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In this dissertation we study flow-baseddynamic routing schemes. We proposerouting

schemesto achieve goodnetwork level performancesuchasflow blocking rate, anduser

level performancesuchasflow throughput. Thedesign principle is to route a flow so that

we cansatisfy its Quality of Service(QoS)requirement, andminimize thenegative impact

of therouting ontheperformanceof currentandfutureflowsof thenetwork. To thisendwe

identify anumber of operatingregimesin which userdemands,network states,androuting

decisionsinteract.Weproposedifferentroutingmechanismsbased ontheuniqueproperties

of theoperatingregimes.

For thenetworks operatingin a regimein which link statesarehighly dynamic and

traffic demands arebursty, we proposea dynamic multi-path routing scheme to disperse

traffic betweena sourceanda destination. We investigatethecritical issue of how to select

thesetof leastcongestedpathsoverwhich to dispersetraffic, andexaminetheperformance

of this routing schemein a meshnetwork. The performanceof our dynamicmulti-path

routing scheme is quite robust with respect to various operating parameters and it offers

consistentperformanceimprovementover thebaselinesingle pathrouting scheme.
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We then study dynamic routing schemesin the networks where network states

evolve on a modesttimescale which allows a user to predict its performanceduring its

sojourn in the network. We model the link load dynamics andproposea routing scheme

that jointly consider thecurrent link load,theflow holding time, theaverage link loadand

meanreversion for the loaddynamics. This routing schemeis beneficial for a rangeof ap-

plicationswhereefficient fair-sharingof theexcessnetwork resourcescanimprovenetwork

anduserperformance. We show our routing scheme,designedto improve users’ average

performanceduring their sojourn in the network, indeed leads to an efficient fair useof

network resources.

We also investigate routing algorithms for providing failure protection. The ob-

jective is to efficiently provisionnetwork resourcesso thatwhencertainfailuresoccur we

canre-route the affected traffic with minimal service disruption. We observe that while a

protection path for a given failure is constrained sinceit hasto selectits detours around

thefailure, it cannonetheless share theprotectionresourceswith protection paths for other

failures.Weidentify a routing metricwhicheffectively capturesthesharingpotential in the

network. This routing metric andthe associatedrouting algorithms,areshown to provide

failure protectionwith significantly reducedresourceredundancy.
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Chapter 1

Intr oduction

In order to provide end-to-endquality of service (QoS) guaranteesto users, future net-

works arelikely to require enhancedtraffic control mechanisms. Indeed, the current best

effort service modelemployed in theInternet,though simpleandrobust, is not particularly

well-suited to addressend-to-endQoSrequirements. Instead,we believe that in order to

satisfactorily meetQoSdemandsit is essential to deploy awell-planned network control in-

frastructure includingrouting,congestioncontrol andpacket scheduling mechanisms.One

mightarguethatthebesteffort servicewill suffice if a largeamountof bandwidth is always

available,i.e., over-provisioned. However, we believe that theanticipatedonslaughtof the

traffic demands, possibly brought on by the popularization of broad-band accessservices,

e.g., ADSL andcablemodem,will soon fill upany bandwidthvoid. Moreover, evenif band-

width is abundant, theremight still exist aneed to differentiate thelevel of serviceprovided

to varioususers.This in turnsuggeststhattheimplementationof asystemof auxiliary traf-

fic control mechanisms,such astraffic classification andadvancedrouting schemes,will

become increasingly important. A prime exampleof the ongoing efforts in this direction

is MPLS[6], whoseemphasis on Traffic Engineering hascontributed to vigorousresearch

activity in theQoSdomain, e.g., Constraint-basedRouting[9].

In this dissertationwe focuson thedesign andperformanceevaluation of dynamic

routing strategies.Specifically, we notethatthehop-by-hoprouting mechanism,now ubiq-
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uitous in the Internet, is not an ideal choice for developing QoS-awarerouting algorithms

if the QoSguaranteeis to be ensuredon an end-to-endbasis.By contrast,source routing

might bebettersuited to select pathssatisfying such QoSrequests,but it requirestheavail-

ability anddistribution of a large amount of network stateinformation, possibly resulting

in scalability problems.Moreover, sincethestateof thenetwork is in constantflux, routers

may have to make routing decisions based on uncertain stateinformation. In particular,

futurerouting mechanismsmayusehierarchical aggregationof stateand/or topology infor-

mationto dealwith scalability issues,naturally resulting in a lossof accuracy. By thesame

token, routers may alsohave incompleteinformationconcerning the characteristicsof the

users’ traffic. Indeed,sincetraffic is oftenbestmodeled asa stochasticprocess,thereis a

highdegreeof uncertainty in specifying traffic via crudeparametric sourcemodelsandthen

translating these to anend-to-end QoSguarantee. In light of theseobservations,our goalis

to investigatesource routing schemesbased on uncertain network andsource information,

that aregeared toward providing QoSguarantees, or improving userexperience, by opti-

mizing theresourceusage amongcontendingflows. In thefollowing we identify a number

of network operating regimesthat mayarisein practiceandproposerouting solutions that

caterto thedistinct characteristics of these regimes.

DispersingHighly Dynamic Traffic. Let usfirst consider thecasewherethenetwork op-

eratesin a regime wherelink loads arehighly dynamic andhencethe link load dy-

namicsareessentially unpredictable. In particular, this might be causedby a large

number of bursty short flows“flying” throughthenetwork, i.e., they arriveanddepart

on a shorttimescale. In this casetheactual (versusavailable) link states encountered

by consecutive flow arrivals/routing requests might be quite different. Moreover,

since theseflows are processedin a distributed manner, in the sensethat they are

handled by different routerswithout a central controller to coordinatedecision pro-

cesses,theadvertisedlink stateswill tendto “synchronize” therouting of the traffic

flows, i.e., they will collectively arrive andthendepart agivensetof linksdepending
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on thespecific loadconfigurationin thenetwork. This further increasesthelink load

fluctuation whichmakesmaintaining upto datelink statesdifficult. A natural strategy

to combat thispathological condition is to userandomizationto “de-synchronize” the

routing decisionsat variousroutersin thenetwork. Specifically, we proposeto take

advantageof theinherentspatial-temporaldiversity in theunderlying traffic andnet-

work, anddispersethe traffic flows betweena source nodeanda destinationnode

through a setof properly selectedroutes. This would allow us to maximizethe uti-

lization of network resourceswhile minimizing the negative impact that traffic dis-

persion might have on the performanceof the traffic flows concurrently traversing

thenetwork, andthose thatwill arrive in the future. As discussedin thesequel, this

approachto routing leadsto aform of dynamicmulti-path routing. In thescenariowe

envisagethe flows arrive anddepart at a fastpace,so a sensible design objective is

to allow themaximumamount of traffic to getthrough,ratherthantrying to optimize

theperformanceperceivedby theindividual flows. As we will see,routing decisions

aimedat optimizing theabove objective mayor maynot coincidewith conventional

shortestpathrouting decisions.To effectively design suchadispersion-basedrouting

schemewe will addressthecritical issueof how to select thesetof paths over which

to perform traffic dispersion/routing.

Predictive routing to impr ove flow-perceived performance A unique opportunity exists

to improve theuser-perceivedQoSin thenetwork operating regimewherelink state

andtraffic flows both evolve at modest timescales. Unlike the previouscasewhere

the traffic flows arehighly dynamic and the link load dynamics areunpredictable,

in this casea certain level of knowledgeon the flow characteristics and network

dynamicscanbe usedto guiderouting mechanisms. It is possible in this regime to

improveuser-perceivedperformanceby estimatingwhatflowswill experienceduring

their sojourn in the network. Let us consider the following generic service model,

as it encompassesa numberof traffic classes in reality, e.g., ATM VBR[19] and

3



rate adaptive applications[58]: the incoming flow asksfor a minimum bandwidth

requirement from the network, if the network can satisfy the request, the flow is

admitted into the network andgoeson a route that is perceived of goodquality; if

there areno resourcesto satisfy theflow’s minimumbandwidth requeston theroute

selectedbasedon the availableinformation,theflow is rejected. Furthermore, after

admission into the network, if there areadditional resourcesavailable, the flow will

share resourceswith other ongoing flows. Hencethereare two objectives, (1) to

satisfy users’minimumQoSrequirementsand(2) if possible, to provide themwith

additional QoSbenefitfrom sharing available bandwidth. We believe that in most

cases the second objective complementsthe first objective. Thus a realistic goal

would be to admit asmany flows aspossible with their minimum QoSrequirement

andthenallow themto sharetheextra bandwidth to thebestpossible effect. In short,

agoodrouting schemeshould distinguishitself by realizinggooduser-perceivedQoS

without having to seriously compromise flow blocking rate.

Theperformanceof thenetwork operating in this regimewill dependonthechanging

link statesandthemannerin which routing mechanismsrespondto thesechanges.In

thisregime,link loadsfluctuateon“modest” timescales,i.e., flowsstayin thenetwork

on timescalescomparableto the link loaddynamics. This suggeststhatduring their

sojourn in thenetwork, flows would benefitfrom extra amountof bandwidth shared

with otherflows.Thusin thisregimeagoodrouting mechanismshould notonly allow

thenetwork to carrya largeamount of traffic volume,but alsoimprove theperceived

performancefor admittedflows. To achieve performancegoals in theserespectswe

needto effectively model the link load dynamics, andefficiently construct routing

metrics thatcantake advantageof theadditional information. More specifically, we

believe that in this regimeonemight expect link dynamicsto evolve in a predictable

fashion, that can be modeled to enhancerouting mechanisms. This allows us to

design routing schemesin a moreinformedmanner, usingthelink state information

4



suchas the meanload and the rate at which link loads reverse to their mean,in

addition to thetraditional notion of “currentload”. This informationcanbeextracted

by a parametric estimation technique and incorporated into the routing algorithms

by accounting for traffic characteristics, e.g., expectedflow holding times,andtheir

willingnessto adjust to theavailable network resource,i.e., elasticity.

Provisioning protection wavelength for failur e restorat ion A furtherchallengeariseswhen

weconsiderrouting mechanismsfor networksin whichemergenciessuchasfibercut

or switch malfunctionsmight occur. In this case the network should be able to re-

spond to theemergency in a promptmanner, with minimal degreeof service disrup-

tion inflicted on ongoing traffic. Usually, onecaneither employ a protectionscheme

or a restoration mechanism. Thedifferencelies in thetiming of therecoveryactions,

i.e., pre-provisioning or real-time response. In a protection scheme,the network

setsasideacertain amountof resource(e.g., wavelength,or MPLSlabel) for thepur-

poseof protectingongoingtraffic flowsandupon failureeventsthedisruptedtraffic is

switchedover to theprotectionresource.In arestorationscheme,noextraresourceis

setaside for recovery purposes,andif a failure occurs thenetwork hasto seekout an

alternatepathonthefly. In general, therestorationschemeis moreresource-efficient

but takes longer to recover from a failure, if there areenough resourcesin the net-

work at themomentof failure.By contrast, theprotectionschemeis moreresponsive

andguaranteesfailurerecovery, but often at thecostof additionalresourceconsump-

tion. Webelievetheoccurrenceof network failuresareessentially unpredictable, thus

the routing/protection design should aim at long-termevent horizonswherefailures

might eventually occur. The emphasis is therefore placed on provisioning sufficient

protection resourcesso that all possible failuresaresafelyprotected. Evidently, in

this design theprotectiontakes higherpriority, but it neednot excludeconsideration

of resourceefficiency. Sincebackup resourcesareunusedwhenthenetwork operates

without failures,they should beallocatedin a cost-effective mannerif it is possible.
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In reality, theprotection/restorationproblemis bothimportantanddifficult sinceone

hasto take into account a numberof complex factors whendevising an operational

strategy, e.g., number of optical ADM versusSONET ADM, traffic grooming,wave-

length conversioncapabilities(or thelack thereof), multi-layerprotection/restoration

coordinations. We take a first stepin this problem domainandproposean efficient

mechanismto provision therestoration bandwidth. Theideastemsfrom therealiza-

tion that the network failuresareinherently rareevents, thusthey arevery unlikely

to occurconcurrently. Hencetheprotection resourcescanbeshared amongpotential

failure events. Our main contribution lies in identifying a novel link metric, which

along with anassociatedrouting algorithm, realizesthebandwidth sharing potential

in theWDM networks in a dynamiconline routing context.

In the sequel we proposea numberof solutions/algorithms to addressthe above

challenges. Thesealgorithmssharesomecommonfeatures, i.e., they areall distributed,

approximateandonline. This contrastswith thecentralizedalgorithmscommonly used in

other optimizationproblems,e.g., network design andbandwidth provisioning. This is in

largepart dueto thedynamicnatureof theproblemwetackle, i.e., traffic flowsarriveandde-

part,andonly aggregatedlink statesareavailable, i.e., overall link loadsrather thandetailed

informationon per-flow route selection. In this case formulating andsolving a quasi-static

optimization problemswith detailed per-flow routing information becomeboth infeasible

andirrelevant. Moreover, we believe it is unrealistic to assumea consistentknowledgeof

the entire traffic matrix by the individual routers (or even by a central controller), not to

mention the exact sequenceof the arrivals. Undersuch circumstances, it makessenseto

design dynamic distributed online routing schemesthat closely approximatethe optimal

performancevalue. Furthermore, we observe that traffic demands areintrinsically hetero-

geneous,i.e., they have differentsource,destination, holding time, QoSrequirement, etc..

The effective approachesto alleviating this additional level of complexity include devel-

oping multi-service extensions to the lossnetwork framework usedto analyze telephone
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networks [25, 49, 62]. Nevertheless,new problemsarise whenone considersrouting in

networks whereguaranteed andbesteffort servicesshare resources[42]. Specifically, it

will beof interest to investigatehow theheterogeneity in thetraffic demandimpactsoverall

routingefficiency, e.g., flow blocking rate, and/or theperformanceexperiencedby different

classesof users,e.g., user’s achievedthroughput.

The dissertation is organizedasfoll ows. In Chapter2 we present a study of dy-

namic multi-path routing scheme addressinga network regime wheretraffic arrivals and

network statesarehighly dynamic. In Chapter 3 we study performanceof a single path

routing schemeutilizing expectedflow holding time,andtheestimatesof thelink loaddy-

namicswherelink load dynamicsoperateon modest timescalesenabling oneto optimize

theuser-perceivedQoS.In Chapter4 weexamineissuesinvolvedin provisioningprotection

bandwidth in theWDM networks andproposea solution to theproblem. We concludethe

dissertation in Chapter 5 discussingfutureresearchdirections.
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Chapter 2

Dynamic Multi-path Routing: Asymptotic Approximation and

Simulations

2.1 Intr oduction

As the Internet continuesgrowing andnew technologies emerge to meetthis growth, net-

working researchersare faced with the increasingly daunting task of controlling and/or

managing extraordinary amounts of traffic. Traditionally, network operatorshave relied

on buffers at network nodes and/or congestion control to dealwith fluctuations in traffic

loads. However, astraffic loadsbecomemorebursty, thesizeandthespeed of thebuffers in

the network arenot growing commensurately with the link speed, making buffering tech-

niques lesseffective. Moreover, although link speeds increasedramatically, propagation

delays stay roughly unaffected,calling into question the effectivenessof flow/congestion

control mechanisms. Indeed, to control the congestion inside the network, we have tradi-

tionally relied on end-to-endreactive flow control schemes, e.g., TCP[33] andRED[18].

Theseschemesrely on coordination amonglinks within the network and traffic sources

at the network edge. Links detect the congestion andsend back“congestion indications”

(e.g., drop/mark packets) to the traffic sourceswhich in turn respond by adjusting their

transmissions. However, in an operating regime with high bandwidth-delay product, i.e.,

transmissionratetimesthe roundtrip time from the ingressnodeto the egressnode,this

8



reactive approach is not effective. The problem is twofold: (1) sincethe link capacity is

huge, thetraffic in flight whena congestionsignal is generatedis enormoussothenetwork

mustbeableto buffer a largeamount of dataand(2) sinceaccessspeedsmaybevery high,

a traffic burst that inducescongestion mayfinish by thetime thetraffic source receivesthe

corresponding congestion indications. In both casesthe responseoccurs too late to effec-

tively avoid congestion. A similar phenomenonis observedin thedynamic routing context,

exemplifiedby the routing “synchronization” problem,wherelink updatesarelateandin-

effective in navigatingthetraffic flowsacrossacongestednetwork. An interestingquestion

thatstands out, is whether we canavoid network congestionwithout having to slow down

theuser’s transmissionrates.

In this chapter we focuson anoperatingregimein which traffic flows comeandgo

frequently within the timescale of link state advertisements. We view suchflows ashigh

speed transmissions, i.e., a sequenceof IP packets transmittedat a high rate, andfollowing

the samepath. As a result, network congestion in this context exhibits a relatively short

termdynamicsandcannot beeffectively controlled throughpersourcefeedbackschemes

like TCP. Insteadof slowing down usertransmissionrates to enable better congestioncon-

trol, we proposerouting schemesthatalleviatenetwork congestionwhile allowing users to

sendtraffic at their full accessrates. The ideais to dispersetraffic flows sharing thesame

ingress/egresspoints via multiple paths on thenetwork, in order to achieve statistical mul-

tiplexing of theflowsoveravailablenetwork resources[28]. This in itself is notanew idea,

andis part of a tradition of alternative routing anddispersionusedin somecircuit switched

networks [40, 52, 59, 55, 35, 22, 63].

Traffic dispersion, with its early origins in “dispersity routing”[46], hasbeenan

active researcharea.Dispersion at the packet, burst andflow/connection levels have been

considered, see[28] and the referencestherein. In particular, [46] originatedthe ideaof

packet-level dispersionin thecontext of store-and-forwarddatanetworks,andshowedthat

by spreading the traffic over two (or three)paths the average delay of a message is sig-

9



nificantly reduced. Dispersity routing at flow/connection level wasfurther adapted to the

ATM networks[47], whereit hasbeenshown to equalize traffic loadsandincreaseoverall

network utili zationfor shortflowswith durationsin thesameorderasthepropagation time

or less. This work alsopoints out thepossible benefitsof dispersingflows adaptively. The

combinationof these two issues, shortflowsandadaptivemulti-pathrouting, is thestarting

point for ourstudy. However, aspointedout in [28], theproblemof determining theoptimal

setof paths over which suchdispersionshould beperformed,remainsopen.

Somewhatakin to this problem,alternative routing andtrunk reservationhave been

studied extensively, seee.g., [40, 52, 59]. In thecontext of circuit-switchednetworks [22,

55, 35], a trade-off is sought between increasingrouting options andresource utilization.

Thismeansthatif theprimary (usually short)pathsexperiencecongestion, secondarypaths

will beusedto carrythetraffic load. However, secondarypathsareonly usedif they arenot

loadedbeyondacertain threshold, otherwisenew arrivalsareblocked.Thekey parameters,

theprimary/secondarypathsandthe threshold, aredifficult to optimize for generalnetwork

topologies.

Thischapterexaminesoneof thekey issuesthatneedsto beaddressedin dispersing

flows over multiple paths, i.e., how to (dynamically) selectthesetof candidateroutes over

which traffic flows will be dispersedbased on potentially outdatedlink stateinformation,

or evenadaptthis setto achievebetteroverall performance.Thiscontributesto theongoing

research efforts thatextend thefunctionality of theOSPF[65], MPLS[64], or Diffserv[60],

wheredeterministic[65, 64] or probabilistic[60] header processing (i.e., hashing) mecha-

nismshave beenproposedto facilitate the dispersion of traffic flows over multiple paths

from an ingress nodeto an egress node. Our study provides sensible routing decisions

based onwhichpacket-level hashingdecisionscanbeconstructed, i.e., thesetof pathsover

which thepacket flows aresent.By appropriate hashing operationspacketswith thesame

attributes(e.g., sourceaddress,destinationaddress,QoSrequirement)will form a flow that

traversesthesamepath.

10



Figure2.1: An abstractmodelof route selection.

In theensuing sectionswefirst considera simplemodelconsisting of parallel links

betweenan ingress-egressnodepair. The main result suggestsa simpleandrobust policy

to select a subset of candidatelinks over which to spread incoming traffic flows. We then

proposeandevaluate a dynamicmulti-path routing schemefor meshnetworks.

2.2 A stochasticparallel-lin k model

2.2.1 Problemsetup

In this section we studythe idealizedmodelshown in Figure2.1, wherea pair of ingress

andegressnodesareinterconnectedvia a setof � links, �����
	���
�������������� , eachhaving

thesamecapacity ������� , for ����� . Notice that theseparallel links canbeusedto model

either real links, or disjoint routes between an ingressnodeandan egressnode. Let � �"!
denote the flow arrival ratefrom node # to node $ . Without loss of generality we assume

eachflow transmitspacketsatafixedunit ratefor a random duration with mean%'&)( , along

theroute it is assigned.Theofferedloadassociatedwith node # andnode $ , is thus �*�+!-,.% .

