
Copyright

by

Seung Jun Baek

2006



The Dissertation Committee for Seung Jun Baek
certifies that this is the approved version of the following dissertation:

Spatial Modelling and Analysis of Wireless Ad-hoc and Sensor

Networks: An Energy Perspective

Committee:

Gustavo de Veciana, Supervisor

Aristotle Arapostathis

Ross Baldick

Lili Qiu

Sanjay Shakkottai



Spatial Modelling and Analysis of Wireless Ad-hoc and Sensor

Networks: An Energy Perspective

by

Seung Jun Baek; B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2006



Acknowledgments

First of all I cannot express enough gratitude for my Advisor Gustavo de
Veciana. He would always set standards higher, and I would find myself improved
simply by seeking to meet his expectations. I have learned more than acquiring
a degree: he has demonstrated a role model for researcher, teacher and advisor.
I thank his tremendous effort, patience and cooperation with me. I also thank
Professor Arapostathis, Professor Baldick, Professor Qiu and Professor Shakkottai
for sparing their precious time to participate and serve as my Ph.D. committee.

I would also thank my (former) lab mates Alex, Bilal, HongSeok, Jangwon,
Shailesh and Xiangying for their advice and help. Also I would thank colleagues at
UT, especially YoungSang, and their help to make my school life more enjoyable.

I appreciate the support from my parents and grandmother who made it
possible for me to study abroad – I am eternally indebted to them. Finally I thank
to my wife Chelim who has provided me with selfless support, sacrifice, and two
precious kids – they are the motivation and reason for me to go on.

iv



Spatial Modelling and Analysis of Wireless Ad-hoc and Sensor

Networks: An Energy Perspective

Publication No.

Seung Jun Baek, Ph.D.

The University of Texas at Austin, 2006

Supervisor: Gustavo de Veciana

This dissertation focuses on modelling and analyzing the spatial charac-
teristics of traffic in these networks so as to extend network lifetime for various
application/traffic scenarios.

In the first part of the dissertation we consider large-scale sensor networks
that systematically sample a spatio-temporal field. Firstly we formulate a dis-
tributed compression problem subject to aggregation costs to a single sink. We
show that the optimal solution is based on ordering sensors according to aggre-
gation costs. Next we consider a hierarchical model for a sensor network including
sinks, compressors and sensors. We show that the optimal organization is associated
with the Johnson-Mehl tessellation induced by nodes’ locations. Our analysis and
simulations show the proposed scheme can yield 8-28% energy savings depending
on the compression ratio.

In the second part of the dissertation we investigate the use of proactive
multipath routing in ad hoc wireless networks. The focus is on optimizing tradeoffs
between the increased energy cost associated with spreading traffic and the improved
spatial balance of energy burdens. We show how its optimization depends on the
relative values of the energy reserves/storage, replenishing rates, and network load
characteristics. In particular, we show that the degree of spreading should roughly
scale as the square root of the bits-meters load offered by a session. Simulation
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results confirm that proactive multipath routing decreases the probability of energy
depletion by orders of magnitude versus that of a shortest path routing scheme when
the initial energy reserve is high.

In the third part of the dissertation we consider a large sensor network with
mobile sinks. The network makes use of aggregation nodes (AGNs), for compression
and/or data fusion of locally sensed data. Since the aggregated data may cause a
concentration of energy burdens when routed to sinks, we use proactive multipath
routing between AGNs to mobile sinks. We show that the scale of aggregation
and degree of spreading can be optimized. Particularly if the sensed data is bursty
in space and time, then one can reap substantial benefits from aggregation and
balancing.
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Chapter 1

Introduction

An emerging vision for the future is that of a physical (or virtual) world
embedded with networked sensors and actuators. The interweaving of local sens-
ing/actuation, communication, and computation with decision-making and control
has broad applicability, including: transportation, environmental monitoring/oversight,
structural monitoring, health care, and national security. Progress is being made
toward increasing the diversity of available sensors, while furthering the technolo-
gies permitting the deployment of small, inexpensive devices operating on limited
battery power and interconnected via wireless links [1–4]. A key challenge for such
applications lies in devising system architectures to realize distributed sensing tasks
subject to hard system constraints, e.g., energy.

Among the numerous elements that affect the energy consumption charac-
teristics of large-scale ad-hoc/sensor networks, the spatial loads play a critical role.
Due to radio power limitations, nodes must rely on hop-by-hop dissemination of
information to extend the physical coverage area of such networks. The relaying of
information between sources and sinks imposes processing and transmission over-
heads on intermediate nodes, leaving spatial traces of energy burdens.

To study the relationship between spatial traffic patterns, energy consump-
tion and network architectures, we list the decisive factors that affect such traffic
patterns:

• Engineering of traffic: one can devise network architectures that engineer
the traffic in order to achieve energy efficiency and/or meet the needs of the
application. Such schemes may induce structural flow of traffic, e.g., a network
may have a hierarchical, possibly centralized, structure and thus the traffic
flows follow specific patterns. By contrast, traffic can be unstructured or have
flat hierarchy depending on the application.
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Patterns of Engineered Traffic
Patterns of
Exogeneous Traffic

Hierarchical Flat

Homogeneous
SensorNet measuring data
generated uniformly over

the field
Ad-hoc Network with
random traffic pattern

Bursty
SensorNet detecting
bursty phenomena

Table 1.1: Exemplifying scenarios for different cases of spatial traffic patterns.

• Characteristics of exogenous traffic: the spatial characteristics of traffic
can be either homogeneous or bursty. Irrespective of efforts to engineer traffic
loads, the energy performance can vary substantially depending on exogenous
factors. Especially bursty nonhomogeneous traffic loads are deemed to have
deleterious effect on energy consumption and thus require careful design so as
to extend a network’s lifetime.

In this thesis we examine several scenarios to see how these factors impact
the lifetime of an energy constrained network. First we consider a sensor network
in which a node simply acts as a persistent source, gathering data and reporting to
a central station at a higher hierarchical layer whose role is to collect and process
information. The mission of the network can be to either periodically collect data
from every location in the field, or detect asynchronous and spatially bursty events.
Second we consider the case where each network node is an active and indepen-
dent entity so that information is generated and absorbed in an arbitrary manner.
The network operates without infrastructure as would be the case in peer-to-peer
networks, hence spatial and temporal traffic patterns may be dynamic in nature.

These scenarios are summarized in Table 1 with some examples. Albeit
simplified, the scenarios cover a fairly wide range of practical applications of interest
for wireless ad-hoc and sensor networks. In each scenario the network exhibits
different energy consumption characteristics, thus its architecture must be carefully
designed with an understanding of the associated traffic characteristics so as to
maximize the network lifetime. The broad objectives of this thesis are as follows:

2



1. Devise optimal architectures and routing schemes, possibly in the presence
of data compression capabilities, which induce good engineered traffic loads
given that the pattern of exogenous traffic is spatially homogeneous.

2. Explore the design tradeoffs afforded by proactive multipath routing schemes
for ad-hoc networks with unstructured traffic.

3. Identify relationships between design choices, e.g., data fusion, energy burden
balancing, etc., and the spatio-temporal characteristics of traffic exhibiting
bursty pattern.

4. Propose analytical models to study how to design and improve energy perfor-
mance in such networks.

This thesis is organized as follows. In Chapter 2, we discuss the modelling
and analysis of energy optimal routing schemes for large-scale sensor networks using
the distributed data compression and hierarchical aggregation. In Chapter 3, we
present energy balancing strategies for wireless and ad-hoc networks subject to un-
structured loads based on proactive multipath routing, and study the fundamental
tradeoffs between the cost and benefits of such schemes. In Chapter 4, we study a
model for a large-scale sensor network which performs data fusion via aggregation
and load balancing via traffic spreading. Specifically we consider a network detect-
ing spatio-temporally bursty phenomena, and investigate the network lifetime when
there are various spatial scales of aggregation, load balancing and dimensions of phe-
nomena. Chapter 5 concludes this thesis and summarizes the key insights/results
we have obtained.
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Chapter 2

Distributed Data Compression and Hierarchical
Aggregation of Traffic

2.1 Introduction

To design systems with hard energy constraints we need to resolve a number
of issues, e.g., how to design power-efficient micro-sensors [5], how to organize the
aggregation of the sensor data [6], and how to minimize the energy consumption
by effective routing/relaying [7, 8]. Broadly speaking, energy consumption can be
reduced in two ways. First one can attempt to reduce the total traffic that has
to be transmitted. For example the amount of traffic generated by the sensors
can be reduced through distributed source coding [9–14] and/or data aggregation
[6, 15]. Second one can minimize the energy consumption for each transmission.
For example, energy-aware routing [16] and distributed medium access control [17]
schemes have been proposed to streamline energy expended when carrying traffic
on ad hoc networks.

In this chapter we focus on how structures for aggregation and compression
can be combined so as to minimize energy costs for large scale sensor networks. We
will focus on two questions:

1. What is an optimal compression and aggregation scheme for gathering spa-
tially distributed sensor readings?

2. How can we design optimal hierarchical architectures for compression and
aggregation that can scale to large sensor networks?

As discussed below there has been much closely related work in exploring both the
possibility of data compression in the sensor network, and attempting to minimize
the energy consumption in transporting data on wireless networks. In particular
[18] considered the problem of disseminating sensor data across an ad hoc network
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of sensors so that each obtains all the information. They show that asymptotically,
as the number of sensors in the network increases, the overall traffic generated by
the spatially correlated data sources increases, but at a rate of increase that is much
slower than the capacity of an ad hoc wireless networks that supports independent
sources. Thus they conclude that it is possible to operate a large sensor network
monitoring correlated data sources, despite fundamental limits on the capacity of ad
hoc networks[19]. The work in [20] proposes a concrete direction towards realizing
a distributed data compression scheme based on tracking the correlation structure
of the underlying phenomenon by a linear prediction mechanism and using this in-
formation to allocate different quantization levels among sensors. This work focuses
on gathering sensor data to a central point, rather than optimizing the aggregation
structures in combination with realizing distributed compression. The work of [21]
is closest to ours and focuses on clustering of sensors to dedicated nodes, cluster-
heads, where clusters are constructed based on proximity, i.e., a Voronoi tessellation
of the sensing field. In this work the authors study how to optimize the size of
the cluster so that energy consumption of the network might be minimized. In our
work we propose a simple cost model for energy consumption and study the optimal
hierarchical organization of sensors, aggregation points/compressors, and sinks, so
as to minimize the cost of gathering sensor data.

The organization of this chapter can be summarized as follows. In Sec-
tion 2.2 we formally study a model for optimal distributed compression subject to
aggregation, e.g., energy, costs to a single query point or sink. We show that this
problem has a simple greedy solution based on assigning minimal bit rates to sensors
with high aggregation costs. In Section 2.3 and 2.4 we model and analyze optimal
hierarchical structures for a large scale sensor network including multiple sinks, com-
pression/aggregation devices and a large number of sensors. Based on a simplified
model capturing the salient features of the problem we determine the optimal hier-
archical organization, i.e., that which minimizes the overall energy consumption of
the network. Leveraging previous work on stochastic modelling of spatial processes
we are able to estimate and compare the aggregation costs associated with vari-
ous organizational structures. These provide insights on where these structures are
likely to be effective. In Section 2.5 we provide numerical and simulation results for
the energy savings obtained by using the optimal hierarchical scheme and discuss
some design issues associated with the large-scale sensor networks. We conclude
this chapter in Section 2.6.
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Figure 2.1: An illustration of the sensor reporting.

2.2 Optimal distributed data compression with aggregation costs

Let us first examine the problem of optimal distributed data compression
with aggregation costs. As illustrated in Fig. 2.1 we consider a set of sensors
U = {1, 2, · · · , n} at some locations ~x = (xi, i ∈ U) within a coverage area A ⊂ R2.

We model information obtained by these sensors as a random vector ~D = (Di, i ∈ U),
and suppose there is a dedicated node, a sink or query point, which coordinates and
aggregates the information from the sensors. Since sensors are located at different
positions, they may incur different aggregation costs in forwarding their data to the
sink. We use a vector ~w = (wi, i ∈ U) to model the costs, where wi is the cost of
moving a unit of data from sensor i to the sink. Thus for example if aggregation
costs are modelled by wi = |xi|γ then for γ = 1 the cost for sensor i is proportional
to its distance (a rough estimate for the number of hops) to the sink, or if the sensor
communicates directly with the sink then for γ ∈ (2, 4) this cost might capture the
increased transmit power levels required to overcome path loss on a wireless link.

The information collected by the sensors is likely to be correlated and thus
it is possible to jointly compress the data they generate. Let ~r = (ri, i ∈ U) denote
the number of bits per reading each sensor would generate. Then by Slepian-Wolf’s
Theorem the sum of the rates for any subset of sensors S ⊂ U is lower bounded by
conditional entropy, H(DS |DSc), where DS = (Di, i ∈ S) and DSc = (Di, i ∈ U \S)
[9]. Our objective is to jointly compress the sensed data while minimizing the overall
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aggregation cost. We can formally state the problem as follows.

Problem 1. For a set of devices U sensing an information vector ~D, and an
associated aggregation cost vector ~w determine the rate vector ~r∗ that minimizes the
overall aggregation cost subject to joint data compression constraints, i.e.,

min
~r

{ n∑

i=1

wi · ri |
∑

i∈S

ri ≥ H(DS |DSc), ∀S ⊆ U
}

.

Note that the feasible rate region is defined by 2n− 1 inequality constraints.
Thus a direct application of linear programming is not likely to produce a polynomial
time algorithm. Let us however consider a special case which provides some insight.
Suppose we have two data sources and w1 ≤ w2. In this case the rate constraints in
Problem 1 correspond to

r1 ≥ H(D1|D2), r2 ≥ H(D2|D1), r1 + r2 ≥ H(D1, D2),

which in turn translates to two possible solutions:

r1 = H(D1), r2 = H(D2|D1),

or
r1 = H(D1|D2), r2 = H(D1).

We can compare the aggregation costs for these two solutions by computing

[w1H(D1) + w2H(D2|D1)]− [w1H(D1|D2) + w2H(D2)]

= w1[H(D1)−H(D1|D2)]− w2[H(D2)−H(D2|D1)]

= w1I(D1; D2)− w2I(D2; D1)

= (w1 − w2)I(D1; D2) ≤ 0,

where I(D1; D2) = I(D2; D1) ≥ 0 denotes the mutual information between D1 and
D2. Thus it is optimum for the sensor which is nearby, i.e., having the smaller
weight, to send at a rate H(D1) while the sensor which is further away sends at
a compressed rate H(D2|D1) assuming the side information will be taken care of.
This intuitive result is generalized in the following theorem.
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Theorem 1. Suppose w1 ≥ w2 ≥ · · · ≥ wn, then the optimal solution to Problem
1 is given by

r∗1 = H(D1|D2, D3, · · · , Dn), r∗2 = H(D2|D3, D4, · · · , Dn), · · · , r∗n = H(Dn).

To prove Theorem 1 we will show that the feasible rate region is a contra-
polymatroid, and thus the optimal rate vector exhibits a specific structure. A contra-
polymatroid is a polyhedron defined as follows:

B(f) =
{
~x | ~x ∈ Rn

+,
∑

i∈S

xi ≥ f(S), ∀S ⊆ U
}

,

where f : 2U → R+ is called the rank function satisfying

(1) f(∅) = 0;

(2) f(S) ≤ f(T ) ∀S ⊂ T ; (monotonicity)

(3) f(S) + f(T ) ≤ f(S ∪ T ) + f(S ∩ T ). (super-modularity)

For such constraint sets the following result has been proved, see e.g., [22].

Lemma 1. A solution ~r∗ to the following optimization problem where ~w ∈ Rn
+,

min
~r

{ n∑

i=1

wi · ri| ~r ∈ B(f)
}

,

is given by, for i = 2, 3, . . . , n,

r∗π(1) = f({π(1)})
r∗π(i) = f({π(1), π(2), · · · , π(i)})− f({π(1), π(2) · · ·π(i− 1)})

where π denotes a permutation of (1, 2, · · · , n) such that wπ(1) ≥ wπ(2) ≥ · · · ≥
wπ(n).

The key step to proving Theorem 1 is showing that the conditional entropy
function f(S) = H(DS |DSc) is a rank function so the constraints in Problem 1
define a contra-polymatroid. The result then follows immediately by Lemma 1.
The details of the proof are deferred to the appendix.
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Theorem 1 implies that a data compression strategy that minimizes the
aggregation cost can be obtained by a simple ordering of the sources based on their
aggregation cost, rather than the actual values of these costs. Perhaps surprisingly,
the optimal solution is independent of the correlation structure of the data sources.
This greedy strategy turns out to be optimal due to the particular characteristics of
the feasible rate region, i.e., a contra-polymatroid, and the linear objective function
being used to model the overall aggregation costs.

We note that our result is based on applying Slepian-Wolf’s Theorem for
sensor sources sampling a spatially correlated field. In addition to spatial corre-
lations one would expect temporal correlations in such data. Thus using the fact
that Slepian-Wolf’s result generalizes to ergodic data sources [23], Theorem 1 is
easily extended to data sources which are spatio-temporally correlated, by replacing
conditional entropies with conditional entropy rates.

Observe however, that if one increases the coverage area while keeping a fixed
homogeneous spatial density of sensors sampling a stationary spatial process the
amount of compression that can be realized by such a scheme will be limited. Indeed,
when this is the case, an increase in the coverage area will result in increases in the
number of sensors n and the overall compressed data forwarded to the sink would
eventually grow linearly i.e., H(D1, D2, · · ·Dn) ≈ nH(D) where H(D) denotes the
entropy rate of the vector of sensed data. Thus eventually such an arrangement could
achieve at best a compression ratio of α = H(D)/H(D1). If the sink has a limited
capacity, or in the case of a sensor network based on ad hoc wireless communication
infrastructure one would expect the sink or ad hoc nodes in its neighborhood to
eventually become hot-spots and run out of energy. Hence the proposed optimal
compression strategy is not likely to scale for a large networks of sensors.

Let us briefly evaluate the performance gains that might be achieved under
optimal compression. Suppose we deploy 10 sensors at a set of randomly selected
locations ~x in a square area A = [−1, 1]2, with a sink located at the origin. We
shall model the sensed data as a stationary Gaussian field with zero mean and a
spatial covariance R(xi, xj) = 10e−θ|xi−xj | where θ models the rate of decay in the
correlation between sensed data Di and Dj , as a function of the distance between
sensor locations xi and xj . This implies a correlation structure for the sensor data
~D that is dependent on the locations of the sensors. To estimate the rates generated
by sensors we suppose they are equipped with a 4-bit A/D converter, and thus
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approximately H(Di|Di+1, Di+2, · · ·Dn) = 4+h(Di|Di+1, Di+2, · · ·Dn) where h(·|·)
is the conditional differential entropy of the Gaussian source.

We will compare the percentage reduction in the aggregation cost for our
optimal scheme versus a baseline which achieves optimal compression but allocates
bits based on a random ordering of sensors. Fig. 2.2 shows the case where the weight
for sensor i depends on its distance to the sink |xi|. As expected the benefits decrease
as correlation across sensed data decreases. This is intuitive since eventually with
no correlation there will be no benefit for optimal aggregation since sensed data is
independent. Fig. 2.3 shows the performance improvement when the weights are
given by |xi|γ and γ ∈ [1, 3]. Again as expected the larger exponent γ and thus
the larger differences in the aggregation costs of sensors the higher the performance
gains.

2.3 Optimal hierarchical structures for compression and aggrega-
tion sensor data

As argued in the previous section the optimal compression and aggregation
scheme is not likely to scale for large sensor networks. As such it is reasonable to
view a large scale sensor network in terms of a three level hierarchy. At the top we
will suppose there are multiple sinks, e.g. wired nodes. At an intermediate level,
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one can consider a class of sensor nodes that serve as traffic aggregators and/or in-
network compressors. These nodes will gather and possibly further compress sensed
data from a set of sensors, and then forward it to a nearby sink. Our objective in
this section is to study the organizational structures that minimize the energy cost
across a network of sensors. Given the complexity of such systems, i.e., number of
variables and factors, we will follow the methodology proposed in [24]. The idea
is to use crude stochastic geometric models to capture the salient features of such
systems.

2.3.1 Hierarchical organization and energy models

We shall assume the sensor, compressor and sink locations are determined by
homogeneous Poisson point processes Π0, Π1 and Π2, with intensities λ0, λ1 and λ2

respectively. We also will assume that a sink may also serve the role of a compressor,
i.e., it may gather data directly from sensors if necessary. We use the location of a
node as an index for the device itself. Thus xi ∈ Π0 denotes a particular sensor at
location xi, cj ∈ Π1 a compressor at location cj and sk ∈ Π2 a sink at location sk.
Our model for a hierarchical organization of these nodes is based on two mappings.
Let c : Π0 → Π1∪Π2 be a mapping associating a sensor xi with a compressor or sink
c(xi) and s : Π1 ∪ Π2 → Π2 be a mapping associating a compressor or sink yi with
a sink s(yi). If yi is a sink it is associated with itself. In the sequel we will consider
various organizational structures, i.e., various choices for the functions c and s. In
addition, we shall investigate two cases. First we investigate the multi-hop case,
in which all the communications among sensors, compressors and sinks are realized
on a hop-by-hop basis. Hence if a node wishes to send a packet to another node,
the intermediate nodes along the route relay the packet in a hop-by-hop manner to
the destination. Second, we explore the two-hop case, in which the sensors do not
relay traffic, but instead transmit directly to either a compressor or a sink and in
turn compressors transmit directly to a sink. Thus data may be relayed through
at most one hop. The cost functions for these two cases will be quite different, but
subsequently we combine these cases to express a general model for aggregation.

2.3.1.1 Multi-hop case

Our goal is to roughly model the energy cost associated with aggregating
data from sensors to compressors and subsequently to the sink. We will assume that
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sensors and compressors communicate over an ad hoc network of wireless links, so
packets will be relayed over multiple hops toward their destination. Thus the overall
aggregation cost in the system will be proportional to the number of packets that
need to be relayed. The energy cost per packet will depend on the overheads to
access the channel for transmission, and energy expended during transmission. The
latter would in turn depend on the size of the packet and the distances involved. For
purposes of our model it is reasonable to assume packets have roughly the same size,
and the energy cost per packet relayed in the network is roughly the same. We will
further assume that the number of hops required to travel between two locations is
proportional to distance between them.1 Suppose then that sensor xi generates dxi

packets/sec to its compressor cj = c(xi). The total traffic received by cj would be
∑

{xi:c(xi)=cj}
dxi packets/sec,

and the total energy expended in the network to carry this traffic is roughly pro-
portional to ∑

{xi:c(xi)=cj}
dxi |xi − cj | packets-hops/sec.

Recall that each compressor cj aggregates incoming data and possibly fur-
ther compresses it prior to forwarding it to the sink s(cj). Aggregation may make
use of context dependent information, e.g., since the sensors associated with that
compressor are known a priori, one need not forward meta-data, e.g., location in-
formation, about the data to the sink. Thus the compressor can reduce packet and
meta-data overheads, e.g. by header compression, in forwarding information to the
sink. Further the sensed data itself may be compressed. Specifically we assume that
cj forwards packets at a rate

αcj

∑

{xi:c(xi)=cj}
dxi packets/sec

to its associated sink sk = s(cj), incurring an additional energy cost which is pro-
portional to

αcj

∑

{xi:c(xi)=cj}
dxi |cj − sk| packets-hops/sec

1This assumes that the spatial distribution of sensor nodes is fairly uniform.
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The parameter αcj ∈ [0, 1] captures the gross benefit of aggregation and compression
resulting from cj ’s processing and forwarding of sensor data.

