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This thesis investigates the feasibility of using rate adaptation, i.e., selective service

degradation, as a mechanism for achieving various system level Quality of Service

(QoS) targets on communication networks. In particular, we investigate how to

optimally support rate adaptive multimedia streams on best-effort networks like the

Internet.

Optimal and practical mechanisms to maximize the client average QoS, de-

fined in terms of a normalized time average received rate, are established. By scaling

the arrival rate and link capacity, we obtain closed form expressions for asymptotic

client average QoS. The optimal adaptation policy is identified as the solution to

an integer programming problem which has an intuitive “sort by volume” inter-

pretation. Our asymptotic analysis shows the optimal adaptation policy may yield

performance improvements of up to 42% over baseline policies.

We demonstrate that a static multi–class admission control policy can achieve

the same asymptotic QoS as that of the optimal adaptation policy. This implies that

vi



dynamic adaptation may be unnecessary for large capacity networks with appropri-

ate call admission.

The multi–class admission policy, however, requires the stream load char-

acteristics be both stationary and known a priori. To address this drawback we

investigate a class of distributed algorithms where the frequency of rate adapta-

tions depends on the stream “volume.” We show that these algorithms are able to

achieve a QoS comparable to that achieved under the optimal adaptation policy,

but without requiring knowledge of system wide parameters. Our simulations indi-

cate our algorithm may yield performance improvements of up to 28% over baseline

algorithms.

Finally, we investigate using optimal adaptation in a networking environment

supporting multiple service classes with distinct QoS guarantees.

Our results confirm that rate adaptation, i.e., selective service degradation,

is a viable means of achieving several different types of system level quality of service

targets.
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Chapter 1

Introduction

This chapter aims to motivate the importance of investigating the problem of how to

design networks to support rate adaptive multimedia streams. Section 1.1 describes

why controlling streaming media traffic is important, and Section 1.2 introduces

what streaming media is and how it is significant from a business, cultural, and

networking standpoint. Section 1.3 describes rate-adaptive streaming media, Section

1.4 describes some of the related work found in the literature, and Section 1.5

summarizes the contributions of this thesis.

1.1 Importance of controlling streaming media traffic

One of the fastest growing applications on the Internet today is streaming multi-

media. The cultural, business, and networking implications of this technology are

enormous. We can envision a time in the near future when streaming media will

be as commonplace as email and the web. What’s preventing this revolution? The

current resource bottleneck is access line speed; it is still the case that the majority

of home Internet users use dial-up, but the growing popularity of broadband access

promises that in the near future we can expect to see a majority of users with high
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speed access.

But high access line speeds are not a panacea. That is, we cannot expect

that giving all users broadband speeds will eliminate network congestion. Just as

nature abhors a vacuum, so too it appears that Internet application developers

abhor unused bandwidth. We can expect stream resolutions to increase, i.e., higher

rate applications, and longer content to be made available for streaming. In the

future we might look back at today’s current standard of 128 kbps small window

media streams as unwatchable and set our minimally acceptable bandwidth quality

“threshold” at a megabit per second or higher.

We will therefore have to do congestion control on links supporting poten-

tially hundreds or thousands of simultaneous streams. How should this be done?

Economics is likely to play a part; there are multitude of recent papers available

on Internet congestion pricing where price serves as an incentive to discriminate

between high and low demand users. But even with the economics, we are still

faced with the problem of allocating scarce bandwidth among competing streams with

minimum Quality of Service requirements.

This thesis addresses this fundamental issue. In particular, I will address

four topics related to handling congestion control for streaming multimedia:

• optimal dynamic bandwidth allocation among competing streams so as to

maximize QoS;

• optimal static bandwidth allocation among large numbers of streams on large

capacity networks using admission control;

• decentralized bandwidth allocation algorithms on networks with

non-stationary traffic and/or unknown system parameters;

• multiple service classes matched to distinct traffic classes with heterogeneous

QoS requirements.
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In general, this thesis is an investigation of the claim that rate adaptation,

i.e., selective service degradation, is a general mechanism capable of achieving a

wide variety of system level quality of service targets.

1.2 Streaming media

1.2.1 File transfers and streaming media

The conventional means of media transfer over best-effort networks is to encode the

media object into a file and to then transfer the file over the network from the content

provider to the client’s local disk. Upon completing the file transfer, the client is

then able to play back the media object locally from the disk. The drawbacks to

this approach are i) the client must wait for the file transfer to complete before

commencing playback, and ii) it is more difficult for content providers to control

the client’s usage of the media object once it is stored locally on the client’s disk.

The principle underlying the operation of streaming media is the simple ob-

servation that media playback may be performed concurrently with media transfer

over the network provided the network is able to offer sufficient bandwidth on the

route connecting the content provider and the client. Sufficient bandwidth here

simply means the instantaneous rate of the encoding of the media object. Client

side streaming media players typically employ a playback buffer to protect against

network jitter, loss, and fluctuations in the available capacity. In addition, content

providers may utilize smoothing algorithms which minimize the variability in the

instantaneous transmission rate of the encoded stream. Streaming media is attrac-

tive because it overcomes both of the difficulties raised with respect to file transfers.

Namely, streaming clients need not wait for file transfers to complete before com-

mencing playback since these happen concurrently with streaming media, and client

side streaming media players may be designed so that the client is unable to save

3
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Figure 1.1: Illustration of file transfers and streaming media.

the media object to disk.

The contrast between file transfers and streaming media is illustrated in

Figure 1.1. With file transfers (top), the entire media object must be transferred

over the network and stored on the client’s disk before the client may commence

playback. With streaming media (bottom), transfer and playback are simultaneous

in that the encoding is sent to a local playback buffer and then immediately to the

client side streaming media player.

This simple innovation in media transfer has had profound implications in

business, culture, and on how data networks are used and designed.

1.2.2 Business impact

Streaming media has become a major industry both in terms of media servers and

content providers. Evidence of this fact is provided in the following statistics.

• The Cahner’s In-Stat Group, a specialist in digital communications business

research, estimates the streaming media industry will be worth $5 billion by

4



2005 [15].

• The Gartner group, a specialist in IT business research, predicts that 80% of

the top 2000 businesses worldwide will deploy video applications to employee

desktops by 2006 [5].

• Enterprise video streaming traffic will grow by an average of 90% each year

[22].

These statistics underscore the point that the business potential of streaming

media is enormous.

1.2.3 Cultural impact

Aside from the business impact, streaming media is also having a tremendous impact

on our culture. Namely, streaming media is expected to become as common a mode

of accessing media content as television and radio. The following statistics support

this claim.

• 103 million Americans have used streaming media [26].

• 90% of web sites expected to offer some type of streaming content within the

next two years [19].

• 56% of Internet users access streaming video and audio at work [21].

• A person with broadband home access spends as much time accessing online

media as watching television or listening to radio [25].

These statistics suggest that users with broadband access, at work or at

home, make use of streaming media. Thus we can expect that the popularity of

streaming media will increase as more and more modem users make the switch to

broadband access.

5



1.2.4 Network impact

The increasing volume of streaming traffic on the Internet will have a potentially

negative effect on other network traffic. This point is underscored by the following

statistics.

• Service providers expect 24% of network traffic to be streaming content by

2006 [4].

• 60-80% of streaming media traffic is transmitted via UDP and is therefore not

responsive to network congestion [18].

Content providers and client side streaming media players utilize the RTSP

protocol [29] which transmits streaming content over UDP. The RTSP protocol

was designed to use UDP precisely because streaming content requires a minimum

transmission rate for satisfactory operation and therefore stream quality will be

reduced if the transmission rate is reduced in the face of network congestion, as is

the case with TCP.

Transmitting streaming content over UDP is fine when the volume of stream-

ing traffic is small relative to the volume of TCP traffic because the majority of traffic

is congestion sensitive. But, as the first statistic predicts, we may well see streaming

traffic grow to comprise a significant fraction of overall traffic in the near future. A

1999 New York Times article entitled “Multimedia transmissions drive net toward

gridlock” points out that network goodput may drop significantly when a significant

fraction of traffic is insensitive to congestion.

Researchers have long been aware of this problem. Sally Floyd and Kevin Fall

describe the danger of congestion collapse that arises when UDP traffic comprises a

significant fraction of network traffic [6]. Figure 1.2 is a simple example adapted from

their paper. The figure shows two links, one with large capacity C and another with

small capacity c < C. This network is servicing two flows, the TCP link traverses

6
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Figure 1.2: Illustration of congestion collapse caused by unresponsive UDP traffic.

only the large link C and the UDP link traverses both links. The plot on the left

shows the resulting goodputs of the two streams as the intensity of the UDP flow

is increased when no per-flow state is used, e.g., FIFO queueing. Because the flows

are not protected from one another, increasing the intensity of the UDP flow above

its feasible goodput of c results in wasting the bandwidth C − c with UDP packets

that will be dropped on the second link. TCP responds to the congestion on the

link by continually reducing its transmission rate to near zero. Contrast this with

the plot on the right where per-flow state is employed to protect the flows from one

another. Here increasing the intensity of the UDP has no effect on the TCP flow

above the UDP flow’s reservation level at c, permitting the TCP flow to make use

of the remaining capacity of C − c on the first link.

This simple example illustrates how streaming traffic can have an adverse

effect on TCP traffic when UDP traffic is not controlled. The example points to

7



the more general problem of designing networks to support applications with het-

erogeneous QoS requirements. The proposed IntServ [12] and DiffServ [11] network

architectures offer solutions to this problem through the use of network state, on a

per-flow and per-traffic class basis respectively.

These network architecture proposals are based on the assumption that indi-

vidual streams can be adequately served by assigning a static bandwidth reservation

to each stream, where the bandwidth reservation may be the mean rate of the stream,

the peak rate of the stream, or some effective bandwidth falling between the two. As

we will discuss in the next section, the fact that streaming content is rate adaptive

implies media streams are not characterized by single rate, but rather should be

characterized by a set of rates corresponding to the set of offered encodings of the

media content.

1.3 Rate adaptive streaming media

Sophisticated media encoding techniques exist which permit access to streaming

media at an arbitrary number of distinct stream resolutions. This section will intro-

duce hierarchical encoding as the primary example of multi-resolution encoding and

will then explain how multi-resolution encodings of media content are beneficial in

i) servicing clients with heterogeneous access line speeds and, ii) allowing streams

a mechanism for dynamic congestion control.

1.3.1 Hierarchical encoding

Hierarchical encoding [13] is a multi-resolution encoding, meaning that media con-

tent may be displayed at various resolutions, depending on the needs of the user.

Hierarchical encoding consists of a base-layer and one or more enhancement lay-

ers. The base layer comprises a coarse-grained encoding of the media content and

each enhancement layer offers a successively finer encoding. The enhancement layer

8
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Figure 1.3: Illustration of hierarchical encoding

encodings are efficient in that they encode only the information required to make

successive refinements on the information encoded in the underlying layers, i.e., they

store the differential between the desired resolution and the resolution obtained un-

der all of the previous layers.

This process is illustrated in Figure 1.3 for the particular case of image en-

coding. The base layer encoding uses a coarse resolution of 2 × 2. Each square of

the base layer is then subdivided and the information for each subdivision is stored

as the difference from the corresponding square of the base layer. A similar process

yields the second enhancement layer.

An enhancement layer is only useful if the base layer and all of the under-

lying enhancement layers are also available. Clients utilizing different numbers of

layers are said to have different subscription levels. This terminology comes from the

Receiver-driven layered multicast (RLM) algorithm [17] where each layer is assigned

9



a multicast address and clients subscribe to as many multicast groups as permitted

by their available bandwidth. The minimum subscription level corresponds to sub-

scribing only to the multicast group assigned to carry the base layer encoding, while

the maximum subscription level corresponds to subscribing to all of the multicast

groups associated with the various layers of the encoding.

1.3.2 Static rate adaptation

A perfect example of different streaming clients having heterogeneous QoS require-

ments is the case where clients with different access line speeds desire the same

media content. Consider the situation in Figure 1.4 where a modem client and a

broadband client are accessing media content from a server which has been hier-

archically encoded into a base layer and a single enhancement layer. The modem

client subscribes to the base layer alone because of its access line constraint while

the broadband client is able to subscribe to both layers. If monolithic encoding

were used then either the modem client would be unable to access the content (if

the encoding included all of the media content) or the broadband client would re-

ceive unsatisfactory service (if the encoding included only the content included in

the base layer). We term this type of differential service static rate adaptation to

denote the fact that heterogeneous clients are able to adapt their subscription levels

to match their available rate. The rate adaptation is static in that the clients will

maintain their subscription level throughout the duration of the stream since their

access line rates are fixed.

1.3.3 Dynamic rate adaptation

Earlier we argued that the increasing popularity of broadband access will gradually

eliminate access line constraints, thus static rate adaptation will only be valuable if

media content resolutions continue to match client access line speeds. But hierar-

10
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Figure 1.4: Illustration of static rate adaptation.

chical encoding of media content and rate adaptation will still be valuable even if

static rate adaptation is no longer necessary. In particular, rate adaptation permits

streams to utilize dynamic changes in subscription level as a means of reacting to

network congestion and avoiding excessive packet loss.

Consider the situation depicted in Figure 1.5 where the top panel shows the

instantaneous load of a link over time and the link capacity. The bottom panel shows

a streaming client’s subscription level changing as the link congestion changes. At

first, when link congestion is moderate, we assume the bandwidth available to the

stream is sufficient for the client to subscribe to the base layer and first enhancement

layer of the stream. Then, when the congestion level drops appreciably, the client

may well be able to subscribe to both enhancement layers. Finally, when heavy

congestion arises on the link, the client may need to unsubscribe from both en-

hancement layers in order to avoid heavy packet loss. Thus, clients can dynamically

adjust their subscription levels in response to changing levels of network congestion.
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1.3.4 A taxonomy of network applications

We have shown how rate adaptive streams have minimum QoS constraints, namely,

clients must be able to successfully receive the base layer encoding of media content.

We have also shown how rate adaptive streams are flexible in that they operate

satisfactorily over a range of transmission rates corresponding to the average rates

of the minimum and maximum subscription levels.

In this light rate adaptive streams can be viewed as a hybrid between tra-

ditional elastic and inelastic network applications. Elastic applications are network

applications which require no particular minimum bandwidth for satisfactory opera-

tion, but their performance increases as their available bandwidth increases (subject

to a law of diminishing returns). Typical elastic applications include WWW traffic

and email. Elastic applications are ideally suited for best-effort networks like the

Internet which offer no guaranteed service rate.

12



Inelastic applications, on the other hand, are network applications which

do require a minimum bandwidth for satisfactory operation, but their performance

does not significantly increase when they are given additional bandwidth above

the minimum. Typical inelastic applications include phone, radio, and monolithic

stream encodings. Inelastic applications are best served on loss networks, where the

network performs admission control to ensure that admitted streams receive their

required minimum rates.

These concepts are illustrated in Figure 1.6. The top row shows represen-

tative utility functions where the argument is the instantaneous rate given to the

application. The bottom row shows abstractions of loss networks, best-effort net-

works, and rate-adaptive networks. Inelastic applications have a utility function

reflecting the minimum rate constraint and show zero marginal benefit to rates

above that minimum. Loss networks ensure this rate constraint is satisfied by oc-

casionally blocking arriving calls during periods of congestion. The relevant QoS

parameter for a loss network is therefore the blocking probability. Elastic applica-

tions have concave increasing utility functions, where the decreasing marginal utility

corresponds to the law of diminishing returns for increased bandwidth. Best effort

networks don’t employ admission control since aggregate utility is maximized by

sharing network resources equitably among the active flows. The relevant QoS pa-

rameter for a best-effort network is therefore the average bandwidth a typical flow

receives. Rate adaptive applications reflect the minimum service rate requirement

with a utility function that has a convex increasing neighborhood around zero, and

reflect the law of diminishing returns with a utility function that has decreasing

marginal utility for large rates. Rate adaptive networks, i.e., networks servicing

rate adaptive streams, must perform admission control to ensure the minimum rate

constraint of each admitted stream is met, but must also allocate excess bandwidth

among the competing streams when congestion is low. Thus the relevant QoS pa-
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Figure 1.6: Illustration of network application utility functions and architectures.

rameters for a rate adaptive network is the blocking probability and the average

bandwidth a typical stream receives.

1.4 Related work

We have seen that adequately supporting rate adaptive multimedia streams over

best-effort networks requires two components: i) an admission control mechanism

to ensure admitted streams are able to maintain a transmission rate sufficient to

adequately receive the minimum subscription level, and ii) a bandwidth allocation

mechanism to allocate residual bandwidth (capacity remaining after base layer sub-

scriptions are handled) among competing streams. This residual bandwidth will be

used by the active streaming clients to subscribe to one or more of the enhancement

layers offered by the content provider.

There is an extensive body of literature on streaming media, we will focus on

reviewing a subset of that work which focuses on resource allocation. It is convenient

to dichotomize the literature into what we call the client and system perspective.
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1.4.1 Client perspective

The client perspective on adequately supporting rate adaptive streams views net-

work congestion as an exogenous process, and studies how to maximize the Quality

of Service of an individual stream facing that congestion.

Saparilla and Ross’s work, entitled “Optimal streaming of layered video” [28]

models the bandwidth available to a stream as a stochastic process and assumes the

media content has been encoded as a base layer and a single enhancement layer.

They identify how to dynamically optimize the allocation of the available bandwidth

among the two layers so as to minimize the impact of client starvation, i.e., an empty

client playback buffer. They find the optimal policy is dependent upon the length

of the video and the relative importance of the base and enhancement layers.

Rejaie, Handley, and Estrin’s work, entitled “Quality adaptation for conges-

tion controlled video playback over the Internet” [23] studies the combined use of

subscription level adaptation for long-term coarse-grain adaptation with a TCP-

friendly congestion control mechanism for short-term fine-grain adaptation. They

find the key issue to be the allocation of buffer resources among the various encoding

layers.

Chou et. al. focus on error control in their work “Error control for receiver-

driven layered multicast of audio and video” [3]. They propose a layered encoding

consisting of multiple source layers each of which has a corresponding parity layer.

Clients subscribe to both parity and source layers and use the parity layer for forward

error correction (FEC). They augment this error correction with a pseudo-automatic

repeat request (ARQ) mechanism.

Vickers, Albuquerque, and Suda take a different approach on system design

in their paper “Source adaptive multi-layered multicast algorithms for real-time

video distribution” [31]. Source adaptive encoding refers to a scenario where the

source uses congestion feedback from the network to dynamically adjust the number
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of encoded layers and the rate of each layer so as to be of maximum benefit to the

subscribing clients. We will argue in the sequel that such sophisticated encoding

techniques are not necessary on large capacity links, and in fact two static encodings,

a base layer and a single enhancement layer, are sufficient to maximize QoS.

Gorinsky and Vin analyze the benefit of source adaptivity in their work

“The Utility of Feedback in Layered Multicast Congestion Control” [10]. They

provide a layered multicast congestion control protocol in their work “Addressing

Heterogeneity and Scalability in Layered Multicast Congestion Control” [9]. Their

work identifies that source adaptivity is beneficial when clients have heterogeneous

rates at which they can receive streaming traffic. Our work, on the other hand,

focuses on the case when clients are not limited by access line constraints. That is,

we view stream adaptivity as a congestion control mechanism.

1.4.2 System perspective

In contrast to the client perspective, the system perspective recognizes that network

congestion is not really an exogenous process, but is instead the superposition of

the traffic generated by the individual clients, each of which can be controlled.

The question from the system perspective is one of resource allocation, i.e., how

to optimally allocate network bandwidth among competing streams so as to make

efficient use of the bandwidth without allowing congestion to arise.

Argiriou and Georgiadis propose fair channel sharing as a reasonable network

bandwidth allocation in their work “Channel sharing by rate adaptive streaming

applications” [1]. They define QoS measures similar to those we will propose in the

sequel, but they do not identify bandwidth allocations which maximize those QoS

measures. They are able to obtain closed form expressions for the performance of

their fair channel sharing allocation using the method of Laplace transforms.

Bain and Key’s work, entitled “Modeling the performance of in-call probing

16



for multi-level adaptive applications” [2] obtains analytic models to quantify the

benefit in QoS as a function of the rate at which the client is permitted to “probe”

the network to test for sufficient bandwidth to increase its subscription level. They

find that small amounts of in-call probing yields significant increases in QoS.

Kar, Sarkar, and Tassiulas investigate optimal bandwidth allocations for mul-

ticast rate adaptive streams in their paper “Optimization based rate control for

multirate multicast sessions” [14]. Their optimization criterion is the aggregate in-

stantaneous utility, i.e., they optimize over a static network where the set of active

connections is fixed. Our work defines QoS as a time-average over the duration of

the stream and thus can be said to optimize over dynamic networks where the set

of active connections changes.

1.5 Summary of findings

The contributions of this thesis are fourfold: we identify optimal adaptation poli-

cies, asymptotically optimal admission control policies, near-optimal distributed al-

gorithms, and optimal adaptation and admission for networks with multiple service

classes.

The contribution of this thesis is an analysis of optimal bandwidth allocation

among competing streams on dynamic networks from the system perspective. In

addition, we show that on large capacity networks the optimal bandwidth allocation

is fixed for each stream, and hence dynamic adaptation policies, which are difficult

to implement, may be replaced with simple static admission control policies. We

propose a class of distributed algorithms which are able to regain most of the in-

creases in client Quality of Service seen under the optimal allocations, but without

the need for centralized control or knowledge of system parameters. Finally, we

introduce a network model for multiple service classes, where traffic characteristics

and quality of service guarantees vary across classes.
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1.5.1 Optimization

From the client perspective it would seem logical that a stream should be encoded

with as many subscription levels as possible. This would allow clients to choose a

subscription level appropriate for a wide variety of congestion levels. We show, how-

ever, that from the system perspective, the client average QoS can be maximized

under an adaptation policy which requires only two subscription levels per stream.

These two subscription levels correspond to the “coarsest” and “finest” resolutions,

i.e., the minimally acceptable subscription level and the maximally useful subscrip-

tion level. Thus, from a system perspective, there is little benefit in offering a wide

variety of subscription levels, assuming flows are not peak rate constrained by their

access line.

In addition we demonstrate that the optimal adaptation policy discriminates

among active streams according to stream volume, where stream volume is the

maximum number of bits corresponding to a stream, i.e., the product of a stream’s

maximum subscription level and its duration.

1.5.2 Admission Control

From the client perspective it appears reasonable to expect that achieving a high

client QoS requires the client be able to assess changes in congestion level and

respond by adjusting the subscription level quickly and accurately. We show that,

for large numbers of streams sharing bandwidth on large capacity links, there is in

fact little need for dynamic adaptation. We present a static multi-class admission

policy whereby a stream is assigned to a class (subscription level) at the time of

admission based on its volume, which it then maintains throughout its duration,

i.e., no dynamic adaptation. Here, the volume of a stream is the product of its time

average maximum subscription level and its duration. We show that the asymptotic

QoS obtained under the optimal multi-class admission policy equals the asymptotic
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QoS obtained under the optimal dynamic adaptation policy. Intuitively, for large

capacity links the ensemble of active streams is essentially constant, and the optimal

adaptation policy will assign a given stream the same subscription level throughout

its duration.

1.5.3 Distributed Algorithms

The popular RLM algorithm proposed in [17] is a distributed algorithm wherein a

rate adaptive client lowers its subscription level upon receiving congestion “notifica-

tions” from the network, and also periodically performs “join” experiments to test

if congestion levels are low enough to support an increase in the client’s subscription

level. The client perspective suggests streams should act aggressively to make use of

unclaimed bandwidth, regardless of their own resource consumption. We show that

client–average QoS is increased above that achieved by conventional RLM schemes

when clients respond to congestion in a manner that is volume dependent. In partic-

ular, we show through simulation results that allowing small volume streams to be

more aggressive than large volume streams yields an overall increase in client aver-

age QoS. Moreover, these volume dependent algorithms achieve a client-average QoS

that is nearly that achieved under the optimal adaptation and admission policies.

1.5.4 Multiple Service Classes

We will demonstrate that the optimal adaptation policy obtains a high client average

QoS by discriminating against large volume streams in order to grant superior service

to larger numbers of small volume streams. This type of volume discrimination may

be unsatisfactory to clients of large volume streams with a high subjective QoS

requirement. Multiple service classes, appropriately priced, offer the opportunity to

provide discriminatory service quality independent of stream volume. We identify

the optimal adaptation policy for a link offering multiple service classes and identify
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the asymptotic QoS under this policy.

1.5.5 Outline

We will introduce our model for rate adaptive streams and give a definition of Qual-

ity of Service for rate adaptive streams in Chapter 2. In Chapter 3 we investigate

optimal adaptation policies. In Chapter 4 we identify asymptotically optimal admis-

sion control policies. In Chapter 5 we study a class of volume-dependent distributed

algorithms for rate adaptive streams. In Chapter 6 we discuss how to generalize

many of our results to the case of multiple service classes. Our conclusion and

summary is made in Chapter 7.
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Chapter 2

Modeling Rate Adaptive

Multimedia Streams

We begin by defining some notational conventions in Section 2.1. Section 2.2 de-

scribes our model for rate adaptive multimedia streams. Our network model is

described in Section 2.3. Section 2.4 introduces three aspects of Quality of Service

(QoS) relevant to rate adaptive multimedia streams and Section 2.5 discusses some

possible criticisms of the chosen metrics.

2.1 Notation

We let R denote the set of real numbers, Z denote the integers. The set of non-

negative reals and non-negative integers will be denoted R+ and Z+ respectively.

Bold lowercase letters will be used to denote a vector, say x, and bold up-

percase letters will denote a vector of random variables, say X. Sets will be written

using script letters, say X .

Expectations will be denoted by E[·] and probabilities will be denoted by

P(·). Random variables will be denoted by capital letters, e.g., X. The cumulative
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distribution function (CDF) for a random variable X will be denoted FX . The

complementary cumulative distribution function (CCDF) will be denoted F̄X =

1 − FX . All random variables will be real-valued and positive, i.e., X : Ω → R+,

where (Ω,F , P) is the underlying probability triple. Unless otherwise specified,

random variables are assumed to have a continuous increasing CDF which guarantees

the existence of a probability density function (PDF), denoted fX , and an inverse,

denoted F−1
X .

2.2 Model for rate adaptive multimedia streams

We model a rate adaptive stream by four parameters: stream duration, maximum

subscription level, adaptivity, and the set of offered subscription levels.

2.2.1 Stream Duration

Stream durations are random variables, denoted by D, with a common distribution

FD, and mean E[D] = δ. A known stream duration is denoted by d. We assume

all encodings of a given stream share the same duration, i.e., compression does not

impact the stream duration. The stream duration need not necessarily equal the

content duration, i.e., clients may terminate a stream prior to the completion of the

content. We do assume, however, that the stream duration is independent of the

client perceived QoS. Durations are assumed to take values in some finite interval

[d, d̄] ⊂ R+.

2.2.2 Maximum Subscription Level

The maximum subscription level is defined as the time–average instantaneous rate of

the stream when encoded at the maximum resolution deemed useful by the provider,

i.e., an encoding such that a higher resolution yields a negligible increase in perceived

quality. Maximum subscription levels of streams are modeled via random variables,
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denoted by S, with a common distribution FS , and mean E[S] = σ. A known

maximum subscription level is denoted by s. Maximum subscription levels are also

assumed to take values in some finite interval [s, s̄] ⊂ R+.

