u, define the number of up-crossings in an interval

[0, T ] as N+
u [0, T ] = #{t ∈ [0, T ] : Ĵ c(t) = u, Ĵ c

′
(t) > 0}. Then, the Rice

formula for the expected number of upcrossings in the interval is given by

([62])

E[N+
u [0, T ]] =

√
ω2Te

−u2/(2c(0))

2π
√
c(0)

, (3.25)

where ω2 is the second spectral moment. Since the Gaussian process is mean

square differentiable, the second spectral moment is given by ω2 = −c′′(0).

Using simulations, we estimated the expected number of up-crossings in

an interval for various sample paths of the scaled interference process, J cλb(t).

The aim is to compare this with the above result for the limiting Gaussian

process. Thus, we evaluated Rice formula by calculating the second spectral

moment numerically. The simulated mean value is within a 5 percent error

margin from the numerically value. Thus, one can expect to use the results for

the limiting Gaussian process to work for the original processes. We can also

characterize the coverage and outage times i.e., the level crossings of the ap-

proximated Gaussian Shannon rate process, (Ŝλb(t), t ≥ 0) and its asymptotics

using the existing results as in [62], [63].

3.6 Conclusion

By properly rescaling the interference and Shannon rate fields we have

characterized their corresponding limiting Gaussian fields in ultra dense set-

tings. This opens the opportunity to apply the rich set of tools and results for

Gaussian fields to study dense wireless networks. Their characteristics depend
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primarily on the path loss. By taking functions of these fields, one can also

shed light on fundamental engineering questions in ultra dense networks such

as (1) the role of spatial correlations on backhaul dimensioning and (2) the

characteristics of temporal variations mobile users would see and their impact

on adaptive modulation and coding. Overall this provides a new approach for

the assessment of the fundamental characteristics of densification.

3.7 Appendix

3.7.1 Approximation for Radial D2 Function

Since functions in D2 are in a sense “continuous from above with limits

from below” [56], discontinuous radial functions do not belong to D2. Thus,

we consider a set K as given in Fig. 3.9, where we approximate the curvature

in second and third quadrants with small squares of side length, ε. We can

then approximate the following radial function:

l3(r) =

{
1 for r ≤ r0,

0 for r > r0,
(3.26)

with a D2 function l3(z) = χK(z), where χ denotes the indicator function and

K is set as given in Fig. 3.9. Note that lower values of the side length of the

squares, ε in the set K leads to better approximation of the curvature.

3.7.2 Proof of Theorem 13

Proof. We will use the previous result that the re-scaled shot noise field, in

the limit, is a Gaussian field. Let us consider the result as an analogue of
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𝑟"𝜖

Figure 3.9: The set K ∈ R2.

the central limit theorem. Assume that the intensity of the base stations,

λb is an integer. Then, let Φi = {Xi
1,X

i
2, ...} for i = 1, 2, ..λb be Poisson

point processes of base stations of intensity 1 and Y1(0), Y2(0), ...Yλb(0) be i.i.d

random variables denoting their shot noise field at origin respectively i.e.,

Yi(0) =
∑

Xi
j∈Φi

pl(Xi
j). (3.27)

Notice that the shot noise field Iλb(0) is the sum of the i.i.d random

variables Yi(0) i.e., Iλb(0) =
∑λb

i=1 Yi(0). Then, from the central limit theorem

we have:

lim
λb→∞

1√
λb

( λb∑
i=1

Yi(0)− λbE[Yi(0)]

)
→d N(0, σ2), (3.28)

where σ2 =
∫
R2 p

2l2(y)dy since the LHS in the above equation is the scaled
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shot noise field given in (3.6). Let M(0) = maxi(maxj(pl(X
i
j)). Then, the

interference field can also be represented as follows:

Jλb(0) =

λb∑
i=1

Yi(0)−M(0), (3.29)

and the scaled interference field can be represented as:

Jcλb(0) =
1√
λb

( λb∑
i=1

Yi(0)− λbE[Yi(0)] + (E[M(0)]−M(0))

)
. (3.30)

Given the bounded path loss model, M(0) is bounded above by a con-

stant p. Thus,

−p ≤ E[M(0)]−M(0) ≤ p. (3.31)

Thus, the scaled interference field can be bounded above and below by:

1√
λb

(Iλb(0)− E[Iλb(0)]− p) ≤ 1√
λb

(Jλb(0)− E[Jλb(0)])

≤ 1√
λb

(Iλb(0)− E[Iλb(0)] + p).

(3.32)

Now, as λb →∞, both the higher and lower limit converge to Gaussian random

variable from (3.28). Thus, Jcλb(0) also converges in distribution to Gaussian

random variable.

The random vector ZI = (Icλb(z1), Icλb(z2), ..., Icλb(zn)) converges to a

Gaussian random vector (Îc(z1), Îc(z2), ..., Îc(zn)) with covariance matrix C if

for any vector u = [u1, u2, ...un] ∈ Rn, n ∈ N, uTZI ∼ N(0,uTCu), where

Cij = c(||zi − zj||) which is given in (3.7). Let us consider the i.i.d random

114



variables ZI
1, Z

I
2, Z

I
3, ... defined as follows:

ZI
i =

n∑
j=1

ujYi(zj). (3.33)

Notice that the random variable uTZI is the sum of the i.i.d random variables

ZI
i . Then, from multidimensional central limit theorem we have:

lim
λb→∞

1√
λb

( λb∑
i=1

ZI
i − λbE[ZI

i ]

)
→d N(0,uTCu). (3.34)

Given the random variables M(zj), j = [1, 2, ..n], we have

uTZJ =
1√
λb

( λb∑
i=1

ZI
i − λbE[ZI

i ] +
n∑
j=1

uj(E[M(zj)]−M(zj))

)
. (3.35)

The random variables M(zj), j = [1, 2.., n] follow the same bounds as

given above, we can bound uTZJ as follows

1√
λb

( λb∑
i=1

ZI
i − λbE[ZI

i ]− p|
n∑
j=1

uj|
)
≤ uTZJ ≤ 1√

λb

( λb∑
i=1

ZI
i − λbE[ZI

i ] + p|
n∑
j=1

uj|
)
.

(3.36)

Now, as λb →∞, both the higher and lower limit converge to Gaussian

random variable from (3.34). Thus, uTZJ also converges in distribution to

Gaussian random variable.

Then, (Jcλb(z1), Jcλb(z2), ...., Jcλb(zn)) converges to a Gaussian random

vector (Ĵc(z1), Ĵc(z2), ...., Ĵc(zn)) with covariance kernel c, given by (3.7).

From (3.29), we have that E[Jλb(0)] = E[Iλb(0)]−E[M(0)]. Recall that

the E[Iλb(0)] = λbp
∫
R2 l(y)dy and that M(0) is bounded above by constant p.
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Thus, the result follows from the following bound:

λbp

∫
R2

l(y)dy− p ≤ E[Jλb(0)] ≤ λbp

∫
R2

l(y)dy.

In order to show weak convergence of the rescaled fields to the Gaussian

field, one must also show the tightness of the limiting sequence. An appropriate

tightness condition is given in the Theorem 8 [43]. It requires that the rescaled

interference processes be such that there exists a positive measure µ on [0, 1]×

[0, 1] and λ0 such that

E
[
(Ĵcλb(B))2(Ĵcλb(C))2

]
≤ µ2(B)µ2(C), (3.37)

for all pairs of neighboring blocks B and C in [0, 1] × [0, 1] and for all

λb ≥ λ0, where for each block B with ordered corners xB1 ,x
B
2 ,x

B
3 ,x

B
4 , we have

that

Ĵcλb(B) = Jcλb(x
B
1 )− Jcλb(x

B
2 )− Jcλb(x

B
3 ) + Jcλb(x

B
4 ) (3.38)

represents the “increment” of Jcλb around B. From [43], we know that the

centered shot noise field Icλb satisfies the condition in (3.37). Let Mλb denote

the maximal shot noise field, i.e.,

Mλb(t) = sup
Xi∈Φ

l(Xi − t). (3.39)

Using the Cauchy-Schwarz inequality and the relation Jcλb(t) = Icλb(t)−

Mc
λb

(t), one can show that the protected-shot noise field satisfies the tightness

condition if the maximal shot noise field satisfies the condition in (3.37).
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Given the characterization of the joint distribution for the maximal

shot noise process in [55], we can evalute the expectation of the increment of

this field as follows:

E
[
M̂c

λb
(B)
]

= E
[
l(xB1 −R1) + l(xB3 −R3)− l(xB2 −R2)− l(xB4 −R4)

]
,

(3.40)

where Ri is a random variable denoting the location of the closest base station

in Φ from location xBi . The random variables are not independent since the

location of the closest base station for one corner limits the distance to the

closest base station for remaining corners. Further, based on the geometry

of the associated quantities one can show that they almost surely satisfy the

following inequality:

|(xB1 −R1)− (xB2 −R2)| ≤a.s |xB1 − xB2 |. (3.41)

Using the above inequality, we can bound the increament of maximal shot

noise field over a block B by a positive measure of B for path loss functions

statisfying the Lipschitz conditon:

|l(xB1 )− l(xB2 )| ≤ c|xB1 − xB2 |, (3.42)

for some positive constant c. Hence, we can prove the tightness condition for

the protected shot noise fields.
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3.7.3 Continuity of Gaussian Fields

Here we state the conditions for a generic stationary Gaussian field

(X(y),y ∈ R2) with covariance kernel r(t), to be m.s and a.s continuous.