Since our purpose is to capture the salient features of such a hierarchy, it
makes sense to assume that all sensor nodes offer roughly the same traffic load, i.e.,
without loss of generality we let dxi = 1 for all xi ∈ Π0. Note the scheme considered
in the previous section can be used to locally minimize the data rates from sensors
to compressors. In addition, assuming that the set of sensors associated with a given
compressor node is sufficiently large, and variations in αcj will not be significant, we
might assume all compressor/aggregating nodes are equally effective, i.e., αcj = α

for all compressor nodes cj ∈ Π1. With these two assumptions we obtain an additive
energy cost model, with a cost per sensor, e(xi), which is proportional to

e(xi) = |xi − c(xi)|+ α|c(xi)− s(c(xi))|. (2.1)

To motivate our choice of a near-constant compression ratio, let us consider a simple
meta-data compression scheme. Suppose all the packets generated by the sensors
in the field have a fixed header length of Lh, and a fixed data length of Ld. For
a certain compressor (or aggregation point) that takes care of N sensors, the total
amount of data aggregated at the compressor would be N(Lh + Ld). Now suppose
a compressor removes all the headers and attaches a new header for the aggregated
data. Indeed as discussed in [25], the compressor need not include the ordering
information for the aggregated data if it is already known to both the compressor
and its destination, i.e., the associated sink. Thus we may assume the compressor
can send a packet with aggregated data with a header of the same length as that for
sensor packets, Lh. The size of the packet routed to the sink is Lh +NLd, assuming
the compressor has not applied any additional compression technique. If we assume
that NLd À Lh, i.e., the compressor’s packet contains much more data than header
information, then we achieve a compression ratio of

α =
NLd + Lh

N(Ld + Lh)
' NLd

N(Ld + Lh)
=

Ld

Ld + Lh
,

which should be roughly constant over the field. Our objective is, given our three
point processes and a fixed gross compression ratio α, to determine the hierarchical
organization, i.e. the functions c(·) and s(·), that minimize the overall energy cost
in this network.
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2.3.1.2 Direct one hop transmission case

In our second model each sensor directly communicates with a sink or a
compressor without any relaying. Thus the resultant transmissions would involve
two hops at most. We keep a similar setup as that previously considered, thus the
sensors have two options: (1) send directly to a compressor which compresses and
forwards it to a sink, or (2) send directly to a sink. We assume sensors make the
minimum-cost choice among the candidate compressors and sinks. In this context,
the cost per sensor might be modelled as

e(xi) = |xi − c(xi)|γ + α|c(xi)− s(c(xi))|γ (2.2)

where 2 ≤ γ ≤ 4. Here γ reflects the power required to overcome when a sensor
transmits directly to a compressor or a sink. In many environments, path-loss
exponent is assumed to be between −2 and −4[26]. This means the contribution to
the total energy cost between a sensor and a compressor/sink would be proportional
to their distance raised to a power between 2 to 4. By contrast, in our previous
setup γ = 1, we have assumed every node spends approximately equal power for
transmission. Hence the energy cost is proportional to the number of hops required
for sending packets. In the regime when γ ≥ 2, we assume that every node adopts an
appropriate power control scheme to compensate for path loss. Hence compressors
and sinks should be spatially distributed within a reasonable distances from each
sensor, so that a sensor can reach its aggregation point directly.

We can regard (2.2) as the general expression for the cost per sensor since
if we let γ = 1, (2.2) reduces to the multi-hop case. In the following discussions we
will maintain the arguments as general as possible assuming γ can be any reasonable
positive constant, but we focus on the case where γ = 1, the multi-hop case. Later
we extend our arguments to cover the case where γ ≥ 2.

2.3.2 Optimal sensor hierarchies and spatial tessellations

Prior to considering the optimal organization of sensors and compressors
based on the above energy model, let us consider a natural choice. It should be
clear that from the perspective of minimizing our cost metric, each compressor
should relay packets to the closest sink. Similarly one might think it reasonable to
assume each sensor might send its traffic to the closest compressor or, if it is closer,
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directly to a sink. As discussed in [24] such a hierarchical organization is induced
by the Voronoi tessellation generated by the locations of the sinks and compressors.
We formally define the Voronoi tessellation with respect to a set of points Π as
follows.

Definition 1. The Voronoi tessellation associated with Π, denoted V(Π) is a col-
lection of cells Vyi(Π) for yi ∈ Π such that

Vyi(Π) = {z ∈ R2 | |yi − z| < |yj − z|,∀yj ∈ Π},
i.e., all points in the plane which are closer to yi than to any other point in Π.

Let V(Π1 ∪ Π2) denote the Voronoi tessellation induced by the union of
compressors and sinks Π1∪Π2 and let us define a hierarchical organization as follows.
Let cV : Π0 → Π1 ∪Π2 be such that for each xi ∈ Π0,

cV (xi) = yj , iff xi ∈ V yj (Π1 ∪Π2).

Here V yj denotes the closure of the set Vyi . Mathematically the probability that a
sensor will fall on the boundary of sets Vyi vanishes. However, if a sensor is observed
to be located on the boundary due to the finite granularity in the positions of nodes,
such ties must be broken arbitrarily. Let V(Π2) denote the Voronoi tessellation
induced by the sinks Π2, and define a mapping sV : Π1 ∪ Π2 → Π2, such that for
each yj ∈ Π1 ∪Π2,

sV (yj) = sk, iff yj ∈ V sk
(Π2).

The pair cV and sV capture a simple hierarchical organization for sensors,
compressors and sinks based purely on proximity rather than achieving our goal,
i.e., minimizing the energy cost of aggregation. In particular a sensor may connect
to the closest compressor even if the energy cost would be reduced if it connected
to another compressor which is closer to its eventual sink and thus results in an
energy savings. Below we define the tessellation Tα(Π1, Π2) that induces an optimal
organization for a given overall compression ratio α.

Definition 2. The tessellation Tα(Π1, Π2) associated with two sets of points Π1 and
Π2 and parameter α, consists of a collection of cells Tα

yi
(Π1, Π2) for yi ∈ Π1 ∪ Π2

such that

Tα
yj

(Π1,Π2) = {z ∈ R2 | |z−yj |+α|yj−sV (yj)| < |z−yl|+α|yl−sV (yl)|, ∀yl ∈ Π1∪Π2}.

15



We refer to Tα
yj

(Π1, Π2) as the cell with nucleus yi.

The next theorem shows that this tessellation induces an organization which
minimizes the energy cost for each sensor.

Theorem 2. Under the energy cost model (2.1), the optimal assignment of com-
pressors cj ∈ Π1 to sinks is s∗(cj) = sV (cj) ∈ Π2, i.e., the closest sink to cj. The
optimal assignment of sensors xi ∈ Π0 to compressors or sinks is c∗(xi) such that
xi ∈ Tα

c∗(xi)
(Π1,Π2) ∈ Tα(Π1,Π2), i.e., the compressor/sink which is the nucleus for

the cell in Tα(Π1, Π2) containing xi.

Proof. To prove that this hierarchy has minimal cost consider a sensor xi ∈ Tα
yj

(Π1,Π2),
so c∗(xi) = yj . Suppose xi is assigned to some other compressor or sink yl and then
some sink sk. The energy cost for such an assignment would be

e(xi) = |xi − yl|+ α|yl − sk|
≥ |xi − yl|+ α|yl − s∗(yl)|
≥ |xi − yj |+ α|yj − s∗(yj)|
= |xi − c∗(xi)|+ α|c∗(xi)− s∗(c∗(xi))|,

where the first inequality follows from the definition of s∗ and the second inequality is
a natural consequence of the definition of the cells in the tessellation Tα(Π1, Π2).

The tessellation Tα(Π1, Π2) introduced earlier is a particular case of a Johnson-
Mehl tessellation [27]. Let us briefly consider how this comes about by contrasting
it with a Voronoi tessellation. One can visualize the Voronoi tessellation as induced
by a set of nuclei which grow grains isotropically at unit speed until they come into
contact with another nuclei’s grain. These contact points become the boundaries of
the cells of the tessellation. A Johnson-Mehl tessellation adds an additional degree
of freedom. It allows the nuclei to start growing their grains at different times.
The tessellation Tα(Π1, Π2) results if all sinks sk ∈ Π2 start growing grains together
isotropically at unit speed. Subsequently each compressor cj ∈ Π1 starts growing a
grain at time proportional to α|cj − s∗(cj)| which depends on its distance from the
closest sink and α. The resulting boundaries can be shown to be hyperbolic. In this
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tessellation cells associated with sinks will tend to be large relative to others, since
they start growing earlier. We give a formal proof of this argument.

Theorem 3. Suppose we have two point processes Π1, Π2 ⊂ R2, which correspond
to nuclei for the cells of a tessellation. Suppose the nuclei grows isotropically with
the identical velocity v, but a nucleus ci ∈ Π1 ∪Π2 starts to grow at time τ(ci) given
by

τ(ci) =
α|ci − sV (ci)|

v

where the function sV (·) : Π1∪Π2 → Π2 maps a point in Π1∪Π2 to the closest point
in Π2 and if ci ∈ Π2, then sV (ci) = ci. Hence all the nuclei in Π2 starts to grow at
time 0. Also, the nuclei keep growing to cover the entire space not been occupied by
other nuclei. Then the resulting tessellation induced by Π1, Π2 is the same as the
optimal tessellation Tα(Π1, Π2) given in Definition 2.

Proof. Let us define T (x, ci) as the time when the growth from ci ∈ Π1∪Π2 reaches
some arbitrary point x ∈ R2, ignoring all other nuclei for the moment. Then T (x, ci)
can be explicitly written as

T (x, ci) =
|x− ci|

v
+ τ(ci) =

|x− ci|
v

+
α|ci − sV (ci)|

v
.

In order for x to be covered by the growth of ci, x must be reached at the shortest
time, i.e., before any nucleus other than ci occupies x. Specifically,

ci = argmin
cl∈Π1∪Π2

T (x, cl) = argmin
cl∈Π1∪Π2

{ |x− cl|
v

+
α|cl − sV (cl)|

v

}
.

Since v is a constant, the collection of x that satisfies the above constraint, i.e. the
region that is occupied by ci, is the same as Tα

ci
(Π1, Π2) given in Definition 2. This

is true for every x ∈ R2, thus we conclude that the resulting tessellation has the
same shape as Tα(Π1, Π2).

Examples of a Voronoi tessellation and an energy optimal Johnson-Mehl
tessellation for α = 0.5 are shown in Figure 2.4. The figure on the left shows the op-
timal Johnson-Mehl tessellation Tα(Π1, Π2) for compression ratio α = 0.5, and the
figure on the right shows the Voronoi tessellation V(Π1 ∪Π2). The small dots repre-
sent compressors in Π1 and big dots represent sinks in Π2. We have superposed the
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Voronoi tessellation V(Π2) induced by the sinks and drawn the boundaries with thick
straight lines. The organization of sensors to compressors or sinks, and compressors
to sinks should be clear based on its location with respect to the two superposed
tessellations.

Considering the case of direct transmission to the aggregation points, we can
define the optimal tessellation in a similar way. Given a fixed path-loss exponent γ

and compression ratio α, the optimal tessellation is given as follows.

Definition 3. The tessellation Tα,γ(Π1, Π2) associated with two sets of points Π1

and Π2 and parameter α ∈ [0, 1] and γ ≥ 1, consists of a collection of cells
Tα,γ

yi (Π1,Π2) for yi ∈ Π1 ∪Π2 such that

Tα,γ
yj

(Π1, Π2) = {z ∈ R2 | |z − yj |γ + α|yj − sV (yj)|γ < |z − yl|γ + α|yl − sV (yl)|γ ,

∀yl ∈ Π1 ∪Π2}.

Theorem 4. Under the energy cost model (2.2), the optimal assignment of com-
pressors cj ∈ Π1 to sinks is s∗(cj) = sV (cj) ∈ Π2, i.e., the closest sink to cj.
The optimal assignment of sensors to compressors or sinks is c∗(xi) such that
xi ∈ Tα,γ

c∗(xi)
(Π1 ∪ Π2) ∈ Tα,γ(Π1,Π2), i.e., the compressor/sink which is the nu-

cleus for the cell in Tα,γ(Π1,Π2) containing xi.

Proof. Proof similar to Theorem 2.

One of the properties of the optimal tessellation when γ ≥ 2, is that there
may be some cells which do not contain their nucleus. Compared with a Voronoi
tessellation of Π1 ∪ Π2, the cells tend to be stretched and shifted away from each
sink, so compressors that are far away from their associated sinks usually are out-
side of their own cells. Also note that in the optimal tessellation for γ ≥ 2, some
compressors have zero-area cells. In other words, from the perspective of our energy
model, they would not be energy efficient to route through. These bogus compres-
sors appear around the boundaries of the Voronoi cells of Π2. The reason is that
the compressors that are around the boundary of Voronoi cells of Π2 tend to be
preempted by other compressors nearer to the sinks. If we consider the germ-grain
model, they look as if ‘sandwiched’ by cells expanding faster in opposite directions
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Figure 2.4: The optimal Johnson-Mehl tessellation for α = 0.5 and Voronoi tessel-
lation.

from their respective sinks. Thus if we remove these useless compressors, we can
achieve the same cost performance with less compressors. Detailed analysis on these
properties are left for future study.

We continue with some analytical results for the energy cost and statistics of
the Voronoi and Johnson-Mehl tessellations of multiple-hop case, i.e. when γ = 1.

2.4 Analytical Results

In this section we will compare various sensor,compressor and sink hierar-
chies in terms of their expected energy costs for aggregation. Our approach draws
on the elegant framework introduced by [24], for a rough analysis and modelling of
communication hierarchies.

2.4.1 Hierarchy based on Voronoi tessellation

Let us first consider the hierarchy based on Voronoi tessellation whereby
each sensor sends data to its closest compressor or sink node, and compressor nodes
relay a fraction α of the traffic they receive to the closest sink. Following [24] we
can mathematically define an expected energy cost GV under such an arrangement
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as

GV = E0
2


 ∑

cj∈Π1∩V0(Π2)

{α|cj |Ncj +
∑

xi∈Π0∩Vcj (Π1∪Π2)

|xi − ci|}+
∑

xi∈Π0∩V0(Π1∪Π2)

|xi|

 ,

where we have used the following conventions: E0
k denotes the expectation with

respect to the Palm distribution P0
k of the point process Πk, see [28]; and Ncj is the

number of sensors, i.e., points in Π0 which are associated with compressor cj , that
is in the cell Vcj (Π1).

Thus GV corresponds to the energy cost associated with a typical sink cell
V0(Π2). The first summand consists of two terms: the first corresponds to the energy
costs in forwarding compressed data from compressors to sinks, while the second
corresponds to the energy cost of forwarding data from sensors to compressors. The
second summand in the above expression corresponds to energy costs of sensors that
directly send data to the sink. One can directly use the results in [24] to evaluate
the expected cost GV . In our case, GV is given by

GV =
λ0

2λ2

√
λ1 + λ2

+
αλ0

2λ
3/2
2

− αλ0

2(λ1
4 + λ2)3/2

+ 12π3/2λ0λ1α

∫ π
2

0

(π − γ) sin γ cos2 γdγ

(π(γ1 + 2γ2) + γ2 sin(2γ) + 2γ2(π − γ) cos(2γ))5/2
.

We note for simplicity that the same results can be applied to evaluate the
cost GS of an aggregation hierarchy with no compressor nodes at all, i.e., sensors
merely send uncompressed data to the closest sink. Applying the results of [24] one
finds the energy cost for a typical sink cell would be given by

GS =
λ0

λ2
· 1
2
√

λ2
.

The basic insight here is that the area of a typical sink cell would be 1/λ2 and so
the average number of sensors in that cell is expected to be λ0/λ2. Further one
can show that 1/2

√
λ2 corresponds to the mean distance from a sensor to its closest

sink. Thus the average cost should be the product of these two terms.

As we will show in our numerical evaluation and simulations of the energy
costs for these hierarchies, it may be the case that GV > GS for some α. Specifically
when α is close 1 it will typically be more expensive to route through the closest
compressor or sink versus going directly to the sink. Thus a greedy aggregation
strategy based purely on proximity may be worse than not using one at all.
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2.4.2 Optimal hierarchy based on Johnson-Mehl tessellation

Next we evaluate the energy cost GT for the optimal hierarchy introduced
in the previous section. We can mathematically define it as

GT = E0
2




∑

cj∈Π1∩V0(Π2)

{α|cj |Nα
cj

+
∑

xi∈Π0∩T α
cj

(Π1,Π2)

|xi − cj |}+
∑

xi∈Π0∩T α
0 (Π1,Π2)

|xi|


 ,

where Nα
cj

denotes the number of sensors, i.e., points in Π0, which are associated
with compressor cj , that is are within the cell Tα

cj
(Π1, Π2). Again GT corresponds

to the energy cost associated with a typical sink cell in the higher level Voronoi
tessellation associated with sink cells.

As an intermediate step toward estimating the energy cost let us first con-
sider the area of a typical cell in Tα(Π1,Π2) which is associated with a sink. Recall
that cells associated with sinks will tend to be larger than others since they start
growing earlier, see Fig. 2.4. The following theorem, proved in the appendix, and
gives an explicit formula for the area of a typical sink.

Theorem 5. Consider two point processes Π1 (compressors) and Π2 (sinks) with
densities λ1 and λ2 respectively. The expected area of a typical cell associated with
a sink in the tessellation Tα(Π1, Π2) is given by

E0
2[ |Tα

0 (Π1,Π2)| ] =
π

f(α)λ1 + πλ2

where |T | denotes the area of a set T and f(α) is defined as follows. We shall let
Oα

β (x1, x2) denote the Cartesian oval with foci at x1,x2 ∈ R2, given by

Oα
β (x1, x2) = {y ∈ R2 | α|y − x1|+ |y − x2| ≤ β}.

Then f(α) is the area of Oα
1 (0, x) when |x| = 1 which is given by

f(α) =
4

(1− α2)2

{
(
1
2

+ α2)(
π

2
− sin−1(α)) +

sin(2 sin−1(α))
4

− 2α cos(sin−1(α))
}

.

(2.3)

Note that the Cartesian oval Oα
β (0, x) can be interpreted as the set of possible

compressor locations with respect to a sink at the origin and a sensor at x that would
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Figure 2.5: The figure shows the ball B|x|(x) and Cartesian oval Oα
|x|(0, x) associated

with a potential (sensor) location at x = (1, 0) and sink at the origin.

result in a lower energy cost than β if used as a relay point, see e.g., Fig. 2.5. It
visualizes the fact that, in order for the sensor at (1,0) to be associated with the
sink at the origin, there must be no compressors in the Cartesian oval (a) and no
other sinks in region in the ball (b). One can show that f(α) is a monotonically
decreasing function in α ∈ [0, 1] where f(0) = π, f(1) = 0. Thus when α = 1, i.e.,
there is no compression gain, the area of a typical sink cell becomes 1

λ2
. This is

the average area of a typical cell for a Voronoi tessellation with density λ2, thus
connecting to the nearest sink must be optimal. At the other extreme if α = 0, and
thus the data which will be relayed from compressors to sinks is negligible, then the
optimal sink cell’s area becomes 1

λ1+λ2
which is the average area of a typical cell

of a Voronoi tessellation with density λ1 + λ2. Clearly connecting to the nearest
sink or compressor is the optimal policy when α = 0. Thus at the two extremes
our Johnson-Mehl tessellation reduces to one of two Voronoi cases. However when
α ∈ (0, 1) we can expect to get cells with hyperbolic faces associated with an optimal
hierarchy.

Next we shall estimate energy costs for the optimal hierarchy. Unfortunately
since Tα(Π1, Π2) depends in an inhomogeneous manner on the two point processes
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this is quite challenging. As such below we derive an upper bound GU for the energy
cost GT achieved by our optimal tessellation. To do so we consider yet another
alternative hierarchical organization for the sensor network. In this hierarchy the
data associated with a sensor xi is necessarily routed to its closest sink sV (xi).
This data may however be routed either directly to the sink or via a compressor
depending on which option minimizes the contribution to the energy cost of the
system. Letting cU (xi) denote the energy optimal routing choice for sensor xi, i.e.,
to a sink or compressor, with an associated energy cost given by

e(xi) = |xi − cU (xi)|+ α|cU (xi)− sV (xi)|. (2.4)

Although this hierarchy is suboptimal it is quite close to the optimal one. In par-
ticular sensors which are not close to the boundary of the Voronoi cells associated
with the point process of sinks, are likely to see the same energy costs – consider
Fig. 2.4.

As before we can define the cost for this hierarchical arrangement as the
energy cost for a typical sink cell

GU = E0
2


 ∑

xj∈Π0∩V0(Π2)

eU (xi, Π1, Π2)


 .

Under this new organization only sensors within V0(Π2) will be associated with
the origin, thus one can directly express the energy cost of a typical cell as a sum
over sensors in this cell. However the cost per sensor depends on the locations of
compressor and sink nodes Π1 and Π2 – we introduce eU to make this explicit.

The following theorem, proved in the appendix, gives an explicit upper
bound for the energy cost achieved by the optimal aggregation scheme.

Theorem 6. The energy GU is an upper bound for the optimal cost GT and is
given by

GU =
λ0πΓ(3/2)

(λ2π + λ1f(α))3/2

+λ0λ1

∫

R2

∫

Oα
|x|(x,0)

(|y|+ α|y − x|)e−λ2π|x|2−λ1|Oα
|y|+α|y−x|(x,0)|

dydx

(2.5)

where f(α) and Oα
β (x, 0) are as defined in Theorem 5.
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We shall numerically evaluate this result in Section 2.5 to compare different
hierarchical organizations for data aggregation. Also we show that GU is a tight
bound on the optimal cost via simulation.

The expression in Theorem 6 contains a numerical integration that cannot
be evaluated in closed form. Specifically, it is not possible to evaluate the area of a
Cartesian oval to a closed form except for some special cases. We propose a simpler
estimate for GU as follows. Consider the association rule as given in (2.4), i.e., the
sensors always select their final destination for their data to be the closest sink.
Denote the average cost incurred by a typical sensor under this rule, as GU0. Then
GU0 can be related to GU via the Neveu exchange formula [24] as

GU0 =
λ2

λ0
GU .

Thus GU0 is equal to GU scaled by the ratio between the densities of sensors and
sinks. Now we shall derive a tight upper bound for GU0, which we denote ĜU0.

Theorem 7. The energy cost per sensor GU0 is upper bounded by ĜU0 given by:

ĜU0 =
α

2
√

λ2
+

1− α

2
√

λ2 + λeff

, (2.6)

where λeff = λ1f(α)
π , and f(α) is as defined in Theorem 5.

We observe that ĜU0 is consistent with the optimal cost in two extreme cases,
α = 0(‘perfect’ compression) and α = 1(no compression at all). Indeed recall that

1
2
√

λ2
is the cost seen by a typical sensor in Voronoi tessellation of Π2, and 1

2
√

λ1+λ2

is the cost seen by a typical sensor in Voronoi tessellation of Π1 ∪Π2. When α = 0,
the optimal tessellation reduces to the Voronoi tessellation of Π1∪Π2, and ĜU0 also
reduces to 1

2
√

λ1+λ2
, since f(0) = π. When α = 1, ĜU0 reduces to 1

2
√

λ2
, which is

also the optimal cost for a typical sensor when there is no compression gain. Thus
this bound clarifies the dependence of the energy cost on the compression ratio. We
later show that ĜU0 gives an excellent approximation for GU0. A proof of Theorem
7 is given in the appendix.
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2.4.3 Extensions

2.4.3.1 General case with computational costs

The expression for the expectation of overall cost can be generalized to
include a path loss exponent γ for transmission, in the two-hop aggregation case.
Also one can introduce computational costs associated with compression, although
this is often considered negligible compared to the cost of transmitting bits [29]. Let
us denote the number of sensors that are associated with a compressor at location cj

by N
α,γ
cj . The computational cost at a compressor can be a function of the number

of the associated sensors, say g(Nα,γ
cj ). Then we can write the overall cost denoted

by Gγ
T as follows:

Gγ
T = E0

2


 ∑

cj∈Π1∩V0(Π2)

{α|cj |γNα,γ
cj

+

g(Nα,γ
cj

) +
∑

xi∈Π0∩T α,γ
cj

(Π1,Π2)

|xi − cj |γ}+
∑

xi∈Π0∩T α,γ
0 (Π1,Π2)

|xi|γ

 .

However, it is not easy to calculate high order moments of N
α,γ
cj although its moment

generating function can be bounded, see [30]. If the computational overhead is
proportional to the number of sensors and is not negligible, we can replace the
first summand in the above by (α|cj |γ + φ)Nα,γ

cj , where φ represents computational
overhead incurred per sensor. Following the same approach as Theorem 6, we can
obtain an upper bound on the cost in this general case. The upper bound Gγ

U is
given by

Gγ
U =2πλ0

∫ ∞

0
r1+γe−λ2πr2

e−λ1|Oα,γ
r ((r,0),0)|dr

+ λ0λ1

∫

R2

∫

∆x

dα,γ(x, y)e−πλ2|x|2−λ1|Oα,γ
dα,γ (x,y)

(x,0)|
dydx,

dα,γ(x, y) =|y|γ + α|y − x|γ + φ,Oα,γ
β (f1, f2) = {x ∈ R2|dα,γ(f1, f2) ≤ β},

∆x ={y ∈ R2 |α|x|γ + φ ≤ dα,γ(x, y) ≤ |x|γ }.

2.4.3.2 A special case when the path-loss exponent γ = 2

Let us consider the case where the path-loss exponent γ is given by 2. The
value of γ corresponds to free-space radiation in an environment with negligible
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multi-path components. Let c(xi), s(c(xi)) be the positions of the cost-minimizing
compressor and sink for the sensor at position xi. We denote the cost function
incurred by this sensor as e(xi) which is given by

e(xi) = |xi − c(xi)|2 + α|c(xi)− s(c(xi))|2.

In this case, the boundaries of the tessellation are straight lines. The cells have
surprisingly similar shapes to those of a Voronoi tessellation. The reason can be
deduced from the following example. Let us assume that there is a sink at the
origin and a sensor at z ∈ R2. Without loss of generality, we assume that z is
on the x axis, i.e. z = (|z|, 0). Let us find the set of compressor locations, such
that a sensor at z, that achieves the same cost through the compressors at these
locations as when the sensor send data directly to the sink. Let (x, y) ∈ R2 denote
the position of such a compressor, then the cost for a sensor to sending directly to
sink is |z|2, where the cost via the compressor at (x, y), is given by

e(z) = (x− |z|)2 + y2 + α(x2 + y2).