Thetraffic loadon link �/�0� at time 1 , denotedby 2.�+341�5 , is thesumof thetotal numberof

flows currently routedacrossit. We let 62734185��9342 ( 34185:��2�;
34185:�������<��2�=>34185�5 . Theflow arrival

rateto link � is denotedby ?'� , i.e., thepartof total arrivalsbetweennode # andnode $ , i.e.,���+! , thatis routed to link � . As anapproximation, in thesequelweexaminethedynamicsof

the link loads via a fluid model. Theflow departure rateis proportional to thecurrent link
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load 2@�"34185 andis givenby 2��"34185��.% . We considera time scale of interest, 1 , that represents

the potential delays involved in updating link states. To model the fact that the routing

decisions aremadebasedon outdatedinformation, we assumetraffic arrivals during A BC��1+D
arerouted based on the link state 62�3 B
5 availableat time B . Undera routing schemewhich

results in a total traffic arrival rate ?E� to link � anddoes not leadto link overflows, the link

state2F�"341�5 tracksthefollowing differential equation,G2>�"34185H�I?��FJK2��"341857��%�� (2.1)

hence 2��"34185H�L2>�"3 B
5�M &@N.O>P ?��% 3�	QJ�M &@N.O 5:� (2.2)

where 2F�"3 B
5 is thestate of link � at thebeginning of the time interval A BC��1"D , and ?"� , i.e., the

routing/assignment of incoming traffic flows to link � , remains fixedover A BC��1+D .
We useanadditive network congestion measure, #�342734185�5Q�SR =�UT ( V 342��"34185�5 , whereV 342>�"34185�5 is anincreasingandconvex function of 2'�"341�5 , e.g.,

V 342>�"341�5�5/� (W &@X'Y[ZUO[\ . Our goalis

to find anallocationof incoming traffic flowswithin a time interval A BC��1+D to the � links such

that the increaseof the systemcongestionmeasure, i.e., #]342�341�5�5^J_#]342�3 B
5�5 , is minimized.

This is equivalent to minimizing the system congestion #]342�341�5�5 at time t. This choice is

intendedto simplify theanalysis,aswill beseenin thefollowing section. Eq.(2.1)captures

link load dynamics that may impact the routing decisions, i.e., the morelink � is loaded,

the fastertraffic flows departfrom it. Intuitively, this observation suggests2`�"341�5 may un-

derestimatethe available capacity on a heavily loaded link whenit comesto routing new

traffic demands. In particular, thecapability of a moreloaded link to accommodatetraffic

demands might befavorably “upgraded” sinceit is likely to seemoredeparting flows.

Given the current link states 6273 B
5 and the offered load �:�+! , one can in principle

determinetheoptimal routing thatminimizes system congestion. Our goal, however, is to

find a simpledynamicmulti-path routing policy. In particular, we focus on a form of least-

loaded routing schemewhereequal sharesof the traffic load arerouted on a out of the �
12



links1. The key problem is to determinean “optimal” a which is “robust” with respect to

a range of possible link loads, the intensity of the flow arrival process,andthe meanflow

holding time. In the sequel, we derive sucha solution by finding a a which on average is

“optimal” overarangeof possiblelink states. Wecall thisdynamicmulti-path routingsince

based on thenetwork statea links areselectedto dispersethetraffic.

Analysis

We let bc� , �d��	���
������������ , denote therandomloadson thelinks at time0. Weassumethat

they areindependent andidentically distributedwith a continuous distribution function e
andsupport set A BC�8�:D . Thesedistributionsmight beselectedto reflectthe typical operating

regimesof the system,e.g., typically lightly loaded or heavily loaded. Alternatively one

might select the prior distributions on the link loads to be uniformly distributed, so asto

achieve a robustsolution over a rangeof possible operating regimes. Note that in reality

a numberof factors impact e , e.g., traffic arrival rates, flow holding times, and routing

algorithm, thusour assumption on the random link loads may not be realistic in practice.

In particular, the link loads areneither identically distributed, nor independent. However,

our intent in introducing this simplifying assumption, is to enable analytical derivation of a

robust policy andin turn garner interestinginsightson dynamicmulti-path routing.

Sinceour policy involvesselecting the a least-loaded links, we will make useof

orderstatisticson link loads. Weuseb =ZUfg\ to denotethe h Ogi orderstatistic of the � link loads

at time0, thus b =Z[(+\ j b =Z ; \ j ����� j b =Z = \ . Welet �F�"!k�l�m�+� , so � is ameasureof theflow

arrival rate,normalizedby thenumberof options, i.e., � , over which routing decisionsare

to bemade.Supposeincoming traffic flows over a time interval A BC��1"D arespreadover the a
1We opt to focuson this scheme,dueto thesimplecyclical implementationit implies in a highly dynamic

environment, asopposed to, e.g., routing weightedsharesof traffic to different links, in which casea setof
weightshave to bedynamicallymaintained.
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links thataretheleast-loadedat time 0 , thentheresulting congestionincreaseisn = 3*a@5poU� qr f T ( A V 34b =ZUfg\ M &@N.O P �s�t�a 3�	�JuM &@N.O 5�5FJ V 34b =Zvfg\ 5"D P =rf T qEw ( A V 34b =Zvfg\ M &@N.O 5�J V 34b =ZUfg\ 5"Dyx
Thefirst sumon theright handsideaccountsfor thechange in thecongestion level for thea least-loadedlinks which sharetheincoming traffic flowsduring time interval A BC��1"D , while

thesecond termcorrespondsto thelinks which seeno additional load.

An “optimal” selection of a mightcorrespond to solving thefollowing minimization

problem: a � � argminq �-z{A n = 3*a@5"D}|�a~�K�
	���
���x�x�x.��������x (2.3)

Notethatfor agivensetof link loadsit is possiblethat a���L� , i.e., dispersingtraffic equally

everywhere might not be optimal. Moreover, problem (2.3) accounts for the dynamics of

the system, i.e., flow arrivalsand departures. As a result a moreaccurate estimatesof the

links’ traffic-accommodating capability areused. Finally, we take theexpectationsoasto

obtain a choiceof a that is optimal“on average”over a rangeof possible link loads.

However, asit standsproblem (2.3) is still quite difficult to solve. In the following

we consider an asymptotic regime, wherein the offered load �S��� and number of links� grow 2, i.e., we considera sequenceof networks with increasingrouting diversity and

carried load. We parameterize a as al� � �<�)� , hence � corresponds to the fraction of

(least-loaded)links over which thetraffic flows will bespread. Our goal is to find � which

minimizesthenormalizedaveragecongestion increaseas ����� , i.e.,���g����F��� (�� �g�=���� z�A n = 3'� �d�)�.5"D� x (2.4)

The following theorem establishes that (2.4) can be expressedin two equivalent

formsthatareamenable to analysis.Theproof is deferredto theappendix.
2Thisscalingmightcorrespondto thepracticalcontext whereadditionalwavelengthsareaddedto anoptical

fiber to increaseits total capacity. Eachof theseaddedwavelengths canbe thought of asanadditionallink in
our model.
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Theorem 2.2.1 Theproblemdefined in (2.4)canberewritten as���g����F��� ( � z{A V 34b��-M &@N-O P ��3�	QJ�M�&@N-O+5%<� 5:��b j e &)( 3*��5"D P z{A V 34b��-M &@N-O 5:��b���e &)( 3*��5"D��u� (2.5)

or equivalently, as���g����@�'� W � z�A V 34b �-M &@N.O P ��3�	QJ¡M�&@N.O`5%de�34¢£5 5:��b j ¢]D P z�A V 34b �-M &@N.O 5:��b¤��¢
D��~� (2.6)

where the optimal decision variables � �
and ¢ �

are related by � � �¥e�34¢ � 5 . Here e is a

continuous distribution on A BC�8�:D modeling thelink loads on theparallel-li nk network. ¦
Observe that the theorem suggeststhat it is asymptotically equivalent to usethe� � ��� least-loaded links or all the links with load lessthan ¢ � , where � �

and ¢ �
arethe

optimizersof problems(2.5) and(2.6), respectively. This follows by a simplechange of

variables.However, notethatin practicethesecorrespond to two different modesof routing,

i.e., routing on � � �'� least-loadedlinks vs. routing on a setof links whoseloads arebelow

a threshold ¢ �
.

Assuming the prior distributions of link loads are independent and uniform, the

optimal choices for � �
and ¢ �

canbe determined. The proof of the following fact canbe

found in theappendix.

Fact 2.2.1 Supposethe link loads are uniformly distributed on A BC�8�:D , thenthe minimizers

for (2.5)and(2.6)are respectively� � � ���g� � �%d� 3�	QJ§M &@N-O 5M &@N.O �'	t���
and ¢ � � ���g� � �F�% 3�	QJ�M &@N.O 5M &@N-O �8�.��x ¦
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Note that for uniformly distributed link loads, the optimal parameters � � and ¢ �
are not sensitive to the exact form of the system congestion measure

V
, it need only be

increasingandconvex.

Basedon Fact2.2.1we canmake a numberof interestingobservations.

Observations

As the traffic arrival rate � increases,or the meanflow holding time %�&)( decreases,or �
increasesfor a fixedofferedload ¨����>,.% , onedispersesthetraffic flows over a larger set

of paths. Henceasanengineering guideline,it makessenseto differentiatetheoperational

parametersat various network nodes with different typesof incoming traffic requests. In

particular, a network nodeshould actively route its connection requests over a large set

of paths if theserequestsaremostly short and arri ve frequently, or direct its connection

requeststo the least-loadedpathif theserequestsaremostly long andarri veinfrequently.

The intuition for theabove observation, lies in that thesystemcongestion measure#�342734185�5 is a symmetric sumof increasingconvex functions. This suggeststhat to approach

optimality oneshould routethetraffic flows sothat link loads at time 1 arebalanced.From

(2.2) we seethat whenif the flow departure rateis large the differencesin the initial link

loads should be “discounted” and we should “perceive” all link loads as approximately

“equal.” In this context thenatural routingdecision to make, in orderto bring thelink loads

at time 1 closeto eachother, is to spreadtheincoming traffic flowsover a largesetof links.

Supposeonescalestheoffered load ¨ (while keeping meanflow holding time % &)(
fixed) andlink capacity � in proportion, thenthe optimal fraction of links over which one

should route the traffic remainsunchanged. This suggeststhat in practice if we build up

thenetwork capacity andthetraffic loadgrows in proportion then � � and ¢ �
, i.e., therange

of paths over which we route traffic flows, remainfixed. On the other hand, we should

adjust therangeof multi-path routing mechanism if therateof capacity expansiondoesnot

matchthat of thetraffic growth. Morespecifically, onemightneedto modify theoperational
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Figure2.2: Theleast-loadedlinks usedto spreadtraffic: increasing total links.

parameters � �
and ¢ �

if user traffic outgrows thenetwork capacity.

Now supposethe time scaleof interest 1 grows, e.g., one hasto limit link state

advertisements. Notice that as 1 increasesthe impact of the initi al link load diminishes.

Intuitively, if this is the case,the optimal allocation is to spread the load evenly amonga

large setof links. This is verifiedby theresult in Fact2.2.1.

In practice,wemightnotonly have incompleteknowledgeof thelink statesbut also

of thearrival rate � . FromFact2.2.1weseethattheoptimalparameters� � and ¢ �
aresquare

root functions of � . This suggeststhat these optimal parametersarerelatively insensitive

to the exact valueof � asthe routing diversity increases,thusa reasonableestimate may

suffice.

Validation

In the previous section we obtained an asymptotic result concerning the number of links

over which to dispersetraffic, in a regime wherethe load and numberof links (disjoint

paths) grow in proportion. Herewe evaluate the quality of the result, in the casewhere

17



1 2 3 4 5 6 7 8 9
2

3

4

5

6

7

8

arrival rate

# 
of

 le
as

t l
oa

de
d 

lin
ks

 s
ha

rin
g 

lo
ad

s

Evaluation of the asymptotic result

Simulation
asymptotic    

Figure2.3: Theleast-loaded links usedto spreadtraffic: increasing arrival rates.� is small, or modest, via simulation. Suppose bª© Uniform A BC�'	�BtD , �_�¬« , 1­�®	 , and%��¯BCxg	 . We comparethenumberof least-loadedlinks thatwould beselectedbasedon the

asymptotic modelversusthe corresponding valuesobtainedby successively sampling the

link loadsandcomputing theaveragedoptimalnumberof linksoverwhich to dispersetraf-

fic. In Figure2.2we exhibit thecomparisonbetween theoretical/asymptotic andsimulated

average optimal choices,in termsof the optimal numberof least-loaded links over which

to route thetraffic flows. We observe thatthenumberof least-loaded links obtainedvia the

asymptotic formulais within 10%of theaverageobtainedvia simulation,wherethenumber

of links � ranges from 5 to 20. In Figure2.3 we evaluate the effectivenessof Fact 2.2.1.

Herewe fix thenumberof links �0�¯° , 1H��	 , %0�±BCxg	 , b f © Uniform A BC�'	�BtD , andincrease� from 1 to 9. The asymptotic prediction matchesits simulated counterpart to a satisfac-

tory degree. We concludethat the asymptotic result providesa reasonableapproximation

to select the a links over which to dispersetraffic flows.
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Realizing dynamic multi-path routing — thr eealternatives

In the previous sections we explored a dynamicmulti-path routing scheme, whereequal

shares of the traffic loadwereroutedover a dynamically selectedsetof network links. An

asymptotic analysison how to dynamically selectsuchlinks is capturedby (2.5)and(2.6).

We caninterpret the solutions to theseoptimizationproblemsassuggesting two different

schemes: routing over the a0�²� � � least-loaded paths (or shortestpaths, if we equatethe

length of a link to its load), or routing over all thepathsthathave a loadlessthan ¢ � .
The implementation of the first schemecorresponds to the classic a -shortestpath

algorithm[73]. We shallcall thefirst schemeDKSP, which is shortfor Dynamic a Shortest

Paths. Note that this schemespreadsthe traffic flows over a links/paths with potentially

different loads. This is in contrastwith the traditional least-loadedrouting scheme,where

onerandomly selectsa link only amongthose with leastload.

For the second scheme,notice that for a given parameter ¢ � and a particular set

of network loads theremay not be any candidatelinks with load lessthan ¢ � . To address

this problem,we consider two solutions that correspond to 1) a pre-determined link load

quantization mechanism, namedDQSP, which is short for Dynamic Quantized Shortest

Paths,and2) a dynamicthreshold mechanism, namedDTMP, which is shortfor Dynamic

Threshold Multi-Paths.

DQSPcan be interpreted as a link statequantization scheme. In particular, the

ingressnodes(or the links) quantize the link loadsbased on a threshold ¢ � , andtraffic is

routed over the links with the leastquantized load. Figure 2.4 illustratestwo scenarios

whereeach“ ³ ” indicatestheamount of loadonagivenlink, andthecircled linksarethose

overwhich traffic flowswill bespread basedon thethreshold ¢ � . It is evident thatby quan-

tizing the link load,we canincreasethenumberof links that are“equally” loaded. Notice

thatunder this schemeif there is no link with load lessthan ¢ � , we canuseall the links to

routethe traffic flows. This canbe refinedasfoll ows. Conditional uponall the link loads

exceeding ¢ �
, we canformulatea modifiedversion of the previous optimization problem,
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andrecursively obtainasequenceof quantization thresholds: 6¢ � ��34¢ �( ��¢ �; ����������¢ �= 5 , where¢ �( �L¢ � �¢ �f w ( �L¢ �f P¯´ µ�¶ Z W & �E·¸ \ ¶ Z[(�&F¹�º�»:¼*\N ¶ ¹�º�»:¼ � h���	���
�������������x
Theprocedureterminatesat theindex h where¢ f j � and ¢ f w (k½ � . With thesequantization

thresholdsin place,the ingressnodesimply examines thecurrent link loads andidentifies

thesetof links with the least quantizedload. Fig. 2.5 shows a multi-level link statequan-

tizer, wherewe illustratetwo loading conditions in which only thecircled links areused in

routing thetraffic load.

Our DTMP scheme,is aimedat addressingthepossible void of links with loadless

than ¢ �
based on a dynamic thresholdmechanism. Instead of routing traffic flows on all

links with load lessthan ¢ � we route the traffic over all the links that do not have a load

exceedingamultipleof theleast loadedone.Thatis, weuseall thelinks with load nomore

than 3�	 P � 5.� ���g� �-2��"3 B
5 , where2��"3 B
5 is theloadonlink � attime B and
�

is apositivescaling

factor. This guaranteesthatthereis at least onelink on which traffic canberouted,i.e., the

least-loaded link(s). In thesequel we showby simulation thattheDTMP schemeperforms

well against the other two schemes,especially in the operating regime wherethe number

of links � is modestand the arrival rate at the ingressnode is not accurately modeled,

e.g., it may vary. We might however expect theserouting schemesto be equivalentin the
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asymptotic regime consideredin Section2.2.1. By considering the associatedasymptotic

regimesonecanshow that
�

should beapproximatelysetto � � �8� . Specifically, wesaythe

two setsof links usedby DTMP andDKSPasymptotically “equivalent”, if the link loads

satisfy thefollowing condition,z{A b =Z¿¾ � · =-À \ D j 3�	 P � 57�.z�A b =Z[(+\ D j z{A b =Z¿¾ � · = w ( À \ Dyx
As thenumber of links � andtheofferedload �£� go to infinity Á ¾ ÂpÃÄÆÅ Ç · Ã:È É ÀÁ ¾ Â ÃÄvÊ É À goesto � � � , if

thelink loads areuniformly distributeda priori. Hencea�Ë¯� � � .

Table2.1: Theselection of
�F�

.% 1 � � �Ì� � � � �
via simulationBCxÍ
�Î BCxÍÎ 3.6 4.5BCxÍ
�Î 	�xÏB 5.4 6BCxg	 	�xÏB 8.4 9

Let us assessthe performanceachieved by setting
�t� �Ð� � ��� . Specifically, we

compare these valueswith the best
���

valueobtained via simulation, wherea collection

of possible values for
�@�

wasexamined andthat corresponding to the least flow blocking

ratewasidentified. Consider a network with 12 parallel links,eachwith capacity 20 units.

Traffic flows arrive according to a Poissonprocesswith rateequal to Î�B flows persecond.

The flow holding time is exponentially distributedwith mean% &)( andeach flow requests

oneunit of bandwidth. We assume a periodic link stateupdate mechanism with period 1 .
Table2.1 summarizes the comparison across a rangeof % and 1 values. In the simulation�7�

wasincrementedby 0.5eachstepin theprocessof searchingfor thebestvalue. It is fair

to conclude that asa simpleapproximation,
��� �Ñ� � �t� providesa crude,but reasonable

setting for
�Ò�

resulting in goodperformance.
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2.2.2 A comparisonof thr eedynamic multi-path routing schemes

In this section we present our simulations comparing theperformanceof the threerouting

schemesdiscussedabove. As a base case, we will usea routing schemethat routes traffic

to the least-loadedlink. Theperformancemetricwe use,is “% routedvolume”, that is the

percentageof thebandwidth demandthat is successfully routed. In thesequel we alsouse

“ % improvedroutedvolume”, which is definedas X�& �� �C	�B�B , where 2 is theperformance

achievedby our dynamic multi-path routing schemes,and ¢ is thatachievedby a dynamic

single-path scheme.In order to investigatetherobustnessof theproposedschemesto vary-

ing arrival rateswe will consider anoperational scenario wherethenetwork is designedto

carry traffic flows with a nominal arrival rate,but the actual flow arrival rate is different.

Note that the performanceof the routing schemesdepends on the parameters� � , ¢ �
and�7�

. Notethattheseparameters areall functionsof thenominal flow arrival rate � . Thuswe

wish to establish thesensitivity of the routing performanceto thenominal � , for the three

schemesproposedabove.

We first compare theperformanceof thethree routing schemes. We settheparam-

eters� �
, ¢ �

, and
�<�

basedonanominal flow arrival rateequal to 100flowspersec, andthe

actual flow arrival ratevary between40 to 120flows persec.FromFigure2.6 we observe

thatDTMPschemeexhibits themostsignificantperformanceimprovement oversingle path

least-loaded routing. In particular, the% improved routedvolumefor DTMP rangesfrom

7% to 136%, astheactual flow arrival rateincreases.

Next we examineanother casewherenetwork load was underestimated, i.e., we

set the parametersbasedon a nominal flow arrival rateequal to 10 flows per sec, andlet

the actual flow arrival ratevariesbetween40 and120 flows per sec. From Figure2.7 We

observe that in this casewith underestimated operational parameters, DTMP policy again

performs adequately, while other schemes seea significant performancedegradation. For

example, if we compare Figure2.6and2.7at arrival rate100flows persec,we seethatthe

performanceof DTMP remainsalmostunchanged while thoseof DKSPandDQSPdegrade
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Figure2.6: Performancecomparisonof therouting schemes:nominal load= 100.

significantly.