Lemma 4. [63] The limiting stationary Gaussian field (X(y),y ∈ R2) is

continuous in the mean square sense if and only if its covariance kernel r(t)

is continuous at t = 0 and is mean square differentiable if and only if its

covariance kernel c(t) is twice continuously differentiable in a neighborhood of

t = 0.

Lemma 5. [64] The limiting stationary Gaussian field (X(y),y ∈ R2) has

continuous sample paths if its covariance satisfies

r(0)− r(t) ≤ ξ

| log(t)|1+α2
, (3.43)

for some α2 > 0 and some ξ.

3.7.4 Proof of Theorem 14

Proof. We use polar coordinates for our analysis, thus the covariance function

given in (3.7) is given by:

c(t) = p2

∫ 2π

0

∫ ∞
0

l(r)l(
√
r2 + t2 − 2rt cos(θ))rdrdθ. (3.44)

Let us define the function f(r, θ, t) = l(r)l(
√
r2 + t2 − 2rt cos(θ))r. The func-

tions f(r, θ, t) and df
dt

are continuous in the domain 0 < r < R, 0 < θ <

2π,−η < t < η for every R > 0, since the path loss function is continuous and

everywhere differentiable.
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If the given two conditions stated are satisfied, we can interchange the

differential and the integration. Thus, we have

d

dt
c(t) = p2 d

dt

∫ 2π

0

∫ ∞
0

l(r)l(
√
r2 + t2 − 2rt cos(θ))rdrdθ

= p2

∫ 2π

0

∫ ∞
0

d

dt
l(r)l(

√
r2 + t2 − 2rt cos(θ))rdrdθ

= p2

∫ 2π

0

∫ ∞
0

l(r)l
′
(
√
r2 + t2 − 2rt cos(θ))

t− r cos(θ)√
r2 + t2 − 2rt cos(θ)

rdrdθ.

(3.45)

Thus, d
dt
c(t) at t = 0 is

∫ 2π

0

∫∞
0
l(r)l

′
(r)r cos(θ)drdθ = 0, since

∫ 2π

0
cos(θ)dθ =

0.

Hence the covariance kernel is twice differentiable. Therefore, Ĵc is

mean square continuous and differentiable with Ĵc
′

a stationary Gaussian cen-

tered field with covariance kernel −c′′(t). Moreover,

E
(
Ĵc
′

(t)− Ĵc
′

(t
′
))2
)

= 2(c
′′
(0)− c′′(t− t′)) ≤ 2||l′ ||∞||l

′′||1|t− t
′ |, (3.46)

thus, Ĵc
′

and Ĵc are almost surely continuously differentiable(Theorem 1.4.2)

[64]. Thus, the Gaussian field is both mean square and sample path continu-

ously differentiable for path loss functions of Class-1.
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3.7.5 Verification of differentiability for a family of path loss func-
tion

Let us consider a class of radial path loss functions that are often used

in the literature:

l(y) =

{
1 for ||y|| ≤ r0,

f(||y||) for ||y|| > r0.
(3.47)

We prove that in the case where the path loss function is continuous,

i.e., f(r0) = 1, the limiting Gaussian field is mean square differentiable. We

use polar coordinates for our analysis and the path loss function is then given

as:

l(r) =

{
1 for r ≤ r0,

f(r) for r > r0.
(3.48)

The evaluation of the differential of the covariance kernel c(t) for t ∈

[0, δ] is achieved by splitting the integration. Since the covariance kernel is an

even function, the differential function c
′
(t) is an odd function. Thus, if the

value of the differentiation of the covariance kernel at t = 0 is non-zero, the

covariance kernel is not differentiable at t = 0.

Using polar coordinates, the covariance kernel in (3.7) is given by

c(t) = p2
∫ 2π

0

∫∞
0
l(r)l(

√
r2 + t2 − 2rt cos(θ))rdrdθ . Without loss of gener-

ality, consider the two points separated by a distance of t to be origin O

and t = (t, 0). Consider two discs of radius r0 around O and t. Then,

one can split the entire plane into six regions as illustrated in Figure 3.10.

The covariance kernel is the integration of product of two path loss func-

tions over entire plane. The integrand in R1, R2 is equal to one since the
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distance from any point in these regions to O and t is less than r0. Simi-

larly, it is f(r) and f(
√
r2 + t2 − 2rt cos(θ)) in R3 and R4 respectively and

f(r)f(
√
r2 + t2 − 2rt cos(θ)) in R5 and R6.

O Xt

𝑟" 𝑟"

𝜃"

𝑅%𝑅&𝑅'𝑅( 𝑅)𝑅*

Figure 3.10: Figure illustrating various regions of the integration in the case
with path lass function of class-2.

Thus, we have

c(t) = p2

[ ∫ θ0

0

∫ r0

0

rdrdθ +

∫ π

θ0

∫ t cos θ+
√
r20−t2 sin2 θ

0

rdrdθ+∫ θ0

0

∫ t cos θ+
√
r20−t2 sin2 θ

r0

f(r)rdrdθ+∫ π

θ0

∫ r0

t cos θ+
√
r20−t2 sin2 θ

f(
√
r2 + t2 − 2rt cos(θ))rdrdθ+∫ θ0

0

∫ ∞
t cos θ+

√
r20−t2 sin2 θ

f(r)f(
√
r2 + t2 − 2rt cos(θ))rdrdθ

+

∫ π

θ0

∫ ∞
r0

f(r)f(
√
r2 + t2 − 2rt cos(θ))rdrdθ

]
.

(3.49)

Now, we differentiate the covariance kernel by exchanging the differ-
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entiation and the integration in each and every term of the sum. Then, the

differential of the covariance kernel at t = 0 is given by

c
′
(0) = p2[−2r0 + 2r0f(r0)− r0f(r0)f(r0)]. (3.50)

Thus, from (3.50), we get that if the path loss function given by (3.47),

belongs to Class-2 i.e., if its continuous, or equivalently if f(r0) = 1, then the

limiting Gaussian field is mean-square differentiable.

Similar analysis can be done for path loss functions which belong to

Class-3 as given in (3.26). The area of integration in this case is illustrated in

Fig.3.11. Thus, the covariance function is given as

c(t) = p2[2r0(2r0 − t)],

and c′(0) = −2r0. Therefore, the limiting Gaussian field is not mean-square

differentiable and also not sample path differentiable since it has no L2 deriva-

tives [64].

3.7.6 Evaluation of variance

Grid Users. Let Rg
λb

=
∑m

i=1 Sλb(yj), where m is the number of users

in the region A, and y′is are the grid locations in A. Then, the variance can

be evaluated as:

var[Rg
λb

] = var[
m∑
i=1

Sλb(yj)] = mvar[Sλb(yj)] +
m∑

i,j=1,i 6=j

cov[Sλb(yi), Sλb(yj)]

=
µ2m

κ2λb
c(0) +

µ2

κ2λb

m∑
i,j=1,i 6=j

c(||yi − yj||)

(3.51)
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Figure 3.11: Figure illustrating the region of integration in the case with path
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Random Users. Let Rr
λb

=
∑N

i=1 Sλb(yj), where N is Poisson random

variable with parameter λb|Aλb|, and y′is are uniformly distributed locations in

the region Aλb . Also, Sλb(yj) are considered to be Gaussian random variables

with mean µ and variance µ2c(0)
κ2λb

. Then, the variance can be evaluated using

the conditional variance formula:

var[Rr
λb

] = var[E[Rr
λb
|N = n]] + E[var[Rr

λb
|N = n]]

= var[Nµ] + E[N
(µ2c(0)

κ2λb

)
] + E[

n∑
i,j=1,i 6=j

cov

[
Sλb(yi), Sλb(yj)|N = n

]
= µ2λu|Aλb|+ λu|Aλb|

µ2c(0)

κ2λb
+

E
[
N(N − 1)

1

|Aλb|2

∫
Aλb

∫
Aλb

cov[Sλb(yi), Sλb(yj)]dxdy

]
= µ2λu|Aλb|+ λu|Aλb|

µ2c(0)

κ2λb
+ λ2

u

[
µ2

κ2λb

∫
Aλb

∫
Aλb

c(||x− y||)dxdy
]
.

(3.52)
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Chapter 4

Mobility-driven Association Policies

4.1 Introduction and Related Work

Modeling and improving handover performance has been extensively

addressed in the cellular network literature. Emphasis was on offloading the

mobile user traffic to macro-cells in heterogeneous networks to reduce the

frequency of handovers, but the increase in the volume of mobile users will

lead to heavy congestion at macro-cells.

A handover management technique, based on self-organizing maps, is

proposed in [65] to reduce unnecessary handovers for indoor users in two-tier

cellular networks. The authors in [66] present a study to avoid unnecessary

vertical handovers and reduce the overall packet delay for low-speed users in

two-tier downlink cellular networks. Handover signaling overhead reduction

algorithms are proposed in [67] for two-tier networks and in [68] for cloud-

RAN based heterogeneous networks. Handover delay for a single tier network

is characterized in [69]. However, none of the aforementioned studies tackle

the interplay between handover cost and capacity gain as a function of the

base station intensity.