By equating these, we have the following condition on (x, y) that makes the routing
choices even in terms of the cost as follows:

(x− |z|
1 + α

)2 + y2 = (
|z|

1 + α
)2.

For the sensor to directly associate itself with the sink, there should be no compres-
sors within the sphere given by the above expression. This ‘void’ region plays an
important role in determining the shape of the tessellation. In the Voronoi scheme,
the region for a sink cell is also a sphere. Thus both tessellations have convex shapes,
and the optimal tessellation reduces to the Voronoi tessellation when α = 0.

An example of an optimal tessellation when γ = 2 is shown in Fig. 2.6. We
continue with geometrical properties of this tessellation. Let us denote the optimal
tessellation for this case as Tα,2(Π1, Π2). Then the following result gives the area of
a typical sink cell.

Theorem 8. The expected area of a typical cell associated with a sink in the tes-
sellation Tα,2(Π1, Π2) is given by

E0
2[ |Tα,2

0 (Π1, Π2)| ] =
1

λ1
(1+α)2

+ λ2
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Figure 2.6: The left figure shows optimal tessellation with sinks (big dots) and
compressors (small dots) when γ = 2 and α = 0.45. The figure on the right is a
Voronoi tessellation with same configuration of sinks and compressors. In the left
figure, the tessellation is convex and it has cells that have similar shapes to the
Voronoi cells. Especially the cell which does not contact the boundaries of V(Π2)
cells, is expanded to the factor of (1 + α)2 compared to the Voronoi cell with same
nucleus.

where Tα,2
0 denotes the typical cell with the sink at the origin as its nucleus, |C|

denotes the area of the set C and λ1, λ2 denote the density of compressors and sinks
respectively.

Using a similar techniques used in deriving Theorem 6, i.e. the data from a
sensor eventually goes to the sink which is the closest to that sensor, one can get
energy cost estimate. The cost function per sensor is modified to

e(xi) = |xi − c(xi)|2 + α|c(xi)− sV (xi)|2 (2.7)

where sV (·) denotes the function that maps a location to the location of its closest
sink. Let us denote the typical cost seen by a sensor under this suboptimal scheme
as G2

U0. Then we have the following result.

Theorem 9. The energy cost of a typical sensor, G2
U0, under energy cost (2.7) is

an upper bound for the cost seen by a typical sensor in the optimal tessellation. Also
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G2
U0 is given by

G2
U0 =

λ2

π( λ1
(1+α)2

+ λ2)2
+

λ1
(1+α)2

{
αλ1

(1+α)2
+ (2α + 1)λ2

}

πλ2(1 + α)
{

λ1
(1+α)2

+ λ2

}2 . (2.8)

To check for consistency, note that when α = 0, G2
U0 = 1

π(λ1+λ2) and it is
indeed the same as the cost for a typical sensor to associate itself with the closest
compressor or sink. It is interesting to note that when α = 1, G2

U0 does not cor-
respond to the cost for the typical sensor to associate itself with the closest sink,
which differs from the case where γ = 1 (Note that when γ = 1, if there is no com-
pression gain (α = 1), it is always optimal for a sensor to go straight to the closest
sink because of the triangle inequality.). Instead, when γ = 2, the average optimal
cost is always less than the average cost for a sensor to directly send to a sink as
long as λ1 6= 0. This implies that the optimal relaying always reduces the average
cost, even if the aggregation point does not perform any compression. Hence if we
replace α with 1 in the Eq. (2.8), we obtain a bound on the average cost achieved
by the optimal routing alone. We shall revisit this result via simulation. A proof of
Theorem 9 is given in the appendix.

In the next section, we give some numerical results on the multi-hop case
and simulation results with different values of γ. For the case when γ 6= 2, a
detailed analysis is mathematically intractable so we study energy distribution and
tessellation through simulations. Also we explore how the cost function is distributed
over the entire field, and some issues on traffic congestion resulting from hierarchical
aggregation schemes.

2.5 Numerical and simulation results

2.5.1 Numerical Evaluation

We numerically evaluated the cost functions computed in the previous sec-
tion. On the top in Fig. 2.7 we compare the energy consumption at a typical sink
of three possible hierarchical schemes for different compression ratios α. GS is the
case where sensors send directly to the sink without going through compressors, GV

is the case where sensors send to a compressor or a sink, whichever is closer, and
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Figure 2.7: The graph at the top exhibits a numerical evaluation of GS , GV and our
upper bounds GU and ĜU for the optimal hierarchy, as a function of α with λ0 = 1,
λ1 = 0.0473 and λ2 = 0.0142. The graph at the bottom exhibits energy savings,
comparing GU to GS , as a function of α and λ2/λ1.
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then compressors send to sinks. GU is our upper bound on the cost for the optimal
strategy where sensor traffic eventually goes to the closest sink, but may be relayed
and compressed by an intervening compressor if that minimizes the cost. We observe
that organizations based on an optimal tessellation as represented by upper bound
GU can outperform those based on Voronoi tessellation, i.e. GS and GV . With
moderate compression performance, e.g. 0.5 ≤ α ≤ 0.9, the relative energy savings
of the optimal scheme versus the Voronoi scheme is shown to be 6%-20%. Also we
can see that the closed-form approximation ĜU is a tight upper bound of GU : the
error is within 1.4% of GU . Note that ĜU = λ0

λ2
ĜU0 by Neveu exchange formula,

where ĜU0 is an estimate of the cost for a typical sensor and given by Theorem 7.
We observe as α increases the second scheme GV is inferior to the simpler scheme
GS ; this is intuitive since GV is constrained to connect to the closest compressor if
there are no sinks which are closer, thus requiring a “detour” even when no com-
pression gain is available. Note however, that our optimal scheme always performs
better than the other two. In particular as soon as the aggregation/compression
nodes provide a reasonable compression ratio it is able to significantly reduce the
overall energy cost of the network. On the bottom in Fig. 2.7, we have plotted
the energy costs of ĜU (approximation on the optimal bound) relative to GS (no
compressors) as a function of the ratio between the density of compressors, λ1, and
sinks, λ2. We observe that the sensitivity of the gain using the optimal scheme
increases as the density of compressors increases. As λ1 increases while λ2 is fixed,
the sensor can adapt itself to the change in the compression ratio by having more
opportunity to select the optimal compressor with varying α. For example, assume
that there are a large number of compressors around a sensor. If α changes, the
sensor will have more choices for candidate compressors that will provide less cost,
thus larger gain. In contrast, if there are few compressors, the sensor might have to
remain associated with the same compressor, hence some compression gain might
be achieved if α decreases by a small amount, but no gain from the optimal routing.
Thus the sensitivity of the energy savings is higher to changes in the compression
ratio when the number of compressors is high - this should be clear from Fig. 2.7.
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Figure 2.8: The performance comparison between the optimal and Voronoi scheme
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λ1 = 0.1 and λ2 = 0.01.
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2.5.2 Simulations

2.5.2.1 Cost performance in Multi-hop case

In our simulations, we placed compressors and sinks according to two ho-
mogeneous Poisson point processes on a 100 × 100 unit square area. The num-
bers of compressors and sinks are Poisson random variables with mean 1002 ×
(target density). Once the number of nodes are determined, the nodes are placed
uniformly on the square. To facilitate simulation, we placed a typical sensor at
the origin and we have varied the density of compressors and sinks to compute the
average cost incurred at the typical sensor.

Fig. 2.8 shows the simulated cost savings for the optimal hierarchy and that
based on a Voronoi tessellation relative to the baseline scheme without compression
i.e., directly sending traffic to the closest sink. On the top in Fig. 2.8, we show the
relative energy cost of a typical sensor compared to a scheme without compressors
but maintaining the configuration of sinks. Fixing the density of sinks as 0.01 (i.e.,
on average, a sink takes care of 100 sensors), we have simulated two different setups.
The first case is when the compressor density λc = 0.1 and the second case is when
λc = 0.04. As can be seen from the plot, the relative gain of the optimal and Voronoi
scheme is larger with a higher density of compressors (λc = 0.1). However, if we
consider the relative performance of the optimal scheme to the Voronoi scheme,
the optimal scheme outperforms Voronoi scheme more when the compressors are
sparse (λc = 0.04). The intuition is, as there are more compressors in the field, the
probability that the closest compressor becomes the optimal compressor increases,
and Voronoi scheme performs well. By contrast, if there are not many compressors
available, it becomes more critical for a sensor to pick the “right” compressor, i.e. the
one that will provide the minimum energy cost. When the compression performance
is high (α ≤ 0.5), we see that the difference in the energy savings between the optimal
and Voronoi strategy is small. Thus the Voronoi scheme is nearly optimal if one can
achieve a high compression gain. When the compression performance is moderate
(0.5 ≤ α ≤ 0.9), the optimal scheme outperforms the Voronoi scheme by about 8%-
28% when λc = 0.04 and 5%-20% when λc = 0.1. Also the optimal scheme is always
better than the scheme without compressors, but Voronoi scheme degrades as the
compression ratio becomes moderate. On the bottom in Fig. 2.8, we have compared
the relative performance of the optimal scheme, suboptimal scheme and the closed
form upper bound ĜU , to the baseline scheme (a scheme without compressors). The
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Figure 2.9: Tessellations of two-hop scheme with varying path-loss exponent γ.

densities of compressors and sinks are set to λ1 = 0.1 and λ2 = 0.01 respectively.
One can see that the theoretical estimates are quite close to the simulation results
for a range of compression ratios.

2.5.2.2 Two-hop case: tessellations and performance

Examples of optimal tessellations when the path-loss exponent γ = 2, 3 and
4 are shown in Fig. 2.9 with the Voronoi tessellation as a reference. When γ = 2,
we obtain a convex tessellation as discussed in the previous section. When γ 6= 2,
the tessellations are no longer convex and they look more distorted relative to the
original Voronoi tessellation. Note that some cells do not contain their nucleus at
higher γ, as discussed in the previous sections. Also the simulation of comparison in
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Figure 2.10: The comparison of energy expenditure of the optimal and Voronoi
scheme, relative to a scheme without compressors as a function of compression ratio
α for the path-loss exponents γ = 2, 4 when λ1 = 0.1 and λ2 = 0.02.
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relative energy savings in the optimal strategy with the Voronoi strategy, with the
path-loss exponents of γ = 2, 4 is shown in Fig. 2.10. The performance criteria is
the energy consumption relative to the baseline scheme without compressors. The
relative gain increases dramatically with γ, but as we can see from the case when
γ = 4, the impact of the proper routing choice dominates the performance and
the compression ratio α plays a lesser role in energy savings. Also we see that the
proposed suboptimal scheme is a good estimate of the optimal scheme, and matches
well with the theoretical estimates when γ = 2, see Eq. (2.8). Furthermore, our
proposed scheme outperforms the Voronoi scheme considerably versus the γ = 1
case. Under moderate compression performance (0.5 ≤ α ≤ 0.9), when γ = 2, the
optimal scheme has an average gain over the Voronoi scheme of 14%-34%. When
γ = 4, the optimal scheme has an energy savings over 45%-70% as compared to
the Voronoi scheme. Finally, we observe that even with an inferior compression
performance (α = 0.9), the optimal scheme still gives a considerable gain, 36% when
γ = 2 and 74% when γ = 4. This implies that the proper routing always provides
large savings in the energy even without any compression gain, as discussed in [8].

2.5.2.3 Energy contribution plots and congestion

In Fig. 2.11, we show the spatial distribution of the energy contribution
for an optimal Johnson-Mehl tessellation for α = 0.5 and a hierarchical Voronoi
scheme. The figure on the top corresponds to the optimal strategy. Red (bright)
regions indicate areas where sensors incur a higher energy cost to the overall system,
and blue (dark) regions are the areas of less cost. Note the color scale shows rela-
tive intensity in each scheme. The absolute value of energy consumption is lower in
the left(optimal) scheme. We observe that, in the optimal tessellation, the energy
contours vary in a smoother way versus the Voronoi scheme in which every node
just connects to its closest compressor and/or sink. The reason is that the optimal
tessellation is constructed for each sensor to achieve the minimal cost at its loca-
tion, and the cost function is a smooth function of the sensor positions in R2. In
contrast, in energy contribution plot for Voronoi scheme, the tessellation boundaries
stand out in the contours since the sensors simply associate themselves with closest
compressors (or sinks) and do not exploit cost-minimizing routing scheme.

Still it is of practical interest to examine the traffic congestion under various
aggregation schemes. If the data collected at each sensor is routed to a fixed aggre-
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Figure 2.11: Spatial distribution of the energy contribution of sensors to the overall
cost.
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Figure 2.12: The relative energy burden by the number of packet transmissions
required for every sensor in the field to send 1 unit of data to respective sink where
α = 0.5 for the optimal tessellation.

37



gation point, the sensors next to each aggregation point will have a higher energy
burden since they have to relay all the incoming packets generated from sensors
within the cell of the aggregation point. Fig. 2.12 exhibits a rough estimate of
such energy consumption per unit transmission time at each location in a network,
assuming that the density of the sensors is high. The figure on the top corresponds
to the case for the optimal tessellation. The unit transmission time is defined as the
duration or the cycle of every sensor transmitting 1 unit of data to each sink. We
can observe that the energy burden around the aggregation points, i.e. compressors
or sinks, is quite high. Also, the region of sensors near the boundaries of the tessel-
lation experiences a relatively low energy burden. Thus sensors that are close to the
aggregation points are subject to quickly running out of energy in a time scale much
shorter than that of a sensor along the tessellation boundary. Furthermore, it must
be ensured that these congested routing paths are able to support such flow, i.e. the
transport capacity along the shortest paths should be large enough to accommodate
the traffic. These are crucial scalability problems and must be taken into account
when designing a large-scale sensor network.

2.6 Conclusion

In this chapter we address two questions involving data compression and
traffic aggregation. We have investigated how to optimally compress sensed data
when there is a known aggregation cost for each sensor’s data, e.g., the energy ex-
pended to gather the data to a query point. This provides an efficient solution to
gathering information to an aggregation/compression point, but will not scale in a
large network of sensors. Thus next we considered how data aggregation might be
optimized in large-scale sensor networks. We have introduced a hierarchy of sensors,
compressor/aggregation nodes, and sinks and show that the optimal hierarchy is as-
sociated with a Johnson-Mehl tessellation induced by the locations of the compressor
and sink nodes. Using models from stochastic geometry we study the aggregation
costs and properties of such hierarchical organizations, and demonstrate how these
might depend on the densities of various types of nodes and the degree of compres-
sion one might achieve in a given application. Our results suggest that there are
significant gains to be achieved in jointly optimizing compression and aggregation
structures for sensor networks.
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Chapter 3

Proactive Multipath Routing for Unstructured Traffic

3.1 Introduction

Energy efficient design and operation of ad hoc multi-hop wireless networks
is a key problem in the context of mobile and/or distributed sensing applications,
where energy storage and availability may be quite limited. There are many levels
at which one can address this problem. Advances in silicon technology can realize
energy savings through power efficient circuitry, e.g., voltage scaling, while special-
ized architectures can be devised to allow components to enter ‘sleep’ modes. At the
same time power control and optimized MAC protocols which put nodes to sleep can
bring substantial energy savings enabling networks with thousands of sensors. Par-
ticularly, in large ad hoc wireless networks the data originated from a source might
need to be relayed a long distance to a destination or sink wireline node. Relaying
through many hops may cause intermediate nodes to consume substantial amounts
of energy and thus make energy efficient routing a particularly critical task.

Consider the network shown in Fig. 3.1. Two sources S1, S2 send to desti-
nations D1, D2 on opposite ends of the network respectively. In the network on the
left these sessions are supported along shortest hop routes. If one of these sessions
were sustained for a long time, nodes along the route would eventually see depleted
energy reserves, roughly ‘dividing’ the network into two parts. Subsequently if other
nodes needed to communicate across this depleted zone they may result in exhaus-
tion of energy along the diagonal, or require selection of routes around this area
of the network, which in turn would incur additional energy burdens. This simple
example, shows how energy depletion along long routes combined with interactions
with future overlapping and/or routing of additional traffic flows might exacerbate
the energy problem. A natural solution to this problem is to spread out the energy
burden of sustained sessions so as to obtain a spatially balanced energy burden.
Specifically, one may split traffic across two disjoint routes as shown on the right
in Fig. 3.1. Assuming energy consumption is roughly proportional to the load this
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Figure 3.1: Comparison of the shortest path routing scheme (on the left) and a
typical load-balancing scheme (on the right). The dotted arrows represent flows for
S1−D1 and the dashed arrows represent flows for S2−D2, respectively.

leads to a more balanced energy burden across sets of intermediate nodes. At the
same time this scheme may involve a larger number of nodes, e.g., a route with four
versus three hops, and thus an increased overall energy burden.

In this chapter, we consider overall system design aspects for such multipath
routing strategies – we refer to this as proactive balancing of energy burdens over
multiple routes. Our primary interest here is not to devise detailed multipath rout-
ing algorithms, but rather to investigate the design of, and possible improvements
afforded by, such routing mechanisms. The key intuition is that the more we spread
the traffic, the more the energy profile of the network will be balanced. However,
spreading traffic requires that some packets take long ‘detours’, which will incur
extra energy cost. This tradeoff associated with the degree of spreading is the main
topic investigated in this chapter.

To this end, we use a simple, idealized model to characterize and parame-
terize the spatial energy balancing aspects of proactive multipath routing schemes.
Our model provides sharp insights on design choices under various scenarios. For ex-
ample, one of the key issues studied in this chapter is the degree to which a session’s
traffic should be spread, depending on the load and the distance it must travel. Not
surprisingly, we show that traffic should be spread more as the load and the hop
count increase, and provide a simple scaling rule to proactively adapt the degree of
spreading.
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This chapter is organized as follows. In Section 3.2 we discuss related work
in this area. Section 3.3 introduces a concrete multipath routing and balancing
strategy, and presents continuum and grid models. In Section 3.4 we characterize
spatial energy burdens using a shot-noise process associated with our continuum
model. Section 3.5 uses a grid network to explicitly analyze a parameterized family
of energy balancing strategies. In Sections 3.6 and 3.7 we formulate and investigate
the design and optimization of such spreading using second order and asymptotic
approximations. Section 3.8 includes simulation results and a discussion of various
scenarios. Finally Section 3.9 presents our conclusions.

3.2 Related Work

There has been substantial research on the design and implementation of en-
ergy conserving routing protocols suitable for ad hoc networking applications. Let
us review some of this work. In [31] a characterization and algorithm determining
the most energy efficient route between two nodes is proposed. However, it is not
clear whether using such routes will extend ‘network lifetime,’ nor how this would
impact network capacity for non-homogenous traffic loads. By contrast, [32] and
[33] propose and evaluate routing mechanisms to maximize network lifetime based
on nodes’ current residual energy reserves. Unfortunately, scalability and the effec-
tiveness of greedy routing to spread energy burdens are a concern. Among recent
work, [34] and [35] show that, by properly defining cost metrics as exponential func-
tions of the residual energy at each node, one can achieve competitive optimality
for throughput under energy constraints. The work of [36] takes yet another tack –
they propose packet-level randomized routing in order to proactively balance energy
burdens across the network. A unifying principle emerges from this body of work:
the tradeoff between minimizing the energy expended to carry an offered load versus
the balancing of energy burdens across the network. To the best of our knowledge,
the spatial character of this tradeoff has not been studied. The primary contribu-
tion of this work is the use of a stochastic geometric framework to analyze, and then
work towards realizing this tradeoff in an ‘optimal’ manner.
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Figure 3.2: Illustration of regions R0(S,D) and R1(S, D) for the source-destination
pair (S, D).

3.3 Spatial Modelling

This section is divided into three parts. We start by stating our model
assumptions. We then introduce a multi-path routing scheme based on nodes’ spatial
relationships. Finally, we propose a continuum model where we regard the field of
the wireless nodes as an infinitesimal ‘medium’ that carries fluid, i.e., the traffic
flow. This leads to a simple shot-noise process model for the spatial field of energy
expenditures which is amenable to analysis.

3.3.1 Model assumptions

We will use a simplified model for energy expenditures associated with data
transmissions. Nodes are assumed to share a common transmit power level sufficient
to guarantee the network is connected. They relay packets towards the destination
via neighboring nodes in a hop-by-hop manner. Our key assumption is that the
energy consumption at each node is proportional to the traffic it is carrying, so
we use the terms ‘traffic load’ and ‘energy burden’ interchangeably. We refer to
a flow of traffic between a pair of source-destination nodes as a session, and refer
to the source and destination nodes as a session pair. In reality there are other
factors that contribute to energy burdens in wireless networks, e.g., interference and
channel contention. Such factors may be critical depending on the traffic offered to
the network which may result in energy burdens that are not proportional to traffic
loads. Nevertheless a rough model based on proportionality makes sense, specifically
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in the long run we may assume that such extraneous factors are averaged out.

We assume traffic is relayed only via ‘neighboring’ nodes which we shall
define based on proximity as follows. We model the locations of the nodes as fixed
and following a spatial point process in R2 plane. A natural notion of proximity
can be introduced via the Voronoi tessellation and Delaunay graphs induced by the
locations of the nodes. These are discussed below.

Suppose the locations of the nodes constitute a point process Ψ on the R2

plane . Each point xi ∈ Ψ serves as a seed for a cell V (xi),

V (xi) = {y | |xi − y| ≤ |xj − y|, ∀xj ∈ Ψ}
in the Voronoi tessellation induced by Ψ. If V (xi) ∩ V (xj) is not an empty set,
we refer to V (xi) and V (xj) as neighboring cells and we say that xi and xj are
neighbors.

A Delaunay graph is a graph whose vertex set is Ψ and whose edges connect
nodes that are neighbors. We denote the Delaunay graph by G(Ψ, E) where E is
the set of Delaunay edges. Routes considered in the discussion below will be based
on the Delaunay graph. We shall assume that the spatial distribution of nodes is
fairly uniform and sufficiently dense that each node can in fact reach its neighbors.

3.3.2 Proximity-based multipath routing

Consider a route connecting two nodes xi, xj ∈ Ψ, which has a minimal
length, i.e., sum of the Euclidean lengths of the edges it traverses. This path is
referred to as the Shortest Delaunay Route (SDR) and has a length that is within a
factor of 2.42 of the Euclidean distance between xi and xj , see e.g., [37], [38]. Note
that the SDR is based on the Euclidean norm, thus the SDR may not coincide with
a route having a minimum number of hops. We will see in the sequel (Section 3.8)
that this subtle difference may impact the spatial distribution of energy expenditures
significantly.

Based on the SDR, we propose the following simple construction for a set
of paths between two nodes, say S, D ∈ Ψ. In order to visualize their spatial
characteristics we present a geometric view of this construction :

1. Draw a straight line segment d(S, D) between S and D, and draw two addi-
tional lines, through S and D and orthogonal to d(S, D). Let R0(S,D) and
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Figure 3.3: The figure shows the construction of Level 1,2 and 3 routes for nodes S
and D, from top to bottom. The route at each stage is shown with solid lines and
the shaded regions are the cells for the nodes in routes. The nodes marked by an
arrow are the connectors at each route.
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R1(S, D) denote the open planes with their boundaries being d(S, D) and its
orthogonal lines as shown in Fig. 3.2.

2. We let N1(S,D) denote the set of nodes included in the SDR from S to D,
and refer to this route as the Level 1 route. S and D are referred to as the
Level-1 connectors.

3. Now find the set of nodes N2(S, D) which are neighbors of N1(S, D) and fall in
R0(S, D). Create a route that connects the nodes in N2(S, D) with Delaunay
edges. We refer to the two nodes located at each end of this route as Level-2
connectors.

4. Construct a SDR for a Level-2 connector to its closest Level-1 connector and
repeat the same for the other connector. If this SDR crosses new nodes, update
N2(S, D) by adding these new nodes in N2(S,D). Now the nodes in N2(S, D),
S and D can be connected via a Delaunay route which is referred to as Level-2
route.

5. Next determine the set of nodes N3(S, D) which are neighbors of N1(S, D) but
falls in R1(S,D) this time. Following the similar process as above, find the
Level-3 connectors, update N3(S, D) and construct the Level-3 route.

6. For w ≥ 4, determine the new set of nodes Nw(S,D) that are neighbors of
Nw−2 and fall in R(w mod 2)(S, D). Following the above steps, the Level-w
route is recursively constructed.

The basic idea is to recursively construct higher level routes based on nodes
which are neighbors of those included in previous levels but alternating between
R0(S,D) and R1(S, D) in order to balance the spreading cost as the levels increase.
We confine relaying nodes to the regions R0(S, D) and R1(S, D) so as to prevent
routes from extending backward1. As will be clear from the construction, the role
of connectors is to ensure connectivity via Delaunay routes among S, D and the
routes at different levels. These routes can be constructed by each node if it has the
information on the locations of its neighbors, the source and the destination.