2.3 Dynamic multi-path routing in meshnetworks

2.3.1 From parallel links to meshnetworks: extending DTMP

In theprevioussectionweconsidered dynamicmulti-pathrouting problemfor asymmetric

parallel-link network. It is difficult to extendtheseresults to meshnetworks. Specifically,

theavailable routesbetweena pair of ingressandegressnodesarenot necessarily disjoint,

sothere maybeinteractions amongthetraffic loadson various routes. Moreover, thereare

usually multiple pairsof ingress andegressnodesthatmake independentrouting decisions

based onnetwork states,andthesedecisionsmaybesynchronized,whichin turnaggravates

congestionin thenetwork.

Let usconsiderrouting asetof traffic flowsonameshnetwork Ó}3 Ô��8�Õ5 with asetof

nodes Ô andasetof links � , sothatanadditivenetwork congestionmeasureis minimized.

Formally, supposewehavea setof ingress-egressnodepairs Ö , a setof availableroutes × ,
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Figure2.7: Performancecomparisonof therouting schemes:nominal load= 10.

anda B - 	 matrix Ø where Ø �yÙ �Ú	 if #��ÛÖ canbeservedby route Üu��× , and Ø �yÙ ��B
otherwise.Let #]34Ü
5 denote thesetof routes Ü thatserve flow # , i.e., Ø �"Ù ��	 . Moreover, let

usdefinea matrix Ý such that Ý<Þ Ù �ß	 if route Üu�S× passesthrough link à0�§� . Let us

model the network dynamics with a fluid approximation. Supposethe traffic flows arrive

with rate á � , themeanflow holding time %Ò&)( is setto 1, andeachflow transmitsatunit rate.

We definetherouting objective asfollows:���[�µ-â�ã Ù:ä�å r f ä�æ�ç X ¸�éè 34¢@5`$�¢
s.t. ØK�{�IáF�8Ýê�{�Ì2<�

where
V 342 f 5p��ë X ¸� è 34¢@5`$�¢ is a convex function of 2 f , á~�93¿á � ��#���Ö/5 is thevectorof the

flow arrival rates(or offeredloadin our setup), and 2s��342E�*�8���u�p5 is thevector of thelink

loads. Thesolution to this network flow problem canbecharacterizedasfollows:� Ù ½ Bíì r f ä.Ù è 342 f 5 j rf ä.Ù�î è 342 f 5:�`ï�Ü�ðÒ�ñ#]34Ü
5:x
i.e., only theshortestpathswherelink lengthsare è 342 f 5 , will carry positiveamountsof flow.

This is knownasaWardropequilibrium [36]. As aspecial case, if wewereto minimizethe
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network congestionmeasuregiven by J R �gätæ �gò�ó 3 �E�dJS2��¿5 , the link coston a link � with

capacity �8� becomes è 342£� 5��ô	-,C3 �E��JÛ2��¿5 , i.e., the inverseof the available bandwidth. In

latersectionswe will use 	-,C3 �`��J�2>�¿5 aslink metric.

The Wardropequilibri um suggeststhat oneshould routethe traffic in sucha way

thatonly the “shortest” pathscarry positive amounts of flow. However, this is meaningful

only in a static or quasi-static network scenario. In the highly dynamicenvironmentwe

consider in this study, wheretraffic flows arrive anddepart quickly(e.g., lessthanlink state

updating period), link loads often exhibit bursty changes, and the link stateinformation

usedto computethe“shortest” pathsis often outdated.Hencethe“perfect load-balancing”

suggestedby the Wardropequilibrium is neither practical nor achievable[66]. Insteadof

restricting ourselvesto shortestpathsaloneandtrying to adaptto theexactflow proportions,

weproposeto randomly routethetraffic flowsbetweenaningress-egressnodepair # , among

all the pathswith length no morethan 3�	 P � � 5H��� � , where � � is the length of the shortest

pathassociatedwith thenodepair # , and
�
� ½ B is a design parameter to bedetermined.

This approximation is similar to the DTMP scheme proposedfor the parallel-link

model. We will againuse“DTMP” to refer to this approximation schemefor meshnet-

works. Notice that in themeshnetwork setup, thesetof pathswhich areselectedmaynot

bedisjoint, hencesomelinks maybetraversedby several pathsusedfor routing thetraffic

betweenagiveningressandegressnode. Theloadon these linkscould“build up.” Thedy-

namicaspect of our scheme,i.e., choosingthepathswhoselength is within a certain range

of theshortestpathlength, helpsto avoid this build-upprocess,aslong asthedynamiclink

metrics, i.e., 	-,C3 ����J¡2��¿5 reflectthelink loadson thenetwork.

Notice that by letting the length of the pathsover which one dispersestraffic be

dependentupon the shortest path length � � , we achieve the following intuitive behavior:

if the network is lightly loaded, it is beneficial to consistently useonly the shortestpaths,

whoseunused capacity is high; if the network is more congested, it is advantageous to

spread the load over a larger setof pathsin order to accommodatethe incoming (bursty)
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Figure2.8: NSFtopology.

flows. In thenext section weexaminevariousaspectsof this routing schemevia simulation.

Basedon our simulationswe madethefollowing observations:

1. TheDTMP schemeoutperformsdynamic single-pathrouting, i.e., least-loadedrout-

ing (LLR).

2. In networks with “hot-spots” DTMP offers moresignificant performanceimprove-

mentthanin networks with “balanced” traffic, thusif suchhot spots ariseonemight

resort to DTMP to alleviatetheimpact of congestion.

3. If traffic flows arrival processesarebursty, DTMP providesa greaterperformance

gainover its single-path counterpart.

4. As theportion of co-located traffic, i.e., traffic between nodesthatareonehopaway

from eachother, increasestheperformancegains from using DTMP decrease.

5. In the network wherelink stateupdatesarerelatively slow ascompared to flow ar-

rivals/departures, DTMP offers significantperformanceimprovement.

6. As we scaleup the capacity of the network, the useof a DTMP schemeis more

importantasit offers greater performancegains.
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Table2.2: Thetraffic matrix.
ingressnode egressnode hopdistance arrival rate

0 16 4 10
1 17 3 10
4 13 4 10
5 14 4 10
8 10 3 10

2.3.2 Simulation setup

Wepresentasetof results for thenetwork shown in Figure2.8. In thesimulation, theflows

arrive to thenetwork according to a Poisson process,andtheflow holding timesarePareto

distributed. The ingressandthe egress nodesof the flows areselectedaccording to Table

2.2, which aresetup to modela typical WAN traffic pattern, i.e., the ingressandegress

nodesof a flow areat least threehopsaway from eachother. In thesequel wewill examine

theeffectof thissetup, andevaluatetheimpactof the“co-located” ingressandegressnodes,

i.e., within two hopsor less. The parametersfor the simulation weresetasfollows: link

capacity is 
�Î units, meanflow holding time is 1 unit, andthe bandwidth requestof each

flow is uniformly distributed betweenBCxÍÎ and 	�xÍÎ units. This is referredto asthebasecase.

We increasethe traffic load by scaling the arrival ratesof the basecaseby a sequenceof

numbers, shown on the horizontal axis, seeFigure 2.9. Unlessexplicitly stated, we use

dynamic link metric 	-,C3 ���)J�2��"34185�5 , andtherouters exchange link states periodically, with

anupdating period of 0.1unit.

2.3.3 Performanceevaluation

We first compare our DTMP with dynamicsingle pathrouting. Theperformanceimprove-

mentof theDTMPschemeis evident from Figure2.9.Specifically, therelativeperformance

improvement ranges from 5% to 13%,asthetraffic loadgrows.

In the above simulation
�@�

wasset to 1.6. In general, it is hard to pin-point the

best
�<�

. It dependson network topology, traffic demands,aswell asvarious timing factors
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Figure2.9: DTMP vs. singlepath.

involved in the network, e.g., flow arrival rate,flow holding time, andlink stateupdating

period. Our experience,however, suggeststhat DTMP’s performanceis quite robust to

the choice of
�>�

. For the set of simulations we conducted it was observed that in the

interval BCxÍ
 j �)� j®õ xÍ
 DTMP outperforms single-pathrouting. However we did see

the performancedegradation caused by excessive multi-path routing, in the caseswhere� � ½ õ xÍ
 . We conjecturethat in practice it is relatively easyto tune
� �

to achieve good

overall performance.

From theseexperimentswe concludethat this simpledynamic multi-pathrouting

schemeworkswell to improve performanceover the traditional dynamic single-pathrout-

ing. Theperformanceof theproposedschemeis relatively robust to thechoiceof parameter�7�
. However, we note that oneshould not beoverly aggressive in setting a high valuefor

this parameter.

To further evaluate the effectivenessof the DTMP scheme,we vary the flow ar-

rivals to the network so that certain “hot-spots” arepresent. Specifically, we increasethe

arrival rate from Node 1 to Node 17 to 30 flows per time unit, and decreasethe arrival
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Figure2.10: Theeffectof thehot-spot traffic.

ratesto otherpairsof ingress-egress nodes to 5 flows per time unit. Figure2.10compares

the performancegain, i.e., the improvementof the performanceachieved by DTMP over

the single-pathrouting, with or without the “hot-spot” traffic. A moresignificant perfor-

manceimprovement (12-21%) is evident when“hot-spots” arepresent,ascompared with

thecasewithout “hot-spot” traffic(5-13%). Hencewe maintain thatDTMP is conducive to

alleviatingtheimpactof the“uneven” network loads.

As observed in practice, even traffic flow arrivals themselvesmay be bursty, e.g.,

High

Low
Mean

2*MMPP_TIME

Figure2.11: Markov ModulatedPoissonProcess
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the accessto CNN web site before andafter a major news event. We believe that in such

an operational scenario, DTMP can deliver more significant performanceimprovements

over its dynamicsingle-pathcounterpart. In theprevioussimulationswe modeledtheflow

arrivals by a Poisson process,which is generally considereda “smooth” random process.

To modelbursty flow arrivals, we usedthe Markov Modulated PoissonProcess (MMPP)

illustratedin Figure2.11. Therearetwo “modulating” states, “high” and“low”. In each

statetraffic flows arrive asa Poissonprocess.We will considertwo MMPPswith different

flow arrival ratesin the“high” state. For thefirst, theflow arrival ratein the“high” stateis

3 timesthemeangivenin Table2.2. For thesecond,theflow arrival ratein the“high” state

is 1.5 timesthemeangivenin Table2.2. In the“low” state, thetraffic flowsarrivewith rate

1/3 of the meangiven in Table2.2, for both MMPPs. In addition to the ratesassociated

with the“high” and“low” states, theMMPPsarealsocharacterizedby theaverageholding

time at “high” and“low” states. For the first MMPP, we set the average holding time at

“high” stateand“low” stateto be BCxÍÎm� MMPP TIME and 	�xÍÎm� MMPP TIME, respectively,

whereMMPP TIME is ascaling variablewhichwevaryfrom 10to 90units. For thesecond

MMPP, we settheaverageholding time at bothmodulatingstates to beMMPP TIME.

In Fig. 2.12we illustratetheperformanceimprovementachievedwhensuch bursty

arrival processesare present. It is evident that the DTMP schemeis more effective in

a network supporting bursty arrivals processes. In addition, notethat whenMMPP TIME

equals to 50unitstheperformancegainsarethehighest. Thissuggestsanoptimaltimescale

for which DTMP is mosteffective. The intuition is asfollows: whentheMMPP TIME is

small, the “high” and “low” states alternatefrequently relative to the link stateupdates,

hence therouting decisions thathave to bemadein the“high” state by thedynamic single

pathrouting scheme“averagedout” with those in the“low” state.If MMPP TIME is large

the network statesget updated often enough to track changesin the traffic. The “criti cal”

time scale,however, is the one wherea burst of flows arrive in the “high” stateand the

updates are not quite frequent enough for the single path routing schemeto track such
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changes.At this “critical” time scale DTMP providesthemostperformanceimprovement

over singlepath routing scheme.

Next let us examine the impact on network performanceof traffic locality with

respect to the ingressandegress nodes. Thetraffic arrival pattern in theabove simulations

roughly models a WAN. Onemight askwhat happensif a significant amountof traffic is

betweennetwork nodesthatare“co-located”, i.e., havingdirect links to eachother?Notice

that in thetopology under consideration, thecloser theingressandegressnodes,thefewer

paths thereare that have similar characteristics in termsof hop count. Intuitively, this

implies thatwe have fewer optionsover which to support theproposedmulti-pathrouting

scheme. Hencewe should seea decreasein the performanceimprovement achieved by

DTMP over its single-path counterpart. To verify this intuition, we introduceadditional

traffic betweenNodes6 and16,andalsobetween Nodes7 and11,each with rate10 flows

perunit, while decreasingtheflow arrival ratesassociatedwith theother nodepairs in Table

2.2 to 6 flows perunit. This is donesothat thetotal flow arrival rateto thenetwork is kept

to be50 flowsperunit. Theresults in Fig. 2.13support this insight.

The performanceof the DTMP routing scheme depends on the quality of the set

of pathsover which dispersion will take place. The quality of a path is captured by its

length, which in turn dependson timely link metrics.In our next simulation weconsidered

how often updateswould be generated,namely“slow-updates” and“f ast-updates”. 3 By

“slow-updates” we refer to an operating regime wherelink metricsare updated every 1

time unit, and by “f ast-updates” we refer to an operating regime wherelink metricsare

updated every 0.1 time units. This distinction in link stateupdating ratemay correspond

to networks with differentgeographical coverage,i.e., long versusshort-haulnetworks, or

simply limitationson signaling overheads.As seenin Figure2.14,for “slow-updates” the

performanceimprovement is moresignificant. The reason is that for “slow-updates”, the

unevennessand/or buildupin network loadsaremorepronounced in thesingle-path routing
3We areusinga simpleperiodicupdatingscheme.Othermechanismsexist anda comparisonstudycanbe

foundin [3].
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Figure2.14: Theimpactof thelink stateupdateperiod.

scheme dueto the longer delay in link stateupdate. Henceour DTMP schemealleviates

theimpactof delaysin distributing link state information.

Finally we examinedthe impact on the routing performanceas the capacity of

the network is increased. Let us denote the network usedin the previousdiscussions by

NET-SMALL , and construct a new network, NET-BIG, that has the sametopology as

NET-SMALL but 100 times the link capacity. In order to derive a meaningful compari-

son,we scaledtheflow arrival ratesto NET-BIG to be250timesthoseof NET-SMALL. A

comparisonof theperformanceimprovementsachievedby DTMP is shown in Figure2.15.

Weobservethatperformanceimprovementbroughtabout by theDTMPmechanism

aremoresignificantin thenetwork with largecapacity. Thereason is thatwith delaysin link

updating, single-pathrouting is somewhat oblivious to the network load condition, which

leadsto poorloadbalancingonthenetwork. Thekey point is thatsuchimbalancesaremore

pronounced in thelarge capacity network anda multi-pathrouting schemelike oursis able

to alleviatethis problem moresubstantially.

Note that in the above simulationswe optedto linearly scalethe flow arrival rate
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andthenetwork capacity. To furthergeneralizethis result, wealsoexperimentedwith other

scaling schemes. In particular, we scaledthe flow arrival ratesso that in both networks

dynamicsingle-path routingschemeachievedroughly thesameperformance.Wecompared

theperformanceimprovement attainedby DTMPschemesonthesetwo networksandfound

thatin networkswith largerarrival rateandlink capacity theDTMP schemeagainachieved

a moresignificant performanceimprovementover dynamicsingle-path routing scheme.

2.4 Summary and discussion

In this chapter we studied dynamic multi-path routing. We formulateda stochasticopti-

mization problem for a parallel-link network model. We analyzeda setof routing policies

intendedto optimally select thelinksoverwhich to dispersetraffic flows. For anasymptotic

regimeweexhibitedanassociatedoptimizationproblemwhichpermitsaclosed-form anal-

ysis. Theseresults provide a numberof insights addressingthe interaction amongtraffic

arrivals, flow holding time, link capacity, andnetwork updating time scales. In particular,
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we identified a robust dynamic multi-path routing scheme,i.e., the DTMP scheme,that

performswell in various network environments.

We then extend the findings to networks with meshtopologies. We adapted the

DTMP scheme in this context andconductedextensive simulations to examineits perfor-

mance,including theimpactof thelink stateupdating rate, burstinessin traffic arrivals,and

variousissues concerningtraffic loaddistribution. Basedon our simulationswebelieve we

have identified a robust dynamicmulti-pathrouting schemethatcanbeusedto effectively

route/dispersetraffic in high speed networks.

2.5 Appendix

2.5.1 Proof of Theorem 1

To proveTheorem2.2.1,wewill usethefoll owing three lemmas.

Lemma 2.5.1 Supposeb ( ��b�;�������� are iid uniform randomvariablesontheinterval [0,1].

Let b =Z+ö = �t÷ \ be the �¿�<�d� order statistic basedon the first � random variablesin the se-

quence. Thenb =Z+ö = �t÷ \�ø�ù � ùJ���� .

Proof: By definition,b =Z+ö = �t÷ \ ø'ù � ùJ���� if f ú�3+�'ûü�ñýí| � �g�=���� b =Z`ö = �t÷ \ 34û^5/�¯���t5/��	�x
Now b =Z`ö = �t÷ \ 34û^5/��� if ï)þ ½ B , ÿ�� ½ B , suchthat ï�� ½ � , �cJ~þ j b =Z`ö = �t÷ \ 34û^5 j � P þ .
Notethatb =Z`ö = �t÷ \ 34û^5 j � P þ���ì =r f T ( 	t�'b f 34û^5 j � P þE�í�¥�¿�<�d����ì 	� � =r f T ( 	t�'b f 34û^5 j � P þE� � �¿�<�d�� x
By theStrongLaw of LargeNumbers,

� �g�=��­� 	� � =r f T ( 	t�'b f 34û^5 j � P þE�ê�¯� P þQ�ü�K� � �g�=���� �¿�<�<�� �
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so ÿ�� ( �`ï�� ½ � ( ��b =Z+ö = �t÷ \ 34û^5 j � P þ'�`ï�û�x
Similarly, ÿ��s;t�`ï�� ½ �u;.��b =Z`ö = �t÷ \ 34û^5{�9�SJLþ��`ï�û . Whenceb =Z`ö = �t÷ \ 34û^5c� �/�`ï�û andb =Z`ö = �t÷ \ ø'ù �J>��� . ¦
Lemma 2.5.2 If b ( ��b�;�������� are iid randomvariableswith distribution function e , wheree is continuous and has a finite support A BC�8�:D , then the order statistics are such thatb =Z`ö = �t÷ \�ø'ù � ùJ>�¤ec&)(.3*��5 .
Proof: Since bª©ße�342Ò5 , e�34b�5c©��c3 BC�'	-5 . By the continuity assumption, we have thatï)þ ½ BC� ÿ@þ ð ½ B , ú�3+�'ûI�ñý­| � �g�=���� b =Z+ö = �t÷ \ 34û^5H� � �g�=���� e &)( 3*��5�Ìú�3+�'ûü�ñý­| � �g�=���� e�34b =Z`ö = �t÷ \ 5E34û^5^�Ì�75^��	�x
Thelaststepfoll owsfrom thefactthat e is increasing, thus e�34b =ZUfg\ 5 is the h -th orderstatistic

of a uniformly distributedrandom variable e�34b�5 . By definition we obtain almost surely

convergence. ¦
Lemma 2.5.3 For thecontinuousfunction

V
, if bô©Ìe , then � �g� =��­� (= � R ö = �t÷f T ( V 34b =ZUfg\ 5��z{A V 34b�57�]	t�'b j e}&)(.3*�75���Dyx

Proof: 	� � ö = �t÷r f T ( V 34b =ZUfg\ 5�� 	� =r f T ( V 34b f 5�	t�'b f j b =Z+ö = �t÷ \ ��x
Since b =Z`ö = �t÷ \¡ø'ù �J>�¤ec&)(-3*�75 , we have

� �g�=���� 	� � =r f T ( V 34b f 5��
	t�'b f j b =Z+ö = �t÷ \ � ø'ù � ù� � �g�=���� 	� =r f T ( V 34b f 57��	t�'b f j e &)( 3*��5��� z�A V 34bK57�
	t�'b j e &)( 3*��5���Dy�
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by thelaw of largenumbers. ¦
Proof of Theorem 2.2.1: By Lemma2.5.3,we have���[����F��� ( � � �g�=��­� 	� �'z�A ö � = ÷r f T ( A V 34b =ZUfg\ M &@N-O�P ��<% 3�	kJ¡M &@N-O 5�5�J V 34b =ZUfg\ 5"D P =rf T ö � = ÷ w ( A V 34b =Zvfg\ M &@N-O 57J V 34b =Zvf \ 5"D D*�� ���[����F��� ( �-z�A V 34bÐ�-M &@N.O>P �%<� 3�	QJ�M &@N-O 5�5�	t�-B j b j e &)( 3*��5���D P z�A V 34b �.M &@N.O 5�	t�]34b¤�üe &)( 3*�75���DJ z�A V 34bK5�	t�]3 B j b j e &)( 3*��5���D>J¡z{A V 34b�5�	t�'b���e &)( 3*��5���D*���� ���[����F��� ( �-z�A V 34bÐ�-M &@N.O P �%<� 3�	QJ�M &@N-O 5�5�	t�-B j b j e &)( 3*��5���D P z�A V 34b �.M &@N.O 5�	t�'b¤�üe &)( 3*�75���DJ z�A V 34bK5�	t�]3 B j b j e &)( 3*��5���D>J¡z{A V 34b�5�	t�'b���e &)( 3*��5���D*���� ���[����F��� ( �-z�A V 34bÐ�-M &@N.O P �%<� 3�	QJ�M &@N-O 5�5�	t�-B j b j e &)( 3*��5���D P z�A V 34b �.M &@N.O 5�	t�'b¤�üe &)( 3*�75���DJ z�A V 34bK5"D*���
which is equivalentto���g����F��� ( z�A V 34bÑ��M &@N.O P �%<� 3�	7J~M &@N-O 5�5:�8B j b j e &)( 3*�75"D P z�A V 34b9��M &@N-O 5:��b ��e &)( 3*�75"D
By a changeof variable, ���Ìe�34¢@5 , we have that(2.5.1)is equivalent to���g����@�-� W z�A V 34b �-M &@N.O P �%de�34¢@5 3�	QJ�M &@N-O 5�5:�8B j b j ¢]D P z{A V 34b��-M &@N-O 5:��b¤�_¢]D ¦
2.5.2 Proof of Fact 1

Proof: If b®© Uniform A BC�8�:D , thefirst order optimality condition for (2.6) is givenby:V 34¢£M &@N.O P �F�%)¢ �[3�	�J M &@N-O 5�5�J V 34¢CM &@N-O 5H� �@�Õ�]3�	QJ§M�&@N-O+5¢ ; �'%s�-M &@N-O �[A V 34¢£M &@N.O P �F�%)¢ �[3�	�JkM &@N.O 5�5�J V 3 �F�%)¢ �[3�	�JkM &@N.O 5�5"Dyx
Let ���¯M &@N-O and �­� µ WN �
3�	QJ�M &@N-O 5 , thenwecanwrite this condition asV 3	��¢ P �¢ 5�J V 3	��¢£5�� ��]¢ ; �]A V 3	��¢ P �¢ 57J V 3 �¢ 5"Dy�
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or equivalently, V 3	�]¢ P�
� 57J V 3	�]¢@5
� � V 3	��¢ P�
� 57J V 3 
� 5��¢ � (2.7)

sincewe assume
V

is convex it foll ows that there exists a unique solution ¢ w to (2.7) and��¢ w � 
�
� , or equivalently, ¢ w � ´ 
� .

