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This dissertation studies and proposes new methods to perform oppor-

tunistic scheduling in different scenarios for centralized wireless networks. We

first study the performance of measurement-based opportunistic scheduling

strategies in practical scenarios where users’ heterogenous capacity distribu-

tions are unknown. We make the case for using maximum quantile scheduling,

i.e., scheduling a user whose current rate is in the highest quantile relative to

its current empirical distribution. Under fast fading, we prove a bound on the

relative penalty associated with such empirical estimates, showing that the

number of independent samples need only grow linearly with the number of

active users. Furthermore, we show several desirable properties of maximum

quantile scheduling for the saturated regime, and give bounds on performance

under the dynamic regime.

Next we propose a novel class of opportunistic scheduling disciplines to

handle mixes of real-time and best effort traffic at a base station. The objective

is to support probabilistic service rate guarantees to real-time sessions while

still achieving opportunistic throughput gains across users and traffic types.

Under fast fading and maximum quantile scheduling, we are able to show a

stochastic lower bound on the service a real-time session would receive. Such

vi



bounds are critical to enabling predictable quality of service and thus the

development of complementary resource management and admission control

strategies. Our simulation results show that the scheme can achieve more

than 90% of the maximum system throughput capacity while satisfying the

QoS requirements for real-time traffic.

Finally, we propose methods to reduce the feedback overhead for users’

channel state information needed for opportunistic scheduling at a base sta-

tion. We first propose a contention based scheme known as ‘static splitting’ for

a best effort traffic only scenario. Next we consider reducing feedback overhead

in a system supporting a mixture of best effort and real-time traffic. We argue

that one needs to combine contention based schemes with polling subsets of

users to reduce the amount of feedback needed to exploit opportunism, and

yet meet real-time users’ QoS guarantees. Based on this argument we propose

a joint polling and opportunistic scheduling (JPOS) scheme.
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Chapter 1

Introduction

1.1 Motivation

Wireless communication devices like cellular phones have become ubiq-

uitous, fulfilling to a large extent the promise of ‘anywhere-anytime’ commu-

nication. While these devices are conventionally used for voice, they are now

increasingly being used to provide data services. New standards like WiMAX

and the family of IEEE 802.11 standards have/are being devised to make wire-

less broadband access possible. These technologies promise to give users high

speed access to the Internet along with various other data services such as

video, images and text messaging.

However, in order to provide this multitude of services, several issues

need to be addressed. One major issue is ‘efficient’ scheduling and allocation of

the finite resources (e.g., bandwidth) available at the wireless service provider

among users. In this dissertation we study this issue and propose solutions to

address it.

Scheduling and resource allocation can be a fairly challenging problem

even in traditional wireline systems due to differing requirements of users.

However, a key feature of wireless systems relative to wireline systems is that,

the channel capacity, or service rate seen by users, may exhibit temporal vari-

ations. This uncertainty in channel capacity or rate variation poses several

additional challenges to efficient scheduling and resource allocation. Specifi-

cally:

• Users near a base station will generally experience a much better channel

capacity than users at the edge of the cell.
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• Each user may undergo short term fading which is location dependent.

• The statistics of such short term variations may not be identical across

users.

• Short term fading statistics are also time varying, this is especially true

for mobile users.

• A scheduling scheme should ideally not only be able to handle the un-

certainty, but also be able to exploit it, i.e., opportunistically serve users

with good channels.

• A good scheduling scheme should enable viable complementary resource

allocation and connection admission control strategies that take into

account the time varying nature of the wireless channel.

In summary, not only are the rates seen by users are time varying, but

the variations heterogeneous across users. Good scheduling and resource

allocation solutions should not only be able overcome the heterogeneity and

the variability, but also opportunistically exploit it.

1.2 Related Work

There has been a substantial amount of research in this area, with

some progress towards addressing the above challenges. Knopp et. al. [16]

were the first to propose a scheduling discipline max rate that opportunistically

exploited the uncertainty in channel capacities among users generating best

effort data traffic. However, their scheme suffered from being unfair to users

with lower channel capacities. Proportionally fair [13] and exponential rule

[33] scheduling were introduced to address this issue. These disciplines have

also been shown to potentially give quality of service (QoS) guarantees to users

generating real-time traffic in [32]. Wu. et. al. proposed using the concept

of ‘effective bandwidth’ to provide QoS guarantees to users. Opportunistic
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scheduling requires a fairly large amount of feedback at the scheduler, so several

researchers have studied ways to reduce the feedback in [27][35][11]. These

and other related work will be discussed in more detail in later chapters. Yet,

for now we will note that several challenges in dealing with heterogeneity in

channel capacities among users and devising concrete resource allocation and

call admission strategies remain.

1.3 Organization of the Thesis

We describe the organization of this thesis now. As discussed above,

both the demands and the rate or channel capacities realized by users can

be heterogeneous. This is usually addressed in the literature by attaching

different priority weights to users. These weights are mostly determined using

measurement, and it is important to understand the effect of measurement

based errors. In Chapter 2, we study this and make the case for a scheduling

discipline that we call maximum quantile scheduling. We also study several

properties of maximum quantile scheduling under different scenarios.

In Chapter 3 we study the case where the offered load includes a mixture

of real-time streams and best effort data sessions. An opportunistic scheduling

and resource allocation scheme is developed and is combined with maximum

quantile scheduling to give QoS guarantees to real-time streams. The pro-

posed scheduling scheme exploits opportunism across all users, and a concrete

resource allocation strategy allows the development of a complementary call

admission strategy for real-time streams.

Opportunistic scheduling requires that every time a resource allocation

decision be made, the scheduler should know the current channel capacity of

all users. This requires all users to feed back their current channel capacity for

every opportunistic decision being made. In Chapter 4 we propose a scheme

that significantly reduces the amount of feedback required while realizing most

of the potential gains of opportunism. Chapter 5 concludes this thesis.
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Chapter 2

Measurement-Based Opportunistic Scheduling

2.1 Introduction

Motivation. As discussed in the introduction, the channel capacities

seen by users are not only time varying, but are also heterogeneous, e.g., users

close to a base station see significantly different channel capacity than those

further off. Thus it is important to devise opportunistic schedulers that do not

starve some users, e.g., those with poor channels, to achieve some degree of

fairness among users sharing a base station. To this end many opportunistic

scheduling schemes have been devised that make decisions by selecting the

user that currently has the highest weighted channel capacity. In practice the

weights may be hard to determine, because they depend in a complex way

on the users’ channel capacity distributions, the number of users, and the

characteristics of their traffic. Thus they either need to be estimated or tuned

based on the service users have received or their queue lengths.

Unfortunately, the complex dependence of weights may make them very

sensitive to changes in the system, i.e., if a user’s traffic characteristics change,

or a user leaves or enters the system, or the channel characteristics of a user

change (e.g., a mobile user comes out of the shadow of a building), then the

weights associated with all users may need to change. Therefore, it is likely

that a significant fraction of time will be spent estimating/tuning weights to

their ‘ideal’ values. In fact, if the system is dynamic enough and/or the tuning

algorithm is not sensitive enough, one may never converge, possibly compro-

mising fairness but also, and more importantly leading to poor throughput

performance. Consider a simple example. Due to the stochastic or time vary-
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ing nature of channel capacity and users’ traffic, a measurement-based oppor-

tunistic scheduler may be biased in favor of a user who has not received service

in the recent past or one that currently has a high queue. While this myopic

approach is good for short term fairness, the scheduler may end up serving a

user even though it is not currently experiencing a good channel rate. This in

turn decreases the achieved opportunism and long term throughput the system

can sustain. In heavily loaded systems, at a given moment of time, it is very

likely that there exists a group of users which are starved. If those users are

served, others may become starved, leading to a cycle, in which the level of

opportunism and throughput are low. In this chapter we will see that indeed

the performance of many proposed opportunistic scheduling schemes in such

regimes are subject to such performance penalties.

Recently, distribution based opportunistic schedulers have been pro-

posed by several researchers under different guises [22][23][4][27]. We shall

refer to this family of schemes as maximum quantile schedulers. The idea

is to schedule a user whose current rate is highest relative to his own dis-

tribution, i.e., in the highest quantile. As will be explained in the sequel

because the quantile of each user’s rate is uniformly distributed, maximum

quantile scheduling is automatically temporally fair – i.e., no weights required

to achieve fairness. However, in practice maximum quantile scheduling would

involve estimating each user’s channel capacity distribution. In this chap-

ter we will show that the throughput penalty incurred from estimating user’s

distributions can be limited. Furthermore, unlike other schemes, maximum

quantile does not require estimation/tuning of weights which depend on users’

joint channel capacity distributions, and so it is robust to fast changes in the

number of users and/or their activity levels. In other words the performance

penalties associated with estimation/tuning are substantially reduced.

Contributions. The following is the list of the key contributions of

this chapter:
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• We investigate the throughput performance of maximum quantile schedul-

ing and show that if the achievable instantaneous rate of users’ is bounded,

then among the class of scheduling policies that serve each user an equal

fraction of time, maximum quantile scheduling maximizes the long term

system throughput when there is a large number of users. Further-

more, we show that the marginal distribution for the rate when users

are selected for service under maximum quantile scheduling can not be

stochastically dominated by any other non-idling scheduler.

• Under the assumption of fast fading, we prove a bound on each user’s

relative throughput penalty when maximum quantile scheduling is based

on empirical distributions for users’ channel capacity. This is significant

because it shows that such penalties can be controlled if the number of in-

dependent samples used to estimate the empirical distribution is roughly

proportional to the number of users in the system. Thus maximum quan-

tile scheduling can be used even when users’ channel distributions are

not known or slowly changing.

• We conjecture that the best way to serve a user (especially under heavy

loads) is to serve it when its rate is high compared to its distribution,

rather than favoring a user that has not been served for some period

of time. This conjecture is supported by simulating the performance of

various measurement based opportunistic scheduling schemes for various

network and traffic scenarios. We find that maximum quantile scheduling

can have significantly better performance in terms of both packet delay

and file transfer delay, e.g., up to 40% improvement. We stress that this

observation has not been made by previous work.

• Finally, we study a dynamic saturated system (i.e., one where the num-

ber of users are changing) served under maximum quantile scheduling.

We show simple upper and lower bounds on transfer delays based on

6
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Figure 2.1: Downlink scheduling to users from a base station.

multiclass M/GI/1 processor sharing queues and a parametric model for

channel variations.

Chapter Organization. This chapter is organized as follows. In Sec-

tion 2.2 we revisit and critique representative prior work in the area of oppor-

tunistic scheduling and introduce some known features of maximum quantile

scheduling. Throughput performance and optimality of maximum quantile

scheduling is studied in Section 2.3. We prove our bound on the relative

throughput penalty associated with measuring distributions in Section 2.4.

Simulation results comparing the performance of maximum quantile schedul-

ing to other schemes are presented in Section 2.5 and 2.6. Section 2.7 concludes

this chapter.

7



2.2 Revisiting Opportunistic Scheduling

2.2.1 System Model and Notation

We begin by introducing our system model and some notation. For

simplicity, we focus on downlink scheduling from a base station to multiple

users (see Figure 2.1). Suppose time is divided into equal sized slots and at

most one user gets served per slot, e.g., for the CDMA-HDR systems defined

in the CDMA2000 IS-856 standard, the slot time has a duration of 1.67 ms [2].

During each slot, each user feeds back the data rate it can support and the

base station makes a decision on which user should get served. In the sequel

we use the terms ‘channel capacity’ and ‘rate’ interchangeably and make the

following assumption on user’s channel characteristics over time slots.

Channel assumptions. In practice, characterizing the channel ca-

pacity or rate seen by a user is quite complicated. There are several factors

that affect the capacity, they can be broadly classified into two classes [28][12].

First, there is large scale path loss in the ‘average’ capacity seen by a user

due to the distance of a user from the base station, and the shadowing due to

obstacles in the path between the user and the base station. Secondly, there is

small-scale variation or fading in the instantaneous capacity due to multipath

time delay spread, the speed of such variations depends on the Doppler spread

seen by the user. Therefore a simple yet reasonably accurate model may be

to view the channel capacity seen by a user as a quasi stationary random

process, with the marginal distribution that changes following changes in the

large scale path loss. These marginal distributions are likely to be different

across users.

In this chapter we will assume such quasi-stationary characteristics for

users’ channel capacities, and for analysis purposes assume the regime where

the users’ channels are in fact stationary. The following is a formal statement

of our assumptions on the channel capacity distributions(s) across slots.

8



Assumption 2.2.1. We assume the channel capacity (rate) for each user is

a stationary ergodic process and these processes are independent across users.

Further we assume that the marginal distribution for each user is continuous

and is either known a priori, or estimated by the base station.

Discussion on the channel assumption. We conjecture that the

channel should remain stationary for roughly O(n2) (here n is the number of

users in the system) samples for the result on measurement based performance

proved in Section 2.4 to be practically viable. The assumption that users’

rates are independent is also likely to be true, though a notable exception

is the case where mobile users move in a correlated manner, e.g., along a

highway. The assumption that the base station knows, and in particular can

estimate, the marginal distributions of the channel capacity processes may

seem unreasonable, but simple book keeping on the users’ feedback of the

currently achievable rate can be used to estimate distributions. We will discuss

estimation of such distributions in Section 2.4. Note that channel capacities

are not restricted to any specific distribution, or class of distributions, i.e.,

users can undergo any fading process. This makes the analysis presented

later applicable to real world scenarios. Note that the we require the marginal

distributions of rates to be continuous only for simplicity sake, we will indicate

how the results presented here can be extended to the discrete case.

Notation. In the sequel we will let xi(t) denote the realization of the

channel capacity of User i at time slot t, and let X i be a random variable whose

distribution is that of the channel capacity of User i on a typical slot. Recall

that we will be assuming X i to be independent across users but need not be

identically distributed. We denote the distribution function of X i by FXi(·).
For simplicity, we will assume that FXi(·) is a strictly increasing function, so

that its inverse denoted by F−1
Xi (·) is defined.

System Scenario. There are several system scenarios (Figure 2.2)

one can consider. In a real world scenario, the number of users in the system

9
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Figure 2.2: Different scenarios for system model.

may be changing, and users may not be infinitely backlogged, i.e., unsatu-

rated dynamic. However, such a scenario is analytically intractable, therefore

we usually study different idealizations. The first idealization is the ‘fixed sat-

urated’ case, where the number of users in the system does not change with

time and each user is infinitely backlogged. Such a scenario is an approxima-

tion where the number of users in the system changes slowly and packet queues

for each user are always non empty at the base station. This idealization is

often studied in the literature, and we will largely focus on this case. We will

also study the ‘fixed unsaturated’ and ‘dynamic saturated’ cases, the former

referring to the scenario where even though the number of users remain static,

they are not necessarily backlogged, and the later refers to the scenario where

the number of users changes with time, but whenever a user is present, it is

infinitely backlogged.

We denote the number of users present in the system on slot t by n(t).

We simplify this to n in a fixed system (saturated or unsaturated) since the

number of users is constant. The set of active, i.e., backlogged users on slot

t is denoted by A(t). In other words, A(t) is the set of users that wish to be

served on slot t. Note that in a dynamic saturated system |A(t)| = n(t), while

in fixed saturated system |A(t)| = n.
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2.2.2 Weight based Opportunistic Scheduling Schemes

Opportunistic scheduling was first proposed in [16]. They proposed

maximum rate scheduling, where the user with maximum channel capacity at

that point of time is served, i.e., User k(t) is selected for service on time slot

t if

k(t) ∈ arg max
i∈A(t)

xi(t).

This maximizes system throughput in a fixed saturated system, but in a system

where users have heterogenous rate distributions, may neglect those with poor

channels.

Subsequently a myriad of approaches have been proposed to address

both unfairness and/or performance issues. One of the more cited schemes

is proportional fair scheduling [13][37][7] which serves the user whose current

rate normalized by a moving average of his allocated rate is the highest, i.e.,

User k(t) is selected for service at time slot t if

k(t) ∈ arg max
i∈A(t)

xi(t)

µi(t)
, (2.1)

where

µi(t) = (1− 1

tc
)µi(t− 1) +

1

tc
xi(t)1Si

pf (t)

and tc is the moving average parameter, Si
pf (t) is the event that User i gets

served on slot t by the scheme, and 1Si
pf (t) is the indicator function of Si

pf (t).

As a simple experiment we compare the throughput achieved by pro-

portionally fair to that achieved by maximum quantile scheduling (described

in the next subsection) in a fixed saturated system. Our setup consists of two

classes of users having a mean signal to noise ratio (SNR) of 2 and 0.1, with

both classes experiencing Rayleigh fading and containing an equal number of

users. The Doppler frequency for the channel capacity variation of all users is

set to 15Hz, and the slot size is set to 1.67 msec. The bandwidth associated

with each user is 500 KHz and we assume that coding achieves the Shannon

rate [9]. This setup will be used throughout the chapter for simulations, and
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Figure 2.3: Ratio of per class throughput achieved by maximum quantile
scheduling to that achieved by proportional fair.

unless specified otherwise, both classes will contain an equal number of users.

The parameter tc is set equal to 1000 slot lengths [13].

Figure 2.3 exhibits the ratio of the per class throughput achieved by

maximum quantile scheduling versus that achieved by proportional fair based

on allocated rate for an increasing number of users. As can be observed,

maximum quantile achieves significant gains in throughput (up to 45%) for

users having lower mean SNR, while one observes more than 10% gain for

users having high mean SNR. This clearly illustrates that scheduling based on

the recent service given to a user can lead to loss in opportunism.

Queue based opportunistic scheduling schemes that factor the magni-

tude of ongoing users’ queue lengths (as a measure of recent service given to a

user) and their channel capacity in deciding which to serve have also been pro-

posed in the literature. For example, the exponential rule [33][32][31], chooses

12



to serve User k(t) on slot t if

k(t) ∈ arg max
i∈A(t)

[γixi(t) exp(
aiqi(t)

1 +
√

q̄(t)
)],

where qi(t) is the queue length of User i at time t, ai is the weight associated

with User i’s queue, q̄(t) is the average weighted queue length across users at

time t, and γi is the weight associated with User i’s channel rate xi(t). Fac-

toring the users’ queue length has the potential advantage of reducing packet

delays. Indeed, it has been shown in [31] that under a heavy traffic scenario,

the exponential rule will minimize the maximum of weighted queue length,

i.e., aiqi. Good packet delay performance of the rule has been supported by

simulations shown in [32]. We will revisit this point in Section 2.5, and show

that in practice, not unlike proportional fair, such queue based schemes in-

troduce biases that may compromise opportunism thus compromising packet

delay performance.

Finally, [18][19][17] proposed strategies that maximize system through-

put under fairness constraints. For example, they show that a scheduling

policy of the form

k(t) ∈ arg max
i∈A(t)

[xi(t) + νi], (2.2)

maximizes the overall sum/system throughput subject to constraints on the

fraction of time each User i is served in a fixed saturated regime. Here νi is

a weight associated with User i that ensures that users get served the desired

fraction of time. Similar optimal schemes were proposed for rate and utility

based fairness.

While the fairness and optimality characteristics of these schemes are

desirable, in practice they would require estimating thresholds νi which are

complicated functions of users’ rate distributions, number of users and tempo-

ral constraints. In the sequel (Section 2.4 and 2.6), we show that such estimates

may converge slowly and are not robust to changes in the unsaturated and/or

dynamic regimes.

13



2.2.3 Maximum Quantile Scheduling

Maximum quantile scheduling has been proposed independently by sev-

eral researchers. Specifically [22][23] proposed a ‘CDF based scheme’. While

[4] proposed a so called ‘score based scheduler’ and [27] proposed a ‘distri-

bution fairness’ based scheduler. A variation of the score based scheduler is

proposed in [38].

Let us briefly introduce this scheme in the fixed saturated regime. The

main idea is to schedule a user whose current rate is highest compared to his

own distribution, i.e., serve User k(t) during slot t if

k(t) ∈ arg max
i=1,...,n

FXi(xi(t)). (2.3)

It is well known that FXi(X i) is uniformly distributed on [0, 1]. Let U i =

FXi(X i), then U i is also uniformly distributed on [0, 1]. Maximum quantile

can be thought of as picking the maximum among independent realizations of

users’ (i.i.d.) U i’s on every slot. Thus, it is clear that maximum quantile is

equally likely to serve any user on a typical slot, and as a result all users get

served an equal fraction of time, i.e., 1
n

th
of time.

Let U (n) = max[U1, . . . , Un], where Uj is uniformly distributed on [0, 1]

∀j = 1, . . . , n, then

Pr(U (n) ≤ u) = un, ∀u ∈ [0, 1]. (2.4)

Then the rate distribution seen by User i on a slot that it gets served is the

same as F−1
Xi (U

(n)). Therefore, the average throughput seen by User i is given

by Gi
mq(n) [22][23],

Gi
mq(n) =

E[F−1
Xi (U

(n))]

n
=

E[X i,(n)]

n
.

where X i,(n) is maximum of n i.i.d. copies of X i, i.e., X i,(n) := max[X i
1, . . . , X

i
n],

where X i
j ∼ X i, ∀j = 1, . . . , n. Note that by contrast with the schemes dis-

cussed in the previous subsection, if the users’ rate distributions were known,

14



it is fairly easy to evaluate the individual and system throughput for maximum

quantile scheduling.