Maximum subscription levels are assumed to be independent of stream du-

rations. This assumption is primarily made to simplify the analysis. One might

argue that maximum subscription levels and stream durations are likely to be cor-

related in reality. Note, however, that there are important media classes for all four

combinations of large and small maximum subscription levels and short and long

durations. For example, small subscription levels and long durations are seen in

streaming radio, small subscription levels and short durations are seen in streaming

individual songs. Similarly, large subscription levels and short durations are seen in

music videos, while large subscription levels and long durations are seen in feature

length movies.

2.2.3 Adaptivity

Stream adaptivities are defined as the ratio between the minimum subscription level

and the maximum subscription level. The minimum subscription level is the time–

average instantaneous rate of the stream when encoded at the minimum resolution

deemed useful by the provider, i.e., an encoding such that a lower resolution yields

a stream with unacceptable perceived quality. Thus a stream with minimum sub-

scription level, say Smin, and a maximum subscription level Smax = S, will have a

stream adaptivity of A = Smin
Smax

.

Adaptivities are random variables, denoted by A, with a common distribution

FA, and mean E[A] = α. The support of A is necessarily within (0, 1]. A known

adaptivity is denoted by a. Adaptivities are assumed to be independent of both

durations and maximum subscription levels. Note that a stream with maximum

subscription level S and adaptivity A has a minimum subscription level of AS. In
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contrast with S and D, FA may be discrete.

2.2.4 Offered subscription levels

A stream is offered at a set of discrete subscription levels, denoted by S = (Sk |

AS = S1 < . . . < SK = S), where K ∈ Z denotes the number of subscription

levels available to clients, and Sk is the time–average rate corresponding to sub-

scription/encoding k. That is, each encoding k has an instantaneous transmission

rate (Bk(t), 0 ≤ t ≤ D), and Sk = 1
D

∫ D
0 Bk(t)dt. This abstraction is independent

of the type of encoding used to create the subscription levels, e.g., hierarchical or

simultaneous encoding. In hierarchical encoding, subscription level Sk corresponds

to the sum of the first k layers, while for simultaneous encoding, Sk corresponds to

the kth smallest encoding. We will focus in the sequel on the two subscription levels

AS and S, the minimum and maximum subscription levels.

2.3 Network model

We let L denote the set of links, and the vector c = (cl, l ∈ L) denote the capacities

of those links. We assume this capacity is shared by rate adaptive streams. Let

R denote the set of routes, where a route r is comprised of a set of links {l ∈

r} = {l | l ∈ r}. The vector λ = (λr, r ∈ R) denotes the arrival rate of new

stream requests on each route. We assume all arrival processes are Poisson. The

notation {r 3 l} = {r | l ∈ r} denotes the set of routes incident on link l. We write

νl =
∑

r3l λr for the arrival rate on link l, and ν = (νl, l ∈ L) for the corresponding

vector of link arrival rates.

The random variables N(t) = (Nr(t), r ∈ R) denote the stationary numbers

of active streams on each route at a given time t. We write n(t) = (nr(t), r ∈ R)

when this quantity is assumed known.
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Finally, the notation (i, r) indexes stream i on route r. For any model pa-

rameter X, the notation Xi,r refers to a parameter for stream (i, r).

2.4 Quality of service

Modeling quality of service for multimedia streams is a difficult, and largely un-

solved, problem. The Video Quality Experts Group recently performed a statistical

analysis of nine proposed objective measures of video quality [24]. They found that

none of the proposed models functioned adequately to replace subjective testing.

In addition, the performance of the objective models were found to be statistically

indistinguishable from one another.

Modeling quality of service for rate adaptive streams promises to be an even

harder problem due to the dynamic changes in instantaneous rate. Because of this,

any performance model necessitates making some possibly contentious assumptions.

Below, we define three aspects of QoS which we feel are especially important: the

expected normalized time-average subscription level, the rate of adaptation, and the

blocking probability. We will introduce these three metrics in this section, then offer

some discussion regarding other possible metric choices in Section 2.5.

2.4.1 Expected Normalized Time-Average Subscription Level

We define (S(t), 0 ≤ t ≤ D) as the subscription schedule of a client, i.e., the in-

stantaneous subscription level of the client at each time t that the client is active.

The client is guaranteed to receive its minimum subscription level, and may in fact

dynamically subscribe and unsubscribe various subscription levels throughout its

tenure in the system. To model this we say S(t) ∈ S for each t. The actual values

of S(t) will depend on the adaptation policy used, which will be discussed in great

detail in Chapter 3.
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We define the time-average normalized subscription level of the client, de-

noted Q, as

Q =
1
D

∫ D

0

S(t)
S

dt, (2.1)

Note that Q ∈ [AS, 1], where Q = AS corresponds to a client receiving its minimum

subscription level throughout its duration, i.e., S(t) = AS, 0 ≤ t ≤ D, and Q = 1

corresponds to a client receiving its maximum subscription level throughout its

duration, i.e., S(t) = S, 0 ≤ t ≤ D. We define the maximum volume of a stream

as the number of bits comprising the maximum subscription level encoding, i.e.,

V = SD. We can interpret the time-average normalized subscription level as the

fraction of the maximum stream volume which is received by the client.

We can assign each client a value for Q based on its stream parameters (S, D)

and its subscription schedule (S(t), 0 ≤ t ≤ D). Let Qi,r denote the assigned value

for client i on route r. The customer average normalized time-average subscription

level on route r, E0[Qr], is defined as

E0[Qr] = lim
nr→∞

1
nr

nr∑
i=1

Qi,r, (2.2)

where we use the notation E0[·] to denote that the expectation is taken as a client

average.

We define the overall client average normalized time-average subscription

level as

E0[Q] =
∑
r∈R

λa
r

λa
E0[Qr], (2.3)

where λa
r is the mean rate at which new clients are admitted onto route r, and

λa =
∑

r∈R λa
r is the mean rate at which new clients are admitted onto the network.

Thus, the overall client average is simply the weighted sum of the client averages

on each route, where the weights reflect the relative intensity of admissions on the

route.
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Our first, and primary, QoS metric is therefore the expected normalized

time-average subscription level, i.e.,

E0[Q] = E0[
1
D

∫ D

0

S(t)
S

dt]. (2.4)

This may be interpreted as the average fraction of the maximum stream volume

received by a typical client.

2.4.2 Expected Rate of Adaptation

Rate of adaptation is defined as the time-average magnitude of the changes in sub-

scription level experienced by a client over the course of its duration. It has been

shown that client QoS is adversely affected by these changes [8]. Intuitively, a client

with a high rate of adaptation undergoes frequent changes in subscription level,

which results in undesirable “flickering” of the stream resolution.

We define the set of subscription level change times for a given client as

C = {t ∈ (0, D) | S(t−) 6= S(t+)}. We then define the rate of adaptation R =
1
D

∑
t∈C |S(t−)−S(t+)|. Our second system level QoS parameter is E0[R], the time-

average rate of adaptation seen by a typical client:

E0[R] = E0
[ 1
D

∑
t∈C

|S(t−)− S(t+)|
]
. (2.5)

As stated above, our primary metric of QoS will be the expected normal-

ized time-average subscription level, and it is this quantity which we will seek to

maximize when identifying the optimal adaptation policy. We will study the rate of

adaptation of the optimal adaptation policy, however, and will show that the rate of

adaptation will only be a problem for a relatively small class of streams under the

optimal adaptation policy. Note that the cause of changes in the subscription level,

which yields the rate of adaptation, is a consequence of dynamic adaptation. In the

sequel we will study static admission control policies, wherein admitted streams are

assigned a fixed subscription level which they maintain throughout their duration,
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i.e., the rate of adaptation is zero. We will show that static admission control poli-

cies achieve the same asymptotic normalized time-average subscription level as the

optimal adaptation policy. Thus we can design the system to maximize our primary

QoS metric, but without incurring any performance cost from dynamic adaptation.

2.4.3 Blocking Probability

The previous two QoS metrics are defined for all admitted streams, but, due to the

assumption that the network will guarantee each stream sufficient bandwidth for

transmission of its minimum subscription level, we will occasionally need to block

arriving streams from the network during periods of congestion. To minimize the

blocking probability we restrict ourselves to policies which admit as many streams as

possible while respecting the minimum rates required by already admitted streams.

Thus, we allow admissions even if that admission requires one or more admitted

streams to reduce their subscription levels in order to accommodate the new stream.

Under such an admission policy, using rate adaptive streams will always result in

a lower blocking probability than will using non-adaptive streams. We can think

of rate adaptive streams as trading off possible degradation in stream quality (i.e.,

through dynamic adaptation) for a lower system blocking probability.

In particular, a stream with parameters (d, s, a) will be admitted on route r

at time t provided ∑
r′3l

nr′ (t)∑
i=1

ai,r′si,r′ + as ≤ cl, ∀l ∈ r. (2.6)

We define the stationary blocking probability for such a stream by

B(r, as) = 1− P
(∑

r′3l

Nr′ (t)∑
i=1

Ai,r′Si,r′ + as ≤ cl, ∀l ∈ r
)
, (2.7)

where the probability is taken with respect to the stationary distribution of the

network.

28



Note that the admission policy is independent of the adaptation policy. That

is, the admission decision depends only on the minimum subscription levels of the

admitted streams, while the decision of which streams to adapt depends on the

offered subscription levels for each stream. An admission decision may necessitate

adaptation, but doesn’t specify which streams are to be adapted.

In the sequel we will primarily be concerned with networks operating in a

low-blocking regime. Note that, for rate adaptive streams, assuming a low blocking

regime does not imply the absence of network congestion. A low blocking regime

simply means the average aggregate minimum load will not reach capacity. A regime

with low network congestion means the average aggregate maximum load will not

reach capacity.

2.5 Discussion of the QoS metrics

The above three QoS measures attempt to capture the most relevant contributing

factors to a client’s overall perception of stream quality, but they are by no means

the only factors. In this section we address some possible criticisms of these metrics.

2.5.1 Normalizations and time-averages

We have defined our primary QoS metric to be the expected normalized time-average

subscription level, which may be interpreted as the fraction of the maximum stream

volume received by a client. The maximum stream volume, however, may vary by

several orders of magnitude across streams. An audio stream of a three minute song

may be on the order of several hundred kilobits while a video stream of a two hour

movie may be on the order of tens of gigabits. Normalizing the number of bits

received by a client by the maximum volume of the corresponding stream has the

effect of equivocating the relative value of these two streams provided they receive

the same fractional volume.
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A valid criticism of this approach is that QoS may be better correlated with

the volume of bits received rather than with the fractional volume, e.g., the video

client may be more satisfied than the audio client even if the video client receives the

minimum subscription level and the audio client receives the maximum subscription

level due to the fact that the video client still received more information than the

audio client. The corresponding metric might then be Q′ =
∫ D
0 S(t)dt, i.e., the total

volume of the received stream.

But equivocating stream volume with QoS has its own problems. Consider

two video streams, one of an action sequence and one of a news clip, and assume

the two streams are of the same duration. Encoding the action sequence will likely

require a much higher bit rate than will encoding the news clip, yet it may well be

the case that client satisfaction is the same for both. That is, it may be erroneous to

assume the action sequence is of higher value to the client than the new clip solely

on the basis of the fact that the action sequence requires more bits to encode. The

fractional volume approach we have adopted avoids this complication by assuming

all media information is of equal value to the client.

An alternative approach might be to consider a combined measure consisting

of some weighting of the relative and absolute stream volumes, but identifying the

appropriate weights would likely prove difficult. Instead, we address this issue in

Chapter 6 where we discuss multiple service class networks for rate adaptive media.

Here, each client is permitted to choose a service class where each class provides

a different guarantee on the fractional volume transmitted for all streams in the

class. As we will show in Chapter 3, optimizing for the average fractional volume

results in an adaptation policy which discriminates against large volume streams,

i.e., smaller volume streams are more likely to receive a higher fractional volume

than larger volume streams. The multi-class generalization permits a large volume

stream to ensure against such discrimination by choosing a service class with a strict
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Figure 2.1: Illustration of a utility function for a rate adaptive stream

guarantee on the fractional volume. These classes would of course need to be priced

so as to provide proper incentives for clients to choose a service class reflective of

their actual QoS requirements.

2.5.2 Linear measures

Another approach to QoS is through the use of utility functions. One might propose,

for example, a QoS metric Q
′′

= u(
∫ D
0 S(t)dt), for some concave increasing function

u with a convex neighborhood around zero. This approach is taken in [30]. The

justification is that rate adaptive media has an intrinsic minimum and an intrinsic

maximum, yet the adaptivity permits a graceful degradation in quality as a function

of reduced resolution. Such a utility function is illustrated in Figure 2.1.

The problem with using such a utility function is that it would need to be

parameterized to permit analysis, and no obvious choice of parameterization is avail-

able. Recent definitions of utility function classes have appeared in the literature

for best-effort networks [20, 33] which maintain tractability without sacrificing gen-
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erality, yet there are no known corresponding definitions appropriate for streaming

media.

Recalling the recent conclusions of the Video Quality Experts Group [24],

an accurate objective model of video quality has yet to be found, and so there is

no compelling reason to adopt a nonlinear measure over our chosen linear one other

than increased generality. Note that the linear measure is defined over the interval

[AS, S], i.e., over the range between the minimum and maximum subscription levels.

Recall these were defined as the minimum resolution deemed useful the maximum

resolution deemed necessary by the provider. Thus the linear measure captures the

intrinsic minimum and maximum of u, as illustrated by the straight dashed line in

Figure 2.1. The characteristic not captured is the concavity of u within between

AS and S. If this concavity is not pronounced, the linear measure may well be a

reasonable approximation.

2.5.3 Subscription levels and instantaneous encoding rates

We point out that the expected time-average normalized subscription level and

expected rate of adaptation are defined in terms of the instantaneous subscription

level S(t). Recall that a subscription level Sk is the time average of the corresponding

encoding, i.e., Sk = 1
D

∫ D
0 Bkdt, where (Bk(t), 0 ≤ t ≤ D) is the instantaneous rate

of the encoding. One could propose that these metrics should instead be defined

in terms of the instantaneous rate to account for the fact that media encodings are

bursty.

Consider the illustration in Figure 2.2. The top panel shows the instanta-

neous encoding rates versus time for two different encodings, B1(t) and B2(t). The

associated subscription levels S1 and S2 are also shown. The media is such that the

instantaneous encoding rate is low for the first half of the media clip and is high for

the second half. This might occur in video at a change from a pastoral to an action
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scene. The bottom panel shows a possible adaptation schedule for a client receiving

the stream. For the first half of the clip the client receives the low subscription level,

say because of network congestion, while for the second half of the clip the client

receives the high subscription level. The instantaneous rate received by the client

is labeled B(t) and the dynamic subscription level is labeled S(t). The client will

be labeled as receiving a relatively low rate of adaptation because the change in the

average subscription level is rather small, even though change in the instantaneous

encoding rate is significant. Moreover, the example illustrates that provisioning ca-

pacity to provide adequate service for media streams can not be done on the basis

of the mean rate alone. In particular, provisioning capacity for this stream based

on the mean rate would incur heavy packet loss during the action scene.

The fact that media encodings exhibit large degrees of burstiness across mul-

tiple time scales has been extensively documented, e.g., [7]. The notion of effective

bandwidths [16] has been proposed as a means of determining allocation strategies

for bursty streams. The effective bandwidth of a stream is a function of the sta-

tistical characterization of the stream, the desired packet loss probability, the link

capacity, and the number of streams sharing the link. The effective bandwidth lies

somewhere between the mean and peak rate. Roughly speaking, the effective band-

width will be near the peak rate when the link is multiplexing a small number of

streams and the streams require a very loss packet loss probability, and the effective

bandwidth approaches the mean as the number of multiplexed streams increases and

the packet loss probability constraint is relaxed. The term statistical multiplexing

gain refers to the reduction in the effective bandwidth as the number of multiplexed

streams increases. Intuitively, this is just the Law of Large Numbers asserting that

the dispersion of the aggregate load decreases as the average load is increased, i.e.,

it becomes increasingly unlikely that multiple streams will simultaneously burst and

cause packet loss.
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Figure 2.2: Illustration of subscription levels versus instantaneous encoding rates
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In this work we are primarily interested in asymptotic expressions for QoS,

i.e., how rate adaptive streams behave on large capacity links servicing large numbers

of streams. The previous discussion suggests that the burstiness of media encodings,

while significant for small capacity systems, may be of less importance on large

capacity systems due to the statistical multiplexing gain. Thus, for large capacity

systems, we can provision capacity for streams based on the mean rate, at least to

a first-order approximation.

35



Chapter 3

Optimal Adaptation Policies

In this chapter we identify the adaptation policy which maximizes our primary

Quality of Service metric, the client average normalized time-average subscription

level, E0[Q]. We start out by defining the parameters used for simulation in Section

3.1. Section 3.2 will define the notion of a feasible adaptation policy. We introduce

a network scaling in Section 3.3 appropriate for studying large capacity networks

servicing large numbers of streams. In Section 3.4 we introduce a sub-optimal adap-

tation policy, which we call the fair share adaptation policy. We identify the optimal

policy in Section 3.5 for two cases: i) stored media, where stream durations are typ-

ically known at the time of stream admission, and ii) live media, where stream

durations are unknown. We apply the network scaling to the optimal adaptation

policy in Section 3.6 and obtain closed form expressions for asymptotic optimal QoS.

3.1 Simulation parameters

As described in Section 2.2, our model of rate adaptive streams involves four pa-

rameters: i) a stream duration distribution, FD, ii) a distribution on the maximum

subscription level, FS , iii) a distribution on stream adaptivity, FA, and iv) a set of
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offered subscription levels S. For purposes of optimization (this chapter) and ad-

mission control (Chapter 4), we will only be concerned with the first three of these

parameters since optimal adaptation and optimal admission control depends on the

set of offered subscription levels only through the minimum and maximum subscrip-

tion levels. That is, intermediate subscription levels are irrelevant in that, under the

optimal adaptation policy, clients will not make use of them. These intermediate

subscription levels will be important in our discussion of distributed algorithms in

Chapter 5.

Thus, for purposes of simulation in this chapter and the next, we need only

specify the three distributions FD, FS , and FA. We will see that the asymptotic

Quality of Service under optimal adaptation and admission control does depend

on the distributions of stream duration and maximum subscription level, but not

on the distribution of stream adaptivity. That is, asymptotic QoS depends on the

distribution FA only through the mean E[A] = α, but no such insensitivity result

holds for FD and FS .

3.1.1 Bounded exponential distribution

Bounded exponential distributions were chosen for both stream duration and maxi-

mum subscription level. A random variable X has a bounded exponential distribu-

tion with parameters µ ∈ R+ and M ∈ R+ if its CDF is given by

FX(x) =

 1−e−µx

1−e−µM , 0 ≤ x ≤ M

1, x > M
. (3.1)

The corresponding density of a bounded exponential distribution is

fX(x) =


µe−µx

1−e−µM , 0 ≤ x ≤ M

0, x > M
(3.2)

Note that limM→∞ FX yields an (unbounded) exponential distribution with parame-

ter µ. The decision to use a bounded distribution was made solely because it greatly
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simplifies the numerical integration code required to compute the asymptotic QoS.

For all intents and purposes the chosen bounds M will be large enough relative to

the rate parameter µ so that the distribution is effectively unbounded. The first

and second moments of the bounded exponential distribution are given by

E[X] =
1
µ

(1− (1 + µM)e−µM

1− e−µM

)
(3.3)

E[X2] =
1
µ2

(1− (1
2µ2M2 + µM + 1)e−µM

1− e−µM

)
. (3.4)

These equations can be used to calculate the variance of a bounded exponential

random variable.

There is no compelling reason to use this choice of distribution over any

other, and we do not claim the actual distributions of stream duration or maxi-

mum subscription level actually obey an exponential distribution. We will present

summary statistics of asymptotic QoS for other distributions, namely uniform and

bounded Pareto, to illustrate how the numerical results depend on the choice of

distribution.

3.1.2 Duration and maximum subscription level distributions

The parameters for the stream duration distribution are µd = 1
180 and Md = 6000

seconds. The values of µd and Md are such that the resulting mean and variance are

approximately that of an unbounded exponential random variable with the same

rate parameter. Thus the mean stream duration is E[D] = δ ≈ 180 seconds, and

the variance is V ar(D) ≈ (180)2 = 32, 400.

The parameters for the maximum subscription level distribution are µs = 10
3

and Ms = 10 Mb/s. Again, the values of µs and Ms are such that the resulting

mean and variance are approximately that of an unbounded exponential random

variable with the same rate parameter. Thus the mean maximum subscription level

is E[S] = σ ≈ 0.3 Mb/s, and the variance is V ar(S) ≈ (0.3)2 = 0.09.
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The CDF and PDF of these two distributions are plotted in Figures 3.1 and

3.2. Note that all axes are logarithmic.

3.1.3 Volume distributions

The maximum volume of a stream is the number of bits associated with the max-

imum subscription level, i.e, V = SD. Our expressions for asymptotic QoS will

depend on the maximum volume distribution, FV (v) = P(SD ≤ v). Note that we

have assumed S and D to be independent, so the CDF and PDF may be written

FV (v) =
∫ ∞

0
FS(

v

d
)dFD(d) =

∫ ∞

0
FD(

v

s
)dFS(s) (3.5)

fV (v) =
∫ ∞

0

1
d
fS(

v

d
)dFD(d) =

∫ ∞

0

1
s
fD(

v

s
)dFS(s). (3.6)

Given our choice of parameters on FS and FD it follows that the absolute maximum

stream volume is MdMs = 6000× 10 = 60, 000 Mb, and the mean stream volume is

E[V ] = E[S]E[D] = σδ = 0.3× 180 = 54 Mb.

The expressions for asymptotic QoS will also depend on a related distribu-

tion, which we term the typical time distribution. For an arbitrary random variable

X with CDF FX and PDF fX , we define the random variable X̂ as having a CDF

and PDF given by

FX̂(x) =
1

E[X]

∫ x

0
wdFX(w) (3.7)

fX̂(x) =
1

E[X]
xfX(x). (3.8)

For the case of stream durations and stream volumes, the above CDF and PDF

correspond to the distribution of a stream when the system is viewed at a typical

time. The intuition is that you are more likely to see a larger volume stream than a

smaller volume stream because larger volume streams will likely have longer dura-

tions than smaller volume streams. We will write D̂ and V̂ for stream durations and
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Figure 3.1: Stream duration CDF and PDF: FD(d) and fD(d).
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Figure 3.2: Stream maximum subscription level CDF and PDF: FS(s) and fS(s).
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volumes when doing a typical time analysis, with the understanding that D̂ ∼ FD̂

and V̂ ∼ FV̂ .

The CDF and PDF of the distributions for V and V̂ are plotted in Figures

3.3 and 3.4. Note that all axes are logarithmic. The figures illustrates that larger

volume streams are more prevalent when the system is viewed at a typical time

compared with the actual stream volume distribution.

3.1.4 Adaptivity distribution

We have chosen the adaptivity distribution FA to be uniform on (1
4 , 3

4) with mean

E[A] = α = 1
2 . As stated earlier, the asymptotic QoS under the optimal adaptation

and admission policies is insensitive to the distribution and depends only on the

mean. The mean adaptivity has the interpretation that, on average, encoding media

information at its highest useful resolution requires twice the bandwidth as encoding

the media information at its lowest useful resolution.

3.1.5 Simulator implementation

We implemented a discrete event simulator in Perl to perform the simulations. All

simulations are of a single communications link with a fixed capacity and no cross

traffic. All streams are constant bit-rate streams, i.e., we have not modeled the

variability in the instantaneous transmission rate inherent in many types of media

encoding. Streams are characterized by their maximum subscription level, S ∼

FS , their duration, D ∼ FD, their adaptivity A ∼ FA, and their arrival time. A

stream with minimum subscription level as is admitted if the sum of the minimum

subscription levels of all active streams is less than c − as, i.e.,
∑N(t)

i=1 aisi + as ≤

c. The system is static between arrival and departure events, hence arrivals and

departures are the only events held in the event queue. Active clients are assigned

subscription levels for the next inter-event time immediately following an arrival
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or departure event. These subscription levels are assigned according to the policy

governing the particular simulation. At least 15,000 clients were simulated for each

run.

The simulator is written in object oriented Perl with inheritance. Each class

file corresponds to a distinct Perl module (pm) file. The parent module Sim.pm

contains the primary simulation code. It’s primary method is run which runs the

simulation. The run method first creates arrays of random variables to create the

clients, namely, inter-arrival times, stream durations, maximum subscription levels,

and adaptivities. A first client is created, it’s arrival time is inserted into the event

queue, and an inter-arrival time is selected for the arrival of the next client. Then,

while the number of clients that have arrived is less than the total number of clients

to be simulated, the simulator continually selects the next event from the event

queue. If the event is an arrival then a arrival method is called which checks to

see if the client may be admitted, and generates the inter-arrival time until the next

client arrival. If the event is a departure, then a departure method is called which

computes the values of Q and R for the client and updates the other relevant state

variables. The adapt method is called immediately after client admissions and client

departures. A parent module Client.pm keeps track of the state information for

each client including the subscription level which the adapt method assigned the

client throughout the stream duration. The event is then deleted from the event

queue and the next event is handled.

Child classes of Sim.pm and Client.pm were used to implement the various

adaptation policies, admission control policies, and distributed algorithms described

in this thesis. These include the following.

• FairShareSim.pm, FairShareClient.pm: the fair share adaptation policy,

described in Subsection 3.4.1;

• OptAdaptKnownSim.pm, OptAdaptKnownClient.pm: the optimal adaptation
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policy for known stream durations, described in Subsection 3.5.2;

• OptAdaptUnknownSim.pm, OptAdaptUnknownClient.pm: the optimal adapta-

tion policy for unknown stream durations, described in Subsection 3.5.4;

• OptAdmitSim.pm, OptAdmitClient.pm: the optimal admission control policy,

described in Subsection 4.2.2;

• VolIndAlgSim.pm, VolIndAlgClient.pm: the volume independent algorithm,

described in Section 5.1;

• VolDepAlgSim.pm, VolDepAlgClient.pm: the volume dependent algorithm,

described in Section 5.2;

• MultiClassSim.pm, MultiClassClient.pm: the multiple service class policy,

described in Section 6.2.

Driver files were written to run the simulations required to obtain each of the figures;

these are just standard Perl files. Several utility files were also written to handle

data processing, such as histogram.pl which sorts the array of q and r data for

each client by their volume into appropriately sized bins. The gnuplot program was

used to create all of the plots. Confidence intervals are not provided on simulation

results, but simulation results are intended only to provide qualitative insight into

the policies and algorithms being discussed.

3.2 Feasible adaptation policies

An adaptation policy assigns a subscription level to each active stream on the net-

work. We let π denote an adaptation policy, and write (Sπ(t), 0 ≤ t ≤ D) to denote

the adaptation schedule of a client under the policy π. A feasible adaptation policy

satisfies a stream constraint and a network constraint. In addition, we restrict the
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set of feasible adaptation policies to non-anticipatory policies, i.e., those policies

which determine an allocation at each time based on information available at that

time. Subsection 3.2.1 discusses the stream constraint and Subsection 3.2.2 discusses

the network constraint.

3.2.1 Stream constraint

A feasible adaptation policy must assign each stream a subscription level that is

offered by the content provider. Consider some arbitrary time t. Suppose there

are n(t) = (nr(t), r ∈ R) streams on the network, and the content provider of

stream (i, r) has offered subscription levels Si,r. An adaptation policy satisfies the

stream constraint if the subscription level assignment at time t, sπ(t) = (sπ
i,r(t), i =

1, . . . , nr(t), r ∈ R), obeys sπ
i,r(t) ∈ Si,r for each stream (i, r).