In this chapter, we explore a class of mobility-driven association poli-
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cies that optimize the trade-off between handover cost and throughput gains.

There have been many studies in user association policies other than the clos-

est BS policy for different spatial models such as single tier (homogeneous)

and multi-tier (heterogeneous) networks, see [70], [71], [72], [73], [74], [75], [76]

and references therein. Primarily they can be classified into three categories

based on the metrics considered for association: (1) received signal strength,

i.e., highest SINR (or highest SIR) in interference limited networks (2) load

balancing (for heterogeneous networks, it is often coupled with inter-cell in-

terference mitigation [77]) and, (3) energy aware, where one considers the

operational power consumption of base stations as the user association metric

so that they are likely to be associated with energy-efficient base stations [78].

Most of these works accurately model spatial traffic variations but none

consider user mobility. Although, in the context of multi-hop ad-hoc networks,

a selection of a receiver for relaying the information that is aware of the direc-

tion of the destination is studied in [79].

We model the cellular network using stochastic geometry, which is a

widely accepted mathematical tool to model and analyze cellular networks

which enables performance characterization in terms of the base station in-

tensity, λ as well as other physical layer parameters (see [6] for a survey). In

such networks, under the closest base station association policy, the intensity

of handovers scales very poorly, i.e., proportionally to
√
λ [80]. Thus, our

proposed association policies are also geared at reducing the scaling of the

intensity of handovers.
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The handover rate for Poisson cellular networks in terms of the base

station intensity is characterized in [80] for single-tier scenario and in [81] for

multi-tier scenarios. However, none of the aforementioned studies investigate

the integrated effect of network densification (i.e., BS intensity) in terms of

both the handover cost and the throughput gains. The authors in [82], [83] pro-

posed a simple handover skipping scheme to mitigate handover cost in single

tier networks, where they advocate sacrificing the best base station associa-

tion to skip some handovers along the user trajectory. Although the proposed

skipping scheme improves user throughput at higher velocities, it is topology

agnostic, which can result in non-efficient skipping decisions. In [82], the au-

thors exploited topology awareness and user trajectory estimation to propose

smart handover management schemes in single and two-tier downlink cellular

networks. However, it is difficult to conduct tractable analysis for the pro-

posed handover skipping schemes due to the random shape of the Voronoi cell

and the random location and orientation of the trajectory within the Voronoi

cell.

4.2 System Model

Consider an ultra-dense wireless network with base stations denoted

through their locations on the Euclidean plane. The configuration of the base

stations, Φ = {B1, B2, ..}, is assumed to be a realization of Poisson point

process of intensity λ in R2. Often, we let Bi denote both the location of the

base station and a state representing the users’ association with base station

126



Bi. We consider downlink transmissions and assume that all base stations

transmit at a fixed power ξ. We shall adopt a deterministic isotropic bounded

path loss model represented by a function l(.).

We consider a tagged mobile user moving at a constant velocity v along

a trajectory, T , starting from the origin o and moving to a destination d.

We assume that the user is aware of the base station locations, denoted as

φ = {b1, b2, ...}.

In general, handovers are performed in three phases: initiation, prepa-

ration, and execution [84]. This involves signaling overhead between the user,

the associated base station, the target base station and core network, which

often interrupts the data flow to the user. We denote the duration of each

interruption (handover delay) by δ seconds, measured from the beginning of

the initiation phase to the end of the execution phase. Such delays can be

significant [85]. In the sequel, we model the cost of a handover by considering

the loss in throughput associated with such handover delays. Further, we also

introduce an additional fixed loss of c bits per handover to model the packet

loss and signaling overhead.

4.3 Mobility-driven Association Policies

In this section, we introduce the notion of mobility-driven association

policies which represents feasible associations encountered by a typical tagged

mobile user.
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Figure 4.1: Different associations states a tagged mobile user will be in while
moving along its trajectory T at a constant velocity v.

The tagged user moving along its trajectory goes through different as-

sociation states, pi that are either a connected (associated base station) or

disconnected state as illustrated in Figure 4.1. Let p = (p1, p2, ....pk) denote

the sequence of such association states of length k ∈ N and P denote set of

feasible association sequences.

Disconnected States. We shall distinguish various disconnected states

for a purpose that will be clear in the next section. If the user is associated

with base station bi and becomes disconnected, we denote it as being in state

b∞i . Similarly, if the user is disconnected at the beginning of motion, i.e., at

the origin o, we denote it as being in state b∞o . Let ψ denote the set of possible

disconnected states.

Given an association sequence, p ∈ P of length k, one can choose a

sequence of handover times t = (t1, t2, . . . , tk−1), where ti denotes the handover

time from pi → pi+1. Let Tp denote the set of all such feasible sequences of
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handover times for p.

The feasibility of an association sequence depends on the tagged mobile

user’s:

• Trajectory. We assume that user is moving along a straight line. Without

loss of generality, we assume T = {u(t) = vt : t ∈ [0, t(d)]}, where u(t)

denotes the user’s location on the trajectory at time t and t(u) denotes

the time at which the tagged user reaches the location u on the trajectory.

• Possible associations. We assume that the mobile user can only connect

to a base station from a set of accessible base stations. The mobile user is

assumed to be disconnected in the case where there are no accessible base

stations. Further, we assume that if the mobile user can be connected,

it will be connected, i.e., the user is disconnected only in the absence of

accessible base stations. This is in part inspired by the threshold service

model considered in [59], where the user is idle in the case where the

SNR received is less than a given threshold.

Accessible base stations. For the mobile user at location u on T , we

define the set of accessible base stations, Φγ(u), parameterized by γ, as

Φγ(u) = Φ ∩ Aγ(u), (4.1)

where the association region Aγ(u) is a convex association region centered at

u and parameterized by γ. The parameter γ can either be a scalar, e.g., a disc
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Figure 4.2: Different possible association regions for a mobile user at u, Aγ(u).

of radius, r, Aγ(u) = Dr(u) or a vector, (2rl, 2rb) representing side lengths of

a rectangle Aγ(u) = R(rl,rb)(u) centered at u, or parameters for an ellipse as

illustrated in Figure 4.2.

Maximal Connection Intervals. We define the longest connection inter-

val for a base station, bi, as the longest line segment on the user’s trajectory on

which the tagged user can associate with base station bi, denoted by
[
u

(1)
bi
, u

(2)
bi

]
,

where u
(1)
bi
, u

(2)
bi

are locations on the user’s trajectory, T . Figure 4.3 illustrates

the interval for an association region, Dr(u), denoting a disc of radius r, in

which case, for Dr(bi) namely a disc of radius r centered at bi, u
(1)
bi
, u

(2)
bi

will be

the intersection of this disc with the user’s trajectory T .

Handover Sets. Let us define the handover set, B(bi) as the set of base

stations to which the mobile user could realize a handover from base station

bi ∈ φ, i.e., all the base stations that are accessible from some point on the

maximal connection interval of bi,
[
u

(1)
bi
, u

(2)
bi

]
. Further, for any disconnected
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state b∞i the handover set B(b∞i ) includes only the first available base station

along the trajectory:

B(b∞i ) =

{
bj ∈ φ s.t u

(1)
bj

= min
bk∈φ

[
u

(1)
bk

: u
(1)
bk
> u

(2)
bi

]}
. (4.2)

Given the properties of the Poisson point process, this is a singleton almost

surely. Note that the mobile user enters the disconnected state from a base

station bi only when B(bi) is empty.

Recall that φr(o), φr(d) denote the set of accessible base stations for

the tagged user at the origin o and the destination d respectively. Then, for

given trajectory and possible associations for the tagged user, we now formally

define feasible association sequences.

Definition 9. A feasible association sequence, p = (p1, p2, . . . , pk), of length

k ∈ N, for the trajectory T is such that:

• p1 is either a base station in φr(o) or the disconnected state b∞o , when

φr(o) is empty,

• for each i > 1, pi is either a base station in B(pi−1) or the disconnected

state p∞i−1, when B(pi−1) is empty, and

• pk ∈ φr(d).

Thus, a specific mobility-driven association policy is equivalent to se-

lecting a pair (p, t), with p ∈ P and t ∈ Tp. We are interested in finding a
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policy that optimizes the reward that captures both the performance seen by

the user and the cost of handovers as defined below.

Reward. For each pair (p, t) with p ∈ P and t ∈ Tp, we define the total

volume of data delivered to the tagged mobile user during its trajectory T as

the reward, r(p, t).

For pi ∈ p, we define the Shannon rate, spi(t), seen by the user at any

given time t as:

spi(t) = ω ln

(
1 +

ξ × l(||pi − u(t)||)
σ2

)
, for ti−1 ≤ t < ti, (4.3)

where σ2 is the noise power, ω is the system bandwidth and ||.|| denotes

Euclidean distance. Since the rate seen by the user in the disconnected state

is zero, we set spi(t) = 0, if pi ∈ ψ.