Maximum quantile scheduling can be modified to serve users different

fractions of time using easily tuned (distribution independent) weights, see

[22][23] for details.

We now digress a bit to discuss maximum quantile scheduling when

rates supported by users’ are discrete, i.e., X i is a discrete random variable.

For simplicity we will assume that all users share the same support set of rates

denoted by xj, j = 1, . . . , l, and let us denote the probability mass function of

User i on these rates by pi(·). The unique inverse of the cumulative distribution

function FXi(·) is given by

F−1
Xi (α) = min

z≥0
{z | FXi(z) ≥ α}.

The discrete case is more subtle because FXi(X i) is no longer uniformly

distributed on [0, 1]. This can be remedied by introducing randomization into

the scheduling policy in such a way that the throughput and fairness proper-

ties of maximum quantile scheduling under continuous remain preserved. We

define maximum quantile scheduling for such users as selecting User k(t) on

time slot t if

k(t) ∈ arg max
i=1,...,n

[FXi(xi(t))− pi(xi(t))W i(t)], (2.5)

where wi(t) are realizations of W i(t), i.i.d. uniformly distributed random

variables across users and slots. With this setup one can get the desired

property of selecting the maximum among i.i.d. random variables uniformly

distributed on [0, 1]. The following lemma proves our claim, with the proof

given in Appendix 2.8.1.

Lemma 2.2.2. Suppose X i have discrete distributions, and let

U i = FXi(X i)− pi(X i)W i, i = 1, . . . n

15



where W i are uniformly distributed on [0, 1] then U i are uniformly distributed

on [0, 1] and under Assumption 2.2.1 U i are independent of each other.

We note that even though maximum quantile scheduling can be used

both in the discrete and continuous rate cases. However it is unlikely that the

users’ cumulative distribution functions are known at the scheduler, therefore

the implementation of the scheduling scheme will be different from above. We

will describe the implementation in Section 2.4.

Overall, it is clear that maximum quantile scheduling has some very

desirable properties: e.g., it is temporally fair, it is amenable to performance

prediction in the fixed saturated case, and Figure 2.3 indicates that it has

good throughput performance. However, as discussed earlier, it is unlikely

that rate distributions will be known. It is unclear how maximum quantile’s

performance compares to that of other schemes when distributions are esti-

mated, especially in scenarios other than fixed saturated. In the sequel we will

address these issues.

2.3 Performance of Maximum Quantile Scheduling in
Fixed Saturated System

In this section, we look at two metrics to study the performance of

maximum quantile scheduling : (1) the amount of opportunism exploited by

the scheme, (2) the throughput achieved by the scheme.

‘Opportunistically’ Optimal. Suppose we consider as measure of

opportunism achieved by User i as the quantile of the rate achieved by the

user, i.e., FXi(xi(t)) whenever it is served. A high quantile means a high

degree of opportunism and E[
∑n

i=1 FXi(X i)1Si
β
] denotes the overall expected

opportunism realized by a scheduling scheme β. (Here Si
β is the event that

User i is selected for service on typical slot by β.) It should be clear that

maximum quantile scheduling maximizes the system opportunism, and does

so while serving all users an equal fraction of time.

16



Not Stochastically Dominated. Maximum quantile scheduling has

an optimality in terms of the rates seen by users in the typical slots where

they are served. Let us first introduce the concept of stochastic dominance,

before presenting the bound. We say that a random variable Y stochastically

dominates random variable V , if ∀v, Pr(Y > v) ≥ Pr(V > v). This is denoted

as Y ≥st V and it follows that for any increasing function g(·), we have that

g(Y ) ≥st g(V ).

Let Ri
mq represent the rate distribution seen by User i when selected

for service on a typical slot by maximum quantile scheduling, and let
−→
Rmq =

(R1
mq, . . . , R

n
mq), i.e., the vector of random variables representing the rate dis-

tributions. Let
−→
R β = (R1

β, . . . , Rn
β) be the same quantity for another distinct

non idling scheduling scheme β that may not serve all users an equal fraction

of time. By distinct we mean that the scheme does not always pick the user

with the maximum quantile, and by non idling, we mean that the scheme will

never be idle as long as there is at least one backlogged user. Then our claim

is that
−→
R β 6≥st −→Rmq, i.e., ∃j, such that Rj

β 6≥st Rj
mq. This is formally stated in

the following theorem with the proof given in Appendix 2.8.2.

Theorem 2.3.1. Consider a fixed saturated system with n users, whose chan-

nel capacity variations satisfy Assumption 2.2.1. Then for any distinct non

idling scheme β,
−→
R β 6≥st −→Rmq.

Note that a scheduling scheme γ is known to be Pareto optimal if there

exists no other scheduling scheme that is able to give an equal or higher average

throughput to all the users than that received by users under γ. Theorem 2.3.1

can be thought to be a weak form of Pareto optimality in terms of rate seen

in a typical slot, not average throughput. We will next show that maximum

quantile is not Pareto optimal in terms of average throughput.
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Not Pareto Optimal. We illustrate this with a simple pathological

example where users’ support only discrete rates. (The example can be ex-

tended to the continuous case.) Consider a two user system with ON-OFF

channels. The ON and OFF channel states correspond to rates 1 and 0 re-

spectively. Users 1 and 2 have an ON probability of 0.6 and 0.4 respectively.

Here maximum quantile will serve User 1 at a rate of 0.42, and User 2 at a

rate of 0.32. However, it can be shown that maximum quantile may sometimes

serve User 2 in OFF state, even though User 1’s channel is ON. Therefore, it

is possible to improve performance while still serving each user an equal frac-

tion of time. Consider a scheme that always serves the user with the highest

instantaneous rate and breaks ties 7
24

th
of times in favor of User 1. Such a

scheme will give User 1 a rate of 0.43, and User 2 will get a rate of 0.33. Hence

one can give better performance to both the users, while maintaining temporal

fairness.

Throughput Optimal for Large Number of Users. Even though

the maximum quantile is not Pareto optimal in general, it does achieve good

system throughput performance. If the rates achievable by users in a system

are bounded, then maximum quantile scheduling is sum throughput optimal

among policies that serve all users an equal fraction of time as the number of

users increases. The following lemma is useful to prove this claim.

Lemma 2.3.2. Consider a fixed saturated system with n users, whose channel

capacity variations satisfy Assumption 2.2.1 and served based on maximum

quantile scheduling. Let ε, δ ∈ (0, 1), then there exists nε,δ such that if n >

nε,δ at any slot where User k gets scheduled for service, the user sees a rate

exceeding F−1
Xk (1− δ) with probability greater than 1− ε.

Proof. As discussed in the previous section, whenever User k gets served under

maximum quantile scheduling, it sees a rate F−1
Xk (U

(n)). In order to ensure the
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desired condition is satisfied we require that

Pr(F−1
Xk (U

(n)) > F−1
Xk (1− δ)) > 1− ε.

Since F−1
Xk (·) is an increasing function, the above inequality can be rewritten

as

Pr(U (n) > (1− δ)) > 1− ε.

From (2.4), we get

1− (1− δ)n > 1− ε.

Simplifying and taking log, we get

n >
ln ε

ln(1− δ)
.

Defining

nε,δ = d ln ε

ln(1− δ)
e,

we have that for any n ≥ nε,δ, whenever User k is served, it will experience a

rate greater than F−1
Xk (1− δ) with probability greater than 1− ε.

The following theorem follows from Lemma 2.3.2 and formally states

our claim.

Theorem 2.3.3. Consider a fixed saturated system with n users, whose chan-

nel capacity variations satisfy Assumption 2.2.1 and are served using maximum

quantile scheduling. Suppose each User i has a maximum instantaneous rate

of ri
max < ∞. Then as n →∞, each user is likely to be served at his maximum

rate, so maximum quantile scheduling is sum throughput optimal.

Summarizing, we observe that even though maximum quantile schedul-

ing is not Pareto optimal, it is likely to give a good throughput performance.
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2.4 Penalty due to Measurement

We now focus on the measurement aspects of opportunistic scheduling.

We will first consider the throughput penalty incurred by maximum quantile

scheduling due to estimation of rate distributions of users under fast fading,

and present simulation results for the slow fading case. Following this, we will

compare the penalty incurred by maximum quantile to that incurred by sum

throughput optimal scheme in (2.2), via simulations.

2.4.1 Maximum Quantile Scheduling based on Empirical Distribu-
tions

Assumption 2.2.1 required that the channel capacity distribution, i.e.,

FXi(·) of each user be known at the base station. This is unlikely, and in this

subsection we consider the penalty in throughput seen by users in a n user

fixed saturated system due to such mistakes by the scheduler.

Suppose the quantile of the current rate of a user is estimated using

the previous m samples of the user’s rate. The empirical distribution of User

i during slot t based on m previous samples is denoted by F̃m,t
Xi (·) and is given

by

F̃m,t
Xi (x) =

1

m

m∑
j=1

1{X i(t− j) ≤ x}. (2.6)

Note that the above way of estimating is similar to the score function

described in [4], however no attempt was made there to evaluate the penalty

due to incorrect distribution estimation as function of n and m.

Thus maximum quantile scheduling of users based on estimated distri-

butions, would choose User k(t) for service during slot t if

k(t) ∈ arg max
i=1,...,n

F̃m,t
Xi (xi(t)),

with ties being broken arbitrarily.

Let us examine the properties of the above scheme. It can be shown that

for any user on any slot t, F̃m,t
Xi (X i(t)) is uniformly distributed on {0, 1

m
. . . , 1}.
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Therefore, it is easy to see that even with estimated distributions, maximum

quantile scheduling will still serve each user an equal fraction of time.

Calculating the penalty due to estimation seems to be intractable under

slow fading, therefore we add an additional assumption of fast fading, i.e.,

channel capacity realization of a user in a slot is independent across slots. Even

though fast fading users’ channel capacity is not usually true, independence

of samples can be roughly achieved by taking samples that are sufficiently

apart in time or for some physical layer follows from system design, see e.g.

‘opportunistic beamforming’ [37]. The assumption is also likely to be true in

OFDM based systems where slot times are relatively long.

We now calculate the long term throughput achieved by users under

maximum quantile scheduling based on estimated distributions. Here, since we

are interested in the stationary behavior, we simplify notation for the estimated

distribution to F̃m
Xi(·). Following theorem characterizes the performance of this

scheme, a proof is given in Appendix 2.8.3.

Theorem 2.4.1. Consider a fixed saturated system with n users whose channel

capacity variations satisfy Assumption 2.2.1. Suppose the channel capacity

distributions in such a system are estimated via (2.6) based on m independent

samples of a user’s channel and users are served using maximum quantile

scheduling, then the long term throughput achieved by User k is given by

G̃k
mq(n,m) =

E[F−1
Xk (Ũn,m)]

n
,

where Ũn,m is a continuous r.v. on [0, 1] having a probability density function

fŨn,m
(u) =

m∑
j=0

(
m
j

)
uj(1− u)m−j ((j + 1)n − jn)

(m + 1)n−1
. (2.7)

Recall that Ri
mq represents the rate distribution seen by User i when

selected for service on a typical slot by maximum quantile scheduling (with per-

fect distribution knowledge). Let R̃i,m
mq denote the same quantity for maximum

quantile scheduling when the distributions are estimated using m samples.
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We show that R̃i,m
mq and Ri

mq are ‘closely related’ random variables, i.e.,

the rate seen by a user when served under empirical distributions is similar to

that seen when the distributions are perfectly known. This is used to show

that the average throughput achieved by a user when empirical distributions

are used is less than or equal to that achieved when distributions are perfectly

known, i.e., G̃k
mq(n,m) ≤ Gk

mq(n) and bound the relative throughput penalty

due to estimation. Our result is formally stated below, the proof given in

Appendix 2.8.4.

Theorem 2.4.2. Consider a fixed saturated system with n users whose channel

capacity variations satisfy Assumption 2.2.1. Then under fast fading ∀n,m,

(
m + 1

n
(1− (

m

m + 1
)n)) ≤ Pr(R̃i,m

mq ≤ r)

Pr(Ri
mq ≤ r)

≤ 1, ∀r,

and

Gk
mq(n) ≥ G̃k

mq(n,m), ∀m,

and the relative throughput penalty is bounded by

|Gk
mq(n)− G̃k

mq(n,m)|
Gk

mq(n)
≤ 1− m + 1

n
(1− (

m

m + 1
)n).

Note that the above theorem can be extended to the discrete rate case,

i.e., where X i’s are discrete by modifying the system model. In the modified

system model, each user feeds back the estimated quantile of its current chan-

nel quality along with its current supported rate to the base station in every

slot. The estimated quantile is based on m previous independent samples of

a continuous measure of the channel quality, e.g., signal to noise ratio (SNR).

The base station chooses to serve the user with the highest estimated quantile

(that it has received from the feedback).

To understand the scaling of the number of independent samples m

required to limit the throughput penalty, note that for a reasonably large n,
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Figure 2.4: The top three curves plot the selection error probability for maxi-
mum quantile scheduling, due to estimated distributions with increasing num-
ber of users. The bottom three curves plot the relative throughput penalty for
the same.

if m scales linearly with n, then

(
m

m + 1
)n = (1 +

1

m
)−n ≈ e−

n
m .

Expanding e−
n
m and simplifying, we get that the penalty is equal to

1− m + 1

m
+

m + 1

n
(
1

2
(
n

m
)2 − . . .),

which is upper bounded by n
2m

. Therefore to achieve a relative error less than

ε, approximately n
2ε

samples are needed. For example to achieve an error less

than 5%, approximately 10n samples are needed. Therefore for a given error

bound, the number of samples required will at worst grow roughly linearly

with the number of users contending.
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To validate these results, we ran some simulations. The simulation

setup is the same as discussed in Section 2.2 except that the channel capacity

variation for all users fast fading across slots (in accordance with the assump-

tion used while developing the bound). We observed the throughput penalty

for different values of n and m. The value of n is varied from 8 to 16 to 32,

while m is varied by a factor of 2 from 8 to 256 for a given value of n. As

shown in Figure 2.4, the bound is clearly met, in fact the results indicate that

our bound is quite conservative (which is not surprising, since the bound is

distribution free). For example, a penalty of around 1% is achieved with only

64 samples for 8 users, whereas the bound suggests 5%.

We also plot the selection error probability in the figure, i.e., the fraction

of slots where the user selected with maximum quantile is not chosen due to

error in estimation of distribution. As the plot indicates, this can be quite high.

Simple analysis can be used to show that the number of samples required to

achieve a given error probability grows roughly as O(n2). Therefore, even

though mistakes may be made in selecting the user with the highest quantile,

the throughput penalty in making an error is not large.

Let us consider the relevance of the bound under slow fading. The need

for m independent samples immediately suggests the need for sampling m co-

herence time intervals to achieve the required penalty. We ran simulations to

confirm this conjecture. The simulation consisted of two (earlier described)

classes of slow Rayleigh fading users with 5 users each, we aimed for a through-

put penalty of 5%. The Doppler spread for the channels was varied from 10 Hz

to 50 Hz in steps of 10 Hz. Let fD denote the Doppler spread, then the coher-

ence time can be estimated using the formula 9
16πfD

[28]. Given the coherence

time, the total number of users and the required penalty, the number of slots

needed to estimate the rate distributions can be ascertained. The simulation

results are plotted in Figure 2.5, as can be observed, the required penalty is

easily met in all cases.
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Figure 2.5: Relative throughput penalty for 10 users with slow Rayleigh fading
channel capacities.

Note that in our simulations we found that for Doppler spread of 10

Hz, 932 slots were needed. (Other Doppler spreads required 466, 311, 233,

187 slots.) This corresponds to 1.55 seconds (slot size is 1.67 msec), it may

be reasonable to expect the system to be stationary for such a period because

the Doppler spread is quite low, i.e., users/objects are moving quite slowly.

In other words, even though very slowly fading systems may require a large

number of samples to achieve the desired penalty, it may also be reasonable

to expect such channels to be stationary over large periods of time.

Discussion of the bound. Theorem 2.4.2 has several interesting

implications, which we discuss below.

• The bound shows that the throughput penalty due to estimation of users’

distributions can be bounded for any distribution.

• The theorem is strong in the sense that it shows a relationship between
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distributions of rates seen by the user in both the empirical and perfectly

known distribution cases.

• Furthermore, the number of samples needed to achieve small penalty is

only linear in the number of users. This is fairly limited (at least for

the fast fading case) because the slot sizes are usually of the order of

milliseconds.

• The dependence of penalty only on the number of users is significant,

because this allows the bound to extend to the unsaturated and dynamic

regime. To achieve a certain penalty, a system designer only needs to

estimate the ‘average’ number of users that will be competing for service

at any given time, and not on the users’ distribution or traffic character-

istics. We reiterate here that it is difficult to even design heuristics to

redefine weights in dynamic and unsaturated scenarios for other weight

based schemes.

• The dependence on only the number of users also allows the theorem

to extend to quasi stationary rate distributions. Since one requires only

O(n) slots (under fast fading) to limit the penalty due to measurement,

therefore O(n) slots after a user’s distribution changes, the system will

not experience any penalty due to change in distribution. Thus we con-

jecture that if users’ channels are stationary for roughly O(n2) slots (with

appropriate constants) then the penalty due to changes in user’s rate dis-

tributions will be negligible.

Summarizing, maximum quantile scheduling under estimated distribu-

tion case is not only fair and suffers from fairly limited penalty, but is quite

easy to design and implement in a practical scenario.
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2.4.2 Throughput Penalty Comparisons

Recall that if the users’ weights νi are properly set in (2.2), then the

scheme maximizes sum throughput under temporal fairness. However in prac-

tice the weights for each user need to be estimated. Let us investigate the

sensitivity of system throughput to errors in these weights by performing two

controlled experiments. We will use the previously discussed experimental

setup, however again in accordance with the assumption on the bound devel-

oped, in this subsection we will assume that the channel capacity of all users

is fast fading.

In the first experiment, there are 5 users in each class, and the weights

νi for all users are initialized to 0. We train the weights for m slots according

to the stochastic approximation algorithm suggested in [19], and observe the

average penalty in performance due to errors in weights on the (m + 1)st slot.
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Figure 2.7: Average relative throughput penalty incurred by the class of low
SNR users for increasing number of tuning samples.

We refer the reader to [19] for details on the training algorithm. We evaluate

two performance parameters, the fraction of time low SNR users are served,

and the relative penalty in throughput achieved by those users as compared

to that achieved when weights are perfectly known.

The stochastic approximation algorithm for estimating the νi’s has sev-

eral parameters (w, δ, δi) that need to be set, we first set these parameters equal

to those suggested in [19]. However, the scheduling scheme served the low SNR

user less than 0.1% of time even when m = 2000 (again demonstrating that

measurement based weights may severely affect performance). We changed

the parameters to w = 0.005, δ = 0.2 and δi = 0.1, which exhibited better

performance.

Figure 2.6 shows the fraction of time low SNR users are served as an

increasing number of training samples m is used. We also plot the correspond-

ing results for maximum quantile scheduling. Note that maximum quantile
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Figure 2.8: Throughput achieved by maximum sum throughput under tempo-
ral fairness and maximum quantile scheduling with decreasing number of low
SNR users.

scheduling always serves low SNR users close to 0.5 fraction of time. By con-

trast, maximum sum throughput takes around 400 samples to converge to

approximately 0.47 and then shows negligible improvement. This is because

the granularity of training is not sufficiently small, however as suggested in the

previous paragraph, if one reduces these updates, then the convergence time

may be much larger.

Figure 2.7 shows the throughput penalty for the low SNR users for an

increasing number of training samples m. While the throughput penalty is

virtually 0 under maximum quantile scheduling, note that there is penalty of

15% even for 1000 training samples. Therefore a 6% loss in temporal fairness

can lead to a 15% loss in throughput.

In the second experiment, suppose there are initially 5 users belonging

to each class, with estimates for νi converged to their true values. Now if a

user leaves the system the values of weights would have to change, so if the
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system does not tune fast enough, then the maximum sum throughput scheme

may incur a throughput penalty. We simulated the throughput achieved by

the scheme under the previously converged values of weights and compare it

to that achieved by maximum quantile scheduling with distribution estimates

converged.

Figure 2.8 shows the throughput achieved by both the schemes when

the number of low SNR users is reduced. Note that the throughput difference

between the two schemes is small even when both classes have 5 users each.

Then if the number of low SNR users goes from 5 to 4, maximum quantile

scheduling immediately starts doing better. We observed a similar trend when

the high SNR users were reduced.

2.5 Performance in Fixed Unsaturated Regime

In this section, we consider a fixed unsaturated system. One can show

that the throughput achieved by an infinitely backlogged User k in an unsat-

urated system is lower bounded by Gk
mq(n), i.e., the throughput achieved in

a fixed saturated system. However, the way in which resources are allocated

impacts the delay for e.g. real-time traffic. Therefore, we will evaluate the

packet delay in this section.

In our simulations, we compare the performance of maximum quan-

tile scheduling with maximum rate, proportionally fair and the exponential

rule. We do not compare the performance with the maximum sum through-

put scheme (2.2), because it is unclear how to set the weights for this scheme

in an unsaturated scenario.