1In step 4) of the construction, some nodes that are not contained in these regions may be
included in a route.
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Figure 3.4: A realization of the energy footprints for sessions in ad hoc network. A
footprint is assumed to have elliptical shape for the purpose of illustration.

An example of our route construction for a source-destination pair (S, D) is
illustrated in Fig. 3.3. At each level, the level connectors are marked with arrows.
Note that at level 3, the level connector associated with node D is not its neighbor,
thus an SDR route is constructed between them. Also note that this route includes
a node, indicated by a star, which is in fact not contained in R1(S, D).

We shall refer to this construction as proximity-based multipath (PBM) rout-
ing which gives us a concrete set of paths over which to distribute traffic so as to
spread out energy burdens.

As shown in Fig. 3.3, the set of PBM routes associated with a session is
spatially clustered by construction. We shall refer to the set of nodes in such a
cluster as the spatial footprint of a session. For example, the nodes within the
shaded Voronoi cells in Fig. 3.3 correspond to the spatial footprints of the session
as we increase the degree of spreading. Thus the traffic pattern on a network can
be viewed as a dynamic set of, possibly overlapping, spatial footprints. This is the
basic idea behind the continuum model introduced in the next section.
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3.4 Characterization via Continuum Model

3.4.1 The continuum model and shot-noise formulation

Consider the case where the density of the nodes in a network is large. We
can think of an infinitesimal area in space as corresponding to a node with an initial
energy reserve. Each footprint will correspond to a closed set in R2, and is assumed
to have a well-defined, possibly random, shape. Since an infinitesimal area (node)
serves as a ‘carrier’ of a flow, a footprint can be regarded as a ‘vessel’ which contains
the flow from a source to a sink. Session pairs are located at the ends of footprints.
We refer to the ‘length’ of a footprint which corresponds to the distance between a
session pair as the span, and the maximum ‘width’ of a footprint as the spreading
width. We refer to the midpoint of the session pair as the center of the associated
footprint. We assume that the centers of footprints constitute a point process in R2.
Fig. 3.4 exhibits a realization of the process capturing the energy burdens incurred
over a period of time – only sessions’ footprints with span l and spreading width w

are shown.

Each location within a footprint would, in general, experience a different
load/energy burden. To model this, we define a load distribution function which is
the load per unit area, i.e., the energy burden density at each location, in a footprint.
The load distribution function depends on the ‘strategy’ used to spread traffic within
a footprint – this will be further quantified in the sequel.

The proposed continuum model can be mathematically formalized as follows.
Let Φ0 denote an isotropic, random closed subset of R2. We will assume Φ0 has the
distribution of a typical footprint in a given network. The load distribution function
h(·, Φ0) : R2 → R+ gives the spatial density of energy burden at each location, for
a session with unit load. Specifically, for y ∈ R2, if y /∈ Φ0 then h(y, Φ0) = 0 and
otherwise h(y, Φ0) corresponds the relative energy burden per unit area at location
y of the footprint Φ0.

We assume that the centers of sessions constitute a homogeneous spatio-
temporal Poisson point process Π with intensity λ per unit time per unit area. Let
us denote by Πt a spatial point process in R2 for the centers of the sessions/footprints
that have been offered to the network during time [0, t]. Thus Πt is a homogeneous
spatial Poisson point process with intensity of λt. Each point xi ∈ Πt has an
associated footprint denoted by Φi. We assume {Φi} are i.i.d. copies of Φ0. The
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contribution of the energy burden on location x from a session centered at xi with
footprint Φi, is given by h(x − xi, Φi). Note since we equivocate load and energy
burden, h(·, Φi) depends on how a routing mechanism chooses to spread the flow of
session i within its footprint Φi. For now, assume that the ‘strategy’ h(·,Φi) does
not depend on the amount of load Φi is carrying, and denote the offered load, in
bits, by Ui – these are assumed to be i.i.d. with the same distribution as U . Thus
hUi(·, Φi) := Uih(·,Φi) gives the spatial load density of session i.

The total energy burden accumulated at location x ∈ R2 during time [0, t]
can be represented as a shot-noise process as follows2.

G(x, t) =
∑

xi∈Πt

hUi (x− xi,Φi) . (3.1)

Next we state several known results from shot-noise theory. Since Πt is
stationary, we can consider a ‘typical’ location at the origin based on the following
result.

Lemma 2. (See [39].) Let us define G0(t) := G(O, t), the energy burden at the ori-
gin. Also let χ(n)(t) be the nth order cumulant of G0(t). Since Πt is a homogeneous
Poisson process with intensity λt, we have that

χ(n)(t) = λt E

[∫

Φ0

hU (x,Φ0)ndx

]
.

Defining the normalized mean µ and variance σ2 as:

µ := E

[∫

Φ0

hU (x,Φ0)dx

]
, (3.2)

σ2 := E

[∫

Φ0

hU (x,Φ0)2dx

]
, (3.3)

we have that

E[G0(t)] = λtµ, and Var[G0(t)] = λtσ2.

2Precisely, if the session i has not ended by time t, the offered load by that session will be less
than Ui. Thus we assume that each load is offered in an instantaneous manner – we are interested
in the cumulative spatial loads induced by footprints.
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We shall for now assume the load U equals 1 with probability 1, i.e., hUi(·, Φi) =
h(·, Φi). We revisit this in Section 3.6.

As mentioned earlier, the function h(·, Φ0) captures both the ‘shape’ and
how the flow is spread within a typical footprint – these are the design choices one
can make to control the mean and variance of the spatial energy burdens. Although
using only two moments to describe the statistical properties of G0(t) may not be
sufficient, the following theorem suggests this might give a good approximation (see
[39]).

Theorem 10. (Asymptotic normality of shot-noise process) Consider G0(t) defined
in Lemma 2. We have that

G0(t)− λtµ√
λtσ

d→ N(0, 1) as t →∞

where N(0, 1) is the standard normal distribution.

From this theorem, we have that, for large t, the probability that the energy
burden per unit area exceeds a prescribed level b is given by

P (G0(t) > b) ' φ

(
b− λtµ√

λtσ

)
, (3.4)

φ(u) :=
1√
2π

∫ ∞

u
e−v2/2dv. (3.5)

In order for this approximation to be useful, we assume a typical node in the network
sees a large number of overlapping footprints on average.

3.4.2 Depletion probability and network lifetime

A common criterion for the energy performance of a network is its lifetime,
e.g., the time before some fraction of nodes (or any single node) drop(s) below a
certain battery level. Our objective lies in the complementary question: given a
desired network operation time, can we minimize the fraction of the depleted nodes?
For example, if one wishes to operate a sensor network for a week, what fraction
of nodes might survive the week and what is a good multipath routing strategy
to achieve this? We believe this to be a practical objective in engineering such
networks. To address this question, we shall use the approximation in Theorem 10.
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Let τ be the desired network operation time, and assume λ = 1. Suppose
the critical reserve level b per unit area is specified as a multiple k of τµ where µ

is defined as the mean energy consumption of the baseline scheme, i.e., a scheme
without multipath routing. Thus b is specified in terms of a factor k times the mean
energy consumption of baseline scheme during τ . Thus by letting b = kτµ, and by
defining zk(τ) as

zk(τ) :=
√

τ
kµ− µ

σ
, (3.6)

we can estimate the fraction of nodes that have not depleted the critical level b by
time τ by φ (zk(τ)). To reduce the likelihood of depletion we wish to maximize zk(τ)
for a given τ , i.e., minimize the probability of depletion φ(zk(τ)) through admissible
choices for µ and σ.

Eq. (3.6) provides us with crucial insights. Certainly we would like to min-
imize both µ and σ, however as we will see later, there is a tradeoff between these
parameters, i.e., we can decrease µ at the cost of increasing σ, and vice versa. The
optimal tradeoff will depend on k. If kµ is small, one might try to decrease µ. Con-
versely, if k is relatively large, one might prefer strategies that give smaller σ. This
captures the fundamental tradeoff addressed in this work, i.e., that between the ben-
efit of spatial energy balancing by traffic spreading (σ) and the cost associated with
such spreading (µ). To this end, in the following section we discuss parameterized
energy balancing strategies for which µ and σ can be estimated explicitly.

3.5 Proactive Energy Balancing Strategies

Let us now consider strategies that give desirable ‘footprints’ and ‘flow dis-
tributions’ over the footprints, h(·,Φ0) so as to reduce φ(zk(τ)). For simplicity, we
assume the spans of footprints are fixed to l. Also we let the loads offered by sessions
be fixed to 1 and treat the maximum footprint width w as a design parameter. We
will deal with issues involving random spans and session loads in later sections.

3.5.1 Balanced flow of continuum flows

We make an analogy of the continuum model to physical systems of fluids,
in particular, flow of incompressible ideal fluid. Let us consider a fluid flow in R2
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Figure 3.5: A continuum flow analogy. The curves are streamlines, i.e., the trajec-
tories of the flow. The thick dotted curve is the boundary of an example footprint.

plane between a source and sink. Let the motion of the fluids correspond to a flow of
packets, and the velocity correspond to the flow rate at each infinitesimal location,
i.e., each node. The density of fluid is constant over the field, i.e., the packets are
not queued or compressed in its size. Also there is no friction or interactions but
there is only conservation of flows. Thus the flow behaves as an ideal incompressible
fluid.

To be specific, we formulate this as follows. We consider a pair of source and
sink on the 3-D plane, where each is a cylinder that extends to infinity of the z-axis
but with small radius3 ε, thus we only consider streams in R2. The source emits a
flow of such ideal fluid at a constant rate which is absorbed at the sink. Here we
denote the density of the fluid by ρ and the velocity of the fluid as a 2-D vector
v. In the steady state, due to flow conservation, v satisfies the following continuity
equation:

∂ρ

∂t
+∇ · (ρv) = 0. (3.7)

Here ∇· is a 2-dimensional divergence operator defined as ∇ · v := ∂vx
∂x + ∂vy

∂y . Since

3This is to avoid the singular values of the field solutions in the vicinity of the sources.
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ρ is assumed to be constant, this becomes

∇ · v = 0. (3.8)

Thus the velocity field is solenoidal or divergenceless, i.e., there are no other flow
sources present in the field except the source and the sink. Moreover, considering
a ‘desirable’ rate allocation strategy, the rate vectors should be irrotational, i.e., be
curl-free. Roughly, the flow directions should always move outward from the source
and inward towards the sink, otherwise the flow direction is not ‘effective’ since a
rotation would correspond to moving towards the source as well as getting further
away from the sink.

Under this setup, it is straightforward to calculate v. Since the field is
irrotational, there exists a flow potential, i.e., a scalar potential function ψ such
that

v = −∇ψ

where ∇ is the gradient operator, i.e., flow always moves in a direction which mini-
mizes the associated potential of the system. This refers to the ‘effective’ direction of
a flow. It turns out that the solution to (3.8) is equivalent to solving an electrostatic
problem with two linearly charged sources[40]. Thus ψ has the form

ψ(x, y) = c log
r2(x, y)
r1(x, y)

where c is a constant and r1 and r2 are the distances from the source and the sink
respectively: see Fig. 3.5. Let us denote the velocity vectors associated with the
source and sink by v1, v2, respectively. By the superposition principle, v is given
by

v = v1 + v2 =
c

r1(x, y)
a1(x, y)− c

r2(x, y)
a2(x, y) (3.9)

where v1 is derived from −∇(log r1(x, y)) and a1(x, y) is the unit vector originating
from the source and points to (x, y). v2 and a2(x, y) are similarly defined.

Since a footprint is restricted to a finite region, in order to specify flow
velocities within the footprint, one has to solve a boundary value problem, which
may yield a fairly complicated solution. Instead, one may consider a region such
that its boundaries fall along the streamlines that include the source, e.g., see Fig.
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3.5. The solution within that region retains the same form with a proper scaling
of the source strength such that the total flow emitted by the source is 1. Let us
denote this closed region as Φ0 corresponding to a hypothetical footprint. We can
make Φ0 ‘wider’ by selecting a pair of streamlines that widens the footprint and
adjusting the source strength, thus we effectively achieve an increased spreading.
We can parameterize the degree of spreading by the mid section separation width
of the boundary streamlines.

Note that from the solution (3.9) we see that, the flow rate is of the order
1/r where r is the distance from either the source or the sink. Let C be one of
the equipotential contours. Then the total flow on this contour is given by a linear
integral

∫
C ||v|| dl where || · || is the L2 norm, since at any point in C, v is normal

to the curve C. Thus integrating ||v|| over some closed subset in R2 results in
the total (flow)×(distance) in that region, which motivates us to associate the load
distribution function h(·,Φ) with ||v||.

Thus for a given footprint Φ0, we have that

µ = E[
∫

Φ0

||v||dx], (3.10)

σ2 = E[
∫

Φ0

||v||2dx]. (3.11)

In fact Φ0 has a deterministic shape except its random rotation which does not
affect the above integrations. Thus one can integrate the flow velocity over Φ0 to
estimate these parameters.

Based on this we present numerical results where the session span is 20,
ε = 1 and c is properly adjusted so that the source flow into a footprint remains 1
for different values of w. Fig. 3.6 exhibits the distribution of flow rate ||v|| over a
footprint. Fig. 3.7 shows the plot of estimated µ and σ versus increasing spreading
width based on numerical evaluation. As stated earlier, µ increases but σ decreases
with w, and these parameters cannot be minimized simultaneously, which exhibits
the fundamental tradeoff relationship between µ and σ.

Note within a continuum footprint a flow is well ‘balanced’ in a spatial
manner since there are no obstacles that hinder flow within a footprint. Moreover
footprints have nice and symmetric shapes. Surprisingly, we observe the similar
scaling 1/r of flow rates in the regular grid model and associated optimal strategies
which will be studied in the next section.
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Figure 3.6: 3-D plot of flow rates over a footprint.
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Figure 3.7: The plot of µ and σ over varying spreading width w under the continuum
flow approach.
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w

Figure 3.8: Topology of the regular grid footprint. The coordinates of locations are
shown for some nodes in their lower left corners. The source and the destination is
marked by S and D respectively and the dimensions, l and w, of the grid are shown.

3.5.2 Grid Approach

In this section we consider parameterized spreading strategies over a regular
grid. Let us consider a session pair in a network. We assume that the intermediate
relaying nodes form a regular grid topology4, as shown in Fig. 3.8. The hop count
between the session pair is fixed to l. The source emits 1 unit of flow which is
distributed among the intermediate nodes to reach the destination, and a flow can
be relayed only among adjacent nodes. A grid footprint is defined to be the set
of grid nodes which carry nonzero flow for a given session pair. Accordingly, a
spreading strategy corresponds to assigning the flow rates at the intermediate nodes
such that the total flow is conserved. These are analogous to Φ0 with fixed span
and spreading width, and h(·, Φ0) respectively.

We refer to the maximum degree, in number of hops, to which the flow is
spread as the spreading width w. Our main goal is to determine ‘good’ spreading
strategy and grid footprint for given l and the constraint w. In particular, we will
consider the minimum-variance strategy specified as follows.

4This serves as a coarse approximation for a dense, uniform network. Also note its similarity
with the topology induced by PBM construction discussed in Section 3.3, e.g., those shown in Fig.
3.3.
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Let us label each node with an integer coordinate (i, j) placing the source
node at the origin as shown in Fig. 3.8. The total outgoing flow rate at node (i, j) is
denoted by ei,j which will also represents the energy consumed at node (i, j). Define
the set H := {(i, j) | 0 ≤ i ≤ l, |j| ≤ (w − 1)/2}. Under the above construction, we
have that

µ = E[
∫

Φ0

h(x,Φ0)dx] ≈
∑

(i,j)∈H

ei,j , (3.12)

σ2 = E[
∫

Φ0

h(x,Φ0)2dx] ≈
∑

(i,j)∈H

e2
i,j (3.13)

where the continuum footprint Φ0 corresponds to a grid footprint within H, i.e.,
{(i, j) | ei,j > 0, (i, j) ∈ H}. Similarly, the load per unit area h(·, Φ0) corresponds
to the flow rates ei,j associated with a grid footprint. We wish to minimize (3.13)
by properly setting ei,j for given w and l.

The rationale behind the minimum variance strategy is that, in order to
maximize zk(τ), it is an efficient strategy to minimize σ assuming that k is mod-
erately large, i.e., all the nodes have large energy reserves at the beginning so they
would not suffer from depletion when only a few sessions overlap at a given location.

Before we formally define the flow distribution problem for the minimum
variance, let us assume that l and w are even and odd integers respectively for
symmetry purposes and w ≤ l, i.e., traffic is not spread beyond l. We also add an
extra constraint that the flow rates are equal along the middle abscissa (MA). The
MA is defined to be the nodes that lie on the middle of the horizontal span of H, i.e.,
the nodes along i = l/2 axis in Fig. 3.8. We refer to this sub-optimal approach as
equi-flow minimum variance strategy. The implications of the additional constraint
will be explained in the sequel.
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Problem 2. Equi-flow minimum variance problem.

Minimize:
∑

i,j∈H

e2
i,j , (3.14)

Constraints:

flow is conserved at each node, (3.15)

ei,j ≥ 0,

e0,0 = 1, (3.16)

max{|j| | ei,j > 0, (i, j) ∈ H} = (w − 1)/2, (3.17)

el/2,k =
1
w

, (|k| ≤ (w − 1)/2), (3.18)

Variables: ei,j .

where (3.16) is the source emitting 1 unit of flow, (3.17) corresponds to the definition
of the spreading width and (3.18) is the equal flow constraint at the MA.

The solution can be explicitly obtained by exploiting the convexity of the
objective – see Appendix.

Lemma 3. The solution to Problem 2 is, for all (i, j) ∈ H,

ei,j =




{2(|i|+ |j|) + 1}−1, |i|+ |j| ≤ w−1

2 ,
{2(|l − i|+ |j|) + 1}−1, |l − i|+ |j| ≤ w−1

2 ,
w−1, otherwise.

An example of such a flow assignment is illustrated in Fig. 3.9. The dotted
lines are contours that represent level sets of nodes which have the same total flow.
The value of the levels decreases harmonically, i.e., (1, 1

3 , 1
5 , . . .) as the contour ex-

pands outward from the source. Note its similarity with the 1/r flow rate scaling
order in continuum footprint case introduced in the previous section. Note ei,j is
the sum of horizontal and vertical outgoing flows at location (i, j) in the figure.

We comment on the additional constraint. Without (3.18), the minimum
variance flow allocation can be obtained using standard optimization techniques
such as the projected gradient method [41]. However with (3.18), the problem
yields a closed-form, simple and intuitive solution. Moreover, it gives an excellent
approximation especially for large values of l. In fact, one can show that the solution
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Figure 3.9: The optimal flow allocation when w = 5 and l = 7.

obtained for the suboptimal scheme converges to the optimal solution when l is large,
which will be shown shortly.

Given the flow assignment in Lemma 3, we have that

µ ≈
∑

(i,j)∈H

ei,j = l +
w

2
− 1

2w
, (3.19)

σ2 ≈
∑

(i,j)∈H

e2
i,j =

l

w
− 1

2

(
1 +

1
w2

)
+

w+1
2∑

k=1

2
2k − 1

. (3.20)

The following observations are in order. The grid footprint suggested by
the solution is such that it corresponds to H, i.e., ei,j > 0 for all (i, j) ∈ H, which
in turn means that the grid footprint for the equi-flow minimum variance strategy
has a rectangular shape. Recall that we imposed equal flow constraints on MA
parameterized by its width w. However our solution indicates that the flow should
be spread as much as possible within H as long as the restrictions on flow directions
are not violated.

For 1 ≤ w ≤ l, we see that µ increases with w, i.e., the mean energy increases
with the spreading width, indeed the flow will travel longer distances. However, σ

decreases with w, i.e., the variance decreases with the degree of spreading. Thus, as
mentioned earlier, one cannot minimize the mean and the variance simultaneously.
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all other schemes

Figure 3.10: Pareto optimality of the parameterized µ and σ.

The interesting case is where l is much larger than w. Then the mean energy
is roughly invariant to small changes in w, but the variance is sensitive to w – the
dominant term is l

w . Thus for a load that traverses a long route, the benefit in terms
of reducing variance from spreading is large.

One might ask whether the set of policies parameterized by w are close to
Pareto-optimal, that is, given a mean achieved energy cost, they achieve a minimal
variance, or vice versa. As shown in Fig. 3.10, our parameterized set of spreading
strategies need not be Pareto-optimal. The next result shows that our proposed
family of strategies is indeed Pareto-optimal as the session spans l becomes large.

Theorem 11. Let us denote the sum of flow squared by equi-flow minimum variance
scheme as S and that of the minimum variance scheme as S∗. Then we have that

lim
l→∞

S∗

S
= 1.

Proof. Let us consider only the left half portion of a footprint. Also let us define
the set A ⊂ H such that A = {(i, j) | |i|+ |j| ≤ l− 1}. Using the same notations as
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above, for given l, S is given by

S =
∑

(i,j)∈A

e2
i,j +

∑

(i,j)∈H/A

e2
i,j .

Let us denote the flow allocation at (i, j) of the optimal scheme as e∗i,j , then

S∗ =
∑

(i,j)∈A

(e∗i,j)
2 +

∑

(i,j)∈H/A

(e∗i,j)
2.

However, it is always true that on set A, the proposed scheme has the minimum
sum squared, e.g., see the proof of Lemma 3. Thus

S −
∑

(i,j)∈H/A

e2
i,j =

∑

(i,j)∈A

e2
i,j ≤

∑

(i,j)∈A

(e∗i,j)
2

= S∗ −
∑

(i,j)∈H/A

(e∗i,j)
2.

Thus

S∗

S
≥ 1 +

∑
(i,j)∈H/A(e∗i,j)

2 −∑
(i,j)∈H/A e2

i,j

S
.

As l → ∞, S also tends to infinity, however the numerator of the right term in
the above inequality is always finite, thus liml→∞ S∗

S ≥ 1. However since S∗ is the
minimum sum of flow-squared, it is always true that S∗

S ≤ 1. Thus we conclude that
liml→∞ S∗

S = 1.

3.6 Design Tradeoffs: Networks without Energy Replenishing Ca-
pability

3.6.1 Depletion probability of the typical node

In this section we numerically evaluate the depletion probability of a typical
node, combining the estimates in (3.19) and (3.20) with zk(τ). Here τ is assumed
to be 1 and l is set to 20. Fig. 3.11 exhibits a plot of φ(zk(τ)) for varying k, i.e.,
varying the initial energy reserves of network nodes versus the spreading factor w.
Clearly, there exists a w that minimizes the depletion probability for each k. As
expected, for the case where nodes have high initial energy reserves, the optimal
w gets larger. The intuition is that, whenever the nodes in the network have large
residual reserves, they should cooperate to balance load on the network, i.e., the
number of nodes participating in carrying a flow should increase, but up to a degree
where the energy cost of load balancing does not overload the network.
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Figure 3.11: A numerical evaluation of optimal design of spreading parameter by
the regular grid spreading strategy discussed in Section 3.5. The hop length l is
fixed to 20 and the initial energy reserve parameter k is varied. Note the change
in the tradeoff points marked by arrows, i.e, the optimal w moves from 3 to 5 with
increasing k.

3.6.2 Depletion probability for a network

One can also approximate the spatial energy burden pattern as a stationary,
isotropic Gaussian random field in R2. Consider G(x, t) in (3.1) for x ∈ R2. Let
us model a network as occupying a ‘nice’ subset A in R2, e.g., a rectangle or circle
[42]. Consider the probability that the node with the highest energy burden in A

exceeds a prescribed level b by some time τ , i.e.,

P (sup
x∈A

G(x, τ) > b). (3.21)

We can estimate the asymptotic value of this probability as b → ∞ via extreme
value theory for homogeneous Gaussian fields, see [43], [42]. Consider the normalized
energy burden Z(x, τ) := (G(x, τ) − τµ)/

√
τσ where λ = 1. Let us define the nor-

malized spatial covariance function rτ (y) at time τ by rτ (y) = E[Z(x+y, τ)Z(x, τ)]
for y ∈ R2. Since the field is isotropic, this function depends only on the norm of y,
denoted by |y|. Suppose that the following holds for some positive constant a,

rτ (y) ≈ 1− a|y|α as |y| → 0.
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w moves from 5 to 7: see the arrows.

Here α denotes the infinitesimal order of decay of the covariance with the magnitude
|y|. Again assume that b is given by kµτ where k is large, then based on the Poisson
clumping heuristic [42], we can rewrite and approximate (3.21) as

P (sup
x∈A

Z(x, τ) > zk(τ))

≈ Hα|A|a2/α{zk(τ)}4/αφ(zk(τ)) (3.22)

where |A| is the area of the region A and Hα > 0 is the 2-dimensional Pickand’s
constant which depends only on α. We see that the depletion probability is propor-
tional to the physical area of the network, and is related to the covariance structure
of the footprints. Comparing this with the result for the typical node, we note that
they share the term φ(zk(τ)), but there is the extra term {zk(τ)}4/α which may
increase the depletion probability for large values of zk(τ).