Thus, for an association sequence, p = (p1, p2, . . . , pk), and associated

sequence of handover times, t = (t1, t2, . . . , tk−1), the total volume of data

delivered, r(p, t), is the sum of the data volumes delivered by individual base

stations, denoted by r(pi, (ti−1, ti)), i.e., r(p, t) =
∑k

i=1 r(pi, (ti−1, ti)), where

t0 = 0, tk = t(d) and

r(pi, (ti−1, ti)) =

[∫ ti−δ/2

ti−1+δ/2

spi(t)dt− c

]+

. (4.4)

We model the cost of a handover by assuming that data transmission

is interrupted for δ seconds, equally split between the two states involved in

handover. Further, the additional fixed loss of c bits in the data per handover
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Symbol Definition
φ = {b1, b2, . . . } Set of base stations
T Mobile user trajectory of motion
B(bi) Handover set of base station bi[
u

(1)
bi
, u

(2)
bi

]
Interval during which the user can associate with base
station bi

p = (p1, p2, . . . , pk) Association Sequence of length k
ti Handover time from pi to pi+1

t = (t1, t2, . . . , tk−1), Handover times for association path p
r(pi, pi+1) Net rate associated with the handover pi → pi+1

δ, c Time of service interruption due to a handover and a
fixed cost

Table 4.1: Table of Notation for the Dynamic Programming.

is modeled by subtracting c bits from the total volume of data delivered from

each base station. This captures packet losses and signal overheard.

In cases where, (1) the value of the upper limit is less than the lower

limit, i.e., when the time taken for handover is more than the users association

time or (2) the volume of data delivered is less than the penalty c, we model

the total volume of data delivered to be zero.

4.3.1 Optimal Association Policy

Problem 1. In this setting, the optimal handover problem consists in finding

a sequence of base stations and handover times that results in the maximum

volume of data, i.e.,

r∗ = max
p,t
{r(p, t) : p ∈ P, t ∈ Tp}, (4.5)
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where P,Tp denote the set of all possible association sequences and associated

handover times respectively.

Recall that
[
u

(1)
bi
, u

(2)
bi

]
is the maximal connection interval for base sta-

tion bi. Given that if the tagged user can be connected, it will be connected,

a handover from pi to the disconnected state happens at location u
(2)
pi . Simi-

larly, a handover from the disconnected state to base station pi+1 happens at

location u
(1)
pi+1 .

For each handover from base station pi → pi+1, we have a continuum

of possible handover times with some constraints that we will not specify.

Thus, the above problem is a mixed optimization with discrete and continuous

variables can be very challenging to solve. Further, the handover time ti is

functionally dependent on the entire association sequence.

Let us discretize the time with step size δ and consider a decision tree

with origin o as the parent node and feasible association base stations and

disconnected states at each time step as a new layer in a decision tree. If m

denotes the total number of time steps, then the number of nodes in such a tree

is in the order of (2λ(πr2))m. Further, the combinatorial optimization problem

reduces to finding a maximum reward path in this decision tree, which has a

complexity of O((2λ(πr2))m) [86].

In next section, we will restrict the set of feasible association sequences

by considering forward association sequences and defining a single sequence

of handover times for each association sequence. We then propose an algo-
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rithmic solution with less complexity to the problem of finding the optimal

policy, specifically a dynamic programming approach. We do not claim to

solve Problem 1.

4.4 Forward Association Policies

Let us first, define the projection of a base station location, bi ∈ φ on

the trajectory, T as ΠT (bi). Given the set of base stations is a realization of

a homogenous Poisson point process, we have that all projections of the base

station locations on the straight line trajectory are almost surely unique, i.e.,

no two projections are the same.

We then define forward association sequences based on forward han-

dover sets:

Definition 10. The forward handover set, Bf (bi) ⊂ B(bi) is the set of base

stations to which the mobile user could realize a handover from base station bi

that are:

1. within a distance r from some point on the interval
[
ΠT (bi), u

(2)
bi

]
and

such that

2. for any bj ∈ Bf (bi), we have ΠT (bj) > ΠT (bi).

The base stations in Bf (bi) are in the region illustrated in Figure 4.3.

Note that the definition for the handover set corresponding to the disconnected

state b∞i is the same as before (4.2). Now, a forward association sequence,
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Figure 4.3: Figure illustrating the handover sets for an association region of a
disc of radius r denoted as Dr(u).

p = (p1, p2, ..., pk) is an association sequence where for every, i > 1, pi is either

a base station in Bf (pi−1) or the disconnected state p∞i−1. Let Pf ⊂ P denote

the set of all possible forward association sequences.

Intuitively forward association sequences result in fewer handovers and

longer connection periods. Let us now define a forward association graph as

follows:

Definition 11. For a given trajectory, T , the set of base stations, φ, and

possible disconnected states, ψ, we define a forward association graph G =

(V,E), where V = φ ∪ ψ ∪ {o, d} and E ⊂ V × V . An edge (pi, pi+1) ∈ E,

for all pairs (pi, pi+1) of forward association sequences in Pf . Similarly, edges

(o, p1), (pk, d) ∈ E, for all p1, pk of forward association sequences in p ∈ Pf .

The forward association graph G is a directed acyclic graph. This is

due to: (1) the constraint of the forward handover sets and (1) the different

disconnected states based on the last association base station. Further, the
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forward association sequences are the paths in the graph from node o to node

d. Figure 4.4 gives an instance of such a graph.
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Figure 4.4: Figure illustrating the directed acyclic graph.

In the sequel, we will evaluate the reward, r(p, t) associated with the

forward association path p by representing it as the sum of rewards on the

edges along the path. Thus, we further restrict ourselves to the case where

the sequence of handover times, t, is a function of the association sequence p

by selecting the best handover time from the continuum under the constraint

that ti ∈ t depends only on the pair (pi, pi+1) ∈ p.

Note that, for a handover from base station pi to pi+1, it is best to

handover at a time where the mobile is equidistant to both base stations. Let

upi,pi+1
be the location on the trajectory T where the user is equidistant from

both the base stations, i.e., ||pi−upi,pi+1
|| = ||upi,pi+1

− pi+1||. We assume that

the handover time ti for handover pi → pi+1, for pi, pi+1 ∈ φ, to be within

the range
[
t(p

′
i), t(p

′
i+1)
]
. In the event the ideal time, t(upi,pi+1

) is not in this
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range, we handover at one of the extreme points of the interval
[
t(p

′
i), t(p

′
i+1)
]
.

More precisely, we make the following assumption:

Assumption 1. We assume that the handover time from pi to pi+1 is given

by:

ti =



t(p
′
i) if t(upi,pi+1

) < t(p
′
i) for pi → pi+1,

t(p
′
i+1) if t(upi,pi+1

) > t(p
′
i+1) for pi → pi+1,

t(u(pi, pi+1)) if t(upi,pi+1
) ∈ [t(p

′
i), t(p

′
i+1)] for pi → pi+1,

t(u
(2)
pi ) for pi → b∞j ,

t(u
(1)
pi+1) for b∞j → pi+1.

(4.6)

Figure 4.5 illustrates all cases of handover times for a simple example

of mobile user moving at unit velocity.
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Figure 4.5: Figure illustrating all cases of handover times for a mobile user
moving along a straight line at unit velocity.

Having defined handover times as a function of the forward association

sequence, the association reward, r(p, t) now depends only on the association
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sequence and is denoted by r(p). Let r(pi, pi+1) denote the total volume of data

received by the mobile user while moving from p
′
i → p

′
i+1 under Assumption 1.

Then, the association reward, r(p) for a forward association sequence of length

k, is additive, and with p0 = o, pk+1 = d, we have r(p) =
∑k

i=0 r(pi, pi+1),

where,

r(pi, pi+1) =

[(∫ ti−δ/2

t(p
′
i)+δ/2

spi(t)dt+

∫ t(p
′
i+1)−δ/2

ti+δ/2

spi+1
(t)dt

)
− c

]+

, (4.7)

with spi(t) as in (4.3) and the cost of handover modeled as before.

4.4.1 Optimal Forward Association Policy

Problem 2. In this setting, the problem of finding the optimal sequence of

base stations and handover times that results in the maximum total data

delivered to the tagged user under the constraints of forward association and

handover sequences is equivalent to solving the largest weight path from node

o to node d [87], i.e.,

r∗f = max
p
{r(p) : p ∈ Pf}, (4.8)

where, r∗f denotes the optimal reward and Pf denotes the set of all forward

association sequences, i.e., paths from o to d.

Given that φ is a realization of a Poisson point process of intensity λ,

the mean number of base stations seen by the tagged mobile user along its

trajectory that are within a distance r from its path is equal to 2rdλ, where

d is the total distance traversed by the user. The mean number of nodes in
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Figure 4.6: Figure illustrating the optimal association path given by the dy-
namic programming approach.

the directed acyclic graph is of the order of the number of base stations, i.e.,

|V | = O(2rdλ). Now, a given base station can have edges to base stations

in the region as illustrated in Fig 4.3, thus we have that |E| = O(λ2r3d).

Thus, the mean time complexity of solving the optimal path in the graph is

O(|V |+ |E|) = O(λ2r3d) [86].

Thus, Problem 2 can be solved using dynamic programming with a lin-

ear time complexity with respect to the total distance traversed. Considering

a certain realization of base stations, we solve the problem using Dijkstra’s

algorithm ([86]). Figure 4.6 illustrates the optimal base stations as given by

dynamic programming along with the closest base station. Further, the per-

formance analysis of this approach is studied in Section IV.
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Symbol Definition
Φγ(u) Accessible base station for mobile user at u
(P (t), t > 0) Random process denoting the association base station

to the mobile
(D(t), t > 0) Random process denoting the distance to the association

base station
(S(t), t > 0) Random process denoting Shannon rate seen by the mo-

bile user
(Ti)

∞
i=1 ,u(Ti)

∞
i=1 Handover times and the location of the mobile user

Zn = (Xn, Yn) Relative position of the association base station w.r.t.
mobile user’s location u(Tn)

ρ Rate of handovers
S(γ) Effective throughput

Table 4.2: Table of Notation for Greedy Association.