Our setup is the same as before with each user experiencing Rayleigh

slow fading with either mean SNR of 2 or 0.1 at a Doppler frequency of 15Hz.

There are 15 users in each class. All users have Poisson packet arrivals with

equal average arrival rate. Each packet is 1500 bytes. Packet delay for a

packet is measured by finding the difference between packet arrival time and
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the time when the packet has been completely transmitted. We set all the

weights equal to 1 in the exponential rule (We also experimented by weighting

a user’s queue inversely proportional to its channel mean, but that increased

the average delay for the exponential rule.) We assume that the distribution

is perfectly known at the scheduler for maximum quantile scheduling, i.e., the

estimates of the distributions have converged (this may be reasonable for fixed

systems).

Figure 2.9 shows the average packet delay across users as the load

increases. (Maximum rate scheduling has the worst performance among all

schemes, for simplicity its plot has not been shown). Maximum quantile always

has the lowest packet delay, and achieves around 50% reduction in packet delay

(at total arrival rate of 29 packets per second) as compared to proportionally

fair. This is surprising, since unlike exponential rule, maximum quantile is

completely insensitive to queue lengths. This underscores the importance

of scheduling according to opportunism, rather than simply the rate and/or

queue lengths.

2.6 Performance in Dynamic Saturated Regime

In this section, we study the dynamic saturated system. We will first

analyze the performance of maximum quantile scheduling scheme for certain

channel models and then compare its performance to maximum rate, propor-

tional fair and maximum sum throughput under temporal constraints. Note

that the exponential rule does not make sense in a saturated scenario. Dynamic

saturated system is a good model for a base station supporting file transfers,

therefore, a good metric for performance here is the average file transfer delay.

2.6.1 Multiclass Processor Sharing Model

In [7], the delay performance of a version of proportionally fair schedul-

ing is studied by modelling dynamic systems as a multiclass M/GI/1 processor
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Figure 2.9: Packet delay performance of maximum quantile, proportionally
fair and exponential rule scheduling.

sharing queue for a certain class of channel models. In this subsection we do

the same for maximum quantile scheduling, to provide a tool to design and

evaluate the performance of such base stations. In this subsection, we will

deal with classes of users rather than individual users, i.e., X i will refer to

rate distribution associated with Class i instead of User i. All users belong to

the same class will have i.i.d. rate distributions.

Let us first describe the multiclass M/GI/1 processor sharing model

[3]. In the model, all users are served an equal fraction of time, with users

belonging to the same class getting served at equal rate. For example all users

in Class i are served at an average rate of Gi
mq(n) under maximum quantile

scheduling, when there are a total of n users in the system. The use of the

mean rate is motivated by the time scale separation results see e.g. [24][25].

User arrival to each class is according to a Poisson process, with possibly

different loads for each class. Each user has a single file associated with it.

32



The size of users’ files in a class can be distributed according to any finite

mean distribution.

In general, it is not possible to find the exact performance for maximum

quantile scheduling because the throughput (or service) formula for maximum

quantile scheduling does not satisfy the ‘balance property’[5], i.e.,

Gi
mq(n + 1)

Gi
mq(n)

6= Gj
mq(n + 1)

Gj
mq(n)

,

for any two Classes i and j. This does not allow one to derive the explicit delay

performance of a user. However, one can show that service has a monotonicity

property, i.e., for any Class i, Gi
mq(n + 1) < Gi

mq(n) (we omit the proof here).

In other words, whenever a user leaves the system, the service rate of all other

users necessarily increases. This allows one to find lower and upper bounds

for the performance [5].

Using the monotonicity, one can show that for any Class i ,

1 ≤ E[X i,(n+1)]

E[X i,(n)]
≤ 1 +

1

n
.

This can be used to develop lower and upper bounds on delay performance.

However, note that these bounds hold for any rate distribution, and so are

quite loose, therefore we attempt to find better bounds.

Consider the case, where the inverse distribution rate function of users

belonging to Class i has the following form

F−1
Xi (u) = ciuαi

, u ∈ [0, 1],

here both ci and αi are positive and finite constants. Then,

E[X i,(n)] = ci

∫ 1

0

F−1
Xi (u)nun−1du =

cin

n + αi
.

Therefore, it is easy to see that

E[X i,(n+1)]

E[X i,(n)]
= 1 +

αi

n(n + αi + 1)
.
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Let nc be the total number of Classes in the system. Then, note that

1 +
αmin

n(n + αmin + 1)
≤ E[X i,(n+1)]

E[X i,(n)]
≤ 1 +

αmax

n(n + αmax + 1)
,

where αmin := mini∈nc αi and αmax := maxi∈nc αi. Therefore the real system’s

service can be lower bounded by a system where all classes of users have inverse

distribution rate function of the form F−1
Xi (u) = ciuαmin . We call this the lower

service bound. Similarly an upper service bound can be developed with αmax.

Note that d
dαi (1 + αi

n(n+αi+1)
) = n+1

n(n+αi+1)2
, i.e, the ratio changes quite

slowly with αi, this indicates that the bound developed may be reasonably

tight.

We now define some additional notation. Let λi be the average arrival

rate of users belonging to Class i and let Zi be the random variable representing

the length of file associated with users. Then the normalized load offered by

Class i can be defined as ρi := λiE[Zi]
E[Xi]

. (Note that by normalizing by E[X i],

we capture the heterogeneity across classes.) Therefore, the total load offered

to the system is equal to ρ :=
∑nc

i=1 ρi. Define

φ(α, n) :=
n∏

k=1

k∏
j=1

(1 +
α

j(j + α + 1)
).

Then, from [7], the probability of n users in the system for the lower service

bound π(n, αmin) is given by

π(n, αmin) = [
∞∑

n=0

ρn

φ(αmin, n)
]−1 ρn

φ(αmin, n)
.

By replacing αmin by αmax, one can similarly find the probability for the upper

service bound. The probability can be used to find the average number of users

in the system and then Little’s law can be used to find the average delay. One

can show that the average delay for lower service bound is the upper average

delay bound for the real system and vice versa for the upper service bound.

The above developed bounds are also valid for inverse rate distributions

the form F−1
Xi (u) =

∑ji

j=1 ci
ju

αi
j , u ∈ [0, 1]. Here ci

j’s and αi
j’s are positive
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Figure 2.10: File transfer delay performance of maximum quantile, maximum
rate, proportionally fair and maximum sum throughput scheduling.

constants. It seems that a large class of distributions can be approximated

using this form to give a reasonable tool for performance evaluation.

We numerically calculated the bounds for sample systems. Our results

indicate that the bounds are tight for low to medium loads, but poor for high

loads.

2.6.2 Delay Performance Comparison

We now present some simulation results, again our setup is the same as

before, however since the system is dynamic, the number of users will change

with time. Users arrive to the system according to a Poison process, and

are equally likely to belong to one of the two classes (where each class is

experiencing slow Rayleigh fading). Each user has a file associated with it.

The file sizes are exponentially distributed with a mean size of 60KB. We

keep track of the time taken from a user’s arrival to departure. For maximum
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quantile, estimate for users rate distributions are generated by keeping track

of previous samples. While the weights for maximum sum throughput under

temporal fairness are trained using the stochastic approximation algorithm

referred to in Section 2.4, with the values of the parameters same as before.

The average file transfer delay experienced by users is plotted with

increasing load in Figure 2.10. The number of samples used for estimating

users’ distributions is 100 at a load of 0.1. This was increased linearly by

100 samples for every load increase of 0.1. As can be seen in the figure,

maximum quantile scheduling outperforms both maximum rate and maximum

sum throughput. In fact the reduction in delay is more than 40% at a load

of 0.7. This again underscores the importance of scheduling according to the

quantile. Also note that due to non convergence of weights, maximum sum

throughput has the worst delay performance.

2.7 Conclusion

In summary we have evaluated measurement based opportunistic schedul-

ing schemes from various perspectives and under various system regimes, e.g.,

dynamic/fixed, saturated/unsaturated. The key take away, is that, perhaps

surprisingly, maximum quantile scheduling which would require estimation of

each users channel rate distribution, realizes excellent performance, relative

to proportionally fair, the exponential rule, and schemes that are optimal in

terms of sum throughput subject to fairness. The main reason is that maxi-

mum quantile places systematic emphasis on scheduling users when they are

high relative to their own distribution, while achieving temporal fairness. By

contrast other schemes measure the degree to which fairness is achieved and

bias scheduling decisions to compensate for biases. This compromises oppor-

tunism and also performance. Although the estimation of users distributions

seems fairly straightforward and would be necessary to enable resource man-

agement and call admission decisions at a wireless point, the question remains
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as to whether the additional complexity over simple schemes such as propor-

tionally fair is warranted.

2.8 Appendix

2.8.1 Proof of Lemma 2.2.2

Proof. Let us consider the ith user. Clearly U i ≥ 0, and the maximum value

of FXi(X i) is 1, therefore the range space of U i is restricted to [0, 1]. For

α ∈ [0, 1] our goal is to show that

Pr(U i ≤ α) = Pr(FXi(X i)− pi(X i)W i ≤ α) = α.

Define xj(α) as xj(α) = F−1
Xi (α). Note that the index j(α) ∈ {1, . . . , l} and xj(α)

is one of the l discrete rates the users can support. Furthermore, the rates

supported are increasing in their index so it follows that for all j < j(α),

FXi(xj) < α.

Since pi(X i)W i ≥ 0, it follows that if j < j(α) then U i ≤ α. If X i = xj(α),

then in order for U i ≤ α it must be the case that

pi(xj(α))W
i ≥ FXi(xj(α))− α,

Finally if j > j(α), then clearly U i > α. In summary we have that Pr(U i ≤ α)

is equal to

Pr(X i < xj(α)) + pi(xj(α)) Pr(pi(xj(α))W
i ≥ FXi(xj(α))− α).

This can be rewritten as

∑

j:j<j(α)

pi(xj) + pi(xj(α))Pr(W i ≥ FXi(xj(α))− α

pi(xj(α))
). (2.8)

Since W i is uniform on [0, 1],

Pr(W i ≥ FXi(xj(α))− α

pi(xj(α))
) = 1− FXi(xj(α))− α

pi(xj(α))
.
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Simplifying, we get

Pr(W i ≥ FXi(xj(α))− α

pi(xj(α))
) =

α−∑
j:j<j(α) pi(xj)

pi(xj(α))
.

Replacing Pr(W i ≥ FXi (xj(α))−α

pi(xj(α))
) in (2.8) and simplifying, we get

Pr(U i ≤ α) = α.

Therefore U i, i = 1, . . . , n are uniformly distributed on [0, 1] and by Assump-

tion 2.2.1 they are independent.

2.8.2 Proof of Theorem 2.3.1

Proof. Define Uβ :=
∑n

i=1 U i1Si
β
, i.e., the total opportunism achieved by β.

Let U i
β = U i|Si

β, i.e., the quantile of User i conditioned on getting served by

β. Then

Pr(Uβ > u) =
n∑

i=1

Pr(U i
β > u) Pr(Si

β), u ∈ [0, 1].

Let j(u) = arg mini=1,...,n Pr(U i
β > u). Since β is non idling,

∑n
i=1 Pr(Si

β) = 1,

so

Pr(Uβ > u) ≥ Pr(U
j(u)
β > u).

Recall that U (n) is the maximum of n i.i.d. uniformly distributed random

variables, then since β is distinct, there must be a u′ such that

Pr(U (n) > u′) > Pr(Uβ > u′) ≥ Pr(U
j(u′)
β > u′).

Let U i
mq be the same quantity as U i

β for maximum quantile scheduling. Now

recall that under maximum quantile scheduling, a User i is selected for service

only when its quantile is the highest, i.e., U i
mq ∼ U (n). Then

Pr(U j(u′)
mq > u′) > Pr(U

j(u′)
β > u′).

So U
j(u′)
β 6≥st U

j(u′)
mq . Note that for any User i, Ri

β = F−1
Xi (U

i
β) and Ri

mq =

F−1
Xi (U

i
mq). Now since F−1

Xj(u′)(·) is an increasing function, then

R
j(u′)
β 6≥st Rj(u′)

mq .
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2.8.3 Proof of Theorem 2.4.1

Proof. Recall that Sk is the event denoting the selection of User k for service.

Since each user is equally likely to be served, Pr(Sk) = 1
n
, and

G̃k
mq(n,m) = E[Xk|Sk] Pr(Sk) =

E[Xk|Sk]

n
.

Let us now evaluate E[Xk|Sk] by conditioning on F̃m
Xk(X

k), we have that

E[Xk|Sk] =
m∑

j=0

E[Xk|Sk, F̃m
Xk(X

k) =
j

m
] Pr(F̃m

Xk(X
k) =

j

m
|Sk).

Note that the selection of a user in a slot is independent of its current rate,

given its estimated current quantile, so

E[Xk|Sk, F̃m
Xk(X

k) =
j

m
] = E[Xk|F̃m

Xk(X
k) =

j

m
].

Since F̃m
Xk(X

k) are uniformly distributed on {0, 1
m

, . . . , 1} and ties are broken

randomly,

Pr(F̃m
Xk(X

k) =
j

m
|Sk) =

(j + 1)n − jn

(m + 1)n
.

Now consider E[Xk|F̃m
Xk(X

k) = j
m

], by using Bayes’ formula and the fact that(
m
j

)∫ 1

0
yj(1− y)m−jdy = 1

m+1
, one can show that

E[Xk|F̃m
Xk(X

k) =
j

m
] =

(m + 1)

(
m
j

) ∫ ∞

0

x(FXk(x))j(1− FXk(x))m−jfXk(x)dx,

where fXk(·) is the probability density function of the SNR associated with

User k. Now using a change of variables this can be rewritten as

E[Xk|F̃m
Xk(X

k) =
j

m
] = (m + 1)

(
m
j

) ∫ 1

0

F−1
Xk (u)uj(1− u)m−jdu.

So it follows that G̃k
mq(n,m) is given by

1

n

∫ 1

0

F−1
Xk (u)(

m∑
j=0

(
m
j

)
uj(1− u)m−j ((j + 1)n − jn)

(m + 1)n−1
)du.

This completes the proof.
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2.8.4 Proof of Theorem 2.4.2

We present a few useful lemmas before proving Theorem 2.4.2.

Lemma 2.8.1. Let H be a binomial r.v. with parameters (m,u). Consider the

moment generating function of H, M(s) := (1− u + ues)m. Its lth derivative

is given by

dlM(s)

dsl
=

l∑
j=1

bj,l
m!

(m− j)!
(1− u + ues)m−j(ues)j. (2.9)

Here bj,l’s are constants with the following properties:

• b1,1 = 1

• bj,l = jbj,l−1 + bj−1,l−1, ∀j = 1, . . . , l, ∀l

• b0,l = bl+1,l = 0, ∀l.

Note that since b1,1 = 1 and bl+1,l = 0, ∀l, from the second property one

can show that bl,l = bl−1,l−1 = 1, ∀l.

Proof. The lemma clearly holds for l = 1. We give a proof by induction on l.

Assume the lemma holds for l, i.e., (2.9) is true. Then, to prove the lemma

for l + 1, we differentiate (2.9) and after some rearrangement get

dl+1M(s)

dsl+1
=

l+1∑
j=1

[(jbj,l + bj−1,l)
m!

(m− j)!
(1− u + ues)m−j(ues)j].

This completes the proof.

From Lemma 2.8.1 it follows that the lth order moment of H is given

by

E[H l] =
l∑

j=1

bj,l
m!

(m− j)!
uj. (2.10)

The following lemma exhibits an inequality between the moments of

H.
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Lemma 2.8.2. Let H be a binomial r.v. with parameters (m,u). Then for all

l such that l ≤ m,

E[H l+1] ≤ (mu + l(1− u))E[H l]. (2.11)

Proof. The right side of (2.11) can be expressed as

((m− l)u + l)E[H l].

Using (2.10), the above equation can be rewritten as

m!

(m− l − 1)!
ul+1 +

l∑
j=1

[lbj,l
m!

(m− j)!
+ (m− l)bj−1,l

m!

(m− j + 1)!
]uj. (2.12)

If one splits lbj,l
m!

(m−j)!
in the following way

lbj,l
m!

(m− j)!
= jbj,l

m!

(m− j)!
+ (l − j)bj,l

m!

(m− j)!
,

then (2.12) in turn can be expressed as

m!

(m− l − 1)!
ul+1 +

l∑
j=1

[(jbj,l
m!

(m− j)!
+ (m− l)bj−1,l

m!

(m− j + 1)!
)uj + (l − j + 1)bj−1,l

m!

(m− j + 1)!
uj−1].

Now since 0 ≤ u ≤ 1, then ∀j, uj−1 ≤ uj. So, from the above equation we get

(mu + l(1− u))E[H l] ≥ m!

(m− l − 1)!
ul+1 +

l∑
j=1

[(jbj,l
m!

(m− j)!

+(m− l)bj−1,l
m!

(m− j + 1)!
) + (l − j + 1)bj−1,l

m!

(m− j + 1)!
]uj.

Combining the last two terms in the summation of the above inequality, we

get

(mu + l(1− u))E[H l] ≥ m!

(m− l − 1)!
ul+1 +

l∑
j=1

(jbj,l + bj−1,l)
m!

(m− j)!
uj

This proves (2.11).
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Next we show that U (n) dominates Ũn,m in a likelihood ratio ordering

sense, i.e., U (n) ≥lr Ũn,m [20][29][21]. This is a strong form of dominance which

means that fU(n)(u)/fŨn,m
(u) is non decreasing in u, or fŨn,m

(u)/fU(n)(u) is non

increasing in u (here fU(n)(u) is the probability density function of U (n)). If

U (n) ≥lr Ũn,m, it follows that U (n) ≥st Ũn,m.

Lemma 2.8.3. For the random variables U (n) and Ũn,m given by (2.4) and

(2.7) respectively, then ∀n,m U (n) ≥lr Ũn,m.

Proof. To prove the lemma, we need to show

d

du

[
fŨn,m

(u)

fU(n)(u)

]
≤ 0,

∀u ∈ (0, 1]. To prove this, it is sufficient to show

fU(n)(u)

[
dfŨn,m

(u)

du

]
− fŨn,m

(u)

[
dfU(n)(u)

du

]
≤ 0.

Note that fU(n)(u) = nun−1. Then expanding, we get

1

(m + 1)n−1
[nun−1(−m(1− u)m−1 +

m−1∑
j=1

(
m
j

)
uj−1(1− u)m−j−1(j −mu)((j + 1)n − jn) +

mum−1((m + 1)n −mn))−

n(n− 1)un−2(
m∑

j=0

(
m
j

)
uj(1− u)m−j((j + 1)n − jn))] ≤ 0.

Simplifying and multiplying both sides by (1− u), we get

(−mu(1− u)m +
m−1∑
j=1

(
m
j

)
(j −mu)uj(1− u)m−j((j + 1)n − jn) +

(m−mu)um((m + 1)n −mn))− (n− 1)(1− u)

(
m∑

j=0

(
m
j

)
uj(1− u)m−j((j + 1)n − jn)) ≤ 0.
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The above inequality can be rewritten as

m∑
j=0

(
m
j

)
(j −mu− (n− 1)(1− u))uj(1− u)m−j((j + 1)n − jn) ≤ 0.

Then the inequality clearly holds for m < n. However the more interesting case

is when m ≥ n, and this requires a few more steps. Note that

(
m
j

)
uj(1−

u)m−j is the probability that a binomial r.v. with parameter (m,u) has a value

j, i.e., the same as that of H. Then the inequality can be rewritten in terms

of expectations as

E[(H −mu)((H + 1)n −Hn)]− (n− 1)(1− u)E[(H + 1)n −Hn] ≤ 0.

This can be further rewritten as

E[H((H + 1)n −Hn)] ≤ (mu + (n− 1)(1− u))E[(H + 1)n −Hn]. (2.13)

Expanding (H + 1)n and simplifying, one can show that (2.13) will hold if

E[H l+1] ≤ (mu + l(1− u))E[H l],

∀l < n ≤ m. This follows from Lemma 2.8.2. This completes the proof.

We now prove Theorem 2.4.2.

Proof. To prove the first claim, define u := FXi(r) and consider

FU(n)(u)− FŨn,m
(u), ∀u ∈ (0, 1].

This is equivalent to ∫ u

0

fU(n)(u)− fŨn,m
(u)du.

This in turn is equivalent to

∫ u

0

fU(n)(u)(1− fŨn,m
(u)

fU(n)(u)
)du.
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Then

FU(n)(u)− FŨn,m
(u) ≤

∫ u

0

fU(n)(u) max
u

(1− fŨn,m
(u)

fU(n)(u)
)du.

Note from Lemma 2.8.3,

min
u

fŨn,m
(u)

fU(n)(u)
=

fŨn,m
(1)

fU(n)(1)
=

m + 1

n
(1− (

m

m + 1
)n).

Then

FU(n)(u)− FŨn,m
(u) ≤ FU(n)(u)(1− m + 1

n
(1− (

m

m + 1
)n)).

Simplifying, one gets

FU(n)(u)(
m + 1

n
(1− (

m

m + 1
)n)) ≤ FŨn,m

(u).