In order to estimate a and α, we present a plot of covariance rτ (y) as a
function of distance |y| in Fig. 3.12 based on numerical evaluations. Here we fix
l = 20, τ = 1 and let w take the values of 1, 3, 5 and 7. We observe that, except
for the case where w = 1, the decay rates for small |y| are virtually the same. We
also see for small |y|, the covariances decay linearly, i.e., we can fix α = 1, which in
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turn gives the Pickand’s constant by H1. The slope a remains the approximately
same value for w = 3, 5 and 7. For w = 1, the estimated slope is a = 0.650, and for
w = 3, 5, and 7, a = 0.324.

Thus we expect that, by increasing w, we will observe a similar tradeoff
curve as obtained for the typical node (Fig. 3.11), but the curve will be flatter due
to the term {zk(τ)}4/α, which is shown in Fig. 3.13.

3.6.3 Optimal choice of w when sessions have different spans

A natural question arises: is it beneficial to adapt the spreading width w

when the distance l between session pairs varies? An intuitive answer is that, if
the span of a session is high, it helps to spread more, i.e., choose larger w. The
rationale is that the sessions spanning longer distances have an increased chance of
overlapping with other sessions. Thus it is more important to reduce the ‘hotspots’
induced by such sessions. Let L be a random variable whose distribution is that of
the span for the typical session pair. Thus one would expect the optimal spreading
width w to be a nondecreasing function of L. Let us denote this function by g(·).
Using our model, we can determine g(·) approximately.

Considering only the dominant terms in (3.19) and (3.20), we will use the
following approximations

µ ' l +
w

2
, σ2 ' l

w
(3.23)

for the case where l is substantially greater than w. With the above approximations
and setting τ = 1, we have that

zk(1) ' kE[L]− E[L + g(L)/2]√
E[L/g(L)]

.

The goal is to find an optimal choice for g(·), i.e., one that maximizes zk(1), i.e.,
minimizes the depletion probability of a typical node.

Assume that L is continuously5 distributed over a finite support S = [lmin, lmax]
and the probability density is nonzero and smooth on that support. Let us partition

5In fact, L takes integer values. However, our arguments yield more intuitive results and can be
trivially extended to such discrete random variable cases.
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A into n subintervals Ai := [li, li+1], 0 ≤ i ≤ n−1, where lmin = l0 < l1 < l2 < . . . <

ln = lmax. Suppose g(·) is stepwise constant over each interval Ai, i.e., g(x) = wi for
x ∈ Ai. We would like to find an optimal allocation {wi}. Now zk(1) is a function
of the vector w = (w0, w1, . . . , wn−1) given by

zk(1) ' kE[L]− E[L + g(L)/2]√
E[L/g(L)]

=
(k − 1)E[L]− 1

2

∑
i piwi√∑

i piE[L|Ai]/wi

where pi = P (L ∈ Ai) and E[L|Ai] is the expectation of L conditioned on that
L ∈ Ai. We first show that g(·) is indeed a nondecreasing function of L.

Lemma 4. g(·) is a non-decreasing function of L irrespective of its distribution.

Proof. Let us denote the maximizer of zk(1) as w∗ = {w∗i }. It is easy to see that
there exists the unique w∗ which solves ∂zk(1)

∂wi
= 0 for every i. Using the first order

necessary condition for the optimality, after rearrangement, we have that

w∗i = C
√

E[L|Ai] (3.24)

for all i where the constant C is given by

C =
2
3(k − 1)E[L]∑
i pi

√
E[L|Ai]

.

However E[L|Ai] ≤ E[L|Ai+1] for all 0 ≤ i ≤ n − 1 irrespective of the distribution
of L, so wi ≤ wi+1 for all 0 ≤ i ≤ n− 1. Thus g(·) is a non-decreasing function.

It is now clear how the spreading width should scale with the span of a
session. If we decrease the interval lengths of Ai to infinitesimal ones, then E[L|Ai] '
li, and thus from (3.24) we have that

w∗i ∼
√

li.

This implies that the optimal spreading width scales as the square root of session
spans.
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3.6.4 Optimal choice of w for sessions with varying loads

We can also consider the impact of the variability in traffic load of sessions.
Let the distribution of variable loads be that of a random variable U which has finite
support. Thus the spreading width can be a function of both length and load, i.e.,
W = g(L,U). Using the similar approximations as (3.23), we have that

zk(1) ' kE[L]E[U ]−E[U(L + g(L,U)/2)]√
E[U2L/g(L, U)]

where we have assumed that L and U are mutually independent for a typical session.
Taking a similar approach as earlier, we let g(L,U) = wi,j if L ∈ Ai and U ∈ Bj

where Bj := [uj , uj+1], 0 ≤ j ≤ m− 1, are the m partitions of the support of U for
some positive integer m in a similar manner to that of Ai. Then we have that

zk(1) =
kE[L]E[U ]−∑

i,j piqjE[U |Bj ]{E[L|Ai] + 1
2wij}√∑

i,j piqjE[L|Ai]E[U |Bj ]w−1
ij

where qj = P (U ∈ Bj). If we apply the first order necessary condition for the
optimality, we obtain

w∗ij = C

√
E[U2|Bj ]E[L|Ai]

E[U |Bj ]
(3.25)

where C is given by

C =
2
3E[L]E[U ](k − 1)∑

i,j piqj

√
E[U2|Bj ]E[U |Bj ]E[L|Ai]

.

Again we find that w∗ij is an increasing function of both U and L irrespective of
their distributions from (3.25), using the following lemma.

Lemma 5. Let U have a positive probability density function over the partitions
Bj. Then E[U2|Bj ]

E[U |Bj ]
is a nondecreasing function of j.

Proof. Let fU (·) be the density function of U . We have that

E[U2|Bj ]
E[U |Bj ]

=

∫
Bj

u2fU (u)du∫
Bj

ufU (u)du

≤
∫
Bj

sup{v : v ∈ Bj}ufU (u)du∫
Bj

ufU (u)du

= sup{v : v ∈ Bj}.
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However, for any i > j, we have that

E[U2|Bi]
E[U |Bi]

=

∫
Bi

u2fU (u)du∫
Bi

ufU (u)du

≥
∫
Bi

inf{v : v ∈ Bi}ufU (u)du∫
Bi

ufU (u)du

= inf{v : v ∈ Bi}.
By definition, inf{v : v ∈ Bi} ≥ sup{v : v ∈ Bj} and the result follows.

By taking the limits pi, qj → 0 and by (3.25), we have the scaling rule of w∗ij ∼√
liuj , i.e., the optimal spreading factor for a given session approximately follows

the square root of the bits·meters of its offered load. We will verify by simulation
that indeed such dynamic spreading schemes outperform those with fixed w.

3.7 Design Tradeoffs: Networks with Energy Replenishing Capa-
bility

Next we consider the case where nodes have the capability to replenish their
energy at constant rate of c units per unit time and their energy storage capacity is
b. We model the energy level of a node by a queue where arrivals correspond to new
energy burdens to be served, i.e., replenished at rate c. Note that the dynamics of the
queue and their physical interpretation are reversed: ‘filling’ the queue with energy
burden corresponds to ‘consuming’ its energy reserves. Thus, we are interested in
the likelihood that the queue length exceeds the level b.

For a typical node which is covered by multiple session footprints over time,
the energy load burden for each footprint would be ‘buffered’ in the node’s energy
queue which is replenished at rate c. In reality, an energy request fills the queue,
i.e., consumes energy at a roughly constant rate, which can be modelled by using a
continuous load model, e.g., fluid queues (see [44]). For simplicity we will assume
that energy burdens are imposed instantaneously on nodes and the offered load at a
typical node depends only on its location within the footprints that ‘hit’ the location.
We will again assume the footprint arrival process is a homogeneous Poisson process
in time and space. With these assumptions we will use a discrete-time queueing
model that approximates the M/GI/1 queue corresponding to these dynamics of
energy burden at a typical node.
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In this regime, we study the asymptotic decay rate of the queue content as
an indicator of the probability that the energy burdens exceed a large initial energy
reserve of b. For a stable, single-server queue, we denote the steady-state workload
by W . If the following condition is satisfied for some θ∗ > 0:

b−1logP (W > b) b→∞→ −θ∗,

then we refer to θ∗ as its asymptotic decay rate [45]. We will use the results in [46],
[45] to describe the behavior of the tail probabilities.

Let us define the problem. The energy burdens of each footprint are assumed
to be i.i.d. with a distribution that is not heavy-tailed. We denote the virtual
workload for the energy queue associated with a typical location in time slot (i, i+1]
for i ∈ Z by Wi . Then we have that

Wi+1 = max[Wi + Xi+1, 0] = [Wi + Xi+1]+,

where Xi = Si − c and Si is the total energy burden per unit time slot, and c is the
replenished energy per time slot. These dynamics correspond to a Lindley process,
and since {Xi} are i.i.d., we can readily apply the following results on the decay
rate function.

Theorem 12. [45] Let us assume {Wi} is stationary and thus stable under condition
E[Xi] < 0, i.e., E[Si]− c < 0. If {Xi} are i.i.d., then θ∗ satisfies

ρ(θ∗) = 0,
d

dθ
ρ(θ∗) > 0

where ρ(θ) = logE[eθXi ] = logE[eθSi ]− cθ.

We can readily obtain the required cumulant generating function of energy
burden per time slot as follows.

Theorem 13. The cumulant generating function C(θ) of Si is given by

C(θ) = logE[eθSi ] = λE[
∫

Φ0

{eθh(x,Φ0) − 1}dx].

Hence we have that the rate decay function ρ(θ) is given by

ρ(θ) = λE[
∫

Φ0

{eθh(x,Φ0) − 1}dx]− cθ
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under the stability condition

λE[
∫

Φ0

h(x,Φ0)dx] < c. (3.26)

Proof. See appendix.

The stability condition relates the replenishing rate c, and the rate of new
energy burden requests per unit area, λ, times the average total energy per footprint.
The root θ∗ of ρ(θ) = 0 may be found numerically. Using (3.19) and (3.20), several
decay rates with varying spreading widths are given in Table 3.1. Here l = 8 and
λ = 1, and let us denote the critical replenishing rate to satisfy the stability condition
when w = 7 as c∗. The replenishing rate c is set to βc∗ where β = 1.2 and 2.0.

Again we observe tradeoffs associated with different replenishing rates. When
β = 1.2, the optimal spreading width is 3, but with a higher replenishing rate
β = 2.0, the optimal w increases to 5. The intuition is that, with higher replenish-
ing rates, one can spread traffic further to get more benefits from spatial balancing.
However, if the replenishing rate decreases close to the critical value, the mean
energy cost to spread is no longer negligible so that a smaller spreading width is
preferred.

Table 3.1: Decay rates with varying spreading widths

Spreading width Decay rate θ∗

w β = 1.2 β = 2.0
1 0.8673 1.7125
3 1.2506 2.7080
5 1.0965 2.7593
7 0.7965 2.6831

3.8 Simulations

3.8.1 Basic setup

In this section we simulate several scenarios to further explore the bene-
fits of proactive spreading. The performance metric will be the probability that
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a randomly selected node is depleted after a fixed time given a maximum energy
reserve (MER). This metric is of fundamental interest from an engineering perspec-
tive, when given a network operation time and a MER, we wish to minimize the
probability of the typical node is depleted, or equivalently, the fraction of depleted
nodes in the network.

A total of 400 node locations were generated according to an uniform distri-
bution on a 20×20 unit square area. Session arrivals are homogeneous in space, and
a total of 200 sessions are generated at each simulation run. This is repeated for 500
times to obtain an averaged energy profile. Unless otherwise specified, each session
offers 1 unit of load per unit time with a holding time of 1 unit time. We simulate
session arrivals by picking two nodes at random, which corresponds to a session pair
and then setting up a unidirectional flow. We set up multipath routes based on the
PBM route construction introduced in Section 3.3, and the flow is equally divided
on each path in order to approximate the scheme in Section 3.5. In our simulations,
the ‘shortest path routing’ (SPR) is a routing that takes the minimum number of
hops on the Delaunay graph of nodes. This must be distinguished from the shortest
Delaunay routing (SDR) which is a PBM routing with a spreading width w of 1.

3.8.2 Scenarios

3.8.2.1 Nodes without replenishing capability

Fig. 3.14 shows the average energy depletion probability for several values
of the spreading width w and SPR. A point (x, y) in this plot should be interpreted
as follows: ‘the probability that the energy expenditure of a typical node will exceed
x is y’. If x is the MER then y is the probability that a typical node is depleted.

Let us consider only proactive routing first. When the MER is less than 20
units, routing with a minimal spreading width (w = 1) performs best. However,
as the MER increases to more than 25 units, proactive multipath routing with the
largest spreading width (w = 5) outperforms the others. These results are consistent
with previous discussions, since with a high MER, a scheme with a lower variance
in the energy expenditure (w = 5) is preferable at the cost of higher mean energy
expenditure. These tradeoffs occur when the maximum reserve is between 20 and
25 units in our simulations. SPR has a lowest mean energy expenditure but the
highest variance, and suffers from the worst performance in ‘tail behavior’, i.e., the

69



5 10 15 20 25

10
−3

10
−2

10
−1

10
0

Max Energy Reserve (units)

P
ro

ba
bi

lit
y 

of
 D

ep
le

tio
n

w=1, µ=16.1, σ=5.2
w=3, µ=16.5, σ=3.8
w=5, µ=17.8, σ=3.1
shortest path, µ=10.1, σ=10.5

Figure 3.14: Energy depletion probability for nodes without energy replenishing
capability. µ and σ represents the mean and the standard variation of energy ex-
penditure of each scheme.
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Figure 3.15: Energy depletion probability for nodes with energy replenishing capa-
bility.
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lowest slope in the decay for the probability of depletion with the MER. Also note
that it has different performance as compared to the SDR (w = 1) case: the SDR
performs better due to its steeper slope in the tail probability. We verified that, for
SDR, the shape of the empirical histogram of energy burden indeed resembles the
Gaussian p.d.f., while that for the SPR is monotonically decreasing with a heavy
tail – this will be discussed in detail later in this section.

3.8.2.2 Nodes with replenishing capability

Fig. 3.15 shows the energy depletion probabilities when the nodes have the
capability of replenishing their energy reserves. At each simulation run a total of
200 sessions arrive uniformly on the time interval [0, 200]. Nodes have replenishing
rate of 0.125 energy units per unit time. The benefit from proactive spreading is
greater than that seen for the non-replenishing case. The intuition here is that, for
larger w, the average number of nodes that participate in a session is greater than
that of a scheme with less w. Thus more nodes have a chance to replenish their
energy reserves, which results in a reduced mean and less variance in the energy
expenditure (see µ and σ in the figure) with the largest spreading width, w = 5.

3.8.2.3 Dynamic spreading

Using the results from Section 3.6, we have simulated a scheme with dynamic
spreading widths depending on the random load D and random session span L

according to our scaling rule
√

LD where nodes do not have energy replenishing
capability. Fig. 3.16 shows the simulation results of such an dynamic spreading
scheme. Here each session carries i.i.d. exponentially distributed load of mean 1.
As shown in the figure, for small MER region (< 15), the dynamic scheme performs
reasonably well but not best perhaps due to the error in rounding w off to an integer.
However, it is superior to other schemes with fixed spreading widths as the MER
increases.

3.8.2.4 Routing based on residual energy reserves

Next we consider a class of dynamic routing schemes and study how it ben-
efits from proactive load balancing. Specifically we consider a routing scheme which
exploits knowledge of the residual energy reserve at each node, i.e., routing with state
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Figure 3.16: Energy depletion probability for the dynamic spreading scheme ad-
justed to session load and hop length.
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information. We use Bellman-Ford algorithm for minimum cost routing, where the
cost is a decreasing function of the fraction of the residual energy to its full reserve.
In this way, a route through nodes having relatively high energy reserves might be
preferred even if that route involves a higher number of hops. Specifically, if the
residual energy of ith node is bi(t) at time t, the cost of routing traffic to that node is
(bi(t)/bmax)−γ where γ is some positive constant and bmax is the maximum energy
reserve at a node. Concerning the choice of γ, a related study [47] shows that a
value within the range of 0.5 ∼ 2.5 is preferable, so we chose γ = 1. Also we have
assumed that the routes do not change once created since such changes can incur a
severe scalability problem due to the large number of nodes.

For these simulations, we define a level-w residual routing to be such that,
the w best disjoint routes are chosen. Fig. 3.17 shows one of such comparison. We
see that proactive spreading reduces the tail probability although the performance of
state-dependent routing schemes is sensitive to the variability of traffic. In particular
Fig. 3.17 exhibits the performance of proactive multipath routing with w = 5. The
results show that, although it does not use dynamic state information, it may be
adequate for a network whose nodes have high energy reserves.

3.8.2.5 Comparison of SDR and SPR

As shown in Fig. 3.14, SDR performs better than SPR – consider the steeper
slope of the tail probability. Recall that SDR is related to the shortest Euclidean
path between nodes while SPR uses the path with shortest hop count. Since the
spatial distribution of node is homogeneous, one would expect that the performance
would be similar, however the empirical distributions of energy burdens exhibit
substantially different behavior: see Fig. 3.18. The distribution of energy burdens
achieved by SPR is shown to have heavy tail similar to pareto-type distributions,
while that of SDR resembles the Gaussian p.d.f. as our previous analysis has pre-
dicted. A possible explanation is that these differences are related to the area of
the Voronoi cell associated with each node. The top of Fig. 3.19 shows the energy
profile of the nodes in the first simulation of this section sorted by the amount of
energy burden. Meanwhile, the figure on the bottom shows the cell area also sorted
by the energy burden. Both figures indeed indicate the positive correlation between
the energy burden and cell areas as might be expected for both SDR and SPR.
However by computing correlation coefficient ρ of the area profile and the energy
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burden profile, we find that in the case of SPR one finds the stronger correlation
ρ = 0.9426 compared to SDR where ρ = 0.7121. Considering that the load on the
network is spatially homogeneous, we conclude that SDR routes are more likely to
‘hit’ the cells with larger areas. However this phenomenon is more prominent in
SPR case, since big cells tend to reduce hop count dramatically, resulting in higher
spatial congestion of load on those larger cells. Thus the large cells suffer from
highly unbalanced energy burden, which may be the main cause of the heavy tail in
the energy burden distribution. This is one of the aspects of the hop-count based
strategy that may aggravate the imbalance of the system which can be mitigated
by the routing strategy based on the spatial information, e.g., SDR.

3.9 Conclusion

In this chapter we propose a simple model for the spatial distribution of
energy burdens in a multihop ad hoc wireless network. Our primary contribution
is to use these models to investigate the design and potential benefits of proactive
energy balancing multi-path routing schemes. To do so we develop a simple second
order approximation permitting one to investigate tradeoffs of several types, e.g., for
ad-hoc networks with or without replenishing and with energy storage capabilities.
The essential tradeoff is between the mean and variance of a spatial energy (flow)
balancing scheme. For our proposed models one might attempt to identify Pareto
optimal energy balancing strategies, e.g., one minimizing the variance subject to a
mean energy constraint, or conversely one minimizing the mean energy burden sub-
ject to a variance constraint. To simplify matters we consider flow/energy balancing
on regular grid model for a simple parameterized family of spreading schemes. This
permits us to concretely evaluate how this tradeoff should be optimized for the
various network types and possible design criteria. The results are insightful but
perhaps not unexpected. For networks with increased energy storage and/or re-
plenishing capabilities it pays to be more aggressive in spreading traffic so as to
reduce the variance in the energy burden since the additional energy burden can be
smoothed by energy reserves or new energy sources – one must however ensure that
the energy burden does not exceed the replenishing capability. For the most part
our simulations confirm our analytical results and permitted us to evaluate more
general regimes of interest.

We note however that the traffic patterns and network geometry used in
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our simulations are fairly benign in that they are fairly homogeneous in time and
space. In practice, one would expect to see irregular topologies and imbalances
and variability in traffic loads. These in turn would lead to additional variability
in the energy burdens on the network. We expect that the benefits of proactive
load balancing to be more prominent and sensitive to design in the presence of the
aforementioned fluctuations. The degree of spreading, e.g., w, might advantageously
be exploited to adaptively smooth out such spatial variabilities and achieve improved
balancing of energy burdens coupled with improved performance on network lifetime.
Indeed one of the key results in this thesis shows that w scales roughly as the square
root of load times distance, which is well expected by the intuition that the more
one should spread traffic when the spatial burden imposed on the network increases.
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Chapter 4

Energy Burden Balancing and Data Fusion in Sensor
Networks Detecting Bursty Events

4.1 Introduction

In the previous chapters we have shown that local data compression and
proactive load balancing provide a substantial gain in the network lifetime. In this
chapter we integrate these strategies and study sensor network scenarios, where such
a combined approach is applicable. Particularly we endeavor to identify the impact
of the spatial character of sensing event/phenomena on engineering network traffic.
We begin by motivating the problem via discussion of some drawbacks of previous
approaches and proposed potential solutions.

Consider a hierarchical organization of network resources based on local
aggregation of sensor data followed by forwarding to a set of information sinks. The
rationale is to have nodes in close proximity elect an aggregation node whose role
might be to compress, filter, or perform data fusion on spatially correlated data
prior to transport to an information sink.

Unfortunately, such a hierarchy faces an intrinsic problem from an energy
perspective: the nodes close to sinks will see a disproportionate energy burden as
they will see higher loads of traffic that flow to the sinks. One solution is to increase
the density of sinks, however this may end up being too costly. In this chapter we
will assume that only a small number of sinks are available relative to the size of
network, and thus by large-scale we mean that on average there are a large number
of sensors associated with each sink.

Another possibility is to make sinks mobile, i.e., have sinks change their lo-
cations to balance the energy burdens incurred across the network nodes [48]. As
shown in Fig. 4.1, the network can operate in two stages. In Stage 1 local aggrega-
tion nodes (AGNs) may aggregate information from sensors in close proximity while
sinks move around. Then, in Stage 2, the sinks may ‘probe’ the network at high
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Figure 4.1: Stages of operation for sensor network with mobile sinks.

power, and collect information from AGNs. Not surprisingly the effectiveness of this
scheme depends on a number of factors including the very nature of the information
being gathered. Among those which we consider to be critical are: the timescale of
sink mobility, the spatio-temporal periodicity of sensed data, delay sensitivity for
data collection, and the character of the sensed phenomena.

Let us consider a few extreme examples. If every sensor generates data
periodically on relatively short timescales versus that on which sinks move, and if
this data must be relayed to sinks immediately, then the network will scale very
poorly for two reasons: concentration of energy burdens and throughput collapse
around sinks. In this case the only reasonable solution is to put more sinks. However
if data delivery is delay insensitive AGNs may forward data only when a sink is close
by i.e., in an opportunistic sense the sink mobility increases energy efficiency and
throughput capacity [49].

By contrast let us consider application scenarios where the ‘events’ being
sensed correspond to spatio-temporal bursts of information and can tolerate delays
on the order of the timescales of sink mobility. We believe a number of interesting
applications fall in this category, including surveillance and monitoring of bursty
unknown, or poorly characterized, events. Fig.4.2 shows an example, where only
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Figure 4.2: Bursty phenomena and traffic concentration.
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sensors covered by the spatial phenomena generate data reports to nearby AGNs.
In this case the network can significantly benefit from the load and energy balancing
resulting from sink mobility. However the following problem remains: aggregated
data, which has been successfully ‘compressed’, can still be substantial, and when
forwarded on ‘narrow’ paths to the sinks, may incur substantial energy burdens
on the associated nodes. Furthermore in a system with scarce sinks, these paths
may involve a large number of nodes. As such, this may result in substantial in-
homogeneities in the energy burdens the network will see eventually shortening its
lifetime.

To avoid such concentrations of energy burdens it is reasonable to spread
aggregated traffic forwarded to the sink in a proactive manner. In other words,
have nodes cooperate to create multiple paths over which traffic is spread. The
focus of this chapter is on modelling and analyzing stochastic geometric models
permitting one to evaluate the tradeoffs associated with aggregation for purposes of
‘compression’ and then spreading of traffic forwarded to mobile sinks.

In particular we will explore the following tradeoffs. First by spreading traf-
fic over several paths, one can certainly balance energy burdens but at the expense
of having traffic traverse longer distances and thus larger average energy costs. Sec-
ond by aggregating information from nodes one can reduce the traffic load through
compression, filtering and/or data fusion, but this may lead to undesirable inhomo-
geneities of load and thus energy burdens from AGNs to sinks. The fundamental
design questions are:

• How much spreading is beneficial for traffic from the AGNs to the sinks?

• When is the benefit of aggregation ( compression) of traffic counteracted by the
resulting concentration of energy burdens in the network ?

To capture the characteristics of the problem in this chapter we devise a
spatial model for traffic aggregation and spreading. It is without a doubt a very
simple caricature, based on a first-order model for energy and compression at AGNs,
yet it allows us to study how the network lifetime is affected by a number of design
parameters, including the effectiveness of aggregation/compression, the density of
sinks, battery capacity of sensors, etc. We will show how one can further jointly
optimize the spatial scales for aggregation and spreading so as to maximize the
network lifetime and provide a numerical study of the results.
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This chapter is organized as follows: in Section 4.2 we discuss related work.
In Section 4.3 we briefly present our model and assumptions. In Section 4.4 we derive
mean and variance of energy burdens, and based on those we discuss numerical
results on optimizing operation to maximize the network’s lifetime in Section 4.5.
Finally we conclude with Section 4.6.