Now the optimizer ¢ �
is either the stationary point ¢ w or a boundary point 0 or � .

Notethat z{A V 34b��-M &@N-O>P �F�%)¢ 3�	QJ�M &@N-O 5:�8B j b j ¢@5"DÒ���
as ¢��¤B , so ¢ � � ���g� �'¢ w �8�.� and � � �Ì¢ � ,t� . ¦
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Chapter 3

PredictiveRouting To EnhanceQoSFor Stream-basedFlows

Sharing ExcessBandwidth

3.1 Intr oduction

We investigate routing mechanismsfor stream-basedtraffic flows. The traffic andservice

modelwe considercanbe summarized asfollows: upon arrival to the network the traffic

flows require a minimal level of guaranteedservice,e.g., in termsof a minimal bandwidth

guarantee. The flow is admittedif there are sufficient resourcesto do so along the se-

lected route, otherwise the flow is rejected. After admission into the network, the flows1

may achieve improved performanceby sharing network resourceswhich arenot in useto

guaranteeservice for ongoing flows. In general,theperformanceachievedby a givenflow

dependson the resourceallocationpolicy at the flow level andthe packet scheduling pol-

icy. At the flow level, the shared resourcesareallocatedto ongoing flows based on the

resourcesharing policiesemployedin thenetwork, e.g., TCP[33]or max-minsharing[11].

At the packet level, the packet scheduling policy determinesthe packet service ratefor a

givenflow in accordancewith theflow level resourceallocations. In this chapter we focus

on analyzing routing schemesthat improve the overall network performanceat the flow

level. We believe suchimprovementsin flow level performance,coupled with a suitable
1In this chapterwereferto traffic flows andtheir associatedusersinterchangeably.
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work-conserving scheduling policy, canleadto better user-perceivedQoS.

For a givenresourcesharing policy, theperformanceachievedby a givenflow dur-

ing its sojourn in thenetwork dependsonanumberof factors including thenumberof flows

in the network, the resourcesavailable for sharing, andthe setof links traversed by these

flows, i.e., their routes. This motivatesus to investigaterouting mechanismsthat not only

optimizesystemmetricssuchastheflowblockingrate, but alsoenhancetheuser-perceived

performanceto the individual flows. Prominent service classesthat fit in this generic ser-

vice modelincludeATM VBR service[19] andrateadaptive applications[58]. Specifically,

ATM VBR connectionswould requesta level of QoS,e.g., cell lossrate, uponarrival to the

network. TheCall Admission Control (CAC) mechanismemployedby thenetwork might

thentranslatethis user-centric QoSspecification into anestimateof theresourcesrequired

to satisfy the userQoSdemand, e.g., effective bandwidth[37]. Given an estimatefor the

effective bandwidth the network decidesto admit or rejectconnections. Note that from a

user’sperspective, it is beneficial to route theadmittedVBR connectionsonapathwith ad-

ditional spareresources, sothattheinaccuraciesin theestimatesof theeffectivebandwidth

canbebettertolerated.In thecaseof rateadaptive applications,traffic flowsarriving to the

network aregivena minimal bandwidth guarantee, andexpectvariable transmission rates,

i.e., whenthe load is lower (higher), the flows adapt to higher (lower) transmissionrates,

possibly by subscribing (unsubscribing) to additional service layers [48]. In this casethe

excess bandwidth seenby theflows might beusedto support lower priority layers. These

observations suggest that it might be beneficial to route these flows so asto minimize the

average load a flow is likely to seeduring its sojourn in the network.2 We shall refer to

theaverage loadseenby a flow astheflow-perceivedload, andsetout to design a routing

scheme that aims at improving this performancemeasure, in addition to minimizing the

flow blocking rate.

To achieve this goal,we considerrouting schemesthat useprior knowledgeof the
2Equivalently, we might attemptto maximizetheaverageavailablebandwidtha flow is likely to seeduring

its sojournin thenetwork.
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flow holding time. For example, theholding time might beknownor characterizedvia its

meanor distribution. We proposeto modelthe link loaddynamicsasa meansto estimate

the expected flow-perceived load on the network links. As in [8], wherea call admission

control scheme is studied, we will usethe queuing-theoretic results in [43] to proposea

parametric model for the link load dynamics. In our routing framework, links estimate

andadvertise the parametersassociatedwith their loads in addition to their current states.

New flowsarerouted basedon this information andprior knowledgeof their holding times

so asto minimize the expected flow-perceived load. We will show that even with limited

informationon flow holding times,e.g., their means,onecanoften improve both the flow

blocking rateandflow-perceivedload3 simultaneously. Consideringthattheimprovedflow

blocking rateimpliesanincreasein theloadsupportedby thenetwork, it is remarkablethat

onecanalsoachieve better performancein termsof flow-perceived load, and thusbetter

eventual QoS.To substantiate this claim, we will show that in a network whereavailable

bandwidth is shared in fair fashion, a significant increasein a flow’s bandwidth sharecan

berealized whenusingour routing approachversustwo baselineschemes.

In order to study the effectivenessof our approach, we examined various opera-

tional issuesby simulations. We believe theproposedrouting schemeoperateseffectively

in a wide range of contexts, and its performanceis robust to various uncertainties in the

network’s operatingenvironments.

3.1.1 Relatedwork

As mentionedabove, in this chapter we proposea routing schemethat routestraffic flows

based on both link load dynamics andprior knowledgeon flow holding time. We will use

an auto-regressive processto model the link load dynamics, and estimate its parameters

based on load samples. The key ideais to integrate such informationin the notion of the

expectedflow-perceivedload, androutethe traffic flows so that theexpected load seenby
3Theflow-perceivedloadis measuredby averagingindividual flows’s perceivedloadover all flows thatare

servedby thenetwork.
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flows during their sojourn in the network is minimized. Our work contributesto ongoing

research on routing QoStraffic andwork considering therole thatprior knowledgeof flow

holding timesmight play.

Specifically, in [53] a number of competitive routing algorithms arepresentedfor

ATM networks. The results indicate that one can design online routing algorithms to

achieve different degrees of competitivenesswith respect to the optimal offline algorithm,

depending on the assumptions madeconcerning prior knowledge of connection holding

times. Ratherthan focusing on designing a good routing schemerelative to the worst

casearrival process,in this chapter we optimistically assumethat link loadsfoll ow quasi-

stationarystochasticdynamics.

In [57], a routing scheme is proposedwhich provides differentiated handling of

short versus long-livedflows. Datapacketsarerouted on staticshortestpaths, until a flow

classifier is triggeredto switchtheflow routing based on a dynamic algorithm that is load-

sensitive. Our work differs from [57] in that we usedynamic routing for all the traffic

flows,but thedifferentiation is donethroughtheuseof differentroutingmetricsfor different

flows. Instead of relying on a flow classification trigger asin [57], our schemeexplicitly

determinesper-flow routing behavior by integrating into the routing decision the (mean)

flow holding time andtheestimated parameterscharacterizing link loaddynamics.

In [42] anumberof routing algorithmsareexaminedin anetwork wherebandwidth

is shared amongbesteffort traffic flows according to the max-minfair criterion. The au-

thorsproposearouting metricwhichapproximatelyestimatesthemax-minratefor thenew

connectionupon arrival. Theresulting shortest pathalgorithm outperforms minimumhop

routing andshortest-widestpathrouting in termsof packet throughput. Our work differs

from [42] in severalaspects: (1) wefocuson improving theperformance(i.e., blocking and

flow bandwidth share) of stream-based flowsinsteadof max-minrateshareof thebest-effort

file transfers;(2) we usea link stateinformation that scalesbetterthanthat usedin [42],

whereeachlink needs to maintaina sufficient number of “rate scales” in order to obtain
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an adequateestimate for the rateshare of the new connection, and(3) we believe that the

notion of expectedflow-perceived load effectively capturesthe resource-sharing potential

in a network, thusrouting schemes incorporating this notion will apply to other resource

sharing criteriasuchasproportional fair share[23, 45] andsize-basedsharing[72].

More generally, therehasbeenextensive study of dynamic routing, e.g., on its in-

stability if doneat thepacket level [67], or on approachesto minimizeblocking rateat the

flow level by ensuring a better“load-balancing” [3, 41, 39, 36, 22, 1, 68, 51, 24]. Our ap-

proach canalsobe categorizedasa load-balancing scheme. However, it differs from the

afore-mentionedwork, not only in termsof the specific routing metricswe propose,but

alsoin thatasa routing objective we explicitly identify the improvementof the individual

flow’s perspective of resourcesharing potential.

In the following sections we present asymptotic approximations for the link load

dynamicsandtheassociated parameterestimation techniques, based on which our routing

algorithm is constructed. We thenexaminevarious factors related to this routing scheme,

proposean extension to meshnetworks, and discusssimulation results that validate the

effectivenessof our approach.

3.2 Analysis: a simple parallel-lin k model

Let usconsider a simple parallel link model,wherea source node # anda destinationnode$ areconnectedby � links, seeFig.3.1. Eachlink h hasa capacity of � units, andserves

an exogenousflow load which arrivesaccording to a Poissonprocesswith rate � f . Each

flow hasan exponentially distributed holding time with mean % &)(f , andrequires oneunit

of bandwidth to ensureits minimal QoSguarantee. In this chapter we will modelthe link

loaddynamicsassociatedwith theminimalbandwidth commitments thenetwork hasmade

andmakerouting decisionsbased onthismodelto improvetheQoSof flowssharingexcess

(or additionally available) bandwidth. We denote the numberof flows in progresson linkh , or equivalently theloadat time 1 , by b Wf 34185 , wherethesuperscript � indicatesthat this is
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the loadprocesson a link with capacity � . We will subsequently consider two asymptotic

regimeswhere � and � f grow.

3.2.1 A newrouting metric: expectedflow-perceived load

Weconsiderrouting flowsthatarriveatnode# andaredestinedto node $ . Let usassumethe

consideredflow loadfrom node # to node $ is small in comparisonwith theloadgenerated

by the exogenousflow processesdescribedabove, so that the routing of the flows from #
to $ will not affect the stationary link loads b Wf 341�5 , hm�ô	���
��������:� . Supposea singleflow

with aknownholding time � is to beroutedat time0 from node # to node $ . Let link loads

be b Wf 3 B
5í�¬2 Wf 3 B
5 , h��®	���
��������:� . As discussedin the introduction we proposeto route

theflow to thelink whereit is likely to experiencea minimal loadduring its sojourn in the

network.

We definetheflow-perceivedload asthetime average of theloadduring theflow’s

sojourn in thenetwork. Thussupposea new flow is to beroutedat time 0, we canexpress

theexpectedflow-perceivedload on link h as

� f 3��)��2 Wf 3 B
5�5 oU� z{A 	� ç i� b Wf 341�5`$
1�| b Wf 3 B
5H�Ì2 Wf 3 B
5"D� 	� ç i� z�A b Wf 341�5�| b Wf 3 B
5/�Ì2 Wf 3 B
5"D[$�1�x
As mentionedin theintroduction thismetricquantifiestheexpectedloadaflow with known

holding time � would seeon link h . We proposeto route the flow to the link h with max-

imum expectedflow-perceived available bandwidth, i.e., �kJ � f 3��d��2 Wf 3 B
5�5 . Whenall links

have the samecapacity this is equivalent to minimizing the expected flow-perceived load� f 3��d��2 Wf 3 B
5�5 . We will later relax the assumption that � is known andexamine the sensi-

tivity of suchrouting algorithms to the knowledge of the flow holding time. Below we

considersomeapproximations for theexpectedflow-perceivedload, assumingthelink load

dynamicsareindependent of therouting decisions.
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3.2.2 First approximation: a fluid model

Consider an asymptotic regime where � f and � approachinfinity, but ����� f �
� , i.e., the

flow arrival rate increaseslinearly aslink capacity increases,irrespective of the link load

condition. As shown in [43], it follows that Â��¸ ZvO[\W ø'ù � ùJ�� 2 f 34185 as ��� � , for B j 1 j # ,ï)#��I� , where �'2 f 341�5�� satisfiesthefoll owing ordinarydifferentialequationG2 f 341�5H��� f J�% f 2 f 341�5:x
Thusif Â �¸ Z � \W ø�ù � ùJ�� 2 f 3 B
5 , we have that2 f 34185H�L2 f 3 B
5��-M &@N ¸ O�P � f% f 3�	QJ�M &@N ¸ O 5:x (3.1)

Hencefor a link with large capacity � andsuchthat b Wf 3 B
5^�L2 Wf 3 B
5 we have thatroughlyb Wf 34185HËL2 Wf 3 B
5��-M &@N ¸ O�P � f% f 3�	QJ�M &@N ¸ O 5:x (3.2)

Using this asymptotic regimewe canapproximatetheexpectedflow-perceived load intro-

duced in theprevioussubsection asfollows. Assumethelink hasa largecapacity � andits

loadis b Wf 3 B
5/�L2 Wf 3 B
5 thenby (3.2)wehave that

� f 3��d��2 Wf 3 B
5�5 Ë � �g�W ��� z{A 	� ç i� b Wf 341857�'$�1'| b Wf 3 B
5/�L2 Wf 3 B
5"D� 342 Wf 3 B
5�J � f% f 5�� 	QJ�M &@N ¸ i% f � P � f% f x
Observe that for short flow holding times the expected flow-perceived load corresponds

to the link’s state 2 Wf 3 B
5 , andfor long flow holding timestheexpectedflow-perceived load

tends to the long-termaverage load µ ¸N ¸ . Henceif 2 Wf 3 B
5�� µ ¸N ¸ , i.e., the initial load is lower

thanthe long-termaverage load, flows with shortholding timeswill seea lower expected

flow-perceived load thanthosewith longer holding times. Conversely, if the initial load is

higher thanthe long-term average load, flows with longer holding timeswill seea lower

expectedflow-perceivedloadthanthose with shorter holding times.

Fig.3.2illustrates a special casewith two links betweensource node # anddestina-

tion node $ . Theincoming flow mayencountera number of situations with different initial
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Figure3.1: A simpleparallel-linktopology.
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Figure3.2: Routingin simpletopology.
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link loadsandlong-termaveragelink loads. Specifically, for Case(a), Link 1 is preferred

eventhoughtheinitial link loadsat time0 arethesamefor thetwo links. For Case(b), Link

1 is preferredsinceboth its initial loadandlong-termaverageloadarelower thanthoseof

Link 2. For Case(c), there existsa “cross-over” flow holding time
�� where

����� ���� �"! � �$#&% %�'(�")*� ���� �"!) �$#&% %,+
For flows with holding time shorter than

�� Link 1 is preferred,andfor flows with holding

timelonger than
�� Link 2 is preferred.For Case(d), thereexistsa“cross-over” flow holding

timewherefor flowswith holdingtimeshorter than
�� Link 1 is preferred,andfor flowswith

holding time longer than
�� Link 2 is preferred. Thesecasesexemplify thepotential gains

thatcanbeachievedby judiciously accounting for both theflow holding time andlink load

dynamics.

3.2.3 Secondapproximation: a diffusion model

Thefluid modelpresentedin theprevioussection allows us to approximately characterize

theevolutionof thelink loaddynamics. Thismodelariseswhenweexaminethescaledlink

load - !. �	/0% 132 in the limiting regime wherethe link capacity 2 andload 4 . '65 .87 2 grow

linearly. We canalsoestablish a similar relationship characterizing link load dynamicsby

investigating thescaled stochasticfluctuationsof thelink load aboutits mean.

Supposea“mode” exists for thelimiting regime,i.e., 9 �:<;>=@?! ACB D0BE"F � . �	/0%G'IH :J : , thenas

provenin [43] as 2 FLK thefluctuation processabout themodeconvergesto anOrnstein-

Uhlenbeckprocess. In particular as 2 FMK , 9 �:N;>=@?�O ! H :	P J :Q ! R . D = BE"F - . �	/0% , where - . �	/0% satisfies

thefollowing stochasticdifferentialequation

S - . �	/ %T' EVU . - . �	/0%XWZY [\5 . S&] . �	/0% �
where ^ ] . �	/ %`_ is a standard Brownian motion. Thus we can approximately model the

link loadprocessasanOrnstein-Uhlenbeckprocess,which is thesolution to thefollowing
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stochasticdifferential equation

S -a!. �	/0%G' Ecb . � -a!. �	/0% Eed . % S /�Wgf . Sh] �	/ % � (3.3)

where b . ' U . , d . 'Z2i5 . 1 U . , f . 'kj [\2i5 . .
Consider againa flow with holding time � to be routedto a link l with - !. �$#&%m'

� !. �$#&% andwhoseload dynamicsarecharacterizedby the above Ornstein-Uhlenbeck pro-

cess.Theexpectedflow-perceivedloadin this regimewould begivenby

� . � ��� �"!. �$#&% %on p�
qgrsutwv -x!. �	/ %Cy -x!. �$#&%T' �"!. �$#&%{z S /

' p�
qgrs|v � �"!. �$#&% Eed . %~} O�� : = W d . z S /

' d . Wk� � !. �$#&% Eed . % p E } O�� : rb . � + (3.4)

Thisis similar to theexpected flow-perceivedload obtainedfor thefluid model,eventhough

in this casethe loaddynamics aremodeledby stochasticfluctuationsabout themode.The

reason for this similarity lies in the fact that we arefocusing on the meanof the link load

processversusthesecond order statistics inherent in the diffusion approximation. Indeed,

the proposedrouting metric doesnot depend explicitly on f . , and thus, in a sense, does

not capture the degreeof fluctuation in the perceived load a flow might see. However,

as shown in the sequel, using only the first order characteristics for the perceived loads

already achievessignificant performancegains. The impactof the second orderstatistics

on theresulting QoSseenby flows is left for futurestudy. In thefoll owing sectionswewill

use(3.4)asour link metricandwill assumetheloadprocesscanbeadequately modeledby

anOrnstein-Uhlenbeckprocess.

