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In this dissetation we study flow-baseddynamic routing schemes. We proposerouting
schamesto achieve good network level perfoomancesuchasflow blocking rate anduser
level performancesuchasflow throughput The desiq principle is to route a flow sothat
we cansatisly its Quality of Service(QoS)requrement andminimize the negative impact
of therouting ontheperformanceof currentandfuture flows of thenetwork. To thisendwe
identify anumbe of opemtingregimesin which userdemand, network states, androuting
decisonsinteract. We propcsedifferentrouting mechansmsbasel ontheuniqueproperties
of theopeatingregimes

For the networks opematingin aregimein which link statesarehighly dynamic and
traffic demans are bursty, we proposea dynamic multi-path routing scheme to disperse
traffic betweena sourceandadesthation We invesigatethe critical issue of how to seled
the setof leastcongestedpatts over whichto dispeasetraffic, andexaminethe perfomance
of this routing schemein a meshnetwork. The performanceof our dynamic multi-path
routing schane is quite robust with resgect to various operding parametes andit offers

consstentperformancamprovementover the baselne singe pathrouting scheme.
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We then study dynamic routing schemesn the networks where network states
evolve on a modesttimesale which allows a userto predict its perfoomanceduring its
sojaurn in the network. We modelthe link load dynamics and proposea routing scheme
thatjointly consderthe current link load, the flow holding time, the average link load and
meanrevergon for the load dynamic. This routing schemeis bendicial for a rangeof ap-
plicationswhereefficientfair-sharingof the excessnetwork resoucescanimprove network
anduserperformance We show our routing scheme,desgnedto improve uses’ average
perfoomanceduring their sojourn in the network, indeed leads to an efficient fair use of
network resouces.

We also invegigate routing algarithms for providing failure protection. The ob-
jective is to efficiently provision network resoucessothatwhencertainfailuresoccu we
canre-route the affected traffic with minimal service disruption. We observe thatwhile a
protection pathfor a given failure is congrainead sinceit hasto selectits detoursarourd
thefailure,it cannondheles shae the protectionresouceswith protedion paths for other
failures.We identify arouting metricwhich effectively capguresthe sharng potertial in the
network. This routing metric andthe asseiatedrouting algolithms, are shavn to provide

failure protectionwith significantly reduwcedresouceredundang.
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Chapter 1

Intr oduction

In orderto provide endto-end quality of servie (QoS) gualanteesto uses, future net-
works arelikely to requre enhancedtraffic control mechaisms. Indeed, the currert best
effort serviee modelemployed in the Internet, though simpleandrobus, is not particularly
well-suited to addessendto-endQoSrequrements Instead,we beliewe thatin orderto
satigactoily meetQoSdemandst is essatial to deploy awell-planned network contrd in-
frastructure including routing, congestion control andpaclket schediling mechansms.One
mightarguethatthe besteffort servicewill sufficeif alargeamountof bandvidth is always
available,i.e., over-provisioned However, we believe thatthe anticipatedonslaught of the
traffic demang, possbly brought on by the popularization of broad-bam accesssenices,
e.g., ADSL andcablemodemwill soafill uparny bardwidthvoid. Moreover, evenif band
width is alundart, theremight still exist aneed to differentiae thelevel of serviceprovided
to varioususers.Thisin turn suggeststhattheimplemenation of asydemof auxiiary traf-
fic control mechansms,sud astraffic classification and advancedouting schemes,will
becaneincreasingly important. A prime exampleof the ongoing efforts in this diredion
is MPLY6], whoseemphass on Traffic Engineeing hascontributed to vigorousreserch
actvity in theQoSdomain e.g., Constrant-basedRoutind9].

In this dissetation we focuson the desgn and perfoomanceevaluaion of dynamic

routing straegies. Specificall, we notethatthe hop-by-hoprouting mechaimsm, now ubig-



uitous in the Internet, is not anideal chaice for developing QoS-avarerouting algarithms
if the QoSguamanteeis to be ensuiredon an end-teendbasis. By contrast, source routing
might be bettersuited to select paths satisfying such QoSreqguests but it requiresthe avail-
ability anddistribution of a large amourt of network stateinformation possbly resuting
in scahbility problems.Moreover, sincethe stateof the network is in constantflux, routers
may have to make routing decisons basa on uncertain stateinformation In particular,
future routing mechaimsmsmay usehierarchical aggegationof stateand/a topdogy infor-
mationto dealwith scaldility issues, naturlly resuting in alossof accuagy. By thesame
token, route's may alsohave incompleteinformation concernirg the chaacterstics of the
users traffic. Indeed, sincetraffic is oftenbestmodelal asa stochasticprocess,thereis a
high degreeof uncetainty in specilying traffic via crude parametic sourcemodelsandthen
trandating thee to anendto-erd QoSguaantee In light of theseobsewations, our goalis
to investigatesoure routing schemedasel on uncetain network andsouce information,
that are gearel toward providing QoS guarantees or improving userexperience by opti-
mizing theresouce usag amongcontending flows. In thefollowing we identfy anumbe
of network opemting regimestha may arisein practice andproposerouting soluionsthat

caterto the distinct chamcterigics of these regimes.

DispersingHighly Dynamic Traffic. Letusfirst consderthe casewherethe network op-
eraesin aregime wherelink loads are highly dynamic andhencethe link load dy-
namicsare essatially unpredicable. In particular, this might be cawsedby a large
numbe of bursty shott flows “flying” throughthenetwork, i.e., they arrive anddepat
on ashorttimescde. In this casethe actud (versusavailable)link states encountered
by conscutive flow arrivals/rouing requests might be quite different. Moreover,
since theseflows are processedn a distributed manney in the sensethat they are
hardled by differentrouterswithout a centrd cortroller to coordnate decison pro-
ceses,the adwertisedlink stateswill tendto “synchrorize” the routing of the traffic

flows, i.e., they will collectively arrive andthendepart a givensetof links dependirg



onthespeific load configurationin the network. This furtherincreaseghelink load
fluctuaion which makesmaintaning upto datelink statesdifficult. A natumal stratey
to combd this pathologcal condition is to userandomizatonto “de-synclronize” the
routing decisons at various routersin the network. Specificall, we propeto take
advantagef theinherentspaial-temporaldiversty in the undetying traffic andnet-
work, and dispersethe traffic flows betweena sour@ nodeand a destnation node
through a setof properly selectedroutes. This would allow usto maximizethe uti-
lization of network resaurceswhile minimizing the negative impad that traffic dis-
person might have on the performanceof the traffic flows concurently traverang
the network, andthose thatwill arrive in the future. As disaussedn the sequé this
appoachto routing leadsto aform of dynamicmulti-path routing. In thescerariowe
envisagethe flows arrive anddepat at a fastpace,so a sengble desig objedive is
to allow the maximumamour of traffic to getthrough, ratherthantrying to optimize
the perfomancepereived by theindividual flows. As we will seerouting decisons
aimedat optimizing the above objective may or may not coincide with cornventional
shatestpathrouting decisons. To effectively desigh sucha dispesion-basedouting
schanewe will addessthe critical issueof how to seled the setof paths over which

to perform traffic dispesion/routing.

Predictive routing to impr ove flow-perceived performance A unique oppotunity exists
to improve the use-perceived QoSin the network operding regime wherelink stae
andtraffic flows both evolve at modes timesales. Unlike the previous casewhere
the traffic flows are highly dynamic andthe link load dynamics are unpredidable,
in this casea certan level of knowledgeon the flow chaacterstics and network
dynamicscanbe usedto guiderouting mechamsms. It is possble in this regime to
improve userperceivedperformanceby estimatingwhatflowswill experienceduring
their sojourn in the network. Let us condgder the following gereric senice model,

asit encanpassesa numberof traffic classs in reaity, eg., ATM VBR[19] and



rate adagive applicatiors[58]: the incoming flow asksfor a minimum bandvidth
requrementfrom the network, if the nework can satidy the request, the flow is
admitted into the network and goeson a route that is peraived of good qualty; if
there areno resaurcesto satisy the flow’s minimumbandvidth requeston the route
selectedbasedon the availableinformation, the flow is rejeded. Furthermoe, after
admis$on into the network, if there areaddiional resoucesavailable, the flow will
shae resouceswith othe ongoing flows. Hencethere are two objectives, (1) to
satsfy users’minimum QoSrequrementsand (2) if possble, to provide themwith
addtional QoS benefitfrom sharng available bandwidh. We beliewe thatin most
case the secoml objective complkementsthe first objective. Thus a realstic god
would be to admitasmary flows aspossble with their minimum QoSrequrement
andthenallow themto sharethe extra bardwidth to the bestpossble effect. In shat,
agoodrouting scheneshoud distinguishitself by realizing gooduserperceivedQoS

without having to seriowsly compromig flow blocking rate.

Theperfaomanceof thenetwork operding in thisregimewill depand onthechandng
link states andthe mannerin which routing mechansmsrespamdto these charges.In
thisregime,link loadsfluctuateon“modeg” timescdes,i.e., flows stayin thenetwork
on timescaéscompaableto thelink load dynamics. This suggeststhatduring their
sojaurn in the network, flows would benefitfrom extra amountof bandwidh sharel
with otherflows. Thusin thisregimeagoodrouting mechaimsm should notonly allow
the network to carry alarge amoun of traffic volume,but alsoimprove the pereived
performancefor admitied flows. To achieve perfoomancegods in theserespectswe
needto effectively modelthe link load dynamics, and efficiently constuct routing
metrics that cantake adwantageof the addtiona information. More spedfically, we
believe that in this regime onemight exped link dynamicsto evolve in a predctable
fashon, that can be modekd to enhancerouting mechaisms. This allows us to

despnrouting schemesn a moreinformedmanney usingthelink stat information



such as the meanload and the rate at which link loads reverse to their mean,in
addtion to thetradtional notion of “currentload”. Thisinformationcanbeextracted
by a parametic estimaion techhique and incorporaed into the routing algarithms
by acmunting for traffic charateridics, e.g., expectedflow holding times,andtheir

willing nessto adjug to the available network resaurce,i.e., elastcity.

Provisioning protection wavelength for failur e redoration A furtherchallengeariseswhen
we corsiderrouting mechansmsfor neworksin which emepgencies suchasfiber cut
or switch malfunctions might occur In this case the network shoud be ableto re-
spand to theemepgeng in a promptmannerwith minimal degreeof service disrup-
tion inflicted on ongdng traffic. Usually, onecaneithe employ a protectionscheme
or arestaation mechaism. Thedifferencelies in thetiming of therecovery actiors,
i.e., prefrovisioning or realtime respmse. In a protection scheme,the network
setsasidea certan amountof resouce (e.g., wavelergth, or MPLS labd) for thepur-
pose of protectingongoing traffic flowsandupon failureeventsthedisrugedtraffic is
switchedoverto theprotectionresaurce.In arestaation schane,no extraresairceis
setasice for recovery purpcses,andif afailure occuis the network hasto seekoutan
alternatepathonthefly. In generd therestaation schemeis moreresaurce-dficient
but takeslonger to recover from a failure, if there are enoudn resoucesin the net-
work atthemomentof failure. By contrast, the protection scheneis morerespamsive
andguaranteedfailure recovery, but often atthe costof additionalresaurceconsump-
tion. We believethe occurenceof network failuresareesseatially unpredictalde, thus
the routing/praection desigh shout aim at long-termevent horizonswherefailures
might eventually occur The emphasi is therebre placel on provisioning suficiert
protectionresoucesso that all possble failuresare safely protected Evidently, in
this design the protectiontakes higher priority, but it neednot excludeconsderdion
of resouceefficiengy. Sincebackip resoucesareunusedwhenthe network opeiates

without failures,they shoud beallocatedin a costeffective mannerif it is possible.



In reality, the protection/restoation problemis bothimportantanddifficult since one
hasto take into account a numberof complex factors whendevising an opemationd
strategy, e.g., numbe of optical ADM veraus SONET ADM, traffic grooming, wave-
length corversioncapabilities(or thelack thered), multi-layer protectionrestaation
coadinatons. We take afirst stepin this prodem domainand propcse an efficient
mechaismto provisiontheresbration bandvidth. Theideastemsfrom thereaiza-
tion thatthe network failuresareinherently rare events, thusthey arevery unlikely
to occurconairrenty. Hencethe protection resoucescanbe share amongpotertial
failure events. Our main contibution lies in idertifying a novel link metric, which
along with anasseiatedrouting algoiithm, realizesthe bandvidth sharng potertial

in theWDM networks in adynamiconline routing context.

In the sequé we proposea numberof solutons/dgorithmsto addessthe above
challenges Thesealgorithms sharesomecommonfeatures,i.e., they areall distributed,
approximateandonline This contrastswith the centralizedalgarithms commony used in
othe optimizationprobdems,e.g., network desigh andbandvidth provisioning. Thisis in
large part dueto thedynamicnatureof theproblen wetacKe, i.e., traffic flowsarriveandde-
part,andonly aggrejatedink statesareavailable,i.e., overalllink loadsrathe thandetdled
informationon perflow route selection. In this case formulaing andsolving a quas-static
optimization problemswith detaled perflow routing informaton becomeboth infeasble
andirrelevant. Moreover, we believe it is unredistic to assume a consstentknowledgeof
the entire traffic matrix by the individual routes (or even by a cental contoller), not to
mentian the exact seqenceof the arrivals. Under such circumstancesit makes senseto
design dynanmic distributed online routing schanesthat closdy appoximatethe optimal
perfomancevalue Furthermoe, we obseve thattraffic demand areintrinsicdly hetere
geneus,i.e., they have differentsouce, degination, holding time, QoSrequirement etc..
The effective apprachesto alleviating this additonal level of compleity include devel-

oping multi-seavice extengons to the loss nework framewnork usedto andyze teleptone



networks [25, 49, 62]. Neverthdess,new problemsarise when one consdersrouting in
networks whereguaranteel andbesteffort senices shae resouces[42]. Specificaly, it
will beof interestto investigatenow the hetera@enety in thetraffic demandmpactsoveral
routing efficiency, e.g., flow blocking rate andbr the perfomanceexperiencedoy different
clasesof userse.g., usersachievedthroughpu.

The dissetation is organizedasfollows. In Chapter2 we presem a study of dy-
namic multi-path routing schene addressinga network regime wheretraffic arrivals and
network staesare highly dynamic In Chapte 3 we study performanceof a singe path
routing schane utilizing expectedflow holding time, andthe estmatesof thelink load dy-
namicswherelink load dynamicsopemate on modes times@lesenabling oneto optimize
theuserperceved QoS.In Chapted we examineissiwesinvolvedin provisioning protection
bandvidth in the WDM networks andproposea solution to the problem. We corncludethe

dissetation in Chaptr5 disaussingfutureresarchdiredions.



Chapter 2

Dynamic Multi-path Routing: Asymptotic Approximation and

Simulations

2.1 Intr oduction

As the Intemet continuesgrowing and new technologes emepge to meetthis growth, net-
working reseachersare faced with the increasindy daunting task of contolling and/a
managng extraordinay amourts of traffic. Traditionally, network opeiators have relied
on buffers at network nodes andor congestion contrd to dealwith fluctuaionsin traffic
loads. However, astraffic loads becanemorebursty, the sizeandthe speal of the buffersin
the network arenot growing commensrately with the link speel, making buffering tech
niques lesseffective. Moreover, although link speed increse dramaically, propagation
delays stay roughly unafected,calling into question the effectivenessof flow/congestin
control mechamsms. Indedl, to control the congestia inside the network, we have tradi-
tiondly relied on end-b-endreadive flow cortrol schemese.g., TCP[33]and RED[18].
Theseschemesrely on coordnation amonglinks within the network andtraffic souces
at the network edge. Links deted the congestion and serd back “congestian indicaions’
(e.g., dropmark paclets) to the traffic souceswhich in turn respad by adjusing their
transmissiors. However, in an operaing regime with high bardwidth-delay prodict, i.e.,

transmissionratetimesthe roundtrip time from the ingressnodeto the egressnode, this



reactve apprachis not effective. The problem is twofold: (1) sincethelink capadty is
huge thetraffic in flight whena congestionsignal is geneatedis enamoussothe network
mustbeableto buffer alargeamour of dataand(2) since acces speed maybevery high,
atraffic burg thatinducescongestion mayfinish by thetime thetraffic soure recavesthe
correspondng congestio indications. In both caesthe respamseoccus too late to effec-
tively avoid congestion A similar phenanenonis obsevedin the dynamic routing context,
exemplifiedby the routing “synchrorization” problem,wherelink updaesarelate andin-
effectivein navigatingthetraffic flows acresssa congestechetwork. An interestingquesion
that stand out, is whethe we canavoid network congestion without having to slov down
theuserstransmisionrates

In this chaperwe focuson anopeaating regime in which traffic flows comeandgo
frequently within the timesale of link stat adwertisemerts. We view suchflows ashigh
speel transnissiors, i.e., asequ@éceof IP paclets transmittedat a high rate andfollowing
the samepath. As aresult network congestian in this context exhibits a relatvely shot
term dynamicsandcannot be effectively cortrolled through per souce feedkack schanes
like TCP Insteadof slowing down usertransmissionrates to enalle bette congestioncon
trol, we proposerouting schenesthatalleviatenetwork congestionwhile allowing usesto
sendtraffic atther full accessrates Theideais to dispesetraffic flows sharirg the same
ingress/@resspoints via multiple paths on the network, in orde to achiee staisticd mul-
tiplexing of theflows over availablenetwork resairces[28]. Thisin itself is notanew idea,
andis part of atradition of altemative routing anddispersionusedin somecircuit switchel
networks [40, 52, 59, 55, 35, 22, 63].