Thus, with knowledge of the entire layout of base stations along the

mobile user’s trajectory, one can find the optimal set of base station associ-

ations and handover times using dynamic programming. In the sequel, we

assume limited information about the base stations in a specific environment

and propose a greedy association policy.

4.5 Farthest Greedy Policy

In this section, we consider networks with high handover costs and

propose association policies where the mobile user greedily associates with the

base station that maximizes the connection time, i.e., the base station that

is farthest out in the direction of its motion. Handovers are constrained to

a fixed region around the mobile, which represents both a constraint on the
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information available as well as the degree of greediness in avoiding handovers.

In this setting, as the first step, we analyze these policies using Markov chains.

Since associating with a base station that is at a large distance may result in

poor throughput, we then optimize the performance of such greedy association

policies with respect to the size of the association region in the second step.

We still assume that the base stations, Φ, are a realization of a Poisson

point process of intensity λ and that the tagged user is moving along the x-

axis, starting from the origin, i.e., T = {u(t), t ≥ 0}. As already mentioned, to

evaluate the performance of greedy policies, we establish a connection with the

theory of Markov processes. The steady state of these processes is analyzed.

Thus, we assume that the tagged users’ trajectory has infinite length.

We model the constraints on possible handovers and the information by

assuming that, at any location u on T , the tagged mobile user is only aware of

the set of accessible base stations Φγ(u) that are within the association region

Aγ(u) as defined in (4.1).

If we assume a single disconnected state denoted by b∞, then at t = 0,

the mobile user is either in the disconnected state b∞ or connected to a base

station in Φγ(o). Given that at this time, the tagged user is not aware of base

station locations beyond the region Aγ(o), and that they are randomly located

according to a Poisson point process, the first handover time T1 is a random

variable. We retain the definitions of maximal connection intervals,
[
u

(1)
Bi
, u

(2)
Bi

]
and handover sets B(Bi) for a base station Bi ∈ Φ as in the previous sections.
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Definition 12. An association process, (P (t), t ≥ 0), is a discontinuous

stochastic process denoting the association state of the tagged mobile user at

time t, with discontinuities at (Ti)
∞
i=1 denoting the handover times, given by

P (t) ∈

{
{Φγ(o), b

∞}, for 0 ≤ t < T1,

{B(P (Ti−1)), b∞}, for Ti−1 ≤ t < Ti.
(4.9)

Recall that ΠT (Bi) denotes the projection of the base station’s location

on the trajectory T . We define the farthest greedy policy as follows:

Definition 13. In the farthest greedy policy, when a handover is required, the

mobile user chooses as next station the accessible base station that is farthest

out in the direction of its motion with forward progress, i.e., for T0 = 0 and

n ≥ 1,

P (Tn) = arg max
Bi∈Φγ(u(Tn))

[
||ΠT (Bi)− u(Tn)|| : ΠT (Bi) > ΠT (P (Tn−1))

]
, (4.10)

and stays connected to that base station for the maximum amount of time, i.e.,

Tn+1 = t
(
u

(2)
P (Tn)

)
. (4.11)

Reward. In the sequel, we use effective throughput as the metric for

the user’s performance, which encapsulates both the cost of handovers and

the Shannon rate seen by the user. Let us first define the distance process

(D(t), t ≥ 0) denoting the distance from the mobile user to its association

base station when connected and infinity otherwise as given by:

D(t) =

{
∞ for P (t) = b∞,

||u(t)− P (t)|| otherwise,
(4.12)
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Figure 4.7: Distance from the association base station to the mobile user.

where ||.|| denotes Euclidean distance. Figure 4 illustrates a realization of

association and distance processes. Then, considering SNR, the Shannon rate

process, (S(t), t ≥ 0) is given by:

S(t) = ω ln

(
1 +

ξ × l(D(t))

σ2

)
. (4.13)

Thus, by introducing a cost of a handover similar to that in our previous

analysis, we have the following definition:

Definition 14. The effective throughput S(γ) seen by a mobile user is defined

as the time average of the Shannon rate seen by the user when its service is

interrupted for δ seconds and penalized c bits for every handover.

Under our proposed association policy, we establish a connection be-

tween the random geometry of base stations and the theory of Markov process
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with continuous state space. Using this, we give an analytical expression for

the stationary effective throughput.

For simplicity, in the sequel, we consider a fixed rectangular shape,

Aγ(u) = R(rl,rb)(u) centered at the tagged users location u, and optimize its

size.

4.5.1 Markov Formulation

To begin with, we have the following definition:

Definition 15. At any given handover time, Tn, we define the relative position

as the coordinates, Zn = (Xn, Yn) of the association base station, P (Tn) with

respect to the origin shifted to the location u(Tn) on the tagged users’ trajectory

T , if the user is connected and infinity otherwise as given by:

Xn =

{
||ΠT (P (Tn))− u(Tn)||, if P (Tn) ∈ Φ,

∞ otherwise,
(4.14)

Yn =

{
ycoord(P (Tn)), if P (Tn) ∈ Φ,

∞ otherwise.
(4.15)

Let us recall some terminology regarding general state space Markov

processes.

Definition 16. Given a discrete time Markov process, (Zn, n ≥ 0), with Zn =

(Xn, Yn) with a state space, Z, the transition probability kernel, P(z, Q) with

z = (w, h) and Q a set in the Borel σ algebra of Z is defined as:

P(z, Q) = P(zn ∈ Q|zn−1 = z). (4.16)
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Further, for the continuous part of kernel the transition kernel density, f(z, ȳ)

is defined as:

P(z, Q) =

∫
ȳ∈Q

f(z, ȳ)dȳ. (4.17)

Figure 4.8 illustrates the relative position of an association base station.
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Figure 4.8: Relative position (Xn, Yn) of the association base station P (Tn) at
time instant Tn.

Leveraging the properties of the random geometry of base stations, i.e.,

the Poisson point process assumptions, we have the following result.

Theorem 16. Under rectangle-based farthest greedy policy, where the associ-

ation region is a rectangle R(rl,rb)(u) of length 2rl and breadth 2rb,

• the x-coordinate of the relative position of the association base station

(Xn, n ∈ N) is a Markov process with state space Z = {[−rl, rl],∞} and
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the transition kernel densities for Q(x) = [−rl, x] are given by:

f(∞, Q(x)) = δ(x− rl),P(w,∞) = e−2λrb(rl+w),

f(w,Q(x)) =

{
2λrbe

−2λrb(rl−x), if − w ≤ x ≤ rl,

0 otherwise,

(4.18)

• the y-coordinate of the nth relative position is given as:

Yn+1 =

{
Y, if P (Tn+1) ∈ Φ,

∞ otherwise,
(4.19)

where, Y ∼ U [−rb, rb] and the event that {P (Tn+1) ∈ Φ} depends only

on Xn, i.e., given Xn = w, its probability is given by 1− e−2λrb(w+rl).

Proof. Recall that (Ti)
∞
i=1 denotes handover times and u(Ti)

∞
i=1 the locations

of the mobile user at handover times. The nth handover time, Tn is a stopping

time, since the event {Tn = t} for t ≥ 0, depends only on Z1,Z2, . . . ,Zn.

Then, conditionally on Tn <∞ and Zn = (w, h), we have that for all m ≥ 1:

P(Zn+m = z|Zi = zi ∀i < n,Zn = (xn, yn)) = P(Zn+m = z|Zn = (w, h)).

(4.20)

Recall that Zn+1 is the relative position of the association base station,

P (Tn+1) ∈ Φ ∩R(rl,rb)(u(Tn+1)). Given our greedy association policy, we have

the following constraint that:

P (Tn+1) ∈ Φ ∩
[
R(rl,rb)(u(Tn+1)) \R(rl,rb)(u(Tn))

]
. (4.21)

This is due to the fact that a part of the region, R(rl,rb)(u(Tn+1)) is empty of

base stations that is based on its previous association, P (Tn), as illustrated in

Figure 4.8.
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Further, note that one can determine the location u(Tn) and its cor-

responding region R(rl,rb)(u(Tn))), based on Zn = (w, h) alone, in particular,

only on the x-coordinate of the previous state, i.e., Xn. Thus, the process

tracking the x- coordinate of relative position of the association base station

(Xn, n ∈ N) satisfies the Markov property with state space, Z = {[−rl, rl],∞}.

The y-coordinate Yn+1 is independent of Yn and is uniformly distributed be-

tween [−rb, rb], given that the user is connected as given in (4.19).

The discrete transition probability to the state “∞”, P(w,∞) is given

by the probability that the region, R(rl,rb)(u(Tn+1))\R(rl,rb)(u(Tn)), i.e., R2∪R3

as illustrated in Figure 4.8 is empty. Given that the association region is empty

of base stations, the first base station to enter will be at the edge. Thus, the

Markov process always transitions from the state “∞” to a state “rl”, and

therefore the transition probability kernel, f(∞, Q(x)) will be a Dirac delta

function as given in (4.18).