Now from Lemma 2.8.3, it follows that U (n) ≥st Ũn,m, combining this with the

above equation we get

m + 1

n
(1− (

m

m + 1
)n) ≤ FŨn,m

(u)

FU(n)(u)
≤ 1.

Using the definition of u, and the fact that FXi(·) is an increasing function,

the above equation can be rewritten as

m + 1

n
(1− (

m

m + 1
)n) ≤ Pr(F−1

Xi (Ũn,m) ≤ r)

Pr(F−1
Xi (U (n)) ≤ r)

≤ 1.

Note that Ri
mq = F−1

Xi (U
(n)) and R̃i,m

mq = F−1
Xi ((Ũn,m), then the above equation

can be written as

m + 1

n
(1− (

m

m + 1
)n) ≤ Pr(R̃i,m

mq ≤ r)

Pr(Ri
mq ≤ r)

≤ 1.

To prove the second claim, recall that Gk
mq(n) =

E[F−1

Xk (U(n))]

n
. Note that F−1

Xk (·)
is an increasing function. Therefore it is sufficient to prove that U (n) ≥st Ũn,m

to prove the theorem, which is shown to be true from Lemma 2.8.3.

44



We now prove the third part of the theorem. Note from the second

part of the theorem, it is suffices to study

Gk
mq(n)− G̃k

mq(n,m)

Gk
mq(n)

.

Consider the difference between the two throughput, i.e., E[F−1
Xk (U

(n))] −
E[F−1

Xk (Ũn,m)]. The difference can be expressed as

∫ 1

0

F−1
Xk (u)fU(n)(u)du−

∫ 1

0

F−1
Xk (u)fŨn,m

(u)du.

Then following the methodology used in the first part of the proof on can show

E[F−1
Xk (U

(n))]− E[F−1
Xk (Ũn,m)] ≤

∫ 1

0

F−1
Xk (u)fU(n)(u)(1− m + 1

n
(1− (

m

m + 1
)n))du,

or

E[F−1
Xk (U

(n))]− E[F−1
Xk (Ũn,m)] ≤ E[F−1

Xk (U
(n))](1− m + 1

n
(1− (

m

m + 1
)n)).

This completes the proof.
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Chapter 3

Providing Quality of Service while Exploiting

Opportunism

3.1 Introduction

Motivation. Data services required by users are a mixture of real-

time streams (e.g., video/voice and multimedia) and best effort data transfers

(like file downloads or web browsing). From a user’s perspective this requires

a scheduling scheme which can ensure quality of service (QoS) to a real-time

session and/or minimize transfer delays associated with best effort sessions

(see Figure 3.1). From a system perspective one would like the capability to

admit a large number of real-time sessions, while at the same time, maximizing

revenue generating data throughput. To manage such traffic mixes on limited

wireless resources, one must be able to predict and evaluate the likelihood that

QoS commitments can be met, i.e., devise complementary resource allocation

and call admission strategies. Devising an opportunistic scheduling scheme

that handles mixes of traffic while permitting some degree of performance

prediction is the objective of this chapter.

Challenges. As discussed in Chapter 1, capacity or data rate sup-

ported by wireless channel is not only time varying, but also heterogeneous

across users. At the same time real-time and best effort sessions will have dif-

ferent traffic load statistics and heterogenous QoS requirements which a sched-

uler should somehow address. One might think of the base station scheduler

as the meeting point where heterogeneity and variability in the wireless chan-

nels meets heterogeneity and variability in the requirements and offered traffic.

Finding a practical approach to opportunistic scheduling that harmoniously
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deals with these and at the same time enables the ‘prediction’ of performance

towards supporting quality of service is the challenge we face.

Related work. We discussed proportionally fair scheduling [13, 37]

and the exponential rule [33] in Chapter 2. Additionally modified-largest

weighted delay first [1] has been proposed. The algorithm as the name suggests,

schedules the user currently having the highest product of user’s weighted de-

lay with its current channel condition. In [32] the performance of these three

scheduling algorithms (along with maximum rate scheduling [16]) was com-

pared from the perspective of providing QoS guarantees and the exponential

rule was found to be best.

The above mentioned schemes try to provide QoS by attaching prior-

ity weights to users and choose to serve the user with the highest weighted

channel capacity. The flexibility in assigning these weights allows one to han-

dle heterogeneity in channel capacity distributions. It also allows a seamless

integration of the real-time users with the best effort users while exploiting

opportunism. However as we discussed in Chapter 2, these weights are com-

plicated functions of the service a user has seen to date, the present queue

backlog, and QoS or fairness requirements among users, etc., making proper

selection of these weights difficult. As such it is unclear whether a meaning-

ful performance prediction, resource management and call admission policies

could be devised based on such schedulers.

The work of [40][41][39] explores realizing QoS guarantees based on an

effective bandwidth concept. The approach largely focuses on the case where

all users have homogeneous channel capacity distributions which is unlikely

in practice. (The extension to the heterogeneous case is very unwieldy.) An

evaluation of the offered QoS is based on determining the effective capacity

which requires knowledge or estimation asymptotic log moment generating

function of the channel capacity process seen by a user at the base station.

Furthermore, because the underlying analysis is based on large buffer large

47



deviations, the resulting QoS estimate may not be useful on the short time

scales relevant for real-time users. The shortcomings of this work highlights

some of the difficulties we mentioned earlier. However, note that if we are

to predictably ensure QoS guarantees it is likely that the knowledge of users’

channel capacity statistics at the base station will be required.

There is very little work on opportunistic scheduling and the integra-

tion of real-time and best effort traffic. Due to the demanding nature of

real-time users, a simple solution is give absolute priority to real-time over

best effort traffic. If the real-time sessions were scheduled opportunistically

then such scheme would enable one to exploit ‘intra class opportunism’, i.e.,

opportunism among users of the same class. Yet due to the coupling among

real time streams, it is unclear how performance could be predicted. Fur-

thermore, ideally one would like to also exploit ‘inter class opportunism’, i.e.,

opportunism from both the real-time and the best effort users competing for

service.

Contributions and organization. In this chapter we propose a

novel opportunistic scheduling mechanism and resource allocation strategy

that fulfil multiple objectives. Under the assumption that the (possibly het-

erogenous) channel capacity distributions of users are known (or estimated)

at the base station and stay stable for moderate timescales, we are able to

ensure probabilistic guarantees on the rate experienced by real-time sessions

over short time scales. For simplicity, we begin in Section 3.2 by consider-

ing the case where sessions see independent, identically distributed channel

capacity variations, i.e., homogeneous channel characteristics and want the

same QoS guarantees. We develop stochastic lower bounds for the service re-

ceived by real-time users which can be used as a basis for making admission

control and resource allocation decisions. Then, in Section 3.3, we consider

the case where users have heterogenous channel capacity variations and QoS

requirements. Therefore the proposed opportunistic scheduler can predictably

guarantee QoS over short time scales while still benefiting from opportunism
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n  best effort usersb

opportunistic scheduler

n real−time users

Figure 3.1: Scheduling a mixture of real-time and best effort users from a
wireless base station.

when users have heterogeneous channel capacity distributions – i.e., exploiting

both intra class and inter class opportunism. This is verified in the simulation

results presented in Section 3.4 which show that we can satisfy strong QoS

guarantees while achieving more than 90% of the system throughput realized

under maximum rate scheduling. This is excellent since for a static saturated

set of users, maximum rate maximizes the system throughput. Our analysis

assumes users’ channel capacities are fast fading, i.e., i.i.d., across slots, but

we propose a heuristic modification that would make the scheduler robust if in

fact users capacity variations were dominated by a slow fading environment.

This claim is again supported by our simulations. Section 3.5 concludes the

chapter.

3.2 Scheduling and Resource Allocation for Symmetri-
cal Channel Capacity Distributions

3.2.1 System Model and Notation

For simplicity, we again only consider downlink scheduling from a base

station to multiple users (the scheme can be applied for uplink scheduling as

well). The system model is similar to that described in Chapter 2. Time is

divided into equal sized slots with at most one user served per slot. During

each slot, each user feeds back the channel capacity or rate it can support to

the base station which in turn makes a decision on which user to serve.
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Channel assumptions. Ensuring QoS requires giving guarantees

towards future service, this can be done only if the users’ capacity distribution

or some function of it is known or predicted at the base station. Also note that

if a user’s distribution changes, the guarantee given may or may not hold, thus

one must constantly track and learn the distribution (or some function of it).

If the channel is quasi-stationary on time scales where users’ rate distribution

estimates may be made reliably, then the base station can track and allocate

resources as needed to ensure QoS goals are met. Of course, if users’ capacity

distributions are changing too fast, then it is virtually impossible to provide

any kind of guarantee. In the sequel we shall make the following assumptions

on the channel capacity seen by a user.

Assumption 3.2.1. We assume the channel capacity (rate) for each user is

a stationary ergodic process and these processes are independent, identically

distributed (i.i.d.) across users. The channel capacity for each user is fast

fading, i.e., the channel capacity for each user is independent across slots

and remains constant during a slot. Further we assume that the marginal

distribution for each user is either known a priori, or estimated by the base

station.

Discussion of the assumptions. We have justified most of the

assumptions in Chapter 2. However, note that here we need to know users’

channel distribution for maximum quantile scheduling (which will be needed

for asymmetrical channel capacity distributions), and to perform resource al-

location. We have shown in Chapter 2 that the throughput penalty due to

estimation errors in the users’ channel distributions is not high for maximum

quantile scheduling. Additionally as will be discussed in the final analysis,

the base station only needs to know the mean and variance of a certain quan-

tity users’ channel distribution to perform resource allocation. Finally, the

assumption that users’ channels are identically distributed is made for sim-
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plicity, this will be relaxed later when we incorporate heterogeneous channel

capacities in our framework.

Notation. We begin by introducing some notation relevant to this

section. (A list of frequently used notation is given in Table 3.1 for subsequent

reference.) For simplicity, the time period of a slot is fixed to a single time

unit size. Let X i be a random variable representing the channel capacity

distribution seen by User i on a typical time slot. By Assumption 3.2.1, the

channel is fast fading, therefore X i captures the rate distribution seen by User

i on any slot. Let xi(t) denote the realization of the channel capacity of User

i for time slot t. According to Assumption 3.2.1, the base station knows the

distribution of the X i in addition to xi(t) for each user. Also since for now,

we assume that the channel capacity distributions are i.i.d. across users ,

therefore we will sometimes drop the users’ index in this section and denote

X i by X, a random variable whose distribution is same as that of the channel

capacity of any of the users in the system.

Let Ar(t) denote the set of active real-time users at time slot t, i.e., if

i ∈ Ar(t) the base station will allow User i to compete for the slot t. Note

that the scheduling discipline will be responsible for deciding which real-time

users are ‘allowed’ to contend for a slot. Also note that for convenience it is

possible for an active real-time user in a slot to have no backlogged data. The

set of active best effort users is denoted by Ab(t). A best effort User j is said

to be active only if it has a backlog prior to that slot. The set of active best

effort users is denoted by Ab(t) and define A(t) := Ar(t) ∪ Ab(t).

Recall from Chapter 2 that under maximum rate scheduling, the base

station receives channel capacity feedback xi(t) from each user in A(t) and

chooses the ‘best’ to serve. More formally, the access station chooses to serve

User i during slot t if xi(t) = maxj∈A(t) xj(t). We let X(l) = max{X1, ..., Xl},
where all Xj’s are i.i.d. and Xj ∼ X, i.e., X(l) is the maximum of l i.i.d.

random variables. If User i is selected on a slot when competing with l − 1
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other users under maximum rate scheduling, his conditional rate distribution

X i is the same as X(l). This follows easily by symmetry among the contending

users. Let us discuss some properties of X(l) which will be useful in the proofs

given later. X(l) are stochastically increasing in l, i.e., ∀x, Pr(X(l+1) ≥ x) ≥
Pr(X(l) ≥ x), or X(l+1) ≥st X(l).

We shall let n denote the total number of real-time users and nb the

total number of best effort users (see Figure 3.1). For simplicity we assume

that a user initiates only one type of session at a time, with exactly one real-

time stream per real-time user, i.e., the number of real-time users is equal to

the number of real-time streams.

QoS definition. The notion of QoS considered in this chapter involves

ensuring a User i sees a desired rate r over a frame of length τ with an outage

probability of δ. More formally, we divide time into equal sized ‘frames’ of τ

units and our goal is to ensure that for each of these frames

Pr(Si(τ) > rτ) ≥ 1− δ,

where Si(τ) is a random variable denoting the cumulative potential service to

User i during a frame. For simplicity we restrict τ to take only integral values

with respect to the time unit, i.e., the QoS guarantees are given only over an

integral number of time slots.

If the traffic load of User i does not exceed rτ over a given frame, and

any data experiencing more than a delay of 2τ is thrown away (i.e., no longer

considered for scheduling), then the above rate guarantee translates to a delay

guarantee of the form

Pr(Di ≤ 2τ) ≥ 1− δ,

where Di is the scheduling delay associated with a typical bit of data desig-

nated for User i.

To guarantee the required QoS, we will use a stochastic envelope based

approach [6][15]. The idea is to lower bound the actual service Si(τ) by a
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quantity Slow
i (τ) that satisfies two properties, firstly

Si(τ) ≥st Slow
i (τ),

so that if Slow
i (τ) meets the QoS guarantee then so will Si(τ). Secondly, Slow

i (τ)

will be analytically tractable from a resource allocation perspective.

We will first focus on providing the same QoS guarantee to all the

real-time users, and later generalize to multiple QoS needs in Section 3.3.

3.2.2 Opportunistic Round Robin

Recall that our goal is to find a scheduling scheme and resource alloca-

tion strategy that exploits both intra and inter class opportunism to provide

high throughput to all users while meeting real-time users’ QoS requirements.

Yet, let us first consider scheduling n real-time users. A simple way to serve

them is to use a frame with n slots. In every slot, the users feedback their

rate for that slot and the base station opportunistically serves the best user.

Once a user has been served in a frame, he does not compete for service un-

til the next frame. This ensures that each active real-time user gets served

once every frame. This scheme is similar to that proposed in [14], however

the objective there was not to provide QoS guarantees. One might call this

‘opportunistic round robin’ scheduling. Consider a fixed saturated system,

under conventional round robin a typical user in such a system would see a

slot whose rate distribution is the same as X(1), i.e., no multiuser diversity

gain. However, under the opportunistic round robin scheme, a user is equally

likely to be served on any one of the slots of the frame. If it is served on the

(n− j + 1)th slot, it would have competed with j − 1 other users and will see

a rate distribution of X(j). This means that the rate distribution in a typical

slot will be a mixture, i.e., with probability (w.p.) 1
n

it will see the distribution

of X(n), w.p. 1
n

a distribution of X(n−1) and so on. We let the random variable
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Y have the rate distribution seen by such a user, then

Y =





X(n) w.p. 1/n
. . . w.p. 1/n

X(1) w.p. 1/n.
(3.1)

Clearly Y ≥st X(1), so our opportunistic round robin scheme will give improved

data rate to users.

In present day systems, a time slot is of the order of milliseconds (1.67

msec for CDMA-HDR), while video and multimedia traffic require guarantees

of around 100 kbps on a time scale of the order of hundreds of milliseconds.

So, if the number of real-time users is not large, i.e., frame sizes are tens of

milliseconds, there is a ‘slack’ in the QoS requirement that is not exploited by

opportunistic round robin which in turn can lead to severe system throughput

penalties–our simulations (not presented here) show this. This slack can be

used to schedule best effort users and enhance opportunism. An alternative is

to have a larger frame and give multiple slots to users. This brings us to our

proposed scheduling scheme.

3.2.3 Proposed Scheduling Scheme

In our scheme the frame is as long as the time period on which the

QoS guarantees need to be ensured, i.e., τ . Each real-time user is assigned k

‘tokens’, i.e., each real-time user will be served at most k slots within a frame.

Note that nk can at most be equal to τ . We describe how to determine the

value of k in the next subsection.

The proposed scheduling scheme combines a policy to decide which

users will be active, i.e., the set A(t) that contend for a slot, with a mechanism

to select the user to serve during that slot. To avoid confusion, we henceforth

refer to the latter as the ‘selection criterion’ and denote it by a set-valued

function φ(·). In this section we use maximum rate selection criterion among

users, i.e.,

φ(B(t)) := arg max
j∈B(t)

xj(t),
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where B(t) is a set of users at time slot t. Note since rate distributions are

i.i.d., i.e., symmetric, this criterion is fair and maximizes system throughput.

We present the proposed scheduling scheme in terms of an algorithm

that is implemented every frame. It starts at the first slot of the frame and

ends at the last slot of the frame. The time slots within a frame are indexed as

t = 1, . . . , τ , while the number of tokens remaining for User j is denoted by kj
r.

Recall that Ar(t) is the set of active real-time users allowed by the proposed

scheduling scheme to compete during slot t, in contrast Ab(t) is the set of best

effort users that have data backlogged during slot t and A(t) = Ar(t) ∪Ab(t).

Algorithm for the proposed scheduling scheme

1. Initialize t = 1 and Ar(1) to be the set of all admitted real-time users

each with k tokens allocated to it, i.e., ∀j ∈ Ar(1), kj
r = k.

2. If t > τ , i.e., end of frame is reached, then go to Step 12, else if (τ − t) =
∑

j∈Ar(t) kj
r, i.e., the number of remaining slots in the frame is equal to

the total number of remaining tokens, then go to Step 8 else go to the

next step.

Phase I

3. Based on the feedback from the users, choose User i such that i ∈
φ(A(t)), with ties broken randomly.

4. If i is a best effort user, then serve him and go to Step 7, else go to the

next step.
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5. If i is a real-time user which is backlogged, then serve him, else if Ab(t)

is not empty serve a best effort user from Ab(t). The best effort user can

be selected using any criterion e.g. proportionally fair, maximum rate

etc.

6. Update ki
r = ki

r − 1, and if ki
r = 0, i.e., User i has used up its tokens,

then update Ar(t) = Ar(t) \ {i}, i.e., remove User i from Ar(t).

7. Define Ar(t + 1) = Ar(t) and increment t = t + 1. Go to Step 2.

Phase II

8. Based on the feedback, choose User i such that i ∈ φ(Ar(t)), with ties

broken randomly. Note that we are now choosing only among real-time

users.

9. If i is a backlogged real-time user, then serve him, else if Ab(t) is not

an empty set, then serve a best effort user from Ab(t). Again, the best

effort user can be selected using any criterion e.g. proportionally fair,

maximum rate etc.

10. Update ki
r = ki

r − 1, if ki
r = 0, i.e., User i has used all of his tokens, then

update Ar(t) = Ar(t) \ {i}, i.e., remove User i from Ar(t).

11. Define Ar(t + 1) = Ar(t) and increment t = t + 1, if t > τ , then go to

the next step, else go to Step 8.

12. Proceed to the next frame.

We now give a brief description of the scheme using an example con-

taining a number of best effort sessions and 2 real-time users. Each real-time

user is assigned 3 tokens. Figure 3.2 shows a frame of size τ = 10.
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Whenever a real-time user is given a chance to be served, his token

count decreases by 1 and when the token count becomes zero, he is no longer

considered for service (Steps 6 and 10).

The scheduling scheme is divided into two phases. During the first

phase (Steps 3 - 7), both active real-time and best effort users are allowed to

compete for service. In each slot, the user with the maximum rate is identified

and served, with ties broken randomly. The first phase continues until the

total number of remaining tokens in the system is equal to the number of slots

remaining in the frame (Step 2). In our example (Figure 3.2), the first phase

lasts until Slot 7. In Slot 3 and 5, real-time User 1 supported the highest data

rate and was served, similarly real-time User 2 was served during Slot 6. Best

effort users were served in the rest of the slots (the shaded ones). After Slot

7, the above mentioned condition for the end of first phase is satisfied, so the

second phase starts.

During the second phase (Steps 8 - 11), only the real-time users are

allowed to contend for service under the maximum rate selection criterion.

This phase is needed to ensure that every real-time user is served as many

times as the number of tokens assigned to it. Note that Ar(t) will be empty

by the end of the frame. The second phase slot assignment for the example

are shown in Figure 3.2. Slots 8 and 9 are assigned to real-time User 2 and

he is no longer allowed to compete. As a result, User 1 gets Slot 10, thus

ensuring that both users got served as many times as the number of tokens

they were allocated. Note that Figure 3.2 is just one of the many realizations

that the proposed scheduling scheme could follow (even the starting point of

the second phase is not fixed). In fact the number of possible realizations

grows combinatorially in both n and k, making the scheme hard to analyze.

Note that we provision tokens for real-time users based on their QoS

requirements, therefore it is possible that a real-time user selected for service

may have no data to receive during that slot (note that the definition of an
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Best effort users

Phase I Phase II

Figure 3.2: Example of the proposed scheduling scheme with frame size of 10
and 2 real-time users each having 3 tokens.

active real-time user allows this). When this is the case, we allow the slot

to be used by any active best effort user (Steps 5 and 9). The best effort

user to be served can be selected on a desirable criterion e.g. maximum rate,

proportional fairness.

Some comments on the two phases of the proposed scheduling scheme.