Traffic dispersion with its early origins in “dispersity routing’[46], hasbeenan
active resarcharea. Dispesion at the paclet, burst andflow/conrection levels have been
consdered see[28] andthe referercestheren. In particular, [46] originatedthe idea of
paclet-level dispersionin the context of storeand-forward datanetworks, andshovedthat

by spreading the traffic over two (or three) patts the average delay of a messge is sig-



nificanty redwed. Dispessity routing at flow/connection level wasfurther adapedto the
ATM networks[47], whereit hasbeenshown to equalize traffic loadsandincreaseoveral
network utili zationfor shortflows with durationsin the sameorderasthe propagatiam time
or less This work alsopoints out the possble berefits of dispersingflows adaptvely. The
combiration of these two issues shortflows andadapive multi-pathrouting, is the stating
point for our study However, aspointedoutin [28], the problem of detemining theoptimal
setof patts over which suchdispesion shoud be perfoomed,remainsopen.

Somaeavhatakin to this probdem, alterrative routing andtrunk resewation have been
studed extengvely, seee.g., [40, 52,59]. In the context of circuit-switched networks [22,
55, 35], atrade-off is soudt betwea increasingrouting options and resouce utilization.
This meanghatif theprimary (usually short)paths expeliencecongestian, secomlary patrs
will beusedto carrythetraffic load However, secomarypathsareonly usedif they arenot
loadedbeyond a certain threstold, othemwisenew arrivalsareblocked. Thekey parameters,
the primary/secandarypaths andthe threstold, aredifficult to optimize for gereralnetwork
topdogies

This chagerexaminesoneof thekey issuesthatneedto beaddessedn dispersirg
flows over multiple paths i.e., how to (dynamically) selectthe setof candicateroutes over
which traffic flows will be dispesedbaseal on potentialy outdatedlink stateinformation,
or evenadaptthis setto achieve betier overal perfoomance.This contributesto theongdng
reseach efforts thatextend the functionality of the OSHF[65], MPLS64], or Diffser{60],
wheredeterminstic[65, 64] or probabilistic[60] healer processim (i.e., hashng) mecha
nismshave beenproposedto facilitate the dispersim of traffic flows over multiple patts
from an ingres nodeto an egress node. Our study provides sensble routing decisbns
basel onwhich paclet-level hashing dedsionscanbeconstucted i.e., the setof patts over
which the paclet flows are sent. By appopriate hashng opemationspacketswith the same
attributes(e.g., source address,destirationaddress,QoSrequrement)will form aflow that

traverseghe samepath
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Figure2.1: An abstracimodelof route selection.

In the ensung sectbonswe first considera simplemodelconssting of paralel links
betweenaningress-gressnodepair. The mainresut suggestsa simpleandrobust policy
to select a subst of cardidatelinks over which to spreal incoming traffic flows. We then

proposeandevaluak a dynamicmulti-path routing schemefor meshnetworks.

2.2 A stochasticparallel-lin k model

2.2.1 Problemsetup

In this sectbn we studythe idealized modelshovn in Figure2.1, wherea pair of ingress
and egressnodesare interconrectedvia a setof n links, L = {1,2,--- ,n}, eachhaving
the samecapaity ¢ = ¢, for I € L. Noticethattheseparalkl links canbe usedto model
eithe reallinks, or disjoint routes betwea an ingressnodeandan egressnode Let )y
dende the flow arrival ratefrom nodes to noded. Without loss of geneality we assune
eachflow transnits packetsat a fixed unit ratefor arandam duraion with mearyi ™', along
theroute it is assgned.The offeredload asseiatedwith nodes andnoded, is thus A4/ .
Thetraffic loadonlink [ € L attime ¢, derotedby z;(¢), is the sumof the total numberof
flows currently routed acrosst. Welet z(t) = (z1(t), z2(t), - - , z,(t)). Theflow arrival
rateto link [ is dendedby ~, i.e., the partof total arrivals betweemodes andnoded, i.e.,
Asd, thatis routed to link [. As anapproimation, in the sequel we examinethe dynamicsof

thelink loads via a fluid model. Theflow depature rateis proportional to the curren link
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load z;(t) andis givenby z;(t) - u. We constleratime scak of interest,, thatrepresens
the potential delays involved in updaing link states. To modelthe fact that the routing
decisons aremadebasedon outdatedinformaton, we assume traffic arrivals during [0, ¢]
arerouted basel on thelink stae z(0) availableattime 0. Undera routing schane which
resuts in atotal traffic arrival rate~ to link I anddoes notleadto link overflows, the link

statez; (t) tracksthefollowing differentid equaton,
Ty(t) = v — z(t) - p, (2.1)
hene
a(t) = @)™ + (1 - ), (22)

wherez;(0) is the stak of link [ atthe beginning of the time interval [0, ¢], and-, i.e., the
routing/asignmert of incoming traffic flowsto link 7, remairs fixed over [0, £].
We usean addtive network congestion measures(z(t)) =, f(z(t)), where

f(z(t)) is anincreasingandcorvex function of z(¢), e.g., f(z;(t)) = . Ourgoalis

to find anallocationof incoming traffic flows within atime interval [0, ¢] to then links suc
thatthe increase of the sysem congestionmeasurei.e., s(z(t)) — s(z(0)), is minimized.
This is equivalentto minimizing the sysem congestin s(z(¢)) at timet. This chaice is
intendedto simplify theanalysis,aswill beseenin thefollowing sectim. Eq.(2.1)capures
link load dynamics that may impactthe routing decisons,i.e., the morelink [ is loaded,
the fastertraffic flows departfrom it. Intuitively, this obsevation suggestszy(¢) may un-
deresimatethe available capadty on a heavily loaded link whenit comesto routing new
traffic demang. In particular, the capaility of a moreloaded link to accanmodatetraffic
demand might befavorably “upgraded sinceit is likely to seemoredeparing flows.
Given the currentlink stats z(0) andthe offered load )4, one canin principle
detemine the optimal routing that minimizes system congestian. Our god, however, is to

find a simpledynamic multi-path routing policy. In particular, we focus on aform of least

loaded routing schemewhereequd sharesof the traffic load arerouted on & out of then
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links'. Thekey probem is to detemine an “optimal” k£ which is “robust” with respet to
arange of possible link loads, the intersity of the flow arrival process,andthe meanflow
holding time. In the seqel, we derive sucha solution by finding a £ which on averageis
“optimal” overarangeof possiblelink states We call this dynamic multi-path routing since

basel onthe network statek links areselectedto dispersethetraffic.

Analysis

Welet X;,1 =1,2,--- ,n, dendetherandomloadson thelinks at time0. We assumethat
they areindependen andidentically distributedwith a continuous distribution function F
andsupport set[0, ¢|]. Thesedistributionsmight be selededto reflectthe typical operding
regimesof the system,e.qg., typically lightly loadel or heavily loaded. Alternatively one
might seled the prior distributions on the link loads to be uniformly distributed, so asto
achiee a robustsoluion over a rangeof possille operating regimes. Note thatin reality
a numberof factorsimpact F, e.g., traffic arrival rates flow holding times, and routing
algarithm, thus our assumption on the randam link loads may not be realidic in practice.
In partcular, the link loads are neitheridertically distributed nor indegendent. However,
ourintentin introducing this simplifying assumgbn, is to enalde analytical derivation of a
robust policy andin turn garrer interestinginsights on dynamicmulti-path routing.
Sinceour policy involves seleding the & leastloadal links, we will make useof
order statigicsonlink loads. We useXZ;) to derotethei*” orderstaistic of then link loads
attimeO,thusXa) < X(”Q) <. < X(T;l). Welet A\;g = A-n, soXis ameasue of theflow
arrival rate,normalzed by the numberof options i.e., n, over which routing decisonsare

to bemade.Suppaeincoming traffic flows over atime interval [0, t] arespread over the k

1We opt to focuson this schemedueto the simplecyclical implementatiorit impliesin a highly dynamic
ervironment, asoppose to, e.g., routing weightedsharesof traffic to differentlinks, in which casea setof
weightshave to bedynamically maintained.
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links thatarethelead-loadedattime O, thentheresuling congestionincreasds

k n
D (k) == SIF(XIe ™ + 21— ey — FxmY+ D e — FXE)].

=1 1=k+1

n-A

Thefirst sumon theright handsideaccaintsfor the change in the congestion level for the
k leag-loadedlinks which sharetheincoming traffic flows during time interval [0, ¢], while
the seconl termcorrespomsto the links which seeno additionalload.

An “optimal” selecton of k¥ mightcorrespoml to solving thefollowing minimization
probem:

k* = agmin {E[D"(k)] | k € {1,2,...,n}}. (2.3)

Notethatfor agivensetof link loadsit is possiblethatk # n, i.e., dispasingtraffic equally
everywhee might not be optimal. Moreover, problem (2.3) accounts for the dynamics of
the systam, i.e., flow arrivals and departures. As aresut a moreaccurde estmatesof the
links’ traffic-accommodatng cambility areused. Finally, we take the expecation so asto
obtan achoiceof k that is optimal“on average”over arangeof possble link loads
However, asit stards probdem (2.3) is still quite difficult to solve. In the following
we constder an asympbtic regime, wheren the offered load n - A and numbe of links
n grow 2, i.e., we corsider a sequenceof networks with increasingrouting diversty and
carried load. We paramegrize k ask = [an], herce a correspoms to the fraction of
(lead-loaded)links over which thetraffic flowswill be spread. Ourgod is to find « which

minimizesthe normalizedaverage congestian increaseasn — oo, i.e.,

min lim w. (2.4)
0<a<1l n—00 n

The following theoem estadlishesthat (2.4) can be expressedin two equialent

formsthatareamenald to analsis. The prod is defaredto the appendix.

2This scalingmightcorrespondo the practicalcontext whereadditionalwavelengthsreaddedo anoptical
fiber to increasadts total capacity Eachof theseaddedwavelengtts canbe though of asanadditionallink in
our model.
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Theorem 2.2.1 Theproblemdefinal in (2.4) canberewritten as

A(1 — eH)

min {E[f(X e M4
Jite’

0<a<l ;X <F Ya)]+ E[f(X-e ™)X > Fl(a)]} (2.5)
or equivdently, as

A1 — et
nF (y)

whete the optimal deckion variables o andy* are related by o* = F(y*). Here F' is a

i e bt
(i {E[f(X e M+

$X <yl+ BA(X-e )X > y]}, (2.6)

coninuous distribution on [0, ¢] modeling thelink loads on the parallel-li nk netwoik.

Obseve that the theaem suggeststhatit is asympobtically equivalentto usethe
o* - n leastioada links or all the links with load lessthany*, wherea* andy* arethe
optimizers of probdems(2.5) and (2.6), respetively. This follows by a simple charge of
varialdes. However, note thatin pradice thesecorrespoml to two different mode<of routing,
i.e., routing on o* - n leag-loadedlinks vs. routing on a setof links whoseloads arebelow
athreshold y*.

Assumirg the prior distributions of link loads are independen and uniform, the
optimd choices for o andy* canbe detemined. The prod of the following fact canbe

found in the appeandix.

Fact 2.2.1 Supposethe link loads are uniformly distributed on [0, ¢], thenthe minimizes

for (2.5)and (2.6) are respetively

.
(0% —mln{ ﬁv,l},
and
Ac (1 — e=#t)
* -
y = minfy | S50 )
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Note that for uniformly distributed link loads the optimal parametes of and y*
are not sensiive to the exact form of the sysem congestion measue f, it neal only be
increasingandcorvex.

Basedon Fact2.2.1we canmake a numberof interesting observations.

Observations

As thetraffic arrival rate A increases,or the meanflow holding time ;fl decreasespr \
increasedor afixedofferedload p = A/u, onedispeasesthetraffic flows over alarger set
of patts. Henceasanengneerirg guideline, it makessensdo differentiatethe opemationd
paraméersat various network nodes with different typesof incoming traffic requess. In
particular, a network node shauld actively route its conrection requests over a large set
of pathsif theserequestsaremostly shat and arrive frequently, or directits conrection
requeststo the leastloaded pathif theserequestsaremostlylong andarriveinfrequenty.
Theintuition for the above obseavation, lies in thatthe sysemcongestion measue
s(z(t)) is asymmetic sumof increasingcorvex functions. This suggeststhatto apprach
optimdity oneshoud routethetraffic flows sothatlink loads attime ¢ arebalanced.From
(2.2) we seethat whenif the flow depature rateis large the differencesin theinitial link
loads shoul be “discounted” and we shoul “perceive” all link loads as approimately
“equal’” In this context the natural routing decison to make, in orderto bring thelink loads
attime ¢ closeto eachothe, is to spreadtheincoming traffic flows over alarge setof links.
Suppseonescaksthe offered load p (while keepng meanflow holding time zi~!
fixed) andlink capaity ¢ in propation, thenthe optimal fraction of links over which one
shoud route the traffic remainsunchangel. This suggeststhatin pradice if we build up
the network capaity andthetraffic loadgrowsin propation theno andy*, i.e., therange
of paths over which we route traffic flows, remainfixed. On the othe hand we shoutd
adjusttherange of multi-path routing mechatfsm if therateof capaity exparsiondoes not

matchthat of thetraffic growth. More specificdly, onemight needto modify theopeitiond
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Evaluation of the asymptotic result
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Figure2.2: Theleast-loadedinks usedto spreadraffic: increasiig total links.

paraméersa* andy* if use traffic outgrows the network capaciy.

Now supposethe time scaleof interestt grows, e.g., one hasto limit link stae
adwertisemens. Notice that ast increaseghe impactof the initial link load diminishes.
Intuitively, if this is the casethe optimal allocation is to spreal the load evenly amonga
large setof links. Thisis verified by theresut in Fact2.2.1.

In practice,we might notonly have incompleteknowledge of thelink states but also
of thearrival rate\. FromFact2.2.1we seethattheoptimalparanetersy* andy* aresquae
root functions of A\. This suggeststhatthes optimal paramegrsarerelatively insersitive
to the exactvalue of A asthe routing diversity increses,thus a reasmable estimaé may

suffice.

Validation

In the previous sedion we obtaired an asympbtic resut concening the numbe of links
over which to dispersetraffic, in a regime wherethe load and numberof links (disjoint

patls) grow in proportion. Here we evaluate the quaity of the resut, in the casewhere
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Evaluation of the asymptotic result
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Figure2.3: Theleast-loadd links usedto spreadraffic: increasiig arrival rates.

n is small, or modes, via simulation. Suppse X ~ Uniform[0,10], A = 4,¢ = 1, and
p = 0.1. We comparethe numberof least-badedinks thatwould be selectedbasedon the
asympotic modelversusthe correspomnling valuesobtanedby sucessvely samplng the
link loadsandcompuing the averagedoptimalnumter of links over which to dispersetraf-
fic. In Figure2.2we exhibit the compaison betwea theaeticd/asympotic andsimulated
avergge optimd chaces,in termsof the optimal numberof leag-loaded links over which
to route thetraffic flows. We obsewe thatthe numberof leastioade links obtanedvia the
asympotic formulais within 10%of theaverage obtainedvia simuldion, wherethenumbe
of links n ranges from 5 to 20. In Figure 2.3 we evaluat the effectivenessof Fact2.2.1.
Herewe fix thenumberof linksn = 8,¢ =1, u = 0.1, X; ~ Uniform|0, 10], andincrease
A from 1to 9. Theasymptadic predction matchedts simulaed courterpat to a satifac-
tory degree. We concludethatthe asympotic resut providesa reasmableapproimation

to select the k links over which to dispersetraffic flows.
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Realizing dynamic multi-path routing — threealternatives

In the previous sedions we explored a dynamic multi-path routing scheme whereequa
share of the traffic load wererouted over a dynamially seled¢ed setof network links. An
asympbotic analsison how to dynamically selectsuchlinks is captuedby (2.5) and(2.6).
We canintempret the solutons to theseoptimization probdemsas suggesting two different
schenes:routing over the k. = o*n leastioadal paths (or shotestpatts, if we equatethe
lengh of alink to its load), or routing over all the pathsthathave aloadlessthanyf.