The transition probability kernel for the continuous part is given by the

product of the probability that the region R2, the rectangle of length (w + x)

has at least one point and the region R3, the rectangle of side length (rl − x)

has no points, see Fig 4.8:

P(w,Q(x)) = e−λ2rb(rl−x)

(
1− e−λ2rb(w+x)

)
, − w ≤ x ≤ rl. (4.22)

Thus, the transition kernel density for the continuous and discrete parts of the

state space Z is given by (4.18).
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Let us now focus on proving the existence and uniqueness of its station-

ary distribution. The Markov process (Xn, n ≥ 0) has the following properties:

• Irreducibility : The state space of the Markov process, ∞ is an atom.

The Markov process is irreducible with respect to this atom.

• Aperiodic: There is no such subset of the state space Z, i.e., a partition

of the rectangle, such that the probability from transitioning from one

subset of the state space (region of the rectangle) to another is one

and vice-versa. Thus, the Markov process is aperiodic according to the

definition of aperiodicity given in [88].

Given the properties of the Markov process and its transition kernel

densities, we have the following result regarding its stationary distribution:

Theorem 17. Under the rectangle-based association policy, the Markov pro-

cess, (Xn, n ≥ 0) has a stationary distribution with discrete and continuous

parts πd and πc given by its Laplace transforms:

Lπc(s) =

[
2λrbse

−srl − 4λ2r2
be
−4λrlrb+srl

](
1+Lπc (0)

2

)
2λrbs− s2 − 4λ2r2

be
−4λrlrb

+

[
4λ2r2

be
−4λrlrb−srl − 2λsrbe

−4λrlrb+srl

](
1−Lπc (0)

2

)
2λrbs− s2 − 4λ2r2

be
−4λrlrb

,

πd(rl) = πd(∞) = q =
1− Lπc(0)

2
,

(4.23)
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where,

Lπc(0) =

2λrb

(
1− e2a1rl

)
+ a1

(
e4λrlrb − e2a1rl

)
2λrb

(
1 + e2a1rl

)
− a1

(
e4λrlrb + e2a1rl

) , (4.24)

with, a1 = λrb + λrb
√

1− 4e−4λrlrb.

Proof. Let us consider the stationary distribution of this process in terms of

πd and πc associated with the discrete and the continuous parts. Thus, πc(x)

represents the continuous part of the stationary distribution of the Markov

process for x ∈ [−rl, rl) , πd(rl) and πd(∞) are the discrete probability masses

associated with the states r and ∞. We have the following equations:

πc(x) = 2λrbe
−2λrb(rl−x)

(∫ r−l

−x
πc(w)dw + πd(rl)

)
,

πd(∞) = e−2λrbrl

∫ r−l

−rl
πc(w)e−2λrbwdw + πd(rl)e

−4λrbrl ,

πd(rl) = πd(∞),

(4.25)

with πd(rl) +πd(∞) +
∫ r−l
−rl

πc(w)dw = 1. We use Laplace transform techniques

to solve the integral equations.

Let the relative position of the association base station conditioned on

the availability of an accessible base station be denoted by (X̂1, Ŷ1). Given

the Laplace transform of the stationary distribution, we can evaluate various

moments of the conditional random variable X̂1 and also study its asymptotics.

The mean of the random variable X̂1 is given by :

E[X̂1] = −L′πc(0) =
(1− e−4λrlrb)[1− Lπc(0)]− 4λr2

l e
−4λrlrb

4λrle−4λrlrb
. (4.26)
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In the limit, as the density of base station λ goes to infinity, we have

lim
λ→∞

Lπc(0) = 1.

Thus, we have that the stationary distribution of the states rl and ∞ goes to

zero, i.e., πd(rl) = πd(∞) = 0, and for the continuous part we have:

lim
λ→∞

πc(x) = δ(x− rl),

and in the limit the expectation is E[X̂1] = rl.

4.5.2 Evaluation of the Rate of Handovers

Given the Markov process characterization of the greedy-based associ-

ation policy, one can evaluate the rate of handovers seen by a mobile user as

stated in the following theorem:

Theorem 18. Consider a mobile user moving along a straight line at constant

velocity v in a Poisson cellular network with base station intensity, λ. Under

the rectangle-based association policy with accessible base stations defined by

R(rl,rb)(u), the rate of handovers seen by the mobile user, ρ is given by

ρ =
2λrbv

2λrlrb + q + 2λrb(1− 2q)(−L′πc(0))
, (4.27)

where, q = πd(rl) = 1−Lπc (0)
2

and L
′
πc(0) is given by (4.26).

Proof. Recall that (Ti)
∞
i=1 denote the handover times and that at any time,

Tn, Xn is the relative x-coordinate of the association base station. Then, we

have that
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T1 =


X̂1+rl
v

w.p. 1− 2q,
2rl
v

w.p q,

G w.p. q,

(4.28)

where, q is given in (4.23) and G ∼ exp(2λrbv) is the time the rectangle

R(rl,rb)(u) is empty of points. The rate of handovers is then given by:

ρ =
1

E0[T1]
, (4.29)

where E0 denotes the Palm expectation which is given by:

E0[T1] = (1− 2q)E0

[
X̂1 + rl

v

]
+

2qrl
v

+
q

2λrbv

=
rl
v

+
q

2λrbv
+

1− 2q

v
(−L′πc(0)),

(4.30)

since, E0[X̂1] = −L′πc(0), which is given by (4.26).

Corollary 2. Under the rectangle-based association policy, we have that

lim
λ→∞

ρ =
v

2rl
. (4.31)

Proof. As the density of base stations, λ, goes to infinity, we have that limλ→∞Lπc(0) =

1, and E[X̂1] = rl. Thus, we have that q = 0 and the rate of handovers is a

constant v
2rl

.

4.5.3 Evaluation of Effective Throughput

Given the steady state formulation of the Markov process, the expec-

tation of the rate can be evaluated using the inversion formula [13] as:
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S = E[S(0)] =
E0
[∫ (T1−δ)+

0
S(0)o θtdt

]
− c

E0[T1]
, (4.32)

where, θt is the shift operator [13]. For mathematical simplicity, we consider

that the user is served at all times and we take the effect of handovers into

account by introducing a cost term as follows:

Ŝ =

E0

[ ∫ T1
0
S(0)o θtdt

]
E0[T1]

(1− ρδ)− ρc, (4.33)

where ρ = 1
E0[T1]

is the rate of handovers and c is the fixed penalty for each

handover. Note that the handover cost δρ is a unit-less quantity used to

quantify the fraction of interruption time along the user trajectory.

First, let us consider the distance process

D(t) =
√

(vt−Xn)2 + Y 2
n , for Tn ≤ t < Tn+1, (4.34)

if it is connected and∞ otherwise. Let the relative position of the association

base station conditioned on the availability of an accessible base station be

denoted by (X̂1, Ŷ1). Given the distribution of random variable T1 as in (4.28),

and q = πd(∞), the expectation is evaluated as follows:

E0

[ ∫ T1

0

S(0)o θtdt

]
=qE0

[∫ 2rl/v

0

h(rl, Ŷ1, t)dt

]

+(1− 2q)E0

[∫ (X̂1+rl)/v

0

g(X̂1, Ŷ1, t)dt

]
,

(4.35)
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where

g(X̂1, Ŷ1, t) = ω ln

1 +
ξ × l(

√
(vt− X̂1)2 + Ŷ 2

1 )

σ2

 ,

and

h(rl, Ŷ1, t) = ω ln

1 +
ξ × l(

√
(vt− rl)2 + Ŷ 2

1 )

σ2

 .

Special Case. Let us evaluate the effective throughput for the bounded

path loss function

l2(x) = exp(−κx2). (4.36)

Approximating ln(1 + x) ∼ ln(x), for large x, we have that:

g(X̂1, Ŷ1, t) = ω
(

ln(ξ/σ2)− k
[
(vt− X̂1)2 + Ŷ 2

1

])
,

h(rl, Ŷ1, t) = ω
(

ln(ξ/σ2)− k
[
(vt− rl)2 + Ŷ 2

1

])
.

(4.37)

Let m = ln(ξ/σ2). Now, given Ŷ1 ∼ U [−rb, rb], one can evaluate the

expectation in (4.35), which gives:

E[S(0)] =
qω

E0[T1]

[
6rlm− 2κr3

l − 2rlr
2
bκ

3v

]
+

(1− 2q)ω

E0[T1]

[
3mE0[X1]− κE0[X3

1 ] + 3mrl − κr3
l − κrlr2

b

3v

]
,

(4.38)

where q = πd(∞) is given in (4.23), and E0[T1] is given in (4.30).
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4.5.4 Optimal Farthest Greedy Policy

The problem of finding the optimal policy is now posed as a parametric

optimization problem as follows:

Problem 3. The problem of finding an optimal sequence of association base

stations and handover times under rectangle-based farthest greedy association

policy consists in finding the optimal parameters (rl, rb) of the region R(rl,rb)(u)

that maximize the effective throughput S((rl, rb)).

S∗ = max
rl,rb
{S((rl, rb))}. (4.39)

Associating with a base station at a greater distance decreases the han-

dovers but may result in low rate. Thus, we focus on optimizing the stationary

effective throughput with respect to the constraint on the greediness, i.e., the

size of the association region.