The first phase allows the exploitation of both inter and intra class multiuser

diversity and thus takes advantage of the slack in the QoS requirement. The

second phase is needed to guarantee quality of service to real-time users, how-

ever note that opportunism is still exploited across the remaining real-time

users. Together the two phases allow one to maintain high throughput while

providing quality of service.

3.2.4 Analysis and Resource Allocation

The value of k must be decided so that the specified QoS guarantee

is met for all real-time users. Let Z∗
j denote the data sent to a real-time

user upon consuming its jth token, i.e., the jth time it gets served. Our goal

is to determine the minimum number of tokens k such that Pr(
∑k

j=1 Z∗
j ≥

rτ) ≥ 1 − δ. This is not easy to compute, even when users have i.i.d. rate

distributions.

Note that ∀j, Z∗
j ≥st X, i.e., at worst a user contends with no other

users and thus sees the marginal channel capacity distribution of a typical

slot with no opportunistic gain. Therefore it is likely that ∀s, ∑s
j=1 Z∗

j ≥st
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∑s
j=1 Xj, where Xj’s are i.i.d. and Xj ∼ X. (Note that because Z∗

j ’s are

not independent random variables Z∗
j ≥st X is not a sufficient condition for

proving
∑s

j=1 Z∗
j ≥st

∑s
j=1 Xj, but the bound will be shown to be true later.)

Then perhaps, the simplest bound would be to replace Z∗
j by X, and finding

the minimum value of k that satisfies Pr(
∑k

j=1 Xj ≥ rτ) ≥ 1−δ using e.g., the

Central Limit Theorem. But this bound is very conservative, i.e., will allocate

too many tokens, because X does not reflect any of the opportunistic gains

achieved by the proposed scheduling scheme.

To find a more efficient, yet conservative resource allocation approach,

consider a ‘static division scheduling scheme’, where the frame is divided into

two parts. During the first part, consisting of τ − nk slots, the slots are

opportunistically allocated among the best effort users, while the real-time

users are opportunistically served during the second part. This is a special

case of the original proposed scheduling scheme where only best effort users

are served in Phase I. Let Zj be the same quantity for the static division scheme

as Z∗
j is for the proposed scheme. We claim in Theorem 3.2.2 that

∑k
j=1 Z∗

j ≥st

∑k
j=1 Zj, i.e., the static division scheduling scheme under performs relative to

our proposed mechanism.

Before proving this claim, we digress to state three properties satisfied

by both the proposed and the static division scheduling scheme when maxi-

mum rate selection is used under Assumption 3.2.1. These properties are used

in the proof of Theorem 3.2.2, its supporting lemmas, and subsequent results.

Property 3.2.1. (Equal Resource Allocation) All real-time users are allocated

an equal number k of tokens.

Property 3.2.2. (Symmetric Selection) In a typical slot, each active real-time

user is equally likely to be selected for service by the selection criterion (the

selection probability for an active best effort user can be different).
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Property 3.2.3. (Monotonicity) The selection criterion is such that for any

User i and for any value of l, X i,(l+1) ≥st X i,(l), where X i,(l) is the random

variable denoting the rate seen by User i given it is selected for service while

competing with l − 1 other users.

We now introduce some further notation. Let N∗
j be a random vari-

able representing the number of real-time users in the system when a typical

real-time user gets the jth token in our proposed scheduling scheme. Let Nj

represent the same quantity for the static division scheduling scheme. Note

that under the static division scheduling scheme, a real-time user competes

only with other real-time users while under the proposed scheduling scheme

there might also be competing best effort users. Therefore it is likely that

N∗
j ≥st Nj, this is at the root of our next theorem, which is proven in Ap-

pendix 3.6.1.

Theorem 3.2.2. Consider the proposed and the static division scheduling

schemes where all real-time users are allocated an equal number k of tokens.

Then under Assumption 3.2.1 and the maximum rate selection criterion, for

a typical real-time user
k∑

j=1

Z∗
j ≥st

k∑
j=1

Zj.

Theorem 3.2.2 implies that to meet the quality of service constraint,

it is sufficient to satisfy Pr(
∑k

j=1 Zj ≥ rτ) ≥ 1 − δ. To compute this, let

us study the properties of Zj. Note that Zj is the maximum over Nj i.i.d.

random variables with the same distribution as X. In other words, Zj ∼ X(l)

w.p. Pr(Nj = l), ∀l. The distribution of X is assumed to be known, but it is

difficult to calculate the distribution of Nj because of the number of ways the

static scheduling scheme can proceed, i.e., how users are served, grows in a

combinatorial fashion. Also note that Zj’s are not i.i.d. which makes it difficult

to calculate Pr(
∑s

j=1 Zj ≥ rτ) for any given value of s. To remedy this, we
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propose a further stochastic lower bound that still factors the opportunistic

gain. Our next claim is that
∑k

j=1 Zj ≥st
∑k

j=1 Yj, where Yj’s are i.i.d. and

Yj ∼ Y , where Y is as defined in (3.1) in Section 3.2.2. We shall refer to

this stochastic lower bound as the ‘mixture bound’. The following theorem

formally states our claim with the proof given in Appendix 3.6.2.

Theorem 3.2.3. Consider the static division scheduling scheme where all real-

time users are allocated an equal number of k tokens. Then under Assump-

tion 3.2.1 and maximum rate selection criterion, for a typical real-time user

k∑
j=1

Zj ≥st

k∑
j=1

Yj,

where Yj’s are i.i.d. and Yj ∼ Y , with Y is as defined in (3.1).

Theorem 3.2.3 gives a bound on the cumulative data received by a

typical real-time user in a frame by a sum of i.i.d. random variables where each

is a mixture of distributions. If the number of tokens required per user, i.e., k,

is large enough, the distribution of
∑k

j=1 Yj can be roughly approximated, e.g.

using the Central Limit Theorem. An advantage of using the Central Limit

Theorem is that one can compute the value of k based only on the mean and

variance of Y , which eliminates the need to know the actual distribution of X.

Of course note that if users’ rate distributions change, then so will the number

of tokens required by them and the value of k will have to be recomputed and

allocated to track such changes.

Note that by virtue of the definition of Y , the above approach factors

the opportunistic gains in our scheme. Recall that the simplest bound to

compute k conservatively would be to ensure Pr(
∑k

j=1 Xj ≥ rτ) ≥ 1− δ. Now

as discussed in Subsection 3.2.2 Y ≥st X, and due to independence among Yj’s,∑k
j=1 Yj ≥st

∑k
j=1 Xj. Hence once can conclude that

∑k
j=1 Z∗

j ≥st
∑k

j=1 Xj,

i.e., the simplest method is conservative. Figure 3.3 summarizes the overall

stochastic ordering for the cumulative data received by a typical real-time user

61



st stst

j = 1j = 1 j = 1 j = 1 j = 1
Zj Yj XΣ jΣ

k

Σ Σ Σ
k k k

*Z j

 
 

static division scheduling scheme

proposed scheduling scheme simplest bound

mixture bound

Theorem 3.2.3Theorem 3.2.2

Figure 3.3: Stochastic ordering of the cumulative data received by a typical
real-time user in a frame under the proposed scheduling scheme, the static
division scheduling scheme, the mixture method and the simplest method.

under the proposed scheduling scheme, the static division scheduling scheme,

the mixture bound and the simplest bound.

A simple numerical experiment. As mentioned earlier, the sim-

plest bound may allocate too many tokens. For example, we computed the

number of required tokens per user using both the simplest bound and the

proposed mixture bound for a system where each real-time user required a

rate guarantee of 100 kbps over a time scale of 167 msec with an outage of 1%.

The number of real-time users was 5 and all users were experiencing Rayleigh

fading with a mean signal to noise ratio(SNR) of 2. Each slot was of size 1.67

msec (so the frame size was 100 slots) and the mapping from SNR to discrete

rates was that used for CDMA-HDR [2]. The simple bound gave a require-

ment of 20 tokens per user while the mixture bound suggested only 12 tokens

were needed. In addition, simulations showed that the exact number of tokens

required to meet the guarantee were 11. This suggests that our mixture bound

is fairly tight, and thus useful.

We emphasize that under the proposed scheme, unlike the weight based

schemes discussed in related work, we were able to develop a concrete resource

allocation approach.
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3.3 Scheduling and Resource Allocation for Asymmet-
rical Channel Capacity Distributions

The symmetrical rate distributions case considered above, though un-

realistic is a good starting point to solving the more general problem. In this

section we generalize to the case where users experience different channel ca-

pacity distributions and describe the modifications required to our proposed

scheme. We restate our assumption on the users’ channel characteristics as

follows:

Assumption 3.3.1. We assume the channel capacity (rate) for each user

is a stationary ergodic process and these processes are independent, but not

necessarily identically distributed across users. The channel capacity for each

user is fast fading, i.e., the channel capacity for each user is independent across

slots and remains constant during a slot. Further we assume that the marginal

distribution for each user is either known a priori, or estimated by the base

station.

Note that we are not assuming any specific distribution on the channel

capacity variation.

The token scheme proposed in Section 3.2 achieves multiple goals, it

guarantees that the QoS requirements for real-time users are met, while ex-

ploiting both intra and inter class opportunism to achieve high overall through-

put. We want these desirable properties to hold while extending the scheme to

the asymmetric case. Our approach of allocating tokens to each real-time user

and then scheduling users opportunistically allows us to achieve these goals.

However to efficiently calculate the number of tokens required by a user, one

would like the Theorem 3.2.2 and Theorem 3.2.3 to also hold under Assump-

tion 3.3.1. As mentioned earlier, the proofs of these theorems depend on the

Properties 3.2.1, 3.2.2 and 3.2.3 holding true.
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Let us consider the ‘Equal Resource Allocation’ property. Under As-

sumption 3.3.1, it is likely that different users may require different number of

tokens to be guaranteed the same QoS. This can be dealt with by simply over

allocating tokens so that all real-time users have the same number of tokens,

but this in turn can lead to lesser number of real-time users getting admitted.

Better alternatives will be discussed later.

The ‘Symmetric Selection’ and ‘Monotonicity’ properties depend on the

selection criterion. It is clear that under Assumption 3.3.1, it is unlikely that

maximum rate selection criterion will satisfy Property 3.2.2. An alternative

is to randomly select a user (among the active ones), however there would be

no opportunistic gains in this case. Our solution is to use maximum quantile

scheduling, which will ensure that the two properties are satisfied and yet give

good opportunistic gains.

From [22][23] one knows that maximum quantile scheduling satisfies

Symmetric Selection, i.e., each competing user is equally likely to get served

on a typical slot. It is easy to show that maximum quantile scheduling satisfies

Property 3.2.3, i.e., Monotonicity. Define X i,(l) = max{X i
1, . . . , X

i
l }, where

X i
j’s are i.i.d. and X i

j ∼ X i. Then the rate experienced by User i when

selected for service on a typical slot by maximum quantile scheduling while

competing with l−1 other users, has the same distribution as X i,(l). It is easy

to see that for any l, X i,(l+1) ≥st X i,(l), i.e., Monotonicity is satisfied.

We are now in a position to describe the proposed modification to our

scheduling discipline under Assumption 3.3.1.

3.3.1 Proposed Modification

We begin by discussing resource allocation, i.e., evaluating how many

tokens should be allocated to each user. In order to do so, we define a new

quantity Y i given by
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Y i =





X i,(n) w.p. 1/n
. . . w.p. 1/n

X i,(1) w.p. 1/n.
(3.2)

As mentioned earlier, it is likely that due to the asymmetric nature of

users rate distributions, each real-time user may require a different number of

tokens for the same QoS requirement. For each real-time user, calculate

ki = min
s
{s | Pr(

s∑
j=1

Y i
j ≥ rτ) ≥ 1− δ}, (3.3)

where Y i
j are i.i.d. and Y i

j ∼ Y i, with Y i defined in (3.2). We shall let k now

be given by

k = max
j=1,...,n

kj. (3.4)

Suppose every real-time user is allocated k tokens. Note that we require that,

nk ≤ τ , i.e., the total number of tokens allocated must be less than or equal

to the size of frame. Also note that even though taking the maximum over kj

seems to be a restrictive, we will discuss ways to overcome this requirement

later in this subsection.

It should be clear by now that the selection criterion is changed to

maximum quantile instead of maximum rate. Thus the selection criterion in

the algorithm is now defined as

φ(B(t)) := arg max
j∈B(t)

Fj(x
j(t)),

when the Xj are continuous. The suitable modification for the discrete case

is described in Chapter 2.

With the proposed modifications, the three properties stated in the

previous section are satisfied. It follows that the claims of Theorem 3.2.2 and

3.2.3 hold under Assumption 3.3.1. This in turn shows that the value of k

obtained in (3.3) and (3.4) will be conservative.

Rather than state the modified versions of Theorem 3.2.2 and 3.2.3

under Assumption 3.3.1, we will state a stronger version that will be useful
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later in the sequel. Let S be any set such that S ⊆ {1, . . . , k}, this can be

viewed as any subset of the tokens assigned to a user. Let Zi∗
j denote the

transmitted data to real-time User i when it uses up the jth token under the

proposed scheduling scheme and let Zi
j be the same quantity for the static divi-

sion scheduling scheme. The following are the generalized theorem statements

without proofs (which are analogous to those of Theorem 3.2.2 and 3.2.3).

Theorem 3.3.2. Consider the proposed and the static division scheduling

schemes where all real-time users are allocated an equal number k of tokens.

Then under Assumption 3.3.1 and maximum quantile selection criterion, for

any real-time User i ∑
j∈S

Zi∗
j ≥st

∑
j∈S

Zi
j,

for S ⊆ {1, . . . , k}.

Theorem 3.3.3. Consider the static division scheduling scheme where all real-

time users are allocated an equal number k of tokens. Then under Assump-

tion 3.3.1 and maximum quantile selection criterion, for any real-time User

i ∑
j∈S

Zi
j ≥st

∑
j∈S

Y i
j ,

for S ⊆ {1, . . . , k}, where Y i
j ’s are i.i.d. with the same distribution as Y i is

given by (3.2).

Grouping of users. As mentioned earlier, allocating the same num-

ber of tokens k based on (3.3) and (3.4) is likely to be conservative for het-

erogeneous users. To improve upon this, we group users with smaller token

requirements into single virtual users. We explain this with an example below.

Consider the following scenario, suppose there are 5 real-time users in

the system. All users undergo Rayleigh fading, but have different mean SNR.

User 1 and 2 have a mean SNR of 3, User 3 has a mean SNR of 2, while User
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Figure 3.4: Parts (a) and (b) show token requirements and allocation with and
without grouping respectively. The shaded portion depicts the excess allocated
tokens.

4 and 5 have a mean SNR of 0.8. The SNR to rate mapping is the same as

the example discussed in Section 3.2.4, i.e., same as that of CDMA-HDR. All

real-time users are to meet a QoS guarantee of 100 kbps over a time scale of

167 msec with an outage probability of 1%. The frame size is thus 100 slots.

If tokens are allocated according to (3.3) and (3.4), then each real-time

user would be allocated 20 tokens each (see Figure 3.4(a)), and there would

be no slots left for Phase I of the proposed scheduling scheme. However, if a

given real-time user competes with at most 3 other real-time users in a slot,

then Y i = X i,(l) w.p. 1
4
, l = 1, . . . , 4. In this case Users 1 and 2 will require 11

tokens each, while User 3 requires 13 tokens and User 4 and 5 require 22 tokens

each. One can then allocate 22 tokens to User 3, 4 and 5 and combine User 1

and 2 into a single virtual user having a total of 22 tokens. This is illustrated

in Figure 3.4(b), there n′ represents the maximum number of real-time users

67



that are allowed to compete for a slot (note that n′ = n if no grouping is used,

else n′ < n). As shown, User 1 uses the first 11 tokens of the virtual user

followed by User 2. Then S = {1, . . . , 11} for User 1 and by Theorem 3.3.2

and 3.3.3, both would be able to meet their QoS requirement. We simulated

such a system with 16 best effort users and verified our claim to be true.

The advantage of grouping is exhibited in this example where instead

of 100 tokens, only 88 need to be allocated to real-time users.

There are multiple ways of grouping users together, one can also group

more than two users. Another possibility is to increase k slightly to allow

better groupings. Referring back again to our example, suppose User 3 and 4

required 21 tokens each instead of the 22 required (with grouping), then one

could have defined k as 22, i.e., over allocate by 1 token to User 3 and 4, to

allow us to group User 1 and 2.

Unfortunately finding the optimal grouping is a NP-Hard problem. We

introduce some notation to prove our claim. Let Pn′ denote the collection of

all partitions of the set of all real-time users into n′ non-empty sets. Let P

denote a partition of the set of all real-time users, and p be a set in P . We

denote the tokens required by User i when it is competing for service with

n′ virtual real-time users for service by ki(n′). Then the problem of optimal

grouping can be written as follows:

Optimal grouping problem: Find the number of groups n′ and a parti-

tion P of all real-time users into that number of groups such that

min
n′=1,...,n

n′kmax(n
′),

where

kmax(n
′) = min

P∈P
max
p∈P

∑
i∈p

ki(n′).

The following theorem shows that the above defined problem of optimal

grouping is NP-Hard.
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Theorem 3.3.4. The Optimal grouping problem is NP-Hard.

Proof. Consider a fixed n′, then finding the value of kmax(n
′) is equivalent to

the load balancing problem, which in turn is known to be NP-Hard [10].

One can however propose simple heuristics to find suboptimal grouping

solutions. For example consider a given n′, then a user must belong to one of

the n′ groups, each corresponding to a single/virtual user. A simple solution

would be to order users by their ‘load’ ki(n′) and starting with the highest

ki(n′), place them in a group that currently has the lowest total load. One can

search over different best fit solutions varying values of n′ and find the best

solution. For other heuristics, see [10][8].

Multiple QoS Guarantees. Let us consider providing different rate

guarantees to different users. Here, each user can ask for a specific rate guar-

antee ri with his own outage probability δi. However, the time scale over which

the guarantee is given, i.e., the frame length τ is common to all users. Sup-

porting multiple QoS requirements can lead to different users needing different

numbers of tokens, which can be solved by grouping real-time users together.

Thus extending our scheme to meet multiple QoS criteria efficiently.

3.3.2 Call Admission Policy

The call admission policy is quite simple, to admit a call n′k ≤ τ , where

k now is the number of tokens allocated to each user or a virtual user (if there

is grouping).

However, note that in order to check whether a new user can be ad-

mitted into the system we have assumed that the capacity distribution of the

new user Fn+1(·) is known a priori, this is unlikely. A practical solution to this

problem is to instead use a typical distribution derived from users currently
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or previously associated with the base station. For example, let F̃ (·) be the

ensemble average of the distributions for ongoing (or past) users, e.g.,

F̃ (x) =

∑n
j=1 Fj(x)

n
.

This distribution represents what a typical user might see, or what a mobile

user might see throughout its lifetime in the system. In a practical setting

Fn+1(·) could be initially set to F̃ (·) until the actual distribution of the user

has been tracked and estimated.

It is also important to note here that call admission is a long term

decision, and one may need to save resources for future events like time varying

rate distributions. Here, the number of tokens required by a user may vary

across frames, this can be due to inaccuracy in estimating the distribution

of users (especially for the newly admitted user) and time varying nature of

users’ rate distributions. Therefore one needs to reserve a pool of extra slots to

handle such variations and allocate tokens from the pool to users that are not

able to meet their QoS requirement in a frame. This pool can also be used for

incoming handoffs from neighboring cells. Estimating the number of tokens

that need to be reserved is an interesting question, and can be investigated as

future work.

3.4 Simulation Results

We simulated the proposed scheme under various scenarios. We begin

by considering the overall throughput performance as the number of real-time

users and the QoS constraint vary. Next we observe the outage of real-time

users with an increasing number of best effort users. Finally we propose a

heuristic to accommodate slow fading channels and observe its performance.

Our simulation setup is similar to that of CDMA-HDR, the slot time

period was set to 1.67 ms, with SNR to rate mapping borrowed from [2]. All
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Figure 3.5: Percentage system throughput achieved by the proposed scheduling
scheme compared to maximum rate scheduling with increasing number of real-
time users.

users have i.i.d. Rayleigh fading channel capacity distribution with a mean

SNR of 2.

3.4.1 Throughput Performance

In the first simulation, we investigate the overall system throughput

as the number of real-time users increases. Each real-time user requires a

guarantee of 100 kbps over a time scale of 167 msec (100 slots) with an outage

of 1%. The total number of users is fixed at 20, while the number of real-

time users increases from 1 to 9. For a given number of real-time users, the

number of tokens required by each user was calculated using the mixture bound

and the system was simulated by allocating these resources to each real-time

user. To put our throughput results in perspective, we theoretically calculated

the overall system throughput that would be achieved by the 20 users under

maximum rate scheduling with no QoS constraint. Here, we remind the reader
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Figure 3.6: Percentage system throughput achieved by the proposed scheduling
scheme compared to maximum rate scheduling with varying QoS constraint in
number of slots per frame.

that maximum rate scheduling maximizes overall system throughput that can

be achieved. Also note that keeping the total number of users constant allows

us to compare the throughput achieved by our scheme to a constant quantity.