The implemertation of the first schremecorrespormls to the classt k-shatestpath
algarithm[73]. We shallcall thefirst schene DKSRE whichis shortfor Dynamick Shortes
Paths. Note that this schemespreadsthe traffic flows over k links/pats with potentially
differentloads Thisis in contrastwith the tradtional leastloaded routing scheme,where
onerandomly selectsalink only amongthose with leastload.

For the secor scheme, notice that for a given paramete y* and a particular set
of network loads theremay not be arny canddatelinks with load lessthanyf. To addess
this problem, we constler two solutons that corresponl to 1) a pre-determired link load
guartization mechamsm, namedDQSR which is shott for Dynamic Quantizel Shortes
Paths,and?2) a dynamicthreshold mechamsm, namedDTMP, which is shortfor Dynamic
Threshdd Multi- Paths.

DQSPcan be interpretal as a link statequartization scheme. In paricular, the
ingressnodes (or the links) quanize the link loadsbased on a threslold ¢, andtraffic is
routed over the links with the leastquanized load Figure 2.4 illustratestwo scenaios
whereeach” x” indicatestheamouri of loadon agivenlink, andthecircled links arethose
overwhich traffic flowswill besprea basedonthethresoldy*. It is evident thatby quan
tizing thelink load, we canincreasethe numberof links that are“equally” loaded. Notice
thatunder this schemeif there is no link with load lessthans*, we canuseall the links to
routethetraffic flows. This canbe refinedasfoll ows. Conditional uponall the link loads

excedling y*, we canformulate a modified versim of the previous optimization problem,

19



Quantized link loads

Quantized link loads
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Theprocalureterminaesattheindex : wherey; < candy;+1 > c¢. With thes quanization
thresholdsin place,the ingressnodesimply examines the currentlink loads andidentifies
the setof links with theleag quantizedload Fig. 2.5 shavs a multi-level link statequan
tizer, whereweillu stratetwo loadng conditions in which only the circled links areused in
routing thetraffic load.

Our DTMP schane, is aimedat addressingthe possibhe void of links with loadless
thany* based on a dynamic threshold mechaism. Insteal of routing traffic flows on all
links with load lessthany* we route the traffic over all the links that do not have a load
excealing amultiple of thelead loadedone. Thatis, we useall thelinks with load no more
than(1+5)-min; z;(0), wherez;(0) is theloadonlink [ attime 0 and/ is apositive scding
facta. This guaranteesthatthereis atlead onelink onwhich traffic canberouted,i.e., the
leastloaddl link(s). In the sequel we showby simulation thatthe DTMP schemeperfarms
well agains the othe two schemes,espeially in the operding regime wherethe numbe
of links n is modestand the arrival rate at the ingressnode is not accuraely modelad,

e.g., it mayvary. We might however expect theserouting schenesto be equivalentin the
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asympbotic regime consderedin Section2.2.1. By consicering the assocatedasympbtic
regimesonecanshaw thats shoudd be approcimately setto o - n. Specificdly, we saythe
two setsof links usedby DTMP and DKSP asympoticaly “equivalert”, if thelink loads

satidy thefollowing condtion,
E[X{ ] < (14 8) - EIX(] < B[X{lpeniap)-

E[X% .
As the numbe of links n andthe offeredload An go to infinity Eg[()[(i‘%:f)] goesto o n, if
1

thelink loads areuniformly distributeda priori. Hencek =~ o' n.

Table2.1: Theselection of g*.

7 t | B* =a*n | B* viasimulaion
0.25 | 0.5 3.6 4.5
0.25 | 1.0 5.4 6

0.1 | 1.0 8.4 9

Let us asessthe performanceachiewed by seting 8 = «* - n. Specificaly, we
compae thes valueswith the bests* value obtaired via simuldion, wherea collection
of possible values for 5* wasexamined andthat correspormling to the leag flow blocking
ratewasidentfied. Consicer a network with 12 paralkl links, eachwith capaciy 20 units.
Traffic flows arrive acarding to a Poissonprocesswith rateequal to 50 flows persecoml.
The flow holding time is exponentially distributedwith meany~! andead flow requests
oneunit of bandvidth. We assune a periadic link stateupdat mechaism with period ¢.
Table2.1 summarize the compaison acros a rangeof p andt values. In the simuldion
B* wasincrementedy 0.5 eachstepin the processof seachingfor the bestvalue It is fair
to condude thatasa simpleappoximaton, 8 = «* - n providesa crude, but rea®nabke

settihg for 8* resdting in goodperformance
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2.2.2 A comparisonof threedynamic multi-path routing schemes

In this section we preset our simulaions compariry the perfarmanceof the threerouting
schanesdisaussedabore. As a bas case we will usea routing schemethat routes traffic
to theleag-loadedlink. The performancemetricwe use,is “% routedvolume”, thatis the
percentageof the bardwidth demandhatis succesfully routed. In the sequel we alsouse
“ % improved routedvolume”, which is definedasw—;y - 100, wherez is the performance
achiewed by our dynamic multi-path routing schenes,andy is thatachieved by a dynamic
sinde-pah scheme. In orde to invedigatetherobustnasof the proposedschemeso vary-
ing arrival rateswe will consder anoperaional scerario wherethe network is designedto
carry traffic flows with a nomiral arrival rate, but the actual flow arrival rateis different.
Note that the perfarmanceof the routing schemeglepermls on the paranetersa, 4* and
B*. Notethattheseparametes areall functions of the nominal flow arrival rate \. Thuswe
wish to estallish the sersitivity of the routing perfoomanceto the nomind A, for thethree
schanespropcsedabore.

We first compae the perfomanceof the three routing schems. We setthe param-
etersa*, y*, and* basedonanominal flow arrival rateequd to 100flows perseg andthe
actua flow arrival ratevary betweend0 to 120flows persec. FromFigure 2.6 we obseve
thatDTMP schaneexhibits themostsignificant performancamprovemert over singe path
leastloaded routing. In particular, the % improved routedvolume for DTMP rangesfrom
7%to 136%, asthe actual flow arrival rateincreases.

Next we examine anoher casewherenetwork load was undeestimate, i.e., we
setthe paraméersbasedon a nomind flow arrival rate equal to 10 flows per seG andlet
the actual flow arrival rate variesbetween40 and 120 flows per sec. From Figure 2.7 We
obseve thatin this casewith undeestimatel opeational parametes, DTMP policy again
perfoms adeaiately while other schems seea significant performancedegradation. For
example if we compae Figure2.6and?2.7 atarrival rate 100flows persec,we seethatthe

perfoomanceof DTMP remainsalmostunchangel while thoseof DKSP andDQSP degrade
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Performance variation with the arrival rate

1004

90

80

DKSP
—+— DQSP
—— DTMP
—&— single—path

70F

601

% Routed Volume

501

40

30 L L L L L L L
40 50 60 70 80 90 100 110 120
arrival rate

Figure2.6: Perfomancecomparisonof therouting schemesnominal load= 100.

significantly.

2.3 Dynamic multi-path routing in meshnetworks

2.3.1 From parallel links to meshnetworks: extendng DTMP

In the previous secton we consideral dynamicmulti-pathrouting problemfor asymmetrc
paralel-link network. It is difficult to extendtheseresuts to meshnetworks. Specificaly,

the available routesbetweena pair of ingressandegressnodesarenot necessarily disjoint,

sothere may beinteractiors amongthetraffic loadson various routes Moreover, thereare
usudly multiple pairsof ingress andegressnodesthat make indepenaentrouting decisbns
basel on network staes,andthese decisionsmaybesynchrorized,whichin turnaggavates
congestionin the network.

Letuscorsiderrouting asetof traffic flowsonameshnetwork G(N, L) with asetof
nodes N andasetof links L, sothatanaddtive network congestionmeasures minimized.

Formally, sugposewe have a setof ingress-@ressnodepairs S, a setof availableroutes R,
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Performance variation with the arrival rate
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Figure2.7: Perfamancecomparisonof therouting schemesnominal load= 10.

anda0-1 matrix H whereH,, = 1if s € S canbesenedby router € R, andH,. = 0
othawise. Let s(r) dende the setof routesr thatsene flow s, i.e., Hy, = 1. Moreover, let
usdefinea matrix A such that 4;, = 1 if router € R pasesthroughlink j € L. Letus
modelthe network dynamics with a fluid appioximation. Suppaethe traffic flows arrive
with rateg,, themeanflow holding time /fl is setto 1, andeachflow transmis at unit rate.

We definetherouting objedive asfollows:

st. Hx=g,A\==z,

wheref(z;) = [, z(y)dy is acorvex function of z;, g = (g5, s € S) is thevectorof the
flow arrival rates(or offeredloadin our setwp), andz = (5,1 € L) is thevecta of thelink
loads. Thesoluton to this network flow problem canbe chamlacterzedasfollows:
Ar > 0= Zz(wz) < Zz(:vi),Vr' € s(r).
i€r ier!
i.e., only theshortestpaths wherelink lengtrsarez(z;), will carty postive amouns of flow.

Thisis knownasaWardropequlibrium [36]. As aspecal caseif wewereto minimizethe
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network congestionmeasuregivenby —3 -, log(c; — z;), thelink coston alink [ with
capaity ¢, beomesz(z;) = 1/(¢ — z;), i.e., theinverseof the available bandvidth. In
latersectonswe will usel/(¢ — ;) aslink metric.

The Wardropequlibrium suggetsthat one shoudd routethe traffic in sucha way
thatonly the “shortest” pathscarry posiive amouris of flow. However, this is meanirmgful
only in a staic or quaststatic network scerario. In the highly dynamicenvironmentwe
consder in this study, wheretraffic flows arrive anddepart quickly(e.g., lessthanlink stae
updding petliod), link loads often exhibit bursy changes, andthe link stateinformation
usedto computethe “shortest” pathsis often outdated.Hencethe “perfect load-balancing’
sugeestedby the Wardropequiibrium is neither practical nor achiesable[6]. Insteadof
resticting ourselvesto shortest pathsalone andtrying to adaptto the exactflow proportions,
we propaseto rancbmly route thetraffic flows betweeraningress-gressnodepair s, among
all the pathswith lengh no morethan (1 + g*) - I, wherel, is the lengt of the shottest
pathassaiatedwith the nodepair s, andg* > 0 is adesigy paraméerto be detemined.

This appoximation is similar to the DTMP schene propcsedfor the paralkel-link
model. We will againuse“DTMP” to refer to this appraimation schemefor meshnet-
works. Notice thatin the meshnetwork setup the setof pathswhich areseled¢ed may not
bedisjoint, hencesomelinks may be traversedby severd pathsusedfor routing the traffic
betweera giveningres andegres node. Theloadonthes links could“build up” Thedy-
namicaspet of our schame, i.e., choosingthe pathswhoselength is within a certain range
of the shortest pathlengt, helpsto avoid this build-up process,aslong asthe dynamiclink
metrics i.e., 1/(¢; — z;) reflectthelink loadson the network.

Notice that by letting the length of the pathsover which one dispesestraffic be
dependentupon the shotest path lengh I, we achieve the following intuitive behavior:
if the nework is lightly loaded, it is bereficial to consisterly useonly the shotestpatts,
whoseunusel capaity is high; if the network is more congestal, it is advantageusto

spreal the load over a larger setof pathsin orderto accommodte the incoming (bursty)
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Figure2.8: NSFtopdogy.

flows. In thenext section we examine various aspecs of thisrouting schemevia simulation.

Basedon our simulationswe madethe following obsewatiors:

1. The DTMP schane outpeformsdynanic single-pathrouting, i.e., leastloaded rout-

ing (LLR).

. In networks with “hot-spos” DTMP offers more significant perforomanceimprove-
mentthanin networks with “balanced traffic, thusif suchhot spot ariseonemight

resat to DTMP to alleviatetheimpad of congestian.

. If traffic flows arrival processesare bursty, DTMP provides a greater perfomance

gainover its singe-pah courterpat.

. As the portion of codocatel traffic, i.e., traffic betwee nodesthatareonehop away

from eachothe, increasesthe performancegains from using DTMP decrease.

. In the network wherelink stateupdatsarerelatvely slow ascompaed to flow ar

rivalgdepatures DTMP offers significant performancemprovement.

. As we scaleup the capacity of the network, the useof a DTMP schemeis more

importantasit offers greate perforomancegains.
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Table2.2: Thetraffic matrix.

ingressnode | egressnocde | hopdistarce| arrival rate
0 16 4 10
1 17 3 10
4 13 4 10
5 14 4 10
8 10 3 10

2.3.2 Simulation setup

We presnta setof resuts for the network shovn in Figure2.8. In the simulation, the flows
arrive to the network accordng to a Poissm process andthe flow holding timesarePareto
distributed. Theingressandthe egres nodesof the flows are seletedacarding to Table
2.2, which are setup to model a typical WAN traffic patten, i.e., the ingressand egres
nodes of aflow areatleag threehopsaway from eachother. In the sequel we will examine
theeffectof this setup andevaluat theimpactof the“co-located” ingressandegressodes,
i.e., within two hopsor less. The parametersfor the simulation were setasfollows: link
capaity is 25 units, meanflow holding time is 1 unit, andthe bandwidh requestof eath
flow is uniformly distributed betweer().5 and1.5 units. Thisis referedto asthebas case.
We increasethe traffic load by scalirg the arrival ratesof the basecaseby a sequenceof
numbes, shavn on the horizontd axis, seeFigure 2.9. Unlessexplicitly stated we use
dynamic link metric1/(¢ — z;(t)), andtherouters excharge link states periadically, with

anupdatng petliod of 0.1 unit.

2.3.3 Performanceevaluation

We first compae our DTMP with dynamicsingle pathrouting. The perfomanceimprove-
mentof theDTMP schemeis evident from Figure2.9. Specificdly, therelative perfomance
improvemert ranges from 5% to 13%, asthetraffic load grows.

In the above simulaion 8* wassetto 1.6. In geneal, it is hardto pin-point the

bests*. It depemlson network topdogy, traffic demand, aswell asvarious timing factors
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Performance evaluation: DTMP vs. single—path
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Figure2.9: DTMP vs. singlepath.

involved in the network, e.g., flow arrival rate, flow holding time, andlink stateupdaing
periad. Our expelience, however, suggststhat DTMP’s performanceis quite robust to
the choice of g*. For the setof simulaions we condiwcted it was obseved that in the
interval 0.2 < g* < 3.2 DTMP outperforms single-pathrouting. However we did see
the performancedegradation causel by excessive multi-path routing, in the caseswhere
B* > 3.2. We conjecturethatin practceit is relatively easyto tune g to achiere goad
overall pefformance

From theseexperimentswe conclude that this simple dynamic multi-pathrouting
schaneworks well to improve performanceover the traditional dynamic single-pathrout-
ing. Theperformanceof the propcsedschemas relatively robust to the choice of paramete
B*. However, we note thatone shoul not be overly aggessve in settirg a high valuefor
this paraneter

To further evaluae the effectivenessof the DTMP schemewe vary the flow ar
rivals to the network sothatcertan “hot-spots$ are preset. Specificdly, we increasethe

arrival rate from Node 1 to Node 17 to 30 flows per time unit, and decreasethe arrival
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The performance improvement: hot-spot
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Figure2.10: Theeffectof the hot-spa traffic.

ratesto otherpairsof ingres-gyress nodes to 5 flows pertime unit. Figure2.10compares
the perfomancegain, i.e., the improvementof the perfoomanceachieved by DTMP over
the single-pathrouting, with or without the “hot-spot’ traffic. A more significant perfor-
manceimprovemeri (12-21%) is evident when“hot-spos” are preent, ascompaed with
the casewithout “hot-spot” traffic(5-13%). Hencewe maintdn thatDTMP is conducive to
alleviatingthe impactof the “uneven’ network loads

As obseved in pracice, eventraffic flow arrivals themséves may be bursty, e.g.,

\j

2*MMPP TIME

Figure2.11: Markov ModulatedPoissorProcess
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The impact of the arrival burstiness
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Figure2.12: Theeffed of the burstytraffic.