If we consider a rectangle of equal side lengths, i.e, a square association

region of side length r = rl = rb, we have that in the limit r going to zero and

r going to∞, the effective throughput in (4.35), goes to zero. Thus, a local or

global optimum value must exist for the effective throughput. Note that it is

challenging to give a closed form expression for the optimal parameters r∗l , r
∗
b

which maximizes effective throughput, thus we evaluate the optimal parameter

values with the help of simulations in Section VI.
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4.6 Numerical Results and Simulations

In this section, we study the effectiveness of our proposed association

policies with the help of simulation. We compare their performance and assess

their improvements with respect to the closest base station association policy.

We then study the performance sensitivity of these policies to the velocity,

cost of handovers and handover delay. Unless otherwise stated, we consider

a realization of a Poisson point process of intensity λ and the parameters of

Table III. In particular, we will consider the following questions:

• What is the performance and complexity tradeoff for the optimal forward

association policies with respect to the size of the association region

Aγ(u)?

• What is the trade-off between the farthest distance and the height of the

association region, i.e., the length and breadth in a rectangular region

with respect to performance under greedy policies?

• What are the performance improvements of the optimal forward policy

over the optimal greedy policy under various environments?

• When do the performance metrics of both policies have low discrepancy?

4.6.1 Optimal Forward Association Policy

In this section, we will consider an association region Aγ(u) with the

tagged user traveling a distance of 10Km to destination (10, 0) on the positive
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Parameter Value
Power ξ 1 W

Bandwidth ω 30 MHz
Velocity v 20 m/s

Handover Delay δ 20 ms
Handover Cost c 100 Kbits

Table 4.3: Table of simulation parameters.

x-axis. We build the directed acyclic graph as in Definition 3 and solve the

problem of the maximum weight path using Dijkstra’s algorithm.

Problem 2 consists in finding the association sequence p∗ ∈ Pf that

results in a maximum reward, i.e., the total volume of data delivered for a

fixed association region Aγ(u). Note that increasing the size of the association

region leads to more feasible association sequences, i.e., more nodes in the

graph and hence higher complexity. We notice that beyond a certain size of

the association region, increasing the region does not improve the optimization.

Thus for our simulation study, we consider one fixed size, rl = 400m for the

square region, the value of which depend on the decay of the path loss function

considered.

4.6.2 Farthest Greedy Association Policy

For rectangular-based farthest greedy policies, we have a closed form

expression for the effective throughput and the rate of handovers. In this

subsection, we first compare the numerical results with the simulation. We

then consider the dependence of the optimal parameters on the intensity of
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base stations λ.

4.6.2.1 Evaluation of the Rate of Handovers

We numerically evaluated the closed form expression for the mean rate

of handovers as given in (4.29), for the intensity of base stations, λ = 40 per

Km2. We consider a square association region, i.e., rl = rb and compare the

numerical results with that of the simulation. The simulation results agree

with the numerical evaluation for various values of the side of the square as

illustrated in Figure 4.9.
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Figure 4.9: Comparison of the numerical results with simulation for a various
lengths of the square region and λ = 40 per Km2.

4.6.2.2 Evaluation of Effective Throughput

In this subsection, we focus on the tradeoff between the length and

breadth of the region with respect to performance for differnet (1) intensities
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of base stations, and (2) path loss functions. While the cost of handover

depends on how far in the direction of motion the user can associate with, i.e.,

the length of the region, the rate is seen by the user depends on how close the

base station is to the trajectory, i.e., the breadth of the region.

Intensity of Base Stations. We numerically evaluate the effective through-

put for various values of the parameters rl, rb for two intensities of base stations

λ = 20 per Km2 and λ = 200 per Km2. Figure 4.10 illustrates the surface

plots of the effective throughput for the path loss function given in (4.36).

We have two insights:(1) When increasing λ, the probability of finding

a base station at the forward edge of the rectangular region increases, thus the

optimal size is smaller for higher densities of base stations, and (2) Given that

a base station that is closer to the tagged user’s trajectory leads to a higher

rate, the shape of the optimal regions is an elongated rectangle, i.e., the length

is higher than the breadth.

4.6.2.3 Parametric Optimization under constraint

We now consider the parametric optimization problem under additional

constraint that the rectangular handover region has a fixed area. There is a

certain amount of complexity involved in gaining the knowledge of the base

station locations. Thus we limit the complexity by considering a fixed area of

the rectangular association region. In this setting, we evaluate the effective

throughput with the help of simulations for various intensities of base station

and an area of 4rlrb = 104m2, as illustrated in Figure 4.11, under the area
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(a) (b)

Figure 4.10: Surface plots of effective throughput for 2 intensities of base
stations. (a) For λ = 20, the optimal parameters (r∗l , r

∗
b ) = (286.8, 171)m and

(b) for λ = 200, the optimal parameters (r∗l , r
∗
b ) = (176.3, 113.1)m.

constraint. The optimal rectangular shape is narrower for a higher intensity

of base stations as before.
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Figure 4.11: Comparing the effective throughput for various intensities of base
stations under the constraints of fixed area.
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4.6.3 Comparison of Performance of Optimal Forward Association
and Optimal Farthest Greedy Policy

In this subsection, we compare the optimal farthest greedy policy of

Section V with the dynamic programming based policy of Section IV by con-

sidering a common realization of a Poisson point process on which they are

jointly applied. We consider rectangular association regions R(rl,rb)(u) with

the optimal parameters for the greedy policies that are evaluated as in the

previous section. We consider the total volume of data delivered as the com-

mon performance metric. To account for the variability of the Poisson point

process, we average the total volume of data delivered for many realizations

of the point process.

The global picture is that the optimal forward association policy has

roughly the same performance as the greedy policy under the considered

parameters. We evaluated the performance for intensity of base stations

λ = 20, 80, 200 per Km2. The percentage of increase in the total volume of

data delivered by the dynamic programming approach compared to the greedy

policy is in the range of 1− 5%. The improvement tends to 0 when increasing

(1) the handover delay, (2) the cost of each handover, or (3) the velocity of

the user, as illustrated in Figures 4.12 - 4.14.

Further, we compare the performance of our policies with the tradi-

tional closest base station policy. We have that the improvement is larger for

the high cost of handovers and handover delays in dense networks as illustrated

in Figures 4.13 - 4.14.
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Figure 4.12: Total data delivered vs velocity (λ = 80 per Km2).
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Figure 4.13: Total data delivered vs handover delay (λ = 80 per Km2).

162



0 200 400 600 800 1000

Cost of Handover in Kbits

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

T
o

ta
l 

D
a
ta

 D
e
li

v
e
re

d
 i

n
 G

b
it

s

Dynamic Programming

Greedy Approach

Closest BS

Figure 4.14: Total data delivered vs handover cost (λ = 80 per Km2).

4.7 Conclusion

In ultra dense networks, the increased intensity of handovers has a

negative impact on mobile users’ performance. In this paper, we proposed

strategies for association that achieve an appropriate throughput-handover

trade-off. The first strategy takes the user’s trajectory and the locations of all

base stations into account, and determines an optimal set of association base

stations and handover times. This is achieved by finding the maximum weight

path in a directed acyclic graph.

Given only limited knowledge of the base station locations and user

trajectory, the second strategy is a direction dependent greedy association

policy that results in a reduced number of handovers. We give a closed form
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expression for the stationary effective throughput seen by the user under this

policy as a result of a Markovian formulation. This is in turn used to derive

the optimal farthest greedy association policy.

We validate the effectiveness of the optimized greedy policy by compar-

ing it with dynamic programming in various scenarios. The percentage gains

achieved by the dynamic programming policy is within 1−5% from the greedy

policies for the considered parameters.

4.8 Appendix

4.8.1 Disc-based greedy policies

Under the the disc-based association policy, where the region defining

the set of accessible base stations as given in (4.1), is a disc Dr(u) of radius r,

the state space of the Markov process (Zn, n ∈ N) is given by:

Z = {[−r, r]× [−r, r],∞}. (4.40)

The state space Z is a mixture of continuous and discrete states, which implies

that the transition probability kernel and the stationary distribution over the

state space consists of a continuous part and a discrete part.

Suppose the previous state, Zn = z = (w, h), w ∈ [−r, r], h ∈ [−r, r]

then the disc Dr(u(Tn)) around the mobile has two regions, R1 where there

must be no base stations and R2 the remaining region of the square as illus-

trated in Figure 4.15. We evaluate the transition probabilities for Zn+1, with

Q(x, y) = [−r, x]× [−r, y].
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First, let us consider the discrete transition probability kernel, P(z,∞)

which is given by the probability that region, Dr(u(Tn+1)) \ Dr(u(Tn)), i.e.,

R2 is empty of points:

P(z,∞) = e−λ(πr2−a), (4.41)

where a is the area of the region R1, given by:

a = 2r2 cos−1(
d

2r
)− d/2

√
4r2 − d2, (4.42)

where d = w +
√
r2 − h2.

Given that the disc is empty of base stations, the first base station to

enter will be at the edge of the disc. The y-coordinate of the base station is

uniform between [−r, r], thus P(∞, Q(x, y)) is given by:

P(∞, Q(x, y)) = P(Xn+1 ≤ x|Yn+1 = y,Zn =∞)× P(Yn+1 ≤ y|Zn =∞),

= δ(x−
√
r2 − y2)

y + r

2r
.