4.2 Related Work

The use of mobile relays (or base stations) in large sensor networks was pro-
posed and studied in [48, 50, 51]. The idea was to deploy automated robots to solve
scalability problems in sensor networks. Particularly in [48] the authors show how
the energy concentration problem around sinks can be mitigated by using a single
mobile sink, to smooth out fluctuations in energy burdens. In this chapter we tackle
a more general problem including hierarchical aggregation towards multiple mobile
sinks, and see how the performance can be optimized. In particular we develop and
analyze a model which captures the impact that aggregation/compression, traffic
spreading and moving sinks will have on the network’s lifetime.

In this respect the models and analysis presented in this chapter are closely
related to Chapter 3 where we modelled random, unstructured traffic in a homoge-
neous network as inducing spatial traces of energy burdens and showed how proactive
multipath routing could be used to extend the network lifetime. We will leverage
these results in this work, in modelling the spatial patterns of structured, i.e., hier-
archical aggregated traffic.

4.3 Models and Assumptions

4.3.1 Reducing Traffic Loads Via Local Compression, Filtering and/or
Data Fusion

Our model is geared at capturing the sensing of physical phenomena which
are bursty, unpredictable but spatially clustered. In this context large scale dis-
tributed compression is not likely to be effective, yet local aggregation combined
with compression, filtering or data fusion can still be carried out to reduce traffic
loads.

We will adopt a simple model for such reductions in traffic. Assume a sensor
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generates a packet of unit size and let f(n) denote the amount of data after the
aggregation of n packets. We assume f(n) has the following properties:

1. f(n) ≤ n,

2. limn→∞
f(n)

n = α, 0 < α < 1,

3. f(n)
n is a monotonically nonincreasing function of n.

The rationale for the first assumption is clear. The second assumption captures an
asymptotic ratio for the possible reductions in traffic. The parameter α represents
the efficiency of the aggregator in reducing traffic, where a lower α corresponds to
better performance. The third assumption states that if an AGN acquires data
from more sensors, the efficiency does not get worse. These assumption may apply
to generic classes of sensing applications which use compression, filtering and/or
data fusion.

Specifically consider the case where an AGN simply performs local ‘compres-
sion’ without any side information. The AGN might for example simply compress
the sensed data based on a universal compression scheme such as Lempel-Ziv coding,
assuming no a priori knowledge, versus a distributed compression such as Slepian-
Wolf coding [52]. For example, suppose each sensor i generates discrete (possibly
correlated) random variable Xi (with entropy at most 1) corresponding to a sam-
ples of a stationary process then f(n) = H(X1, X2, . . . , Xn), will satisfy the above
assumptions; specifically the second one which is equivalent to the existence of an
entropy rate for stationary processes

lim
n→∞

H(X1, X2, . . . , Xn)
n

= α.

Also it is known that H(X1,X2,...,Xn)
n is a nonincreasing function of n, i.e., monotonic-

ity of entropy per element [9] for stationary stochastic process {Xi}, which is our
third assumption.

For simplicity we will define f(n) as follows:

f(n) =
{

0 n = 0,
α(n− 1) + 1, n ≥ 1.

(4.1)
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Note we let f(1) = 1, i.e., there is no fusion gain for a single sample, then for n ≥ 2,
f(n) grows linearly in n with slope α. Thus this functional form satisfies all the
above properties. Also for simplicity we assume that aggregated data whose initial
size was n is deterministically reduced to f(n).

Our intent is to capture a fairly general concept of ‘compression’, whether
it results from data compression, filtering or data fusion, in the sequel we refer to
such reductions as compression. For example consider a sensor network in which 5
monitoring sensors see the same event, and report it to their associated AGN. In
this case the AGN may choose to filter the data, and send a single warning to a
sink, achieving a 5:1 compression ratio.

In summary, our model includes local aggregation, where compression filter-
ing and/or data fusion can take place, with subsequent forwarding to mobile sinks.
Overall this is a complex, highly simplified model, yet the key insights we develop
appear to be telling of which elements one should consider in engineering such sensor
networks.

4.3.2 Depletion Probability

We will use a simplified first order model for energy expenditures associated
with data transmissions where energy burdens are proportional to the traffic incident
on a node. As mentioned earlier, we assume that mobile sinks periodically coordinate
to ‘probe’ the network, i.e., broadcast their locations and announce they are ready
to serve as data sinks. If some AGNs have data to send they forward the data to
the nearest sink as depicted in Fig. 4.1 - we refer to this two-stage operation as a
round. The sinks navigate space at random and we assume the spatio-temporal load
on the network is relatively light so that at each round AGNs see sinks at a set of
random locations which are effectively independent of past rounds. We also assume
that AGNs are selected based on proximity, i.e., once selected the sensors associate
themselves with the closest AGN.

At each round the energy burden at a typical sensor is incurred by data
relaying/forwarding from AGNs to the nearest sink locations which are independent
across rounds. Also we assume the burdens are stochastically homogeneous in space.
If these independent burdens are accumulated over a sufficient number of rounds, we
model such burdens as a shot-noise process and we may apply central limit theorem
(CLT) [39] for the energy depletion probability.
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Under a given strategy S suppose one is able to determine the mean and
the standard deviation of energy burdens per round at the typical node. Let us
denote them by µ(S) and σ(S) respectively. Suppose one would like to operate the
network for m rounds, i.e., specifies the required operational lifetime of the network.
Also suppose every node has the identical maximum energy reserve denoted by b

which is parameterized by m, specifically b is some multiple k of m, i.e., b = km

for convenience. If we denote the energy burdens at a typical node by Zm at mth
round, for m sufficiently large, the depletion probability can be approximated as
follows:

P (Zm > b) ≈ φ (zk(S))

where we define the following:

zk(S) :=
√

m

{
k − µ(S)

σ(S)

}
, (4.2)

φ(u) :=
1√
2π

∫ ∞

u
e−v2/2dv. (4.3)

The objective is to minimize the depletion probability of a typical node after
m rounds, i.e., we would like to maximize zk(S). There are a number of constraints
imposed on the network such as the scales of spatial events, the density of mobile
sinks, compression performance, etc. Our goal is to determine an ‘optimal’ strategy
S under these constraints. In order to quantify these, in the next subsection we
introduce a spatial model for both phenomena being sensed and the network.

4.3.3 Spatial Models for the Network and Sensed Phenomena

In this thesis we will assume the following hierarchical network organization.
We assume there is a high density of possibly redundant nodes in the region of
interest. For simplicity sensing activities are assumed to occur in rounds. On
each round, a random fraction of nodes act as sensors and relays for forwarded
traffic. A random fraction of the remaining nodes become AGNs performing sensing,
aggregation and forwarding of ‘compressed’ information to the nearest sink. The
remaining nodes, are put to ‘sleep’ until the next round. Since the original ‘pool’ of
nodes is large the set of locations for sensors and AGNs can be roughly assumed to
be identically and independently distributed on each round. To provide a consistent
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Figure 4.3: Strip model.

coverage for the phenomena of interest as well as relaying capacity the sum of
densities of sensors and AGNs is constant at each round.

Finally we will assume the locations of sensors constitute a homogeneous
Poisson Point Process (PPP), and the locations of sinks at each round also constitute
a PPP with the same intensity but such that they can be assumed independent across
the rounds. The density of sinks is assumed to be much smaller than that of sensors,
i.e., the cost for placing a large number of sinks is high, thus at each round a sink
is on average associated with hundreds or thousands of sensors.

We model the spatio-temporal phenomena being sensed by a Boolean model
[53]. In our model the locations where sensor data would be generated are captured
by a random set Φ generated by a homogeneous PPP Πe with density λe and a
primary grain Φ0 given by

Φ0 := {x ∈ R2 | |x| < re},
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i.e., a circular disc with the radius of events re. Specifically Φ is given by

Φ :=

{ ∞⋃

n=1

(Φ0 + xn) | xn ∈ Πe

}
, (4.4)

i.e., this model captures spatially clustered events with radius re occurring at random
locations. We assume at various rounds the network sees a new realization of Φ, i.e.,
a new set of such events. A sensor at location x ‘detects’ an event, and generates a
packet of size 1 and sends it to the nearest AGN if x ∈ Φ on that round. Finally
we assume that these events are ‘rare’ in the sense that λe is much smaller than the
density of sensors – we discuss this in more detail in Section 4.4.

Our routing model for spatially spreading traffic is as follows. As in Chapter
3 we will capture the energy burdens induced by traffic routed from AGNs to sinks
as two dimensional functions capturing the energy burden per unit area and whose
support set captures a ‘footprint’ of spatially clustered multi-path routes between
the AGNs and sinks and corresponds to a closed set in R2. More specifically we shall
assume traffic is spread over rectangular ‘strips’ of certain width which represents
the spatial scale of spreading. Fig. 4.3 depicts the strip model. The strip originating
from each AGN represents a spatial footprint for energy burdens towards a sink. For
example, in a region where multiple strips overlap, sensors would see energy bur-
dens proportional to the sum of energy burdens contributed by overlapping strips.
Intuitively if the width of strips becomes larger, one would see larger regions with
overlaps, however this may not translate into higher energy burdens in those regions
since each unit of area in a larger strip would carry less traffic due to spreading.

In fact energy burdens are not homogenous over a strip. We incorporate the
energy burden associated with traffic spreading in the strip model as follows. We as-
sociate each strip with a function capturing the energy burdens at different locations
as shown by Fig. 4.4. The proposed function is motivated by ‘continuum’ analogy
for flows in high-density networks [54, 55]. For example, the flow density corresponds
to field strength within a homogeneous medium in electrostatic problems. Note that
as a solution to such problems one obtains a field strength exhibiting a decay that
is harmonic with the distance from the source. We will make a similar analogy such
that a ‘well-balanced’ spreading of traffic leads to a harmonic distribution of flow
strengths around source and destination.

Let the set Sw(s, d) be a rectangular strip of width w with its ends located
at s and d. We assume w ≥ 1 where the case w = 1 corresponds to the ‘baseline’

86



0
2

4
6

8
10 −3

−2

−1

0

1

2

3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.4: Energy burden density on a strip.

scheme, i.e., a scheme without traffic spreading. The density of energy burdens, i.e.,
burden per unit area, is given by a function hw : R2 × R2 × R2 → R2 such that, for
x ∈ Sw(s, d) and |s− d| ≥ w,

hw(x, s, d) =
{ w

2(w−1)|z−x|+w if |z − x| < w
2 for z = s, d,

w−1 otherwise,

and when |s − d| < w, hw(x, s, d) := 1, i.e., traffic is not spread for AGNs located
within a distance w from the associated sink. If x 6∈ Sw(s, d), h is defined to be
0. An example of h for w = 6 and |s − d| = 9 is shown in Fig. 4.4. The function
has a peak value 1 at s and d, harmonically decreases to w−1 between s and d and
assumes constant value in the remaining area of the strip. We use this function to
capture the energy burden density associated with change of traffic load when the
traffic diverges and converges at endpoints, and is spread by a factor of w.

4.4 Derivation of Energy Burdens under the Strip Model

As stated in the previous section, for the optimal design of the system we
need to estimate the mean and variance of the spatial energy burdens, i.e., µ(S) and
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σ(S). For the sake of simplicity we will estimate the mean and variance of energy
burdens at a typical location in the network.

4.4.1 Mean Energy Burden

We introduce our notation:

• Π0, Π1, Π2 denote PPPs of sensors, AGNs and mobile sinks during a probing
round respectively.

• λk is the intensity of point process Πk for k = 0, 1 and 2.

• Vz(Π) is the Voronoi cell with the nucleus z ∈ Π induced by the point process
Π.

• Ex
k is the Palm expectation given that a point in Πk is located at x.

• Sw(y, z) is a rectangular strip of width w with the midpoints of its ends located
at y and z.

• Br(x) is a ball of radius r with its center at x.

• Φ denotes a Boolean process with primary grain Φ0 := Bre(O) generated by
a PPP Πe with intensity λe.

In the sequel we assume that λ2 ¿ λ0, λ1 and (
√

λ2)−1 À w, i.e., the spatial
scale of the typical Voronoi cell V0(Π2) is much larger than that of sensors, AGNs
and the spreading width with high probability. We will refer to this as the large-
cell assumption which accounts for the relative sparsity of mobile sinks versus the
density of sensors.

The system design parameters are λ1 and w, i.e., the density for aggregation
and the scale for traffic spreading. Thus we denote the mean and variance of energy
burdens at a typical location by µ(λ1, w) and σ2(λ1, w) respectively. We start by
approximating µ(λ1, w).

We define the following:

My := 1(y ∈ Φ) +
∑

xi∈Π0

1(xi ∈ Φ ∩ Vy(Π1)),

Ny := f(My).
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For an AGN cell with nucleus at y, My accounts for the number of sensors in Π0,
including AGN itself, which are covered by Φ. Thus My is the total amount of data
generated from the AGN at y, and Ny is the output from AGN after ‘compression’.
We define hw(x, y, z) as the energy burden density experienced by a sensor at lo-
cation x incurred by a strip originating from y towards the sink located at z. By
multiplying Ny by hw(O, y, z) we obtain the energy burden density experienced at
the origin when the aggregated traffic at y is forwarded to a sink at z.

We are interested in the overall contribution of strips originating from each
AGN to its closest sink that overlaps at the typical sensor from Π0, e.g., see Fig. 4.3.
Since this contribution is stationary, one can write the expectation of the energy
burdens from the perspective of a random location in R2:

µ(λ1, w) := E


 ∑

yj∈Vz0 (Π2)∩Π1

hw(O, yj , z0)Nyj


 (4.5)

By z0 we denote a random point denoting the location of the closest sink to the
origin: note this is an approximation which ignores the edge effect on the boundaries
of Voronoi cells induced by Π2: this will be explained with Fig.4.5 in the sequel.

Note that (4.5) captures the energy burden seen at a randomly chosen ‘loca-
tion’ on the plane. A better approach would be to estimate the energy burden seen
at a ‘typical’ sensor since this provides an unbiased view of the measure of interest.
However this requires excessively complicated calculations, hence we will work with
an approximation.

With this model we have the following proposition.

Proposition 1. Under the proposed strip model µ(λ1, w) is upper bounded by

λ1E0
1[N0] · m̃(w, λ2) (4.6)

where we define m̃(w, λ2) as

m̃(w, λ2) := m(w) exp(−πλ2w
2) +

1
2
√

λ2
.

and m(w) as

m(w) :=
πw2

(w − 1)2
(w − 1− log(w))− πw

2
, w ≥ 1. (4.7)
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Proof. From refined Campbell’s theorem [53] one can rewrite (4.5) as

λ2E0
2




∫

V0(Π2)


 ∑

yj∈V0(Π2)∩Π1

hw(x, yj , O)Nyj


 dx




= λ2E0
2




∫

V0(Π2)
E0,1


 ∑

yj∈V0(Π2)∩Π1

hw(x, yj , O)Nyj


 dx




where we have moved the expectation with respect to Π0 and Π1, denoted by E0,1,
inside the integral from independence among Π0,Π1 and Π2. Applying Campbell’s
formula [53] for the term inside the integral, we can write

λ2E0
2

[∫

V0(Π2)

∫

V0(Π2)
Ey

1 [hw(x, y, O)Ny] Π1(dy)dx

]
(4.8)

= λ2λ1E0
2

[∫

V0(Π2)

∫

V0(Π2)
hw(x, y,O)E0

1 [N0] dydx

]
(4.9)

By changing the order of integration in (4.9), i.e., integrating with respect
to x first, the following holds for the inner integral:

∫

V0(Π2)
hw(x, y,O)dx =

∫

V0(Π2)∩Sw(y,O)
hw(x, y, O)dx (4.10)

≤
∫

Sw(y,O)
hw(x, y, O)dx (4.11)

Thus by defining

gw(y, z) :=
∫

Sw(y,z)
hw(x, y, z)dx

we have an upper bound for (4.9) given by

λ1λ2E0
1[N0]E0

2

[∫

V0(Π2)
gw(y, O)dy

]
, (4.12)
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however one can write

E0
2

[∫

V0(Π2)
gw(y, O)dy

]

= E0
2

[∫

R2

gw(y, O)1(Π2 ∩B|y|(y) = ∅)dy

]

=
∫

R2

gw(y, O)E0
2[1(Π2 ∩B|y|(y) = ∅)]dy

=
∫

R2

gw(y, O) exp(−πλ2|y|2)dy. (4.13)

since Π2 is a homogeneous PPP. By the definition of hw(x, y, z) we have that

gw(y, O) =
{ |y| |y| < w,

m(w) + |y| |y| ≥ w

where m(w) is given by (4.7). We have that
∫

R2

gw(y,O) exp(−πλ2|y|2)dy

=
∫

R2

|y|e−πλ2|y|2dy + m(w)
∫

R2\Bw(O)
e−πλ2|y|2dy

=
∫

R2

|y|e−πλ2|y|2dy +
m(w) exp(−πλ2w

2)
λ2

. (4.14)

We integrate (4.14) by switching to polar coordinates, defining ρ := |y| and using

∫ ∞

0
ρn exp(−πλ2ρ

2)dρ =
Γ(n+1

2 )

2(πλ2)
n+1

2

,

and from (4.12) and (4.14) we obtain the proposed upper bound.

Although (4.6) serves as an upper bound for the desired expression, we would
like to use it as an approximation to the mean cost throughout the thesis considering
the inequalities involving (4.11) and (4.14) as follows.

Indeed (4.11) is an overestimate of (4.10) since it includes the extra contribu-
tion incurred by some strips that ‘protrude’ the cell boundary of a typical sink, e.g.,
see the shaded region A in Fig. 4.5. However we have also ignored the contribution
of strips that ‘overlap’ the cell boundary as is the case for A′ in Fig. 4.5, i.e., our
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Figure 4.5: Edge effects in the typical sink cell V0(Π2). Note the dimension of the
size of strips are exaggerated in the figure for clarity.
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expression is already an underestimate of the actual mean cost. Thus considering
the homogeneity of Π0 and Π1, such errors in the cost roughly ‘cancel out’. We see
that these edge effects occur when the strips originate from AGNs which are located
within a narrow region along the boundary of the typical sink cell. This region is
a subset of a ‘band’ along the boundary as depicted in dotted line in Fig. 4.5, and
we see that its width is at most w. Considering the large size of a typical sink cell
with respect to the dimension of strips, we note that the error associated with such
band region is relatively small. Thus we conclude that the majority of strips are
contained within V0(Π2) considering the relatively large density of AGNs.

Finally note that m(w) which is an increasing function of w with m(1) = 0,
can be viewed as a static cost incurred from spreading traffic over a strip of width
w.

The following proposition gives an estimate for E0
1[N0].

Proposition 2. Under the proposed network model we have that

E0
1[M0] = (1 +

λ0

λ1
){1− exp(−λeπr2

e)}, (4.15)

E0
1[N0] ≤ αE0

1[M0] (4.16)

+ (1− α)(1− exp{−λe(
1
λ1

+
4re√
λ1

+ πr2
e)}). (4.17)

Proof. By definition of M0, we have that

E0
1[M0] := E [1(O ∈ Φ)] + E


 ∑

xi∈Π0

1(xi ∈ Φ ∩ V0(Π1))


 .

Considering the first term, since Φ is stationary, let us denote the contact probability
of a stationary Boolean model [53] which we denote as p and is given by

p := 1− exp(−λeE[|Φ0|]) = 1− exp(−λeπr2
e),

i.e., the probability that a randomly chosen point on R2 will intersect with Φ, which
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gives the first term. We have that

E0
1


 ∑

xi∈Π0

1(xi ∈ Φ ∩ V0(Π1))




= λ0E0
1

[∫

R2

1(x ∈ Φ ∩ V0(Π1))dx

]
,

= λ0

∫

R2

E0
1[1(x ∈ V0(Π1))]E[1(x ∈ Φ)]dx

= λ0

∫

R2

P0
1(Π1 ∩B|x|(x) = ∅)P(x ∈ Φ)dx

= λ0{1− exp(−λeπr2)}
∫

R2

exp(−λ1π|x|2)dx

=
λ0

λ1
{1− exp(−λeπr2)},

which proves (4.15).

By definition of f(·) we have that

N0 = αM0 + (1− α)1(M0 > 0),

E0
1[N0] = αE0

1[M0] + (1− α)P0
1(M0 > 0)

It turns out that it is difficult to evaluate P0
1(M0 > 0), thus we will once

again resort to a bound. Note that P0
1(M0 > 0) is the probability that there exists

either an AGN or a sensor which lies within Φ within a typical Voronoi cell associated
with an AGN at the origin. A necessary condition for that event to occur is that
Φ have a nonempty intersection with the Voronoi cell. In other words the following
relation between the events needs to hold:

{M0 > 0} ⊆ {V0(Π1) ∩ Φ 6= ∅},

which implies P0
1(M0 > 0) ≤ P0

1(V0(Π1) ∩ Φ 6= ∅).
The ‘capacity functional’, i.e., probability that a stationary Boolean model

intersects with a compact set K, is given by

1− exp(−λe|Bre(O)⊕K|)
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where ⊕ denotes Minkowski addition [53]. Thus we have that

P0
1(V0(Π1) ∩ Φ 6= ∅)

= 1−E0
1 exp(−λe|Bre(O)⊕ V0(Π1)|)

≤ 1− exp(−λeE0
1[|Bre(O)⊕ V0(Π1)|]) (4.18)

= 1− exp(−λe(E0
1|V0(Π1)|+ E0

1[∂V0(Π1)]re + πr2
e)) (4.19)

= 1− exp{−λe(
1
λ1

+
4re√
λ1

+ πr2
e)}. (4.20)

In (4.18) we have used Jensen’s inequality. In (4.19) we have used Steiner’s formula
for Minkowski addition since the primary grain Φ0 is a disc [53], where ∂V0(Π1)
denotes the perimeter of a typical Voronoi cell. In (4.20) we have used the mean
area and perimeter results for a typical cell of a stationary Voronoi tessellation. This
proves (4.17).

We introduce the following notation:

pb := (1− exp{−λe(
1
λ1

+
4re√
λ1

+ πr2
e)})

To summarize the mean energy burden (4.5) is upper bounded by

m̃(w, λ2) [(λ0 + λ1)αp + λ1(1− α)pb] .

We will use this bound as an approximation to the actual mean energy burden at
the typical sensor.

4.4.2 Variance of Energy Burdens

Next we evaluate σ2(λ1, w) which is the variance of the energy burdens at
a typical location. Since µ(λ1, w) has been estimated we need to only consider the
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non-centered second moment which is given by the following:

E








∑

yj∈Vz0 (Π2)∩Π1

hw(O, yj , z0)Nyj





2


= λ2E0
2




∫

V0(Π2)


 ∑

yj∈V0(Π2)∩Π1

hw(x, yj , O)Nyj




2

dx




= λ2E0
2




∫

V0(Π2)


 ∑

yj∈V0(Π2)∩Π1

h2
w(x, yj , O)(Nyj )

2 (4.21)

+
∑

yj ,yk∈V0(Π2)∩Π1

yj 6=yk

hw(x, yj , O)hw(x, yk, O)NyjNyk


 dx


 . (4.22)

It turns out that this second moment is difficult to evaluate due to the second
term of the above, i.e., (4.22). Thus we will develop an approximation using the
first term (4.21) of the above as follows:

1. Estimate (4.21) as done in Proposition 3.

2. In order to do so, estimate E[N2
0] up to the first order in p.

3. Using the estimate for (4.21), we propose an approximation to σ2(λ1, w).

It is difficult to directly evaluate E[N2
0]. Thus for simplicity we will only

concern ourselves with terms that are O(p). We assume that the sensing phenomena
are ‘rare’ events, i.e., p ¿ 1. Small p means either the density of events λe or the
spatial scale of events re, or both, are small. In our model we assume λe is a small
number compared to λ0 and λ1 however re is such that the area of events πr2

e is
large relative to the density of sensors, e.g., an event disc covers several sensors with
high probability. Overall λeπr2

e is assumed to be a small number compared to 1
such that p = 1− exp(−λeπr2

e) ≈ λeπr2
e is a good approximation.

We start with the following proposition:
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Proposition 3. One can upper bound (4.21) by

λ1E[N2
0] · ṽ(w, λ2)

where we define ṽ(w, λ2) as

v(w) exp(−πλ2w
2) +

1
2w
√

λ2
(4.23)

and v(w) is defined as

v(w) =
πw2

(w − 1)2

{
1
w
− 1 + log(w)

}
− π

2
, w ≥ 1.

Proof. The proof is similar to that of Proposition 1.

Next we bound E[N2
0] up to the first order in p. By definition of N0 we have

that

E[N2
0] = α2E[M2

0] + 2α(1− α)E[M0]

+ (1− α)2P(M0 > 0).