The performance improvement: distant vs. co—located
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Figure2.13 Theeffectof thelocal traffic.
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the accesgo CNN web site before and after a major news event. We beliewe thatin suc
an operdiond scerario, DTMP can deliver more signficant perfomanceimprovemensg
over its dynamicsingle-pathcoungerpart In the previous simulationswe modeledthe flow
arrivals by a Poissm process,which is geneally consicereda “smooth” random process.
To modelbursty flow arrivals, we usedthe Markov Modulatd PoissonProces (MMPP)

illustratedin Figure2.11. Therearetwo “modulating” states, “high” and“low”. In eadh
statetraffic flows arrive asa Poissorprocess. We will cornsidertwo MMPPswith different
flow arrival ratesin the“high” stak. For thefirst, theflow arrival ratein the*high” stateis
3 timesthe meangivenin Table2.2. For thesecad, theflow arrival ratein the“high” stae
is 1.5timesthemeangivenin Table2.2.In the“low” state thetraffic flowsarrive with rate
1/3 of the meangivenin Table 2.2, for both MMPPs. In addtion to the ratesass@iated
with the“high” and“low” statesthe MMPPsarealsochaacteizedby theaverage holding
time at “high” and“low” states For the first MMPP, we setthe average holding time at
“high” stateand“low” stateto be0.5 - MMPP_TIME and1.5 - MMPP_TIME, respetively,

whereMMPP_TIME is ascalng variablewhichwevary from 10to 90 units. Fortheseconl
MMPP, we setthe averageholding time at both modulating states to be MMPPR. TIME.

In Fig. 2.12we illustratethe perforomanceimprovementachievedwhensud bursty
arrival processesare present. It is evidert that the DTMP schemeis more effective in
a network supporting bursty arrivals processes In addtion, notethatwhenMMPR TIME
equas to 50unitstheperformancegainsarethe highest. This suggetsanoptimaltime scak
for which DTMP is mosteffective. Theintuition is asfollows: whenthe MMPP.TIME is
small, the “high” and“low” stakesalternatefrequently relaive to the link stateupdats,
hene therouting decisonsthat have to be madein the “high” stae by the dynamic single
pathrouting schene “averegedout” with those in the“low” state.If MMPR TIME is large
the network statesget updatd often enowgh to track chargesin the traffic. The “criti cal”
time scale,however, is the one wherea burst of flows arrive in the “high” stateandthe

upddes are not quite frequent enaugh for the single path routing schemeto track such
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charges. At this “critical” time scak DTMP providesthe mostperfaomanceimprovemen
over singlepat routing scheme.

Next let us examinethe impact on network perfoomanceof traffic locality with
respet to theingressandegress nodes. Thetraffic arrival paternin the above simulations
roughly modek a WAN. Onemight askwhat hapgensif a significant amountof traffic is
betweemetwork nodesthatare“co-located”, i.e., having direct link sto eachother?Notice
thatin thetopology unde consteratbn, the closer the ingressandegressnodes, the fewer
patls there are that have similar charaterisics in termsof hop court. Intuitively, this
implies thatwe have fewer options over which to support the proposedmulti-pathrouting
schane. Hencewe shoud seea decrasein the performanceimprovemert achieed by
DTMP over its sinde-pah courterpat. To verify this intuition, we introduce addtional
traffic betweenNodes6 and16, andalsobetweea Nodes7 and11, eat with rate10 flows
perunit, while decieasingheflow arrival ratesassocatedwith theothe nodepairsin Table
2.2to 6 flows perunit. Thisis donesothatthetotal flow arrival rateto the network is kept
to be 50 flows perunit. Theresuts in Fig. 2.13supyort thisinsight.

The perfomanceof the DTMP routing schene depenmls on the qualty of the set
of pathsover which dispesion will take place. The qudity of a pathis capuredby its
lengh, whichin turn depemsontimely link metrics.In our next simulaion we consdered
how often updateswould be geneated,namely“slow-updaes” and“fag-updaes”.® By
“slow-update$ we refer to an opeaating regime wherelink metricsare upddaed every 1
time unit, and by “fastupddes” we refer to an opeating regime wherelink metricsare
updaed every 0.1 time units. This distinction in link stateupdding rate may correspord
to networks with differentgeagraphcal coverage,i.e., long veraus shorthaul networks, or
simply limitations on signaling overheads.As seenin Figure2.14,for “slow-update$ the
perfoomanceimprovement is more significant. Therea®n is that for “slow-updates’, the

unevemessand/a buildupin network loadsaremorepronouncel in the singe-pah routing

3We areusinga simpleperiodicupdatingscheme Othermechanismexist anda comparisorstudycanbe
foundin [3].
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The performance improvement: slow vs. fast update
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Figure2.14 Theimpactof thelink stateupdateperiad.

schane dueto the longer delay in link stateupdate. Henceour DTMP scremealleviates
theimpactof delaysin distributing link stak informaton.

Finally we examinedthe impact on the routing performanceas the capadty of
the network is increased Let us dende the network usedin the previous disaussins by
NET-SMALL , and condruct a new network, NET-BIG, that hasthe sametopdogy as
NET-SMALL but 100timesthe link capactly. In order to derive a meanngful compart
son,we scaledthe flow arrival ratesto NET-BIG to be 250timesthoseof NET-SMALL. A
comparsonof the performancemprovementsachievedby DTMP is shavn in Figure2.15.

We obsevethatperformancemprovementbroughtabaut by the DTMP mechaism
aremoresignificantin thenetwork with large capadty. Thereasm is thatwith delaysin link
updaing, singlepathrouting is someavhat oblivious to the network load condtion, which
leadsto poorloadbalarcing onthenetwork. Thekey point is thatsuchimbalarcesaremore
pronounce in thelarge capaity network anda multi-pathrouting schenelik e oursis able
to alleviatethis prodem moresutstantally.

Note thatin the above simulationswe optedto linearly scalethe flow arrival rate
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The performance improvement: large capacity network
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Figure2.15 Theimpactof the network capacity

andthenetwork camacity. To further genealizethisresut, we alsoexperimentedwith other
scaling schemes In particular, we scaledthe flow arrival ratesso thatin both networks
dynamic single-path routing scheneachievedroughy thesameperfaomance We comparel
theperformanceamprovemen attanedby DTMP schemesonthesetwo networks andfound
thatin networks with larger arrival rateandlink capadty the DTMP schemeagainachiered

amoresignificant performancemprovementover dynamicsingle-pah routing scheme.

2.4 Summary and discussion

In this chaper we studied dynamic multi-path routing. We formulateda stochastic opti-
mization prodem for a paralel-link network model. We analyzeda setof routing policies
intendedto optimaly seled thelinks overwhichto dispesetraffic flows. For anasympbtic
regimewe exhibitedanasso@tedoptimizationprobdemwhich permitsa closed-fom anat
ysis. Theseresluts provide a numberof insights addressingthe interaction amongtraffic

arrivals, flow holding time, link capadty, andnetwork updatng time scales In particular,
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we idertified a robust dynamic multi-path routing schemej.e., the DTMP scleme, that
perfomswell in various network ervironments.

We then exterd the findings to networks with meshtopologies. We adaped the
DTMP schemein this context and conductedexternsive simulaions to examineits perfor-
mancejncluding theimpactof thelink stat updading rate burginessin traffic arrivals,and
variousissues coneerningtraffic loaddistribution. Basedon our simulaionswe believe we
have identified a robust dynamic multi-pathrouting schane that canbe usedto effectively

routddispersetraffic in high spee networks.

2.5 Appendix

2.5.1 Proofof Theorem1

To prove Theoem2.2.1,we will usethefoll owing three lemmas.

Lemma 2.5.1 SupmseX;, Xo, - - - areiid uniform randomvariablesontheinterval [0,1].
Let X&WD be the [na] order statigic basedon the first n randan variablesin the se-
querce ThenX7 . 2% a.
Proof: By definition,

Xltnay) —> a iff P{we Q) Tim X{ ) (w) =a}) = 1.

Now X7

([mﬂ)(w) — aif Ve > 0,3Im > 0, suchthatVn > m,a—e < X("[nan(w) < a+e.
Notethat
3 g [na]
X < 1{X; < > —. 1{X; < > )
lhna)) (@) < abe = Y 1{Xi(w) < ae} > [nal <= 3 1{X(w) < ate} > =

i=1 i=1

By the StrongLaw of Large Numbers

1 . [na]
— . ; < = > =
nlg{)lon Z;l{)iz(w)_a+e} ate>a nlgngo o
1=
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SO

Imq,Vn > m1,X&m1)(w) <a+eVw.
Similarly, Imeo,Vn > mg,X(”[naD(w) > a— € Vw. WhenceX("[naD(w) — «a,Vw and
Xltpay) — @

Lemma2.5.2 If X1, X5, -- areiid randomvariableswith distribution function F', where

F is cortinuous and has a finite support [0, ¢|, then the order statistics are sud that
a.S. _
Proof SinceX ~ F(z), F(X) ~ U(0,1). By the continuity assumgion, we have that

Ve >0, 3¢ >0,

P({w € Qf lim X{, 1) (w) = lim F~ Y (a)

n—0Q

= P({w € Q| hm F(X{tpa))) (w) =a) = 1.

Thelaststepfoll owsfrom thefactthat F isincreasing thusF(Xg.)) is thes-th orderstatistic
of a uniformly distributed randam varigble F'(X). By definition we obtan almog surely

corvergence.

Lemma 2.5.3 For thecontinuousfundion f, if X ~ F, thenlim,, %ZI o] f(X(l)) =
E[f(X) - 1{X < F~'(a)}].

Proof

3
&

Zf D) H{X: < X{fpap t-

SHES

% 1
SmceXﬁmD “1(a), we have

lim — Zf ) - H{X; <X( mﬂ)} =" lim —Zf ) - H{X; < F M)}

n—o0o n n—o0o n

= E[f(X )-1{X§F )},
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by thelaw of large numbes.

Proof of Theorem2.2.2 By Lemma2.5.3,we have

[an] n

min {lim - BLY /(e ™ + 21— ) — SO+ 30 (e ™) = X))

0<a<1 no0 n i=[an]+1
— jmin (B¢ + 2 (1= e P10 < X < F7a)}] + BUICX - e M1{(X 2 P @)}
— BIFOH(0 < X < PY@)] - BIFCOUX > F~ (@)},
= min {BUACX -7 4 (1= )10 < X < P @) + BI(X - P)UX 2 Pl )}
— BIFO0 < X < PY@)] - BIFCOUX > F~ (@)},

0<a<1

- E[f(X)]},

= min {E[f(X e+ M%(l —e ")) {0 < X < F Y ()} + E[f(X - e ") L{X > F~'()}]

whichis equvalentto

oD, E[f(X -7+ M%(l —e™));0 < X < F7H @)+ B[f(X -e™); X > F7}(a)]

By achargeof variable,« = F(y), we have that(2.5.1)is equialentto

i _ A - -
Ofgl;ch[f(X'e Mt+uF—(y)(1_e )30 < X <yl+ E[f(X e ™) X >y

[ |
2.5.2 Proofof Fact 1
Proof: If X ~ Uniform[0, ], thefirst orde optimality condtion for (2.6)is givenby:
. AC _ _ Ac- (1 —e™#) . AC _ Ac _
e M = (1—e M)~ f(ye ™) = 2. e M T (1—e M) — F (= (1—eH))].
fly My( )—f(ye ™) R [f(y My( ) f(uy( )]

Letn = e # andd = % - (1 — e~#*), thenwe canwrite this condtion as
0 0

0 9
fny + 5) — flny) = el [f (ny + 5) - f(;)],
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or equvalenty,

0y _ 9y _ (8
flny + ye) floy) _ Flny + ) f(y)’ 2.7)
g ny

sincewe assumef is corvex it foll ows thatthere exists a unigue soluton #* to (2.7) and

ny™ = ., orequvalentl, y* = \/%
Now the optimizer y* is either the statianary point 3= or a bourdary point 0 or c.

Notethat
—ut A€ —put
E[f(X-e™* +@(1—6 HY:0 < X < 9y)] = o0

asy — 0, soy* = min{y™, ¢} anda* = y*/c.
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Chapter 3

Predictive Routing To EnhanceQoS For Stream-based-lows

Sharing ExcessBandwidth

3.1 Intr oduction

We investigae routing mechansmsfor strean-basedraffic flows. The traffic andservie
modelwe considercanbe summaried asfollows: upon arrival to the network the traffic
flows require a minimal level of guaranteedservie, e.g., in termsof a minimal bandvidth
gualantee. The flow is admittedif there are sufficient resaircesto do so along the se-
lected route, othemvise the flow is rejected. After admisson into the network, the flows

may achiewe improved performanceby sharirg network resouceswhich arenot in useto
gualanteeservia for ongoing flows. In gereral, the performanceachieved by a given flow
depandson the resairceallocationpolicy at the flow level andthe packet schediling pol-
icy. At the flow level, the shaed resoucesare allocatedto ongdng flows basel on the
resouce shaing policiesemployedin the network, e.g., TCP[33]or max-minshaing[11].
At the paclet level, the paclet schaluling policy determiresthe packet service ratefor a
givenflow in accordncewith the flow level resaurceallocations In this chager we focus
on analyzing routing schemeghat improve the overal network perfoomanceat the flow

level. We believe suchimprovementsin flow level perfamance,couded with a suitable

1In this chaptemwe referto traffic flows andtheir associatedisersinterchangably.
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work-consenmg schediling policy, canleadto beter user-pereived QoS.

For agivenresouce shaing policy, the performanceachieved by a givenflow dur-
ing its sojaurnin the network depemison anumberof factos including thenumkler of flows
in the nework, the resaircesavailable for shaing, andthe setof links traversed by these
flows, i.e., their routes. This motivatesusto investigaterouting mechaismsthat not only
optimize sysemmetricssuchastheflow blockingrate, but alsoenhancethe user-peceived
performanceto the individual flows. Prominen service classesthatfit in this geneic ser
vice modelinclude ATM VBR servie[19 andrateadaptive applicatiors[58]. Specificaly,
ATM VBR conrectiors would request alevel of QoS,e.g., cell lossrate uponarrival to the
network. The Call Admissian Contrd (CAC) mechansm employed by the network might
thentrandate this usercentic QoSspecificdion into an estimateof the resaurcesrequred
to satisfy the userQoSdemand e.g., effedive bandwidh[37]. Given an estimatefor the
effective bandvidth the network decidesto admitor rejectconnections Notethat from a
users pergectie, it is bendicial to route theadmitedVBR connestions on a pathwith ad-
ditional spareresaurces sothattheinacairaciesin the estimates of the effective bandvidth
canbebettertolerated.In the caseof rateadapive appications,traffic flows arriving to the
network aregivena minimal bandvidth guaianteg andexpectvarialde transmisionrates,
i.e., whentheloadis lower (higher), the flows adapt to higher (lower) trangnissionrates,
posdbly by subgribing (unswscriting) to addiional service layers [48]. In this casethe
exces bandvidth seenby the flows might be usedto suppat lower priority layers. These
obsevatiors suggest thatit might be bendicial to route thes flows so asto minimize the
average load a flow is likely to seeduring its sojourn in the network? We shall refer to
the average load seenby a flow asthe flow-peceivedioad, andsetout to desgn a routing
schame that aims at improving this perfaomancemeasurgin addtion to minimizing the
flow blocking rate.