The throughput achieved by our scheme as a percentage relative to this upper

theoretical bound is are plotted in Figure 3.5. The first observation is that

we are able to achieve more than 90% of throughput with 1 real-time user.

Second, note that while the number of real-time users increases from 1 to 9,

the throughput degradation experienced is less than 9%. This indicates that

our scheme is quite robust to increases in the number of real-time users in

terms of degradation in the overall system throughput.

In our second set of simulations, we studied the tradeoff in the overall

system throughput as the QoS requirements were relaxed. The total number

of users in the system was set to 20 with the number of real-time users fixed

at 5. Each real-time user was given a guarantee of 100 kbps with an outage of
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1% over varying frame sizes. The number of slots in a frame was varied from

60 (100 msec) to 600 (1 sec) in steps of 60. We again plotted the throughput

achieved as a percentage of that possible under maximum rate. The results are

shown in Figure 3.6. As expected, the system throughput grows as the QoS

constraint is relaxed. However, note that the gains saturate quite quickly. One

gets more than 6% gain in the first half of the plot, i.e., going from 60 slots

per frame to 300 slots per frame, but only about 1% gain when going from 300

to 600 slots. We also observe that even for the most strict QoS requirement

our scheme is able to achieve more than 84% of the capacity which like Figure

3.5 indicates that our scheme is very throughput efficient.

This simulation highlights the tradeoff between the strictness of the

QoS constraint and the system throughput. If the QoS constraint is too tight,

then it may not make sense to glean opportunistic gain by mixing the two

types of users.

3.4.2 Outage versus Number of Best Effort Users

We now study the outage experienced by a real-time user as the number

of best effort users increases. This is interesting because as the number of best

effort users increase, real-time users are more likely to get served only during

the second phase of the proposed scheduling scheme. Since the second phase

is less throughput efficient than the first, the outage probability of a real-time

user should increase with the number of best effort users. However since our

bounds are calculated for the worst case scenario, each real-time user should

still be able to meet his requirement. We note that the number of ongoing best

effort sessions is likely to vary over the lifetime of a real-time session, and it is

preferable not to require admission control on such sessions. Our simulations

verify that the proposed scheduling scheme provides sufficient protection to

real-time users even when the number of best effort users vary arbitrarily.

The setup was similar to the previous subsection. Each real-time user
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Figure 3.7: Mean percentage outage experienced by real-time users with in-
creasing number of best effort users. The dotted line represents the outage ob-
tained by just simulating the second phase of the proposed scheduling scheme.

required a guarantee of 100 kbps over a time scale of 167 msec (100 slots)

with an outage of 1%. The number of real-time users was fixed to 5, while

the number of best effort users was varied from 5 to 45 in steps of 5. We

also simulated the worst case scenario, where all real-time users would be

served only in the second phase. Figure 3.7 shows the results in terms of mean

percentage outage. The dotted line corresponds to the outage in the worst case

scenario. Observe that the mean outage is almost a magnitude lower than the

guaranteed outage. This is because a lower bound is used in computing the

required number of tokens and an integral number of tokens are allocated to

a real-time user. Next observe that even when the number of best effort users

is 45, i.e., 9 times the number of real-time user, there is still a reasonable gap

in the outage when compared to the worst case scenario. This indicates that

the real-time users get some gain from the first phase even for a large number

of best effort users.
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Figure 3.8: Mean percentage outage experienced by real-time users under
token borrowing scheme and slow fading channels. The dotted line represents
the target outage.

3.4.3 Outage Performance under Slow Fading

Our analysis in this chapter assumes fast fading channels, i.e., indepen-

dent channel realizations per slot, however this may be optimistic. We now

consider channels with slow fading characteristics. Our simulations show that

the proposed scheme does not perform well in such channel conditions. We

remedy this by proposing a heuristic.

In a frame some real-time users may be experiencing higher fades than

their mean, while other real-time users might be suffering low fades. Then

those experiencing high fades will require fewer allocated tokens and vice versa.

This immediately suggests the possibility of token borrowing among users, i.e.,

users undergoing high fade allow other users to borrow some of their slots.

If a real-time user satisfies his data requirement before finishing his allocated

tokens, his remaining tokens are placed in a virtual pool. Whenever a real-time
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user finishes his allocated quota of tokens without satisfying his requirement,

he can borrow tokens from the virtual pool until his requirement is satisfied

or the pool is exhausted.

We simulated the performance of the proposed heuristic under varying

degree of correlation (in time) of users’ channel. There were a total of 20 users

in the system with 5 real-time users. Each real-time user is given a guarantee

of 100 kbps over a time scale of 167 msec with an outage of 1%. The degree

of correlation in a user’s channel is varied by increasing the Doppler frequency

associated with the channel from 25 Hz to 55 Hz in steps of 10 Hz. The

mean percentage outage experienced across users is observed for each step are

plotted in Figure 3.8. Observe that the proposed heuristic is able to meet its

requirement for Doppler frequencies higher than that of 35 Hz.

3.5 Conclusion

In this chapter we proposed a scheduling and resource allocation scheme

that allowed base station to serve a mixture of real-time and best effort users.

The proposed scheme realizes probabilistic QoS guarantees over short time

scales to real-time users while exploiting both intra and inter class oppor-

tunism across users. The effectiveness of the proposed approach is validated

by simulation results. The proposed scheme also did away with the conven-

tional approach of providing QoS by tuning relative weights among users. We

also developed a simple call admission policy for the proposed scheme. A

unique advantage of the proposed approach is that it supports users with ar-

bitrary channel capacity distributions, this makes the scheme amenable to real

world scenarios. Finally we proposed a heuristic for channels with slow fading

characteristics.
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3.6 Appendix

3.6.1 Proof of Theorem 3.2.2

Before presenting the proof, we introduce some notation. A vector of

quantities say Wj is represented as
−→
W 1:l = (W1, . . . ,Wl). For any two vectors

−→
W 1:l,

−→
V 1:l,

−→
W 1:l ≥ −→

V 1:l means that for all j = 1, . . . , l, Wj ≥ Vj. In other

words,
−→
W 1:l is componentwise greater than

−→
V 1:l. Recall that N∗

j is the random

variable representing the number of active real-time users in the system when

a typical real-time user gets the jth token in the proposed scheduling scheme

and Nj be the same quantity for the static division scheduling scheme. Then
−→
N ∗

1:k and
−→
N 1:k are the vector representation of N∗

j and Nj respectively. We

begin by proving the following lemma.

Lemma 3.6.1. Consider the proposed and static division scheduling scheme

with all real-time users being allocated an equal number of k tokens. Then for

a typical real-time user under Assumption 3.2.1 and maximum rate selection

criterion

Pr(
−→
N ∗

1:k = −→n 1:k) = Pr(
−→
N 1:k = −→n 1:k) (3.5)

for any vector −→n 1:k.

Proof. For the proposed scheduling scheme, consider only those slots in which

real-time users are served. There are exactly nk slots of this type. If one

considers the relative slot assignment possibilities among real-time users in

these nk slots, then the number of possible realizations is
(

nk
k...k

)
.

Now consider a slot among these nk slots, say the lth one. Then due to

Property 3.2.2, every active real-time user during that slot is equally likely to

get selected for service. Again due to Property 3.2.1 and 3.2.2, every real-time

user is equally likely to be competing or active during the lth slot. Then if we

average over all realizations of the proposed scheduling scheme, each user is

equally likely to get assigned the lth slot.
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Then the probability of a realization of the proposed scheduling scheme

in terms of the assignment of the nk slots among the real-time users is given

by 1

( nk
k...k)

. Consider realizations with
−→
N ∗

1:k = −→n 1:k for a particular real-time

user. Let there be h−→n 1:k
such realizations, i.e, with

−→
N ∗

1:k = −→n 1:k for the user.

Then

Pr(
−→
N ∗

1:k = −→n 1:k) =
h−→n 1:k(

nk
k...k

) .

Similarly for the static division scheduling scheme,

Pr(
−→
N 1:k = −→n 1:k) =

h−→n 1:k(
nk

k...k

) .

Then clearly

Pr(
−→
N ∗

1:k = −→n 1:k) = Pr(
−→
N 1:k = −→n 1:k).

Next we present the proof for Theorem 3.2.2.

Proof. Recall that
∑k

j=1 Z∗
j ≥st

∑k
j=1 Zj means that for any z,

Pr(
k∑

j=1

Z∗
j ≥ z) ≥ Pr(

k∑
j=1

Zj ≥ z). (3.6)

To prove this, we will show that for any vector −→z 1:k = (z1, . . . , zk),

Pr(
−→
Z ∗

1:k ≥ −→z 1:k) ≥ Pr(
−→
Z 1:k ≥ −→z 1:k).

Conditioning on the number of real-time users present in each of the slots, we

get

∑
−→n 1:k

Pr(
−→
Z ∗

1:k ≥ −→z 1:k|−→N ∗
1:k = −→n 1:k) Pr(

−→
N ∗

1:k = −→n 1:k) ≥
∑
−→n 1:k

Pr(
−→
Z 1:k ≥ −→z 1:k|−→N 1:k = −→n 1:k) Pr(

−→
N 1:k = −→n 1:k). (3.7)
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From Lemma 3.6.1, we know that

Pr(
−→
N ∗

1:k = −→n 1:k) = Pr(
−→
N 1:k = −→n 1:k).

Then to prove (3.7), we need to show that

Pr(
−→
Z ∗

1:k ≥ −→z 1:k|−→N ∗
1:k = −→n 1:k) ≥ Pr(

−→
Z 1:k ≥ −→z 1:k|−→N 1:k = −→n 1:k).

Let M∗
j be the random variable representing the number of active best effort

users when a typical real-time user gets selected the jth time. Then
−→
M∗

1:k is

the vector representation of the M∗
j . Conditioning the left hand side of (3.8)

on M∗
j , we get

∑
−→m1:k

Pr(
−→
Z ∗

1:k ≥ −→z 1:k|−→N ∗
1:k = −→n 1:k,

−→
M∗

1:k = −→m1:k) Pr(
−→
M∗

1:k = −→m1:k)

≥ Pr(
−→
Z 1:k ≥ −→z 1:k|−→N 1:k = −→n 1:k).

We also know that channel variations are independent across slots, thus we

have that

Pr(
−→
Z ∗

1:k ≥ −→z 1:k|−→N ∗
1:k = −→n 1:k,

−→
M∗

1:k = −→m1:k) = Pr(Z∗
1 ≥ z1|N∗

1 = n1,M
∗
1 = m1)

. . . Pr(Z∗
k ≥ zk|N∗

k = nk,M
∗
k = mk),

and

Pr(
−→
Z 1:k ≥ −→z 1:k|−→N 1:k = −→n 1:k) = Pr(Z1 ≥ z1|N1 = n1) . . . Pr(Zk ≥ zk|Nk = nk).

Therefore to prove (3.6), we need to prove that ∀j,

Pr(Z∗
j ≥ zj|N∗

j = nj,M
∗
j = mj) ≥ Pr(Zj ≥ zj|Nj = nj)

This is clearly true from Property 3.2.3.

As an aside, note that Theorem 3.2.2 more generally proves that for any

non-decreasing function f(
−→
W 1:k) in

−→
W 1:k, we have that f(

−→
Z ∗

1:k) ≥st f(
−→
Z 1:k).

79



3.6.2 Proof of Theorem 3.2.3

We present a few lemmas before proving the theorem.

Lemma 3.6.2. Given any sequence of non-negative numbers al, bl and cl, l =

1, . . . , n. If ∀ l, j, s.t. l > j, al ≥ aj and ∀h = 1, . . . , n,
∑n

l=h bl ≥
∑n

l=h cl,

then
∑n

l=1 albl ≥
∑n

l=1 alcl.

Proof. We know that ∀h,
∑n

l=h bl ≥
∑n

l=h cl and ∀ l, j, st l > j, al ≥ aj. So

∀h,

(ah − ah−1)(
n∑

l=h

bl) ≥ (ah − ah−1)(
n∑

l=h

cl),

where a0 is defined to be equal to 0. Summing over all h, we get

n∑

h=1

{(ah − ah−1)(
n∑

l=h

bl)} ≥
n∑

h=1

{(ah − ah−1)(
n∑

l=h

cl)}.

This simplifies to
∑n

l=1 albl ≥
∑n

l=1 alcl.

Lemma 3.6.3. Consider the static division scheduling scheme with all real-

time users being allocated an equal number of k tokens and maximum rate

selection criterion. Then under Assumption 3.2.1, the data received by a typ-

ical real-time user when it gets served for the last time, i.e., the kth time has

the same distribution as Y , i.e., Zk ∼ Y .

Proof. Due to Property 3.2.1 and 3.2.2, the probability that a user is the first

one to leave the system, i.e., be selected for service k times is 1/n. If it is the

first user to leave the system, then Zk ∼ X(n). Similarly for any value of j,

the probability that a user gets selected the kth time when there are a total of

j active real-time users in the system is 1/n. Then for that user, Zk ∼ X(j).

Hence, Zk ∼ Y .
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Define a set,

Sn̄l
= {−→n l+1:k|∃nj in −→n l+1:k s.t. nj ≥ n̄l and

Pr(
−→
Z l+1:k ≥ −→z l+1:k|−→N l+1:k = −→n l+1:k) ≥

Pr(
−→
Z l+1:k ≥ −→z l+1:k|−→N l+1:k = (n̄l, . . . , n̄l))}.

Lemma 3.6.4. For any −→n l+1:k /∈ Sn̄l
,

Pr(
−→
Z l+1:k ≥ −→z l+1:k|−→N l+1:k = −→n l+1:k) ≤ Pr(

−→
Z l+1:k ≥

−→z l+1:k|−→N l+1:k = (n̄l, . . . , n̄l)).

Proof. We give the proof by contradiction. Assume that ∃−→n l+1:k /∈ Sn̄l
s.t.

Pr(
−→
Z l+1:k ≥ −→z l+1:k|−→N l+1:k = −→n l+1:k) > Pr(

−→
Z l+1:k ≥

−→z l+1:k|−→N l+1:k = (n̄l, . . . , n̄l)).

Now given the number of users present in the system, the data transferred in

a slot is independent of other slots. So,

Pr(
−→
Z l+1:k ≥ −→z l+1:k|−→N l+1:k = −→n l+1:k) = Pr(Zl+1 ≥ zl+1|Nl+1 = nl+1) . . .

Pr(Zk ≥ zk|Nk = nk)

and

Pr(
−→
Z l+1:k ≥ −→z l+1:k|−→N l+1:k = (n̄l, . . . , n̄l)) = Pr(Zl+1 ≥ zl+1|Nl+1 = n̄l) . . .

Pr(Zk ≥ zk|Nk = n̄l).

Since −→n l+1:k /∈ Sn̄l
, then ∀j, nj < n̄l. So ∀j, by Property 3.2.3

Pr(Zj ≥ zj|Nj = n̄l) ≥ Pr(Zj ≥ zj|Nj = nj).

This contradicts our assumption.
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We prove Theorem 3.2.3 now.

Proof. The goal is to show
∑k

j=1 Zj ≥st
∑k

j=1 Yj, i.e., ∀ z,

Pr(
k∑

j=1

Zj ≥ z) ≥ Pr(
k∑

j=1

Yj ≥ z).

To prove this, we will show that for any vector −→z 1:k = (z1, . . . , zk),

Pr(
−→
Z 1:k ≥ −→z 1:k) ≥ Pr(

−→
Y 1:k ≥ −→z 1:k).

Since the Yj’s are independent, this simplifies the above inequality to

Pr(
−→
Z 1:k ≥ −→z 1:k) ≥ Pr(Y1 ≥ z1) . . . Pr(Yk ≥ zk). (3.8)

Using conditioning, we can rewrite the left side of (3.8) as

Pr(Z1 ≥ z1|−→Z 2:k ≥ −→z 2:k) . . . Pr(Zj ≥ zj|−→Z j+1:k ≥ −→z j+1:k)

. . . Pr(Zk ≥ zk).

Then (3.8) can be proved if we show that ∀j,

Pr(Zj ≥ zj|−→Z j+1:k ≥ −→z j+1:k) ≥ Pr(Yj ≥ zj).

Conditioning on the number of users present in the system during the jth time

when the user is served,

∑n
nj=1{Pr(Zj ≥ zj|−→Z j+1:k ≥ −→z j+1:k, Nj = nj) Pr(Nj = nj|−→Z j+1:k ≥ −→z j+1:k)}

≥ ∑n
nj=1{Pr(Yj ≥ zj|Ñj = nj) Pr(Ñj = nj)},

(3.9)

where all Ñj are i.i.d. and uniformly distributed on {1, . . . , n} (from (3.1)).

Given the number of users in a slot, the data obtained is independent of data

received in other slots, so

Pr(Zj ≥ zj|−→Z j+1:k ≥ −→z j+1:k, Nj = nj) = Pr(Zj ≥ zj|Nj = nj).
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Note that when Nj = nj, then a user will have to compete among nj users to

get service in the slot, so

Pr(Zj ≥ zj|Nj = nj) = Pr(X(nj) ≥ zj).

Also from equation (3.1), we have

Pr(Yj ≥ zj|Ñj = nj) = Pr(X(nj) ≥ zj).

We can simplify (3.9) to,

∑n
nj=1 Pr(X(nj) ≥ zj) Pr(Nj = nj|−→Z j+1:k ≥ −→z j+1:k) ≥∑n

nj=1 Pr(X(nj) ≥ zj) Pr(Ñj = nj).
(3.10)

From Lemma 3.6.2, (3.10) can be proved if ∀l,

Pr(X(l+1) ≥ zj) ≥ Pr(X(l) ≥ zj) (3.11)

and ∀n̄j,

Pr(Nj ≥ n̄j|−→Z j+1:k ≥ −→z j+1:k) ≥ Pr(Ñj ≥ n̄j). (3.12)

From Property 3.2.3, it is clear that (3.11) is true. To prove (3.12), first

consider the right hand side of the equation. Referring to Lemma 3.6.3, we

get

Pr(Ñj ≥ n̄j) = Pr(Nk ≥ n̄j) =
∑

−→n j+1:k|nk≥n̄j
Pr(

−→
N j+1:k = −→n j+1:k). (3.13)

We know that ∀j, Nj ≥ Nj+1 almost surely. Thus {−→n j+1:k|nk ≥ n̄j} ⊆ Sn̄j
,

then from (3.13) we get

∑
−→n j+1:k∈Sn̄j

Pr(
−→
N j+1:k = −→n j+1:k) ≥ Pr(Ñj ≥ n̄j). (3.14)

Now consider the left hand side of (3.12), conditioning on
−→
N j+1:k, we get

∑
−→n j+1:k

{Pr(Nj ≥ n̄j|−→Z j+1:k ≥ −→z j+1:k,
−→
N j+1:k = −→n j+1:k)

Pr(
−→
N j+1:k = −→n j+1:k|−→Z j+1:k ≥ −→z j+1:k)} ≥∑

−→n j+1:k∈Sn̄j
{Pr(Nj ≥ n̄j|−→Z j+1:k ≥ −→z j+1:k,

−→
N j+1:k = −→n j+1:k)

Pr(
−→
N j+1:k = −→n j+1:k|−→Z j+1:k ≥ −→z j+1:k)}.

(3.15)
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Note that for −→n j+1:k ∈ Sn̄j
,

Pr(Nj ≥ n̄j|−→Z j+1:k ≥ −→z j+1:k,
−→
N j+1:k = −→n j+1:k) = 1.

So combining (3.14) and (3.15), if we can show that

Pr(
−→
N j+1:k ∈ Sn̄j

|−→Z j+1:k ≥ −→z j+1:k) ≥ Pr(
−→
N j+1:k ∈ Sn̄j

),

then we would have proven (3.12). Using Bayes’ formula we can rewrite the

above inequality as,

Pr(
−→
Z j+1:k ≥ −→z j+1:k|−→N j+1:k ∈ Sn̄j

) ≥ Pr(
−→
Z j+1:k ≥ −→z j+1:k).

Conditioning again on
−→
N j+1:k, we get

∑
−→n j+1:k∈Sn̄j

{Pr(
−→
Z j+1:k ≥ −→z j+1:k|−→N j+1:k = −→n j+1:k)

Pr(
−→
N j+1:k = −→n j+1:k|−→N j+1:k ∈ Sn̄j

)} ≥∑
−→n j+1:k

{Pr(
−→
Z j+1:k ≥ −→z j+1:k|−→N j+1:k = −→n j+1:k)

Pr(
−→
N j+1:k = −→n j+1:k)}.