We need to evaluate E[M2
0] which can be written as

E[M2
0] = E [1(O ∈ Φ)] + E





∑

xi∈Π0

1(xi ∈ Φ ∩ V0(Π1))





2

+ 2E


1(O ∈ Φ)

∑

xi∈Π0

1(xi ∈ Φ ∩ V0(Π1))


 . (4.24)

The first term is simply the contact probability p. We have the following proposition
for the second term of (4.24).

Proposition 4. We have that, up to the first order in p,

E0
1


 ∑

xi∈Π0

1(xi ∈ Φ ∩ V0(Π1))




2

is bounded above by
λ0

λ1
p + 2.56p

λ2
0

√
λ1re

λ2
1(c + 2

√
λ1re)

where the constant c is by the expression (C.7) in the appendix.
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Proof. See appendix.

Proposition 5. The third term in (4.24) is, up to the first order in p, bounded
above by

2λ0p

λ1
{1− erf(2πre

√
λ1)

4re

√
λ1

}

where erf(·) is the standard error function, i.e.,

erf(x) :=
2√
π

∫ x

0
e−z2

dz.

Proof. See appendix.

Combining the propositions we have that E[N2
0] is bounded above by

α2p

[
1 +

3λ0

λ1
− λ0erf(2πre

√
λ1)

2reλ1

√
λ1

+ 2.56
λ2

0

√
λ1re

λ2
1(c + 2

√
λ1re)

]

+ 2α(1− α)(1 +
λ0

λ1
)p + (1− α)2pb + o(p) (4.25)

where we will ignore o(p) term. Using this expression for E[N2
0] we get an estimate

for (4.21) as stated by Proposition 3. Then using the estimate for (4.21) we resort
to simulation of our model and propose an approximation of the variance as follows.

Our simulation results show that, the variance of energy burdens σ2(λ1, w)
is well approximated by (4.21) alone provided that the sizes Voronoi cells induced by
AGNs are large relative to the spatial scales of phenomena. This is expected since
the cross terms NyjNyk

in (4.22) become less and less correlated as the number
of Π1 cells intersected by a single event become smaller. Due to the ‘scarcity’ of
phenomena and the large sink cell size, (4.22) will be close to the square of mean
burdens thus they effectively cancel out. One can visualize this easily, if the radius
of events tends to 0 then Nyj and Nyk

will be become completely uncorrelated.

However if the spatial scale of events are comparable to AGN cell sizes,
the correlation term plays a major role. Since this is related to the relative scales
between event discs and the density of AGNs, we have developed the following
approximation for σ2(λ1, w) based on extensive simulations:

σ2(λ1, w) ≈ min(1, β(πλ1r
2
e)

ν) · λ1E[N2
0]ṽ(w, λ2) (4.26)
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where β and ν are some positive constants. In other words we include an extra
factor as a function of πλ1r

2
e multiplied by (4.21). Roughly speaking, πλ1r

2
e is the

average number of λ1 points in an event radius, thus it captures the relative scales
of phenomena and AGNs. In addition to (4.21) this is a crude approximation to
σ2(λ1, w) as an effort to capture the degree of ‘clustering effect’ of events across
AGN cells.

Our simulation results show that β ≈ 0.89 and ν ≈ 0.5 provide a good
approximation. Thus we will use (4.26) as the expression for variance of energy
burdens with the above β and ν in the numerical results in the next section.

Finally, we take the cost associated with aggregation into account. The ag-
gregation of traffic is modelled by, strips of width 1 generated at the sensors towards
their AGNs, and each strip carries traffic of size 1. Then the mean energy burden
caused by aggregation can be computed by simply adding 1

2
√

λ1
, i.e., the traffic seen

from random location inside the typical AGN cell, to the original expression for the
mean, i.e., (4.6).

As for variance we make the assumption such that, due to the large cell size,
most of the imbalance in energy burdens are caused by traffic concentration around
sinks and accumulative burdens associated with forwarding from AGNs, thus we
ignore the contribution to variance from aggregation. A more refined treatment of
the model for aggregation is a subject to future study.

4.5 Numerical Results for the Optimal Design

In this section we investigate optimizing the degree of aggregation and traffic
spreading for a given compression performance, the density of mobile sinks and the
spatial scales of phenomena via numerical methods. As introduced in Section 4.3.2,
our objective is to maximize the lifetime of the network. Since we have estimated
µ(λ1, w) and σ(λ1, w) the optimization problem can be written as
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maximize: zk(λ1, w) :=
√

m

{
k − µ(λ1, w)

σ(λ1, w)

}
,

subject to: λ2 < λ1 ≤ 1, w ≥ 1

variables: w, λ1,

given: λ2, α, k, m, p, re, λe.

Note that we assume the sum of densities of sensors and AGNs are fixed to
1, thus the density of sensors λ0 = 1 − λ1 with the proper adjustments made to
the previous analytical results. We numerically find the optimal scales for traffic
spreading and aggregation, i.e., w and λ1 and it turns out that with the above
constraints zk(λ1, w) admits an unique optimal value.

First we investigate the impact of the sink density λ2 and the compression
ratio α on the optimal spatial scales for traffic spreading and aggregation. In these
results we have assumed the network aims to operate a total of m = 200 rounds.
The maximum energy reserve k is appropriately scaled to obtain each point in the
plot such that the optimal spatial scales yield a depletion probability of 10−4. For
the plots Fig. 4.6 and Fig. 4.7 the radius of event disc re is fixed to 4 which implies
there are about 50 sensors observing a single event disc on average. The values of re

varies in plots Fig. 4.8 and Fig. 4.9. In any case the contact probability p is fixed
to 0.1 and thus the density of phenomena λe is adjusted with re.

Fig. 4.6 (Fig. 4.7) show the optimal spatial scale w∗ (resp. λ∗1) for traffic
spreading (resp. aggregation density) with varying λ2 and α, Note that in these
plots the axis for the density of sinks is shown in terms of the average number of
sensors associated with a sink: for example 1000 nodes per sink would correspond
to λ2 = 10−3. The number of sensors per sink ranges from 500 to 2000, and α

takes values 0.2, 0.4, 0.6 and 0.8 which represent excellent, good, moderate and
poor compression performance respectively. The values of λ∗1 in Fig. 4.7 can be
interpreted as follows: λ∗1 = 0.2 means that the density of sensors are 0.8, thus an
AGN aggregates traffic from 4 sensors on average. In the following we list our main
observations.

Longer routes require more spreading of traffic. By inspecting Fig.
4.6 we can make the following observation. When we fix the compression ratio
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Figure 4.6: Optimal degree of traffic spreading as a function of compression ratio
and sink density.
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Figure 4.7: Optimal aggregation density as a function of compression ratio and sink
density.
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Figure 4.8: Optimal degree of traffic spreading as a function of compression ratio
and spatial scale of events.
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Figure 4.9: Optimal average number of sensors per AGN as a function of compression
ratio and spatial scale of events.
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the optimal spreading width tends to increase as the number of sensors per sink
increases. We see that in Fig. 4.7 the change in λ∗1 is negligible with the variations
in λ2 when α is fixed, i.e., the traffic generated per AGN is roughly constant. This
implies that as λ2 decreases the traffic travels longer distances, in which case the
result in Fig 4.6 indicates that traffic should spread more. This is intuitive since
we would see a larger number of overlapping strips for smaller sink densities thus
reducing the variability by spreading improves the performance.

However note that the spreading width ranges between 2 and 4, which implies
that the degree of spreading of 2 or 3 achieves most of the gains associated with
load balancing in this network. Further spreading would incur extra energy costs to
counterbalance these benefits.

Higher loads require additional spreading of traffic. Let us consider
how w∗ varies when λ2 is fixed and we change α. Fig. 4.6 shows that we should
spread more conservatively when the compression worsens. This may be interpreted
as a tension between mean and variance of the energy burdens, i.e., the mean plays
larger role per sensor in network lifetime with deteriorating compression ratio when
the size of sink cells is fixed. However if we consider Fig. 4.7 at the same time
the overall traffic per strip increases when the compression performance improves.
For example when the average number of sensors per sink is 2000, the optimal pair
(w∗, λ∗1) is given by (3.1, 0.4), i.e., roughly 1.5 sensors per AGN, when α = 0.8
and (3.6, 0.2), i.e., roughly 4 sensors per AGN, when α = 0.2. Thus each strip
offers roughly 0.6 and 2 units of load on average when α is given by 0.8 and 0.2
respectively, where w∗ is higher for α = 0.2 case at that operating point. Since
the sink cell size is fixed the average distance each strip spans is identical, this also
implies strips with larger loads should spread more given that the average length of
strips is fixed. Finally in Fig. 4.7 we see that the degree of aggregation increases,
i.e., the densities for AGN decrease with improving compression performance.

The above two observations are intuitive: if one should traverse certain
distance and has more traffic, then one should spread the traffic more. Also if one
has some traffic which has to traverse longer distances, then one should spread the
traffic more. This is considering ‘future’ balance of the network and an effort to
make the energy profile of the network benign such that the upcoming routes over
the network see more balanced energy burden profiles along their paths.
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When the phenomena are more ‘bursty’ it requires further spread-

ing of traffic: Fig. 4.8 represents the optimal degree of spreading versus varying
compression performance where each curve represents different radius of event discs.
The values of re are given by 1,3 and 8 each of which corresponds to there being
roughly 3, 28 and 200 sensors per event disc on average. Since the contact probabil-
ity p is fixed, a growing re represents how ‘clustered’ events are, i.e., the burstiness
of the spatial scale of events.

As one can see in the figure, it is clear that for larger event radii one should
spread more. The intuition is that, as the spatial scale of an individual event grows
the concentration of the traffic will be more severe, since the sensors nearby will
detect the phenomena and concentrate traffic to their AGN. Further the traffic
strips from AGN will overlap with each other with higher probability, as compared
to that for smaller event discs. Thus the spreading of traffic becomes more critical
if the phenomena of interest have a high degree of burstiness in its spatial scale.

When physical phenomena are less bursty the system admits fur-

ther aggregation of traffic: Fig. 4.9 represents the optimal degree of aggregation
versus varying compression ratio where each curve is associated with different val-
ues of re. Specifically y axis represents the optimal number of sensors per AGN on
average. Clearly one can see that if events are less ‘clustered’ one can aggregate
more traffic thus enjoy the benefits of compression further. If the events are highly
bursty then more aggregation only would add the concentration of energy burdens
on AGNs that see nearby events.

The aggregation of traffic on a large scale is not beneficial even

for excellent compression performance: The final observation is that, rather
surprisingly even for a very good compression performance, the degree of aggregation
should not be too aggressive. For example see Fig. 4.9 for the case where re = 1 and
α = 0.1, i.e., even though one can reduce 90% of traffic via compression, the optimal
degree of AGN organization is such that only about 1 out of 10 sensors becomes an
AGN. Furthermore this corresponds to the case where the spatial events are highly
‘scattered’, i.e., re = 1 implies there are only about 3 sensors per event disc. Our
results show that a only a few number of sensors per AGN turns out to be the
optimal scale of aggregation in most cases.

The reason can be explained as follows: if one aggregates more traffic, it
incurs more concentration of energy burdens between AGNs and sinks. Although
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the problem can be mitigated by spreading traffic at a proper scale, it also incurs
energy costs to do so. By contrast our model is such that the further one aggregates
the traffic, the per node benefit of compression increases. Thus there is a tension
between the effort to balance by spreading, and not to incur concentration in the
first place by avoiding an excessive degree of aggregation, which sacrifices the benefit
of compression.

Thus if the compression performance is substantial then it will be preferable
to aggregate traffic, however one should not do this too aggressively – it depends on
the spatial burstiness of phenomena. Overall the conclusion is that, the harm from
the traffic concentration and burstiness of spatial scales of events have a synergistic
effect on the imbalance of energy burdens, thus one should be very conservative on
aggregating traffic on a large scale.

4.6 Conclusion

In this chapter we addressed a fundamental scalability problem for energy-
constrained large scale sensor networks based on wireless relaying: sensors in the
vicinity of sinks incur a much higher energy burden. To mitigate this problem
we consider jointly exploiting several ideas: reducing the traffic on the network
through local aggregation/compression and making the sinks mobile. However in
most regimes where such schemes are applicable, we argued that network operation
can still be optimized to enhance the networks lifetime. The key idea is to spread
out aggregated traffic when it is forwarded from AGNs to sinks in order to smooth
inhomogeneities in energy burdens the network will incur.

In particular we introduced a model for bursty phenomena in space, which
serves as a caricature of some practical sensing applications. The burstiness the
phenomena have a deleterious effect on the balancing of energy burdens. Interest-
ingly under our model, the degree to which traffic should be spread is interwoven
in a subtle way with the spatial scales on which traffic is aggregated. The tension
lies in the following key tradeoffs. Increasing the degree of traffic spreading results
in smoother energy burdens but incurs additional overall energy burdens. By con-
trast, increasing the degree of aggregation reduces the per sensor traffic and thus
overall energy burdens, but increases the spatial variability of energy burdens. More-
over these tradeoffs are not ‘orthogonal’ to each other. In this chapter we provide
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a stochastic geometric model to investigate this interaction. By adopting simple
models for compression and energy burdens we were able to show how the mean
and variance of energy burdens for a typical node relate to the scales for spreading
and aggregation. We consider the joint optimization of these scales via numerical
methods, and find that while spreading reduces the variance induced by overlaps of
‘long’ routes towards sinks this only helps to the extent that the increased mean en-
ergy costs do not counteract the benefit. Similarly the more aggregation the better,
unless this adversely affects the variability of energy burdens on the network. From
the numerical results we can concretely see how these aspects counterbalance each
other.

Our key contributions lie in observing the effect of the spatial burstiness of
sensing phenomena to the energy depletion of large-scale network. From our results
we see that if the achievable compression is high one should aggregate more traffic.
However if the events are spatially bursty this would require more spreading of traffic
to counterbalance the concentration of energy burdens. Also if the events are less
bursty one can aggregate more traffic to enjoy the benefit of compression. Overall,
perhaps surprisingly, a high degree of aggregation for even moderate spatial scales of
phenomena turns out to be a harmful idea even for good compression performance:
the synergistic effects of clustered events and concentration of burdens at AGNs
are typically hard to overcome by simple proactive spreading and gains in reducing
traffic via compression. Thus one should avoid this in the first place: at most 10
sensors per AGN seems to be the reasonable way of organizing networks. However if
the model incorporates more elegant way of providing compression/fusion gains, e.g.,
distributed compression or network coding, it may provide better ways overcome
such burstiness with or without the traffic aggregation.
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Chapter 5

Conclusions and Future Work

In this chapter we summarize the conclusions and insights we have discussed
throughout the dissertation and present future research directions.

5.1 Summary of Results

In the first part of the thesis we have studied the engineering of ad-hoc/sensor
networks with data compression capability. In a network model with distributed
data compression capabilities we have proposed how to minimize energy expendi-
tures associated with gathering data to a query point. We found that the optimal
compression strategy is to order nodes based on an associated weight, e.g., distances
to gathering point, and compress using the side information for nodes higher up in
the ordered sequence.

In large-scale sensor networks with hierarchical aggregation and compression,
where the energy cost is modelled by a linear function in the distance between
source and destination which approximates the hop count, the network structure
which minimizes the mean energy is associated with the Johnson-Mehl tessellation
induced by the locations of nodes and depends on the compression performance.
For models where any destination can be reached in one hop, however with possibly
varying path loss exponents, one can further achieve energy savings by identifying
the new optimal organizations of network aggregation hierarchies.

In the second part of the thesis we explored how proactive multi-path routing
in multihop ad hoc wireless networks can help extending network lifetime. Specif-
ically, improvements are achieved by exploiting the tradeoff between the increased
energy burden associated with traffic spreading and the resulting benefit of balanc-
ing energy burdens in the network – we study Pareto optimal operational point
for the mean and the variance of the energy burdens seen at a typical node in the
network.
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We have shown that the spatial scale for load balancing, i.e., width of traffic
spreading can be optimized for different spans and loads offered by sessions on the
network. Notably when the offered traffic is spatially homogeneous, the optimal
degree of spreading is proportional to the square root of the bits×meters of the
offered load. This result has an important practical implication regarding the extent
to which one should be ‘aggressive’ in load balancing if the goal is to maximize
network lifetime.

In the final part of the thesis we proposed a model for large sensor networks
detecting spatio-temporally bursty phenomena. We develop a model and analysis
to support designs which avoid excessive concentration of energy burdens in the
neighborhood of sinks: deployment of mobile sinks, compression/fusion of local
traffic and proactive load balancing routing. Most importantly we find that when
phenomena are highly bursty in space, one should spread traffic more in order to
counterbalance the concentration of energy burdens in the vicinity of the phenomena.

Finally we found a, perhaps, surprising principle for the design of networks
with aggregation and data fusion geared at detecting bursty events. Most of the
energy gains can be achieved by performing fusion on several data samples and
limiting the degree of spreading to 2 or 3 disjoint nodes. These results demonstrate
a crucial guideline for network design, i.e., that design methodologies should be
realized with careful consideration of the counterbalancing effects associated with
the nature of the sensed phenomena and resource constraints in the network.

5.2 Future Work

In networks using hierarchical aggregation and compression we have ob-
served that by optimally exploiting the spatial organization of the hierarchy one can
reap significant energy savings. Thus it may be worthwhile to develop simple net-
work protocols permitting the realization of optimal compression and aggregation
structures for gathering data from large networks of sensors.

In our work on proactive multipath routing, we note that our focus was
on a preliminary analysis of proactive energy balancing. As such we have used a
simplified energy model which is appropriate to the study of a routing scheme. Yet
overheads associated with setting up multi-path routes, or other sources of energy
expenditure or savings, e.g., putting nodes to sleep, will play a critical role in such
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networks. For example, in our model we have for the most part ignored the MAC
layer. In practice the temporal granularity on which load balancing is performed
might be critical. For example, fine grain spreading of traffic might cause contention
for transmission among neighboring paths lessening the energy saving benefits. Such
interactions need to be studied carefully, and might be lessened by increasing the
granularity of spreading. These and additional aspects of the proposed routing
strategies are part of a more detailed analysis of the problem.

Finally possible extensions of our work on networks detecting bursty events
include a study of the following conjecture: if the spreading scales are determined
non-uniformly depending on load or distance to sinks, we expect additional improve-
ment in the network lifetime. Note that the setup in our work is fairly benign, i.e.,
the traffic loads are spatially homogeneous. If there is additional inhomogeneity in
the placement of nodes sensing events, variability in data size, etc., we conjecture
that reducing variability in energy burdens will become a more critical issue.
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Appendix A

Appendix for Chapter 2

Proof of Theorem 1: We will show the feasible rate region is a contra-polymatroid,
with rank function f(S) = H(DS |DSc), ∀S ⊆ U . First note that H(∅|DU ) = 0. To
show that the monotonicity condition (2) holds, we note ∀ S1 ⊂ S2 ⊆ U, we have

H(DS1 |DSc
1
) ≤ H(DS1 |DSc

2
) ≤ H(DS2 |DSc

2
).

The first inequality follows from the fact that Sc
1 ⊇ Sc

2, and that conditioning reduces
the entropy. The second inequality holds since S1 ⊆ S2, and thus H(DS2 |DSc

2
) =

H(DS1 |DSc
2
) + H(DS2\S1

|DS1∪Sc
2
) ≥ H(DS1 |DSc

2
).

To check if the conditional entropy function is super-modular, i.e.,

H(DS2 |DSc
2
) + H(DS1 |DSc

1
) ≤ H(DS1∪S2 |D(S1∪S2)c) + H(DS1∩S2 |D(S1∩S2)c),

we first establish the following identity,

H(DS1∪S2 |D(S1∪S2)c) = H(DS2\(S1∩S2)|D(S1∪S2)c)

+H(DS1 |D(S2\(S1∩S2))∪(S1∪S2)c)

= H(DS2\(S1∩S2)|D(S1∪S2)c) + H(DS1 |DSc
1
), (A.1)

since (S2 \ (S1 ∩ S2)) ∪ (S1 ∪ S2)c = Sc
1. Now consider

H(DS1 |DSc
1
) + H(DS2 |DSc

2
)

= H(DS1 |DSc
1
) + H(DS2\(S1∩S2)|DSc

2
) + H(DS1∩S2 |D(S2\(S1∩S2))∪Sc

2)

= H(DS1 |DSc
1
) + H(DS2\(S1∩S2)|DSc

2
) + H(DS1∩S2 |D(S1∩S2)c)

[since (S2 \ (S1 ∩ S2) ∪ Sc
2 = (S1 ∩ S2)

c]

≤ H(DS1 |DSc
1
) + H(DS2\(S1∩S2)|D(S1∪S2)c) + H(DS1∩S2 |D(S1∩S2)c)

[since Sc
2 ⊇ (S1 ∪ S2)

c]

= H(DS1∪S2 |D(S1∪S2)c) + H(DS1∩S2 |D(S1∩S2)c).
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The inequality again follows from the fact that conditioning reduces entropy, and
we use the intermediate result (A.1) in the last step.

Thus the feasible rate region constitutes a contra-polymatroid. From Lemma
1, we have that since w1 ≥ w2 · · · ≥ wn, the optimizing rates (r∗1, r

∗
2, · · · , r∗n) satisfy:

r∗1 = H(D1|D{1}c) = H(D1|D2, D3, · · · , Dn),

r∗i = H(D{1,2,··· ,i}|D{1,2,··· ,i}c)−H(D{1,2,··· ,i−1}|D{1,2,··· ,i−1}c)

= H(Di|D{1,2,··· ,i}c) + H(D{1,2,··· ,i−1}|D{1,2,··· ,i}c∪{i})

−H(D{1,2,··· ,i−1}|D{1,2,··· ,i−1}c)

= H(Di|D{1,2,··· ,i}c) = H(Di|Di+1, Di+2, · · · , Dn), ∀i = 2, 3, · · · , n− 1.

¥

Proof of Theorem 5: We will use techniques similar to those in [56]. The following
sequence of equalities capture the key steps which we will explain below:

E0
2[|Tα

0 (Π1, Π2)|] = E0
2[

∫

R2

1(x ∈ Tα
0 (Π1,Π2))dx] (A.2)

= E0
2[

∫

R2

1(B|x|(x) ∩Π2 = 1)1(Oα
|x|(0, x) ∩Π1 = ∅)dx] (A.3)

=
∫

R2

P(B|x|(x) ∩Π2 = ∅)P(Oα
|x|(0, x) ∩Π1 = ∅)dx (A.4)

=
∫

R2

e−πλ2|x|2e−λ1f(α)|x|2dx (A.5)

=
π

f(α)λ1 + πλ2
. (A.6)

Eq. (A.2) is straightforward, since the area of a cell is the integral of the indicator
function of the region. Eq. (A.3) simply says that for location x to belong to the cell
two conditions must be in effect. First there must be no additional sinks (in addition
to the one at the origin) within ball B|x|(x) of radius |x| centered at x. Second there
must be no compressors within the Cartesian oval O|x|(0, x), otherwise x would
belong to the cell associated with that compressor rather than that corresponding
to the sink at the origin. This second condition should be clear given our definition
of the Cartesian oval and our cost function. These two requirements are shown in
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Fig. 2.5. Eq. (A.4) uses the fact that the Palm probability P0
2 for a Poisson process

Π2 is simply that of the stationary Poisson process with same intensity but with an
additional point at the origin - the so called Slivnyak’s Theorem [53, 57]. In addition
on Eq. (A.4) we use the fact that Π1 is independent of Π2. Eq. (A.5) explicitly
replaces the void probabilities in Eq. (A.4). Recall that for a Poisson process Π with
intensity λ and set A, the probability of no points arising in A is easily expressed as

P(Π ∩A = ∅) = e−λ|A|.

Also note that the area of a Cartesian oval Oα
β (0, x) in the special case where β = |x|

can be computed explicitly and is given by

|Oα
|x|(0, x)| = |x|2f(α)

where f(α) is given by (2.3). Finally Eq. (A.6) is a direct integration giving the
desired result.

¥

Proof of Theorem 6: First by the Neveu exchange formula [24] we have that

E0
2[

∑

xj∈Π0∩V0(Π2)

eU (xj , Π1, Π2)] =
λ0

λ2
E0

0[eU (0,Π1, Π2)]

where eU (0, Π1,Π2) denotes the energy cost when the typical sensor at the origin
eventually connects to the closest sink, directly or via a compressor. Now note that
the energy cost eU (0, Π1,Π2) depends on whether our sensor chooses to connect
directly to the sink or connects through a compressor. We shall consider these two
cases separately. In order to send directly to a sink sk ∈ Π2 it must be the case
that sk is the closest to the sensor at the origin, i.e., B|sk|(0) ∩ Π2 = ∅ and there is
no eligible compressor in the Cartesian oval Oα

|sk|(sk, 0), i.e., Oα
|sk|(sk, 0) ∩ Π1 = ∅.