3.2.2 Network constraint

A feasible adaptation policy must assign subscription levels such that the aggregate

load on each link does not exceed the link capacity. We can write the network

constraint as ∑
r3l

nr(t)∑
i=1

sπ
i,r(t) ≤ cl,∀l ∈ L. (3.9)

Thus, for any time t, if the number of active streams on each route is n(t) =

(nr(t), r ∈ R) and the link capacities are c = (cl, l ∈ L), then the network con-

straint requires the subscription level assigned to each stream at time t, sπ(t) =

(sπ
i,r(t), i = 1, . . . , nr(t), r ∈ R) be such that the aggregate link loads not exceed the

link capacities.

A possible critique of this constraint is that it does not guarantee the actual

instantaneous load will not exceed network capacity. Recall the discussion in Sub-

section 2.5.3 where we pointed out the fact that subscription levels are time-averages

of the associated encoding, and the actual instantaneous link load
∑

r3l

∑nr(t)
i=1 bi,r(t)
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may exceed the aggregate subscription link load
∑

r3l

∑nr(t)
i=1 si,r(t). Effective band-

widths may be used to represent subscription levels, instead of time-averages, but

recall that as the capacity is increased, the effective bandwidth approaches the time-

average. Given that our focus is on large capacity networks, we will not pursue this

point further, and will stick with the network constraint presented above.

3.3 Network scaling for rate adaptive streams

We introduce a network scaling to model the case where large numbers of streams

share large capacity links. Specifically, we will investigate a sequence of networks,

indexed by m ∈ Z+, where the mth network has a vector of route arrival rates

λ(m) = (λr(m), r ∈ R), and a vector of link capacities c(m) = (cl(m), l ∈ L). The

arrival rates will take the form λr(m) = mλr for some scalar λr ∈ R+ and the link

capacities will take the form cl(m) = νl(m)δγlσ for some scalar γl ∈ R+.

We will interpret γl as the scaling parameter for link l and demonstrate the

existence of three distinct scaling regimes parameterized by γl.

To motivate this interpretation we will first study the case of a single stream

being transmitted over a single bottleneck link in Subsection 3.5.1, then consider the

case of multiple streams on a single bottleneck link in Subsection 3.5.2, and finally

introduce the full network scaling in Subsection 3.5.3.

3.3.1 Single stream, single link

Consider the trivial case of a single stream being served on a single link. Let the

stream be typical, i.e., S = σ, D = δ, A = α. Thus the stream has a minimum

subscription level of ασ and a maximum subscription level of σ. We parameterize

the capacity of the link as c = γσ.

Imagine we provision capacity on the link so that the capacity is insufficient

to serve the stream at even its minimum subscription level. This implies γ < α
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Figure 3.5: Illustration of three network scaling regimes parameterized by γ.

and we term this the overloaded regime. Imagine instead we provision capacity

so that the capacity exceeds that required to serve the stream at its maximum

subscription level. This means γ > 1 and we term this the underloaded regime.

Finally, consider the case where the capacity exceeds the minimum subscription

level but is inadequate to serve the stream at its maximum subscription level. This

means α ≤ γ ≤ 1 and we term this the rate adaptive regime. Figure 3.5 illustrates

these three regimes.

3.3.2 Multiple streams, single link

The previous section illustrated how the capacity scaling parameter γ parameterizes

three distinct capacity scaling regimes for the case of a single stream on a single link.

Our network scaling sets the link capacity as a function of the expected number of

streams traversing the link.

For this section we can drop the link and route subscripts so that the arrival
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rate is λ and the link capacity is c. Let N(t) denote the number of active streams

traversing the bottleneck link at a stationary time t, i.e., a time such that N(t) is

distributed according to its stationary distribution. Little’s law states the average

number of streams on the network, E[N(t)], is the product of the average stream

arrival rate times the average stream duration, i.e., E[N(t)] = λδ, assuming the

blocking probability is low. We can write N(m, t) for the number of streams at time

t on the mth link, i.e., when the arrival rate is λ(m) and the link capacity is c(m).

As before, we have E[N(m, t)] = λ(m)δ.

We denote the average minimum link load, ρ(m), as the product of the

average number of streams, λ(m)δ, and the average minimum subscription level,

ασ, i.e., ρ(m) = λ(m)δασ. Similarly, we denote the average maximum link load,

ρ̄(m), as the product of the average number of streams and the average maximum

subscription level σ, i.e., ρ̄(m) = λ(m)δσ.

For the case when all streams are assumed to traverse at most one bottleneck

link, the proposed scaling states that the arrival rate on the mth link is λ(m) = mλ,

and that the link capacity is c(m) = (λ(m)δ)(γσ). Thus, the capacity is simply the

product of the average number of streams on the link, λ(m)δ, times some portion

of the average maximum subscription level, γσ.

The same three regimes parameterized in the previous section apply to this

case as well. The overloaded regime is parameterized by γ < α, which implies c(m) <

ρ(m), i.e., the overloaded regime corresponds to the case where the provisioned

capacity is insufficient to handle the average minimum load. The underloaded regime

is parameterized by γ > 1, which implies c(m) > ρ̄(m), i.e., the underloaded regime

corresponds to the case where the provisioned capacity is more than sufficient to

handle the average maximum load. Finally, the rate adaptive regime, α ≤ γ ≤ 1

corresponds to the case where ρ(m) ≤ c(m) ≤ ρ̄(m), i.e., the provisioned capacity

lies between the average minimum load and the average maximum load. As we will
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show in the sequel, it is the rate adaptive regime that is of primary interest.

3.3.3 General network

The general network scaling consists of defining scaling parameters on each link, i.e.,

γ(m) = (γl(m), l ∈ L). We then scale the arrival rate on each route according to

λr(m) = mλr and the capacity on each link according to cl(m) = νl(m)δγlσ, where

νl(m) =
∑

r3l λr(m) is the aggregate mean arrival rate on link l in network m.

We can define a vector of average minimum loads, ρ(m) = (ρ
l
(m), l ∈

L), where ρ
l
(m) = νl(m)δασ, and a vector of average maximum loads, ρ̄(m) =

(ρ̄l(m), l ∈ L), where ρ̄l(m) = νl(m)δσ. Just as in the previous section, we can say

link l is in the overloaded regime if γl < α, in the underloaded regime if γl > 1, and

in the rate adaptive regime if α ≤ γl ≤ 1. Again, these three regimes correspond to

cl(m) < ρ
l
(m), cl(m) > ρ̄l(m), and ρ

l
(m) ≤ cl(m) ≤ ρ̄l(m) respectively.

3.4 Sub-optimal adaptation policies

In this section we introduce a sub-optimal feasible adaptation policy, which we

term the fair-share adaptation policy, denoted πf . Our purpose in introducing sub-

optimal policies is to provide a baseline with which to compare the asymptotic QoS

under the optimal adaptation policy. We will define the fair-share policy for a single

link. This is sufficient for our purposes because we will only be able to obtain closed

form expressions for asymptotic optimal QoS for a single link. Because the policy

is only defined on a single link, we drop link and route subscripts for this section.

Thus, the number of active streams is denoted N(t) and the link capacity is denoted

c.
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3.4.1 Fair-share adaptation policy

The fair share adaptation policy for a single link uses the following subscription level

assignment rule:

S
πf

i (t) =


AiSi, N(t) > c

ασ

AiSi(1−X(t)) + SiX(t), c
σ ≤ N(t) ≤ c

ασ

Si, N(t) < c
σ

(3.10)

where

X(t) =
c

N(t) − ασ

σ − ασ
. (3.11)

Note that c
σ ≤ N(t) ≤ c

ασ implies X(t) ∈ [0, 1].

We term this policy a fair-share policy because all streams receive a subscrip-

tion level that yields a constant proportional improvement above their minimum

subscription level. That is, S
πf
i (t)−AiSi

Si−AiSi
is a constant. To see this, consider each of

the three cases above. When N(t) > c
ασ we have a proportional improvement of

zero since all streams receive their minimum subscription level. When N(t) < c
σ we

have a proportional improvement of one since all streams receive their maximum

subscription level. When c
σ ≤ N(t) ≤ c

ασ we see the proportional improvement is

S
πf

i (t)−AiSi

Si −AiSi
=

AiSi(1−X(t)) + SiX(t)−AiSi

Si −AiSi
= X(t), (3.12)

which is constant for a given N(t).

We can interpret this policy as follows. Streams are assigned their minimum

subscription level, AiSi, when the bandwidth per stream falls below the average

minimum subscription level, i.e., when c
N(t) < ασ. Streams are assigned their max-

imum subscription level, Si, when the bandwidth per stream exceeds the average

maximum subscription level, i.e., when c
N(t) > σ. When the bandwidth per stream

lies between the average minimum subscription level and the average maximum

subscription level, i.e., when ασ ≤ c
N(t) ≤ σ, we assign streams a subscription level
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proportional to X(t). Note that X(t) is the relative difference between the actual

fair share bandwidth, c
N(t) , and the average minimum subscription level ασ. We say

this difference is relative because it is normalized by the maximum difference, i.e.,

the difference between the average maximum subscription level, σ, and the average

minimum subscription level, ασ.

Finally, note that for the special case when all streams have the same min-

imum and maximum subscription levels, i.e., Ai = α, a.s. and Si = σ, a.s., the fair

share policy becomes

S
πf

i (t) =


ασ, c

N(t) < ασ

c
N(t) , ασ ≤ c

N(t) ≤ σ

σ, c
N(t) > σ

. (3.13)

The above equation is clearly a fair share policy, thus we can interpret (3.10) as the

appropriate generalization of (3.13) for streams with heterogeneous minimum and

maximum subscription levels.

3.4.2 Feasibility of the fair-share adaptation policy

It bears comment that this policy is not necessarily feasible. Specifically, the policy

as stated might feasibly violate the link capacity constraint or the stream constraint.

Our purpose in studying this policy is to demonstrate the relative improvement

in asymptotic QoS obtained under the optimal adaptation policy. Thus the QoS

bounds obtained under this policy are optimistic in that enforcing the feasibility

constraints can only reduce the asymptotic QoS. Thus our relative improvement in

asymptotic QoS obtained under the optimal adaptation policy will be conservative.

The stream constraint requires that subscription level assignments corre-

spond to encodings offered by the content provider, i.e., S(t) ∈ S. We assume for

purposes of this section that the content provider will dynamically adjust the en-

coding of the stream to whatever rate is required under the fair share policy. That

51



is, we relax the assumption that S is a fixed discrete set, and assume a continuum

of encodings are available, i.e., S = [AS, S].

The link constraint requires that the aggregate subscription assignments not

exceed the link capacity, i.e.,
∑N(t)

i=1 S
πf

i (t) ≤ c. Although the fair share policy does

not ensure this constraint is satisfied, we can show that, under the link scaling, the

asymptotic link utilization under the fair share policy is one, unless the system is

over-provisioned. This is shown in the following lemma.

Lemma 1 Under the link scaling, the asymptotic utilization for the fair share policy

is

lim
m→∞

E
[ 1
c(m)

N(m,t)∑
i=1

S
m,πf

i (t)
]

=

 1, γ ≤ 1
1
γ , γ > 1

(3.14)

where c(m) = (λ(m)δ)(γσ) and λ(m) = mλ.

Proof of Lemma 1 We denote the aggregate load in the mth link at time t under

the fair share policy by Y (m, t) =
∑N(m,t)

i=1 S
m,πf

i (t). We can condition on N(m, t)

to obtain limm→∞ E[Y (m,t)
c(m) ]

= lim
m→∞

[
E[

Y (m, t)
c(m)

| N(m, t) >
c(m)
ασ

]P(N(m, t) >
c(m)
ασ

) (3.15)

+ E[
Y (m, t)
c(m)

| c(m)
σ

≤ N(m, t) ≤ c(m)
ασ

]P(
c(m)

σ
≤ N(m, t) ≤ c(m)

ασ
)

+ E[
Y (m, t)
c(m)

| N(m, t) <
c(m)

σ
]P(N(m, t) <

c(m)
σ

)
]
.

We will refer to the three terms in the sum in the above equation as the overloaded

regime term, the rate adaptive regime term, and the underloaded regime term. We

consider three separate cases: i)γ < α, ii)α ≤ γ ≤ 1, iii)γ > 1.

Consider the first case, γ < α, which corresponds to scaling the link in the

overloaded regime. We will show that, for arbitrarily small h > 0,

lim
m→∞

P(N(m, t) >
c(m)
ασ

(1− h)) = 1, γ < α,
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i.e., when the link is provisioned into the overloaded regime, the asymptotic al-

location under the fair share adaptation policy gives all streams their minimum

subscription level. A little thought shows that, for ε(m) = E[N(m, t)]− c(m)
ασ (1−h),

lim
m→∞

P(N(m, t) >
c(m)
ασ

(1− h)) = 1− lim
m→∞

P(N(m, t) ≤ c(m)
ασ

(1− h))

≥ 1− lim
m→∞

P(|N(m, t)− E[N(m, t)]| ≥ ε(m))

≥ 1− lim
m→∞

V ar(N(m, t))
ε(m)2

,

where we have used Chebychev’s inequality in the last step. Now consider ε(m).

By Little’s Law, the mean number of streams in mth link is E[N(m, t)] = λ(m)(1−

B(m))δ, where B(m) denotes the blocking probability on link m. Using the link

scaling, we have c(m)
ασ (1− h) = λ(m)δγσ

ασ (1− h). We can therefore write

ε(m) = E[N(m, t)]− c(m)
ασ

(1− h)

= λ(m)(1−B(m))δ − λ(m)δγσ

ασ
(1− h)

= λ(m)δ
(
(1−B(m))− γ

α
(1− h)

)
.

The variance V ar(N(m, t)) can be bounded above by λ(m)δ as follows. If there

were no capacity constraint then N(m, t) would be a Poisson random variable with

mean and variance equal to λ(m)δ. The capacity constraint reduces the mean to

λ(m)(1 − B(m)) and reduces the variance as well. Thus, λ(m)δ is a valid upper

bound. Finally, we claim the asymptotic blocking probability in the overloaded

regime is limm→∞B(m) = 1− γ
α . We argue loosely as follows. The minimum load

arriving to the link is ρ(m) = λ(m)δασ and the link capacity is c(m) = λ(m)δγσ.

For γ < α we have c(m) < ρ(m) and hence the average fraction of load blocked by
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the link is
ρ(m)−c(m)

ρ(m) = 1− γ
α . Applying these observations allows

lim
m→∞

P(N(m, t) >
c(m)
ασ

(1− h)) ≥ 1− lim
m→∞

V ar(N(m, t)
ε(m)2

≥ 1− lim
m→∞

λ(m)δ
(λ(m)δ)2((1−B(m))− γ

α(1− h))

= 1− lim
m→∞

1
(λ(m)δ)((1−B(m))− γ

α(1− h))

= 1− lim
m→∞

1
λ(m)δ( γ

α −
γ
α(1− h))

= 1.

Thus, only the overloaded term in 3.15 is significant when γ < α, and we can write

lim
m→∞

E[
Y (m, t)
c(m)

] = lim
m→∞

E[
Y (m, t)
c(m)

| N(m, t) >
c(m)
ασ

)P(N(m, t) >
c(m)
ασ

)

= lim
m→∞

E[
Y (m, t)
c(m)

| N(m, t) >
c(m)
ασ

]

= lim
m→∞

E[
1

c(m)

N(m,t)∑
i=1

S
m,πf

i (t) | N(m, t) >
c(m)
ασ

]

= lim
m→∞

E[
1

c(m)

N(m,t)∑
i=1

AiSi].

Applying Wald’s identity,

lim
m→∞

E[
Y (m, t)
c(m)

] = lim
m→∞

1
c(m)

E[N(m, t)]E[AiSi]

= lim
m→∞

1
c(m)

λ(m)(1−B(m))δασ

= lim
m→∞

λ(m)(1−B(m))ασ

λ(m)δγσ

= lim
m→∞

(1−B(m))α
γ

=
(1− (1− γ

α))α
γ

= 1.

Thus, the asymptotic utilization is one when γ < α.

Consider the case when the link is provisioned in the rate adaptive regime,

i.e., when α ≤ γ ≤ 1. We will show that

lim
m→∞

P(
c(m)

σ
≤ N(m, t) ≤ c(m)

ασ
) = 1, α ≤ γ ≤ 1,
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i.e., when the link is provisioned in the rate-adaptive regime, the asymptotic fair

share allocation always gives a proportional improvement of limm→∞X(m, t). We

define ε(m) = max{E[N(m, t)]− c(m)
σ , c(m)

ασ −E[N(m, t)]}. Recalling that the blocking

probability in the rate adaptive regime goes to zero exponentially fast, we have

E[N(m, t)] = λ(m)δ. Applying the rate adaptive scaling to ε(m) gives ε(m) =

λ(m)δ max{1− γ, γ
α − 1}. A little thought shows

lim
m→∞

P(
c(m)

σ
≤ N(m, t) ≤ c(m)

ασ
) ≥ 1− lim

m→∞
P(|N(m, t)− E[N(m, t)]| > ε(m))

≥ 1− lim
m→∞

V ar(N(m, t))
ε(m)2

,

where we have again applied Chebychev’s inequality in the last step. Recalling that,

under the assumed low blocking regime, the variance of N(m, t) is λ(m)δ, we see

that

lim
m→∞

P(
c(m)

σ
≤ N(m, t) ≤ c(m)

ασ
) ≥ 1− lim

m→∞

λ(m)δ
(λ(m)δ)2(max{1− γ, γ

α − 1})2

≥ 1− lim
m→∞

1
(λ(m)δ)(max{1− γ, γ

α − 1})2
= 1,

Thus, only the rate adaptive term in 3.15 is significant when α ≤ γ ≤ 1, and we can
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write

lim
m→∞

E[
Y (m, t)
c(m)

]

= lim
m→∞

E[
Y (m, t)
c(m)

| c(m)
σ

≤ N(m, t) ≤ c(m)
ασ

]P(
c(m)

σ
≤ N(m, t) ≤ c(m)

ασ
)

= lim
m→∞

E[
Y (m, t)
c(m)

| c(m)
σ

≤ N(m, t) ≤ c(m)
ασ

]

= lim
m→∞

E[
1

c(m)

N(m,t)∑
i=1

S
m,πf

i (t) | c(m)
σ

≤ N(m, t) ≤ c(m)
ασ

]

= lim
m→∞

E[
1

c(m)

N(m,t)∑
i=1

AiSi(1−X(m, t)) + SiX(m, t)]

= lim
m→∞

1
c(m)

E[
N(m,t)∑

i=1

AiSi + X(m, t)
N(m,t)∑

i=1

Si(1−Ai)]

=
[

lim
m→∞

1
c(m)

E[
N(m,t)∑

i=1

AiSi]
]

+
[

lim
m→∞

1
c(m)

E[X(m, t)
N(m,t)∑

i=1

Si(1−Ai)]
]

Applying the definition of X(m, t) gives

=
[

lim
m→∞

1
c(m)

E[
N(m,t)∑

i=1

AiSi]
]

+
[

lim
m→∞

1
c(m)

E[
c(m)

N(m,t) − ασ

σ − ασ

N(m,t)∑
i=1

Si(1−Ai)]
]

=
[

lim
m→∞

1
c(m)

E[
N(m,t)∑

i=1

AiSi]
]

+
[

lim
m→∞

1
σ(1− α)

E[
1

N(m, t)

N(m,t)∑
i=1

Si(1−Ai)]
]

−
[

lim
m→∞

1
c(m)

α

1− α
E[

N(m,t)∑
i=1

Si(1−Ai)]
]
.

Applying Wald’s identity to the first and third terms, and the Law of Large Numbers
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to the second term yields:

=
[

lim
m→∞

1
c(m)

E[N(m, t)]E[AS]
]

+
[ 1
σ(1− α)

E[S(1−A)]
]

−
[

lim
m→∞

1
c(m)

α

1− α
E[N(m, t)]E[S(1−A)]

]
=

[
lim

m→∞

λ(m)δασ

λ(m)δγσ

]
+

[
1
]
−

[
lim

m→∞

λ(m)δσ(1− α)α
λ(m)δγσ(1− α)

]
=

[α

γ

]
+

[
1
]
−

[α

γ

]
= 1.

Thus, the asymptotic utilization is one when α ≤ γ ≤ 1.

Consider the third case, γ > 1, which corresponds to scaling the link in the

underloaded regime. We will show that

lim
m→∞

P(N(m, t) <
c(m)

σ
) = 1, γ > 1,

i.e., when the link is provisioned in the underloaded regime, the asymptotic alloca-

tion under the fair share adaptation policy gives all streams their maximum sub-

scription level. Define ε(m) = c(m)
σ − E[N(m, t)]. Noting that E[N(m, t)] = λ(m)δ

and c(m)
σ = λ(m)δγ yields ε(m) = λ(m)δ(γ − 1). A little thought shows

lim
m→∞

P(N(m, t) <
c(m)

σ
) = 1− lim

m→∞
P(N(m, t) ≥ c(m)

σ
)

≥ 1− lim
m→∞

P(|N(m, t)− E[N(m, t)]| ≥ ε(m))

≥ 1− lim
m→∞

V ar(N(m, t))
ε(m)2

,

where we have used Chebychev’s inequality in the last step. Noting that

V ar(N(m, t)) = λ(m)δ because of the low blocking probability for γ > 1, we see

that

lim
m→∞

P(N(m, t) <
c(m)

σ
) ≥ 1− lim

m→∞

λ(m)δ
(λ(m)δ)2(γ − 1)2

≥ 1− lim
m→∞

1
(λ(m)δ)(γ − 1)2

= 1.
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Thus, only the underloaded term in 3.15 is significant when γ > 1, and we can write

lim
m→∞

E[
Y (m, t)
c(m)

] = lim
m→∞

E[
Y (m, t)
c(m)

| N(m, t) <
c(m)

σ
)P(N(m, t) <

c(m)
σ

)

= lim
m→∞

E[
Y (m, t)
c(m)

| N(m, t) <
c(m)

σ
]

= lim
m→∞

E[
1

c(m)

N(m,t)∑
i=1

S
m,πf

i (t) | N(m, t) <
c(m)

σ
]

= lim
m→∞

E[
1

c(m)

N(m,t)∑
i=1

Si].

Applying Wald’s identity,

lim
m→∞

E[
Y (m, t)
c(m)

] = lim
m→∞

1
c(m)

E[N(m, t)]E[Si]

= lim
m→∞

1
c(m)

λ(m)δσ

= lim
m→∞

λ(m)δσ
λ(m)δγσ

=
1
γ

< 1.

Thus, the asymptotic utilization is 1
γ when γ > 1. This is the best we can hope for

since the system is over-provisioned. �

3.4.3 Asymptotic QoS of the fair-share adaptation policy

We next investigate the asymptotic expected time-average normalized subscription

level under the fair share adaptation policy. The following lemma shows that this

quantity is linear in the scaling parameter when the link is provisioned in the rate

adaptive regime. We write E0[Qm,πf ] to denote the time-average normalized sub-

scription level in the mth link, i.e., when the link arrival rate is λ(m) and the link

capacity is c(m), under the fair-share adaptation policy for a typical client. The

asymptotic quantity, denoted qγ,πf , is then given by qγ,πf = limm→∞ E0[Qm,πf ].
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Lemma 2 The asymptotic expected time-average normalized subscription level un-

der the fair share adaptation policy is

qγ,πf =


α, γ < α

γ, α ≤ γ ≤ 1

1, γ > 1

. (3.16)

Proof of Lemma 2 Recall the definition of the expected time-average normalized

subscription level:

E0[Qm,πf ] = E0[
1
D

∫ D

0

Sm,πf (t)
S

dt].

We condition on D and obtain

E0[Qm,πf ] = E0[
1
D

∫ D

0

Sm,πf (t)
S

dt]

=
∫ ∞

0
E0[

1
D

∫ D

0

Sm,πf (t)
S

dt | D = d]dFD(d)

=
∫ ∞

0
E0[

1
d

∫ d

0

Sm,πf (t)
S

dt | D = d]dFD(d)

=
∫ ∞

0

1
d

∫ d

0
E0[

Sm,πf (t)
S

| D = d]dtdFD(d)

=
∫ ∞

0

1
d

∫ d

0
E0[

Sm,πf (t)
S

]dtdFD(d)

= E0[
Sm,πf (t)

S
]

where the t in the last equation is to be understood as a typical time. The above

development is simply a proof of the intuitive idea that the expected time-average

normalized subscription level under the fair-share adaptation policy is simply the

expected normalized subscription level at a typical time. This follows because the

subscription assignment under the fair share policy is independent of the stream

duration.
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Analogously to (3.15), we condition on N(m, t) to obtain

limm→∞ E[S
m,πf (t)

S ]

= lim
m→∞

[
E[

Sm,πf (t)
S

| N(m, t) >
c(m)
ασ

)P(N(m, t) >
c(m)
ασ

) (3.17)

+ E[
Sm,πf (t)

S
| c(m)

σ
≤ N(m, t) ≤ c(m)

ασ
]P(

c(m)
σ

≤ N(m, t) ≤ c(m)
ασ

)

+ E[
Sm,πf (t)

S
| N(m, t) <

c(m)
σ

]P(N(m, t) <
c(m)

σ
)
]
.

As in Lemma 1, we will refer to the three terms in the sum in the above equation

as the overloaded regime term, the rate adaptive regime term, and the underloaded

regime term. We consider three separate cases: i)γ < α, ii)α ≤ γ ≤ 1, iii)γ > 1.

Consider the first case, γ < α, which corresponds to scaling the link in the

overloaded regime. We proved in Lemma 1 that, for arbitrarily small h > 0,

lim
m→∞

P(N(m, t) >
c(m)
ασ

(1− h)) = 1, γ < α,

i.e., when the link is provisioned in the overloaded regime, the asymptotic allocation

under the fair share adaptation policy gives each stream its minimum subscription

level. Thus only the overloaded regime term in (3.17) is significant and we can write

qγ,πf = lim
m→∞

E0[Qm,πf ]

= lim
m→∞

E0[
Sm,πf (t)

S
| N(m, t) >

c(m)
ασ

]

= lim
m→∞

E[
AS

S
] = α.

Thus, when the link is provisioned in the overloaded regime, the client average

asymptotic normalized subscription level is α, the average normalized minimum

subscription level. This confirms the intuition that a feasible allocation policy will

typically grant streams their minimum subscription level when the system is over-

loaded.
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Consider the second case, α ≤ γ ≤ 1, which corresponds to scaling the link

in the rate adaptive regime. We proved in Lemma 1 that

lim
m→∞

P(
c(m)

σ
≤ N(m, t) ≤ c(m)

ασ
) = 1, α ≤ γ ≤ 1,

i.e., when the link is provisioned in the rate adaptive regime, the asymptotic fair

share allocation always gives a proportional improvement of limm→∞X(m, t). Thus

only the rate adaptive term in (3.17) is significant and we can write

qγ,πf = lim
m→∞

E0[Qm,πf ]

= lim
m→∞

E0[
Sm,πf (t)

S
| c(m)

σ
≤ N(m, t) ≤ c(m)

ασ
]

= lim
m→∞

E[A(1−X(m, t)) + X(m, t)]

= lim
m→∞

[
E[A] + E[(1−A)X(m, t)]

]
= α + (1− α) lim

m→∞
E[X(m, t)]

= α + (1− α) lim
m→∞

E[
c(m)

N(m,t) − ασ

σ − ασ
]

= α + (1− α) lim
m→∞

c(m)
σ(1− α)

E[
1

N(m, t)
]− α

= lim
m→∞

c(m)
σ

E[
1

N(m, t)
].

Recall that N(m, t) is Poisson. One can show that

lim
m→∞

E[
1

N(m, t)
]− 1

E[N(m, t)]
= 0.