To achiee this goal, we considerrouting schemeshat useprior knowledge of the

2Equivalertly, we might attemptto maximizethe averageavailablebandwidtha flow is lik ely to seeduring
its sojournin the network.
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flow holding time. For example the holding time might be known or charaterized via its
meanor distribution. We proposeto modelthe link load dynamicsasa meando estimae
the expeded flow-perceived load on the network links. As in [8], wherea call admis$on
control scheme is studied, we will usethe queung-theorett resuls in [43] to proposea
paraméric modelfor the link load dynamics. In our routing frameawork, links estimae
andadwertise the parameg¢rsasso@atedwith their loads in addiion to their current staes.
New flows arerouted basedon this information andprior knowledge of their holding times
so asto minimize the expeced flow-perceved load We will showv that even with limited
informationon flow holding times, e.g., their means pnecanoftenimprove both the flow
blocking rateandflow-peraivedload simultareousy. Consideringthattheimprovedflow
blocking rateimpliesanincreasein theload supprtedby the network, it is remarlkablethat
onecanalsoacheve betta perfomancein termsof flow-pereived load, andthus bette
eventual QoS.To subsantiat this claim, we will shav that in a network whereavailable
bandvidth is sharel in fair fashon, a significant increasein a flow’s bandwidh sharecan
berealizad whenusingour routing apprachversustwo basline schanes.

In orderto study the effectivenessof our apprach, we examined various opera
tiond issweshy simulations. We beliewe the proposedrouting schemeopeiateseffectively
in a wide range of contexts, andits perfaomanceis robust to various uncetaintiesin the

network’s operating ervironments.

3.1.1 Relatedwork

As mentionedabove, in this chaper we proposea routing schemehat routestraffic flows
basel on bothlink load dynamic andprior knowledge on flow holding time. We will use
an aut-regressive processto modelthe link load dynamics, and estimag its paraneters
basel on load sample. The key ideais to integrate such informationin the notion of the

expectedflow-peceivedload, androutethe traffic flows sothatthe expededload seenby

3Theflow-percevedloadis measuredy averagingindividual flows’s perceved load over all flows thatare
sened by the network.
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flows during their sojourn in the network is minimized. Our work contibutesto ongang
reseach on routing QoStraffic andwork considerng therole thatprior knowledgeof flow
holding timesmight play.

Specificdly, in [53] a numbe of compditive routing algarithms are presentedfor
ATM networks. The resuts indicate that one can desgn online routing algarithms to
achie\e different degrees of competitvenesswith respectto the optimal offline algorithm,
depeanding on the assumpbns madeconcening prior knowvledge of conrection holding
times. Ratherthan focusing on desgning a goad routing schemerelative to the worst
casearrival process,in this chager we optimisticdly assumethatlink loadsfollow quast
stationarystodasticdynamics.

In [57], arouting schame is proposedwhich provides differentiated handing of
shott versts long-lived flows. Datapadetsarerouted on staticshotestpaths, until a flow
classfier is triggeredto switchthe flow routing basel on a dynamic algarithm that is load
sendtive. Our work differs from [57] in that we usedynamic routing for all the traffic
flows, but thedifferentiaion is done throughtheuseof differentrouting metricsfor different
flows. Instead of relying on a flow classificationtrigger asin [57], our schemeexplicitly
deteminesperflow routing betavior by integrating into the routing decsion the (mean)
flow holding time andthe estimatel parameerscharaderizing link load dynamics.

In [42] anumberof routing algarithmsareexaminedin a network wherebandvidth
is shaed amongbesteffort traffic flows accoding to the max-minfair criterion. The au-
thorsproposearouting metricwhich appraimately estmateshe max-minratefor thenew
conrectionupon arrival. Theresuting shortest pathalgotithm outpeforms minimum hop
routing and shotest-widestpathrouting in termsof packet throughput. Our work differs
from [42] in severalaspets: (1) we focusonimproving the performance(i.e., blocking and
flow bandvidth sharé@ of stream-basd flowsinsteadof max-minrateshareof thebest-édfort
file transfers;(2) we usea link stateinformation that scalesbetterthanthat usedin [42],

whereeachlink need to maintaina sufiicient numbe of “rate scaks” in order to obtan
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an adeaiateestimde for the rate shae of the new connection, and(3) we believe thatthe
notion of expectedflow-perceved load effectively captuesthe resouce-staring potertial
in a network, thusrouting schems incorporaing this notion will apply to otherresairce
sharig criteriasuchasproportional fair share]23, 45] andsize-tasedsharng[72].

More geneally, therehasbeenextensive study of dynamicrouting, e.g., onits in-
stablity if doneatthe paclet level [67], or on approactesto minimize blocking rateat the
flow level by ensuing a better“load-balancing’ [3, 41, 39, 36, 22, 1, 68, 51, 24]. Our ap-
proach canalsobe catgorized as a load-balacing schene. However, it differs from the
aforementicned work, not only in termsof the spedfic routing metricswe propose,but
alsoin thatasarouting objedive we explicitly identfy theimprovementof the individual
flow’s persgective of resaurcesharng potential.

In the following sections we preset asympbtic appraimations for the link load
dynamics andthe as®ciatad paraneterestimaton techrigues base&l on which our routing
algarithm is constucted We thenexaminevarious fadorsrelated to this routing scheme,
propose an extension to meshnetworks, and disauss simulafon resuts that validate the

effectivenesof our apprach.

3.2 Analysis: a simple parallel-lin k model

Let usconsder asimple parallel link model,wherea soure nodes anda destiration node
d areconrectedby n links, seeFig.3.1. Eachlink ¢ hasa camacity of ¢ units, andsenes
an exogerousflow load which arrivesaccordng to a Poissonprocesswith rate . Each
flow hasan exporentidly distributed holding time with meanui‘l, andrequres one unit
of bandvidth to ensureits minimal QoSguaratee. In this chaper we will modelthe link
load dynamicsassoaatedwith the minimalbardwidth commitmeits the network hasmade
andmalke routing decisbnsbasel onthis modelto improve the QoSof flows sharng exces
(or addtionally available) bandvidth. We dende the numberof flows in progresson link

i, or equivalently theloadattime ¢, by X¢(t), wherethe supescriptc indicatesthatthisis
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theload processon alink with capady ¢. We will subsguenty consdertwo asympbtic

regimeswherec and\; grow.

3.2.1 A newrouting metric: expeced flow-perceived load

We corsiderrouting flowsthatarrive atnodes andaredestiredto noded. Letusassumehe
condderedflow loadfrom nodes to noded is smallin comparsonwith theload geneated
by the exogerousflow processesdescrbedabove, sothat the routing of the flows from s
to d will not affect the staionary link loads Xf(t), ¢ = 1,2,---n. Supposea singleflow
with aknownholding time A is to beroutedattime O from nodes to node d. Let link loads
be X7(0) = z§(0), s = 1,2,---n. As disaussedin the introducion we propacseto route
theflow to thelink whereit is likely to experiencea minimal load duringits sojournin the
network.

We definethe flow-peceivedload asthetime average of theload during the flow's
sojourn in the network. Thussuppsea new flow is to berouted at time 0, we canexpres

the expectedflow-perceivedioad onlink i as
C 1 h c c C
ui(h,z(0)) = E[; ; Xi(t)dt| X3 (0) = 7 (0)]
1 rh
= 1 [ Pioixio = o)

As mentioredin theintroducion this metricquantfies the expecedloada flow with known
holding time h would seeon link i. We proposeto route the flow to thelink ¢ with max-
imum expeded flow-peceived available bandwidth, i.e., ¢ — v (h, z§(0)). Whenall links
have the samecapady this is equivalentto minimizing the expecked flow-perceved load
ui(h, z£(0)). We will laterrelax the assunption that /2 is known and examire the sensi
tivity of suchrouting algorithms to the knowledge of the flow holding time. Below we
consder someapproimations for the expectedflow-percevedload, assumingthelink load

dynamicsareindependent of therouting decisobns.
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3.2.2 First approximation: a fluid model

Consicer an asymptdic regime where); and ¢ apprachinfinity, but A = 6; - ¢, i.e, the
flow arrival rateincreaseslinearly aslink capady increases,rrespectie of the link load
condtion. As shawn in [43], it follows that>i® %% 4.(1) asc — oo, for 0 < t < s,

c

Vs < oo, Where{z;(t)} satisfieghefoll owing ordinary differentialequation

i (t) = 0; — pizwi(t)-

Thusif X80 2% 4.(0), we have that

zi(t) = z;(0) - e Fit 4 %(1 — e Hit), (3.1)
Hencefor alink with large capaity ¢ andsuchthat X?(0) = z¢(0) we have thatroughly

XE(t) ~ 25(0) - et + %(1 _ emhit), (3.2)
Using this asymiiotic regime we canapprximatethe expeded flow-perceived load intro-

ducd in the previous subsetion asfollows. Assumethelink hasa large capady ¢ andits

loadis X¢(0) = z$(0) thenby (3.2) we have that

h
w(haf(0) ~ Jm Bl [ XE - aiXF0) = a5(0)]

Ai

1 — e Hih " i
Mg

) pih pi
Obsene that for shortflow holding timesthe expeded flow-perceived load correponds
to thelink’s stae «£(0), andfor long flow holding timesthe expeced flow-perceved load
tends to the long-term averageload%. Henceif 2¢(0) < 2_ i.e., theinitial loadis lower
thanthe long-termaverage load, flows with shortholding timeswill seea lower expected
flow-perceivedload thanthosewith longer holding times. Corversely if theinitial loadis
higher thanthe long-term average load, flows with longer holding timeswill seea lower
expededflow-pereivedloadthanthose with shotter holding times.
Fig.3.2illu strates a specal casewith two links betweersoure nodes anddestna-

tion node d. Theincoming flow may encountera numbe of situations with differentinitial
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Figure3.2: Routingin simpletopolay.
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link loads andlong-termaveragelink loads. Specificaly, for Case(a), Link 1 is prefared
eventhoughtheinitial link loads attime 0 arethe samefor thetwo links. For Caseg(b), Link
1is prefaredsincebothits initial load andlong-term average load arelower thanthoseof

Link 2. For Case(c), thete existsa “cross-aver” flow holding timeh where

For flows with holding time shater thank Link 1 is preferred,andfor flows with holding
timelonge thank Link 2 is prefared. For Case(d), thereexistsa“cross-aver” flow holding
time wherefor flowswith holdingtime shaterthank Link 1 is preferred andfor flowswith
holding time longer thank Link 2 is prefered. Thesecasesexemplify the potential gains
thatcanbeachiezedby judicioudy accaunting for both the flow holding time andlink load

dynamics.

3.2.3 Secondapproximation: a diffusion model

The fluid modelpresntedin the previoussecton allows usto appoximately charaterize
theevolution of thelink loaddynamics. This modelariseswhenwe examine thescakdlink
load X{(t)/c in the limiting regime wherethe link capadty ¢ andload ) = 6; - ¢ grow
linearly. We canalsoestallish a similar relationship charaterizing link load dynamics by
investigatirg the scalal stoctasticfluctuaions of thelink load aboutits mean.

XZ(t) a.s,

Suppsea“mode” existsfor thelimiting regime,i.e., == == z;(t) = z— thenas

provenin [43] asc — oo the fluctuaion processabaut the modecorvergesto an Ornstein

X5 (t)—cb; /i dist.
Ve

Uhlenkeck proces. In patticular asc — oo, — X,(t), where X;(t) satidies

thefollowing stochasticdifferentialequation

dX;(t) = —piXi(t) + /20:dB;(t),

where {B;(t)} is a stardard Brownian motion. Thuswe can appraimately model the

link load processasan Ornsten-Uhlenbeckprocess,which is the solution to the following
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stochasticdifferentid equaion
dXi(t) = —ou(X((t) — pi)dt + oidB(t), (3.3)

whereq; = Wiy Pi = C@i/ui, o; = v/2cb;.
Constler againa flow with holding time & to be routedto a link ¢ with X7(0) =
z£(0) andwhoseload dynamicsare chaacterzed by the above OrnsteirUhlenkeck pro-

cess.Theexpectedflow-perceivedloadin this regimewould be given by

ui(h, 27(0))

Q

h
% /0 BIXE(8)|XE(0) = 2£(0)]dt

1 [k o
= & | o) = peet 4 pa
l—e_aih

ah (3.4)

= pi+ (zi(0) — pi)

Thisis similarto theexpecteal flow-percevedload obtainedfor thefluid model,eventhough
in this casethe load dynamics are modeledby stochasticfluctuaionsabaut the mode. The
reasm for this similarity lies in the factthat we arefocusing on the meanof the link load
processversusthe secom order staistics inherent in the diffusion approaimation Indee,
the proposedrouting metric doesnot depend explicitly on g, andthus,in a sen®, does
not captue the degree of fluctuation in the perceived load a flow might see. However,
as shown in the sequel, using only the first order charaderistics for the perceved loads
alrealy achievessigrificant performancegains The impactof the semnd order statigics
ontheresuting QoSseenby flowsis left for future study In thefoll owing sectonswe will

use(3.4)asourlink metricandwill assumeheloadprocesscanbeadeqately modeledby

anOrnsteirUhlenbeckprocess.

3.2.4 Link load characteristics: parameter estimation

In orderto make routing decisons basel on the propcsedlink metricwe will estimae the
paraméeers(i.e., p;, ;) for theload processmodelfor eachlink. Notethat in practice the

flow arrivals seenby a link would not be Poissm with a congant rate,asassumedbove.
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Instead the arrival ratesare likely to depend on the current stateof the network, i.e., if
the link load is low, one might expectto seea highe arrival rate,andif thelink load is
high the arrival rate might go down. However, in genegal the dynamics of this processwill
exhibit the “meanreverson” property of the OrnsteirUhlenbeck process,i.e., there exists
a “mode”, andthe link load exhibits fluctuations abou this modedueto arrivals to, and
depaturesfrom the systen. Thesein turn areinfluenced by therouting decsionsthatare
being made.

Let us thusconster modelng the link load process{X;(¢)} asseiatedwith link
i asan OrnsteirUhlenkeck processwith parametes (o, «;, 0;). To estimae the needé
paraméers we samplethe link loadsevery A time units. Define the sampéd process

yi(k) = X;(kA) for k € Z. Theparaneterscanbe estmatedusing the following:

. 1< R lnAi
pi:;;yi(k)a &; = — Aﬂ,

where
B = > orea(Wi(k) = pi) (yi(k = 1) — pi)
Z > k=1 (ik) — pi)? ’

For compleenessa detaled derivation is includedin the appendix.

Note that the selection of sampling period A and samplirg window n impactthe
quaity of theparameteestimaes.In thesequel we usesimulationsto assestheimportance
of these samplirg paramegrs. It is known that the spectum of the OrnsteirUhlenkeck
processis of the “low-pass” type, i.e., with a cut-dff frequeng (3dB point) at ¢;, hene
one might roughly amgue that the samplirg rate shoul be at least2¢;. For the queling
modelsdiscussedearier the cutdf frequeny ¢; equds to y;, i.e., the flow departire rate.
However, in pracice therouting mecharsmitself would accderatethe meanreversian thus

oneshoud exped to requre a samplingratefasterthan2, i.e., A < %
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3.2.5 Dynamic or adaptive routing?

Routing algorithms are often said to be either dynamic, i.e., using most up-to-datelink
states, or adagive, i.e., using averaged/filteredlink staks. The proposedrouting metricis
basel on boththe mostup to datelink statesand the avereged paranetersquantifying the
“stationary’ or long-term charaterigdics of thelink loads. As obsewred earlier asthe flow
holding time h becanessmall the proposedmetric is esseritlly a dynamic one i.e., the
current link stak, while for large h the longer term charaterisics of the link’s load are
usedto make therouting decisons.

To be precseconstera link whoseload dynamicsis charaterized by paraneters
(pi, ;). In this cae the link load relaxes exponentidly to the long term average p, see
(3.1) and (3.2). The “relaxation time” is roughly 1/¢;. By contastthe expeded flow-
percévedloadis definedasthe expectationof thetime-averagedink load,andthusrelaxes
more slowly. lIts effective “relaxation time” is roughly e/q;. Let h] = e/a;. Thusfor
sufficiently large holdingtimes,i.e., h > k, we have thatu;(h, z;(0)) = p; andtherouting
of aflow with suchholdingtimesmaybesaidto beadapive. By contrastif its holding time
is smallerthanh onemight saythe metricaccaintsfor the dynamiccharateridics of the
link’ sload.