3.2.4 Link load characteristics: parameter estimation

In orderto make routing decisionsbased on theproposedlink metricwe will estimate the

parameters(i.e., d . � b . ) for the load processmodelfor eachlink. Note that in practice the

flow arrivals seenby a link would not be Poisson with a constant rate,asassumedabove.
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Instead the arrival ratesare likely to depend on the current stateof the network, i.e., if

the link load is low, onemight expect to seea higher arrival rate,and if the link load is

high thearrival ratemight go down. However, in general thedynamics of this processwill

exhibit the “meanreversion” property of theOrnstein-Uhlenbeckprocess,i.e., there exists

a “mode”, and the link load exhibits fluctuationsabout this modedue to arrivals to, and

departuresfrom the system. Thesein turn areinfluencedby the routing decisionsthat are

being made.

Let us thusconsider modeling the link load process ^N- . �	/0%`_ associatedwith linkl asan Ornstein-Uhlenbeck processwith parameters ( d . � b . � f . ). To estimate the needed

parameters we samplethe link loads every � time units. Define the sampled process� . ����%G' - . ��� � % for ���a� . Theparameterscanbeestimatedusing thefollowing:

�d . ' p�����C� � � . ����% � �b . ' E���� �� .� �
where �� . '�� ��C� ) �	� . ����% E �d . %i�	� . ��� E p % E �d . %� � �C� � �	� . ����% E �d . % ) �
For completenessa detailed derivation is includedin theappendix.

Note that the selection of sampling period � andsampling window � impact the

quality of theparameter estimates.In thesequel weusesimulationsto assesstheimportance

of these sampling parameters. It is known that the spectrum of the Ornstein-Uhlenbeck

processis of the “low-pass” type, i.e., with a cut-off frequency (3dB point) at b . , hence

one might roughly argue that the sampling rate should be at least [ b . . For the queuing

modelsdiscussedearlier thecutoff frequency b . equals to U . , i.e., theflow departure rate.

However, in practice theroutingmechanismitself wouldacceleratethemeanreversion thus

oneshould expect to require a samplingratefasterthan [ U . , i.e., ��� �) J : .
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3.2.5 Dynamic or adaptive routing?

Routing algorithms are often said to be either dynamic, i.e., using most up-to-datelink

states, or adaptive, i.e., using averaged/filtered link states. Theproposedrouting metric is

based on both the mostup to datelink statesand theaveragedparametersquantifyi ng the

“stationary” or long-termcharacteristics of the link loads. As observedearlier asthe flow

holding time � becomessmall the proposedmetric is essentially a dynamic one, i.e., the

current link state, while for large � the longer term characteristics of the link’ s load are

usedto make therouting decisions.

To bepreciseconsidera link whoseload dynamics is characterizedby parameters� d . � b . % . In this case the link load relaxesexponentially to the long term average d . , see

(3.1) and (3.2). The “relaxation time” is roughly p 1 b . . By contrast the expected flow-

perceivedloadis definedastheexpectationof thetime-averagedlink load,andthusrelaxes

more slowly. Its effective “relaxation time” is roughly }�1 b . . Let ���. '�}�1 b . . Thus for

sufficiently largeholding times,i.e., �a���<�. , wehavethat � . � ��� � . �$#&% %Tn d . andtherouting

of aflow with suchholding timesmaybesaidto beadaptive. By contrast if its holding time

is smallerthan � �. onemight saythemetricaccountsfor thedynamiccharacteristics of the

link’ s load.

For our simpletopology with 2 links, let � �. correspondsto the“crit ical” flow hold-

ing time for link l , where l ' p � [ . We observe that for all flows with flow holding times

greater than ���3��^�� � � �`� � ) _ , therouting mechanism is adaptive. Similarly, for all flows with

holding time lessthan ��  � ^��\� � �`���) _ therouting mechanismis essentially a dynamicone.

In summary, thesecriteria roughly showa“split” betweenflowswith differenthold-

ing times,according to which flowsareroutedin a dynamicor adaptive manner.

3.2.6 Impact of the delaysin advertising link states

In alink-staterouting scheme, thereusually existsabroadcasting mechanismthroughwhich

the link statesat the routersareupdated. Inevitably updating delaysareinvolved in such
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broadcasting schemes,dueto overhead constraintson messagepropagationandprocessing

delays. In thissubsection weexaminetheimpact of updatingdelaysontheproposedrouting

metrics. Consider the scenario wherewe make a routing decision at time / , but only have

access to theadvertisedlink stateat time / E S
. Without lossof generality suppose /c' S

andat thattimewehaveaccessto � . �$#&% aswell astheparameters � b . � d . % characterizing the

link load. If thedelay
S

is known onecancompensatefor this by computing theexpected

flow-perceivedloadasfollows,

� . � ��� � . �$#&%,¡ S %o' p�
q r�¢ R
R twv - . ��£\%Cy - . �$#&%T' � . �$#&%{z S £

' d . W�� � . �$#&% E¤d . %i� p E } O�� : rb . � %~} O�� : R
n d . W�� � . � S % Eed . %i�\p E } O�� : rb . � %¥'(� . � ��� � . � S % % �

since � . � S %en¦� � . �$#&% EZd . %~} O�� : R W d . . We observe that as
S

increases � . � ��� � . �$#&%,¡ S %
converges to d . . Thus if significant delaysare involved in link-stateupdates,the routing

algorithm thataccountsfor the(known) updatingdelays would beessentially adaptive.

Note that this discussionassumesthat thedelayassociatedwith thecurrentupdate

for thelink stateis known.In practice thiscanbedoneby time-stampinglink stateupdates.

However, in the sequel we will, for the most part, not assumesuchdelays are known.

Instead, outdated link statesare treatedas “current” and directly usedin estimating the

expected flow-perceived load according to (3.4), i.e., when making routing decisionsat

time
S

we use � . �$#&% in placeof � . � S % . Let
�� . � S %G' � . �$#&% . In this case

� . � �X� �� . � S % %o' d . W�� � . �$#&% Eed . %i� p E } O�� : rb . � %
n d . W�� � . � S % Eed . %i� p E } O�� : rb . � %~} � : R +

Henceif
S¨§ b O �. , � . � ��� �� . � S % %�nI� . � �X� � . � S % % . We will seein the sequel that even in

thecasewhere
S n b O �. thepredictive flow-time awarerouting schemestill providesper-

formanceimprovementsoverour baselineschemes. However, the“time-stamping” mecha-

nismcancontribute to additional performanceimprovements.
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3.2.7 Uncertainty in flow holding times

Previously weassumedthatflow holdingtimeswereknownin advance. In practicethismay

not be the case. In this subsection we consider the sensitivity of the routing decisions to

uncertainty in theflow holding time. We approachthis via two differentavenues, (1) what

is theimpactof uncertainty in theflow holding timeontherouting metric, i.e., theexpected

flow-perceivedload?,and(2), whendo the routing decisionschange asflow holding times

vary?Weshall write theexpectedflow perceivedloadon link l as

� . � �X� � !. �$#&% %T' d . W�� � . �$#&% E¤d . %ª© . � � % �
where © . � � %«' � O�¬0­\® :@¯� : r and � denotesa known holding time. Notethat © . � � % is decreasing

andconvex in � , thustheproposedrouting metric is fairly insensitive to theuncertainty in� when � is large. Supposeonly themean°� of a flow’sholding time distribution is known.

Let ± bea random variable with that distribution. Onemight considerusing � . � °��� � . �$#&% %
asarouting metric.Wenotethatif °� is largeandthevarianceof ± is smallthenthismetric

is fairly representative of theactual expectedflow-perceivedload.

Evenif � is moderate or smallandsothat © � � % is relatively sensitive to � , we argue

thatalthoughtherouting metric � . � ��� � . �$#&% % mayvary if weuse°� insteadof theactual flow

holding time, therouting decisionsbasedon this maynot. Fig.3.2providesanillustration.
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For Fig.3.2-(a-b), we observe thatno matterhow � varies, therouting decisionsremainthe

same. For Fig.3.2-(c-d), thereexists a certain timescale
�� such that for all � lessthan

��
Link 1 is favored,andfor all � greater than

�� Link 2 is favored. Hencein thesecases if �
and °� remainon thesamesideof

�� , theroutingdecisionsmadebased on °� will notchange.

3.3 Predictiveflow-time aware routing in a meshnetwork

In theprevioussection weproposedarouting schemebased on thenotion of expectedflow-

perceivedload, in thecontext of asimpleparallel-li nk topology. Thebasicideasgeneralize

to meshnetworkswith multiplesource-destination pairsrouting flowssimultaneously. Note

that in this casethe link metricsmustbeusedto construct pathmetrics. Thetaskhereis to

computepathsfor theincomingtraffic flowssothat(1) thenetwork cancarryasmany traffic

flows aspossible, and(2) theperceivedloadsby theadmitted flows during their sojourn in

thenetwork areaslow aspossible. To achieve thesegoals, we will have to make a number

of design choices:² whether to useadditive or concave link metricsto construct pathmetrics;

² how to incorporatethenotion of expectedflow-perceivedloadinto thelink metrics;

² how to effectively estimate the parametersthat characterize the link load dynamics

andtheexpectedflow-perceivedload.

To systematically addresstheseissues,wehave performedextensivesimulationsof

the proposedrouting approach. Below we showthe performanceof our predictive flow-

time-awarerouting scheme,andilluminatea number of factorsthatmayimpactits perfor-

mance.

3.3.1 Simulation setup

We performed simulations for different network topologies and traffic matrices. In the

following we presenta setof results for thenetwork shownin Fig.2.8. In our simulations,
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Table3.1: Thetraffic matrix.
ingressnode egressnode hopdistance arrival rate

0 16 4 50
1 17 3 50
2 16 3 50
2 13 3 50
3 9 2 50
4 13 4 50
5 14 4 50
8 10 3 50
10 4 5 50
11 4 4 50

theflows arrive to thenetwork according to a Poissonprocess,andtheflow holding times

arerandomly distributed. We experimentedwith various flow holding time distributions,

e.g., exponential, Pareto,hyper-exponential, bi-modal. Thegeneraltrendsof theresults are

similar underdifferentholding time distributions.Wewill only showresultscorresponding

to the exponential distributions. The ingressand the egress nodes for the new flows are

selectedaccording to Table3.1,whichcorrespondsto atypical WAN traffic pattern, i.e., the

ingressandegress nodes of a flow areat least two hopsaway from eachother.

The parametersfor the simulation weresetasfollows: link capacity is [\#*# band-

width units. The meanflow holding time is p time unit, which might represent, say a

3-minute period for voice applications,or a 1 hour period for video transmissions. In the

following simulationswe will usethemeaninsteadof theexactvalueof flow holding time

to evaluatetheexpectedflow-perceived load. Thevarious timescaleswe will encounterin

this section, e.g., link loadsampling period, sampling window size,andlink stateupdating

delays,will all besetrelativeto themeanflow holding time. Thebandwidth requestof each

flow is uniformly distributed between #³+µ´ and p +µ´ bandwidth units. This setup is referred

to asthebasecase.We increasethetraffic loadby scaling thearrival ratesof thebasecase

by asequenceof factors. Thelinks in thenetwork estimatetheparametersthatcharacterize

their loaddynamics, i.e., d . � b . , anddistribute these parametersalong with thecurrent link

loadperiodically. Wewill refer to our routing schemeFTAR (Flow TimeAwareRouting).
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Unless stated explicitly, the current link statesareassumedto be known, i.e., no

updating delays. We will compare FTAR with two baseline routing schemes. The first is

referredto asDSP(Dynamic SinglePath),andusesthereciprocalof thecurrent available

capacity as the routing metric [41]. The second baseline schemeis referred to as MSP

(MeanSinglePath)andusesthereciprocalof theestimatedmeanavailablecapacity asthe

routing metric,i.e., 2 Exd . . Here d . is themeanloadestimated by FTAR. FTAR is a revised

version of DSP, i.e., we useexpected flow-perceived load insteadof current link load to

evaluate theavailablecapacity. For an incoming flow, we compute theshortestpathbased

on the inverseof the expected flow-perceived bandwidth, i.e., the link capacity minusthe

expected flow-perceived load, andestablish the flow on the resulting path if the available

bandwidth alongthepathallowsit. Otherwisetheflow is blocked.

We compare routing schemesbased on the percentage of the bandwidth demands

that are successfully routed, and the average flow-perceivedexcess bandwidth seen by

flows. The latter is determinedby first sampling the residual bandwidth seenby a given

flow during its sojourn in the network, thenaveraging these samples to get its perceived

excessbandwidth whenit departs, andfinally averaging over all the departed flows. Note

thatthis is acrudemeasureof how muchbandwidth there is in thenetwork for agivenflow

to share with other ongoing flows during its sojourn, i.e., the potential for better perfor-

mance,but not necessarily thebandwidth achievedby theflow. Clearly, theflow-achieved

bandwidthdependsonthespecific bandwidth sharing policy usedin thenetwork, e.g., max-

min sharing, proportional sharing[45], or size-basedbandwidth sharing[72]. In the sequel

we use(weighted)max-minsharing to illustratetheeffectivenessof our routing schemein

termsof flow-achievedbandwidth.

Moreover, in thefoll owing sectionswe will evaluate“% improvedroutedvolume”

and“% improvedaverageflow-perceivedbandwidth”, whicharedefined as¶ O�·· 7 p #*# , where� is theperformance(% routedvolumeor averageflow-perceivedbandwidth) achievedby

our FTAR scheme,and � is thatachievedby thecorresponding baseline scheme.
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3.3.2 Parameter estimation: the optimal sampling rate and window size

Let us first examinethe impact on the routing performanceof the parameter estimation

procedure.In particular, we focuson determining a goodchoicefor thesampling rate,i.e.,

the speedat which a link takes samples of its loads, and the samplingwindow, i.e., the

duration of thetime over which thesamplesarekept in memory.

Thediscussionin Section3.2.4suggeststhatthesampling rateshould befastenough

to obtainaccurateparameter estimates, i.e., � O ��¸ [ U . . Estimatesarebased on samples

within a moving window4 sothesizeof thewindow might impact therouting performance.

In the foll owing we shall vary the sampling rate and sampling window size to identify

the setof operational values. The results show that the performanceof the FTAR routing

scheme is robust to the selection of sampling rateandsampling window size,unlessvery

poorchoicesaremade.

Fig.3.4showstheperformanceof our routingschemefor differentsamplingperiods

andwindow sizes. Observe that when the sampling window is small, i.e., equal to 0.01

time units, the routing performancein termsof routed volumeis unsatisfactory. Indeed if

thesamplingwindow is not largeenoughwearenot ableto capture thelink loaddynamics.

In addition, note that when the sampling rate is small, i.e., with a sampling period of 1

timeunit, therouting performancealsodeteriorates.This is consistentwith our assertion in

Section3.2.4thatif thesampling is not donefrequently enough, wewill not have sufficient

samples to beableto estimatetheparametersfor theOrnstein-Ulenbeck model.

Note thatotherthanthespecific casesdescribedabove, therouting performanceis

robust to thechoiceof sampling rateandsampling window size.In thesequel wewill usea

sampling periodequalto 0.1timeunitsandasamplingwindow sizeequalto 1.5timeunits.
4It is alsofeasibleto usean“exponentially weighted-averaging” mechanismto estimatetheseparameters.

The sizeof the moving window corresponds to the valueof the exponential weightingfactor, i.e., the larger
window sizecorresponds to theselectionof theexponential weightingfactorin favor of the loadhistoryover
thecurrent load.
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Figure3.5: Performancegainby FTAR overDSPandMSP.
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3.3.3 Performancegainsusing predictive flow-time-aware routing

Let us now comparethe performanceof FTAR with DSPandMSP. In Fig.3.5 we show

a typical result for the case with exponential flow holding time distributions. We seethat

FTAR improvesthe routing performanceover both DSPandMSP, by up to 10%in terms

of routed volume. We observe thatFTAR performsconsistently better thanMSP, andthat

only in theheavily loadedregimewhereFTAR is supporting a higher traffic volume,does

its average flow-perceived bandwidth seenby flows becomelessthan that for DSP. Note

thatin thelightly loaded regimetheflow blocking performanceof FTAR is better thanDSP

andMSP, andFTAR alsoprovidesbetterperformancein termsof average flow-perceived

bandwidth. This is surprising since thenetwork usingFTAR is admitting a higher number

of flows. Hencethe overall routing of traffic must be significantly improved by using a

predictive flow-time awarerouting mechanism.

3.3.4 Concaveor additive path metrics: choiceof meshrouting algorithms

To determine goodpathbetweena pair of source-destination nodesfor an incoming flow,

one often resorts to a notion of “shortest path” or “widest path”. On the one hand, the

construction of a shortest path often proceedsby adding up link metrics. On the other

hand, theconstruction of a widestpathusually involvestaking theminimum(a “concave”

operation) of several link metrics. It is not entirely clear what routing metrics and their

associatedalgorithmsoneshould usefor a specific routing scenario, though [41] suggests

thattheinverseof theresidual bandwidth mightbeagood additiveroutingmetricto achieve

network load-balancing. Note that in a simple parallel topology like the onewe usedin

the previoussectionsthe “shortest” and“widest” routing schemesareequivalent, i.e., the

differencearises only whentherearemulti-li nk paths in question.

In thecontext of predictive flow-time awarerouting, we believe thechoiceof rout-

ing strategy, i.e., “shortest” or “widest” criterion,dependson the characteristics of the in-

comingflow andthecorresponding network loadcondition. In particular, we note that the
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“dominating link” on a path, i.e., the link that exhibits the “worst” load level, might vary

during a flow’s sojourn in the network. Fig.3.6illustratesa pathwith 3 links. Fig.3.6-(a)

showsthelink loaddynamics.Fig.3.6-(b)showstheloaddynamicsfor the“bottleneck” link

of thepath, whoseidentity variesover time, i.e., [ F p Fº¹ . Fig.3.6-(c)is theloaddynam-

ics averagedover the threelinks. Fig.3.7shows the performancecomparisonbetweenthe

shortest-widest routing schemeusing concave metricandtheshortestpath routing scheme

using additivemetric.Weseethat theroutingschemeusing additivemetricoutperformsthe

routing schemeusingconcave metric,by up to 12%in termsof blocking rateandby up to

120%in termsof averageflow-perceivedbandwidth.
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3.3.5 Effect of stateadvertising delays

As often is the casein practice, therearedelays involved in link statebroadcasts. Since

dynamic routing schemesmake useof link states, it is important to gagethe impactthese

delays have on routing performance.In this section we comparetheperformanceof FTAR

and DSPas such delays increase. In particular, we will have a “slow update” scenario,

wherethe link states areupdated every 1 time unit, anda “f ast update” scenario, where

the link statesareupdatedevery 0.1 time units. Thesemay correspondto networks with

different geographical coverage, i.e., long versusshort-haul networks, or simply different

limitationson thesignaling overheads.We will usedelayedlink loadin computing routing

metricsfor FTAR andDSP. As shownin Fig.3.8the performanceimprovement by FTAR

over DSP is more significant when the advertising delays are larger. This confirmsour

intuition in thatthelarger delays leadto adiminishingeffect on therouting performanceof

the“current” link states,or alternatively, themoresignificant contribution by thelong-term

averageloadinformation, which is capturedandutili zedby FTAR.

3.3.6 Time-stampingmechanism

It is of interest to compare therouting performanceusing delayed link states, aspresented

in theprevioussection, with thatwherea “time-stamping”mechanismis usedto determine

exactly the delay associatedwith a given link state, i.e., the links attach a time-stampto

the link states whenthey areadvertised. As discussedearlier whenmaking routing deci-

sions routers canusethis time-stampinformation to determine thedelay of link statesand

thusestimatethe expected flow-perceived load according to (3.5). Fig.3.9showsthe per-

formanceimprovementachievedby FTAR augmentedwith time-stampoverFTAR without

theknowledgeof link stateadvertising delays. We seethat this time-stampingschemeim-

provestheroutedvolumeby 4%andaverageflow-perceivedbandwidthby 25%.Moreover,

wenotethatwhentheupdatedelayis larger, theperformanceimprovementobtainedby the

time-stampingmechanismis moresignificant.This is intuitiveconsidering thefactthatthe
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Figure3.9: Performanceimprovement by time-stampingmechanismfor differentbroadcastdelays.

differencein routing metricsincreaseswhentheupdatedelayincreasesbetweenthecases

with andwithout time-stamps,andhencethedifferencein therouting decisions.