(4.43)

Given Q((x, y)) = {[−r, x]× [−r, y]}, the region R2 is further split into

two regions R3 and R4. Then, the transition probability P(Xn+1 =≤ x|Zn =

(w, h)) is given by the product of probability that the region R3 has at least

one point and the region R4 has no points, see Fig 4.15:

P(Xn+1 = x|Xn = w, Yn = h) = e−λb
(

1− e−λ(πr2−a−b)
)
, (4.44)

where a is given in (4.42) and b is the area of the regionR4 given as,

b = r2/2(2 cos−1(x/r)− r2/2 sin(2 cos−1(x/r)). (4.45)

165



x
x

x

x

xx

x

x

x𝑅"

𝑟

𝑤

𝑟

𝑢 𝑇' 𝑢(𝑇')")

ℎ

𝑥
𝑦

𝑅.

𝑅/

𝑅. 𝑅/𝑅"

𝑤 + 𝑟1 − ℎ1
𝐼"

𝐼1

Figure 4.15: Two regions R1 and R2 = R3 ∪R4 of the discs.

Given that Xn = x, the distribution of Yn is uniform random variable on

the interval I1 for x ∈ [r−(w+
√
r2 − h2), r] and for x < r−(w+

√
r2 − h2), it

is uniform on the interval I2 as illustrated in Figure 4.15. Thus, the transition

probability is given by:

P(Yn+1 ≤ y|Xn = x,Zn = (w, h)) =


y+
√
r2−x2

2
√
r2−x2 x ∈ [r − (w +

√
r2 − h2), r]

2+(y−
√
r2−(w+

√
r2−h2−x)2)

2(
√
r2−(w+

√
r2−h2−x)2−

√
r2−x2)

x < r − (w +
√
r2 − h2)

(4.46)

The transition kernel density f(zn, Q(x, y))) is given by the product of

differention of the transition probabilities in (4.44) and (4.46) with respect to

x anf y respectively.
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4.8.2 Proof of Theorem 17

Let us consider the stationary distribution of this process in terms of

πd and πc associated with the discrete and the continuous parts. Thus, πc(x)

represents the continuous part of the stationary distribution of the Markov

process for x ∈ [−rl, rl) , πd(rl) and πd(∞) are the discrete probability masses

associated with the states rl and ∞.We have the following equations:

πc(x) = 2λrbe
−2λrb(rl−x)

(∫ r−l

−x
πc(w)dw + πd(rl)

)
,

πd(∞) = e−2λrbrl

∫ r−l

−rl
πc(w)e−2λrbwdw + πd(rl)e

−4λrbrl ,

πd(rl) = πd(∞),

(4.47)

with πd(rl) +πd(∞) +
∫ r−l
−rl

πc(w)dw = 1. We use Laplace transform techniques

to solve the integral equations. First, we multiply on both sides of the first

equation in (4.47) with e−sx and integrate from −rl to rl, we get

∫ rl

−rl
πc(x)e−sxdx =

2λrb
(2λrb − s)

[
e−srl − qe−4λrbrl+srl+

e−srl
∫ rl

−rl
πc(z)dz − e−2λrbrl

∫ rl

−rl
πc(z)e−(2λrb−s)zdz

] (4.48)

Let Lπc(s) =
∫ rl
−rl

πc(x)e−sxdx, then we have

Lπc(s) =
2λrb

(2λrb − s)

[
e−srLπc(0)− e−2λrbrlLπc(2λrb − s) + qe−srl − qe−4λrbrl+srl

]
,

(4.49)

where, q = πd(r) = 1−Lπc (0)
2

.
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Let α(s) and β(s) be two functions such that

Lπc(s) = α(s) + β(s)Lπc(2λrb − s)

= α(s) + β(s)[α(2λrb − s) + β(2λr − s)Lπc(s)]

=
α(s) + β(s)α(2λrb − s)

1− β(s)β(2λrb − s)
.

(4.50)

From (4.49) we have:

α(s) =
2λrb

(2λrb − s)

[
e−srlLπc(0) + qe−srl − qe−4λrbrl+srl

]
,

β(s) = −2λrbe
−2λrbrl

(2λrb − s)
.

(4.51)

Since the range of the random variable with probability distribution πc

is finite, the Laplace transform cannot be degenerate. Therefore, the zeros of

the denominator in (4.50), should match the zeros of the numerator. Thus,

the zeros a1, a2 of the denominator are given by solving 1 = β(s)β(2λrb − s)

which gives the following quadratic equation

s2 − 2λrbs+ 4λ2r2
be
−4λrbrl = 0. (4.52)

Thus, the roots of the denominator are a1, a2 = λrb±λrb
√

1− 4e−4λrbrl .

Note, that the roots are imaginary for 4λrbrl < 1.38. Thus, the mean num-

ber of base stations(λ4rbrl) in the rectangular region of side lengths 2rl, 2rb

considered has to be greater than 1.38 for real roots.

Now, let us denote the numerator in (4.50) as f(s), then we have that

f(a1) = f(a2) = 0, using which we will solve for L(0). The function f(s) is
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given as:

f(s) =

[
2λrbse

−srl − 4λ2r2
be
−4λrbrl+srl

](
1 + Lπc(0)

2

)
+[

4λ2r2
be
−4λrbrl−srl − 2λsrbe

−4λrbrl+srl

](
1− Lπc(0)

2

)
.

(4.53)

Then, f(λrb + λrb
√

1− 4e−4λrbrl) = 0, yields (4.54).

Lπc(0) =

2λrb

(
1− e2a1rl

)
+ a1

(
e4λrlrb − e2a1rl

)
2λrb

(
1 + e2a1rl

)
− a1

(
e4λrlrb + e2a1rl

) , (4.54)

where, a1 = λr + λr
√

1− 4e−4λr2 .

Similarly for the root a2 = λr − λr
√

1− 4e−4λr2 , we get:

Lπc(0) =

2λrb

(
1− e2a2rl

)
+ a2

(
e4λrlrb − e2a2rl

)
2λrb

(
1 + e2a2rl

)
− a2

(
e4λrlrb + e2a2rl

) , (4.55)

Let us prove that both the above functions are same. Since a1 and a2

are roots of the quadratic equation given in (4.52), we have that:

a1 + a2 = 2λrb,

a1a2 = 4λ2r2
be
−4λrbrl .

(4.56)
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Let us substitute 2λrb in (4.54) with a1a2e
4λrbrl

2λrb
:

Lπc(0) =

a2e
4λrbrl

(
1− e2a1rl

)
+ 2λrb

(
e4λrlrb − e2a1rl

)
a2e4λrbrl

(
1 + e2a1rl

)
− 2λrb

(
e4λrlrb + e2a1rl

) ,

=

a2

(
1− e4λrlrbe−2a2rl

)
+ 2λrb

(
1− e−2a2rl

)
a2

(
1 + e4λrlrbe−2a2rl

)
− 2λrb

(
1 + e−2a2rl

) ,
(4.57)

where the last equality is obtained by substituting a1 = 2λrb − a2. Now, we

get (4.55) by multiplying the numerator and the denominator of the above

equation by −e2a2rl .
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Chapter 5

Conclusion

In this thesis, we took several steps toward quantifying the performance

metrics seen by a population of mobile users by characterizing the spatial

stochastic fields associated with wireless networks. Specifically, in the first two

chapters, we characterized temporal variations seen by a typical mobile user

in various environments such as noise-limited and dense interference limited

networks. This is a challenging problem and thus our focus in this thesis was

limited to studying the impact of large scale properties of the system, e.g.,

the density of base stations, path loss functions, and partially addressing the

impact of multipath-fading and shadowing via simulation.

We successfully characterized Gaussian limits of the interference field

in dense wireless networks and studied the level sets and spatial correlations

of the Shannon rate. Although we neglected fading, we observed significant

variability in the Shannon rate in the case where the path loss functions have

discontinuities possibly associated with environmental blockages when oper-

ating in high frequencies. We characterized such variability using Hölders

exponent. We then focused on studying how such capacity variability could

be smoothed out via buffering and/or conservative rate modulation techniques
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required to tolerate/adapt to such variability. However, high variability leads

to a significant reduction in the efficiency of wireless systems particularly when

they support a significant volume of low-latency traffic.

In addition to enabling an evaluation of performance for mobile users,

the characterization of spatial fields also leads to quantifying system-level per-

formance metrics such as the required backhaul capacity at a gateway. In this

thesis, we studied the impact that variability (second moments) in the rate

and spatial correlations have on such system-level performance and backhaul

costs.

In dense networks, mobile users may experience rapid handovers and

associated overheads which may be reduced through intelligent handover de-

cisions. In the last chapter, we proposed a class of greedy association policies

for mobile users in a dense network. Mobile users can make proactive mo-

bility driven handover decisions, in the case where offloading mobile users to

macro-base stations leads to congestion due to a large volume.

In this thesis, we proposed new models and a new class of association

policies leveraging stochastic geometry and the theory of Markov processes.

The proposed policies perform better than the traditional closest base station

policy, particularly in cases with high handover costs. Still, it is desirable for

dense systems to focus on reducing handover costs, e.g., soft handovers since

highly mobile users in dense networks pay a significant cost with frequent

handovers. The proposed association policies focused on realizing the tradeoff

between throughput and handover costs. In the future, it would be desirable
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to extend this to include load balancing along with co-optimization of base

station activation policies which aim to conserve energy.
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