For our simpletopology with 2 links, let i correspomisto the“critical” flow hold-
ing time for link 4, where: = 1,2. We obseve thatfor all flows with flow holding times
greaerthanmax{hf, h%; }, therouting mechaism is adagive. Similarly, for all flows with
holding time lessthanmin{A7, k% } therouting mechansmis essetially a dynamicone

In summarythes criteriaroughy showa“split” betweerflowswith differenthold-

ing times,accading to which flows areroutedin a dynamicor adagive manner

3.2.6 Impact of the delaysin advertising link states

In alink-staterouting schemethereusually existsabroadcasing mechanisn throughwhich

the link statesat the routersare updated. Inevitably updaing delaysareinvolvedin such
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broadcastng schenes,dueto overhea constaintson messge propagationandprocessimg
delays. In this sulsection we examinetheimpad of updatingdelays ontheproposedrouting
metrics Conside the scenaio wherewe make a routing deckion attime ¢, but only have
acces to theadwertisedlink stateattimet — d. Without lossof generéity suppset = d
andatthattime we have aceessto z;(0) aswell asthe parametes (¢, p;) chaacterzingthe
link load If thedelayd is known one cancompensatefor this by compuing the expected

flow-perceivedloadasfollows,

1 h+d
ui(h, z;(0);d) = 7 ] E[X;(s)|X:(0) = z;(0)]ds
1 — e @ik
= ﬂi+($z‘(0)—m)(7aih Je il
_efaih
~ it (@il = ) () = i (d),

sincez;(d) ~ (z;(0) — pi)e %% + p;. We observe that as d increasesu;(h, z;(0); d)
corverges to p;. Thusif significent delaysareinvolved in link-stateupdates,the routing
algarithm thataccauntsfor the (known) updating delays would be essetially adapgive.
Note thatthis discussionassumeshatthe delayasso@tedwith the currentupdae
for thelink stateis known. In pradice this canbedoneby time-sampinglink stateupdats.
However, in the sequel we will, for the most part, not assumesuch delays are known.
Instead, outdded link statesare treatedas “current” and directy usedin estimathg the
expeded flow-perceved load accoding to (3.4), i.e.,, when making routing decisions at

time d we usez;(0) in placeof z;(d). Let z;(d) = z;(0). In thiscase

1 — e~k
uj(h,zi(d)) = pi+ (7:(0) — pi)(T)
1— ;—aih

~ pit+ (zi(d) - Pi)(T)eaid-

Henceif d < o; *, u;i(h, #;(d)) ~ ui(h,z;(d)). We will seein the seqel thatevenin
the casewhered ~ ai‘l the predctive flow-time awarerouting schemestill providesper-
formarceimprovemerts over our baselne schems. However, the “time-stamping mecha

nismcancontribute to addtional perfaomancemprovemerns.

51



I(h)

senstitive

insensitive

Figure3.3: Sensitvity to flow holding time.

3.2.7 Uncertainty in flow holding times

Previously we assumedhatflow holdingtimeswereknownin advane. In pradice thismay
not be the case. In this sulsectiacn we corsiderthe sersitivity of the routing dedsionsto
uncetainty in theflow holding time. We approachthis via two differentavenuss, (1) what
is theimpactof uncetainty in the flow holding time ontherouting metrig, i.e., theexpected
flow-perceiwedload?, and(2), whendo the routing decsionschange asflow holding times

vary? We shdl write the expectedflow percevedloadonlink ¢ as

ui(h, 25(0)) = pi + (zi(0) — pi)li(h),

wherel;(h) = 1‘2;‘” andh dendesaknown holding time. Notethat/;(h) is deceasig
andcorvex in h, thusthe proposedrouting metricis fairly insersitive to the uncertairty in
h whenh is large. Suppos only the mear of aflow’s holding time distribution is known.
Let H be arandam variabk with that distribution. One might considerusing (h, z;(0))
asarouting metric. We notethatif % is large andthevariarce of H is smallthenthis metric
is fairly representdive of theactual expectedflow-perceivedload.

Evenif h is moderaé or smallandsothati(h) is relatively sen&iveto h, we argue
thatalthoughtherouting metric; (h, z;(0)) mayvaryif we useh insteadof the actual flow

holding time, the routing decisbnsbasedon this may not. Fig.3.2providesanillu stration.
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For Fig.3.2-(ab), we obseve thatno matterhow h varies, the routing decsionsremainthe
same. For Fig.3.2-(cd), thereexists a certadn timescaé i such that for all k lessthanh
Link 1 is favored,andfor all i greaterthanﬁ Link 2 is favored. Hencein thesecass if h

andh remainon the samesideof , therouting decisonsmadebase on’ will notchang.

3.3 Predictive flow-time aware routing in a meshnetwork

In the previous sectian we proposeda routing schremebaseal on the notion of expectedflow-
perceivedload, in thecontext of a simplepardlel-li nk topdogy. Thebasicideas gereralize
to meshnetworks with multiple souce-destinaion pairsrouting flows simultaneotsly. Note
thatin this casethe link metricsmustbe usedto congruct pathmetrics Thetaskhereis to
comput pattsfor theincomingtraffic flows sothat(1) thenetwork cancarryasmary traffic
flows aspossble, and(2) the pereivedloadsby the admitted flows during their sojounin
the network areaslow aspossble. To achieve thesegoals we will have to make anumbe

of desgn choices:

o whethea to useaddiive or concae link metricsto condruct pathmetrics;
¢ how to incomoratethe notion of expectdflow-percévedloadinto thelink metrics;

e how to effectively estimae the paranetersthat characterie the link load dynamics

andthe expededflow-percevedload.

To systematically addresstheseisswes,we have perfoomedextensive simulaions of
the propasedrouting appoach. Belov we showthe performanceof our predictive flow-
time-avarerouting schene,andilluminatea numbe of fadorsthatmayimpactits perfor-

mance.

3.3.1 Simulation setup

We perfarmed simuldions for different network topdogies and traffic matrices In the

following we presenta setof resuts for the network shownin Fig.2.8. In our simulafons,
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Table3.1: Thetraffic matrix

ingressnode | egressnode | hopdistance| arrival rate
0 16 4 50
1 17 3 50
2 16 3 50
2 13 3 50
3 9 2 50
4 13 4 50
5 14 4 50
8 10 3 50
10 4 5 50
11 4 4 50

the flows arrive to the network accoding to a Poissonprocess,andthe flow holding times
arerandanly distributed. We experimentedwith various flow holding time distributions,
e.g., exporential, Pareto,hyperexporential bi-modd. Thegereraltrendsof therestuts are
similar under differentholding time distributions. We will only showresuls correspondng
to the exponential distributions. The ingressand the egres nodes for the new flows are
selet¢edaccodingto Table3.1,which correspordsto atypica WAN traffic patten,i.e., the
ingressandegres nodes of aflow areatleag two hopsaway from eachother.

The paranetersfor the simulation were setasfollows: link capacity is 200 band
width units. The meanflow holding time is 1 time unit, which might represent, say a
3-minute periad for voice appications, or a 1 hour period for video transmissiors. In the
following simulatonswe will usethe meaninstead of the exactvalueof flow holding time
to evaluatethe expecked flow-perceiedload. The various timescaéswe will encainterin
this sectim, e.g., link load samping period, samplirg window size,andlink stateupdding
delays, will all besetrelativeto the meanflow holding time. Thebandwidh requestof eath
flow is uniformly distributed betwea 0.5 and 1.5 bandvidth units. This setwp is referred
to asthe basecase .We increasethe traffic load by scaing the arrival ratesof the basecase
by a seqienceof factoss. Thelinksin the network estimatethe paraméersthatcharaterize
theirload dynamic, i.e., p;, ;, anddistribute these paranetersalong with the current link

load periodicdly. We will refer to our routing schremeFTAR (Flow Time AwareRouting).
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Unless stakd explicitly, the curren link statesare assunedto be known, i.e., no
updding delays. We will compae FTAR with two baselhe routing schenes. Thefirst is
referedto asDSP(Dynamic Single Path),andusesthe reciprocal of the current available
capaity asthe routing metric [41]. The secaod basdine schemeis referred to as MSP
(MeanSinglePath) andusesthe reciprocal of the estmatedmeanavailable capady asthe
routing metric,i.e., c — p;. Herep; is themeanload estimatel by FTAR. FTAR is arevised
versian of DSR i.e., we useexpectd flow-perceved load insteadof currert link load to
evalude the availablecapacity. For anincoming flow, we compue the shotestpathbasel
on the inverse of the expecked flow-percéved bardwidth, i.e., thelink capaity minusthe
expeded flow-percaved load, and estalish the flow on the resuting pathif the available
bandvidth alongthe pathallowsit. Otherwisetheflow is blocked.

We compae routing schemedased on the percentage of the bandvidth demand
that are succesfully routed, and the average flow-peceived excess bandwidth seen by
flows. The latter is detemined by first samping the residwal bandwidh seenby a given
flow during its sojourn in the network, then averaging these samples to getits perceived
excessbandwidth whenit depats, andfinally averagng over all the depated flows. Note
thatthisis a crude measuref hov muchbandvidth thereis in the network for a givenflow
to shae with othe ongoing flows during its sojourn, i.e., the potential for better perfor-
mance but not necesarily the bardwidth achievedby the flow. Clearly, the flow-adieved
bandvidth dependsonthespecfic bandvidth shaing policy usedin the network, e.g., max-
min sharng, proportional shaing[45], or sizebasedbardwidth shaing[72]. In the sequé
we use(weighted) max-minshaing to illu stratethe effectivenesf our routing schemen
termsof flow-achieved bandvidth.

Moreover, in thefollowing sectiomswe will evaluate“% improvedroutedvolume”
and“% improvedaverageflow-perceiedbandvidth”, whicharedefined as”y;y-lﬂo, where
z is the perfamance(% routed volume or averageflow-perceived bardwidth) achieved by

our FTAR schemeandy is thatachiezed by the corresponling basdine scheme.
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3.3.2 Parameter estimation: the optimal sampling rate and window size

Let us first examinethe impacton the routing performanceof the paraméer estimdion
procedure.In particular, we focus on detemining a goodchoice for the samplirg rate,i.e.,
the speedat which a link takes sampesof its loads, and the samplingwindow, i.e., the
durdion of thetime over which the samplesarekeptin memory

Thedisaussionin Section3.2.4suggestghatthesamplirg rateshoud befastenaugh
to obtainaccuate paramete estimats, i.e., A~! > 2y,. Estimatesarebased on sample
within amoving windowt sothesizeof thewindow mightimpad the routing perfamance.
In the following we shal vary the sampling rate and samplirg window size to identify
the setof operdional values. The resuts showv that the perfarmanceof the FTAR routing
schameis robust to the selection of samplirg rate andsamplirg window size,unlessvery
poorchacesaremade.

Fig.3.4shownsthe performanceof our routing schenefor differentsamplingperiods
andwindow sizes Obsene that whenthe sampling window is small, i.e., equd to 0.01
time units, the routing perfomancein termsof routed volumeis unsatsfactay. Indeedif
thesamplng window is notlarge enaughwe arenot ableto captue thelink load dynamics.
In addtion, note that whenthe sampling rateis small, i.e., with a samplirg periad of 1
time unit, therouting perfomancealsodetaiorates. This is congstentwith our asselion in
Section3.2.4thatif thesamplingis notdonefrequently enoud, we will not have sufficient
sample to be ableto estmatethe paramegrsfor the Ornsten-Ulenbeck model

Note that otherthanthe specfic casesdesribedabove, the routing perfoomanceis
robustto the choiceof samplirg rateandsamplirg window size.In thesequel we will usea

samplirg period equalto 0.1 time units anda samplingwindow sizeequalto 1.5time units.

“It is alsofeasibleto usean “exporentially weighted-aeragng” mechanisnto estimatetheseparameters.
The size of the moving window correspond to the value of the exponential weightingfactor i.e., the larger
window sizecorrespondto the selectionof the exponertial weightingfactorin favor of the load history over
thecurrentload.
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Impact of sampling rate and window
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3.3.3 Performancegainsusing predictive flow-time-aware routing

Let us now comparethe performanceof FTAR with DSPand MSP In Fig.3.5we show
a typical resultfor the casge with exponential flow holding time distributions. We seethat
FTAR improvesthe routing performanceover both DSPandMSRP by up to 10%in terms
of routed volume. We observe that FTAR performs congstenty better thanMSPE andthat
only in the heavily loadedregimewhereFTAR is suppating a higher traffic volume, does
its averege flow-perceved bandwidh seenby flows becomelessthanthatfor DSP Note
thatin thelightly loaded regimetheflow blocking performanceof FTAR is betteg thanDSP
andMSPR and FTAR alsoprovidesbetterperfarmancein termsof average flow-perceved
bandvidth. Thisis surpising since the network using FTAR is admitting a higher numbe
of flows. Hencethe overdl routing of traffic mustbe significantly improved by using a

predctive flow-time awarerouting mechanism.

3.3.4 Concave or additive path metrics: choiceof meshrouting algorithms

To detemine good pathbetweena pair of soure-desination nodesfor anincoming flow,
one often resots to a notion of “shortest path” or “widest patli. On the one hard, the
congruction of a shortest path often proceedsby addirg up link metrics. On the othe
hand the construcion of a widestpathusualy involvestaking the minimum (a “concave”
opeiation) of several link metrics It is not entirely clear what routing metrics and their
asseiatedalgarithms one shoud usefor a specfic routing scerario, though [41] suggests
thattheinverseof theresidwal bandwidh mightbeagood addtive routing metricto achiewe
network load-balarcing. Note thatin a simple paralel topology like the one we usedin
the previoussectonsthe “shortest” and“widest’ routing schemesare equialent,i.e., the
differencearises only whentherearemulti-link paths in question.

In the context of predctive flow-time awarerouting, we believe the choiceof rout-
ing strakgy, i.e., “shortest” or “widest” criterion, depadson the charaderistcs of thein-

comingflow andthe correppondng network load condtion. In particular, we note thatthe
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“dominating link” on a path,i.e., the link that exhibits the “worst” load level, might vary
during a flow’s sojoun in the nework. Fig.3.6illustratesa pathwith 3 links. Fig.3.6-(3
shawvsthelink loaddynamics. Fig.3.6-(b)showstheloaddynamicsfor the“bottlened” link
of the path whoseidertity variesovertime,i.e.,,2 — 1 — 3. Fig.3.6-(c)is theloaddynam-
ics averaged over the threelinks. Fig.3.7 shaws the perfaomancecomparsonbetwveenthe
shottest-widest routing schemeusing concve metric andthe shorestpath routing scheme
using addiive metric. We seethat therouting schemeusing addtive metricoutpaformsthe
routing schemeusingconave metric, by up to 12%in termsof blocking rateandby up to

120%in termsof averageflow-perceved bandwidh.
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3.3.5 Effect of stateadvertising delays

As often is the casein pradice, thereare delays involved in link statebroadcass. Since
dynamic routing schemesnake useof link statesit is importantto gagethe impactthes
delays have on routing performance.In this secton we comparehe performanceof FTAR

and DSP as such delays increase. In particular, we will have a “slow updag” scerario,
wherethe link states are updded every 1 time unit, anda “fastupdag” scerario, where
thelink stakesareupdatedevery 0.1 time units. Thesemay correspondto networks with

differentgeogaphical coverage, i.e., long versusshott-haul networks, or simply different
limitationson the signaing overheals. We will usedelayedlink loadin computng routing
metricsfor FTAR and DSP As shownin Fig.3.8the perfomanceimprovemen by FTAR

over DSP is more significant when the adwertising delays are larger. This confirmsour
intuition in thatthelarger delays leadto a diminishing effect on therouting performanceof
the“current” link states, or altematively, the moresignificant contribution by thelong-term

averggeloadinformation which is capguredandutilizedby FTAR.

3.3.6 Time-stampingmechanism

It is of interestto compae the routing perfarmanceusing delayel link states, aspreseted
in the previous secton, with thatwherea “time-stamping” mechargmis usedto determine
exactly the delay asseiatedwith a givenlink stag, i.e., the links attad a time-gampto
the link states whenthey areadvertised As discussedearlies whenmaking routing deck
sions route's canusethis time-gampinformaiton to determire the delay of link statesand
thus estimatethe expeced flow-pereived load acording to (3.5). Fig.3.9showsthe per-
formarceimprovementacheved by FTAR augmeredwith time-gampover FTAR without
the knowledgeof link stateadwertising delays. We seethatthis time-gampingschemdm-
provestheroutedvolumeby 4% andaverageflow-percaevedbardwidth by 25%. Moreover,
we notethatwhenthe updat delayis larger, the perfaomancemprovementobtairedby the

time-sampingmechaismis moresignificant. This is intuitive corsidering the factthatthe
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differencein routing metricsincreasseswhenthe updatedelayincreasesbetweernthe cass

with andwithout time-stanps,andhencethe differencein the routing decisons.