3.3.7 Bursty arri vals: Mark ov modulated Poissonprocess

In the previoussimulationswe modeled the flow arrivals by Poissonprocesses. This is a

relatively “smooth” random process.In this section we examinetheeffect of amorebursty

arrival process.Specifically, we useMarkov modulatedPoisson process(MMPP) to model

theflow arrivals.Therearetwo “modulating” states,“high” and“low”. In eachstatetraffic

flows arrive asa Poisson process.We will consider two MMPPswith differentflow arrival

ratesin the “high” state. For the first, the flow arrival rate in the “high” state is 3 times

themeangiven in Table3.1. For thesecond, theflow arrival ratein the“high” stateis 1.5

timesthe meangiven in Table3.1. In the “low” state, traffic flows arrive with rate1/3 of

themeangivenin Table3.1,for bothMMPPs.Besides therates associatedwith the“high”

and“low” states,the MMPPsarealsocharacterizedby the meantime they stayat “high”

and“low” states. For thefirst MMPP, we setthemeantime at “high” stateand“low” state

62



10 20 30 40 50 60 70 80 90
0

5

10

15

20

%
 im

pr
ov

ed
 r

ou
te

d 
vo

lu
m

e The impact of the arrival burstiness

10 20 30 40 50 60 70 80 90
0

20

40

60

MMPP_TIME%
 im

pr
ov

ed
 a

vg
. e

xc
es

s 
ba

nd
. MMPP:more bursty

MMPP:less bursty
Poisson

Figure3.10: Performanceimprovement of FTAR over DSPwith burstyflow arrivals.

to be #³+µ´ 7 MMPP TIME and p +µ´ 7 MMPP TIME, respectively, whereMMPP TIME is a

scaling variable which we vary from 10 to 90 time units. For thesecond MMPP, we setthe

meantime at both modulating statesto be MMPP TIME. The flow holding time is again

exponentially distributed, with mean1 time unit. Note that thefirst MMPP is morebursty

thanthesecond MMPP.

In Fig.3.10we comparethe performanceimprovementfor FTAR over DSP, under

different flow arrival processes. Observe that as the flow arrival processbecomesmore

bursty the improvement in termsof routedvolume increases, while the improvementin

termsof average flow-perceived bandwidth decreases. Theseseemingly diverging trends

make sense,sinceas FTAR allows increasing traffic load into the network, the average

flow-perceived bandwidth reported by the (larger amountof ) supported traffic decreases.

This indicatesthat in anoperating regimewith bursty flow arrivals, it will bebeneficial to

useinformationon link loaddynamicsin addition to the“current” link load.
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3.3.8 Mean reversionunder various routing schemes

In the previous sections we explored three different routing algorithms, i.e., DSP, FTAR

andMSP. Thesealgorithmsusedifferentlink metricswhenthey compute theshortestpath.

We observe that theperformanceof a certainrouting schemedependson thenetwork load

dynamics,andthe network load dynamics in turn depends on the chosen routing scheme.

Note that in our parametric modelfor link load dynamics,the parameter b . characterizes

therateat which thethe link l ’s load reverses to its meand . . In our FTAR schemewe use

a moving-window mechanism to estimate d . and b . . Theestimated mean-reversion rate b .
is not usedby DSPandMSPwhenmakingrouting decisions.However, it is of interestto

compare theaverageof estimated b . overall thelinks in thenetwork, whenoneusesdiffer-

ent routing schemes. Let usdenote this averageto be b � , where » � ^ DSP� FTAR � MSP_ .
Thehigher thevalueof b � , themore“responsive” thecorresponding“mean-reversion” pro-

cessis for thegiven routing scheme, i.e., the stronger the “force” pulling the loadprocess

backtowardits mean.
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From Fig.3.11we seethat in general b MSP � b FTAR � b DSP. Thus if the

routingschemeis MSP, i.e., using themeanlink loadto guidetheplacement of theincoming

flows, the mean-reversionis least responsive. This is intuitive since MSPis insensitive to

thetemporarydeviationof thelink loads from theirmeans, i.e., therouting decisionsin this

scheme contribute the least to the mean-reversion. Alternatively, if the routing scheme is

DSP, thenthe routing decisions reinforcethe mean-reversion by sending lessflows to the

highly-loadedlinks, allowing themto get backto the meanload, or directing moreflows

to the lightly-loadedlinks, allowing themto load up to the meanload. TheFTAR routing

schemeexhibitsadegreeof mean-reversionbehavior in between DSPandMSP. Webelieve

that its performanceadvantagederives from its ability to strike a better balance between

the “natural” mean-reversion(determined by flow departures)and the routing-reinforced

mean-reversion.

3.4 Appli cation: routing max-min rate adaptivesessions

In theprevioussectionsweshowedthatby usinga link metricassociatedwith theexpected

flow-perceivedload,therouting performanceimprovesin termsof bothrouted volumeand

averageflow-perceivedbandwidth. Theformermetriccorrespondsto theability of thenet-

work to support traffic flowshavingminimalguaranteedbandwidth requirement.Thelatter

metriccorrespondsto thepotential for theadmittedtraffic flowsto improvetheir “achieved”

performanceby sharing theexcessbandwidth in additionto theguaranteedminimal rate.In

thissection weshow by simulation thatin amax-minbandwidth sharing framework thepro-

posed routing schemecanindeed realize thepotential andyield improved“achievedrate”.

We assumethat uponarrival anddeparture of the flows the excessbandwidth allocatedto

the ongoing flows areinstantaneously re-computedaccording to the max-minratealloca-

tion scheme[45], andthetraffic sourcesareresponsive enough to adjust their transmission

ratesaccordingly. In thefollowing we examinetheperformanceimprovement achievedby

our routing scheme in termsof the additional bandwidth seenby flows, i.e., the average
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Figure3.12: Performancecomparisonof FTAR, DSPandMSPwith max-min fair sharing.

flow-achievedbandwidth, which is measured by first taking sampled-averageof the addi-

tional bandwidth allocatedto theindividual flows during their sojourn in thenetwork, then

averaging over all thedepartedflows.

In Fig.3.12we show a performancecomparisonfor FTAR, DSP, andMSProuting

schemes.Weknow from theprevioussimulationsthattheblocking performanceof FTAR is

superior to thebaselines. To highlight thecapability of FTAR in obtaining improvedmax-

min shared rates,hereweshowanoperating regimewheretheloadis light, i.e., noblocking

occurs for all routing schemes.In Fig.3.13we plot the% improvementof FTAR over DSP

andMSP, in termsof average flow-achieved bandwidth. An improvement of 10%-20% is

achievedoverDSPandtheimprovement overMSPcanbeup to 70%.Similarly in Fig.3.14

we plot a performancecomparisonof FTAR versusDSPandMSPwhenthere is anupdate

delayof 0.05unit. In this casewhile their performancein termsof averageflow-achieved

bandwidth becomesimilar astraffic load increases, the performanceof FTAR in termsof

routed volumeis muchbetterthan DSPandMSP.

In principle themax-minbandwidth sharing is fair in thesense that it does not dis-
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Figure3.13:Performanceimprovement for FTAR over DSPandMSPwith max-min fair sharing.

criminateagainstflowstraversinglongroutes.Bandwidth sharing schemesused in practice,

e.g., proportional-fair sharing, or TCPwill however do so.To study theperformanceof the

proposedrouting scheme whenbandwidth sharing schemesdo discriminateagainstlong

flows, we considered a weighted max-minsharing schemewherelarger (smaller) weights

are given to the flows that traverse shorter (longer) routes. This corresponds to larger

(smaller) amountof bandwidth beingallocatedto the flows that traverseshorter (longer)

routes. In Fig.3.15weplot theperformanceresultsfor thelight-loadedregime,andFig.3.16

shows thepercentage improvement of FTAR over DSPandMSP. We observe that theper-

formanceadvantageof FTARoverDSP/MSPis consistent,evenwith theweightedmax-min

sharing scheme.

3.5 Conclusionand discussion

In thischapterweproposedanew dynamic routing schemewhich improvestheoverall per-

formanceachievedby stream-based flows during their sojourn in thenetwork. Thenovelty
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Figure 3.14: Performancecomparison of FTAR, DSP andMSP with max-min fair sharingand
update delay0.05 unit.
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of our approachlies in (1) the identificationof thenotion of expectedflow-perceivedload,

which quantifies the “potential” for improvement of the user’s performance,that exists at

a given link from a specific flow’s perspective, (2) the construction of a practical routing

algorithm which realizesthe above potential, basedon an auto-regressive load modeland

theprior information on flow holding time. For a large classof traffic andservice models,

e.g., VBR and rate adaptive applications, an effective useof our approachwill result in

better flow QoS.Specifically, we constructed a routing algorithm that aimsat minimizing

expectedflow-perceived loadduring a flow’s sojourn in thenetwork. We showed that this

routing algorithm leads to not only better loadbalancing in thenetwork, but alsoimproved

flow-perceived performance. This allows the flows admitted to the network to realize a

greater share of “achieved” bandwidth, in addition to their minimal requestedamount.

The implementation of the proposedrouting schemewould require updating rout-

ing software. We useprior information on the holding time of the traffic flows. This can

be either presentedby the traffic flows upon arrival to the network, or obtainedthrough
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traffic statisticsgathered by thenetwork operator. In addition, routers in thenetwork need

to maintainlink load models. The effort hereincludes estimating the parameters of the

modelandadvertisingtheestimated parametersalongwith current link loads. This implies

additional computational andsignaling overhead. However, we note that in a distributed

routing environmenta given routerneedonly maintain the link load modelsfor the adja-

cent links, which scales at most linearly with the numberof the routers in the network5.

Moreover, theseestimated parametersare“stable” sincethey correspondto the meanand

therateof variation for aquasi-stationarystochastic process,thusthey neednot beupdated

as frequently as the current link load. It is shownin Section 3.3.5 that FTAR achieves

higher performancegain with larger advertising delays whencompared to DSP. This sug-

gestsFTAR is morerobust thanDSPwhenlink stateadvertisements becomelessfrequent,

enabling reducedoverheadby usinglarger advertisingdelays. Theseobservations leadus

to believe that theperformanceadvantageof our routing schemeoutweighsconcernswith

overhead. In conclusion, the routing designercanimprove the routing performanceof the

stream-basedflows by taking advantageof information regarding link load dynamics and

flow holding time,without having to significantly increasetherouting overheads.

3.6 Appendix: Parameter estimation

To estimate theafore-mentionedparameters,weobserve thatthesolution for thestochastic

differentialequation(3.3)canbeexpressedasfollows,

- . �	/0%G'�} O�� : = - . �$#&%XWgf . q =s } O�� : ;>=$O�¼3? S&] �	��%XW b . d . q =s } O�� : ;½=$O�¼�? S � �
or equivalently,

- . �	/ %T'�} O�� : = - . �$#&%XW|} O�� : =¿¾ �	/ %�W b . d . } O�� : = q =s } � : ¼ S � �
where

¾ �	/0%G'Zf .�7�À =s } � : ¼ S&] �	�Á% is anIt
�Â integral.

5Thatis, in a fully-connectednetwork. In a meshnetwork it grows muchslower.
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Giventheobservations of - . �	/ % at time / � � / ) � 7C7C7 / � , i.e., �"=$ÃC� ��=@Ä3� 7C7C7 �"=�Å , the like-

lihood function is givenbyá � � = ÃN� � = Ä3� 7C7C7 � = Å ¡ b . � d . � f . %T' �Æ. � � pj Ç .CÈ � ��= : EeÉ .[ Ç . % �
where È � � % is thestandardGaussian density function, É � ' d . , Ç � 'ËÊ Ä:) � : , andfor l�� p ,

É . '�} O�� : ;½= : O�= : ­ Ã ? � = : ­ Ã W d . � p E } O�� : ;>= : O�= : ­ Ã ? %
and Ç . ' f ).[ b . � p E } O ) � : ;>= : O�= : ­ Ã ? %,+
Themaximumlikelihoodestimators b . � d . , and f . take on thevaluesthatmaximizeá � � =$Ã � � =@Ä � 7C7C7 � = Å ¡ b . � d . � f . %,+
Note that if / . E / . O ��' � , i.e., the observations aremadeat the regularly spaced time

instances,theabove likelihood function is thesameasthejoint density of theobservations

of thefoll owing discrete-time GaussianAR(1) process,

Ì
�

Eed . '�} O�� :�Í � Ì
� O

� Eed . %�W¨�
� �

if the observed valuesfor ^ Ì �
_ is suchthat � . ' �"= : , for l ' p � [ � 7C7C7 � . Here ^ � �

_ is a

sequenceof uncorrelatedrandomvariableswith zeromeanandvariance Ê Ä:C; � O�¬ ­ Ä ® :	Î ?) � : .

To estimate theparametersd . � � . '�} O�� :ÏÍ , and f�Ð ). 'ÑÊ Ä: ; � O�¬`­ Ä ® :	Î ?) � : , we notethat

d . 'Òp� � O
�� . � s � . �

andrewrite theabove AR(1) processto be

Ì Ð
�

' � . Ì Ð
� O

� W|�
�
+

Since# � � . � p , ^ Ì Ð
�
_ is causal,wehave

Ì Ð� ' ��ÓÔ � s�Õ Ô 7 � � O Ô , andÕ �$Öh%T' �kÓÔ � s�Õ Ô Ö Ô '�� O�× :@Ø . Hencetwv � �
7 Ì Ð

� O
� z�'�# , and twv � �

7 Ì Ð
�
zÁ'ZfÁÐ ). . We note
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1. twv Ì Ð
�

7 Ì Ð
� O

� z�' � . twv Ì Ð )� O � z³W twv � �
7 Ì Ð� O � z , hence

� . ' tÙv Ì Ð
�

7 Ì Ð
� O

� z
twv Ì Ð )

�
z ' � �. � ) �	� . Eed . %i�	� . O � Eed . %� �. � � �	� . Eed . % ) +

2. twv Ì Ð )
�
zÁ' � . tÙv Ì Ð

� O
� 7 Ì Ð

�
z³W twv � �

7 Ì Ð
�
z , hence

f Ð ). ' twv Ì Ð )
�
z E � . twv Ì Ð

�
7 Ì Ð

� O
� z�'�� �. � � �	� . Eed . % ) E � . � �. � ) �	� . Eed . %i�	� . O � Eed . %� +

Theparameters of theoriginal link loadprocesscanbeexpressedas

b . ' E ��� � .� �
and f ). ' [ b . fÁÐ ).p E } O ) � :@Í +

72



Chapter 4

Online Distrib uted Failur e ProtectionAlgorithms In WDM

Networks

4.1 Intr oduction

The popularity of the Internet hasresulted in increasingdemands for data traffic. This

forces serviceprovidersto seriously considernew infrastructuresthatmeetthesedemands.

Wavelength Division Multiplexing (WDM), which allows a single fiber to carry multiple

signals simultaneously, is thought to be a promising candidate to address possible band-

width shortageson the Internet. While the enormousamountof bandwidth provided by

WDM mayhelpalleviatethemounting pressurefor higher accessspeed, it alsomakespro-

tection/restoration a very important issue in network management. For example, current

technology allows up to 128 wavelengths to be multiplexed in a singlefiber, eachwith a

datarateof up to 10 Gbps. This roughly translatesinto millions of telephonecalls on a

single fiber. It is easyto seethe catastrophic consequence a fiber cut may causewithout

appropriate protection mechanismsin place.

Different typesof protectionschemeshavebeendevelopedfor opticalnetworks[70].

Many existing transport networks usedual SONET (synchronous optical network) rings.

Dual rings are simple topologieswhich contain two separatepaths betweenany pair of

nodes,makingthemresilient to single link (or node) failures.Although simpleandfast,the
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direct applicationof ring architectures in WDM networks brings a numberof problems. It

is well knownthat ring-structuredprotection schemestypically rely on excessive capacity

redundancy. By contrast, onecanprovide protection with substantially lesssparecapac-

ity on meshnetworks[16]. Protection schemeson meshoptical networks wereintensively

studied in theearly1990s[70, 16, 69, 54, 17]. Nevertheless,mesh-basedSONET networks

werenot widely useddueto certaininadequacies,notably aslow restoration processsome-

times taking more than2 seconds[54]. Note that typical Digital Cross-ConnectSystems

(DCS)in transportnetworkshave very limited functionality. Henceonly simplerestoration

algorithmsweredevelopedfor meshnetworks in theaforementionedliterature.

Recently emerging Optical CrossConnect (OXC) on WDM networks areredefin-

ing survivability issuesof meshnetworks. Unlike their predecessor DCS,intelligent OXCs

function muchmorelike ATM switchesor IP routers. They offer dynamic configuration

via light pathswitching andallow many management tasksto becarriedout in adistributed

manner. Becauseof the preponderanceof IP traffic, IP-oriented control planesarebeing

consideredfor WDM-basedoptical networks in order to provide seamless datatransport

[26, 4, 21]. Thegoalis to provide integratedfunctionality suchaslight path routing, signal-

ing, andrestoration. This bringsforth a significant shift in themanagementparadigm from

centralizedcontrol to distributedcontrol[13].

This shift in management paradigm hasa significant impact on the design of pro-

tection solutions for WDM networks. The two major issues of network survivability—

restoration time andresourceefficiency, cannow be addressedeffectively. Many protec-

tion/restorationschemeshavebeenproposedto achieve improvedperformance. In general,

theseschemescanbe categorized in termsof their computation time asreal time versus

pre-provisioned,or their traffic rerouting schemeaslink-basedversus route-based,or their

routecomputation mechanism ascentralizedversusdistributed[12].

Thereal time approach[27, 32] computesthe restoration pathafter a failure event,

trying to activate the restoration processin the most resource efficient manner. Sinceit
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needs time to establish thealternaterestorationroute the real time approachis likely to be

slow, andmoreover, there is no guaranteeonesuchpathexists whena failure occurs. By

contrast,thepre-provisionedapproach[34,2] computestheprotectionpathsbeforeafailure

occurs,andbasedon theresult of theroutecomputationestablishes necessarystatesat the

relevant OXCs in preparation for the switch-over actions upon the detection of a failure

event. Evidently, the pre-provisionedapproachallows higher restoration speed, though it

might belessresource-efficient.

Fromthe perspective of the mechanismsusedto computeroutes, currentwork re-

garding theoptimizationof theresourceutil ization for failureprotectionandrestorationcan

becategorizedinto centralized[16, 31, 56,50], or distributedapproaches[12, 30]. Foracen-

tralizedrestorationalgorithm, therestorationpathsfor all demandsarecomputedatacentral

controller assuming up-to-datenetwork stateinformationis available.After their computa-

tion at the central controller the restoration routesaredistributedto theOXCs to establish

(restoration) routing tables. The centralized computation can be very resource-efficient,

if thecentral controller possessesup-to-dateinformation regarding network topology, link

capacity and traffic demands. However, maintaining up-to-dateinformationon topology

and link capacity require frequent signaling communication betweena central controller

andnodal databases, andthuscanbecostly. Thecentralized computationmaynot beable

to scale with a large numberof demands. Moreover, the “batch” computation assuming

knowing all traffic demands may work well in conventional telecommunication networks

wherethetraffic demandis quasi-static, but it is not suitablein a dynamic,data-centricen-

vironmentsuch asthebandwidth-on-demand paradigm now consideredby OpticalDomain

ServiceInterconnect (ODSI) [15] andInternet Engineering TaskForce(IETF) [13]. With

batchcomputation,any incrementalchangein thetraffic demandwill causeexisting pathsto

bere-computedandsomeof thesepaths reconfigured,which is not desirable. By contrast,

distributed computations maynot beasresource-efficient astheir centralizedcounterparts,

but they arescalable, easier to maintain, anddo not have a singlepoint of failure.
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The current solutions on restoration path computation can also be classified into

either path-based[34, 61] or link-basedapproaches[27, 71]. In theformercase,upon detec-

tion of a failure eventby thedestinationnode of theconnection, a notification is sentto the

traffic sourcewherea backup pathis activated. In thelattercasea failure event is detected

anddealt with locally, i.e., a “detour” is set up around the failed link/node. On the one

hand, the path-based approachworks well in seeking out an end-to-endresource-efficient

backup path, andthis backup pathcanbe madefailure independent, i.e., link-disjoint (or

node-disjoint) from theprimary path,thusall thepotential failureson theprimarypath can

beprotectedby this backup path. However, to activatethis backup pathincurs end-to-end

signaling andthusa longer responsetime. On theotherhand, link-basedapproachmaynot

beableto establish theoptimalprotectionpathfrom anend-to-endperspective,andit may

require “f ailure isolation”, i.e., the identification of the failed link/node,but the speed at

which a backup is setup is muchhigher.

In this chapter, we proposea novel link metricandseveraldistributed routing algo-

rithms that maximizewavelength “sharing” amongindependent protection paths. We for-

mulatetheproblem in thelink-based restorationcontext, thenextendtheproposedscheme

to a generic node-basedapproach.Thegoal is to devisea generic algorithm thatefficiently

exploits the potential sharing opportunities amongthe protection paths assuming no con-

current protection paths needto be activated. Thesealgorithms support on-demandpath

computation, so informationabout the completetraffic demands is not required. In prac-

tice, theproposedalgorithmscanbeeasily implementedasanextension of theexisting IP

routing protocols,e.g.,openshortestpath first (OSPF).Theprotectionpathsareoptimized

to reducethewavelengthredundancy while working/primary pathsareassumedto berouted

using minimum-hop paths. This separateoptimization of theworking andprotection path

is a design choice we made. It is partly motivatedby [50], whereit wasshown that joint

working/protection pathcomputationsignificantly complicatesthepath computationswith

only marginal gain in the performance. We leave to future study the investigation of the
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impactof this design choice.