(3.16)

This is true as a consequence of Lemma 3.6.4.
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Table 3.1: Notation Summary

n Number of real-time users
nb Number of best effort users

Ar(t) Set of active real-time users during slot t
Ab(t) Set of active best effort users during slot t
A(t) Set of all active users during slot t, A(t) = Ar(t) ∪ Ab(t)
X i Marginal distribution of channel capacity seen by

User i on a typical slot
xi(t) Realization of X i during slot t
Fi(·) Distribution function of X i

F−1
i (·) Inverse function of Fi(·)
X Under Assumption 3.2.1, X ∼ X i

X(l) X(l) = max{X1, . . . , Xl} where Xj’s are i.i.d. and
Xj ∼ X

X i,(l) X i,(l) = max{X i
1, . . . , X

i
l } where X i

j’s are i.i.d. and
X i

j ∼ X i

r Minimum rate guarantee given to a real-time user
τ Time period over which rate guarantee is given
δ Outage probability of the rate or QoS guarantee

Ñ Uniformly distributed on {1, . . . , n}
Y Y ∼ X(Ñ), i.e., Y = X(l) w.p. 1

n
, l = 1, . . . , n

Y i Y i ∼ X i,(Ñ), i.e., Y = X i,(l) w.p. 1
n
, l = 1, . . . , n

N∗
j Number of contending real-time users when a typical

real-time user gets selected for service jth time under the
the proposed scheduling scheme and Assumption 3.2.1

Z∗
j Rate seen by a typical real-time user the jth time he is

selected for service under the proposed scheduling
scheme and Assumption 3.2.1

Zi∗
j Same quantity as Z∗

j , but for User i under Assumption 3.3.1
Nj Same quantity as N∗

j , but for static division scheme
Zj Same quantity as Z∗

j , but for static division scheme
Zi

j Same quantity as Zi∗
j , but for static division scheme

k Number of tokens allocated to one/group of real-time user(s)
kj Number of tokens required by jth real-time user
S A subset of tokens S ⊂ {1, . . . , k}

φ(·) Set valued function for the selection criterion
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Chapter 4

Reducing Feedback Overhead for

Opportunistic Scheduling

4.1 Introduction

Motivation. Opportunistic scheduling can lead to significant gains in

the performance of wireless networks. However, these gains are achieved at

the expense of increased feedback overhead. Whenever a base station makes

an opportunistic decision on the user(s) to serve, it needs to know the ‘current’

channel capacity (or some function of it) for all of the users. Therefore before

each decision, all users need to transmit their current channel conditions to

the base station. This can be a high overhead in terms of the bandwidth

and the energy expended (especially at the mobile) for feedback, as compared

to the gains in throughput that one might hope to glean from opportunistic

scheduling.

For example, consider a system where all users are experiencing in-

dependent and identically distributed Rayleigh channel fading signal to noise

ratio (SNR) and all feedback their channel state prior to each data transmis-

sion slot. In this case, the gain in the average signal to noise ratio (SNR) of

the user selected for service grows roughly logarithmically with the number of

users, whereas the amount of feedback overhead increases linearly. Suppose

the system has 100 users, then one can achieve 90% of the gain in average SNR

by soliciting feedback from a random subset of only 60 users and choosing to

serve the user with the highest current SNR. This underscores the need and

the potential to reduce the amount of feedback required to realize the major

gains of opportunistic scheduling.
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One can reduce the resources used for soliciting and transmitting feed-

back in the following two simple ways.

Contention. In the contention based approach users compete for a pool

of resources allocated, e.g., CDMA code, a time slot, etc., to feed back their

current channel capacity state. For example, a user may opportunistically

send its feedback if its current channel capacity is above a certain threshold.

The thresholds are designed so that feedback is successful, i.e., only one or a

limited number of users contend at the same time. This allows one to achieve a

large part of the opportunistic gains possible over long time periods. However,

it is possible that feedback gets wasted because too many users contend to

transmit their states. Therefore it is possible that occasionally no opportunism

is exploited.

Polling. Alternatively the base station may solicit feedback from a sub-

set of users, i.e., allocates feedback resources for the subset of users, and choose

to opportunistically among them. Since we are exploiting opportunism over

only a subset of users the long term gains of this approach are generally re-

duced as compared to the contention based approach. However, because there

is no possibility of wasting feedback resources, some degree of opportunism is

almost always exploited.

Related Work. Let us discuss some of the previous work done in

this area. A simple threshold based scheme was proposed in [11] to reduce

the feedback overhead. In their setup each user had a dedicated resource for

sending its feedback. The idea was to only allow a user whose current channel

capacity exceeds a threshold to feedback his current state. Their results showed

that such a scheme led to a significant reduction in the amount of feedback data

while resulting in only a small penalty in the overall throughput. However,

even though the energy spent in transmitting and receiving the feedback is

reduced, the need for other resource requirements (like bandwidth, etc.) for

sending feedback is not reduced.
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Some contention based schemes have also been proposed in the litera-

ture. One of the frequently cited ideas is ‘opportunistic splitting’ proposed in

[26]. The scheme was proposed in an uplink context, but it is also applicable

to downlink scheduling (which is the focus in this chapter). The idea is to

divide time into equal sized time units, each unit consists of mini slots which

are pooled resources used to learn the current channel capacity of users via

feedback, while the rest of the unit is used for data transmission to the selected

user.

In opportunistic splitting, initially a pair of thresholds depending on

the number of users is set. At the start of the first mini slot, every user

whose current channel capacity is between the pair of thresholds contends,

i.e., transmits to the base station. The base station then broadcasts to all the

users whether on the mini slot no user contended, exactly one user contended,

or a collision occurred, i.e., more than one user contended and the base station

was unable to decode any information. Depending on the broadcast message

received, each user modifies its threshold according to a binary search like

algorithm and users’ whose channel capacity is between the new thresholds

contend in the next mini slot. This process continues until exactly one user

contends, therefore the number of mini slots before a transmission may vary.

The last user to contend is guaranteed to be the user with the highest current

channel capacity. The authors show that on average 2.5 mini slots will be

required for the algorithm to find the user with the highest current channel

capacity. This is a significant reduction in feedback as compared to the naive

scheme requiring a linear number of slots required for soliciting feedback from

all users.

However, opportunistic splitting requires two way communication and

coordination between the base station and users every mini slot. This may

be hard to implement since the time scales involved are quite small. (In

practical systems, a data transmission slot is on the order of milliseconds,

thus mini slots should be much smaller than milliseconds.) To overcome this
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coordination problem, a random access based feedback protocol was proposed

in [35], where only one way communication is required. In their scheme each

data transmission is preceded by a fixed number of mini slots (the smaller the

number of mini slots, the lesser the time used in feedback). In each mini slot,

users whose current channel capacity exceeds a threshold contend with some

probability. If on a given mini slot exactly one user contends, then that user’s

identity is stored at the base station. Subsequently the base station randomly

serves one of the identified users. However if no user is identified, one is selected

at random for service. The threshold and probability of contention can be

optimized to maximize the overall sum capacity if the channel distributions

are known. However, simulation results presented in the paper show that

a truncated and thus comparable version of opportunistic splitting usually

performed better than the proposed scheme. (Some researchers have also

studied reducing feedback overhead in OFDM systems [30][34], which is not

the focus here.)

An underlying assumption in the above research was that users in the

system see i.i.d. channel capacity distributions. (Note that an extension of

opportunistic splitting to the case where users can experience one of two pos-

sible channel capacity distributions is presented in [27], however this still does

not seem a reasonable model.) In practice users’ channel capacity variations

are heterogenous, e.g., users close to a base station see significantly different

channel capacity than those further off. Extending these schemes to the non

i.i.d. case is in general very complex, because the thresholds then will not

only be dependent on the user’s own channel capacity distribution and the

number of users, but also other users’ channel capacity distributions. Ideally

one would like to have an easy way to set the thresholds for the heterogeneous

case.

All of the above mentioned work focussed on reducing feedback in the

context of opportunistic scheduling of best effort traffic. Whereas base stations

are likely to support a mixture of both best effort and real-time traffic. Real-
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time traffic has requirements over short time scales, therefore for real-time

traffic to benefit from opportunism one needs to exploit opportunism over

short time scales. Additionally, as the deadline for meeting users’ quality of

service (QoS) requirement approaches, the base station needs to serve only

those users whose deadline is nearing. Therefore the base station can exploit

opportunism among only the subset of users that are roughly in equal danger

of not meeting their QoS requirements. In other words, in a real-time context

the requirements are more stringent in the sense that opportunism needs to

be exploited over short time scales, so there are lesser opportunities to do so.

Therefore the need for efficient utilization of feedback resources is higher as

compared to the best effort case.

Contributions. The following are the contributions of this chapter.

We first propose a contention based scheme, which we shall call static

splitting, also geared at reducing feedback overheads in a best effort traffic

only scenario. Like [35], our setup consists of a fixed number of mini slots, and

does not require two way communication. We will combine static splitting with

maximum quantile scheduling to handle heterogeneity in users’ channel capac-

ity variations. This allows one to compute a common threshold determining

when users are to transmit feedback, which is independent of their possibly

heterogenous channel distributions. This is unlike other proposed schemes as

it allows off-line calculation of ‘optimal’ thresholds. Static splitting is designed

to find a user that is currently experiencing a high quantile, instead of finding

the users with the highest quantile (which may require a lot more resources).

The advantage of such an approach is supported by our simulation results

which indicate that static splitting can perform much better (for example 40%

improvement) than a truncated form of opportunistic splitting.

We then consider a scenario where traffic is a mixture of best effort

and real-time traffic, for which QoS guarantees have to be met over short

time scales. We argue that in such a scenario a combination of contention
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k mini slots

mini slot transmission slot

Figure 4.1: Structure of a time unit.

and polling based feedback strategies is needed. Based on this insight, we

combine static splitting and dynamic polling with a variation of a token based

scheduling scheme proposed in Chapter 3 to provide QoS. We call this the

joint polling and opportunistic scheduling (JPOS) scheme. Under fast fading,

we show a lower bound on the service seen by a real-time user under the

JPOS scheme. Furthermore, based on this scheme we propose a heuristic that

simulations indicate not only meets users’ QoS guarantees, but achieves up to

89% of system capacity in terms of the long term throughput that is realized.

Chapter Organization. The chapter is organized as follows. In Sec-

tion 4.2 we describe the proposed static splitting scheme in the best effort

traffic only scenario. In Section 4.3 we consider the case where traffic is a mix-

ture of both best effort and real-time flows and describe the proposed JPOS

scheme to reduce feedback in such mixed scenario. Simulation results are

presented in Section 4.4, and Section 4.5 concludes this chapter.

4.2 Opportunistic Feedback Based on Static Splitting

4.2.1 System Model and Notation

We begin by introducing our system model and some notation. Like

the previous two chapters we consider only downlink scheduling for simplicity.

The system model is slightly different from the previous chapters. Here time

is divided into equal size ‘time units’. Each time unit consists of k equal size

mini slots followed by a transmission slot during which at most one user can be

served (see Figure 4.1). The k mini slots are used for collecting feedback. We
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will define the exact nature of the feedback later. Following are the assumption

on user’s channel capacity characteristics over time units.

Assumption 4.2.1. We assume the channel capacity (rate) for each user

is a stationary ergodic process and these processes are independent, but not

necessarily identically distributed across users. Further we assume that the

marginal distribution for each user is continuous and either known a priori

(or estimated) at the user.

We have justified most of the assumptions in the previous two chap-

ters. We note that the assumption that a user has a priori knowledge of the

marginal distributions for the channel capacity is implicitly used in all of the

previous work discussed above [35][11][27][26]. We require the users’ rates to

be continuous only to keep our discussion simple. (In fact we perform our sim-

ulations for discrete rate distributions.) The details on handling the discrete

case were discussed in Chapter 2.

The notation is also similar to that in previous chapters. We will let

xi(t) denote the realization of the downlink channel capacity/rate of User i at

time unit t, and let X i be a random variable whose distribution is that of the

channel capacity of User i on a typical time unit. Recall that we assume X i to

be continuous random variables that are independent but need not necessarily

be identically distributed across users. We denote the distribution function of

X i by FXi(·). For simplicity, we will assume that FXi(·) is a strictly increasing

function, so that its inverse denoted by F−1
Xi (·) is defined. Finally note that by

Assumption 4.2.1 FXi(·) is known at the user.

For analysis purposes, in this section we will only consider a ‘fixed

saturated’ regime where there is a fixed number of users in the system and

each user in the system is infinitely backlogged. For now we allow only best

effort flows. The number of users in the system are denoted by n.
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4.2.2 Proposed Static Splitting Feedback Scheme for Best Effort
Traffic

In Chapter 2 we discussed that maximum quantile scheduling has very

desirable properties, it maximizes the amount of opportunism, i.e., quantile

of the user being served, is intrinsically temporally fair, and asymptotically

in the number of users, maximizes the sum throughput. As compared to

other opportunistic scheduling schemes proposed in literature, e.g., maximum

throughput [16], proportionally fair [2], etc., maximum quantile has some dis-

tinct advantages in handling cases where users have heterogeneous, unknown

and possibly slowly varying channel capacity distributions. In particular when

one must resort to estimating parameters, such schemes tend to lose in terms

of throughput and fairness. Therefore, in this chapter, we will focus on chan-

nel feedback schemes which are compatible with opportunistic scheduling of

users currently experiencing channel capacity in the high quantile, i.e., high

FXi(xi(t)).

Recall that in each time unit the data transmission part is preceded

by k mini slots. The objective during the mini slots is to identify a user

whose current rate is in a high quantile. Note that we do not necessarily

have to identify the user with the highest quantile, we will revisit this point

later. For simplicity we will assume in this subsection that the number of

users n is such that n
k

is an integral value. In our proposed scheme, each user

is associated with exactly one mini slot, so n
k

users are associated with each

mini slot. A user can only contend (i.e., send feedback) on the mini slot with

which it is associated. In other words, users are split into k ‘static’ groups,

and users within the same group may contend for the same mini slot. Based

on n and k (which a user learns from the base station), each user calculates

(looks up) a quantile threshold denoted by qi, i = 1, . . . , n which is used to

determine if it will contend by transmitting feedback – we will give details on

optimizing qi later. Specifically, recall that at time unit t, the rate User i can

support is denoted by xi(t). Prior to User i’s mini slot the user would check
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if xi(t) > F−1
Xi (q

i), and if so it would transmit the quantile FXi(xi(t)) of its

current rate to the base station.

If only one user contends during a given mini slot, we assume that

the base station is able to determine both the identification of the user and

the value of its quantile, and store this information. If more than one user

contends for a given mini slot, a collision occurs, and the base station stores

this fact. Finally, if no user contends for the mini slot, then no action is taken

by the base station. The process is repeated across all mini slots.

Once the contention for mini slots is finished, if the base station was

able to identify at least one user, then it serves the user with the highest

quantile among the identified users. Else, if the base station fails to identify

any such user, then it serves a randomly selected user. This can occur in two

ways, if collisions have been recorded for none of the mini slots, then a user

is randomly selected from all the users. However, if a collision occurred on at

least one of the mini slots, then a user is randomly selected for service among

the groups of users associated with the mini slots where collisions occurred.

Doing so, increases the chance of choosing a user with a high quantile.

The last challenge for this simple protocol is determining a good choice

for the contention thresholds qi, i = 1, . . . , n. Below we will do a simple analysis

assuming a common threshold q across users, i.e., qi = q, ∀i = 1, . . . , n. Let Ai

denote the event that User i is selected under the above protocol and 1Ai be

the indicator function for Ai. Our goal is to serve users with a high quantile,

i.e., maximize the expected sum quantile E[
∑n

i=1 FXi(X i)1Ai ] of the scheduled

users. Recall that we have assumed n
k

is integer valued, i.e., each mini slot has

exactly the same number of users, and FXi(X i) are i.i.d. across users, thus if

all users share a common threshold q, it follows by symmetry that each user

is equally likely to be selected, i.e., Pr(Ai) = 1
n
, and so

E[
n∑

i=1

FXi(X i)1Ai ] =
n∑

i=1

E[FXi(X i)|Ai] Pr(Ai) =
1

n

n∑
i=1

E[FXi(X i)|Ai].
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Again by symmetry, E[FXi(X i)|Ai] is equal across all users, so it suffices to

optimize q to maximize this quantity for any user.

Recall that under static splitting User i may be selected for service

either because it successfully contended on its mini slot and has the highest

quantile among users that were identified, or no user was successful and it

was selected at random. Let Ai
b, b = 1, . . . , k denote the event that successful

contention occurs over b mini slots, and User i is selected for service. In other

words under event Ai
b, not only did User i have the highest quantile among its

group and was successfully identified by the base station, it also had the highest

quantile among the exactly b users that were identified by the base station,

and was therefore selected for service. We shall let Ai
0 denote the event that

User i is selected at random in the case where the feedback protocol was not

able to identify any user. Note that Ai
b, b = 1, . . . , k and Ai

0 form a partition

of Ai and so we have that

E[FXi(X i)|Ai] =
k∑

b=1

E[FXi(X i)|Ai
b] Pr(Ai

b|Ai) + E[FXi(X i)|Ai
0] Pr(Ai

0|Ai).

(4.1)

Let pn denote the probability that a user is able to successfully contend

in a mini slot in a time unit with n competing users, then pn = n
k
(1− q)q

n
k
−1.

Now consider
∑n

i=1 Pr(Ai
b), it is the total probability of selecting a user that

has the highest quantile among the exactly b identified users. This is equal to

the probability that the base station identifies exactly b users, i.e., successful

contention on b mini slots, then,
n∑

i=1

Pr(Ai
b) =

(
k

b

)
(pn)b(1− pn)k−b.

Now by symmetry, one can conclude that for any User i

Pr(Ai
b) =

1

n

(
k

b

)
(pn)b(1− pn)k−b.

Furthermore since Pr(Ai) = 1
n
,

Pr(Ai
b|Ai) =

(
k

b

)
pb

n(1− pn)k−b.
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One can also easily show that

E[FXi(X i)|Ai
b] =

b

b + 1
(1− q) + q.

Finally, we have that

Pr(Ai
0|Ai) = 1−

k∑

b=1

Pr(Ai
b|Ai),

and we can approximate E[FXi(X i)|Ai
0] as

E[FXi(X i)|Ai
0] ≈

1

2
,

i.e., the average quantile of the selected user when it is selected completely ran-

domly, i.e., ignoring conditioning on the base station being unable to identify

any user.

Now putting these results together we can rewrite (4.1) as

E[FXi(X i)|Ai] ≈
k∑

b=1

(
k

b

)
pb

n(1− pn)k−b(
b

b + 1
(1− q) + q) +

1

2
(1− pn)k. (4.2)

A good threshold q should maximize the above approximation. This

can be carried out numerically by searching over q ∈ [0, 1]. In Table 4.1 we list

the optimum threshold q for an increasing number of users for k = 2, . . . , 9.

The threshold increases with n for a given k, and with k for a given n
k
, as

might be expected.

Note that (4.2) is independent of users’ channel capacity distributions

and can also be used to find an approximate value of q even when n
k

is not an

integral value. As mentioned earlier, unlike other schemes, this eliminates the

need for online real-time calculations, it is sufficient to do off-line calculation

of thresholds and store them in a table.

Some final comments, note that opportunistic splitting was designed to

find the user with the highest quantile/rate. In a practical system where the

number of mini slots may be limited, if the scheme is unable to find the user
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Table 4.1: Optimum values of quantile threshold q

n
k

1 2 3 4 5 6 7
k = 2 0 0.6796 0.7591 0.8064 0.8380 0.8606 0.8777
k = 3 0 0.6931 0.7689 0.8134 0.8432 0.8647 0.8810
k = 4 0 0.7069 0.7791 0.8211 0.8491 0.8693 0.8847
k = 5 0 0.7205 0.7895 0.8291 0.8554 0.8744 0.8888
k = 6 0 0.7337 0.7998 0.8372 0.8620 0.8798 0.8934
k = 7 0 0.7462 0.8097 0.8452 0.8686 0.8854 0.8981
k = 8 0 0.7580 0.8191 0.8530 0.8752 0.8910 0.9030
k = 9 0 0.7690 0.8279 0.8604 0.8815 0.8965 0.9078

with the highest quantile in those many mini slots, a user has to be chosen

at random. This is not desirable. Whereas if static splitting is unsuccessful

in finding the user with the highest quantile, it is still likely to serve a user

with high quantile. The possibility of serving a high quantile user is captured

in (4.2), in fact the expression also captures the performance of the scheme

even when a user is selected at random. Therefore by maximizing (4.2), one

can obtain better performance as compared to truncated opportunistic split-

ting especially for small values of k. We will verify this using simulations in

Section 4.4.

4.3 Reducing Feedback for Scheduling Schemes provid-
ing Quality of Service

As discussed in Section 4.1, when attempting to ensure quality of ser-

vice to flows one has to exploit opportunism over small time scales and exploit

opportunism among only those users that are roughly in the same danger of

not meeting their QoS requirements. (Note that this requires the availability

of feedback from users that are roughly in equal danger of not meeting their

QoS requirements.) Polling based feedback mechanisms meet these criteria. In

particular one can exploit opportunism over short time scales, and by dynam-

ically deciding from whom to solicit feedback, one can exploit opportunism
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only among a desired subset of users.

However as mentioned earlier, a polling based approach is not as effi-

cient at exploiting opportunism as a contention based approach. Therefore it

makes sense to use contention based static splitting for scheduling best effort

users and polling for scheduling of real-time users. We propose a modified form

of the scheduling scheme proposed in Chapter 3 that is compatible with such

a feedback strategy. Furthermore we improve on this scheme by proposing a

heuristic.

First let us modify our system setup to include real-time traffic flows.

In our new setup each user is either associated with a real-time or a best effort

stream, but not both. The total number of users is still denoted by n, while

the number of real-time users will be denoted by nr. For simplicity consider

the case where both real-time and best effort users are infinitely backlogged.