Indeed any compressor within this oval would offer a cost which is less than |sk| and
thus preclude direct connection to the sink sk. We can formally compute the energy
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cost associated with this first case as follows:

E0
0[

∑

sk∈Π2

|sk|1(B|sk|(0) ∩Π2 = ∅)1(Oα
|sk|(sk, 0) ∩Π1 = ∅)]

= E[
∑

sk∈Π2

|sk|1(B|sk|(0) ∩Π2 = ∅)1(Oα
|sk|(sk, 0) ∩Π1 = ∅)] (A.7)

= λ2

∫

R2

|x|P0
2(B|x|(−x) ∩Π2 = ∅)P(Oα

|x|(−x, 0) ∩Π1 = ∅)dx (A.8)

= λ2

∫

R2

|x|e−λ2π|x|2−λ1|Oα
|x|(−x,0)|

dx (A.9)

= 2πλ2

∫ ∞

0
r2e−(λ2π+λ1f(α))r2

dr (A.10)

=
λ2πΓ(3/2)

(λ2π + λ1f(α))3/2
. (A.11)

Here Eq. (A.7) follows from the independence of Π1 Π2 and Π0. Eq. (A.8) follows
by the refined Campbell’s Theorem [53], and the independence of Π0 and Π1. In
Eq. (A.9) we have explicitly replaced the void probabilities for the associated events.
Eq. (A.10) corresponds to a change of variables, and finally Eq. (A.11) an explicit
computation of the integral.

The second case is more complex. In this case the sensor at the origin would
choose to transmit to a compressor, say cj , which would relay the data to the sink
sk. Note under the proposed hierarchy the sink is that which is closest to the sensor,
so B|sk|(0)∩Π2 = ∅. Note that in this case the energy cost will be |cj |+α|cj−sk| and
the compressor leading to the minimum energy cost will be selected. Thus it must
be the case that Oα

|cj |+α|cj−sk|(sk, 0)∩Π1 = ∅ i.e., there is no alternative compressor
that can achieve a lower cost. Also one must ensure that |cj | + α|cj − sk| ≤ |sk|
otherwise the sensor would minimize its energy cost by going directly to the sink.
For simplicity let d(cj , sk) = |cj | + α|cj − sk|. We can estimate the average costs
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incurred by sensors that choose to relay through compressors as follows.

E0
0[

∑

sk∈Π2

∑

cj∈Π1

d(cj , sk)1(B|sk|(0) ∩Π2 = ∅)1(Oα
d(cj ,sk)(sk, 0) ∩Π1 = ∅)

× 1(d(cj , sk) ≤ |sk|)]
=E[

∑

sk∈Π2

∑

cj∈Π1

d(cj , sk)1(B|sk|(0) ∩Π2 = ∅)1(Oα
d(cj ,sk)(sk, 0) ∩Π1 = ∅)

× 1(d(cj , sk) ≤ |sk|)] (A.12)

=λ2

∫

R2

E0
2[

∑

cj∈Π1

d(cj , x)1(B|x|(−x) ∩Π2 = ∅)1(Oα
d(cj ,x)(x, 0) ∩Π1 = ∅)

× 1(d(cj , x) ≤ |x|)]dx (A.13)

=λ2

∫

R2

e−λ2π|x|2E[
∑

cj∈Π1

d(cj , x)1(Oα
d(cj ,x)(x, 0) ∩Π1 = ∅)1(d(cj , x) ≤ |x|)]dx

(A.14)

=λ1λ2

∫

R2

∫

∆x

d(y, x)e−λ2π|x|2−λ1|Oα
d(y,x)

(x,0)|
dydx (A.15)

where
∆x = {y ∈ R2 | α|x| ≤ d(y, x) ≤ |x|} = Oα

|x|(x, 0).

Here Eq. (A.12) follows by the independence of Π0 and Π1, Π2. Eq. (A.13) follows by
the the refined Campbell’s Theorem [53], In Eq. (A.14) we have explicitly replaced
the void probability for the event associated with Π2 and used the independence
of Π1 and Π2. Finally in Eq. (A.15) we have applied Campbell’s Theorem once
more and explicitly computed void probability of the remaining event. We note
however that with a sensor at position 0 and a sink at a location x, the energy
cost function associated with using an intervening compressor is bounded by α|x| ≤
|y|+ α|y − x| ≤ |x| hence the range of integration under the integrals.

¥

Proof of Theorem 7: We derive an upper bound of the cost incurred at the typical
sensor, particularly when this typical sensor is within the cell of a compressor, we
start from Eq. (A.15). If we rewrite the righthand side of Eq. (A.15), we have that

λ1λ2

∫

R2

{∫

∆x

d(y, x)e−λ1|Oα
d(y,x)

(x,0)|
dy

}
e−λ2π|x|2dx (A.16)
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where
∆x = {y ∈ R2 | α|x| ≤ d(y, x) ≤ |x|} = Oα

|x|(x, 0).

Note that this expression is an upper bound of the optimal cost seen by a typical
sensor at the origin. The reason is that this expression is obtained by the association
rule (2.4), i.e., data of the typical sensor is eventually sent to the closest sink rather
than the optimal association rule which minimizes the energy equation given in Eq.
(2.1). Now let u = d(y, x) = |y| + α|x − y|. We see that the inner integration of
(A.16) is a function of u only, since x is treated as a constant in the integrand and
|Oα

d(y,x)(x, 0)| = |Oα
u (x, 0)| depends only on u. Furthermore, the region of integration

is such that
∆x = {y | α|x| ≤ u ≤ |x|}.

which depends only on u for fixed x. Now let S(u) = Oα
u (x, 0). The area of

integration region |∆x| is |S(|x|)| and consider the sequence of sets

S(u0), S(u0 + ∆u), S(u0 + 2∆u), S(u0 + 3∆u), ..., S(u1)

where u0 = α|x|, u1 = |x| and ∆u is the step size. Note S(ul) ⊆ S(um) if l ≤ m. Let
us partition the integration region ∆x into a sequence of ‘bands’ by the following.

∆Sk = S(uk + ∆u)− S(uk), (uk = u0 + k∆u, k = 0, 1, ...,
(1− α)|x|

∆u
)

Then the sum
∑

k

uk exp{−λ1|S(uk)|}|∆Sk| (A.17)

is a Riemann sum and converges to the inner integral of (A.16), since as ∆u → 0, the
integrand is approximately constant over the ‘band’ ∆Sk. Also we have, by chain
rule,

|∆Sk| ' ∂|S(u)|
∂u

∣∣∣∣
u=uk

·∆u =
∂|Oα

u (x, 0)|
∂u

∣∣∣∣
u=uk

·∆u

as ∆u vanishes. Thus the inner integral of (A.16) is equal to
∫

∆x

d(y, x)e−λ1|Oα
d(y,x)

(x,0)|
dy = lim

∆u→0

∑

k

uk exp{−λ1|S(uk)|}|∆Sk|

=
∫ |x|

α|x|
ue−λ1|Oα

u (x,0)| ∂|Oα
u (x, 0)|
∂u

du (A.18)
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If we apply (A.18) to (A.16), we have

λ1λ2

∫

R2

e−λ2π|x|2
∫ |x|

α|x|
ue−λ1|Oα

u (x,0)|∂|Oα
u (x, 0)|
∂u

dudx

= λ2

∫

R2

e−λ2π|x|2
{
−|x|e−λ1f(α)|x|2 + α|x|+

∫ |x|

α|x|
e−λ1|Oα

u (x,0)|du

}
dx

(A.19)

The integration in the brackets in (A.19) is still not directly calculable. We will use
the following lower bound for the area of a Cartesian oval.

Fact 1. The area of a Cartesian oval Oα
u (x, 0), when α|x| ≤ u ≤ |x| and 0 ≤ α ≤ 1,

is lower bounded by

|Oα
u (x, 0)| ≥ f(α)

(1− α)2
(u− α|x|)2

with f(α) as given by (2.3).

Note this bound is tight when α = 0. Now we have that

λ2

∫

R2

e−λ2π|x|2
{
−|x|e−λ1f(α)|x|2 + α|x|+

∫ |x|

α|x|
e−λ1|Oα

u (x,0)|du

}
dx

≤ λ2

∫

R2

e−λ2π|x|2
{
−|x|e−λ1f(α)|x|2 + α|x|+

∫ |x|

α|x|
e
−λ1

f(α)

(1−α)2
(u−α|x|)2

du

}
dx

=
α

2
√

λ2
+

1− α

2
√

λ2 + λ1f(α)/π
− λ2πΓ(3/2)

(λ2π + λ1f(α))3/2

Hence the total cost incurred by a typical sensor can be upper bounded as

GU0 =
λ2πΓ(3/2)

(λ2π + λ1f(α))3/2

︸ ︷︷ ︸
avg. cost when the typical sensor is in a sink cell

+ λ1λ2

∫

R2

∫

∆x

d(y, x)e−λ2π|x|2−λ1|Oα
d(y,x)

(x,0)|
dydx

︸ ︷︷ ︸
avg. cost when the typical sensor is in a compressor cell

≤ λ2πΓ(3/2)
(λ2π + λ1f(α))3/2

+
α

2
√

λ2
+

1− α

2
√

λ2 + λ1f(α)/π
− λ2πΓ(3/2)

(λ2π + λ1f(α))3/2

=
α

2
√

λ2
+

1− α

2
√

λ2 + λ1f(α)/π

= ĜU0
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¥

Proof of Theorem 8: The proof follows similar steps to Theorem 5, except that
in this case, the void probability region of compressors is the circle centered at z

1+α

with radius ( |z|
1+α)2, where the sink is fixed at the origin and z ∈ R2 being the

position of a sensor. This circle is the trace of compressor locations that provide
the same cost for the sensor as that for associating directly to the sink at the origin.
This can be seen in Fig. A.1. The minimum cost function in this case is defined
as |z − c(z)|2 + α|c(z) − sV (c(z))|2 where c(z) is the location of the compressor or
the sink that minimizes the above cost and sV (c(z)) is the location of the sink that
is closest to the node c(z). Note the cost associated with a sensor at z to directly
send to the origin is |z|2. Then the set of compressor positions (x, y) ∈ R2 that
provides less cost than |z|2 is {(x, y)|(x−|z|)2 +y2 +α(x2 +y2) < |z|2}, which is the
inner circle in Fig. A.1, assuming z is on the x axis, i.e. z = (|z|, 0) without loss of
generality. So there must be no compressors in the inner circle otherwise the sensor
will be associated with a compressor rather than directly sending to the sink. Also
there must be no other sinks in the outer circle, which means the sink at the origin
must be the closest sink, otherwise the sensor will be associated with the closer sink.
Thus we have

E0
2[|Tα,2

0 (Π1, Π2)|] = E0
2[

∫

R2

1(x ∈ Tα,2
0 (Π1,Π2))dx]

= E0
2[

∫

R2

1(B|x|(x) ∩Π2 = 1)1(B |x|
1+α

(
x

1 + α
) ∩Π1 = ∅)dx]

=
∫

R2

P0
2(B|x|(x) ∩Π2 = ∅)P(B |x|

1+α

(
x

1 + α
) ∩Π1 = ∅)dx

=
∫

R2

e−πλ2|x|2e−πλ1(
|x|

1+α
)2dx

=
1

λ1
(1+α)2

+ λ2

¥

Proof of Theorem 9: Using the ideas in the proof of Theorem 8, we can see that
the cost incurred by a typical sensor at the origin, when it is in the sink cell, is given

118



Figure A.1: The figure shows the void probability region for compressors, which is
inside of the inner circle when γ = 2. A sink is at the origin and a sensor is at (1, 0).
For a given α the possible positions of compressors that provides same cost for a
sensor to directly sending to a sink is the circle centered at ((1+α)−1, 0) with radius
(1 + α)−1. In order for this sensor to associate itself directly to the sink, there must
be no other compressors in the inner circle and no other sinks in the outer circle.
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by

λ2

π( λ1
(1+α)2

+ λ2)2
. (A.20)

We derive the expected cost of the case when the typical sensor is within a com-
pressor cell, and under the suboptimal scheme (association rule Eq. (2.7)). Assume
that the typical sensor is associated with a compressor at position cj ∈ Π1 and a
sink at sk ∈ Π2. The cost function, denoted as d(cj , sk), is given by

d(cj , sk) = |cj |2 + α|cj − sk|2.

There must be no other sinks within B|sk|(0) otherwise sk will not be the closest
sink. Also there must be no other compressors in a region that can provide lower
cost than cj . One can show that this region is B|cj− α

1+α
sk|(

α
1+αsk), which is a circle.

Finally, d(cj , sk) must be smaller than |sk|2, otherwise the sensor will associate itself
directly with sk rather than via cj to sk. Now the expected cost with respect to
the Palm probability given the typical sensor at the origin under the suboptimal
scheme, can be written as

E0
0[

∑

cj∈Π1

∑

sk∈Π2

d(cj , sk)1(B|sk|(0) ∩Π2 = ∅)1(B|cj− α
1+α

sk|(
α

1 + α
sk) ∩Π1 = ∅)

× 1(d(cj , sk) ≤ |sk|2]. (A.21)

Following the same guideline used in the proof of Theorem 6, (A.21) is equal to

λ1λ2

∫

R2

∫

∆x

d(y, x)e−πλ1|y− α
1+α

x|2e−πλ2|x|2dydx

where ∆x = {y | d(y, x) ≤ |x|2} = B |x|
1+α

( αx
1+α). This integration is rotationally

invariant with respect to the position of the sink. Hence we express x with the polar

120



coordinates (ρ, θ) and express y in the Cartesian coordinates (u, v). Then

λ1λ2

∫

R2

∫

∆x

d(y, x)e−πλ1|y− α
1+α

x|2e−πλ2|x|2dydx (A.22)

= λ1λ2

∫ ∞

0

∫∫

∆(ρ,0)

(u2 + v2 + α{(u− ρ)2 + v2})e−πλ1{(u− α
1+α

ρ)2+v2}dudv

×e−πλ2ρ2
2πρdρ (A.23)

= λ1λ2

∫ ∞

0

∫ ρ
1+α

0
{(1 + α)r2 +

α

1 + α
ρ2}e−πλ1r2

2πrdr e−πλ2ρ2
2πρdρ (A.24)

=
λ1

(1+α)2

{
αλ1

(1+α)2
+ (2α + 1)λ2

}

πλ2(1 + α)
{

λ1
(1+α)2

+ λ2

}2 . (A.25)

From Eq. (A.22) to Eq. (A.23), we changed x, y to polar coordinates and used
the fact that the integration is invariant to θ. Hence we have fixed the position
of the sink at (ρ, 0) which is on the x-axis in Cartesian coordinates. From Eq.
(A.23) to Eq. (A.24), we changed from the Cartesian coordinates (u, v) to the polar
coordinates (r, φ) with the origin at ( αρ

1+α , 0) in Cartesian coordinate. Using the
fact the integrand depends only on r, we can scale the integrand with the proper
Jacobian, hence the integration reduces to Eq. (A.24). Finally, if we add Eq. (A.20)
and Eq. (A.25) to obtain the total cost at the typical sensor, we get Eq. (2.8). ¥
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Appendix B

Appendix for Chapter 3

Proof of Lemma 3: We consider only the left half part of the geometry using the
symmetric property of the problem. Let V be the grid set of the left half part, i.e.
V := {(i, j) | 0 ≤ i ≤ l/2, |j| ≤ w−1

2 }. We have that

∑

i,j∈V

e2
i,j =





(w−1)/2∑

k=0

∑

|i|+|j|=k

e2
i,j



 (B.1)

+
∑

|i|+|j|>(w−1)/2

{e2
i,j} (B.2)

In (B.1), since
∑
|i|+|j|=k ei,j = 1 regardless of k by the flow conservation, we have

that, using Cauchy-Schwarz inequality

∑

|i|+|j|=k

e2
i,j ≥

1
2k + 1





∑

|i|+|j|=k

ei,j





2

,

and the equality is achieved when ei,j = 1
2k+1 .

For (B.2), consider the case where |i| + |j| < l/2. Then considering the w

nodes on |i| + |j| = m, the similar inequality holds and the minimum is achieved
by setting the flow rates of those nodes equally to 1/w. Consider the flow on the
region A := {(i, j) | |i|+ |j| ≥ l/2, (i, j) ∈ V }, let us consider the flow rates on the
set Pm and Qm which is defined by

Pm := {(i, j) | |i|+ |j| = l/2 + m, (i, j) ∈ V }
Qm := {(l/2, j) | −m + 1 ≤ j ≤ m− 1}

for 1 ≤ m ≤ (w − 3)/2 and let Am = Pm ∪ Qm where ∪mAm = A. It is clear that
there are 2m−1 nodes in Am which lies on MA, i.e., those in Qm whose rate is fixed
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to 1/w. From flow conservation we have that

∑

(i,j)∈Am/Qm

ei,j ≥ 1− 2m− 1
w

.

From this, we again apply Cauchy-Schwarz inequality to find that setting the flow
rates of nodes in Am/Qm should be set to 1/w in order to minimize

∑
(i,j)∈Am/Qm

e2
i,j .

This holds for all m and we have exhaustively found the flow rates for all nodes in
A, which concludes the proof.

¥

Proof of Theorem 13: We have that the energy request arrival process is Poisson
with rate λ per unit time per unit space. Since Si is defined as the energy request
in unit time interval, Si is stochastically equivalent to the shot-noise process in R2

with intensity λ. From Lemma 2, the n-th order cumulant of Si is χ(n)(1), thus we
have that

C(θ) =
∞∑

n=1

χ(n) θ
n

n!
= λ

∞∑

n=1

E[
∫

Φ0

h(x,Φ0)ndx]
θn

n!

= λE[
∫

Φ0

∞∑

n=1

h(x,Φ0)n θn

n!
dx]

= λE[
∫

Φ0

{eθh(x,Φ0) − 1}dx].

¥
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Appendix C

Appendix for Chapter 4

Proof of Proposition 4:

We have that

E0
1


 ∑

xi∈Π0

1(xi ∈ V0(Π1) ∩ Φ)




2

= E0
1

∑

xi∈Π0

1(xi ∈ V0(Π1) ∩ Φ)

+
∑

xj ,xk∈V0(Π1)∩Π0

yj 6=yk

1(xi, xj ∈ V0(Π1) ∩ Φ) (C.1)

The first term of the above is already shown to be λ0
λ1

p. Using Mecke’s formula [53]
the second term is given by

λ2
0

∫∫
Ex,y

0 1(x, y ∈ V0(Π1) ∩ Φ)dxdy

= λ2
0

∫∫
Ex,y

0 1(x, y ∈ V0(Π1))P(x, y ∈ Φ)dxdy

= λ2
0

∫∫
P({B|x|(x) ∪B|y|(y)} ∩Π1 = ∅)P(x, y ∈ Φ)dxdy. (C.2)

Using the (non-centered) covariance results for stationary Boolean model [53], we
have that

P(x, y ∈ Φ) = 2p− 1 + (1− p)2 exp(λeC(re, |x− y|))
where the function C(r, d) is defined as the area of the intersection of two balls of
radius r whose centers are separated by distance d if d ≤ 2r and 0 otherwise. If we
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divide P (x, y ∈ Φ) by p and take the limit as λe → 0, we have that

lim
λe→0

P(x, y ∈ Φ)
p

= lim
λe→0

1− 2e−λeπr2
e + e−2λeπr2

e+λeC(re,|x−y|)

1− exp(−λeπr2
e)

=
C(re, |x− y|)

πr2
e

, (C.3)

using L’Hospital’s rule. Thus we have that, with λe vanishing and by letting
D(x, y) := |{B|x|(x) ∪B|y|(y)}|,

λ2
0

∫∫
P({B|x|(x) ∪B|y|(y)} ∩Π1 = ∅)P(x, y ∈ Φ)dxdy

≈ pλ2
0

∫∫
exp(−λ1D(x, y))

C(re, |x− y|)
πr2

e

dxdy (C.4)

= p
λ2

0

λ2
1

∫∫
exp(−D(x, y))

C(re, |x− y|/√λ1)
πr2

e

dxdy

Since (C.4) cannot be reduced to closed form, we use the following technique to
obtain an upper bound. Firstly it is easy to verify that

C(re, |x− y|/√λ1)
πr2

e

≤ exp(− |x− y|
2
√

λ1re
).

Let
g(ρ) :=

∫ ∫
exp(−D(x, y)) exp(−ρ|x− y|)dxdy.

where ρ := 1/(2
√

λ1re). We make change of variables by letting |x| = r1, |y| =
r2, |x − y| = r3 then note this can be expressed in triple integral of r1, r2, r3. For
simplicity of notation denote D(x, y) by D̄(r) where r := (r1, r2, r3) and denote the
triple integral

∫∫∫
dr1dr2dr3 by

∫
dr. One can verify that dxdy can be written as

χ(r)dr where

χ(r) := 2πr1r2
∂

∂r3
arccos

(
r2
1 + r2

2 − r2
3

2r1r2

)
.

Then we can rewrite g(ρ) as

g(ρ) =
∫

exp(−D̄(r)) exp(−ρr3)χ(r)dr.

We have the following lemma.
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Lemma 6. Let h(r) = exp(−D̄(r))χ(r). Suppose there exists a positive constant k

such that
∫

r3h(r)dr∫
h(r)dr

<

∫
r3h(r) exp(−kr3)dr∫
h(r) exp(−2kr3)dr

(C.5)

holds. Then

g(ρ) ≤ 1
1 + cρ

∫
h(r)dr (C.6)

holds for ρ > 0 where

c :=
∫

r3h(r)dr∫
h(r)dr

. (C.7)

Proof. Let γ(ρ) := (1 + cρ)g(ρ), and since γ(0) =
∫

h(r)dr, it suffices to show that
γ(ρ) is nonincreasing for ρ > 0. Let

f(r3, ρ) := exp(−r3ρ)(1 + cρ).

Since ∫
h(r)

∂f

∂ρ
dr

is uniformly convergent in ρ and h(ρ) is finite for all ρ > 0, the following relation
for derivatives hold[58]:

dγ

dρ
=

∫
h(r)

∂f

∂ρ
dr

=
∫

h(r) exp(−ρr3)(c− r3(1 + cρ))dr

We will show that dγ
dρ is negative for all ρ > 0. Since

dγ

dρ
=

∫
h(r) exp(−ρr3)(c− cr3ρ− r3))dr (C.8)

≤
∫

h(r) exp(−ρr3)(c exp(−ρr3)− r3)dr (C.9)

= c

∫
h(r) exp(−2ρr3)dr−

∫
h(r)r3 exp(−ρr3)dr (C.10)
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where in (C.9) we have used e−x ≥ 1− x for all x ≥ 0. Let us define the following:

f1(ρ) :=
∫

h(r) exp(−2ρr3)dr, (C.11)

f2(ρ) :=
∫

r3h(r) exp(−ρr3)dr, (C.12)

then we can write (C.10) as cf1(ρ) − f2(ρ). Since f1(ρ) and f2(ρ) are strictly de-
creasing function of ρ, the equation cf1(ρ) = f2(ρ) has at most one solution. By
definition of c we have that cf1(0) = f2(0). Thus for ρ > 0, cf1(ρ)− f2(ρ) is either
strictly positive or negative.

However by (C.5) implies there exists a constant1 k > 0 such that cf1(k)−
f2(k) < 0, thus we can conclude that cf1(ρ)− f2(ρ) is negative for all ρ > 0. Thus
dγ
dρ is negative for all ρ > 0 which implies γ(ρ) is decreasing in ρ, which completes
the proof.

It can be easily seen that
∫

h(r)dr is the second moment of the area of the
typical Voronoi cell induced by a stationary point process of density 1, which gives
≈ 1.28. Also numerical evaluation yields c ≈ 0.66. Combining (C.6) and (C.1) we
have proven Proposition 4. ¥

Proof of Proposition 5:

Note

E


1(O ∈ Φ)

∑

xi∈Π0

1(xi ∈ Φ ∩ V0(Π1))




= E
∑

xi∈Π0

1({xi, O} ∈ Φ ∩ V0(Π1))

= 2πλ0

∫
Ex

01({x,O} ∈ Φ ∩ V0(Π1))dx

= 2πλ0

∫
Ex

01(x ∈ V0(Π1))E1({x,O} ∈ Φ)dx

= 2πλ0

∫
exp(−πλ1|x|2)

× {2p− 1 + (1− p)2 exp(λeC(re, |x|))}dx.

1One can verify (C.5) holds for k = 1 via numerical evaluation.
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By evaluating the first order term with respect to p in the way similar to (C.3), we
have that

2πλ0p

∫
exp(−πλ1|x|2)C(re, |x− y|)

πr2
e

dx (C.13)

≤ 2πλ0p

∫ 2re

0
ρ exp(−πλ1ρ

2){1− ρ

2re
}dρ (C.14)

=
λ0p

λ1
{1− erf(2πre

√
λ1)

4re

√
λ1

} (C.15)

where in (C.14) we have used the fact that

C(re, ρ)
πr2

e

≤ (1− ρ

2re
)1(ρ ≤ 2re)

by the convexity of C(re,ρ)
πr2

e
with respect to ρ. ¥
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