Applying these results yields

qγ,πf = lim
m→∞

c(m)
σ

1
E[N(m, t)]

= lim
m→∞

λ(m)δγσ

σλ(m)δ
= γ.

Thus, when the link is provisioned in the rate adaptive regime, the asymptotic

fair share allocation yields a client average asymptotic normalized subscription level

equal to the capacity scaling parameter.
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Consider the third case, γ > 1, which corresponds to scaling the link in the

underloaded regime. We proved in Lemma 1 that

lim
m→∞

P(N(m, t) <
c(m)

σ
) = 1, γ > 1,

i.e., when the link is provisioned in the underloaded regime, the asymptotic allo-

cation under the fair share adaptation policy gives each stream its maximum sub-

scription level. Thus only the underloaded regime term in (3.17) is significant and

we can write

qγ,πf = lim
m→∞

E0[Qm,πf ]

= lim
m→∞

E0[
Sm,πf (t)

S
| N(m, t) <

c(m)
σ

]

= lim
m→∞

E[
S

S
] = 1.

Thus, when the link is provisioned in the underloaded regime, the client average

asymptotic normalized subscription level is 1, the average normalized maximum

subscription level. This confirms the intuition that a feasible allocation policy will

typically grant streams their maximum subscription level when the system is under-

loaded.

�

The important fact about the fair-share adaptation policy is that the asymp-

totic expected normalized subscription level equals the scaling parameter when the

link capacity is scaled in the rate adaptive regime. We will use this result to eval-

uate the improvement in asymptotic expected normalized subscription level under

the optimal adaptation policy.

3.5 Optimal adaptation policy

Having introduced a sub-optimal adaptation policy, we now turn our attention to

identifying the optimal adaptation policy. The optimal adaptation policy is defined

62



as the adaptation policy which maximizes the expected time-average normalized

subscription level over all feasible adaptation policies. Throughout this chapter we

will frequently use the term quality of service to refer to the expected time aver-

age normalized subscription level, but, as described in Chapter 2, our definition

of quality of service actually also includes the rate of adaptation and the blocking

probability. This terminology is adapted solely for the sake of brevity, but it does

emphasize the fact that the normalized subscription level is our primary metric. In

the sequel we will demonstrate that, for large capacity networks, the rate of adap-

tation under the optimal policy is zero, and, when the network is not provisioned

in the overloaded regime, so too is the blocking probability. Thus the normalized

subscription level is the only asymptotically non-trivial metric.

We will investigate two different models: a model for stored media and a

model for live media. The stream duration for stored media is typically known a

priori, and hence its stream volume is known. For live media, however, the stream

duration may well be unknown, and hence the stream volume is unknown. We

will identify the optimal adaptation policies for each of these models. The optimal

adaptation policy for stored media will be denoted πk, to reflect the fact that the

stream duration is known, and the optimal adaptation policy for live media will be

denoted πu, to reflect the fact that the stream duration is unknown.

We study the optimal adaptation policy for stored media on a general net-

work in Subsection 3.5.1 and specialize the result to a single link in Subsection 3.5.2.

We study the optimal adaptation policy for live media on a general network in Sub-

section 3.5.3 and specialize the result to a single link in Subsection 3.5.4. Subsection

3.5.5 will present some simulation results comparing the Quality of Service under

the two policies.
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3.5.1 Optimal adaptation policy for stored media, general network

We define the instantaneous QoS of a stream, Qi,r(t), as

Qi,r(t) =


Si,r(t)

Si,rDi,r
, Bi,r ≤ t ≤ Bi,r + Di,r

0, otherwise
, (3.18)

for Bi,r the arrival time of stream (i, r). We define the instantaneous aggregate QoS,

Qagg(t), as the sum of the instantaneous QoS for all active streams, i.e.,

Qagg(t) =
∑
r∈R

Nr(t)∑
i=1

Qi,r(t). (3.19)

The following lemma demonstrates that maximizing the expected time aver-

age normalized subscription level, E0[Q], is equivalent to maximizing the expected

instantaneous aggregate QoS at a typical time, E[Qagg(t)].

Lemma 3 The expected time-average normalized subscription level, E0[Q], is pro-

portional to the expected instantaneous aggregate QoS at a typical time, E[Qagg(t)].

In particular,

E0[Q] =
1
λa

E[Qagg(t)], (3.20)

where λa =
∑

r∈R λa
r is the aggregate rate at which streams are admitted into the

network, and λa
r is the rate of admissions on route r.

Proof of Lemma 3.

We define the time-average instantaneous aggregate QoS as

qagg = lim
t→∞

1
t

∫ t

0
Qagg(s)ds = E[Qagg(t)] a.s.,

where the second equality follows by ergodicity, and E[·] denotes expectation with

respect to the stationary distribution. Similarly, we can define the client average

QoS on route r as

q0
r = lim

nr→∞

1
nr

nr∑
i=1

∫ ∞

−∞
Qi,r(s)ds = E0[Qr] a.s.
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where we again have the second equality by ergodicity, and E0[·] denotes expectation

with respect to a client average. Note that i) the admission policy is independent

of the adaptation policy, and ii) in terms of admission, the system is a stochastic

knapsack with continuous sizes [27]. Thus there is a blocking probability on each

route, Br, and the rate at which streams are admitted into the system on route r is

λa
r = λr(1−Br). Let the expected QoS of a typical stream be

E0[Q] =
∑
r∈R

λa
r

λa
E0[Qr],

where λa =
∑

r∈R λa
r . This can be thought of as choosing a random client by

conditioning on the probability of choosing a client from a given route.

Brumelle’s Theorem [32] relates the average cost per client, say E0[X], to

the average cost received per unit of time by the system, say E[Y (t)], by E[Y (t)] =

λE0[X], where λ is the rate at which new clients are admitted into the system. Thus

Brumelle’s theorem relates a client average quantity, E0[X] to an instantaneous

system quantity, E[Y (t)]. Brumelle’s Theorem is a generalization of Little’s Law

which relates a client average quantity, namely the average client delay, say E0[D],

to an instantaneous system quantity, namely, the average number of clients in the

system, E[N(t)], by E[N(t)] = λE0[D].

Applying Brumelle’s Theorem to the client average QoS and the expected

instantaneous aggregate QoS yields

E[Qagg(t)] = λaE0[Q].

�

The previous lemma proves that maximizing the client average QoS is equiv-

alent to maximizing the expected instantaneous aggregate QoS at a stationary time

t. The following theorem states the optimal adaptation policy for stored media on

a general network.
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Theorem 1 The optimal adaptation policy, πk, that maximizes E0[Q] when stream

durations are known is the instantaneous bandwidth allocation sπk(t) at each time t

resulting from the solution of the following integer programming problem:

max
s(t)

qagg(t) =
∑
r∈R

nr(t)∑
i=1

si,r(t)
si,rdi,r

(3.21)

s.t.
∑
r3l

nr(t)∑
i=1

si,r(t) ≤ cl ∀l ∈ L,

si,r(t) ∈ Si,r, i = 1, ..., nr(t),∀r ∈ R.

There exists a feasible allocation sπ̃k(t) with sπ̃k
i,r(t) ∈ {ai,rsi,r, si,r} for all

i = 1, ..., nr(t) and all r ∈ R such that the value of the objective under sπ̃k(t) is

nearly optimal. In particular,

qπk
agg(t)− qπ̃k

agg(t)
qπk
agg(t)

≤ κk

n(t)
, (3.22)

where n(t) =
∑

r∈R nr(t), and κk < ∞.

Proof of Theorem 1.

We restrict ourselves to non-anticipatory policies, i.e., those which only make

use of information available at time t. To this end, define the filtration {σ(t), t ∈ R}

to represent what is known at time t, which in this case includes the adaptivities,

arrival times, durations, and maximum subscription levels of all active streams, i.e.,

σ(t) = σ({(ai,r, bi,r, di,r, si,r) | bi,r ≤ t})

where bi,r is the time of arrival of stream (i, r). To find the optimal adaptation

policy we will seek to maximize

E[Qagg(t) | σ(t)] =
∑
r∈R

nr(t)∑
i=1

si,r(t)
si,rdi,r

,

over all feasible s(t) = (si,r(t), i = 1, ..., nr(t), r ∈ R), where we can assume the

random variables Nr(t) and Di,r are known because they are in σ(t). Feasible s(t)
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requires si,r(t) ∈ Si,r and that the link capacity constraints be obeyed. This yields

(3.21).

We next prove the existence of an allocation sπ̃k(t) with sπ̃k
i,r(t) ∈ {ai,rsi,r, si,r}

that is nearly optimal, with a bound given by (3.22). We denote the value of the

objective under an allocation s(t) as

G(s(t)) =
∑
r∈R

nr(t)∑
i=1

si,r(t)
si,rdi,r

,

and denote the load on each link under an allocation s(t) as

gl(s(t)) =
∑
r3l

nr(t)∑
i=1

si,r(t), l ∈ L.

The capacity constraints will be written

g(s(t)) ≤ c ⇒ gl(s(t)) ≤ cl,∀l ∈ L.

We will also use the following notation, where the right hand sides are understood

to hold for all i = 1, . . . nr(t), r ∈ R:

s(t) ∈ {as, s} ⇒ si,r(t) ∈ {ai,rsi,r, si,r},

s(t) ∈ S ⇒ si,r(t) ∈ Si,r,

s(t) ∈ [as, s] ⇒ ai,rsi,r ≤ si,r(t) ≤ si,r.

Consider the problems P x, P πk , P y:

P x : max
s(t)

{
G(s(t))

∣∣∣g(s(t)) ≤ c, s(t) ∈ {as, s}
}

P πk : max
s(t)

{
G(s(t))

∣∣∣g(s(t)) ≤ c, s(t) ∈ S
}

P y : max
s(t)

{
G(s(t))

∣∣∣g(s(t)) ≤ c, s(t) ∈ [as, s]
}

.

Let us denote a solution of P x, P πk , P y by sx(t), sπk(t), sy(t). Note that P y is a re-

laxation of P πk , and that P πk is a relaxation of P x, implying G(sx(t)) ≤ G(sπk(t)) ≤

G(sy(t)).
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We next show there exists a solution of P y which assigns at most all but one

stream per route either its minimum or maximum subscription level by showing the

value of the objective function is not decreased by changing the allocation to one

that does satisfy that property. Suppose sy(t) is a solution to P y and let (i, r) and

(j, r) be two streams on route r receiving an intermediate allocation, i.e., ai,rsi,r <

sy
i,r(t) < si,r and aj,rsj,r < sy

j,r(t) < sj,r. Suppose that we assume si,rdi,r ≤ sj,rdj,r

and define w1 = sj,rdj,r−si,rdi,r ≥ 0. Define w2 = min{si,r−sy
i,r(t), s

y
j,r(t)−aj,rsj,r}.

Now consider the allocation s′(t) where s′(t) = sy(t) aside from s′i,r(t) = sy
i,r(t)+w2

and s′j,r(t) = sy
j,r(t) − w2. Note that s′(t) is feasible and that either s′i,r(t) = si,r

or s′j,r(t) = aj,rsj,r so that the allocation s′(t) decreases the number of streams on

route r with intermediate rates by one. We can show the value of the objective

function under s′(t) exceeds that under sy(t) as follows:

G(s′(t))−G(sy(t)) =
s′i,r(t)−sy

i,r(t)
si,rdi,r

+
s′j,r(t)−sy

j,r(t)
sj,rdj,r

=
w2

si,rdi,r
− w2

sj,rdj,r

=
w1w2

si,rdi,rsj,rdj,r

≥ 0.

We can continue to shift the allocations in this manner until at most one stream

has an intermediate rate on each route.

Let sy(t) therefore denote a solution to P y with at most one stream receiving

an intermediate rate per route. Define the allocation sπ̃k(t) as equaling sy(t) but

with the allocation for the streams receiving intermediate rates set to their respec-

tive minimum. Similarly, define the allocation sz(t) as equaling sy(t) but with the

allocation for the stream receiving intermediate rates set to their respective maxi-

mum. Clearly, G(sπ̃k(t)) ≤ G(sy(t)) ≤ G(sz(t)). Moreover, G(sπ̃k(t)) ≤ G(sx) since

sπ̃k(t) is an allocation satisfying the constraints of P x and sx is a solution to P x.
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Combining these observations yields

G(sπ̃k(t)) ≤ G(sx(t)) ≤ G(sπk(t)) ≤ G(sy(t)) ≤ G(sz(t)).

We may therefore obtain a bound in the difference in the value of the objective

under πk versus π̃k as:

G(sπk(t))−G(sπ̃k(t)) ≤ G(sz(t))−G(sπ̃k(t))

=
∑
r∈R

si,r − ai,rsi,r

si,rdi,r

=
∑
r∈R

1− ai,r

di,r

where (i, r) denotes the stream receiving an intermediate allocation under sy(t).

We can then bound the relative difference in the value of the objective under

πk versus π̃k as:

G(sπk(t))−G(sπ̃k(t))
G(sπk(t))

≤
∑

r∈R
1−ai,r

di,r∑
r∈R

∑nr(t)
j=1

s
πk
j,r(t)

sj,rdj,r

≤
∑

r∈R
1−ai,r

di,r∑
r∈R

∑nr(t)
j=1

aj,r

sj,rdj,r

≤
1
d

1
d̄

∑
r∈R 1− ai,r∑

r∈R
∑nr(t)

j=1
aj,r

sj,r

≤ s̄d̄

d

∑
r∈R 1− ai,r∑

r∈R
∑nr(t)

j=1 aj,r

≤ (1− a)s̄d̄|R|
ad

1
n(t)

where d and d̄ are the minimum and maximum possible durations, s̄ is the maximum

full subscription level, and a is the minimum possible adaptivity. Finally, n(t) =∑
r∈R nr(t) is the total number of active streams on the network at time t. Recall all

random variables are assumed to have finite support, and are bounded away from 0,
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so κk = (1−a)s̄d̄|R|
ad < ∞. Note this bound is very loose. Thus, for networks servicing

large numbers of streams the bound goes to 0.

�

The first part of the theorem demonstrates that each stream is weighted

inversely by its volume vi,r = si,rdi,r, i.e., the product of its maximum subscription

level and its duration. The intuition is that the system is able to maximize the client

average QoS by granting higher QoS to clients consuming fewer network resources.

The second part of the theorem illustrates the existence of a near-optimal allocation

such that all streams use either their minimum or maximum subscription level.

Thus, for networks supporting large numbers of streams we may achieve a close to

optimal solution by only using the minimum and maximum subscription levels.

This implies, from the system perspective, that there is little need for con-

tent providers to offer intermediate subscription levels, i.e., between ai,rsi,r and si,r.

This conclusion is markedly different from that obtained if one considers the prob-

lem of supporting rate adaptive multimedia streams from the client perspective,

which suggests streams are more resilient to congestion when they have numerous

subscription levels available.

3.5.2 Optimal adaptation policy for stored media, single link

To gain some further intuition for the optimal adaptation policy, we will consider

the special case of a single link. As before, we drop the link and route subscripts

and let N(t) denote the number of active streams traversing the link at time t, and

c denote the link capacity. For the single link case we are able to write down the

allocation sπ̃k(t) from Theorem 1 in closed form.

Corollary 1 Consider a bottleneck link traversed by n(t) active streams, labeled in

order of increasing volume v−1
1 > ... > v−1

n . The allocation sπ̃k(t) of Theorem 1 for
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the case of single bottleneck links is

sπ̃k
i (t) =

 si, i = 1, . . . , n̄− 1

aisi, i = n̄, . . . , n(t)
(3.23)

where

n̄ = max
{

m |
m−1∑
i=1

si +
n(t)∑
i=m

aisi ≤ c
}

. (3.24)

Proof of Corollary 1. The integer program (3.21) for the case of a single bottle-

neck is

max
s(t)

{n(t)∑
i=1

si(t)
sidi

∣∣∣ n(t)∑
i=1

si(t) ≤ c, si(t) ∈ Si

}
.

We use integer relaxation to transform the discrete constraint si(t) ∈ Si to a contin-

uous box constraint of the form aisi ≤ si(t) ≤ si, then use the change of variables

xi(t) = si(t)−aisi

1−ai
to obtain

max
x(t)

n(t)∑
i=1

(1− ai)xi(t)
sidi

s.t.

n(t)∑
i=1

(1− ai)xi(t) ≤ c′,

0 ≤ xi(t) ≤ 1.

where c′ = c−
∑n(t)

i=1 aisi. This is a standard knapsack relaxation problem where the

weights are the (1−ai)si, the values are 1−ai
sidi

, and the size of the knapsack is c′. We

fill the knapsack sorted in order of decreasing value per unit weight, i.e., starting

with the smallest sidi.

�

On single bottleneck links, the optimal adaptation policy sorts the active

streams on the bottleneck link by volume, granting the full subscription level to

as many streams as possible while ensuring sufficient capacity is available to allow

the remaining clients to subscribe at their minimum subscription level. For large

71



capacity links servicing large numbers of streams the difference in the objective

between sπk(t) and sπ̃k(t) will be negligible, and we may obtain a QoS comparable

to the optimal by using only the minimum and maximum subscription levels for

each stream.

3.5.3 Optimal adaptation policy for live media, general network

In this section we assume stream durations are unknown at the time of stream

admission. We denote the optimal adaptation policy under this assumption by πu,

and the approximate optimal adaptation policy by π̃u. Although stream durations

are unknown, we can use the current age of a stream at some time t to infer the

stream volume. In particular, let li,r(t) = t− bi,r denote the age of stream (i, r) at

time t, where bi,r is the arrival time of the stream. It turns out that the quantity we

need to estimate for the optimal adaptation policy for unknown stream durations

is E[ 1
D | D ≥ l(t)]. We define the expected volume of a stream at time t, v(t), as

v(t)−1 = 1
sE[ 1

D | D > l(t)].

Theorem 2 The adaptation policy πu that maximizes E0[Q] when stream durations

are unknown is the instantaneous bandwidth allocation sπu(t) at each time t resulting

from the solution of (3.21) with the quantity 1
di,r

replaced with E[ 1
D | D > li,r(t)],

where li,r(t) is the current age of stream (i, r) at time t. There exists a feasible

allocation sπ̃u(t) with sπ̃u
i,r(t) ∈ {ai,rsi,r, si,r} for all i = 1, . . . , nr(t) and all r ∈ R

such that the value of the objective under sπ̃u(t) is nearly optimal. In particular,

qπu
agg(t)− qπ̃u

agg(t)
qπu
agg(t)

≤ κu

n(t)
, (3.25)

for κu < ∞.

Proof of Theorem 2. The approach used to prove Theorem 1 applies here as well.

The difference is that the filtration σ(t) doesn’t include the durations of the active
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streams. We can recover the current ages li,r of the active streams from the arrival

times bi,r as {li,r = t− bi,r | bi,r ≤ t}. This yields

E[Qagg(t) | σ(t)] =
∑
r∈R

nr(t)∑
i=1

si,r(t)
si,r

E[
1

Di,r
| Di,r > li,r].

The same considerations on feasible s(t) apply here yielding the same equation as

(3.21), with 1
di,r

replaced by E[ 1
D | D > li,r]. Obtaining the bound on (3.25) is

similar to the proof for the bound on (3.22), yielding

κu =
s̄d̄E[ 1

D ](1− a)|R|
a

< ∞.

�

For the case of unknown stream durations we see that streams are weighted

according to their expected inverse volume at time t, i.e., 1
si,r

E[ 1
D | D > li,r(t)], as

opposed to being weighted according to their inverse volume 1
si,rdi,r

as in the case

for known stream durations.

3.5.4 Optimal adaptation policy for live media, single link

The solution to (3.21) when there is at most one bottleneck link per route and

stream durations are unknown is to sort streams traversing a given bottleneck by

“expected” volume.

Corollary 2 Consider a bottleneck link traversed by n(t) active streams, labeled in

order of increasing expected volume v1(t)−1 > ... > vn(t)−1. The allocation sπ̃u(t)

for the case of at most one bottleneck link per route and unknown stream durations

is given by (3.23) and (3.24) with sπ̃u(t)) replacing sπ̃k(t)).

Proof of Corollary 2. The proof follows directly from the proofs of Theorem 2

and Corollary 1. �
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The corollary illustrates that although stream durations may be unknown,

the near optimal allocation still only makes use of two subscription levels: aisi and

si.

3.5.5 Simulation results for adaptation policies

In this subsection we present some simulation results illustrating the quality of

service under the fair share adaptation policy, the optimal adaptation policy for

known stream durations, and the optimal adaptation policy for unknown stream

durations.

Figure 3.6 is a histogram of the time-average normalized subscription level

versus stream volume, and Figure 3.7 is a histogram of the rate of adaptation versus

stream volume. Note that the x axis is on a logarithmic scale. The stream volume

PDF, fV (v) is also plotted. Recall the mean volume is E[V ] = 54 Mb. Also recall

the average adaptivity is E[A] = α = 1
2 , so the range of feasible expected time-

average normalized subscription levels is E0[Q] ∈ [α, 1] = [12 , 1]. The figures are

simulations of a single link with arrival rate λ = 5.0 and capacity c = 202.5 Mb/s.

Simulations were run for about 15,000 clients. The average number of active streams

is E[N(t)] = λδ = 5.0×180 = 900. The capacity corresponds to scaling the network

with a capacity scaling parameter γ = c
λδσ = 202.5

5.0×180×0.3 = 3
4 . The histograms use

100 bins, where each bin has a width corresponding to one percent of the volume

distribution. That is, if bin j covers the interval [vmin
j , vmax

j ], then P(vmin
j ≤ V ≤

vmax
j ) = 0.01 for j = 1, . . . 100. The histograms are therefore plots of E0[Q | V = v]

and E0[R | V = v] versus v, respectively.

Several points are noteworthy. Consider first the fair share adaptation policy.

As proved in Lemma 2, the asymptotic expected time-average normalized subscrip-

tion level under the fair share policy equals the scaling parameter when the network

is provisioned in the rate adaptive regime. The top plot illustrates that the normal-
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ized subscription level indeed equals the scaling parameter γ = 0.75. It also confirms

that all clients, regardless of their stream volume, receive the same time-average nor-

malized subscription level under the fair share policy. The rate of adaptation under

the fair share policy is fairly low, but seems to be monotonically increasing in the

stream volume.

Now consider the optimal adaptation policies. The top figure illustrates a

fairly dramatic improvement in the time-average normalized subscription level under

the optimal adaptation policy for almost all stream volumes. There is a sharp drop

off around v = 200 Mb such that streams with volumes larger than this end up

worse off than under the fair share policy. The volume CDF, however, shows that

P (V > 200) ≈ 0.06, thus it is only the largest 6% of the streams which are so

penalized. So we see that roughly 94% of the clients receive an increase in QoS from

0.75 to 1 while 6% of the clients receive a decrease in QoS from 0.75 to 0.5. The

top figure also illustrates that the optimal adaptation policies discriminate among

streams according to volume, granting precedence to smaller volume streams over

larger volume streams. The optimal adaptation policy for known stream durations

achieves a very sharp volume discrimination between large and volume streams,

while the optimal adaptation policy for unknown stream durations achieves a more

gradual discrimination due to the fact that less information is available about the

stream volumes.

Consider the rate of adaptation under the optimal adaptation policy for

known stream durations. The plot illustrates that small and large volume streams

achieve a near-zero rate of adaptation, meaning these streams receive a constant

subscription level throughout their duration. The plot also illustrates that streams

with volume near v = 200 experience a much higher rate of adaptation. Intuitively,

if congestion arises, streams with these intermediate volumes are the first to be

adapted to their minimum subscription level. Similarly, when capacity is available,
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the optimal adaptation policy chooses these streams with intermediate volumes as

the first to be adapted to their maximum subscription level.

3.6 Asymptotic optimal QoS

In this section we apply the network scaling to the optimal adaptation policy. Sub-

section 3.6.1 applies the network scaling to the optimal adaptation policy on a

general network, and Subsection 3.6.2 applies the network scaling to the optimal

adaptation policy on a single link. Finally, Subsection 3.6.2 presents some computa-

tional results of the asymptotic expected time-average normalized subscription level

under the optimal adaptation policy, for the case of known stream durations on a

single link.

3.6.1 Asymptotic optimal QoS, general network

We apply the network scaling to the optimal adaptation policy for known stream

durations on a general network, as presented in Subsection 3.5.1. The following

theorem states that the asymptotic optimal adaptation policy is the solution, at

each time t, of a nonlinear optimization problem over a vector of instantaneous

volume thresholds vγ,πk(t) = (vγ,πk
r (t), r ∈ R). We write sγ,πk(t) for the asymptotic

optimal instantaneous subscription level assignment at time t when the network is

provisioned according to a network scaling vector γ = (γl, l ∈ L). The instantaneous

volume thresholds on each route function such that, at each time t, stream (i, r) with

volume vi,r = si,rdi,r receives a subscription level

sγ,πk
i,r (t) =

 si,r, vi,r < vγ,πk
r (t)

ai,rsi,r, else
. (3.26)

If a stream’s volume is less than the instantaneous volume threshold for its route,

then its subscription level assignment at time t is its maximum subscription level.
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Similarly, if its volume exceeds the instantaneous volume threshold for its route,

then its subscription level assignment at time t is its minimum subscription level.

Theorem 3 Under the network scaling, the asymptotic optimal adaptation policy

for known stream durations on a general network is such that the asymptotic optimal

instantaneous subscription level assignment is of the form given in (3.26). At a

typical time, t, the expected optimal instantaneous volume threshold vector, vγ,πk(t),

is the solution of the following nonlinear program:

max
v(t)

∑
r∈R

λrFV (vr(t)) + αλrF̄V (vr(t)) (3.27)

s.t.
∑
r3l

λrFV̂ (vr(t)) + αλrF̄V̂ (vr(t)) ≤ γlνl,∀l ∈ L.

Moreover, the above constraints comprise a convex set and the objective is a concave

function, ensuring the existence of a unique optimum.

Proof of Theorem 3.

Under the network scaling, the optimization problem (3.21) for the mth net-

work is

max
s(m,t)

Gm(s(m, t)) =
∑
r∈R

nr(m,t)∑
i=1

si,r(m, t)
si,rdi,r

s.t.
∑
r3l

nr(m,t)∑
i=1

si,r(m, t) ≤ cl(m) ∀l ∈ L,

si,r(m, t) ∈ Si,r, i = 1, ..., nr(m, t),∀r ∈ R.

Let sπk(m, t) and sπ̃k(m, t) denote the allocations sπk(t) and sπ̃k(t), defined in The-

orem 1, on the mth network. As shown in Theorem 1,

lim
m→∞

Gm(sπk(m, t))−Gm(sπ̃k(m, t))
Gm(sπ̃k(m, t))

= 0.