3.3.7 Bursty arri vals: Mark ov modulated Poissonprocess

In the previoussimulationswe modelal the flow arrivals by Poissonprocesses This is a
relatvely “smooth” randam process. In this section we examinethe effect of amorebursty
arrival process.Specifically we useMarkov modubtedPoissm process(MMPP) to model
theflow arrivals. Therearetwo “modulating” staes,“high” and“low”. In eachstatetraffic
flows arrive asa Poissm process. We will congdertwo MMPPswith differentflow arrival
ratesin the “high” state. For the first, the flow arrival ratein the “high” stak is 3 times
the meangivenin Table3.1. For the secand, the flow arrival ratein the “high” stateis 1.5
timesthe meangivenin Table3.1. In the “low” stag, traffic flows arrive with rate 1/3 of
themeangivenin Table3.1,for bothMMPPs.Besides therates assocatedwith the “high”

and“low” staes,the MMPPsarealsochaacterzedby the meantime they stayat “high”

and“low” states For thefirst MMPP, we setthe meantime at “high” stateand“low” stat
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Figure3.10: Perfomancemprovemern of FTAR over DSPwith burstyflow arrivals.

to be 0.5 - MMPP_TIME and1.5 - MMPP_TIME, resgectively, whereMMPP_TIME is a
scaling variable whichwe vary from 10to 90 time units. For the secoid MMPP, we setthe
meantime at both modulatng statesto be MMPP_TIME. The flow holding time is again
exporentidly distributed with meanl time unit. Note thatthe first MMPP is morebursty
thanthe secod MMPP.

In Fig.3.10we comparethe performanceimprovementfor FTAR over DSR unde
different flow arrival processes. Obsene that as the flow arrival processbemmesmore
burgty the improvemert in termsof routedvolume increaseswhile the improvementin
termsof average flow-perceied bardwidth deaeases Theseseeaningly diverging trends
make sensesinceas FTAR allows increasirg traffic load into the network, the average
flow-perceived bardwidth repated by the (larger amountof ) suppated traffic decrases.
This indicatesthatin anopemting regime with bursty flow arrivals, it will be bendicial to

useinformationon link load dynamicsin addition to the “current” link load.
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Network dynamics of routing schemes
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Figure3.11: Impactof routing onlink loadmeanreversionrate

3.3.8 Meanreversionunder various routing schemes

In the previous sectins we explored three different routing algarithms, i.e., DSE FTAR
andMSP Thesealgarithmsusedifferentlink metricswhenthey compute the shortestpath.
We obserne thatthe perfoomanceof a certainrouting schane depadson the network load
dynamics, andthe network load dynamicsin turn depems on the chose routing scheme.
Note thatin our paraméric modelfor link load dynamics,the paranetero; charaterizes
therateat which thethelink ¢’s load reverses to its meang. In our FTAR schemewe use
amoving-window mechatsm to estimatep; andcq;. The estimatel mean-eversion rate ¢;
is not usedby DSPandMSPwhenmakingrouting deckions. However, it is of interestto
compaetheaverage of estimatel o; overall thelinks in the network, whenoneuseddiffer-
entrouting schems. Let usdende this averageto be d’, wherer € {DSP, FTAR, MSP}.
Thehigherthevalueof o/, themore“responsiwe” thecorreponding “meanreversion” pro-
cessis for the givenrouting scheme, i.e., the strorger the “for ce” pulling the load process

backtowardits mean.
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From Fig.3.11we seethat in geneal oMSP  (FTAR  \DSP Thysif the
routingschemeis MSP, i.e., using themeanlink loadto guidetheplacemenof theincoming
flows, the mean-reersionis leag respnsie. This is intuitive since MSP is insersitive to
thetemporry deviationof thelink loads from their meansi.e., therouting decisonsin this
schame contibute the leag to the mean-eversim. Alternatively, if the routing schaneis
DSR thenthe routing decisons reinforce the meanreversian by sendng lessflows to the
highly-loadedlinks, allowing themto get backto the meanload, or direcing moreflows
to the lightly-loadedlinks, allowing themto load up to the meanload. The FTAR routing
schaneexhibitsadegreeof mean-reersionbehaior in betwee DSPandMSR We believe
thatits perfomanceadvantagederivesfrom its ability to strike a better balarce betwea
the “natural” mean-reersion(detemined by flow depatures)and the routing-reinforced

mean-reersion

3.4 Application: routing max-min rate adaptive sesgons

In the previous sectbnswe shovedthatby usingalink metricasso@tedwith the expected
flow-perceiwedload, therouting perfaomancemprovesin termsof both routed volume and
avergge flow-percevedbandvidth. Theformermetriccorresponisto the ability of the net-
work to support traffic flows having minimal guaranteedbandvidth requrement. Thelatter
metriccorrespondto thepotential for theadmitiedtraffic flowsto improve their“achieved”
performanceby sharirg theexces bandwidh in additionto theguaranteedminimal rate.In
this secton we shawv by simuldion thatin amax-minbandwidh shaing framework the pro-
poseal routing schemecanindedl realize the potential andyield improved “achievedrate”.
We assume that uponarrival anddepartire of the flows the excessbandwidh allocatedto
the ongdng flows areinstantaneasly re-computedaccoding to the max-minrate alloca
tion schemef5], andthetraffic soucesarerespamsive enowgh to adjust ther transmissian
ratesaccadingly. In thefollowing we examinethe perfoomanceimprovemern achieved by

our routing scheme in termsof the addiional bandvidth seenby flows, i.e., the average
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Performance of new routing metric
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Figure3.12: Perfomancecomprisonof FTAR, DSPandMSPwith maxmin fair sharirg.

flow-achieved bandwidh, which is measurd by first taking sampkd-averageof the addi
tiond bardwidth allocaedto theindividud flows during their sojourn in the network, then
averagging over all the depatedflows.

In Fig.3.12we shawv a perfomancecomparsonfor FTAR, DSE andMSP routing
schanes.We know from the previoussimulationsthattheblocking performanceof FTAR is
supeior to the basdines. To highlight the capalility of FTAR in obtaning improved max-
min sharel rates herewe showanoperding regimewheretheloadis light, i.e., noblocking
occusfor all routing schenes.In Fig.3.13we plot the % improvementof FTAR over DSP
andMSP, in termsof average flow-achieved bandwidh. An improvemert of 10%-20x is
achiexedover DSPandtheimprovemen over MSPcanbeupto 70%. Similarly in Fig.3.14
we plot a perfoomancecomparsonof FTAR versusDSPandMSPwhenthere is anupdae
delayof 0.05unit. In this casewhile their perfarmancein termsof averageflow-achieved
bandvidth bemmesimilar astraffic load increasesthe perfamanceof FTAR in termsof
routed volumeis muchbetterthan DSPandMSP.

In principle the max-minbandwidh shaing is fair in the sen® thatit does not dis-
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Performance of new routing metric: FTAR vs. DSP/MSP
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Figure3.13: Performanceimprovemer for FTAR over DSPandMSP with max-min fair sharing.

criminate agairstflowstraversinglong routes. Bandwidh shaing schemesiseal in practice,
e.g., propational-fair shaing, or TCPwill however do so. To study the perfarmanceof the
proposedrouting schene when bandvidth shaing schemeslo discriminate againstiong
flows, we corsideral a weighed max-minsharng schemewherelarger (smalle)) weights
are given to the flows that traverse shorte (longer) routes. This correspond to larger
(smallg) amountof bardwidth being allocatedto the flows that traverseshotter (longer)
routes. In Fig.3.15we plot the perfomanceresutsfor thelight-loadedregime,andFig.3.16
shows the perentage improvemen of FTAR over DSPandMSP. We obseve thatthe per-
formarceadvantageof FTAR over DSFMSPis consstent,evenwith theweightedmax-min

sharng scteme.

3.5 Conclusionand discussion

In this chaperwe proposedanew dynamic routing schemewhich improvestheoverdl per-

formarce achievedby stream-basd flows during their sojoun in the network. Thenovelty
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Figure 3.14: Perfornrancecompaison of FTAR, DSP and MSP with max-nin fair sharingand
updde delay0.06 unit.
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Performance of new routing metric: FTAR vs. DSP/MSP
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Figure3.16: Perfamancamprovemen for FTAR over DSPandMSP with weightedmax-minfair
sharing

of our appraachliesin (1) theidentification of the notion of expectedflow-peaceivedioad,
which quatrtifies the “potential” for improvemen of the users perfoomance that exists at
a givenlink from a speific flow’s persgective, (2) the condruction of a pracical routing
algarithm which realizesthe above potential, basedon an autoregresive load modeland
the prior information on flow holding time. For a large classof traffic andsenice models,
e.g.,, VBR andrate adaptie applications, an effective use of our approachwill resut in
bette flow Qo0S.Specifically we construced a routing algarithm that aimsat minimizing
expeded flow-percevedload during a flow’s sojourn in the network. We shaved thatthis
routing algoiithm leads to not only bette load balarcing in the network, but alsoimproved
flow-perceiwed perfomance. This allows the flows admitted to the network to realize a
greatr shae of “achieved” bandvidth, in addition to their minimal requestedamoun.

The implemenation of the propcsedrouting schemewould require updding rout-
ing software. We useprior information on the holding time of the traffic flows. This can

be either preentedby the traffic flows upon arrival to the network, or obtainedthrough
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traffic statsticsgathere by the network operator. In addtion, routes in the network neel
to maintainlink load models The effort hereincludes estmating the paramegrs of the
modelandadwertisingthe estimatel parametersalongwith current link loads This implies
addtional compuationd andsignding overhead. However, we note thatin a distributed
routing ernvironmenta given router needonly maintain the link load modelsfor the adja
centlinks, which scales at mostlinearly with the numberof the routers in the network.

Moreover, theseestimatel paramegrsare“stable” sincethey correspondto the meanand
therateof variaton for a quasistationarystochastc process,thusthey neednot be updated
as frequently asthe currert link load. It is shownin Sectim 3.3.5that FTAR achieses
higher perfarmancegain with larger adwertising delays whencompaedto DSP This sug

gestsFTAR is morerobustthanDSPwhenlink stateadvertisemens beammelessfrequent,
enalling redued overhead by usinglarger adwertisingdelays Theseobsevationsleadus
to believe that the performanceadvantageof our routing schane outweighsconcens with

overhed. In corclusion, the routing designer canimprove the routing performanceof the
strean-basedlows by taking advantage of information regardng link load dynamics and

flow holding time, without having to significantly increaseherouting overheads.

3.6 Appendix: Parameter estimation

To estimae the afore-mentimedparaneterswe observe thatthe soluion for the stochastc

differential equation (3.3) canbe expresgdasfollows,
¢ t
Xi(t) = e—aitXi(()) + Uz‘/ e—ai(t—u)dB(u) + Oéz'/)i/ e—ai(t—u)duj
0 0
or equivalenty,
t
Xz(t) = e_aq;tXZ-(()) + e—aitI(t) + aiﬂie_ait/ eaiudu,
0

wherel(t) = 0; - [ e®*dB(u) is anlté integral.

5Thatis, in afully-conneded network. In ameshnetwork it grovs muchslower.
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Giventhe obsevatiors of X;(t) attimet,ta, - - - t,, i.€., T4, Tt,, - - - T1,,, thelike-

lihood function is givenby
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wheref(z) is the standird Gausgan dersity function, my = p;, v1 = 2% andfori > 1,
m; = e*ai(ti*tifl)l‘ti71 + pi(1 — e*ai(ti*tifl))

and
2
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The maximumlik elihoodestimabrs ¢, p;, ando; take on thevaluesthatmaximize

g(mtlaxtza R aiapiaai)'

Notethatif t; — ¢; 1 = A, i.e, the obsevatiorns are madeat the regularly spaed time
instances the above likelihood function is the sameasthe joint densty of the obsewrations

of thefoll owing discrete-ime GaussiarAR(1) process,
Y,—pi= e_‘“A(an — pi) + Zn,

if the observed valuesfor {Y;,} is suchthaty, = zy,, fori = 1,2,---n. Here{Z,} isa

) ) A 2 1— —20; A
seqenceof uncorrelaed randomvariadeswith zeromeanandvanart:eioz( ;a, : ).
]

2(1_e—20;A
7i(1=¢7"%) \we notethat

20 !

To estimae the parametergy;, 5; = e~ %4, ando!? =

1 n—1
=0
andrewrite theabove AR(1) processto be
Y =BY,) |+ Zn.

Sinced < g; < 1,{Y, } iscausl,wehaveY] = =72 4;-Zx_j, andy(z) = 3272, i =
=5 HenceE[Z, - Y, ;] = 0,andE[Z, - Y;] = /. Wenote
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1. ElY}-Y! || = BE[Y{®,|+ E[Z, - Y,_,], herce

B; = EY, - Yy 4] _ Yooy — pi) (Y1 — pi)
Z E[Y'}] Y (i —pi)?

2. EIY'?] = BiE[Y!_, - Y] + E[Z, - Y}], hen@

o2 = BY'2]— BEY!-Y!_] = i (i — pi)® = B Z;l?:z(yi — Pi)(yi-1 — pi)

The parametes of theoriginal link load processcanbe expressedas
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Chapter 4

Online Distrib uted Failur e Protection Algorithms In WDM

Networks

4.1 Intr oduction

The popularity of the Internet hasresuled in increasingdemanls for datatraffic. This
forces service providersto seriotsly considernew infragructuresthatmeetthesedemand.
Wavelemgth Division Multiplexing (WDM), which allows a single fiber to carty multiple
signals simultaneoudy, is thought to be a promising candicate to addres possille band
width shorageson the Internet. While the enamousamountof bandvidth provided by
WDM may helpalleviatethe mountirg pressire for higher acces speedit alsomakespro-
tection/regoration a very importart isste in network managment. For example currert
techrology allows up to 128 wavelergthsto be multiplexed in a singlefiber, eachwith a
datarate of up to 10 Gbps. This roughy trarslatesinto millions of teleghonecalls on a
singe fiber. It is easyto seethe catasrophic con®querte a fiber cut may causewithout
appopriate protection mechaismsin place

Differenttypesof protection scheme$iave beendevelopedfor opticalnetworks[70.
Many existing transmrt networks usedual SONET (syndironaus optical network) rings.
Dual rings are simple topologies which confain two semratepaths betweenary pair of

nodes, makingthemresiient to singlelink (or nod§ failures. Although simpleandfast,the

73



dired application of ring architecturesin WDM networks brings a numberof problems. It
is well knownthatring-strudured protection schemegypicdly rely on excessie capaity
redindang. By contrast, one can provide protedion with substantally lesssparecapae
ity on meshnetworks[16]. Protedion scheneson meshoptical networks wereintensvely
studedin theearly 19905[70, 16, 69, 54, 17]. Neverthdess,mesh-lasedSONET networks
werenotwidely useddueto certaininadejuacies,notebly a slow restordion processsome-
timestaking morethan 2 secands[54]. Note that typical Digital Cross-CanectSystems
(DCYS)in trarsportnetworks have very limited functionality. Henceonly simplerestaation
algarithmsweredevelopedfor meshnetworks in the aforementismedliterature.

Recettly emeping Optical CrossConnest (OXC) on WDM networks arereddin-
ing survivability issuesof meshnetworks. Unlike their prececessoDCS, intelligent OXCs
function muchmorelike ATM switchesor IP routes. They offer dynamic configuration
via light pathswitching andallow mary managemetrtasksto be cartied outin a distributed
manner Becauseof the prepmderance of IP traffic, IP-orierted control planesare being
consderedfor WDM-basedoptical networks in orde to provide seamles datatrangort
[26, 4, 21]. Thegoalis to provide integratedfunctiondity suchaslight path routing, signat
ing, andresoration. This bringsforth a significant shift in the managmentparadgm from
centralizedcontrd to distributed control[13].

This shift in managemetnparadgm hasa significantimpad on the desig of pro-
tection solutons for WDM networks. The two major isstes of network surivability—
restaation time andresaurce efficiency, cannow be addressedeffectively. Many protec
tion/restoation schremeshave beenproposedto achieve improved performance In geneal,
theseschenescan be catggorized in termsof their compuation time asreal time versis
pre-provisioned,or their traffic rerouing schene aslink-basedversis route-bagd, or their
routecomputaion mechatsm ascentalizedversusdistributed[13.