In Section4.2we formulate two integer programswhich capture the ideaof wave-

length sharing in protectionpathcomputation. Several observations aremadeto motivate

the design of our distributed algorithms. In Section4.3 we introduceour “bucket-based”

link metricsand the corresponding routing algorithms. A modification to the link-based

restoration mechanism, termed“node”-basedrestoration, is alsodiscussed. In Section4.4

we present simulation results andevaluatethe performanceof the proposedsolution. We

concludethechapter with future directionsin Section4.5.

4.2 Problemsetup

Let usconsider a WDM network Ú �$Û � t % , where Û is thesetof nodesand t is thesetof

links. Supposethere existsa setof demands Ü which requestlight-pathsto beestablished

across thenetwork. Thesedemandsareprotectedby link-basedrestoration, i.e., eachlink� l`�{Ý % on theworking pathof demand�¤� Ü is protectedby analternative pathconnectingl and Ý . Let � ¼ ; .	Þ Ô ? denotethenumberof wavelengthsreservedon link � l0�{Ý % in orderto carry

thetraffic of demand� . Similarly let � ; .	Þ Ô`Þ ¼�?;½ß Þ
� ? bethenumber of wavelengthsreservedon link� É � �à% for demand� in caselink � l0�{Ý % fails. Hence� ¼ ; .	Þ Ô ? and � ; .	Þ Ô0Þ ¼3?;>ß Þ

� ? denote therouting of

working andprotection paths respectively. We make thefollowing assumptions:

² Thetraffic demandsarein theform of unit wavelength requests. i.e., � ¼ ; .	Þ Ô ? � ^ # � p _
and � ; .ÏÞ Ô`Þ ¼�?;>ß Þ

� ?
� ^ # � p _ .

² Theworking pathof � (i.e., � ¼ ; .	Þ Ô ? ) is determinedby theminimum-hoppath.

² Thenumber of wavelengthson eachlink is unconstrained.

² Only single link failure mayoccur at any instanceof time.

Theobjective of a protectionrouting algorithm is to determinetheprotectionpaths

for every � suchthatthetotal number of wavelengthsreservedfor protection is minimized.
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This canbeformulatedasanoptimization problem:

��  � ^ �
;>ß Þ

� ?$á\â�ã ;>ß Þ
� ?

_
subjectto:

�
�

� ; .	Þ Ô`Þ ¼�?;½ß Þ
� ?

E �
�

� ; .ÏÞ Ô`Þ ¼�?; �
Þ ß�? ' äåååæ

åååç
� ¼ ; .	Þ Ô ? É ' lE � ¼ ; .	Þ Ô ? É ' Ý# Ééè' l0� Éêè' Ý

� (4.1)

ã ; .	Þ Ô ?;>ß Þ
� ?

' �
¼ � ; .	Þ Ô`Þ ¼�?;½ß Þ

� ? � (4.2)

ã ;>ß Þ
� ?

¸
ã ; .	Þ Ô ?;>ß Þ

� ? � (4.3)� ; .	Þ Ô`Þ ¼�?;>ß Þ
� ?

� ^ # � p _ � (4.4)� ; .	Þ Ô`Þ ¼�?; .	Þ Ô ? 'Z#³+ (4.5)

Theconstraint (4.1) is relatedto flow conservation on theprotection path. In (4.2),

ã ; .	Þ Ô ?;½ß Þ
� ? is theamountof traffic on link � l0�{Ý % thatwill bemovedto link � É � �à% if link � l`�{Ý %

fails. To take into account the reservation sharing amongnon-concurrent failuresand to

ensure enough wavelengthsarereserved for any link failure, ã ;>ß Þ
� ? needs to be reserved

on link � É � �à% , i.e., (4.3)mustbesatisfied.

This problem formulation fits well into a centralizedmanagementparadigm where

the Network ManagementSystem(NMS) may optimally configure every protection path,

using the completeknowledge of the demandset Ü . However, suchan off-line algorithm

is not desirablein anenvironment wherethedemands for light-paths arrive anddepart dy-

namically. After all, it is costly to re-configurethewholenetwork whenever traffic demands

change. Instead,anonlineprotection routing algorithm is preferredin a dynamicenviron-

ment.

An onlinealgorithmdeterminestheprotection routing basedontheexisting network

status. Wedonot assumethatall futuredemandsareknown or theexistingdemandscanbe

rerouted.Thustheobjectiveof anonlinealgorithm is to minimizethemarginal wavelength
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requirementsfor eachnew demand�*ë . Supposetheworkingpath � ¼3ì; .	Þ Ô ? hasbeendetermined

by theminimum-hop path. Another optimization problemcanbe formulatedto determine

theprotection path, i.e., � ; .	Þ Ô0Þ ¼\ì~?;>ß Þ
� ? :

��  � ^ �
;>ß Þ

� ?�á3â
� ã ; .	Þ Ô ?;½ß Þ

� ?
_

subjectto:

�
�

� ; .	Þ Ô`Þ ¼ ì ?;>ß Þ
� ?

E �
�

� ; .ÏÞ Ô`Þ ¼ ì ?; �
Þ ß�? ' äåååæ

åååç
� ¼ ì; .	Þ Ô ? É ' lE � ¼ ì; .	Þ Ô ? É ' Ý# Ééè' l0� Éêè' Ý

� (4.6)

í ; .	Þ Ô ?;>ß Þ
� ?

' äæ ç
# if ã ; .	Þ Ô ?;½ß Þ

� ?
W pïî ã ;>ß Þ

� ?p otherwise
� (4.7)

ã ; .ÏÞ Ô ?;>ß Þ
� ?

' �
¼ � ; .	Þ Ô`Þ ¼3ì~?;>ß Þ

� ? � (4.8)

ã ;>ß Þ
� ?

¸
ã ; .ÏÞ Ô ?;>ß Þ

� ? � (4.9)

� ã ; .	Þ Ô ?;>ß Þ
� ?

¸ í ; .	Þ Ô ?;>ß Þ
� ?Tð � ; .	Þ Ô0Þ ¼\ìñ?;>ß Þ

� ? � (4.10)� ; .	Þ Ô0Þ ¼\ì~?;>ß Þ
� ?

� ^ # � p _ � (4.11)� ; .	Þ Ô0Þ ¼3?; .	Þ Ô ? 'Z#³+ (4.12)

In (4.7),
í ; .	Þ Ô ?;>ß Þ

� ? is theadditional wavelength requirementon link � É � �à% if it is usedby � ë to

setupaprotectiondetour for a failureof link � l0�{Ý % . It is determinedbasedonsharing reser-

vationswith otherfailures.For example,if ã ; .ÏÞ Ô ?;>ß Þ
� ?

W p�î ã ;>ß Þ
� ? , noadditional wavelength

reservation for theprotection of link failure � l`�{Ý % is necessary sincea sufficient amountof

wavelengths ã ;>ß Þ
� ? hasalready beenreserved on link � É � �à% . If ã ; .ÏÞ Ô ?;>ß Þ

� ?
' ã ;½ß Þ

� ? , one

additionalwavelengthneedsto bereservedif theprotectionpathfor link � l0�{Ý % is to traverse

link � É � �à% .
Fromthis problemformulation, we notethat (1) determining � ; .	Þ Ô`Þ ¼ ì ?;½ß Þ

� ? is equivalent

to finding the minimum-cost path from l to Ý in the network Ú �$Û � t E ^ � l0�{Ý %`_3% , and(2)

the existing network status can be aggregatedinto ã ; .	Þ Ô ?;½ß Þ
� ? and ã ;½ß Þ

� ? . As a result, the
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(1) (2)

Figure4.1: (1) Sharing;(2) No-sharing.

protection routing problem in WDM networks can draw upon the conventional shortest

path routing algorithms in datanetwork. In the following we proposea novel link metric

thatprovidesthenecessarynetwork stateinformation in anaggregatedform anddevelopan

online protection routing algorithm which fits into thecurrent Internetrouting framework.

4.3 Bucket-basedlink metrics to maximize the sharing on pro-

tection paths

As motivated in theprevioussection,theproblemwearefaced with is to deviseadistributed

online restorationroutingalgorithm thatmaximizesthesharing of resourcesamongprotec-

tion paths. The key contribution we offer, lies in providing a protection schemethat is

(1) bandwidth efficient; (2) computationally simpleandconforming to theexisting Internet

routing framework; and(3) amenable to fast restoration. We proposea link-basedrather

thanpath-basedapproachto enable speedy restoration. We usea shortest-path algorithm

which is simpleandcanbe easily adaptedfrom the current routing algorithmswidely in

useon the Internet, i.e., Bellman-Ford andDijkstra algorithms. As the centerpieceof the

proposal,we design a unique link metric which results in a resourceefficient protection

mechanism.

The key ideaof the proposalstemsfrom the observation that the protection paths
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Figure4.2: Link metrics:buckets

for differentlink failurescanshare theprotection wavelengthssincethesepathsneednot to

beactivated at thesametime,asillustratedin Fig. 4.1. This suggestsanefficient “bucket-

based” link staterepresentation. In thenetwork Ú �$Û � t % , eachlink ©V� t maintains a set

of “buckets”, �&ò 'ó� � �ò � ��� t � � è'�©¿% , asillustrated in Fig. 4.2. Eachbucket � �ò corre-

spondsto a failure on link � , andthe“height” of thebucket, i.e., thevalueof � �ò , indicates

the protectionwavelengths that arereserved on link © for the failure event � . In termsof

the notation introduced in the previoussection, we have thecorrespondence� �ò ' ã ; .	Þ Ô ?;>ß Þ
� ?for link ©�'º� É � �à% and failure �|'º� l0�{Ý % . The wavelengthsthat need to be reserved at

link © equal to the maximumof the bucket heights, i.e., ���3� � � �ò . Thusby maintaining a

sequenceof bucketsindexedby thefailureevents,wecapture thenecessaryinformationon

thesharing potential offered by eachlink. Noticethatthis sharing potential is a function of

the failure event. For example,in Fig. 4.2,Link 4 maintains 3 buckets. Bucket � )ô , corre-

sponding to the failure of Link 2, is the highest. This indicatesthat in orderto protect an

additional wavelengthon Link 2, Link 4 hasto reserve anextra wavelength if it is selected

aspartof the protection route. By contrast, to protectanadditionalwavelength on Link 2

or 3, no extra wavelengthsneedto bereserved.

Equippedwith theproposedlink metricrepresentation,wenow describethecompu-

tational procedurefor determining protection paths. It is a variant of the“shortest-widest”

algorithm. Thepseudo-code is exhibitedin Fig. 4.3. We definethe“width” © ã l S / � �$©ª¡`� ë %
of a link © with respectto a failureevent � ë , asthenormalizeddifferencebetweenthemax-
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imum bucket height, ���3� � � �ò and the bucket corresponding to link failure �0ë , � � ìò , i.e.,© ã l S / � �$©ª¡`��ë<%T' p E r<õ ìö÷Gøªù õ r õö if ���3� � � �ò � # , and © ã l S / � �$©ª¡`�³ë�%T'k# otherwise.Observe

that the © ã l S / � �$© � � ë % is between0 and1, andthis valueindicatesthe sharing capability

that link © hasto offer for theprotection of thefailure � ë .
WeuseamodifiedBellman-Fordalgorithm[73] to identify thewidestpathsbetween

theendnodesof theprotectedlink, i.e., thepathsthat offer themostsharing. Herethewidth

of thepathú with respect to a link failure �
ë , ú ã l S / � � úà� ��ë�% , is definedto betheminimum

of its link components,i.e., ú ã l S / � � ú ¡`�\ë<%Vû>' ��  � ò á
ü © ã l S / � �$©ñ¡`��ë3% . Observe thatby this

definition we implicit ly establish that the marginal costof traversing a path is dictated by

thatof the“narrowest” links alongthepath.

In the event that therearemorethan onesuchwidestpaths, and their widths are

all 0 (i.e., thesepaths all go through at least onelink with non-zeromarginal wavelength

consumption), weselect theonethattraversestheleastnumberof “exhausted” links, i.e., the

links of width 0. In all othercasesof tie breaking with positivepathwidth, i.e., themarginal

costsare zero, we randomly select one with widest path. Notice that this is obviously

a locally optimal scheme. In other words, given only the current demandand without

any knowledgeabout the future arrivals, the protection pathwe comeup with is the most

efficient in util izing thesharingopportunities.SeeFig. 4.3for theshortest-widestalgorithm

we useto compute theprotection paths.

4.3.1 Highlights of the proposal

In Section 4.4 we will evaluate the effectivenessof our proposal via simulation. Let us

summarize its desirablefeaturesat this point:

² This procedure solvesthe optimal on-demandprotectionproblem we formulated in

Section 4.2. In the sequel, its performanceimprovement over a baseline scheme is

demonstrated in termsof thereduction in wavelength redundancy.

² This proposalconforms to the existing Internet routing framework. In particular, it
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function routing-protection(Ú �$Û � t % � £ � / � ý �$þ�% )
inputs:Ú '��$Û � t % : a network;Û : thesetof nodes of Ú ;t : thesetof links of Ú , alsothesetof failureevents;£ : sourcenode in Û ;/ : destinationnode in Û ;ÿ��

: a vectorlink metricassociatedwith link ©¥� t ,ÿ ò 'u� � �ò �`� )ò � 7C7C7 � �ò � 7C7C7 � � ���ò � ��� t � � è'Z©¿% ;� �ò : thewavelengthsreservedon link © , for theprotection of failure � ;
returns:
working path » ��£ � / % andassociated protection paths ú v ©Ïz for all links©¥� » ��£ � / % .

1. » ��£ � / %¥'�2
Â É ú �"/~} ã Â » � l ��� ú�� / � ��£ � /0% .
2. for eachlink � ë � » ��£ � / %
3. £ �XÂ S } '�£�Â3� » 2C}&����ëN% , S �XÂ S } '�}C� S ����ëN% .
4. £ �XÂ S } performsthefoll owing:
5. for each link © � t
6. © ã l S / � �$©ª¡`��ë�%¥' p E r õ ìö÷Gøªù õ r õö
7. endfor
8. © ã l S / � ����ë\¡`��ëN%G' E p ; // “remove” link � ë
9. � ã l S }<£</ ú�� / � £ � ã l S }�£N/ ã l S / � %
10. '�2
Â É ú �"/~} ã l S }�£N/ ú�� / � £���£ �XÂ S } � S �XÂ S }�% ;
11. if y y ã l S }�£N/ ú�� / � £�y y � p � � S ã l S }<£</ ã l S / � '�'Z# then
12. for eachú � ã l S }<£</ ú	� / � £
13. 2 v ú z�'Z2iÂ��"��/ £ � /ª� »
� / } S � ú %,¡
14. endfor
15. ú v ��ë,z�' ��  � ü 2 v ú z ;
16. elseif y y ã l S }<£</ ú�� / � £³y y � p � � S ã l S }�£N/ ã l S / �a� # then
17. ú v ��ë0z�' »
� � S Â É £�}<©�}N2
/i� ã l S }�£N/ ú�� / � £3%,¡
18. else
19. ú v � ë z�' ã l S }<£</ ú�� / � £ ;
20. endif
21. endfor

Figure4.3: Routing-protection: a shortest-widestalgorithm
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is easyto modify Dijkstra or Bellman-Ford algorithms to implement our shortest-

widestalgorithm. Theamount of link states ( � �0y t y ) % ) is proportional to theproduct

of the number of links andthe numberof failures1, not the number of light paths,

andhenceis manageable in practice. In particular, onecanimplement ourbucket link

metricvia “opaqueLSA (Link StateAdvertisement)”, anOSPFoption[7]. Moreover,

wenotethatthelink statesaresetup in awaythat is flexible enoughto accommodate

failuretypesother thanlink failure,e.g., nodefailures.

² One feature of this proposal is the association betweenthe link state/cost and the

failure event. For the protection routing of different failure events, oneis presented

with different network topology andlink states. Similarly, asnetwork stateevolves

with connections arriving to (and departing from) the network, one might have to

establish different protection paths for the protection of the samelink failure. Our

proposalexploits this feature to locate theprotection paththat incursleast marginal

costfor a particular link failure at a particular instance of time. It is easyto extend

our schemeto encompassfurther considerations, e.g., excluding paths that traverse

too many hopsandthustake too muchtime to activate whena failure occurs.

4.3.2 A generalization: node-basedprotection

In the previous section we introduced a “bucket”-basedlink metric anda corresponding

shortest-widest routing algorithm. Thestudy is setin the context of the link-basedfailure

detection, i.e., we assume the loss of the optical signal is caused by a link failure. The

implication, in relation to our routing/protection design, is thatwe construct theprotection

paths that are constrained to go from one end of the protected link to the other end, as

illustratedin Fig. 4.5-1.
1The number of failuresis equalto numberof links in a link-basedprotectionscheme.As a comparison,

for a path-basedprotectionschemesbasedon the notion of buckets,whereworking pathsbetweena source
anda destinationarefixed, e.g., minimum-hop paths. The numberof protectionlink statesthat needsto be
maintainedis ��
�� ����� ��� Ä�� .
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Figure4.4: (1) Link-basedcomputation;(2) Node-basedcomputation.

We observe that this design possessessomeobviousmerits,especially the locality

of the restoration operation. However, it is alsoworth noting that restoration efficiency is

negatively impacted by thischoice. By constructing detoursfrom oneendof thefailurelink

to the other end,even whentraversing demandsaredestined to different nodes, the group

of restoration pathsmay unwittingly clog the “local area” andunder-utilize the potential

sharing capability in the network. Fig. 4.4 illustratesthe problem: the working pathof 2

demands sharelink � �"� í % , but diverge to node 2 andnode
S

respectively. With link-based

restoration, theprotection paths for both demands have to go from node � to node
í
. This

maynot bedesirable.Alternatively, if we setup these protection paths suchthat they start

from node � , but endat node 2 andnode
S
, there is a better chance to exploit “network-

wide” sharing potential. Fig. 4.5-(2) illustratesa different restoration mechanism, where

the protection pathfor a given link ends at the nodetwo hopsaway on the corresponding

working path. Wecall this “node”-basedrestoration. For example,for theprotection of link� �"� í % , insteadof going from � to
í
, we construct a protection pathfrom � to 2 . A special

caseis link �$2 � S % , for which the node-basedprotection pathshare the sameendnodesas

their link-based counterparts,since
S

is thedestination andtherearenonodesfurtherdown

theworking path.

From a practical standpoint, we note that the optical cross-connects, depicted in
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Figure4.5: (1) Link-basedcomputation;(2) Node-basedcomputation.

Fig. 4.5astheblacknodes,mayalsocausedisruptedservice whenthey fail, in which case

all the links adjacent to the failed nodewill “f ail” simultaneously. Under this condition,

the construction of the protection pathsfor a particular link should consciously exclude

the links that areexperiencing theproblem at thesametime. Differentiating link or nodal

failurestakestime andcausesundesirable delays in service recovery. In certain cases it is

moreadvantageous to be conservative, i.e., to usethe nodal failure modelas the general

modelof the failure events,andtreatthe single link failure asa special case.The“jump-

ahead” operation proposedabove is well suited for provisioning protection wavelengths in

thiscontext. Fig. 4.6containsthepseudo-codefor thenode-based protection pathcomputa-

tion. Themaindifferencesfrom thelink-based algorithmare:(1) To enablethenode-based

operationsweneedto maintain afunction ��} � / © l ����� ú�� l % atnode £<Â3� » 2C}h� l % whichoutputs

the link that is right next to link l on the path ú , if sucha link exists. (2) As highlighted

in Fig. 4.6, themajormodification to thealgorithm in Fig. 4.3 lies in lines4 and5, where

we“jump ahead” to identify theendnodeof theprotection path.Unlike theschemein Fig.

4.3,wheretheprotection pathis constrainedto go from oneendof theprotectedlink to the

other, in Fig. 4.6we start theprotection pathat oneendof theprotectedpath, but endit at

thenodes two hopsaway, if sucha nodeexistson theworking path.
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function node-routing-protection(Ú �$Û � t % � £ � / � ý �$þ�% )
inputs:Ú 'u�$Û � t % : a network;Û : thesetof nodesof Ú ;t : thesetof links of Ú , alsothesetof failureevents;£ : sourcenode in Û ;/ : destinationnode in Û ;ÿ ò : a vector link metricassociatedwith link © � t ,ÿ ¬ '�� � �¬ �`� )¬ � 7C7C7 � . ¬ � 7C7C7 � � ���ò � l � t � l è'�}�% ;� �. : thewavelengthsreservedon link l , for theprotectionof failure � ;
returns:
working path » ��£ � /0% andassociatedprotection paths ú v ©Ïz for all links ©¥� » ��£ � /0% .

1. » ��£ � /0%G'Z2iÂ É ú �"/~} ã Â » � l ��� ú�� / � ��£ � / % .
2. for eachlink ©¥� » ��£ � /0%
3. £ �XÂ S } '�£�Â3� » 2C}&�$©¿% , S �XÂ S } '�}C� S �$©�% .
4. if

S �XÂ S } è'Z/ then
5.