The notion of QoS considered in this chapter is the same as in Chap-

ter 3, i.e., ensuring a User i sees a desired rate ri over a frame of length τ with

an outage probability of δi. In other words, we divide time into equal sized

frames consisting of τ time units and our goal is to ensure that for each of

these frames

Pr(Ri(τ) ≥ ri) ≥ 1− δi,

where Ri(τ) is a random variable denoting the cumulative rate seen by User i

during a frame of length τ time units.

Like Chapter 3, we will stochastically lower bound the actual service

Ri(τ) by a quantity Ri(τ), i.e.,

Ri(τ) ≥st Ri(τ).

We make an additional assumption here on users’ rate in this section.

We assume that users’ channel capacity is fast fading, i.e., for any User i the

realizations of X i’s are independent across slots.
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Figure 4.2: Example of the JPOS scheme with frame size of 10 time units and
3 real-time users having 2 tokens each.

4.3.1 Joint Polling & Opportunistic Scheduling Scheme

Recall that in the token scheme proposed in Chapter 3 the idea was to

opportunistically serve each real-time user exactly l times in every frame of τ

units. This could be thought of as allocating each real-time user l tokens at

the start of each frame. Whenever a real-time user was served, its token count

goes down by 1, and when it has been served l times it is no longer allowed to

contend for service. The JPOS scheme described below also allocates l tokens

to each real-time user at the start of each frame, and as a result each real-time

user is served exactly l times in each frame.

We describe the scheme with an example. Consider a frame size of

τ = 10 time units, where each time unit contains k = 3 mini slots. The

system has 5 best effort users and 3 real-time users, each real-time user has

l = 2 tokens. We illustrate a realization of the scheme for the example in

Fig. 4.2.

In order to serve each real-time user l times, we divide each frame into

two parts. The first part of the frame consists of τ − nrl time units and only

best effort users are served here. Every best effort user contends for service in

every time unit of the first part via the static splitting with maximum quantile

scheduling mechanism described in Section 4.2. In our example the first part of

the frame consists of 4 time units, where best effort users are served (Fig. 4.2).

During the second part of the frame consisting of nrl time units, only

real-time users are served. Unlike the first part of the frame, here the feedback
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mechanism is based on polling. In a time unit the base station decides to solicit

the quantile of the current rate from k− 1 real-time users that currently have

the highest remaining number of tokens. Ties among real-time users with equal

remaining tokens are broken randomly. If there are less than k − 1 real-time

users that currently have a positive token count, then all users are solicited

for feedback. The first mini slot of each time unit is used to broadcast which

mini slot has been assigned to which real-time user for polling its feedback.

The remaining k − 1 mini slots are used to get feedback on users’ quantile

information. Note that in this case at most one user will contend in each

mini slot, so there is no possibility of a collision. The base station serves the

real-time user with the highest quantile among those from which feedback was

solicited, and the token count for that real-time user goes down by 1. This

process continues until the end of the frame. It should be clear that any real-

time user that has been served l times is not allowed to contend any longer,

by the end of the frame all real-time users would have been served l times.

Returning to our example, let us describe scheduling in the second part

of the frame (Fig. 4.2). The second part starts with the 5th time unit. During

the 5th time unit, all real-time users have l = 2 tokens each. Using random tie

breaking, the base station chooses to solicit feedback from real-time Users 1

and 3. Since real-time User 3 currently has the higher quantile, it gets served

and its token count goes down. In the 6th time unit because real-time Users

1 and 2 have a higher remaining token count of 2, feedback is solicited from

them, and real-time User 1 (on account of its higher current quantile) gets

served. In the 7th time unit using random tie breaking among real-time Users

3 and 1, feedback is solicited from real-time Users 2 and 1, and real-time User

1 gets served. Now since real-time User 1 has been served l = 2 times, it will

no longer be served. In the next time unit real-time Users 2 and 3 get polled,

and real-time User 2 is served. In the 9th time unit real-time User 3 gets served

and is no longer considered for service. Finally in the 10th time unit the only

remaining user, i.e., real-time User 2 is polled and served. Note that this is
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only one of the realization of the scheme the scheme could have proceeded in

multiple ways.

Some comments on the proposed scheme. Note that by choosing to poll

users that have the highest remaining number of tokens we are not only polling

users that have the highest danger of not meeting their QoS requirements, but

also are keeping as many real-time users in the system as possible. This allows

one to exploit a larger amount of opportunism as compared to the case where

some users leave early.

The above scheme ensures QoS by serving each user exactly l times. In

doing so, it exploits opportunism available among the best effort users in the

first part of the frame, and exploits opportunism among real-time users in the

second part of the frame. In other words the scheme is able to exploit intra

class opportunism.

The disadvantage of the proposed scheme is that unlike the scheme

proposed in Chapter 3 it does not exploit inter class opportunism among best

effort and real-time users. We will overcome this by proposing a heuristic

based on the above algorithm later, which is similar to the scheme proposed

in Chapter 3. Let us next describe how one might determine the value of l,

the number of tokens per real-time flow.

4.3.2 Analysis and Resource Allocation

We now lower bound the service seen by a real-time user under JPOS,

this in turn will allow us to conservatively estimate the value of l needed to

meet users’ QoS requirements.

We have designed our JPOS scheme so that the service seen by a real-

time user satisfies the three properties (Equal Resource Allocation, Symmetric

Selection & Monotonicity) described in Chapter 3. It is clear that since all

real-time users are allocated l tokens each, Property 3.2.1 is satisfied. Prop-

erty 3.2.2 is trivially satisfied in the first part of the frame. In the second
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part of the frame, all users start with an equal number of tokens. Further-

more in each time unit, among real-time users having an equal token count

there is random tie breaking in deciding whom to poll, and the quantile of

all real-time users are uniformly distributed. From these three symmetri-

cal conditions one can show that Property 3.2.2 holds for the second part

of the frame. Let X i,(m) be the maximum of m i.i.d. copies of X i, i.e.,

X i,(m) := max[X i
1, . . . , X

i
m], where X i

j ∼ X i, ∀j = 1, . . . , m. To show that

Property 3.2.3 holds, consider a time unit in the second part of the frame with

m competing real-time users. If User i gets selected, then if m ≥ k − 1 it

sees a service of X i,(k−1), else it sees a service of X i,(m). (Here X i,(m) is the

maximum of m i.i.d. copies of X i.) It is easy to show that Property 3.2.3 is

satisfied here.

It should be clear that since all the three properties are satisfied, the

bounds developed in the previous chapter can also be developed here. To do

so, we introduce some notation. Let Zi∗
j be the random variable denoting the

rate received by real-time User i conditioned on it getting selected for service

the jth time under the above described JPOS scheme. Then the total service

seen by real-time User i under the JPOS scheme is given by
∑l

j=1 Zi∗
j . Now

define a mixture random variable Y i

Y i =





X i,(k−1) w.p. 1− k−2
nr

X i,(k−2) w.p. 1
nr

. . . w.p. . . .
X i,(1) w.p. 1

nr
.

(4.3)

One can think of Y i as User i getting selected for service in the second part of

the frame when competing with greater than or equal to k− 1 real-time users

with probability 1− k−2
nr

, or getting selected for service when competing with

k − 2 users with probability 1
nr

and so on. Note that Y i only depends on X i

and nr, but does not depend on the channel rate distribution of other users.

We now show that
∑l

j=1 Zi∗
j ≥st

∑l
j=1 Y i

j , where Y i
j ’s are i.i.d. and

∀j = 1, . . . , l, Y i
j ∼ Y i. In other words, the service seen by User i under the
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JPOS scheme can be lower bounded by a sum of i.i.d. random variables that

depends only on the number of real-time users and X i, and yet factors in the

opportunism that can be exploited. In fact, we show a stronger bound, i.e.,

for any set S ⊆ {1, . . . , l}, ∑
j∈S Zi∗

j ≥st
∑

j∈S Y i
j . The following theorem

formally states our claim. Since the proposed low feedback scheme satisfies

all the three properties described above, the proof of the theorem follows from

that of Theorem 3.2.3 in the previous chapter.

Theorem 4.3.1. Consider the JPOS scheme where all nr real-time users are

allocated an equal number l of tokens. Then under Assumption 4.2.1 and fast

fading on users’ channel capacities, for any real-time User i

∑
j∈S

Zi∗
j ≥st

∑
j∈S

Y i
j ,

for S ⊆ {1, . . . , l}. Here Y i
j ’s are i.i.d. and Y i

j ∼ Y i, ∀j = 1, . . . , l.

We can now follow a similar process as described by (3.3) and (3.4) in

the previous chapter. If the number of tokens allocated to a user l′ is large

enough, then the distribution of
∑l′

j=1 Y i
j can be roughly approximated, e.g.,

using the Central Limit Theorem. Then since each real-time user knows its

distribution and can learn the value of nr from the base station, it can calculate

its required number of tokens li as

li = min
l′
{l′ | Pr(

ρ

τ

l′∑
j=1

Y i
j ≥ ri) ≥ 1− δi}, (4.4)

here ρ is the fraction of time unit that is used for data transmission. The

value of li can be communicated to the base station and the base station can

allocate each real-time user l tokens, where

l = max
i=1,...,nr

li, (4.5)

and allocate each real-time user l tokens. Note that we require that, nrl ≤ τ ,

i.e., the total number of tokens allocated must be less than or equal to the size

of frame.
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Figure 4.3: Example of the heuristic based JPOS scheme with frame size of
10 time units and 3 real-time users having 2 tokens each.

Note that there is some overhead involved in transmitting the value of

li from each real-time to the base station. However, this overhead is needed

only when the number of real-time users change or a real-time user’s channel

distribution changes so much that its token requirement changes.

Finally note that it is possible that even if a real-time user requires fewer

than l tokens, it is still allocated l tokens. This may seem too conservative,

however one can group users together (as descried in the previous chapter) to

reduce the total number of tokens required. This completes the description of

the JPOS scheme.

4.3.3 Heuristic based on Joint Polling & Opportunistic Scheduling
Scheme

As discussed earlier the proposed JPOS scheme only exploits the intra

class opportunism among the best effort and real-time users, but not the inter

class opportunism among all the users. In this subsection we present a modified

form of the JPOS scheme which exploits both inter and intra class opportunism

and thus achieves a higher overall throughput. This modification is more

similar to the token scheme proposed in the previous chapter.

Recall that our goal of polling real-time users was to ensure that users

with roughly equal danger of not meeting their QoS requirements are able to

send their feedback and opportunism was exploited among them. However,

in our proposed scheme the danger of not meeting the QoS requirement only
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occurs if the total remaining number of token is equal to (or less) than remain-

ing time units in the frame. Otherwise, there is leeway to exploit opportunism

across all users, and this can be exploited by allowing real-time users to com-

pete with best effort users during the first part of the frame. We use this idea

in the modification described below.

Like the JPOS scheme, in the proposed modification each real-time

user is allocated l tokens at the start of each frame. Whenever a real-time

user is served, its token count goes down by 1 and when it has been served

l times, it is no longer considered for service. However unlike the original

scheme, we allow both the best effort and real-time users to compete using

maximum quantile based static splitting during the first part of the frame.

Furthermore the size of the first part is dynamic and it lasts until the total

number of remaining tokens in the system is equal to the number of remaining

time units in the frame. Then the second part of the frame starts, here like

the JPOS scheme only real-time users are served using polling. The method

of deciding the real-time users that are to be polled for their current quantile

is the same as the original scheme, i.e., polling real-time users with the k − 1

highest remaining tokens counts and using random tie breaking for users with

equal remaining token count. As before, the real-time user with the highest

quantile among those polled is served.

To illustrate the scheme more clearly, we use the example described in

Subsection 4.3.1 to describe the original scheme. A realization of the scheme

is illustrated in Figure 4.3. Since real-time users are allowed to contend in

the first part of the frame, real-time Users 3 and 2 get served in the 2nd and

3rd time units respectively. As a result, the second part of the frame starts at

the 7th time unit. Therefore, inter class opportunism is exploited for a longer

period of time. At the 7th time unit real-time User 1 is polled because it has

the highest remaining token count, while real-time User 2 is chosen for polling

due to tie breaking. Since real-time User 1 has a higher quantile than real-time

User 2, it gets served. The rest of the scheme proceeds as shown in the figure.
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Even though the proposed modification scheme does exploit both the

inter and intra class opportunism it is difficult to bound the QoS seen by a real-

time user. This is because it is not clear whether the Monotonicity property

holds under the scheme. (One can show that the Symmetric Selection and

Equal Resource Allocation properties do hold.) However, we conjecture that

calculating the value of l according to (4.4) and (4.5) will allow us to meet

the required QoS guarantees. This conjecture is supported by the simulation

results presented in the next section. These also confirm the superior overall

throughput performance of the proposed modification compared to the JPOS

scheme.

4.4 Simulation Results

In this section we present simulation results for the schemes proposed

in this chapter. Let use describe the general simulation setup we used. In

order to compare the performance of our scheme to other schemes discussed in

literature, we assumed that all users undergo i.i.d. Rayleigh fast fading with

a mean SNR of 2. We used the SNR to rate mapping as done in CDMA-HDR

[2].

4.4.1 Static Splitting Performance

We first simulated static splitting for the best effort traffic only scenario.

The number of users associated with a mini slot were varied from 1 to 7, while

k = 2, 4, 6, 8 mini slots were used. The threshold q was set as discussed in

Section 4.2.

For comparison, we also simulated a truncated form of opportunistic

splitting using the above described setup. However, note that a mini slot in

opportunistic splitting consists of two transmissions, whereas a mini slot in our

scheme consists of only one transmission. Therefore to be fair, we compare

our scheme with a truncated form of opportunistic splitting where at most k
2
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Figure 4.4: The relative percentage throughput loss due to static splitting
and a truncated form of opportunistic splitting for k = 2 mini slots and an
increasing number of users.

mini slots are used. At the end of k
2

mini slots if the algorithm is unable to

find the user with the highest quantile, then it selects a user at random.

We compared the throughput achieved by all the schemes to that

achieved by a virtual scheme that is able to select the user with the highest

rate every time unit. This is the best that the schemes can hope to achieve.

We plot our results as the relative percentage loss in throughput compared

to that achieved by the virtual scheme in Figures 4.4, 4.5, 4.6 and 4.7. Note

that as expected the relative penalty for both the schemes goes down with

increasing values of k. Furthermore observe that the relative penalty for both

schemes increases with the number of users.

The results illustrate the advantage of using static splitting, our scheme

does better than opportunistic splitting for k = 2, 4, 6. The difference in

performance can be significant, for example at k = 4 and n = 12 in Figure 4.5,

the relative loss for static splitting is 9.63%, while the loss for opportunistic

splitting is 15.93%. Therefore static splitting reduces the loss by about 40%.
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Figure 4.5: The relative throughput percentage loss due to static splitting
and a truncated form of opportunistic splitting for k = 4 mini slots and an
increasing number of users.

Note that for k = 6 truncated opportunistic splitting has k
2

= 3 mini slots to

find the ‘best’ user, this is greater than the average of 2.5 slots needed for the

scheme. Even there static splitting does better.

At k = 8 in Figure 4.7, opportunistic splitting starts to do better than

static splitting. This is expected because as k increases, opportunistic splitting

is increasingly able to find the user with the highest rate. However, note that

the engineering complexity needed for opportunistic splitting may not justify

the gain it shows over static splitting.

4.4.2 Performance of Joint Polling & Opportunistic Scheduling
Scheme

As a second experiment we simulated the proposed JPOS scheme and

its heuristic modification. In our setup there were 12 best effort users and 12

real-time users. Each time unit consisted of k = 6 mini slots and was 5 msec

long. The data transmission part of each time unit was 4.5 msec long (i.e.,

ρ = 0.9) with the rest being used to gather feedback. Each real-time user was
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Figure 4.6: The relative throughput percentage loss due to static splitting
and a truncated form of opportunistic splitting for k = 6 mini slots and an
increasing number of users.

given a guarantee of 40 kbps with an outage probability of 1% over frame size

varying from 100 time units to 600 time units in steps of 100 time units (i.e.,

500 msec to 3 sec in steps of 500 msec).

We kept track of the throughput achieved by the schemes and whether

the real-time users were able to meet their guarantee. As expected the JPOS

scheme was able to provide the required guarantee to all the real-time users.

Additionally, the heuristic modification was also able to provide the required

guarantee to all the real-time users in all the cases. This supports our conjec-

ture that the heuristic modification will be able to meet real-time users’ QoS

requirements. We again compared the throughput achieved by the schemes

to a virtual scheme that always serves the user with the highest current rate.

The results as a percentage of throughput achieved by the virtual scheme are

plotted in Fig 4.8. Note that the throughput for both schemes increases as

the QoS guarantee is given over longer time frames. We also observe that the

heuristic modification has a higher overall throughput, clearly illustrating the

advantage of exploiting inter class opportunism. Furthermore, both schemes
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Figure 4.7: The relative throughput percentage loss due to static splitting
and a truncated form of opportunistic splitting for k = 8 mini slots and an
increasing number of users.
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are able to achieve a fairly high fraction of the overall throughput possible,

with the JPOS scheme achieving up to 79% and the heuristic modification

achieving up to 89%.

4.5 Conclusion

In this chapter we presented a simple scheme to reduce feedback over-

heads under opportunistic scheduling in wireless networks. The scheme is

novel in the sense that one can theoretically compute the required contention

thresholds independent of users’ distributions, making it applicable to real

world scenarios. Unlike previous work our approach focused on finding a user

with a high quantile, not necessarily the user with the highest quantile. The

advantage of such an approach is verified by simulation results.

We also developed the insight that to reduce feedback in an opportunis-

tic system where a mixture of real-time and best effort traffic is being served a

combination of contention and polling based feedback approach is appropriate.

We proposed two schemes based on this insight. Simulation results indicate

that both schemes are able to exploit a large part of the available opportunism.
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Chapter 5

Conclusion

In this dissertation we studied opportunistic downlink scheduling of

users in centralized wireless networks. We considered measurement based

scheduling of users with only best effort traffic in Chapter 2. There we showed

that under fast fading the relative throughput penalty of a measurement based

maximum quantile scheduling is fairly limited and grows only linearly with

the number of users. By contrast, our experiments showed that other schemes

might be more sensitive to measurement errors, and thus may not be able to

exploit opportunism efficiently. Furthermore we developed the insight that

suggests that a good way schedule users is to schedule a user that is experi-

encing the highest rate relative to its own distribution, i.e., maximum quantile

scheduling. This conjecture is supported by our simulation results.

We studied providing quality of service guarantees via opportunistic

scheduling in Chapter 3. The problem is challenging because in general the

service seen by a user under opportunistic scheduling becomes dependent on

the rate distributions of other users. Thus making it difficult to give any

concrete QoS guarantee to a user. Additionally one would like to give the

best effort users a high throughput and yet have a ‘simple’ resource alloca-

tion policy for the real-time users. In order to achieve these objectives, we

proposed a token based scheduling scheme that exploits both inter and intra

class opportunism and combined it with maximum quantile scheduling to de-

couple the service seen by a real-time user from other users’ rate distributions,

allowing us to give concrete rate guarantees to users. Furthermore we devel-

oped a stochastic lower bound on the service seen by a real-time user under

the proposed scheme. The bound is significant, not only because it partially
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captures the opportunism exploited, but also because it allows one to develop

‘simple’ resource allocation and call admission strategies. The advantage of

using the proposed scheme is illustrated by simulation results which show that

the proposed scheme can achieve 90% of the system capacity.

In Chapter 4 we first developed a simple static splitting scheme to

reduce the amount of feedback required for opportunistic scheduling of best

effort users. The scheme is combined with maximum quantile scheduling to

find rate distribution independent optimum thresholds, thus allowing off-line

calculations. The scheme aims to find a user that is currently experiencing

a rate with a high quantile, but not necessarily the user that is experiencing

the rate with the highest quantile. The advantage of such an approach is

illustrated by our simulation results. Furthermore, we develop the insight

that to reduce feedback while providing quality of service, one has to combine

the contention based approach of soliciting feedback with dynamic polling. We

propose two schemes based on this insight. Our simulation results show that

the proposed schemes are able to meet users’ quality of service requirements

while exploiting a large fraction of opportunism present.

Future Work. There are several open problems remaining with respect

to opportunistic scheduling in wireless networks. The focus of this dissertation

is on scheduling at most one user at a time. It will be important to extend

the ideas developed here to the scenario where more than one user can be

scheduled at a time. An interesting question there might be to understand

how the maximum quantile scheduler generalizes to that case.

The call admission policy developed Chapter 3 does not take into ac-

count the long term variations in users’ channel capacity and the possibility

of handover of calls from other cells. A more robust call admission criterion

can be developed that takes into account these factors.

A further open problem in scheduling is finding the opportunistic schedul-

ing strategy that minimizes delay (packet or file transfer) in a heterogenous sys-

113



tem supporting a dynamic load. (Some researchers have considered this prob-

lem when users have homogeneous channel capacity distributions in [36][42].)

Finding such a strategy would be a fundamental advance as it would provide

the key insight on the interactions between heterogeneity, opportunism and

transfer delay required to extend optimal policies such as the shortest residual

processing job first.
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