Thus for arbitrary ε > 0 there exists an m(ε) ∈ Z such that the proportional

difference in the objective under allocations sπk(m, t) and sπ̃k(m, t) is less than ε for

all m > m(ε).
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We next point out that, for two streams (i, r) and (j, r) on route r, if si,rdi,r <

sj,rdj,r then necessarily sπk
i,r(m, t) ≥ sπk

j,r(m, t), since otherwise we could increase the

value of the objective by swapping bandwidth from j to i. Thus, only two rates

are necessary in the limit, and the allocation given to streams on a given route is

non-increasing in stream volume. This implies all streams with volume less than

some (route dependent) threshold are given their maximum subscription level and

all streams with volume above that threshold are given their minimum subscription

level. We can therefore transform the problem of finding the optimal subscription

level assignment to one of finding the optimal volume thresholds for each route:

max
v(m,t)

∑
r∈R

(nr(m,t)∑
i=1

I(vi,r ≤ vr(m, t))
di,r

+
nr(m,t)∑

i=1

ai,rI(vi,r > vr(m, t))
di,r

)

s.t.
∑
r3l

(nr(m,t)∑
i=1

si,rI(vi,r ≤ vr(m, t)) +
nr(m,t)∑

i=1

ai,rsi,rI(vi,r > vr(m, t))
)
≤ cl(m),

∀l ∈ L. We can normalize the objective by dividing by λ(m) =
∑

r∈R λr(m) without

affecting the optimal instantaneous volume threshold vector. This yields

max
v(m,t)

1
λ(m)

∑
r∈R

(nr(m,t)∑
i=1

I(vi,r ≤ vr(m, t))
di,r

+
nr(m,t)∑

i=1

ai,rI(vi,r > vr(m, t))
di,r

)
(3.28)

s.t.
∑
r3l

(nr(m,t)∑
i=1

si,rI(vi,r ≤ vr(m, t)) +
nr(m,t)∑

i=1

ai,rsi,rI(vi,r > vr(m, t))
)
≤ cl(m),

∀l ∈ L. Consider the above optimization problem for a typical time t. We are

interested in finding the expected value of the objective and the left hand side of the

constraint. At a typical time the stream durations are stretched, i.e., D ∼ FD̂. This

just means we are more likely to see longer duration streams than shorter duration

streams at a typical time. We therefore replace Di,r with D̂i,r. The expected value
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of the first term in the objective is given by

1
λ(m)

E
[Nr(m,t)∑

i=1

I(Si,rD̂i,r ≤ vr(m, t))
D̂i,r

]
=

1
λ(m)

E[Nr(m, t)]E[
1
D̂

I(SD̂ ≤ vr(m, t))]

=
λr(m)
λ(m)

δ

∫ ∞

0

∫ ∞

0

1
x

I(xy ≤ vr(m, t))fD̂(x)dxfS(y)dy

=
λr(m)
λ(m)

δ

∫ ∞

0

∫ ∞

0

1
x

I(xy ≤ vr(m, t))x
1
δ
fD(x)dxfS(y)dy

=
λr(m)
λ(m)

∫ ∞

0

∫ ∞

0
I(xy ≤ vr(m, t))fD(x)dxfS(y)dy

=
λr(m)
λ(m)

∫ ∞

0

[∫ vr(m,t)
y

0
fD(x)dx

]
fS(y)dy

=
λr(m)
λ(m)

∫ ∞

0
FD(

vr(m, t)
y

)fS(y)dy

=
λr(m)
λ(m)

FV (vr(m, t))

=
λr

λ
FV (vr(m, t)).

A similar analysis of the second term in the objective yields

1
λ(m)

E
[Nm

r (t)∑
i=1

Ai,rI(Si,rDi,r > vr)
Di,r

]
= α

λr

λ
F̄V (vr).
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Next consider the first sum in the left hand side of the constraint. The expected

value is given by

E
[∑

r3l

Nr(m,t)∑
i=1

Si,rI(Si,rD̂i,r ≤ vr(m, t))
]

=
∑
r3l

E[Nr(m, t)]E[SI(SD̂ ≤ vr(m, t))]

=
∑
r3l

λr(m)δ
∫ ∞

0

∫ ∞

0
yI(xy ≤ vr(m, t))fS(y)dyfD̂(x)dx

=
∑
r3l

λr(m)δ
∫ ∞

0

∫ ∞

0
yI(xy ≤ vr(m, t))fS(y)dyx

1
δ
fD(x)dx

=
∑
r3l

λr(m)
∫ ∞

0

∫ ∞

0
xyI(xy ≤ vr(m, t))fS(y)dyfD(x)dx

=
∑
r3l

λr(m)
∫ ∞

0

∫ ∞

0
wI(w ≤ vr(m, t))fS(

w

x
)
1
x

dwfD(x)dx

=
∑
r3l

λr(m)
∫ ∞

0
wI(w ≤ vr(m, t))

[∫ ∞

0

1
x

fS(
w

x
)fD(x)dx

]
dw

=
∑
r3l

λr(m)
∫ ∞

0
wI(w ≤ vr(m, t))fSD(w)dw

=
∑
r3l

λr(m)
∫ vr(m,t)

0
wfSD(w)dw

=
∑
r3l

λr(m)E[V ]FV̂ (vr(m, t))

=
∑
r3l

λr(m)FV (vr(m, t))E[V | V ≤ vr(m, t)]

A similar argument shows the expected value of the second term in the constraint

equals

E
[∑

r3l

Nr(m,t)∑
i=1

Ai,rSi,rI(Si,rD̂i,r≥vr(m, t))
]
=

∑
r3l

λr(m)αF̄V (vr(m, t))E[V |V >vr(m, t)].
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It is easily seen from the definition of FV̂ that

FV (v)E[V | V ≤ v] = E[V ]FV̂ (v)

F̄V (v)E[V | V > v] = E[V ]F̄V̂ (v).

Thus we can write the constraint as

E[V ]
∑
r3l

λr(m)(FV̂ (vr(m, t)) + αF̄V̂ (vr(m, t))) ≤ cl(m), ∀l ∈ L.

Dividing both sides by cl(m) and applying the network scaling yields

E[V ]
νl(m)δγlσ

∑
r3l

λr(m)(FV̂ (vr(m, t)) + αF̄V̂ (vr(m, t))) ≤ 1, ∀l ∈ L

Noting that νl(m) and λr(m) are both linear in m allows

∑
r3l

λr(FV̂ (vr(m, t)) + αF̄V̂ (vr(m, t))) ≤ νlγl, ∀l ∈ L

Combining the expressions for the expected value of the objective and the

expected value of the constraint yields that the volume threshold at a typical time

t on the mth network solves a nonlinear optimization problem with an expected

objective and constraint given by

max
v(m,t)

∑
r∈R

λr(FV (vr(m, t)) + αF̄V (vr(m, t)))

s.t.
∑
r3l

λr(FV̂ (vr(m, t)) + αF̄V̂ (vr(m, t))) ≤ νlγl, ∀l ∈ L.

The important point is that the expected value of is independent of m, which means

under the network scaling the asymptotic expected instantaneous volume threshold

vector is independent of m. Thus, v(t) is the solution to

max
v(t)

1
λ

∑
r∈R

λr(FV (vr(t)) + αF̄V (vr(t)))

s.t.
∑
r3l

λr(FV̂ (vr(t)) + αF̄V̂ (vr(t))) ≤ νlγl, ∀l ∈ L.
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Finally, we prove that the above nonlinear optimization problem consists of

maximizing a concave objective over a convex set, which guarantees the existence of

a unique optimum. We first simplify the above problem by substituting F̄V = 1−FV

and F̄V̂ = 1 − FV̂ . Collecting terms and keeping only the terms in the objective

containing functions of v yields

max
v(t)

∑
r∈R

λrFV (vr(t))

s.t.
∑
r3l

λrFV̂ (vr(t)) ≤
νlγl − νlα

1− α
,∀l ∈ L.

We divide both sides of the constraint by νl and define λrl = λr
νl

, the normalized

mean arrival rate of route r on link l. We also define ξl = γl−α
1−α . This allows us to

write the optimization problem as

max
v(t)

∑
r∈R

λrFV (vr(t))

s.t.
∑
r3l

λrlFV̂ (vr(t)) ≤ ξl,∀l ∈ L.

We use the change of variables yr(t) = FV̂ (vr(t)) ∈ [0, 1] so that the problem becomes

max
y(t)

∑
r∈R

λrFV (F−1

V̂
(yr(t)))

s.t.
∑
r3l

λrlyr(t) ≤ ξl,∀l ∈ L.

Note that the constraints are linear so that the feasible region is a convex set. We

next show the objective is a concave increasing function. For brevity we write yr

for yr(t). Consider

∂

∂yr

∑
r′∈R

λr′FV (F−1

V̂
(yr′)) = λr

∂

∂yr
FV (F−1

V̂
(yr))

= λr

∂FV (F−1

V̂
(yr))

∂F−1

V̂
(yr)

∂F−1

V̂
(yr)

∂yr

= λrfV (F−1

V̂
(yr))

∂F−1

V̂
(yr)

∂yr
.
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We can get an expression for
∂F−1

V̂
(yr)

∂yr
by differentiating the identity FV̂ (F−1

V̂
(y)) = y:

d

dy
FV̂ (F−1

V̂
(y)) =

d

dy
y

dFV̂ (F−1

V̂
(y))

dF−1

V̂
(y)

dF−1

V̂
(y)

dy
= 1

fV̂ (F−1

V̂
(y))

dF−1

V̂
(y)

dy
= 1

dF−1

V̂
(y)

dy
=

1
fV̂ (F−1

V̂
(y))

dF−1

V̂
(y)

dy
=

E[V ]
fV (F−1

V̂
(y))F−1

V̂
(y))

.

Substituting into the prior expression yields

∂

∂yr

∑
r′∈R

λr′FV (F−1

V̂
(yr′)) =

λrE[V ]
F−1

V̂
(yr))

> 0.

Thus, the first derivative of the objective is positive. Taking the second derivative

of the objective yields

∂

∂y2
r

∑
r′∈R

λr′FV (F−1

V̂
(yr′)) = λrE[V ]

∂

∂yr

1
F−1

V̂
(yr))

= − λrE[V ]
F−1

V̂
(yr))2

∂

∂yr
F−1

V̂
(yr)

= − λrE[V ]
F−1

V̂
(yr))2fV̂ (F−1

V̂
(y))

< 0.

Thus the second derivative of the objective is negative. This means the objective is

a concave increasing function in each yr.

�

Thus, for large capacity networks, provisioning the network according to

the rate adaptive scaling implies the optimal adaptation policy for known stream

durations assigns an instantaneous volume threshold on each route. Streams with

volumes less than the instantaneous volume threshold for their route receive their
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minimum subscription level and streams with volumes larger than the instantaneous

volume threshold for their route receive their maximum subscription level.

3.6.2 Asymptotic optimal QoS, single link

In this section we consider the asymptotic expected time-average normalized sub-

scription level under the optimal adaptation policy for known stream durations on a

single link, denoted qγ,πk = limm→∞ E0[Qm,πk ]. We obtain a closed form expression

which we interpret as the rate-adaptive asymptotic analogue of Erlang’s blocking

probability equation for loss networks. This expression can be used to explicitly

compute how the asymptotic expected time-average normalized subscription level

under the optimal adaptation policy varies as a function of the system parameters.

The expression is given in the following theorem.

Theorem 4 The asymptotic expected time-average normalized subscription level

under the optimal adaptation policy for known stream durations on a single link

is

qγ,πk =


α, γ < α

1− (1− α)F̄V (F−1

V̂
(γ−α

1−α )), α ≤ γ ≤ 1

1, γ > 1

. (3.29)

Proof of Theorem 4. Let Qm,πk denote the QoS of a typical stream in the mth

scaling of the link capacity under the optimal adaptation policy πk. Similarly, let

Sm,πk(t) denote the instantaneous allocation to a typical stream at some time t after

that stream’s admission:

qγ,πk = lim
m→∞

E0[Qm,πk ] = lim
m→∞

E0[
1
D

∫ D

0

Sm,πk(t)
S

dt].

We can condition on S = s and D = d to obtain

qγ,πk = lim
m→∞

∫ ∞

0

∫ ∞

0
E0[

1
D

∫ D

0

Sm,πk(t)
S

dt | D = d, S = s]dFD(d)dFS(s).
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Note that, because the optimal adaptation policy does not depend on the time t

since the stream’s admission into the system, we can claim

E0[
1
D

∫ D

0

Sm,πk(t)
S

dt | D = d, S = s] = E0[
Sm,πk(t)

S
| D = d, S = s],

for the t in the RHS understood to be a typical time. This allows

qγ,πk = lim
m→∞

∫ ∞

0

∫ ∞

0
E0[

Sm,πk(t)
S

| D = d, S = s]dFD(d)dFS(s).

Next, note that under the optimal adaptation policy S(t)
S is either 1 or A

depending on whether or not the stream is adapted at time t. Also, note that the

whether or not the stream is adapted is independent of A. We write p(m, t, s, d) for

the probability that a typical stream with parameters S = s and D = d is adapted

at a typical time t in the mth link.

E0[
Sm,πk(t)

S
| D = d, S = s]

=
∫ 1

0
E0[

Sm,πk(t)
S

| D = d, S = s,A = a]dFA(a)

=
∫ 1

0

[
ap(m, t, s, d)] + 1(1− p(m, t, s, d))

]
dFA(a)

=
∫ 1

0

[
1− (1− a)p(m, t, s, d)

]
dFA(a)

= 1− (1− α)p(m, t, s, d).

Dominated convergence allows us to move the limit inside the integrals:

qγ,πk = 1−(1−α)
∫ ∞

0

∫ ∞

0
lim

m→∞
p(m, t, s, d)dFD(d)dFS(s).

We focus now on limm→∞ p(m, t, s, d). Let N(m, t) denote the number of

other active streams, besides the stream with volume sd, in the mth system at a

typical time t. The event that a stream with volume sd is adapted at a typical time

t is equivalent to the event

N(m,t)∑
i=1

SiI(SiD̂i ≤ sd) + s +
N(m,t)∑

i=1

AiSiI(SiD̂i > sd) ≥ c(m)
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where we write D̂ to denote that the durations of the N(m, t) other streams active

at time t have stretched distributions. Thus p(m, t, s, d)

= P(
N(m,t)∑

i=1

SiI(SiD̂i ≤ sd) + s +
N(m,t)∑

i=1

AiSiI(SiD̂i > sd) ≥ c(m))

= P(
1

mσλδ

N(m,t)∑
i=1

SiI(SiD̂i ≤ sd) +
s

mσλδ
+

1
mσλδ

N(m,t)∑
i=1

AiSiI(SiD̂i > sd) ≥ γ).

We now define the random variable Z(m, t, s, d) as

Z(m, t, s, d) =
1

mσλδ

(N(m,t)∑
i=1

SiI(SiD̂i ≤ sd) +
N(m,t)∑

i=1

AiSiI(SiD̂i > sd)
)

so that

lim
m→∞

p(m, t, s, d) = lim
m→∞

P(Z(m, t, s, d) ≥ γ − s

mσλδ
).

We next find the mean and variance of Z(m, t, s, d).

E[Z(m, t, s, d)] =
1

mσλδ
E[

N(m,t)∑
i=1

SiI(SiD̂i ≤ sd)]+
1

mσλδ
E[

N(m,t)∑
i=1

AiSiI(SiD̂i > sd)].

By Wald’s identity,

E[
N(m,t)∑

i=1

SiI(SiD̂i ≤ sd)] = E[N(m, t)]E[SI(SD̂ ≤ sd)].

Recall N(m, t) ∼ Poisson(mλδ), so that E[N(m, t)] = mλδ. Also,

E[SI(SD̂ ≤ sd)] =
∫ ∞

0

∫ ∞

0
xI(xy ≤ sd)dFD̂(y)dFS(x)

=
∫ ∞

0
x
[∫ sd

x

0
dFD̂(y)

]
dFS(x)

=
∫ ∞

0
x
[∫ sd

x

0

1
E[D]

ydFD(y)
]
dFS(x).
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Now introduce the change of variables z = xy:

E[SI(SD̂ ≤ sd)] =
1

E[D]

∫ ∞

0

∫ sd

0
zdFD(

z

x
)
1
x

dFS(x)

=
1

E[D]

∫ sd

0

[∫ ∞

0

z

x
fD(

z

x
)fS(x)dx

]
dz

=
1

E[D]

∫ sd

0
z
[
fSD(z)

]
dz

=
E[SD]
E[D]

∫ sd

0

z

E[V ]
dFV (z)

= σFV̂ (sd).

A similar argument shows that E[ASI(SD̂ > sd)] = ασF̄V̂ (sd). We combine the

above results to obtain

E[Z(m, t, s, d)] = FV̂ (sd) + αF̄V̂ (sd).

We next bound the variance of Z(m, t, s, d). We can write

Z(m, t, s, d) =
1

mσλδ

N(m,t)∑
i=1

Wi

for Wi = Si(1− (1−Ai)I(SiD̂i ≥ sd)). and thereby obtain

V ar(Z(m, t, s, d)) =
1

(mσλδ)2
[
E[N(m, t)]V ar(W ) + E[W ]2V ar(N(m, t))

]
.

Recalling that E[N(m, t)] = V ar(N(m, t)) = mλδ, we obtain

V ar(Z(m, t, s, d)) =
1

mσ2λδ
E[W 2] ≤ E[S2]

mσ2λδ
.

We consider three cases: i) E[Z(m, t, s, d)] < γ, ii) E[Z(m, t, s, d)] = γ,

iii) E[Z(m, t, s, d)] > γ. Consider the first case. Define ε(m) = γ − s
mσλδ −

E[Z(m, t, s, d)]. Note that E[Z(m, t, s, d)] < γ implies there exists an m′ such that

ε > 0 for all m > m′. A little thought shows

P(Z(m, t, s, d) ≥ γ − s

mσλδ
) ≤ P(|Z(m, t, s, d)− E[Z(m, t, s, d)]| > ε(m))
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for all m > m′. Chebychev’s inequality yields

P(|Z(m, t, s, d)− E[Z(m, t, s, d)]| > ε(m)) ≤ V ar(Z(m, t, s, d))
ε(m)2

, ∀m > m′.

Noting that limm→∞ ε(m) is a constant and that limm→∞ V ar(Z(m, t, s, d)) = 0

implies

lim
m→∞

P(Z(m, t, s, d) ≥ γ − s

mσλδ
) = 0

when E[Z(m, t, s, d)] < γ. A similar analysis for the third case yields

lim
m→∞

P(Z(m, t, s, d) ≥ γ − s

mσλδ
) = 1

when E[Z(m, t, s, d)] > γ. Finally, the set of pairs (s, d) such that E[Z(m, t, s, d)] = γ

has measure zero. Thus, we conclude

lim
m→∞

p(m, t, s, d) = lim
m→∞

P(Z(m, t, s, d) ≥ γ − s

mσλδ
)

= I(E[Z(m, t, s, d)] > γ).

Note that I(E[Z(m, t, s, d)] > γ) is equivalent to I(sd > F−1

V̂
(ξ)) for ξ = γ−α

1−α .

Notice that for γ < α, i.e., when the link is provisioned in the overloaded

regime, the asymptotic probability the stream is adapted is one. To see this, note

that γ < α implies ξ < 0, and hence

lim
m→∞

p(m, t, s, d) = I(FV̂ (sd) > ξ) = 1.

Similarly, for γ > 1, i.e., when the link is provisioned in the underloaded regime, the

asymptotic probability the stream is adapted is zero. To see this, note that γ > 1

implies ξ > 1, and hence

lim
m→∞

p(m, t, s, d) = I(FV̂ (sd) > ξ) = 0.

Substituting these values into the integral yields

qγ,πk = 1− (1− α)
∫ ∞

0

∫ ∞

0
(1)dFD(d)dFS(s) = α, γ < α

qγ,πk = 1− (1− α)
∫ ∞

0

∫ ∞

0
(0)dFD(d)dFS(s) = 1, γ > 1.
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Finally, consider the case when the link is provisioned in the rate adaptive

regime, i.e., when α ≤ γ ≤ 1. Substituting this into the integral yields

qγ,πk = 1− (1− α)
∫ ∞

0

∫ ∞

0
I(sd > F−1

V̂
(ξ))dFD(d)dFS(s), α ≤ γ ≤ 1.

This can be simplified as follows

qγ,πk = 1− (1− α)
∫ ∞

0

∫ ∞

0
I(d >

F−1

V̂
(ξ)

s
)dFD(d)dFS(s), α ≤ γ ≤ 1

= 1− (1− α)
∫ ∞

0

∫ ∞

F−1

V̂
(ξ)

s

dFD(d)dFS(s), α ≤ γ ≤ 1

= 1− (1− α)
∫ ∞

0
F̄D(

F−1

V̂
(ξ)

s
)dFS(s), α ≤ γ ≤ 1

= 1− (1− α)F̄V (F−1

V̂
(ξ)), α ≤ γ ≤ 1.

�

The above expression for the asymptotic QoS depends on three quantities:

the scaling parameter, γ, the average adaptivity, α, and the distribution of stream

volume, FV . Note that asymptotic QoS depends on the distribution FA only through

its mean E[A] = α, i.e., asymptotic QoS is insensitive to the adaptivity distribution

under the optimal adaptation policy. This equation can be thought of as an asymp-

totic analogue to Erlang’s blocking probability equations for loss networks. For

networks supporting multimedia streams, a loss network is simply a network where

streams are admitted at a fixed subscription level and are guaranteed a transmis-

sion rate sufficient to successfully transmit that subscription level over the network.

Note that, because there is no dynamic adaptation, the relevant QoS parameter is

just the blocking probability. For the simple case of a single link where all streams

have a fixed subscription level, say σ, Erlang’s blocking probability equation is just

E(ρ,C) =
ρC

C!∑C
n=0

ρn

n!

, (3.30)

where ρ = λδ and C = b c
σ c ∈ Z+ is the maximum number of streams which can

be admitted into the system. Thus, E(ρ,C) = P(N(t) = C), i.e., the probability
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an arriving stream arrives to find all available circuits are filled, and is therefore

blocked. This equation allows network designers to provision links so as to satisfy

some desired blocking probability. For rate adaptive streams the blocking proba-

bility is negligible (provided the link is not provisioned in the overloaded regime)

because active streams can adapt their subscription levels to free up capacity for

newly arriving streams. Instead, the relevant QoS metric is expected time average

normalized subscription level, and the expression in Theorem 4 can be used by net-

work designers to provision links so as to satisfy some desired constraint on this

quantity.

Note that the asymptotic QoS under the optimal adaptation policy equals

the asymptotic QoS under the fair share policy when the link is provisioned in either

the overloaded or underloaded regime. That is, when the link is overloaded, i.e.,

γ < α, the asymptotic QoS under both policies is qγ = α, the average minimum

normalized subscription level. Similarly, when the link is underloaded, i.e., γ > 1,

the asymptotic QoS under both policies is qγ = 1, the average maximum normalized

subscription level. More importantly, the QoS under these regimes is independent

of the scaling parameter, γ. Thus the asymptotic marginal increase in QoS obtained

by a marginal increase in capacity is zero, i.e., ∂qγ

∂γ = 0 for γ < α and γ > 1. This

suggests that the rate adaptive regime, i.e., α ≤ γ ≤ 1, is the appropriate target

design regime. The asymptotic marginal increase in QoS obtained by a marginal

increase in capacity is strictly positive, and the optimal adaptation policy achieves

a strictly positive improvement in asymptotic QoS over the fair share policy. This

improvement is studied in the next subsection.

3.6.3 Computational results for asymptotic optimal QoS

In this subsection we plot the expression for the asymptotic expected time-average

normalized subscription level under the optimal adaptation policy, given in Theorem
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Figure 3.8: Plot of the asymptotic QoS qπk versus the capacity scaling parameter γ.

4, for the special case of a single link servicing streams with known stream durations.

Figure 3.8 exhibits qγ,πk versus γ. Also shown are two plots of simulation

results illustrating the convergence to the asymptotic QoS. Recall the scaling regimes

have transitions at γ = α = 0.5 and γ = 1. The two simulation results use λ = 0.5

and λ = 5.0 respectively, and a link capacity c = γλσδ. A plot of qγ,πf , the

asymptotic QoS under the fair share adaptation policy, is also given. The label

indicates that at γ = 0.6 the optimal policy achieves an asymptotic QoS 25.4%

greater than under fair share, i.e., a 42% increase in performance.

The figure illustrates that the simulation results agree with the computed

asymptotic QoS for γ > α. The simulations show a slower convergence to the

computed asymptotic values for the overloaded regime γ ≤ α = 0.5. For small

m in this regime, blocking of streams with large minimum subscription levels AS

will permit admitted streams to temporarily increase their subscription levels until
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a stream with smaller AS is admitted to use that capacity. In the asymptotic

regime, however, the aggregate minimum subscription level is always at capacity

and admitted streams receive their minimum subscription level throughout their

duration.

Figure 3.8 exhibits qγ,πk when FS and FD are the bounded exponential dis-

tributions described in Section 3.1. We investigated several other probability dis-

tributions for FS and FD, several of which are plotted in Figure 3.9. In addition to

the bounded exponential distribution, we also studied the uniform distribution and

the bounded Pareto distribution. To facilitate comparison we kept the means of all

the distributions the same, namely, E[S] = 0.3 (Mb/s) and E[D] = 180 (seconds).

The uniform distributions we used are S ∼ Uni( 1
10 , 5

10) and D ∼ Uni(60, 300).

The bounded Pareto distributions we used are S ∼ Par(1.382, 1
10 , 10) and D ∼

Par(1.382, 60, 6000), where Par(αp,m,M) means a Pareto distribution over (m,M)

with an exponent of αp. Table 3.6.3 shows the distributions, the variance of the cor-

responding volume V = SD, and five summary statistics over the rate adaptive

regime (α = 1
2 ≤ γ ≤ 1). The statistics we considered are

za =
1

1− α

∫ 1

α
qγ,πkdγ,

zb =
1

1− α

∫ 1

α
(qγ,πk − qγ,πf )dγ,

zc =
1

1− α

∫ 1

α

qγ,πk − qγ,πf

γ
dγ,

zd = max
α≤γ≤1

{qγ,πk − qγ,πf },

ze = max
α≤γ≤1

{qγ,πk − qγ,πf

γ
}.

These correspond to the average QoS, the average increase in QoS above fair share,

the average improvement in QoS above fair share, the maximum increase in QoS

above fair share, and the maximum improvement in QoS above fair share. The

distribution pairs in the table not plotted in Figure 3.9 are bounded above and
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below by one of the plots shown.

Surprisingly, there is not a direct correlation between the variance V ar(V )

and any of the five summary statistics considered above. The optimal adaptation

policy achieves a higher QoS than the fair share adaptation policy by exploiting the

variation in stream volume of the active streams. Thus one might conjecture that

stream volume distributions with high variance would outperform distributions with

lower variance. The table illustrates that no such trend is apparent.
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FS FD V ar(V ) za zb zc zd ze

Uni Uni 928 0.824 0.077 0.110 0.116 0.178
Uni Exp 3780 0.877 0.131 0.192 0.199 0.328
Exp Uni 3780 0.877 0.131 0.192 0.199 0.328
Exp Exp 8748 0.907 0.163 0.241 0.254 0.433
Uni Par 10599 0.874 0.129 0.183 0.196 0.293
Par Uni 10599 0.874 0.129 0.183 0.196 0.293
Exp Par 20626 0.905 0.161 0.236 0.246 0.403
Par Exp 20626 0.905 0.161 0.236 0.246 0.403
Par Par 44600 0.904 0.160 0.231 0.254 0.402

Table 3.1: Performance metrics for the optimal adaptation policy for several choices
of simulation distributions.
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Chapter 4

Optimal Admission Control

Policies

The preceding chapter on optimal adaptation policies demonstrated that maximizing

the QoS requires

• possibly adjusting each active stream’s subscription level at each time t that

a new stream is admitted or an active stream departs, and

• knowledge of all system parameters, i.e., knowledge of each stream’s volume

(or expected volume for unknown stream durations), and all link capacities.

These requirements are quite restrictive because they require centralized control,

i.e., some central server would need to collect stream information each time the

network state changed (arrivals or departures), and disseminate a new subscription

level assignment to each active stream. On anything other than trivially small net-

works such centralized control is infeasible. This chapter addresses the first of these

concerns by proposing an admission control policy which obtains the same asymp-

totic QoS as optimal adaptation, but without the need for dynamically adjusting

subscription levels. Chapter 5 addresses the second concern by proposing a class
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of distributed algorithms which attempt to regain much of the increase in QoS ob-

tained under optimal adaptation and admission, but without knowledge of system

parameters.