S �XÂ S }�'�}N� S �	��} � / © l ����� » ��£ � / % � ©¿% .
6. endif
7. £ �XÂ S } performsthefoll owing:
8. for eachlink © Ð�� t
9. © ã l S / � �$©ÏÐÏ%¥' p E r öö �÷Gøªù : r ö:
10. endfor
11. © ã l S / � �$©¿%�' E p ;
12. if

S �XÂ S } è'(/ then
13. © ã l S / � �	��} � / © l ����� » ��£ � /0% � ©�%T' E p ;
14. endif
15. � ã l S }<£</ ú	� / � £ � ã l S }<£</ ã l S / � %G'�2
Â É ú �"/~} ã l S }�£N/ ú�� / � £h��£ �XÂ S } � S �XÂ S }3% ;
16. if y y ã l S }�£N/ ú�� / � £³y y � p � � S ã l S }<£</ ã l S / � 'ï'Z# then
17. for eachú � ã l S }<£</ ú�� / � £
18. 2 v ú zÁ'�2
Â3�"��/ £ � /ñ� »
� / } S � ú %,¡
19. endfor
20. ú v ©ÏzÁ' ��  � ü 2 v ú z ;
21. elseif y y ã l S }<£</ ú�� / � £�y y � p � � S ã l S }�£N/ ã l S / �a� # then
22. ú v ©Ïz�' »
� � S Â É £3}N©�}N2
/C� ã l S }<£</ ú	� / � £\%,¡
23. else
24. ú v ©Ïz�' ã l S }�£N/ ú�� / � £ ;
25. endif
26. endfor

Figure4.6: Node-routing-protection: a modifiedrouting-protection algorithm
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4.4 Performanceevaluation

In order to evaluate the performanceof our proposal for protection pathrouting, we per-

formeda numberof simulations. In the following we present our results associatedwith

the network topology shownin Fig. 4.7 [38] andFig. 2.8. Unlessspecifically indicated,

thesource andthedestination nodeof the traffic demandsaredistributed uniformly across

nodes in thenetwork. Thedemands arrive in sequenceandareroutedoneat a time. Each

demandrequestsonewavelength. Wemeasure the“redundancy”, i.e., theratio betweenthe

numberof protectionwavelengthsandthatof theworking wavelengths,andplot it against

anincreasingnumberof demandsin thenetwork (on thelog-scaledx-axis). As areference,

wesolvedtheinteger programformulatedin Section4.2. Weareableto obtain thesolution

for 100 demands. For 15-nodenetwork, the redundancy is 61%. We arenot ableto solve

for larger number of demands dueto the inability of CPLEX[5] andbonsaiG[29] to deal

with larger-sized problems. Note that if further incoming demands aremerelyrepetitions

of thefirst 100demands,then thesolution for the integerprogramwill staythesame,i.e.,

61%. As it stands we think it is sensible to extrapolate this value asanapproximation for

the ideal off-l ine performancewith larger numbersof demands. As a reminder, we note

thatthis is asolution thatassumescompleteknowledgeof all thedemandssoit only serves

asa lower boundfor the performanceour distributedonline algorithm might achieve. We

compare our proposalanda baselineonlinealgorithm, which protectseachlink along the

working pathby a detour of minimumhopcount. We will seein thesequel thatasweshift

theproblemdomaininto theonline context, thebaseline protectionschemeexhibits signif-

icant increasesin redundancy. Our proposal is a worthwhile effort to push theredundancy

valuetowardthatof theidealoff-li nesolution.

4.4.1 Performanceimpr ovementover the baseline

Wefirst evaluatetheperformanceof ourproposalagainst thebaseline algorithm. Thebase-

line algorithmoperateswithout using theaggregatebucket informationasourschemedoes,
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Figure4.9: Performanceevaluation: NSFnet

hence providesa legitimate referenceto (1) demonstrate the dramaticincreasein wave-

length redundancy whenwe shift theproblem domainfrom off-l ine computation to online

computation, and(2) evaluate the impact that the additional bucket stateinformation has

on the overall wavelength util ization. We observe from Fig. 4.8 that a significant reduc-

tion in redundancy is obtainedby introducing thebucket link states. In addition, we seea

near-constantcapability of our approachat realizing thenetwork’s sharing potential, when

it is sufficiently loaded, i.e., around 75%protection wavelength redundancy for a 15-node

network.

4.4.2 Impact on performanceof the demandstructure

The demandsin the previoussection weredrawn randomly from the (source,destination)

space. It is interesting to study thechange in the performanceif demands exhibit locality.

In particular, wearemotivatedto investigatetheeffect of thedifferent demandlocales,i.e.,

whether they are“remote”or “co-located”. In thissectionwerespectively arrangefor all the
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Figure4.10:Remotevs. co-located:15-nodenet

demandsourcesanddestinations to be(1) at least3 hopsapart,or (2) at most2 hopsapart.

Fig. 4.10and4.11 indicate that whenthe sourceandthe destination arerelatively remote

from eachother, thewavelengthredundancy, i.e., theratio of thewavelengthsusedto protect

and thoseusedto carry primary traffic, is higher. This suggeststhat there exists larger

potential for wavelength sharing whenthe traffic aremoreco-located. This makessense

sincefor the links that areclose-by, their protection pathsaremore likely to go through

samesetof links, thussharing a commonsetof wavelengths.

4.4.3 Using iterations to impr ove the solution quality

An interestingindicator of the quality of our proposedrouting approach,is the degreeof

sharing potential that hasnot beenutili zedafter we configure theprotectionpaths. By al-

lowing iteration, or re-routing of theprotectionpaths, wecanmeasure thedegreeof unreal-

izedsharing opportunities. The“iteration” heresimply meansweallow there-computation

of therestoration pathswith renewedaggregatenetwork information,i.e., bucket link states,

reflecting theresults of theprevious(protection) routing computation. It is possibleto find
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Figure4.11:Remotevs. co-located:NSFnet

a better protectionpathfor a particular demand by running iterationssincein sodoing we

approachtheoffline solutionswith complete knowledgeof whatother protection demands

wererouted. Thedegreeof the improvement indicateshow closeto (local) optimality the

initi al configuration is. The smallerthe improvement,the higher the quality of the initial

configuration.

demands# workingwavelengths ite-0 ite-1 ite-2 ite-3
100 222 202 194 194 194
1000 2174 1687 1665 1665 1665
12800 28220 21588 21531 21531 21531

Table4.1: Iteration: 15-nodenetwork

demands # working wavelengths ite-0 ite-1 ite-2 ite-3
100 232 242 226 226 226
1000 2313 1969 1951 1951 1951
12800 29995 24867 24829 24829 24829

Table4.2: Iteration: NSFnet

Tables4.1 and4.2 demonstratethat we obtain a marginal amountof reduction in
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Figure4.12:Link-basedvs. node-based,15-nodenet

wavelength redundancy with oneiteration,andthe iterations after that do not improve the

performance. For example, in the caseof 1000 demands, the first iteration reducesthe

protection wavelengthconsumptionby 22 units, a mere1.3%decrease. Moreover, further

iterations make no additional improvement. Thus it is justified to statethat our routing

schemeis ableto realize almost all of thesharing potential during its first run.

4.4.4 Performanceevaluation: node-basedvs. link-based algorithms

In Fig. 4.12and4.13we compare the performanceof the link-basedandthe node-based

schemes. The reduction in the redundancy is evident whenwe apply the node-based pro-

tection mechanism. In particular, a 7% reduction in wavelength redundancy is achievedby

switching from a link-basedto anode-basedschemewhenusingourproposedlink metrics.

Observedthe lowesttwo curvesin Fig. 4.12. This validatesour intuition thata relaxation

on thedestination nodesallowsfor themorediversified search for thebestprotectionpaths,

which leadsto a better utilizationof the“network-wide” sharing potentials.
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4.5 Summary and discussion

In this chapter we exploreda novel design for routing algorithmsthataimsto provideeffi-

cientfailureprotection in WDM networks. Thekey ideaof the“bucket”-based link metrics

canbeapplied to a range of restorationmechanisms,including link-based,node-based, or

path-basedapproaches. We evaluatedtheeffectivenessof this proposalvia simulation and

the results arepromising. In the future we will look into the various issuesthat may im-

pactthe performanceof our scheme. In particular, we intendto explore possible waysof

improving thecoordinationof theprotectionpathcomputation, probablyamongtheprotec-

tion requests thatareiniti atedby thesameworking path. Thetrade-off between link-based

andpath-based protection schemesis theoretically interesting andpractically useful. The

benefit of joint working/protectionpathdesign, or the lack thereof, hasnot beenstudied

hereandwarrants further investigation.

Our work in this chapter mainly focusedon provisioning protection wavelengthsin

WDM networks. We assumethe WDM network canprovide full y dynamic reconfigura-
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tion suchaslight-pathswitch-over upona failure event. This may or may not be feasible

in practice. Indeed, it is often the casethat there exists a number of overlay/virtual net-

works running higher-layer protocolssuchasSONET/ATM/IP/MPLS on top of physical

WDM infrastructure. Thesehigher-layer networks maybeequippedwith their own failure

recovery mechanisms. Froma protection/restoration’s perspective this is beneficial in that

certain failurescanbe captured anddealtwith in multiple layersandthusareunlikely to

stayunattendedfor long andcause significant performancedegradation. However, without

furthercoordination thefailuresmight “propagate” up theprotocol stack,e.g., afiber cut at

the WDM layer cancausemultiple link failuresat the IP/MPLSlayer, sincea WDM link

might be mapped into multiple links at the overlay layers. To alleviate this problem, we

needto eithermake lower level failures invisible to higher level networks[20], or jointly

design network routing at both higher and lower level networks [14], or design network

overlays sothatthepossibilit y of failurepropagation is eliminated[10]. In thespecific con-

text of thework presentedin this chapter, i.e., provisioning resourcefor failure protection,

thisamountsto aneedto account for multiple failures/alarmsif theprotection is considered

at a certain overlay layer. Thenotion of bucket metricsis generic sinceeachbucket corre-

spondsto a failureevent,not necessarilyaspecific link/node/path. Henceourapproachcan

beadaptedto theprotectionof any typeof failurecombinations. Evidently, it is nota trivial

taskto identify thesetof failuresthatmight happen andneeds to beprotectedagainst in a

layerednetwork, andthis warrants further research.

In this chapterwe establish theprotection pathsastheworking pathis constructed,

using thecurrent resourcesharing information expressedin theform of buckets.Whenthe

connections finish their sojourn the corresponding light pathsneed to be torn down and

the corresponding working andprotection resourceswill be returnedto the network. In a

dynamic environment whereconnectionscomeandgo theresourcereservedfor protection,

i.e., the height of the highest bucket, varies over time. A protection path that is “free-

riding” at its setup time, i.e., theonewhich neednot reserve wavelength on a given link it
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traversessinceit cansharetheprotection resourcewith otherongoing protection requests,

might becomethe only onereserving the protectionresource whenother protection paths

aretorn down. Henceit seemsbeneficial to incorporate certain prediction capability into

theprotection provisioning mechanism soasto minimizethecost of protection for a given

connection, not only at the time it arrives at the network, but during its sojourn in the

network. The predictive mechanism suggested in the previous chapter, or other simple

schemesaccounting for the changein the sharing potentials at a given link, might help in

this exploration.
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Chapter 5

Conclusions

In this dissertation we studydynamicnetwork routing problems.We take a flow level per-

spectiveof thenetwork traffic anddesign routing schemesto achievevariousnetwork-wide

and/or user-centric performanceobjectives.In particular, weconsiderrouting asadynamic

decision-making processthatnot only respondsto but alsoimpacts thenetwork condition.

A well-devisedrouting schemeshould try to satisfy an incoming user’s QoSdemandand

limit the negative impacton the performanceof the ongoing andfuture demands. To this

endwe identify anumber of distinct operating regimesin which routing decisions,userde-

mandsandnetwork statesinteract. Weproposerouting schemesbasedonthecharacteristics

of theseoperatingregimes.

In anoperatingregimewheretraffic demandsarebursty andnetwork states fluctu-

atein a highly dynamic fashion, we examine the performanceof the dynamic single path

routing schemebasedon advertisedlink load information. We observe thatalthougha dy-

namicrouting schemeshould respondto theadvertisedlink states in orderto avoid network

congestion, anunwiserelianceonoutdatedlink stateswill leadto degradednetwork perfor-

mance.Weproposeto addressthis problemby usingadynamicmulti-path routingscheme,

which dispersesthetraffic flows between a source anda destinationover a setof leastcon-

gested paths. We analyze the critical issueof how to select the setof pathsover which to

dispersetraffic, andprovide insightson theperformanceof this schemein ameshnetwork.
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Wefind our dynamicmulti-pathrouting schemeis quiterobustto variousoperatingparam-

etersandoffers consistentperformanceimprovement over a baseline single path routing

scheme.Our finding, along with recent work in [66, 44] thataim at approximating optimal

routing performance[11, 35], confirmsthat it is feasible to usedynamic multi-path rout-

ing schemeto improve routing performancewhennetwork statesaredynamic andtraffic

demands arebursty.

In anetwork environmentwherenetwork statesanduserdemandsevolveonamod-

esttimescale,wedesign routing schemesthatjointly consider flow properties, suchasflow

holding times,andnetwork properties, suchasthe averagelink loads andmeanreversion

for theloaddynamics.We show that in somecaseswe canimprove boththenetwork-wide

andthe user-perceived performance.The improvements aredueto: (1) the predictability

of network state,thusonecandevise routing mechanismsthat exploit it to benefit system

performance,and(2) theadvantages thatcanbegleanedby designing routing schemesthat

improve users’ performanceduring their sojourn in thenetwork, rather thanat the time of

arrival. We realize theseideasby modeling the link load dynamics androuting incoming

flowssothatduring theirsojourn in thenetwork they seeminimalaverageloads. As aresult

flows not only experiencegood performance, but alsodeliver leastnegative impacton the

performanceof otherongoing (andfuture) flows. By simulation we show thatour routing

schemeleads to a fair andefficient sharing of thenetwork resources.

Our design strategy for protection pathrouting is quite different from theworking

path routing, both in termsof its objectives and algorithms. For protection routing the

objective is to provide 100% failure protection so that when certain failures occur there

will beenough sparecapacity to allow for there-routing of thetraffic with minimal service

disruption. This requires protectionpaths to be link or pathdisjoint from the associated

working paths, therefore limiting the design space of the protection routing. We observe

thata link-based protection pathis restrictedin selecting its “detours” around failure links,

but it canshare the protection resourceswith protection paths for other links. We identify
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a routing metric thatcapturesthesharing potential in thenetwork andrepresentit by a set

of “buckets” maintainedat each link in thenetwork. This representation,andits associated

routing algorithms,areshown to result in protection pathswith minimal marginal cost, and

significantly reducethe numberof wavelengthsneeded for failure provisioning. We note

that this link metric is alsoapplicableto path-basedandnode-basedprotection/restoration,

andmaybeextendedto account for not only theinstantaneousmarginal costof protection,

but alsothe“time-averaged” cost of sharing protection resourcesin thenetwork.
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[45] L. Massoulié andJ.Roberts.Bandwidthsharing: objectivesandalgorithms. In Proc.

IEEEInfocom, pages 1395–1403, 1999.

[46] N.F. Maxemchuk. Dispersity routing. In Proc.ICC’75, pages41.10–41.13,June1975.

[47] N.F. Maxemchuk. Dispersity routing on ATM networks. In Proc. IEEE Infocom,

volume1, pages347–357,1993.

[48] SteveMcCanne. ScalableCompressionandTransmissionof InternetMulticastVideo.

Ph.D.Thesis,Universityof California at Berkeley, 1996.

[49] DebasisMitra, JohnA. Morrison, and K. G. Ramakrishnan. ATM network design

andoptimization: A multiratelossnetwork framework. IEEE/ACM Transactions on

Networking, 4(4):531–543,August1996.

[50] K. MurakamiandH.S.Kim. Optimal capacity andflow assignmentfor self-healing

ATM networks basedon line andend-to-endrestoration. IEEE/ACM Transactionson

Networking, 6(2):207–221,1998.

[51] S.Nelakuditi, Z. Zhang, andR.P. Tsang.Adaptive proportional routing: A localized

QoSrouting approach. In Proc. IEEEInfocom, pages1566–1575, 2000.

[52] V. Nguyen. On theoptimality of trunk reservationin overflow processes.Probability

in theEngineering andInformational Sciences, 5:369–390, 1991.

[53] S. Plotkin. Competitive routing of virtual circuit in ATM networks. IEEE JSAC,

13(6):1128–1136, August1995.

104



[54] Bellcore SpecialReport. Digital cross-connectsystems in transport network surviv-

ability. SR-NWT-002514, issue1, 1993.

[55] R.Gibbens,P. Hunt, and F. Kelly. Bistability in a communications network. In

G. Grimmett,editor, Disorder in Physical Systems, pages 113–128. Claredon Press,

1990.

[56] H. Sakauchi, Y. Nishimura, andS. Hasegawa. A self-healingnetwork with an eco-

nomical spare-channel assignment.In Proc. IEEEGlobecom, pages 438–443,1990.

[57] A. Shaikh, J.Rexford, andK. Shin. Load-sensitive routing of long-livedIP flows. In

Proc.ACM Sigcomm, volume29,1999.

[58] ScottShenker. Fundamentaldesignissuesfor thefutureinternet. IEEEJ. Select. Areas

Commun., 13(7):1176–88, Sept.1995.

[59] S.SibalandA. DeSimone.Controlling alternaterouting in general-mesh packet flow

networks. Proc.of SIGCOMM94, pages168–179, 1994.

[60] I. StoicaandH. Zhang.LIRA: anapproachfor service differentiation in the internet.

In NOSSDAV, pages 115–128,1998.

[61] K. Struyve, P. Demeester, L. Nederlof, and L. Van Hauwermeiren. Designof dis-

tributed restoration algorithms for ATM meshed networks. In Proc. IEEE 3rd Symp.

on Commun.andvehicular tochnology, pages128–135, Oct.1995.

[62] C.-F. SuandG. deVeciana. Onstatistical multiplexing, traffic mixesandVP manage-

ment. In Proc. IEEEInfocom, 1998.

[63] S.R.E. Turner. Theeffect of increasingrouting choiceonresourcepooling.Probability

in theEngineering andInformational Sciences, 12:109–124, 1998.

[64] C. Villamizar. MPLSOptimizedMultipath (MPLS-OMP). InternetDraft, Nov. 1998.

105



[65] C. Villamizar. OSPFOptimizedMultipath(OSPF-OMP). Internet Draft, Feb. 1999.

[66] S.Vutukury andJ.J.Garcia-Luna-Aceves.A simpleapproximationto minimum-delay

routing. In Proc.ACM Sigcomm, pages 227–238,1999.

[67] Z. WangandJ.Crowcroft. Analysis of shortest-path routing algorithmsin a dynamic

network environment. ACM ComputerCommunication Review, 22(2):63–71, April

1992.

[68] Z. WangandJ. Crowcroft. Quality-of-service routing for supporting multimedia ap-

plications. IEEEJSAC, 14(7):1228–35, Sept.1996.

[69] T.H.Wu. A passiveprotectedself-healing meshnetwork architectureandapplications.

IEEE/ACM Trans.Networking, 2(1):40–52, 1994.

[70] T.H. Wu. Emerging technologiesfor fiber network survivability. IEEEComm.Maga-

zine, pages58–74, Feb.,1995.

[71] C.H. YangandS. Hasegawa. Fitness:Failure immunization technology for network

servicessurvivability. In Proc. IEEEGlobecom, pages1549–1554, 1988.

[72] S. YangandG. de Veciana. Sizebased adaptive bandwidth allocation: Optimizing

theQoSfor elastic flows. In Proc. IEEEInfocom, 2002.

[73] J.Y. Yen. Finding the k shortest looplesspaths in a network. ManagementScience,

17:712–716, 1971.

106



Vita

Xun Suwasbornin Leshan,ChinaonMay 5,1972, thesonof Yunshang ZhengandGuang-

ping Su.Hegraduatedwith aBSEEfrom University of Electronic ScienceandTechnology

of China in 1992. He earned his MSEE from SoutheastUniversity, China in 1995, with

a focuson ComputerVision andPatternRecognition. He entered University of Texasat

Austin in September, 1996andjoinedDr. Gustavo deVeciana’snetworking researchgroup

in Spring1998. He concludedhis researchat UT Austin in August2002 with a focus on

network routing algorithmsandobtaineda PhDin Electrical Engineering.

Permanent Address:7401North Lamar, #314, Austin TX. 78752

This dissertation wastypesetwith LATEX 2� 1 by theauthor.

1LATEX 2� is an extensionof LATEX. LATEX is a collectionof macrosfor TEX. TEX is a trademarkof the
AmericanMathematical Society. Themacrosusedin formattingthis dissertationwerewritten by DineshDas,
Departmentof ComputerSciences,TheUniversityof TexasatAustin,andextended by BertKay andJamesA.
Bednar.

107