In this chapter we identify an optimal admission control policy wherein

streams are admitted at a subscription level which they maintain throughout their

duration, i.e., no dynamic adaptation. Intuitively, large volume streams are admit-

ted at their minimum subscription level and small volume streams are admitted at

their maximum subscription level. We will prove the existence of an optimal vol-

ume threshold on each route which is used to differentiate between small and large

volume streams on that route. Intuitively, these volume thresholds are set based

on the expected congestion level of the route, i.e., under-provisioned links have a

low volume threshold, meaning all but the smallest volume streams are admitted

at their minimum subscription level, while over-provisioned links have a high vol-

ume threshold, meaning all but the largest volume streams are admitted at their

maximum subscription level. Figure 4 illustrates the idea. A large volume stream

with volume V exceeding the volume threshold v∗ is admitted at its minimum sub-

scription level which it then maintains throughout its duration, while a small volume

stream with volume less than the threshold is admitted at its maximum subscription

level, which it maintains throughout its duration.

Section 4.1 provides some motivation as to why admission control serves as

an adequate replacement for dynamic adaptation on large capacity links. Section

4.2 identifies the asymptotic optimal admission control policy for a general network

and for a single link. Section 4.3 presents some simulation results illustrating the

QoS under the asymptotic optimal admission control policy. Finally, Section 4.4

presents some issues surrounding implementing optimal admission control for rate

adaptive streams.
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Figure 4.1: Illustration of the volume dependent admission control policy.

4.1 Motivation behind the admission control policies

Theorem 3 proved that the asymptotic optimal dynamic adaptation policy for stored

media on a general network is a threshold policy. In particular, at each time t, there

is an instantaneous optimal volume threshold vector, vπk(m, t), such that streams

with volumes less than the instantaneous volume threshold receive their maximum

subscription level and streams with volumes greater than the instantaneous vol-

ume threshold receive their minimum subscription level. The volume thresholds

are instantaneous in that they depend on the instantaneous number of streams,

n(t), and the characteristics of each active stream. Thus, a stream’s instantaneous

subscription level under the optimal adaptation policy may change if the instanta-

neous volume threshold changes. That is, if vπk
r (m, t1), vπk

r (m, t2) are the optimal

instantaneous volume thresholds on route r at times t1 < t2, and stream (i, r) has a

volume vi,r such that vπk
r (m, t1) < vi,r < vπk

r (m, t2), then the stream would receive

its minimum subscription level at time t1 and its maximum subscription level at

time t2.

Consider the simulation results plotted in Figures 4.2 and 4.3, showing his-
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tograms for E0[Qπk | V = v] and E0[Rπk | V = v] versus stream volume for three

different sets of arrival rates and link capacities. The three sets correspond to

(λ, c) = (0.05, 2.025), (0.5, 20.25), and (5.0, 202.5), where c is in Mb/s. All three

sets correspond to a network scaling with scaling parameter γ = 3
4 . The expected

number of active streams for the three simulations are E[N(t)] = λδ = 9, 90, 900,

respectively. We refer to these as the small, medium, and large simulations respec-

tively. As we increase the arrival rate and link capacity from small to large, we see

in Figure 4.2 that there is an increasingly pronounced volume threshold distinguish-

ing the time-average normalized subscription level between small and large volume

streams. Similarly, we seen in Figure 4.3 that increasing the arrival rate and link

capacity from small to large has the effect of increasing the rate of adaptation for

streams with volumes in an increasingly narrow interval. This leads to the conclu-

sion that, under the network scaling, the asymptotic instantaneous volume threshold

is a constant. That is, limm→∞ vπk(m, t) = vπk , which is independent of t.

This observation motivates our discussion of admission control policies as a

replacement for dynamic adaptation. Since the asymptotic optimal dynamic adapta-

tion policy grants a constant subscription level to all streams, depending on whether

their stream volume is above or below a fixed volume threshold, it follows that we can

assign a fixed subscription level using the same threshold at the time of admission,

without compromising the asymptotic optimal QoS.

4.2 Asymptotic optimal admission control policies

We parameterize a set of two-class admission policies as follows. Upon admission

each stream is assigned to an adaptation class based on its volume. Streams ad-

mitted to class 1 receive their full subscription level and streams admitted to class

2 receive their minimum subscription level. We will show that two classes suffice

to obtain an asymptotic QoS equal to that obtained under the dynamic adaptation
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policy. Note that the class of admission policies can be thought of as a subset of the

class of adaptation policies, where adaptation decisions are only made at the time

of a stream’s admission into the network. Thus, showing that an admission pol-

icy achieves an asymptotic QoS equal to that under the optimal adaptation policy

implies that the admission policy is optimal.

Let v = (vr, r ∈ R) denote a set of volume thresholds such that a stream

with volume v admitted on route r is assigned its maximum subscription level if

v ≤ vr and is assigned its minimum subscription level otherwise. Note that, by

definition, si,r ∈ Si,r and ai,rsi,r ∈ Si,r, so that these allocations are feasible. We let

k ∈ (1, 2) index the two classes on each route and we number the active streams in

each class so that (i, k, r) refers to stream i in class k on route r. Define β1 = 1 and

β2 = 0. We can then say the bandwidth assigned to an arbitrary stream admitted

to class k is βksi,k,r + (1 − βk)ai,k,rsi,k,r. With this notation we can describe the

admission rule for arriving streams. A stream on route r with parameters a and s

is admitted provided

∑
r3l

2∑
k=1

nk,r(t)∑
i=1

βksi,k,r + (1− βk)ai,k,rsi,k,r + βks + (1− βk)as ≤ cl, ∀l ∈ r′, (4.1)

where n(t) = (nk,r(t), k ∈ (1, 2), r ∈ R) is the number of active streams in each class

on each route.

The arrival rate of class k streams on route r in the mth network is

λ1,r(m) = λr(m)P(V ≤ vr), (4.2)

λ2,r(m) = λr(m)P(V > vr).

We consider multi-class admission policies that achieve an asymptotic zero blocking

probability (in the rate adaptive regimes) by requiring the asymptotic utilization be

1 on each link l ∈ L, i.e.,

lim
m→∞

1
cl(m)

∑
r3l

(
λ1,r(m)E[V | V ≤ vr] + αλ2,r(m)E[V | V > vr]

)
≤ 1,∀l ∈ L. (4.3)
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It is shown in [27] that blocking is asymptotically zero for this case, although con-

vergence is O( 1√
c
). Our objective is to maximize the asymptotic client average

normalized subscription level which, under the assumed asymptotic zero blocking

regime, is given by

lim
m→∞

∑
r∈R λ1,r(m) + αλ2,r(m)∑

r∈R λr(m)
. (4.4)

Thus we need to identify the optimal set of volume thresholds v that maximizes the

asymptotic normalized subscription level (4.4) subject to the asymptotic utilization

being bounded by 1 on each link (4.3).

The following two subsections identify the asymptotic optimal admission

control policy for a general network and a single link. In each case we show that the

asymptotic QoS under the optimal admission control policy equals that obtained

under the optimal dynamic adaptation policy.

4.2.1 Asymptotic optimal admission control, general network

The following theorem proves that the asymptotic expected normalized subscription

level under the asymptotic optimal admission policy equals that under the asymp-

totic optimal dynamic adaptation policy on a general network. It also proves that

the optimal thresholds are decreasing in the asymptotic congestion on the route.

Theorem 5 The asymptotic optimal static volume threshold vector, which maxi-

mizes (4.4) subject to the constraints (4.3), is the same as the asymptotic optimal

instantaneous volume threshold vector, which solves (3.27).

Moreover, the optimal volume thresholds have the form

vγ,πa
r =

E[V ]∑
l∈r zγ,πa

l

(4.5)

where zγ,πa = (zγ,πa

l , l ∈ L) is a vector of optimal Lagrange multipliers for the

constraints given in (3.27).
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Proof of Theorem 5.

The optimal static volume threshold vector is the solution to the following

optimization problem:

max
v

lim
m→∞

∑
r∈R λ1,r(m) + αλ2,r(m)∑

r∈R λr(m)

s.t. lim
m→∞

1
cl(m)

∑
r3l

(
λ1,r(m)E[V | V ≤ vr] + αλ2,r(m)E[V | V > vr]

)
≤ 1,∀l ∈ L.

Note that λ1,r(m) = λr(m)FV (vr) and λ2,r(m) = λr(m)F̄V (vr). Also note that

FV (vr)E[V | V ≤ vr] = E[V ]FV̂ (vr) and F̄V (vr)E[V | V > vr] = iE[V ]F̄V̂ (vr). This

allows us to rewrite the optimization problem as:

max
v

lim
m→∞

∑
r∈R λr(m)(FV (vr) + αF̄V (vr))∑

r∈R λr(m)

s.t. lim
m→∞

E[V ]
cl(m)

∑
r3l

λr(m)(FV̂ (vr) + αF̄V̂ (vr)) ≤ 1,∀l ∈ L.

Applying the network scaling and multiplying the objective by λ =
∑

r∈R λr yields

max
v

∑
r∈R

λr(FV (vr) + αF̄V (vr))

s.t.
∑
r3l

(FV̂ (vr) + αF̄V̂ (vr)) ≤ γl,∀l ∈ L.

This is seen to be the same optimization problem as (3.27).

Thus, the asymptotic optimal admission control policy sets the volume thresh-

old vector equal to the expected instantaneous volume threshold vector at a typical

time under the optimal dynamic adaptation policy. We require, however, a stronger

result to prove the asymptotic QoS under optimal admission control equals that un-

der optimal dynamic adaptation. Intuitively, setting the admission control volume

threshold vector at the expected instantaneous volume threshold vector does not rule

out the possibility that dynamic adaptation obtains a higher QoS than admission

control by virtue of the fact that the instantaneous adaptation vector is dynamic.
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We next prove that the asymptotic instantaneous volume threshold vector under

optimal dynamic adaptation is a constant (equaling its mean).

In the proof of Theorem 3 we argued that, for large enough m, the opti-

mization problem (3.21) is equivalent to the optimization problem (3.28). We will

show that, as we let m → ∞, the objective and the constraint become constants,

independent of t. The proof is just a straightforward application of the law of large

numbers. Consider the limiting value of the objective, given by

lim
m→∞

1
λ(m)

∑
r∈R

(Nr(m,t)∑
i=1

I(Si,rD̂i,r ≤ vr(m, t)) + Ai,rI(Si,rD̂i,r > vr(m, t))
D̂i,r

)
.

We write this as a product of limits:

=
∑
r∈R

(
lim

m→∞

Nr(m, t)
λ(m)

)

×
(

lim
m→∞

1
Nr(m, t)

Nr(m,t)∑
i=1

I(Si,rD̂i,r ≤ vr(m, t)) + Ai,rI(Si,rD̂i,r > vr(m, t))
D̂i,r

)
The first term in the product is easily seen to equal λrδ

λ . By the law of large numbers,

the second term equals

E
[I(SD̂ ≤ vr(t)) + AI(SD̂ > vr(t))

D̂

]
.

In the proof of Theorem 3 we computed this expectation to be 1
δ (FV (vr(t)) +

αF̄V (vr(t))). Combining this result yields the asymptotic value of the objective

to be
1
λ

∑
r∈R

λr(FV (vr(t)) + αF̄V (vr(t))).

Now consider the limiting value of the constraint, given by

lim
m→∞

1
cl(m)

∑
r3l

(Nr(m,t)∑
i=1

Si,rI(Si,rD̂i,r ≤ vr(m, t)) + Ai,rSi,rI(Si,rD̂i,r > vr(m, t))
)
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for each l ∈ L. We again write this as a product of limits:

=
∑
r3l

(
lim

m→∞

Nr(m, t)
cl(m)

)
×

(
lim

m→∞

∑Nr(m,t)
i=1 Si,rI(Si,rD̂i,r ≤ vr(m, t)) + Ai,rSi,rI(Si,rD̂i,r > vr(m, t))

Nr(m, t)

)
The first term in the product is easily seen to equal λr

νlγlσ
by applying the definition

of the network scaling and noting that E[N(m, t)] = λr(m)δ. By the law of large

numbers, the second term equals

E
[
SI(SD̂ ≤ vr(t)) + ASI(SD̂ > vr(t))

]
.

In the proof of Theorem 3 we computed this expectation to be σFV̂ (vr(t))+ασF̄V̂ (vr(t)).

Combining this result yields the asymptotic value of the constraint to be

∑
r3l

λr(FV̂ (vr(t)) + αF̄V̂ (vr(t)) ≤ νlγl, ∀l ∈ L.

Combining the asymptotic value of the objective with the asymptotic value of the

constraint, we see the asymptotic optimal instantaneous volume threshold is given

by the solution to

max
v(t)

1
λ

∑
r∈R

λr(FV (vr(t)) + αF̄V (vr(t)))

s.t.
∑
r3l

λr(FV̂ (vr(t)) + αF̄V̂ (vr(t)) ≤ νlγl, ∀l ∈ L.

But the solution to this problem is independent of t, hence the asymptotic optimal

instantaneous volume threshold is a constant. Moreover, the optimization problem

is seen to be the same as maximizing (4.4) subject to (4.3). Hence, the asymptotic

QoS under the optimal admission control policy equals the asymptotic QoS under

the optimal dynamic adaptation policy.

We next prove that the optimal volume thresholds have a form vγ,πa
r =

E[V ]∑
l∈r zγ,πa

l
where zγ,πa = (zγ,πa

l , l ∈ L) is a vector of optimal Lagrange multipliers
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on the constraints. Recall from the proof of Theorem 3 that we can transform the

optimization problem to

max
y

∑
r∈R

λrFV (F−1

V̂
(yr))

s.t.
∑
r3l

λrlyr ≤ ξl,∀l ∈ L,

using the change of variable yr = FV̂ (vr). We can write the Lagrangian, L(y, z), as

L(y, z) =
∑
r∈R

λrFV (F−1

V̂
(yr)) +

∑
l∈L

zl(
∑
r3l

λrlyr − ξl).

Taking derivatives with respect to vr and simplifying yields

∂L(y, z)
∂yr

= λr

( E[V ]
F−1

V̂
(yr)

−
∑
l∈r

zl

)
.

Optimality requires ∂L(y,z)
∂yr

= 0,∀r ∈ R, which means F−1

V̂
(y∗r ) = E[V ]∑

l∈r zl
. Using

vr = F−1

V̂
(yr) yields the result.

�

We interpret
∑

l∈r zγ,πa

l as the route cost, using the standard interpretation

of Lagrange multipliers as quantifying the cost of the associated constraint. Thus,

the result states that congested routes have smaller volume thresholds, i.e., on con-

gested routes we can afford to admit a smaller fraction of streams at their maximum

subscription level. Similarly, uncongested routes have larger volume thresholds, i.e.,

on uncongested routes we can afford to admit a larger fraction of streams at their

maximum subscription level.

4.2.2 Asymptotic optimal admission control, single link

We specialize the results of the previous section to the case of a single link. This

allows us to obtain a closed form expression for the optimal volume threshold. The

following theorem identifies the optimal volume threshold on a single link and shows
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that the resulting asymptotic QoS using this threshold equals the asymptotic QoS

under the optimal dynamic adaptation policy. We denote the optimal admission

policy as πa. We write vγ,πa for the optimal volume threshold and denote the

asymptotic expected normalized subscription level under this policy as qγ,πa .

Theorem 6 The asymptotic optimal admission policy, πa, that achieves asymptotic

zero blocking for the special case of single bottleneck links has a volume threshold

vγ,πa =


0, γ ≤ α

F−1

V̂
(γ−α

1−α ), α < γ < 1

∞, γ ≥ 1

. (4.6)

The asymptotic normalized subscription level under this policy is

qγ,πa =


α, γ ≤ α

1− (1− α)F̄V (vγ,πa), α < γ ≤ 1

1, γ ≥ 1

. (4.7)

Proof of Theorem 6. For the case of a single link the asymptotic constraint from

Theorem 5 becomes

λ(FV̂ (v) + αF̄V̂ (v) ≤ λγ.

This is easily simplified to yield

FV̂ (v) ≤ γ − α

1− α
.

. For γ < α, the RHS is negative, and hence the constraint requires vγ,πa = 0. The

interpretation is that when we provision the link in the overloaded regime, we must

admit all streams at their minimum subscription level. Similarly, for γ > 1, the RHS

is greater than one, and hence the constraint requires vγ,πa = ∞. The interpretation

is that when we provision the link in the underloaded regime, we can admit all

streams at their maximum subscription level. Next consider when α ≤ γ ≤ 1.

The asymptotic objective for a single link is to maximize FV (v) + αF̄V (v) which is
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equivalent to maximizing FV (v), which is by definition increasing in v. Hence the

optimal v occurs when the constraint is binding, i.e., vγ,πa = F−1

V̂
(γ−α

1−α ).

We next find the asymptotic QoS under the optimal admission policy. Let

Qm,πa denote the QoS of a typical stream in the mth scaling under the asymptotically

optimal admission policy πa. Then,

qγ,πa = lim
m→∞

E0[Qm,πa ]

= lim
m→∞

∫ ∞

0
E0[Qm,πa | V = v]dFV (v).

Note that, under πa, E0[Qm,πa | V = v] equals A if v > vγ,πa and 1 otherwise. We

condition on A to get:

E0[Qm,πa | V = v] =
∫ 1

0
E0[Qm,πa | V = v,A = a]dFA(a)

=
∫ 1

0
I(v ≤ vγ,πa) + aI(v > vγ,πa)dFA(a)

=
∫ 1

0
1− (1− a)I(v > vγ,πa)dFA(a)

= 1− (1− α)I(v > vγ,πa)

This allows:

qγ,πa = 1− (1− α)
∫ ∞

0
I(v > vγ,πa)dFV (v)

= 1− (1− α)
∫ ∞

vγ,πa

dFV (v)

= 1− (1− α)F̄V (vγ,πa).

When γ < α we have F̄V (vγ,πa) = F̄V (0) = 1, and hence qγ,πa = α. When γ > 1 we

have F̄V (vγ,πa) = F̄V (∞) = 0, and hence qγ,πa = 1.

�
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Substituting the optimal volume threshold vγ,πa into the expression for asymp-

totic QoS under the optimal admission control policy, qγ,πa yields

qγ,πa =


α, γ ≤ α

1− (1− α)F̄V (F−1

V̂
(γ−α

1−α )), α < γ ≤ 1

1, γ ≥ 1

, (4.8)

which is the same expression as given for qγ,πk . Note vγ,πa is increasing in γ, i.e., as

we increase the link capacity relative to the load we can admit a higher fraction of

the streams at their maximum subscription level.

4.3 Simulation results for asymptotic optimal admis-

sion control policies

In this section we present some simulation results showing the quality of service on

links with finite capacity and arrival rate under the asymptotic optimal admission

control policy.

Figure 4.4 contains a plot of the asymptotic QoS, qπa = qπk versus the

scaling parameter γ. Also shown are two simulation plots under policy πa for λ =

0.5 and λ = 5.0. The plots illustrate the convergence in the expected normalized

subscription level under the network scaling. Recall our simulations use α = 0.5.

Figure 4.5 contains simulation results of the blocking probability under the

optimal admission policy and the optimal adaptation policy for λ = 0.5 and λ = 5.0.

Recall that the asymptotic blocking probability is zero for γ ≥ α, and is 1 − γ
α for

γ < α. Both policies illustrate convergence to these values. The plots also illus-

trate a critical difference between optimal adaptation and optimal admission control,

namely, the convergence rate of the blocking probability. Under dynamic adapta-

tion the blocking probability converges to zero exponentially fast for γ ≥ α. This

is because dynamic adaptation permits active streams to reduce their subscription
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levels to free up capacity for newly arriving streams. Under the admission control

policy, however, the blocking probability converges to zero as O( 1√
c
) for γ ≥ α. The

slower convergence rate exists because, under the admission control policy, active

streams are not permitted to reduce their subscription level to free up capacity for

newly arriving streams. The system functions as a loss network which is critically

loaded for α ≤ γ ≤ 1 [27].

The asymptotic optimal admission control policy therefore achieves the same

asymptotic expected normalized subscription level as that obtained under optimal

dynamic adaptation, i.e., qπa = qπk . Moreover, the rate of adaptation under ad-

mission control is by definition zero. The penalty of using admission control over

dynamic adaptation is that, although both achieve asymptotic zero blocking, the

rate at which the blocking probability converges to zero is much slower for optimal

admission control than for optimal dynamic adaptation.

4.4 Implementation issues for asymptotic optimal ad-

mission control policies

At the beginning of this chapter we described two basic problems with implementing

the optimal adaptation policies of Chapter 3: i) the need for centralized control

to disseminate optimal subscription level assignments each time the network state

changed, and ii) knowledge of all system parameters.

The optimal admission control policies have their own implementation diffi-

culties, but they are not as insurmountable as those for dynamic adaptation. Opti-

mal admission control requires each link maintain its instantaneous link load, and

that each route maintain its optimal volume threshold. The instantaneous link load

is defined as ρl(t) =
∑nl(t)

i=1 sγ,πa

i,l , where nl(t) is the number of streams traversing link

l at time t, and sγ,πa

l = (sγ,πa

i,l , i = 1, . . . , nl(t)) is the subscription level of each active
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stream under the optimal admission control. The optimal route volume threshold,

denoted vγ,πk
r , must be identified for each route using the knowledge of the stream

volume distribution, FV , the effective network scaling vector γ = (γl, l ∈ L), and

the average route arrival rates λ = (λr, r ∈ R). A stream (i, r) requesting service

on route r with minimum and maximum subscription levels, ai,rsi,r and si,r, and

volume vi,r would first identify its appropriate subscription level as

sγ,πa

i,r =

 si,r, vi,r < vγ,πa
r

ai,rsi,r, else
. (4.9)

It would then query each link l ∈ r and check to see that there is sufficient capacity

available at each link comprising the route, i.e.,

ρl(t) + sγ,πa

i,r ≤ cl,∀l ∈ r. (4.10)

If sufficient capacity is available along each link comprising the route then the stream

is admitted, else the stream is blocked.

The implementation difficulties with the above approach are as follows.

• Link state needs to be maintained. Note this is much less restrictive than the

requirement that network wide state needs to be maintained at a centralized

server, but it still poses a significant challenge.

• The optimal admission control policy achieves its high quality of service by

assuming stream distributional properties as well as route arrival rates and

link capacities are available. These are used to compute the optimal route

volume thresholds.

• The thresholds are optimal only when the network traffic is stationary. This

assumption is especially troublesome seeing as network traffic is known to

exhibit non-stationarities on multiple time scales.
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Chapter 5

Distributed Algorithms

Optimal adaptation is not practical because it requires a centralized server to collect

network wide state information and disseminate subscription level assignments each

time the network state changes. Optimal admission control may not be practical

because it requires that i) link state information be maintained, ii) stream and

network distributional properties are known, and iii) network traffic is stationary.

To overcome this drawback we propose a class of distributed algorithms which

attempt to attain the QoS obtained under optimal adaptation and admission control

but without making any assumptions regarding network state, knowledge of distri-

butional properties, or traffic stationarity. These algorithms are similar in spirit

to the receiver driven layered multicast (RLM) algorithms proposed in [17], where

streams react to congestion signals from the network by reducing their subscription

level, and periodically probe the network to determine if sufficient capacity is avail-

able to increase their subscription level. Our algorithms differs from RLM in that

the size of the subscription level changes and the time between probes depends on

stream volume. In particular, small volume streams are more aggressive in pursuing

available bandwidth than are large volume streams.

We define a class of volume independent distributed algorithms in Section

113



5.1, and a class of volume dependent distributed algorithms in Section 5.2. Finally,

we present some simulation results illustrating the quality of service under both

classes of algorithms in Section 5.3.

5.1 Volume independent distributed algorithms

The volume independent algorithm is presented as Algorithm 1. A client sets its

initial subscription level to one of the intermediate subscription levels offered by the

content provider, i.e., the subscription level closest to ai,rsi,r+si,r

2 . The client then

starts a timer τ . If the client receives no congestion signal from the network for

τ seconds then the client increases the subscription level to the next largest one

available, and resets the timer. If at any time the client does receive a congestion

signal from the network it immediately decreases its subscription level to the next

smallest one available, and resets the timer. Thus, the timer corresponds to the

time that must pass since the last subscription level change before the client may

subscribe to a higher subscription level.

Our definition of congestion signal is loose. Congestion signals could be

taken as packet loss or receiving packets with the explicit congestion notification bit

(ECNB) set in the TCP header. The actual implementation of congestion signaling

is not important for our purposes.

Algorithm 1 Pseudo code for volume independent adaptation algorithm.
1: set initial subscription level to intermediate level
2: while active do
3: if τ seconds passed since last subscription change then
4: increase subscription by one level
5: end if
6: if receive congestion notification from network then
7: decrease subscription by one level
8: end if
9: end while
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5.2 Volume dependent distributed algorithms

The volume dependent algorithm is presented as Algorithm 2. We presume each

stream has knowledge of its own volume, v, as well as knowledge of the mean stream

volume E[V ]. For this section we define small streams as those streams having

volumes smaller than the mean, i.e., v < E[V ], and large streams as those streams

having volumes larger than the mean, i.e., v > E[V ].

The volume dependent algorithm differs from the volume independent algo-

rithm in that i) small and large streams have different initial subscription levels, ii)

the timer τ(s, d) depends on the stream volume, and iii) small and large streams

increase and decrease their subscription levels differently. The idea is for small

streams to be more aggressive than large streams in pursuing available capacity,

and for small streams to be more reluctant than large streams in reducing their

subscription level during congestion. Small streams start out by setting their initial

subscription level to the maximum subscription level offered by the provider, while

large streams set their initial subscription level to the corresponding minimum sub-

scription level. Each stream maintains a timer τ(s, d) which functions identically

to the timer τ described in the volume independent algorithm. The difference is

that the value of the timer depends on the stream volume. Small streams use a

short timer while large streams use a long timer. This permits small streams to

attempt subscription level increases more frequently than large streams. When a

small stream receives congestion notification from the network it decreases its cur-

rent subscription level to the next lower subscription level, while a large stream

decreases its subscription level to the lowest offered subscription level. Thus small

streams are reluctant to give up their subscription levels while large streams do so

readily. Finally, when the timer indicates a stream may increase its subscription

level, small streams increase their current subscription levels to the maximum sub-

scription level, while large streams increase their current subscription levels to the
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next larger one offered. Thus by combining differentiated initial subscription lev-

els, timers, congestion response, and subscription increase behavior, we are able to

achieve the volume discrimination seen under the optimal adaptation and admission

policies.

Algorithm 2 Pseudo code for volume dependent adaptation algorithm.

1: if v < E[V ] then
2: set initial subscription level as high as possible
3: else
4: set initial subscription level as low as possible
5: end if
6: while active do
7: if τ(s, d) seconds passed since last subscription change then
8: if v < E[V ] then
9: increase subscription level as much as possible

10: else
11: increase subscription level as little as possible
12: end if
13: end if
14: if receive congestion notification from network then
15: if v < E[V ] then
16: decrease subscription level as little as possible
17: else
18: decrease subscription level as much as possible
19: end if
20: end if
21: end while

Figures 5.2 and 5.1 illustrate the behavior of the volume independent and

the volume dependent distributed adaptation algorithms. Figure 5.2 shows a stream

with three subscription levels available. The client starts out at its intermediate sub-

scription level. Some τ seconds pass without receiving congestion notification from

the network so the stream increases its subscription level to the next highest level.

Then a sequence of two congestion signals force the client to reduce its subscription

level to the intermediate, and then to the lowest subscription level. Two intervals

of length τ pass after each of which the client increases its subscription level to the
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intermediate, and then to the maximum subscription level.

Figure 5.1 shows a large client and a small client, each of which has three

subscription levels available. The large client sets the initial subscription level to

the lowest subscription level, waits some long period of time τ(v) before increasing

to the intermediate subscription level, and then another long period of time τ(v)

before increasing to the maximum subscription level. The large client then receives a

congestion signal at which time it reduces its subscription level back to the minimum

one offered.

The bottom figure in Figure 5.1 shows that a small client sets its initial sub-

scription level to the maximum subscription level. The client receives two congestion

signals, after each of which it reduces its subscription level by one. The client then

waits some short period of time τ(v) before increasing its subscription level back to

the maximum.

5.3 Simulation results for distributed algorithms

The simulation results in this section use the same distributions for stream duration,

maximum subscription level, and adaptivity are as before. In addition, we assume

content providers make five encodings of each stream available, where the inter-

mediate three encodings are equally spaced between the minimum and maximum

subscription level. In particular, the set of offered subscription levels is assumed to

take the form S = {AS, S
4 (3A + 1), S

2 (A + 1), S
4 (A + 3), S}.

Implementing the algorithms also requires setting the parameter τ for the

volume independent algorithm and the function τ(s, d) for the volume dependent

algorithm. The timer for the volume dependent algorithm is set using the equation

τ(s, d) = κvd
E[V ] , with κ a constant. This formula implies the number of subscrip-

tion increase attempts (disregarding congestion resetting the timers) is inversely

proportional to the stream volume, i.e., d
τ(s,d) = E[V ]

κv . We chose κ = 0.0277,
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which, for the bounded exponential distributions for D used for simulation yields

E[τ(S, D)] = κE[D2]
E[D] = 10 seconds. To keep the comparison fair, we chose τ = 10

seconds for the volume independent algorithm.

Figure 5.3 and 5.3 show histograms of the time-average normalized subscrip-

tion level and the rate of adaptation versus stream volume for the volume indepen-

dent algorithm and the volume independent algorithm. Note that the x axis is on a

logarithmic scale. The stream volume PDF, fV (v) is also plotted. Recall the mean

volume is E[V ] = 54 Mb. Also recall the average adaptivity is E[A] = α = 1
2 ,

so the range of feasible expected time-average normalized subscription levels is

E0[Q] ∈ [α, 1] = [12 , 1]. The plots are simulations of a single link with arrival

rate λ = 5.0 and capacity c = 202.5 Mb/s. Simulations were run for about 15,000

clients. The average number of active streams is E[N(t)] = λδ = 5.0 × 180 = 900.

The capacity corresponds to scaling the network with a capacity scaling parameter

γ = c
λδσ = 202.5

5.0×180×0.3 = 3
4 . The histogram bins were constructed as described for

Figures 3.6 and 3.7.

Figure 5.3 shows the volume dependent algorithm achieves the goal of grant-

ing higher subscription levels to smaller volume streams and lower subscription levels

to larger volume streams. The volume independent algorithm is seen to yield an ex-

pected time-average normalized subscription level that is indeed independent of the

stream volume. Comparing this plot with Figure 3.6, which uses the same simulation

parameters to plot the expected time-average normalized subscription level under

the optimal and fair share adaptation policies, shows that the volume dependent

algorithm functions similarly to the optimal adaptation policy, while the volume

independent algorithm functions similarly to the fair share adaptation policy.

Figure 5.3 shows that the rate of adaptation is acceptably small for almost

all of the streams. Large volume streams, which are correlated with long duration

streams, have a higher rate of adaptation under both algorithms because they are
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afforded more opportunities to increase or decrease their subscription levels.

We next present some simulation results illustrating the expected time aver-

age normalized subscription level as a function of the link capacity scaling parameter

γ for the two algorithms. Figure 5.3 shows this quantity for the volume dependent

and the volume independent algorithms. The asymptotic optimal QoS, qγ,πk = qγ,πa

is also shown for purposes of comparison. The figure illustrates the volume depen-

dent algorithm gets fairly close to the optimal QoS, while the volume independent

algorithm lags behind. The figure illustrates that the volume independent algorithm

is roughly linear in the scaling parameter for α ≤ γ ≤ 1, while the volume dependent

algorithm exhibits a concave increase in QoS in this regime. The label indicates that

for γ = 0.6 the volume dependent algorithm achieved a QoS 16.8% greater than that

achieved by the volume independent algorithm, which corresponds to a performance

improvement of 28%.

5.4 Implementation issues for distributed volume de-

pendent adaptation algorithms

We present these algorithms as mere proofs of concept, and without any claims of

sound engineering design with respect to parameter choice. We feel our experiments

lend credence to the point, however, that making subscription adaptation algorithms

volume dependent can achieve a moderate increase in QoS over volume independent

algorithms. In principle, implementation is fairly straightforward. Some estimate

of the expected stream volume, E[V ] would need to be included in client-side code

in order to allow client software to determine if the current stream is small or large.

In addition, the timer functions τ(s, d) should be set to yield an acceptable rate

of subscription level increase attempts. Finally, a viable congestion notification

mechanism would need to be implemented.
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Chapter 6

Multiple Service Classes

The previous three chapters on optimal adaptation, optimal admission control, and

volume dependent distributed algorithms share the characteristic that the client

average normalized subscription level is maximized by granting higher subscription

levels to small volume streams and lower subscription levels to large volume streams.

The intuition is clear: we can maximize a client average by granting higher service

to clients requesting fewer network resources and lower service to clients requesting

larger network resources.

We emphasize the fact that all clients receive satisfactory QoS under volume

discrimination. That is, even though large volume streams receive a lower nor-

malized subscription level than small volume streams, they still are guaranteed an

acceptable stream resolution. We have defined the minimally acceptable stream res-

olution in terms of the content provider’s estimation of minimally acceptable stream

quality. In practice different clients may have different subjective definitions of what

constitutes minimally acceptable quality. That is, instead of defining the minimally

acceptable stream resolution in terms of the maximum compression of media infor-

mation using a given encoding algorithm, it might actually be more realistic to define

the minimally acceptable stream resolution on a client by client basis. We might
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abstract this notion by saying client (i, r) has a minimally acceptable adaptivity

parameter ai,r, which can be interpreted as a client’s individual QoS requirement.

To emphasize this distinction between provider and client definitions of min-

imally acceptable stream resolutions, consider the example of a content provider

offering a certain media stream with adaptivity a and maximum subscription level

s. The adaptivity a is such that the provider’s assessment of the minimally accept-

able stream encoding has an average instantaneous rate of as. Now consider two

clients, denoted i and j, with individual adaptivity parameters ai and aj , such that

a < ai < aj < 1. Both clients have a subjective minimum adaptivity exceeding

that decided upon by the content provider; client i requires a minimum subscription

level of ais and client j requires a minimum subscription level of ajs. The point is

that optimal adaptation, which gives large volume streams the minimally acceptable

stream resolution, as determined by the content provider, may prove unsatisfactory

to clients with more stringent QoS requirements.

In this chapter we propose a network architecture comprising K service

classes, where each service class k carries a distinct normalized subscription level

αk. Streams selecting service class k are guaranteed a minimum normalized sub-

scription level of αk, but may receive higher subscription levels if sufficient capacity

is available. For simplicity we will restrict our attention in this chapter to the single

link case, but the development may be generalized to an arbitrary network. We

also assume the link admits as many clients as possible while still respecting all of

the QoS guarantees of the already admitted clients. Note that we assume clients

are allowed to select their own service class, which means we will need to price the

service classes in order to ensure client selection corresponds to actual client QoS

requirements.

Formally, we assume a price vector u = (uk, k = 1, . . . ,K), and a set of

demand functions λ(u,α) = (λk(u,α), k = 1, . . . ,K), where λk(u,α) is the mean
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arrival rate of streams requesting service in class k under a price vector u and service

class QoS guarantees α. We take the price vector and service class QoS guarantee

vector to be exogenous parameters, hence the arrival rates for each class are fixed.

We will therefore write the per class arrival rates as λ = (λk, k = 1, . . . ,K).

We are interested in identifying the optimal adaptation policy for a multiple

class network architecture, where our criterion for optimality is still to maximize the

overall client average normalized subscription level. Thus it will still be optimal to

discriminate among streams based on volume. Note that, from a client perspective,

a small volume client will be more likely to choose a service class with a less stringent

QoS guarantee, while a large volume client will be more likely to choose a service

class with a more stringent QoS guarantee. That is, small volume clients, who stand

to benefit from volume discrimination, do not require the additional QoS protection

afforded by multiple service classes, while large volume clients, who stand to suffer

under volume discrimination, will require the additional QoS protection.

To model this fact we assume that the stream volume distribution is class-

specific. Formally, we model a service class k by specifying a distribution FDk
and

FSk
on the duration and maximum subscription level for class k streams. This yields

a class-specific volume distribution

FVk
(v) =

∫ ∞

0
FSk

(
v

d
)dFDk

(d) =
∫ ∞

0
FDk

(
v

s
)dFSk

(s). (6.1)

We label the class specific average durations and maximum subscription levels as

E[Dk] = δk and E[Sk] = σk. In summary, a class k consists of:

• a guarantee on the normalized subscription level, αk,

• an arrival rate, λk,

• a duration distribution FDk
with mean E[Dk] = δk, and

• a maximum subscription level distribution FSk
with mean E[Sk] = σk.
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In Section 6.1 we generalize our link capacity scaling from Section 3.3 to

handle multiple service classes. Section 6.2 will identify the optimal adaptation

policy for multiple service classes and identify the asymptotic per-class client average

normalized subscription level. In Section 6.3 we identify the asymptotically optimal

admission control policy for multiple service classes. Finally, Section 6.4 will present

a computation based case study illustrating how the QoS with a multiple service class

network architecture differs from the QoS with a single service class architecture.

6.1 Capacity scaling for multiple service classes

Let N(t) = (Nk(t), k = 1, . . . ,K) denote the instantaneous number of streams active

at time t in each service class. We denote the minimum and maximum offered loads

for class k as ρ
k

= (λkδk)(αkσk) and ρ̄k = (λkδk)σk respectively. Thus, the minimum

offered load for class k is the product of the average number of class k streams, i.e.,

E[Nk(t)] = λkδk (in a low blocking regime), times the class k average minimum

subscription level αkσk. Similarly, the maximum offered load is the product of the

average number of class k streams times the class k average maximum subscription

level. We define the overall minimum and maximum offered loads as ρ =
∑K

k=1 ρ
k

and ρ̄ =
∑K

k=1 ρ̄k respectively. We define the overall adaptivity as the ratio of the

overall minimum offered load over the overall maximum offered load, i.e., α = ρ/ρ̄.

Consider a sequence of links, indexed by m, where we linearly scale the

the arrival rate vector and the link capacity as follows. The arrival rate vector

on the mth link is λ(m) = (λk(m), k = 1, . . . ,K) and λk(m) = mλk. We denote

the per class and overall minimum and maximum offered loads on the mth link as

ρ
k
(m), ρ̄k(m), ρ(m), ρ̄(m) respectively. Note that the overall adaptivity α is inde-

pendent of m under this scaling. The link capacity on the mth link is c(m) = γρ̄(m)

for some γ > 0.

We define three capacity scaling regimes, parameterized by γ, analogous to
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the three regimes defined for the single service class scaling. These regimes are,

as before, i) the overloaded regime, parameterized by γ < α, ii) the rate adaptive

regime, parameterized by α ≤ γ ≤ 1, and iii) the underloaded regime, parameterized

by γ > 1. In the overloaded regime the provisioned capacity is inadequate to handle

the overall minimum offered load, i.e., c(m) = γρ̄(m) < αρ̄(m) = ρ(m). In the

underloaded regime the provisioned capacity exceeds the overall maximum offered

load, i.e., c(m) = γρ̄(m) > ρ̄(m). Finally, in the rate adaptive regime the provisioned

capacity lies between the overall minimum and maximum offered loads. As before,

the rate adaptive regime is the primary regime of interest.

6.2 Optimal adaptation policy for multiple service classes

In this section we identify the optimal adaptation policy for multiple service classes.

Our objective, as before, is to maximize the overall client average time-average

normalized subscription level, E0[Q]. The following theorem states the optimal

adaptation policy is to sort all the active streams by stream volume and grant the

maximum subscription level to as many small volume streams as possible while

respecting the per-class minimum subscription level guarantees. We denote the

optimal multi-class adaptation policy as πm. We denote the ith active stream of class

k as (i, k). We write n(t) = (nk(t), k = 1, . . . ,K) for the number of active streams

in each class, and n(t) =
∑K

k=1 nk(t) for the total number of active streams on the

link. We denote the instantaneous subscription level assignment under the optimal

multi-class adaptation policy as sπm(t) = (sπm
i,k (t), i = 1, . . . , nk(t), k = 1, . . . ,K).

We assume that content providers match their offered subscription levels to the set

of service classes offered by the network, i.e., S = (α1s, . . . , αKs, s).

Theorem 7 The optimal multi-class adaptation policy, πm, which maximizes the

overall client average time-average normalized subscription level, E0[Q], is the in-

stantaneous allocation, sπm(t) = (sπm
i,k (t), i = 1, . . . , nk(t), k = 1, . . . ,K), which
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solves the following integer programming problem:

max
s(t)

qagg(t) =
K∑

k=1

nk(t)∑
i=1

si,k(t)
si,kdi,k

(6.2)

s.t.

K∑
k=1

nk(t)∑
i=1

si,k(t) ≤ c,

si,k(t) ∈ Si,k,∀i = 1, . . . , nk(t), k = 1, . . . ,K.

There exists a near optimal multi-class adaptation policy, denoted π̃m, with

an instantaneous allocation sπ̃m(t) with sπ̃m
i,k (t) ∈ {αksi,k, si,k} for each i = 1, . . . , nk(t)

and each k = 1, . . . ,K. In particular,

qπm(t)− qπ̃m(t)
qπm(t)

≤ κm

n(t)
, (6.3)

for κm < ∞.

Sort the active streams by volume, indexed by j, so that stream (i, k) is labeled

j if stream (i, k) has the jth smallest volume out of all the active streams. Thus,

s1d1 < . . . < sn(t)dn(t). The allocation under the near optimal multi-class adaptation

policy is given by

sπ̃m
j (t) =

 sj , j = 1, . . . , n̄− 1

ajsj , j = n̄, . . . , n(t)
, (6.4)

where n̄ equals

n̄ = max{m |
m−1∑
j=1

sj +
n(t)∑
j=m

ajsj ≤ c}. (6.5)

Proof of Theorem 7. Let Bi,k denote the random arrival time of stream i on class

k. Define the instantaneous QoS of stream (i, k) as

Qi,k(t) =


Si,k(t)

Si,kDi,k
, Bi,k ≤ t ≤ Bi,k + Di,k

0, else
.

Define the class k aggregate instantaneous QoS at time t as

Qagg,k(t) =
Nk(t)∑
k=1

Qi,k(t).
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Define the class k expected aggregate instantaneous QoS as

E[Qagg,k(t)] = lim
t→∞

1
t

∫ t

0
Qagg,k(s)ds,

where the RHS follows by ergodicity, and the t in the LHS is understood to be a

typical time. Define the class k client average QoS as

E0[Qk] = lim
nk→∞

1
nk

nk∑
i=1

∫ ∞

−∞
Qi,k(t)dt,

where the RHS again follows by ergodicity. Straightforward application of Brumelle’s

Theorem [32] shows that

E[Qagg,k(t)] = λa
kE0[Qk],

where λa
k is the rate at which class k clients are admitted onto the link.

Define the overall aggregate instantaneous QoS at time t as

Qagg(t) =
K∑

k=1

Qagg,k(t).

The expected aggregate instantaneous QoS is defined as

E[Qagg(t)] = lim
t→∞

1
t

∫ t

0
Qagg(s)ds,

where the RHS follows by ergodicity and t in the LHS is again understood to be a

typical time. Define the overall client average QoS as

E0[Q] =
K∑

k=1

λa
k

λa
E0[Qk],

where λa =
∑K

k=1 λa
k denotes the overall admission rate. This implies

E[Qagg(t)] =
K∑

k=1

E[Qagg,k(t)] =
K∑

k=1

λa
kE0[Qk] = λaE0[Q].

The conclusion is that maximizing the overall client average QoS is equivalent to

maximizing the overall aggregate instantaneous QoS.
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We define the filtration σ(t) representing the information available at time t,

which includes stream arrival times, stream durations, stream maximum subscrip-

tion levels, and stream adaptivities. Maximizing the overall aggregate instantaneous

QoS at each time t means our objective can be written

qagg(t) = E[Qagg(t) | σ(t)] =
K∑

k=1

nk(t)∑
n=1

si,k(t)
si,kdi,k

.

Applying the capacity constraints and the stream constraints means that the optimal

adaptation policy for multiple service classes is the solution, at each time t, of the

following integer programming problem:

max
s(t)

qagg(t) =
K∑

k=1

nk(t)∑
i=1

si,k(t)
si,kdi,k

s.t.

K∑
k=1

nk(t)∑
i=1

si,k(t) ≤ c,

si,k(t) ∈ Si,k,∀i = 1, . . . , nk(t), k = 1, . . . ,K

This proves the first part of the theorem.

Consider a relaxation of the above problem, where we relax the assumption

that the set of offered subscription levels is a discrete set. In particular, we assume

Si,k = [αksi,k, si,k]. We apply the change of variables xi,k(t) = si,k(t)−αksi,k

1−αk
and the

constraint relaxation to obtain

max
x(t)

K∑
k=1

nk(t)∑
i=1

(1− αk)xi,k(t)
si,kdi,k

s.t.

K∑
k=1

nk(t)∑
i=1

(1− αk)xi,k(t) ≤ c′,

0 ≤ xi,k(t) ≤ 1,∀i = 1, . . . , nk(t), k = 1, . . . ,K

where c′ = c −
∑K

k=1

∑nk(t)
i=1 αksi,k. This is seen to be a relaxation of a knapsack

problem, where the item values are vi,k = 1−αk
si,kdi,k

and the item weights are wi,k =

1 − αk. The solution is to sort items by maximum value per unit weight, i.e.,
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vi,k

wi,k
= 1

si,kdi,k
. Thus, the solution of the relaxation is to sort streams by their

volume.

As was shown in the proof of Theorem 1, the solution to the relaxed problem

has the characteristic that at most one stream receives a subscription level inter-

mediary between its minimum and maximum subscription level. A little thought

shows that n̄ in (6.5) identifies that stream. Let G(sπ̃m(t)) denote the value of the

objective under the allocation given in (6.4). Let G(sπm(t)) denote the value of

the objective under the allocation solving the (non-relaxed) integer programming

problem stated in the theorem. Finally, let G(s(t)) denote the value of the objective

under the allocation solving the relaxed linear programming problem stated above.

Note that G(sπ̃m(t)) < G(sπm(t)) < G(s(t)) since sπ̃m(t) is in the feasible set of both

the relaxed and non-relaxed problem, and since the relaxed problem necessarily has

a higher objective value than the non-relaxed problem. We can therefore bound the

difference in the objective under allocations π̃m and πm as

G(sπm(t))−G(sπ̃m(t)) ≤ G(s(t))−G(sπ̃m(t)) ≤ s̄,

where s̄ is the maximum possible subscription level. Thus the difference in the

objective is a constant. The relative difference is easily shown to be bounded as

G(sπm(t))−G(sπ̃m(t))
G(sπm(t))

≤ d̄s̄

αn(t)
=

κm

n(t)
,

where d̄ is the maximum possible stream duration and α = min1≤k≤K{αk}. Thus,

the difference goes to zero for links servicing large numbers of streams.

�

The theorem just confirms the intuition that offering streams minimum qual-

ity of service guarantees doesn’t change the form of the optimal adaptation policy.

This is because the optimal adaptation policy weights streams by their maximum

volume irrespective of their individual adaptivities.
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The next theorem identifies the asymptotic quality of service under the op-

timal adaptation policy for each service class. We define the asymptotic expected

time-average normalized subscription level for class k streams under the multi-class

capacity scaling as qγ,πm

k = limm→∞ E0[Qm,πm

k ], where E0[Qm,πm

k ] is the expected

value of Q on the mth link under policy πm for class k.

Theorem 8 The asymptotic expected time-average normalized subscription level for

class k streams under the optimal adaptation policy for multiple service classes is

qγ,πm

k = αk for γ < α, qγ,πm

k = 1 for γ > 1, and

qγ,πm

k = 1− (1− αk)
∫ ∞

0

∫ ∞

0
I
( K∑

k′=1

(ρ̄k′ − ρ
k′

)FV̂k′
(sd) > γρ̄− ρ

)
dFDk

(d)dFSk
(s),

(6.6)

for α ≤ γ ≤ 1.

Proof of Theorem 8. Let Qm,πm

k denote the QoS of a typical class k stream in

the mth scaling of the link capacity under the optimal multi-class adaptation policy

πm. Similarly, let Sm,πm

k (t) denote the instantaneous allocation to a typical class k

stream at some time t after that stream’s admission:

qγ,πm

k = lim
m→∞

E0[Qm,πm

k ] = lim
m→∞

E0[
1
D

∫ D

0

Sm,πm

k (t)
S

dt].

We can condition on S = s and D = d to obtain

qγ,πm

k = lim
m→∞

∫ ∞

0

∫ ∞

0
E0[

1
D

∫ D

0

Sm,πm

k (t)
S

dt | D = d, S = s]dFDk
(d)dFSk

(s).

Note that, because the optimal multi-class adaptation policy does not depend on

the time t since the stream’s admission into the system, we can claim

E0[
1
D

∫ D

0

Sm,πm

k (t)
S

dt | D = d, S = s] = E0[
Sm,πm

k (t)
S

| D = d, S = s],

for the t in the RHS understood to be a typical time. This allows

qγ,πm

k = lim
m→∞

∫ ∞

0

∫ ∞

0
E0[

Sm,πm

k (t)
S

| D = d, S = s]dFDk
(d)dFSk

(s).
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Next, note that under the optimal multi-class adaptation policy Sk(t)
S is either

1 or αk depending on whether or not the stream is adapted at time t. Also, note that

the whether or not the stream is adapted is independent of αk. We write p(m, t, s, d)

for the probability that a stream with parameters S = s and D = d is adapted at a

typical time t in the mth link.

E0[
Sm,πm

k (t)
S

| D = d, S = s] = 1− (1− αk)p(m, t, s, d).

Dominated convergence allows us to move the limit inside the integrals:

qγ,πm

k = 1− (1− αk)
∫ ∞

0

∫ ∞

0
lim

m→∞
p(m, t, s, d)dFDk

(d)dFSk
(s).

We focus now on limm→∞ p(m, t, s, d). Let N(m, t) = (Nk(m, t), k = 1, . . . ,K)

denote the number of active streams in each class on the mth link at a typical time t.

The event that a stream with volume sd is adapted at a typical time t is equivalent

to the event

K∑
k=1

Nk(m,t)∑
i=1

Si,kI(Si,kD̂i,k ≤ sd) + s +
K∑

k=1

Nk(m,t)∑
i=1

αkSi,kI(Si,kD̂i,k > sd) ≥ c(m)

where we write D̂ to denote that the durations of the streams active at time t have

stretched distributions. Thus p(m, t, s, d)

= P(
K∑

k=1

Nk(m,t)∑
i=1

Si,kI(Si,kD̂i,k ≤ sd) + s +
K∑

k=1

Nk(m,t)∑
i=1

αkSi,kI(Si,kD̂i,k > sd) ≥ c(m))

We now define the random variable Z(m, t, s, d) as

Z(m, t, s, d) =
1

ρ̄(m)

( K∑
k=1

Nk(m,t)∑
i=1

Si,kI(Si,kD̂i,k ≤ sd)+
K∑

k=1

Nk(m,t)∑
i=1

αkSi,kI(Si,kD̂i,k > sd)
)

so that

lim
m→∞

p(m, t, s, d) = lim
m→∞

P(Z(m, t, s, d) ≥ γ − s

ρ̄(m)
).
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We next find the mean and variance of Z(m, t, s, d).

E[Z(m, t, s, d)] =
1

ρ̄(m)
E

[ K∑
k=1

Nk(m,t)∑
i=1

Si,k

(
I(Si,kD̂i,k ≤ sd)] + αkI(Si,kD̂i,k > sd)

)]
.

By Wald’s identity,

E[
K∑

k=1

Nk(m,t)∑
i=1

Si,kI(Si,kD̂i,k ≤ sd)] =
K∑

k=1

E[Nk(m, t)]E[SkI(SkD̂k ≤ sd)].

Recall Nk(m, t) ∼ Poisson(λk(m)δk), so that E[Nk(m, t)] = λk(m)δk. Also,

E[SkI(SkD̂k ≤ sd)] =
∫ ∞

0

∫ ∞

0
xI(xy ≤ sd)dFD̂k

(y)dFSk
(x)

=
∫ ∞

0
x
[∫ sd

x

0
dFD̂k

(y)
]
dFSk

(x)

=
∫ ∞

0
x
[∫ sd

x

0

1
E[Dk]

ydFDk
(y)

]
dFSk

(x).

Now introduce the change of variables z = xy:

E[SkI(SkD̂k ≤ sd)] =
1

E[Dk]

∫ ∞

0

∫ sd

0
zdFDk

(
z

x
)
1
x

dFSk
(x)

=
1

E[Dk]

∫ sd

0

[∫ ∞

0

z

x
fDk

(
z

x
)fSk

(x)dx
]
dz

=
1

E[Dk]

∫ sd

0
z
[
fVk

(z)
]
dz

=
E[Vk]
E[Dk]

∫ sd

0

z

E[Vk]
dFVk

(z)

= σkFV̂k
(sd).

A similar argument shows that E[αkSkI(SkD̂k > sd)] = αkσkF̄V̂k
(sd). We combine

the above results and note that the m′s cancel to obtain

E[Z(m, t, s, d)] =
1
ρ̄

K∑
k=1

ρ̄k(FV̂k
(sd) + αkF̄V̂k

(sd)).

We next bound the variance of Z(m, t, s, d). We can write

Z(m, t, s, d) =
1

ρ̄(m)

K∑
k=1

Nk(m,t)∑
i=1

Wi,k
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for Wi,k = Si,k(1− (1− αk)I(Si,kD̂i,k ≥ sd)). and thereby obtain

V ar(Z(m, t, s, d)) =
1

(ρ̄(m))2
V ar(

K∑
k=1

Nk(m,t)∑
i=1

Wi,k)

=
1

(ρ̄(m))2

K∑
k=1

V ar(
Nk(m,t)∑

i=1

Wi,k)

=
1

(ρ̄(m))2

K∑
k=1

[
E[Nk(m, t)]V ar(Wk) + E[Wk]2V ar(Nk(m, t))

]
=

1
(ρ̄(m))2

K∑
k=1

[
λk(m)δkV ar(Wk) + λk(m)δkE[Wk]2

]
=

1
(ρ̄(m))2

K∑
k=1

λk(m)δkE[W 2
k ]

≤ 1
(ρ̄(m))2

K∑
k=1

λk(m)δkE[S2
k ]

=
1

m(ρ̄)2

K∑
k=1

λkδkE[S2
k ].

The second equality follows because the random variables Nk(m, t) and Nk′(m, t)

are independent (in a low blocking regime).

We consider three cases: i) E[Z(m, t, s, d)] < γ, ii) E[Z(m, t, s, d)] = γ, iii)

E[Z(m, t, s, d)] > γ. Consider the first case. Define ε(m) = γ− s
ρ̄(m)−E[Z(m, t, s, d)].

Note that E[Z(m, t, s, d)] < γ implies there exists an m′ such that ε > 0 for all

m > m′. A little thought shows

P(Z(m, t, s, d) ≥ γ − s

ρ̄(m)
) ≤ P(|Z(m, t, s, d)− E[Z(m, t, s, d)]| > ε(m))

for all m > m′. Chebychev’s inequality yields

P(|Z(m, t, s, d)− E[Z(m, t, s, d)]| > ε(m)) ≤ V ar(Z(m, t, s, d))
ε(m)2

, ∀m > m′.

Noting that limm→∞ ε(m) is a constant and that limm→∞ V ar(Z(m, t, s, d)) = 0

implies

lim
m→∞

P(Z(m, t, s, d) ≥ γ − s

ρ̄(m)
) = 0
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when E[Z(m, t, s, d)] < γ. A similar analysis for the third case yields

lim
m→∞

P(Z(m, t, s, d) ≥ γ − s

ρ̄(m)
) = 1

when E[Z(m, t, s, d)] > γ. Finally, the set of pairs (s, d) such that E[Z(m, t, s, d)] = γ

has measure zero. Thus, we conclude

lim
m→∞

p(m, t, s, d) = lim
m→∞

P(Z(m, t, s, d) ≥ γ − s

ρ̄(m)
)

= I(E[Z(m, t, s, d)] > γ).

Note that I(E[Z(m, t, s, d)] > γ) is equivalent to

I
( K∑

k=1

ρ̄k(FV̂k
(sd) + αkF̄V̂k

(sd)) > γρ̄
)

This is easily simplified to

I
( K∑

k=1

(ρ̄k − ρ
k
)FV̂k

(sd) > γρ̄− ρ
)
.

Notice that for γ < α, i.e., when the link is provisioned in the overloaded

regime, the indicator function is satisfied for all values sd. To see this, note that

γ < α implies γρ̄ − ρ < 0, and so the indicator requires a sum of positive numbers

exceed zero. Thus, limm→∞ p(m, t, s, d) = 1. Similarly, for γ > 1, i.e., when the link

is provisioned in the underloaded regime, the asymptotic probability the stream is

adapted is zero. To see this, note that

K∑
k=1

(ρ̄k − ρ
k
)FV̂k

(sd) ≤
K∑

k=1

(ρ̄k − ρ
k
) = ρ̄− ρ.

Hence, the indicator function is never satisfied because it requires a sum of numbers

bounded above by ρ̄−ρ exceed a number γρ̄−ρ > ρ̄−ρ. Thus, limm→∞ p(m, t, s, d) =

0. Substituting these values into the integral yields

qγ,πm

k = 1− (1− αk)
∫ ∞

0

∫ ∞

0
(1)dFDk

(d)dFSk
(s) = αk, γ < α

qγ,πm

k = 1− (1− αk)
∫ ∞

0

∫ ∞

0
(0)dFDk

(d)dFSk
(s) = 1, γ > 1.
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Finally, consider the case when the link is provisioned in the rate adaptive

regime, i.e., when α ≤ γ ≤ 1. Substituting this into the integral yields the equation

given in the theorem.

�

6.3 Asymptotic optimal admission control for multiple

service classes

In this section we identify the asymptotic optimal admission control policy for mul-

tiple service classes. This policy is the multi-class analogue of the optimal admission

control policy developed in Chapter 4.

Theorem 9 The asymptotic optimal admission control policy for multi-service net-

works, denoted, πam, is a volume threshold policy with optimal volume threshold

vγ,πam. The optimal threshold is zero when γ < α and is infinite when γ > 1. For

α ≤ γ ≤ 1 the optimal volume threshold solves

K∑
k=1

(ρ̄k − ρ
k
)FV̂k

(vγ,πam) = γρ̄− ρ. (6.7)

The optimal admission control policy for client i on class k is to assign the

client a subscription level

sγ,πam

i,k =

 si,k, vi,k ≤ vγ,πam

αksi,k, else
. (6.8)

The asymptotic expected normalized subscription level for class k streams

under policy πam equals that obtained under the optimal multi-class adaptation policy

πm.

Proof of Theorem 9. Note that the set of feasible admission control policies is a

subset of the set of feasible adaptation policies. Thus, if we identify an admission
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policy achieving the same asymptotic QoS as the optimal adaptation policy, then

that policy is necessarily optimal. All we need show then is that the asymptotic

QoS under the volume threshold policy given in the theorem yields an asymptotic

QoS equal to that under the optimal multi-class adaptation policy.

When γ < α the optimal threshold is zero, hence the asymptotic QoS for

class k clients is qγ,πam

k = αk = qγ,πm

k . Similarly, for γ > 1 the optimal threshold is

infinite, hence the asymptotic QoS for class k clients is qγ,πam

k = 1 = qγ,πm

k . Consider

the case for the rate adaptive regime, α ≤ γ ≤ 1. The asymptotic QoS for class k

clients is 1 for clients with volumes less than vγ,πam and αk for clients with volumes

exceeding vγ,πam . We can therefore write the asymptotic QoS as

qγ,πam = FVk
(vγ,πam) + αkF̄Vk

(vγ,πam).

Simple rearranging yields

qγ,πam = 1− (1− αk)F̄Vk
(vγ,πam).

We can apply the definition of FV (v) to obtain

qγ,πam = 1− (1− αk)
∫ ∞

0
F̄Dk

(
vγ,πam

s
)dFSk

(s)

= 1− (1− αk)
∫ ∞

0

[∫ ∞

vγ,πam
s

dFDk
(d)

]
dFSk

(s)

= 1− (1− αk)
∫ ∞

0

∫ ∞

0
I(d >

vγ,πam

s
)dFDk

(d)dFSk
(s)

= 1− (1− αk)
∫ ∞

0

∫ ∞

0
I(sd > vγ,πam)dFDk

(d)dFSk
(s).

Now note that, by the definition of vγ,πam , the condition in the indicator function

may be written as

I(sd > vγ,πam) ⇔ I(
K∑

k=1

(ρ̄k − ρ
k
)FV̂k

(sd) > γρ̄− ρ).

We may therefore write the asymptotic QoS as

1− (1− αk)
∫ ∞

0

∫ ∞

0
I(

K∑
k=1

(ρ̄k − ρ
k
)FV̂k

(sd) > γρ̄− ρ)dFDk
(d)dFSk

(s).
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This is the same expression for the asymptotic QoS under the optimal multi-class

adaptation policy, qγ,πm . This proves the theorem.

�

Note that the optimal volume threshold is independent of the service class

k, i.e., the network discriminates among streams based on their stream volume,

irrespective of their service class.

6.4 Case study: multiplexing audio and video stream-

ing clients

In this section we apply the theorems on optimal multi-class adaptation policies to

a case study which investigates how to optimally share link capacity among audio

and video streaming clients. The case study will investigate three separate link

architectures and compare the resulting QoS. The three link architectures are

• Single service class sharing. Audio and video streams share the link ca-

pacity and are jointly adapted according to the optimal single class adaptation

policy of Chapter 3. All streams, audio and video, are assumed to have a fixed

stream adaptivity of α1 = 1
4 .

• Two service class sharing. The network offers two service classes: a free

service class with a guaranteed normalized subscription level of α1 and a pre-

mium service class with a guaranteed normalized subscription level of α2 = 3
4 .

Audio clients will generally subscribe to the free class, relying on volume dis-

crimination to grant them acceptable QoS, while video clients will generally

subscribe to the premium class, in order to provide them with QoS protection

from volume discrimination.

• Partitioning. We partition the link capacity evenly into two separate chan-

nels, one for audio and one for video. All audio streams share the audio
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channel and all video streams share the video channel. The streams on each

channel are adapted according to the optimal single class adaptation policy of

Chapter 3. As in the previous case, audio streams are guaranteed a normal-

ized subscription level of α1 and video streams are guaranteed a normalized

subscription level of α2.

The three link architectures are illustrated in Figure 6.1.

6.4.1 Simulation parameters

We let 1 denote the free service class for audio streams and 2 denote the premium

service class for video streams.

The audio clients have an arrival rate λ1 = 1, a typical stream duration of

δ1 = 180 seconds (i.e., the typical length of a song), an average maximum sub-

scription level of σ1 = 0.1 Mb/s, and a service class guarantee of α1 = 1
4 . The

distributions for audio client stream durations and maximum subscription levels

are both (effectively unbounded) exponentials. Thus, FD1(d) = 1 − exp (− d
δ1

) and

FS1(s) = 1− exp (− s
σ1

).

The video clients have an arrival rate of λ2 = 0.01, where the arrival rate is

determined by the demand function evaluated at the price charged by the network

to use the premium class. The typical video stream duration is δ2 = 1800 seconds

(e.g., a half-hour television program), and the average maximum subscription level

is σ2 = 1.0 Mb/s. The video content provider offers a minimal stream encoding with

an adaptivity of α2 = 1
4 (just like the audio streams), but the premium service class

provides a QoS guarantee of α2 = 3
4 . Thus, video clients with a low willingness to pay

will choose class 1, and likely receive a low-quality video stream with adaptivity 1
4 ,

while video clients with a high willingness to pay will choose class 2, and likely receive

a high-quality video stream with adaptivity 3
4 . The distributions for video client

stream durations and maximum subscription levels are both (effectively unbounded)
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Figure 6.1: Illustration of three link architectures for the case study.
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exponentials. Thus, FD2(d) = 1− exp (− d
δ2

) and FS2(s) = 1− exp (− s
σ2

).

Note that the minimum offered load for the audio clients class is ρ
1

=

(λ1δ1)(α1σ1) = (1 × 180)(1
4 ×

1
10) = 4.5 Mb/s, and the maximum offered load

for the audio clients is ρ̄1 = (λ1δ1)(σ1) = (1 × 180)( 1
10) = 18 Mb/s. The min-

imum offered load for the video clients when no premium service class is offered

(e.g., the first link architecture with a single service class) is ρ
2

= (λ2δ2)(α2σ2) =

( 1
100×1800)(1

4×1) = 4.5 Mb/s. The minimum offered load for the video clients when

a premium service class is offered (e.g., the second and third link architectures) is

ρ
2

= (λ2δ2)(α2σ2) = ( 1
100×1800)(3

4×1) = 13.5 Mb/s. The maximum offered load for

the video clients (for all three scenarios) is ρ̄2 = (λ2δ2)(σ2) = ( 1
100 × 1800)(1) = 18

Mb/s. Thus the overall minimum offered load is 9 Mb/s when no premium service

class is offered, and is 18 Mb/s when the premium service class is offered. The over-

all maximum offered load is 36 Mb/s. Note that the maximum offered load is 18

Mb/s for both the audio and video streams. This is the rational behind partitioning

the bandwidth evenly into two channels for the third link architecture.

The different link architectures will have different scaling regimes because of

the different service classes and adaptation policies. These regimes are illustrated

in Figure 6.2. Consider the first link architecture where both audio and video are

guaranteed a normalized subscription level of α1 = 1
4 , and the optimal single service

class adaptation policy is used. The overall adaptivity for this link architecture

is
ρ

ρ̄ = 9
36 = 1

4 , hence the rate adaptive regime for both audio and video streams

corresponds to 1
4 ≤ γ ≤ 1. Consider the second link architecture where audio

streams have a guaranteed normalized subscription level of α1 = 1
4 and video streams

have a guaranteed normalized subscription level of α2 = 3
4 . The overall adaptivity

for this link architecture is
ρ

ρ̄ = 18
36 = 1

2 , hence the rate adaptive regime for both audio

and video streams corresponds to 1
2 ≤ γ ≤ 1. The rate adaptive regime is smaller

for this scenario than for the previous scenario because the video streams are now
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Figure 6.2: Illustration of the rate-adaptive regimes for audio and video streams
under each of the three link architectures.

guaranteed a larger normalized subscription level. Consider finally the third link

architecture, where audio and video streams use separate channels, audio streams

are guaranteed a normalized subscription level of α1 = 1
4 and video streams are

guaranteed a normalized subscription level of α2 = 3
4 . Because they are on separate

channels, the rate adaptive regime for the audio streams corresponds to 1
4 ≤ γ ≤ 1,

while the rate adaptive regime for the video streams corresponds to 3
4 ≤ γ ≤ 1.

We can therefore think of the different link architectures as having different

trade offs between blocking probabilities and QoS guarantees. The first link archi-

tecture, with a single service class and no premium QoS guarantee for video streams,

has the smallest overloaded regime, 0 ≤ γ < 1
4 , which corresponds to the regime

with non-zero asymptotic blocking. The second link architecture, with two service

classes sharing the link capacity and a premium QoS guarantee for video streams,

has a common overloaded regime of 0 ≤ γ ≤ 1
2 . Roughly speaking, the increased

width of the overloaded regime interval, i.e., 1
4 ≤ γ ≤ 1

2 is the cost of increasing the

QoS guarantee of video streams from 1
4 to 3

4 . The third link architecture, with two

separate channels for audio and video streams, and a premium QoS guarantee for

video streams, has different scaling regimes for the two channels. The audio channel

is only overloaded for 0 ≤ γ ≤ 1
4 , but the video channel is overloaded for 0 ≤ γ ≤ 3

4 .
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6.4.2 Computation results

In this section we compute the asymptotic QoS under for audio and video streams

under each of the three link architectures. Consider the first link architecture where

audio and video streams share the same channel and share the same normalized

subscription level guarantee of α1 = 1
4 . This is equivalent to a multiple service

class model where all service classes have the same QoS guarantee. The asymptotic

normalized subscription level for the audio (class 1) and video (class 2) streams is

therefore given by

qγ,1
1 = 1− (1− α1)F̄V1(FV̂1

(v∗1(γ)) (6.9)

qγ,1
2 = 1− (1− α1)F̄V2(FV̂2

(v∗1(γ)) (6.10)

where v∗1(γ) is the v that solves

(ρ̄1 − ρ
1
)FV̂1

(v) + (ρ̄2 − ρ
2
)FV̂2

(v) = γρ̄− ρ. (6.11)

For the first link architecture we have ρ̄1 = 18, ρ
1

= 4.5, ρ̄2 = 18, ρ
2

= 4.5, ρ̄ = 36

and ρ = 9. Substituting these values and simplifying, we obtain that v∗1(γ) is the v

that solves

FV̂1
(v) + FV̂2

(v) =
8
3
γ − 2

3
. (6.12)

Consider next the second link architecture where audio and video streams

share the same channel, but audio streams have a QoS guarantee of α1 = 1
4 and video

streams have a QoS guarantee of α2 = 3
4 . The asymptotic normalized subscription

level for the audio and video streams is now

qγ,2
1 = 1− (1− α1)F̄V1(FV̂1

(v∗2(γ)) (6.13)

qγ,2
2 = 1− (1− α2)F̄V2(FV̂2

(v∗2(γ)) (6.14)

where v∗2(γ) solves (6.11) but with ρ
2

= 13.5 and ρ = 18. Substituting these values

and simplifying, we obtain that v∗2(γ) is the v that solves

FV̂1
(v) +

1
3
FV̂2

(v) =
8
3
γ − 4

3
. (6.15)
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Finally, consider the third link architecture where audio and video streams

share different channels, audio streams have a QoS guarantee of α1 = 1
4 and video

streams have a QoS guarantee of α2 = 3
4 . The asymptotic normalized subscription

level for audio and video streams is then given by

qγ,3
1 = 1− (1− α1)F̄V1(FV̂1

(
γ − α1

1− α1
) (6.16)

qγ,3
2 = 1− (1− α2)F̄V2(FV̂2

(
γ − α2

1− α2
). (6.17)

Figures 6.3 and 6.4 plot the asymptotic normalized subscription levels for

audio and video streams respectively under each of the three link architectures. That

is, Figure 6.3 plots the asymptotic QoS for audio streams under a single class link

architecture, qγ,1
1 , a two class link architecture, qγ,2

1 , and a partitioned architecture,

qγ,3
1 , while Figure 6.4 plots the asymptotic QoS for video streams under a single

class link architecture, qγ,1
2 , a two class link architecture, qγ,2

2 , and a partitioned

architecture, qγ,3
2 .

Consider the first link architecture, i.e., the single service class. Both audio

and video streams receive the minimum QoS guarantee, i.e., 1
4 , in the overloaded

regime, i.e., 0 < γ ≤ 1
4 . As we increase γ in the rate adaptive regime, i.e., 1

4 ≤ γ ≤ 1,

the audio streams show a rapid increase in QoS up to the maximum normalized

subscription level of 1 at around γ = 0.6, while the increase for the video streams

is rather minimal. This is because under the single service class with common

QoS guarantees, the optimal adaptation policy grants preferential treatment to the

smaller (audio) streams and discriminates against the larger (video) streams. As we

increase γ above 0.6 we see the video streams showing a faster increase in QoS. This

is because the audio streams are already receiving their maximum subscription level

and so the full benefit of increasing the capacity goes to the video streams.

Next consider the second link architecture, i.e., the two service classes. Both

audio and video streams receive their respective minimum QoS guarantees (1
4 and

3
4 respectively) in the overloaded regime, i.e., 0 < γ ≤ 1

2 . As we increase γ in the
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Figure 6.3: Plot of the asymptotic QoS for audio clients versus the scaling parameter
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rate adaptive regime, i.e., 1
2 ≤ γ ≤ 1, we see the audio streams again show a rapid

increase in QoS up to the maximum normalized subscription level of 1 at around

γ = 0.9, while the increase for the video streams is again rather minimal. Again, this

is because the optimal adaptation policy discriminates against the video streams.

As we increase γ above 0.9 we see the video streams showing a faster increase

in QoS. Note that for γ > 0.7 the single service class architecture actually gives

better average QoS to video streams than does the two class architecture. This may

appear somewhat counter-intuitive considering the two class architecture grants a

better QoS guarantee to video streams than does the single class architecture. The

explanation is that the average video QoS is higher for the single class architecture

than for the two class architecture above γ > 0.7 because the single class architecture

can adapt the largest video streams down to a normalized subscription level of 1
4

while the two class architecture can only adapt the largest video streams down to a

normalized subscription level of 3
4 . The two class architecture therefore must adapt

more video streams than the one class architecture so that the overall average QoS

for video streams is lower.

Finally consider the third link architecture, i.e., partitioned channels. We see

the audio streams receive their minimum normalized subscription level of 1
4 in the

overloaded regime, i.e., 0 < γ < 1
4 . Similarly, video streams receive their minimum

subscription level of 3
4 in the overloaded regime, i.e., 0 < γ < 3

4 . As we increase

γ in the rate adaptive regime for the audio streams, i.e., 1
4 ≤ γ ≤ 1, the audio

streams show a rapid increase in QoS, which, for most of the rate adaptive regime,

lies between the audio QoS under the single and two class architectures. The audio

QoS under partitioning is strictly below the audio QoS under a single service class

because, under the single service class, there are always video streams to adapt

before audio streams, while there are no video streams available to adapt under

the partitioned architecture. Moreover, the audio QoS under partitioning is higher
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than under the two class architecture for 1
4 ≤ γ ≤ 3

4 because, under the partitioning

architecture, we are blocking video streams in this regime. Once we are not blocking

video streams under the partitioning architecture, i.e., 3
4 ≤ γ ≤ 1, the audio QoS

is equivalent under the partitioning and two-class architecture. Next consider the

video QoS under the partitioning architecture. We see that the video QoS is better

under a two class architecture than under partitioning for 1
2 < γ ≤ 3

4 ; this is because

video streams are still being blocked under partitioning in this regime, and so all

video streams receive their minimum subscription level. Once video streams are not

being blocked under partitioning, i.e., 3
4 ≤ γ ≤ 1, the video QoS is higher under

partitioning than under a two class architecture. This is because video QoS under

the two class architecture is still being sacrificed for higher audio QoS in this regime

due to the optimal volume discrimination policy.

In summary, the link designer may use Figures 6.3 and 6.4 to design how to

implement an adaptation policy to meet a combined target of low blocking and high

normalized subscription levels. If the link designer can afford to provision the link

above γ > 3
4 then a partitioning strategy obtains the maximum QoS for both audio

and video classes and has zero asymptotic blocking as well. If the link designer can

only afford to provision the link in the regime 1
2 ≤ γ ≤ 3

4 , then the link designer

might choose a two class architecture because obtains asymptotic zero blocking for

both audio and video and provides a strong QoS guarantee for video streams. If low

blocking is more important than offering a QoS guarantee and the link designer can

only afford to provision the link in the regime 1
4 ≤ γ ≤ 1

2 , then the link designer

might choose a single class link architecture.
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Chapter 7

Conclusion

This thesis presents a thorough theoretical analysis of system-level design issues for

optimally supporting rate adaptive multimedia streams on communication networks.

This chapter will summarize the important findings in each chapter and comment

on possible extensions.

7.1 Optimal adaptation

Our primary contributions with respect to adaptation policies are as follows.

• Network scaling. We have identified the appropriate network scaling through

which to study asymptotic network performance for rate adaptive streams. In

particular, the three scaling regimes, parameterized by the capacity scaling

parameter γ, suggests the rate adaptive regime, i.e., α ≤ γ ≤ 1, is the target

design regime. This is the target regime because the system experiences low

blocking and yet a marginal increase in capacity results in a marginal increase

in QoS.

• Optimal adaptation policy. We have identified the optimal adaptation policy

on a general network for both stored media and live media, i.e., πk and πu.
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We have shown that optimal adaptation requires the solution, at each time t,

of an integer programming problem.

• Two rate near-optimal adaptation policies. We have proved the existence of

near-optimal adaptation policies, i.e., π̃k and π̃u, which make use of only the

minimum and maximum subscription levels. This implies that, under opti-

mal adaptation, there is little benefit for content providers to offer additional

encodings at intermediate resolutions between the minimum and maximum.

• Asymptotic optimal QoS. We have shown that, for large capacity networks, the

integer programming problem yielding the optimal subscription level allocation

is equivalent to a nonlinear programming problem over a set of instantaneous

volume thresholds. For the case of stored media on a single link we are able to

identify closed form expressions for asymptotic QoS under optimal adaptation.

These expressions are the asymptotic rate-adaptive analog of Erlang’s blocking

probability equation for loss networks.

Although we are able to identify the optimal adaptation policy for live media

on a general network, we are unable to extend the analysis beyond this point. In

particular, it appears difficult to demonstrate that the optimal adaptation policy

for live media on large capacity networks is equivalent to the solution of a nonlinear

programming problem over a class of volume thresholds. Similarly, we are unable

to identify closed form expressions for asymptotic optimal QoS under the optimal

adaptation policy for live media.

7.2 Optimal admission control

Regarding admission control, our primary contributions are as follows.

• Optimal admission control policy. The primary contribution is the identifi-

cation of the optimal admission control policy as the solution to a nonlinear
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programming problem over a set of volume threshold vectors.

• Equivalent asymptotic QoS. The salient point about optimal admission con-

trol is that it achieves an asymptotic QoS equaling that obtained under opti-

mal dynamic adaptation. In particular, the asymptotic expected normalized

subscription levels are equivalent under optimal admission control and opti-

mal dynamic adaptation. Optimal admission control guarantees a zero rate of

adaptation, but at the expense of a blocking probability with slow convergence

to zero.

We have discussed some of the implementation issues surrounding optimal

admission control, i.e., link state, knowledge of system parameters and distributions,

and stationary traffic. A possible extension of this work would be to develop adaptive

admission control policies which are robust to errors in system parameter estimates

and function under a non-stationary traffic workload. Intuitively, we should be able

to identify online algorithms which monitor stream properties to obtain increasingly

accurate system parameter estimates, and which monitor network load to react to

traffic non-stationarities on multiple time scales.

7.3 Distributed algorithms

Our analysis of our proposed class of distributed volume dependent adaptation al-

gorithms suggests the following findings.

• Volume independent algorithms. Volume independent algorithms are in a sense

equivalent to the fair-share adaptation policy presented in Chapter 3 in that

they achieve a similar QoS.

• Volume dependent algorithms. Our proposed volume dependent algorithms

attempt to attain the increase in QoS seen under the optimal adaptation and
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admission policies by allowing small volume streams to more aggressively pur-

sue network capacity than large volume streams. Our simulation results sug-

gest that volume dependent algorithms may be a practical distributed solution

for rate adaptive multimedia streams.

The obvious extension of this work would be to implement the algorithms

for actual media streams on actual networks and test their performance. This will

be the subject of future work.

7.4 Multiple service classes

The motivation to investigate multiple service classes was that each of the previ-

ous chapters resulted in policies which discriminated against large volume streams.

Clients wishing to view such streams with a guaranteed minimum QoS of their

choosing might benefit from such service classes. The network might indeed offer

such services to recover costs, provided clients would be willing to pay for them.

Our primary findings include the following.

• Multi-class capacity scaling. We proposed a generalization of the single-class

capacity scaling of Chapter 3 appropriate for links offering multiple service

classes. As before, the rate adaptive regime is the primary regime of interest.

• Optimal multi-class adaptation policy. We have identified the optimal multi-

class adaptation policy on a single link as the solution to an integer program-

ming problem. We have also shown the existence of a near-optimal solution

which makes use of only two subscription levels. Finally, we developed a

closed form expression for the asymptotic QoS under the optimal multi-class

adaptation policy.

• Optimal admission control. We identified the optimal admission control policy

for links offering multiple service classes as a volume threshold policy, similar
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to that offered in Chapter 4. We have shown the asymptotic QoS under the

optimal multi-class admission policy equals that under the optimal multi-class

adaptation policy.

One obvious generalization here is to extend the multi-class analysis to a

general network and to develop the appropriate distributed algorithms. A second,

perhaps more interesting extension, is to study pricing mechanisms for the various

service classes to ensure clients properly self-select their appropriate service class.

This topic falls under the rubric of incentive and congestion pricing for information

services. It would be interesting to apply some of the results in this field to develop

a pricing mechanism appropriate for rate adaptive streaming media service classes.

7.5 Other applications of rate adaptation

Stated generally, the principle of rate adaptation is that a QoS target may be ob-

tained by selectively degrading the service quality of some clients in order to give

superior service to other clients. If the QoS target is to maximize the overall client

average QoS, then the principle of rate adaptation suggests selectively degrading

the service quality of clients consuming more network resources in order to give su-

perior service to clients consuming fewer network resources. One example of this is

the optimal adaptation policy which discriminates against large volume clients and

gives preference to small volume clients. A second example of this is the optimal

admission policy which sets a volume threshold inversely proportional to the route

cost, i.e., clients traversing multiple congested links are more likely to receive their

minimum subscription level than clients traversing a small number of uncongested

links. If the QoS target is to satisfy heterogeneous QoS requirements for different

client classes, then the principle of rate adaptation suggests selectively degrading

clients with strict QoS requirements by less than clients with less stringent QoS

requirements.
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This principle can be extended to other realistic communications scenarios.

One example is wireless communications where clients adjust their transmission

power in proportion to the distance to the next available base station or relay node.

Clients transmitting at a high power level in order to reach their desired relay node

might cause unacceptable interference levels for other clients located nearby. The

principle of rate adaptation suggests giving priority to clients capable of transmitting

at lower power levels, i.e., closer distances, in order to maximize the overall system

capacity.

Another example might be an ISP offering heterogeneous service guarantees

in the form of an inexpensive residential subscription level and a more expensive

business subscription level. The ISP might promise business customers strict prior-

ity over residential customers in that business customer streams are adapted only

after all residential customers have already been adapted. That is, the ISP selec-

tively degrades low priority residential customer streams before degrading business

customer streams.
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