Therealtime appioachR7, 32] compuesthe restaation pathafter a failure event,

trying to activate the restoation processin the mostresouce efficient manner Sinceit
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need time to estallish the alternaterestoationroute the realtime apprachis likely to be
slow, and morewer, there is no guaranteeone suchpath exists whena failure occus. By
conftrast,thepre-provisionedapprach[34, 2] compugsthe protection pathsbefore afailure
occus, andbasedon theresut of the routecomputtion estallishes neessarystaesatthe
relevant OXCs in preparatian for the switch-over actions upon the detecton of a failure
event. Evidenty, the pre-provisioned apprachallows higher restaation speed though it
might belessresouce-eficient.

Fromthe pergpective of the mechansmsusedto computeroutes currentwork re-
gardirg theoptimizationof theresaurceutilization for failure protectionandrestoationcan
becateyorizedinto centrdized [16, 31, 56,50], or distributedappoactes[12 30]. Foracen-
tralizedrestaationalgorithm, therestoationpathsfor all demand arecompuedatacentrad
controller assumiig up-to-datenetwork stateinformationis available. After their computa
tion at the centrd cortroller the restaation routesaredistributedto the OXCs to estallish
(resbration) routing tables. The centralized compuation can be very resairce-efficient,
if the centrd contrdler possssesup-to-dateinformation regardirg network topdogy, link
capaity andtraffic demand. However, maintdning up-to-dateinformation on topology
andlink capady requre frequentsignaling communi@tion betweena cental contrdler
andnodal databasesandthuscanbe cogly. The centalized compuation may not be able
to scak with a large numberof demanls. Moreover, the “batch” compuation assumiig
knowing all traffic demand may work well in corventioral telecanmunicaton networks
wherethetraffic demands quas-static, but it is not suitablein a dynamic,data-@ntricen-
vironmentsud asthe bandvidth-on-demanl paradgm now consderedby OpticalDomain
Servicelnterconned (ODSI) [15] andInternet Engineeing TaskForce (IETF) [13]. With
batchcomputdion, arny incrementathangein thetraffic demandwill causeexisting pathsto
be re-computedandsomeof thesepaths recorfigured,whichis not desrable. By cortrast,
distributed compuations may not be asresaurce-dficient astheir centmalized courterpats,

but they arescalalbe, easie to maintan, anddo not have a singlepoint of failure.
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The currert solutons on restoation path compuation can also be classified into
eithe path-tasedB4, 61] or link-basedappoactes[27 71]. In theformercas, upon detee
tion of afailure eventby the desthationnode of the connection, a notificaton is sentto the
traffic source wherea badkup pathis activated. In the latter casea failure eventis detected
anddeat with locdly, i.e., a “detour” is setup arourd the failed link/node. On the one
hand the path-basel apprachworks well in seekirg out an end-teendresairce-dficient
baclup path, andthis backup path canbe madefailure independent, i.e., link-disjoint (or
nodedisjoint) from the primairy path,thusall the potertial failureson the primary path can
be protectedby this backup path. However, to activatethis backup pathincurs end+to-erd
sigraling andthusalonger respnsetime. Onthe other hard, link-basedapprachmay not
be ableto estaltish the optimal protectionpathfrom an end-b-endpergpective, andit may
requre “failure isolation”, i.e., the idertification of the failed link/node, but the speed at
which abaclupis setupis muchhigher.

In this chaper, we propcseanovel link metricandseveral distributed routing algo-
rithms that maximizewavelength “sharing” amongindependen protedion patts. We for-
mulatethe probdemin thelink-basel restoation context, thenextendthe proposedscheme
to ageneic nodebasedapprach. Thegoalis to devise ageneic algornithm that efficiently
exploits the potential sharirg opportunities amongthe protedion pats assumiig no con
current protection paths needto be activated. Thesealgolithms suppat on-demandpath
compuation, soinformationabou the compktetraffic demand is not requred. In prac
tice, the propcsedalgarithms canbe easily implemeried asan extenson of the existing IP
routing protomls, e.g.,openshorestpath first (OSPF).The protectionpathsare optimized
to redue thewavelergthredundang while working/primary patts areassunedto berouted
using minimume-hop patrs. This sepaate optimization of the working andprotection path
is adespn choice we made. It is parly motivatedby [50], whereit wasshavn thatjoint
working/pratection pathcompugtion significantly complicdesthe pathh computadions with

only maiginal gain in the perfomance. We leave to future study the invedigation of the
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impactof this design choice.

In Section4.2 we formulate two integer programswhich captue the ideaof wave-
lengh shaing in protection pathcomputaion. Several obsewrations are madeto motivate
the desgn of our distributed algarithms. In Section4.3 we introduceour “bucket-based
link metricsand the correspording routing algorithms. A modification to the link-basel
restaation mechamm, termed‘node”-basedrestaation, is alsodiscussed In Section4.4
we present simulaion resuts and evaluate the performanceof the proposedsolution. We

condudethe chaper with future directionsin Section4.5.

4.2 Problemsetup

Let usconsderaWDM network G(N, E), whereN is the setof nodesand E is the setof
links. Suppaethere exists a setof demanls U which requestlight-pathsto be estalished
acros the network. Thesedemarnls are protectedby link-basedrestaation, i.e., eachlink
(1, 7) ontheworking pathof demandu € U is protectedby analtemative pathconrecting
1 andj. Letac?(‘i,j) derotethe numberof wavelengthsresevedonlink (z, j) in orderto carty
thetraffic of demandu. Similarly let ygj;ig‘)) bethe numbe of wavelenghsresevedon link
(m,n) for demandu in caselink (i, 7) fails. Hencex'(” i) andy(i’j’“) denot therouting of

i, (m,n)

working andprotection patrs respetively. We malke the following assumpbns:

e Thetraffic demanisarein the form of unit wavelergth requests. i.e., :é(ti,j) € {0,1}
andyg;f;’;‘)) € {0,1}.

e Theworking pathof  (i.e., w’(‘i,j)) is determinedby the minimum-hoppath.

e Thenumbe of wavelengthson eachlink is uncastrained.

e Only singlelink failure mayoccu atary instanceof time.

The objective of a protectionrouting algoinithm is to detaminethe protectionpatts

for every u suchthatthetotal numbe of wavelengthsresenedfor protection is minimized.
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This canbe formulatedasanoptimization problem:

min{ Z w(myn)}

(m,n)eL
subgctto:
" o Thg =
%,],U 4,],%) __ u .
0 m A im # j
w9 1,5,u
(m n) Z y(m n) ) (42)
Wm,n) > wgi,’f W (4.3)
g € {0,1}, (4.4)
Vg = (45)

Theconstaint (4.1)is relaiedto flow consenation on the protedion path In (4.2),
wit?) | is the amountof traffic on link (i, j) thatwill bemovedto link (m, n) if link (i, 5)

fails. To take into accaunt the resavation sharng amongnon-conaurrert failuresandto
ensue enoudh wavelergthsarereseved for ary link failure, u,, ) nealsto be reseved
onlink (m,n) , i.e., (4.3) mustbe satisfied

This problem formulation fits well into a centializedmanagmentparadigm where
the Network Managenent System(NMS) may optimdly corfigure every protection path,
using the complete knowledge of the demandsetU. However, suchan off-lin e algorithm
is not desiablein anervironmen wherethe demand for light-paths arrive anddepat dy-
namicdly. After all, it is codly to re-corfigurethewhole network whenerer traffic demand
charge. Instead, an online protection routing algorithm is preferredin a dynamic ernviron-
ment.

An online algorthmdeteminestheprotedion routing basedntheexisting network
stats. We do not assumehatall future demarmlsareknown or the existing demandsanbe

reroued. Thustheobjedive of anonline algarithm is to minimizethe marginal wavelergth
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requrementgor eachnew demand:*. Supposé¢heworking pathxf(‘i*j) hasbeendetemined
by the minimum-hop path Anothe optimizaion problemcanbe formulatedto determine

the protection path i.e., y( i ) ).

min{ Z Aw(m n)

(m,n)€EL
subjctto:
Tg M=
Zy( o Zy(w’ =4 iy m=J ’ (46
0 m#i,m #j
(i,9)
pid) ) O T Wy + 1< Wn ) , (4.7)
(m.m) 1 otherwi®
Wotn) = 2 Y (“9)
(z,]) (Z,]) ( It )
yén’f’n € {0,1}, (4.10)
(3dw) _
y —o. 4.12

In (4.7), b ’” |stheaddmonal wavelengh requirementonlink (m,n) if it is usedby « to
setupaprotectlondetoufor afailureoflink (7, 7). It is deeerminedbasedon shaing reser-
vationswith otherfailures.For example,if w(f;f;)n) +1< W(m,n), NO addtional wavelergth
resewation for the protection of link failure (i, j) is necesary sincea sufficient amountof

wavelergths w,, ) hasalrealy beenresered on link (m,n). If )

(m,n) — = Wim,n) one

addtional wavelengthneed to beresenedif the protectionpathfor link (i, 7) is to traverse
link (m,n).

Fromthis problemformulaton, we notethat (1) determinng y((fn]:;)) is equivalent
to finding the minimum-cospath from i to j in the network G(N, E — {(i,5)}), and(2)

the existing network statis can be aggmegatedinto wgi,fl) and wy, ). As aresut, the
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Figure4.1: (1) Sharing;(2) No-shaing.

protection routing probem in WDM networks can drav upon the corventional shortest
path routing algarithms in datanetwork. In the following we proposea novel link metric
thatprovidesthenecesarynetwork stateinformation in anaggegatedform anddevelopan

online protection routing algorithm which fits into the current Intemetrouting framework.

4.3 Bucket-basedlink metrics to maximize the sharing on pro-

tection paths

As motivated in theprevioussectbn,theprodemwe arefaced with is to deviseadistributed
online restoationrouting algorthm thatmaximizesthe shaing of resaircesamongprotec
tion paths. The key cortribution we offer, lies in providing a protection schemethat is
(1) bandvidth efficient; (2) compuationally simpleandconforming to the existing Internet
routing framework; and(3) amen#le to fastrestaation. We propcse a link-basedrathe
than pathbasedapprachto enale speealy restoation We usea shortest-pah algorithm
which is simple and can be easly adatedfrom the current routing algorthmswidely in
useon the Intemet,i.e., Bellman-Ford and Dijkstra algorthms. As the centerpieceof the
proposal, we design a unique link metric which resuts in a resairce efficient protection
mechaism.

The key ideaof the proposalstemsfrom the observation that the protection patts
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Figure4.2: Link metrics:buckets

for differentlink failurescanshae the protection wavelergthssincethesepathsneednotto
be activated atthe sametime, asillustratedin Fig. 4.1. This suggestsan efficient “bucket-
basel” link staterepregntaton. In thenework G(N, E), eachlink [ € E maintdns a set
of “buckets’, iy = (h¥,k € E,k # 1), asillustratel in Fig. 4.2. Eachbucket & corre
spordsto afailure on link &, andthe“height” of the bucket, i.e., the valueof h{“ indicates
the protection wavelenghs that arereseved on link [ for the failure event k. In termsof
the notaion introducal in the previous secton, we have the corresporwlencei{c = wéin’iz)
for link I = (m,n) andfailure k = (i, 7). The wavelengthsthat need to be reseved at
link [ equd to the maximumof the bucket heighs, i.e., max h{“. Thusby maintaning a
seqenceof bucketsindexed by thefailure events,we captue the necesaryinformationon
the sharirg potential offered by eachlink. Notice thatthis shaing potentialis a function of
the failure event. For example,in Fig. 4.2, Link 4 maintdns 3 buckets. Bucket /2, corre
spording to the failure of Link 2, is the highest. This indicatesthatin orderto protectan
addtional wavelengthon Link 2, Link 4 hasto reseve anextra wavelengh if it is selected
aspartof the protedion route. By contrast, to protectan additional wavelength on Link 2
or 3, no extrawavelergthsneedto beresened.

Equippedwith the propasedlink metricrepresenation,we now describethecompu
tational procedurefor dete@mining protedion patts. It is a variart of the “shortest-widest”

algorithm. The pseu@-cock is exhibitedin Fig. 4.3. We definethe “width” L width(l; k)

of alink [ with respectto afailure eventk*, asthe normalzeddifferencebetweerthe max-
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imum bucket height, max; hf and the bucket correspomling to link failure &, A", i.e.,

Lwidth(l;k*) = 1 — —L_ if max; hf > 0, andi_width(l; k*) = 0 othewise. Obsewe
l

aXf

*

thatthe [_width(l, k*) is between0 and 1, andthis value indicatesthe shaing capability
thatlink [ hasto offer for the protection of thefailure &*.

We useamodifiedBellman-Ford algoithm[73] to idertify thewidestpathsbetweea
theendnodes of theprotectedlink, i.e., the paths that offer themostshaing. Herethewidth
of the pathp with respetto alink failure &%, p_width(p, k*), is definedto bethe minimum
of its link comporents,i.e., p_width(p; k*) := mine, l_width(l; k*). Obsere thatby this
definition we implicitly estaltish thatthe maiginal costof traversng a pat is dictated by
thatof the“narrowest” links alongthe path

In the event that thereare more than one suchwidest paths, andther widths are
all 0 (i.e., thesepatts all go through at leag onelink with nonzero marginal wavelergth
conaumption, we selet theonethattraversestheleastnumberof “exhausted links, i.e., the
links of width 0. In all othercase of tie breakng with postive pathwidth, i.e., themamginal
costsare zero, we randanly select one with wideg path Notice that this is obviously
a locally optimal scheme. In other words given only the current demandand without
ary knowledgeabaut the future arrivals, the protedion pathwe comeup with is the most
efficientin utilizing thesharng oppatunities. SeeFig. 4.3for theshatestwidestalgorithm

we useto compue the protection patts.

4.3.1 Highlights of the proposal

In Sectin 4.4 we will evaluae the effectivenessof our proposal via simulation. Let us

summariz its desrablefeatuesatthis point:

e This procedire solvesthe optimd on-demandprotection problemwe formulatedin
Section 4.2. In the sequé its performanceimprovemert over a basdine scheneis

demorstratal in termsof thereduction in wavelergth redurdangy.
e This proposal confarms to the existing Internetrouting framework. In paricular, it
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21.

function routing-praection(G(N, E), s, t, w(E))
inputs:
G = (N, E): anetwork;
N: thesetof nodes of G;
E: thesetof links of G, alsothe setof failure events;
s: soucenodein N;
t: destirationnodein IV;
h;: avectorlink metricassocatedwith link [ € E,
hy = (b, k2, BE - BP Lk € Bk #1);
h{“: thewavelergthsresenedonlink [, for the protection of failure k;
returns:
working pathr(s, t) andassaiated protection patts p[{] for all links
I €r(s,t).

r(s,t) = compute_working_path(s,t).
for eachlink &* € r(s, 1)
s_node = source(k*), d_node = end(k*).
s_node performsthefoll owing:
foreadlink [ € E
Lwidth(l; k%) = 1 —
endfor
l_width(k*;k*) = —1; I/ “remove” link k*
(widest_paths, widest_width)
= compute_widest_paths(s_node,d_node);
if ||widest_paths|| >1 and widest_width == 0 then
for eachp € widest_paths

c[p] = count_saturated(p);

endfor

plk*] = min, clpl;
elseif ||widest_paths|| > 1 and widest_width > 0 then
plk*] = random _select(widest_paths);
else
plk*] = widest_paths;
endif

endfor

k*
hy
maxg hf

Figure4.3: Routing-protection ashatestwidestalgorithm
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is easyto modify Dijkstra or Bellman+ford algarithms to implemen our shorest-
widestalgarithm. Theamour of link states (O(| EP)) is proportional to the product
of the numbe of links andthe numberof failurest, not the numbe of light patts,
andheneis managehlein practice. In paricular, onecanimplement our bucket link
metricvia “opaquelLSA (Link StateAdvertissment)’; anOSPFoption[7]. Moreover,
we notethatthelink statesaresetupin awaythet is flexible enaughto accanmodate

failuretypesothe thanlink failure, e.g., nodefailures.

e Onefeature of this propcsal is the assa@iation betweenthe link statécost and the
failure event. For the protection routing of differentfailure events, oneis presered
with different network topology andlink staes. Similarly, asnetwork stateevolves
with connestions arriving to (and depating from) the network, one might have to
estdlish different protection patrs for the protedion of the samelink failure. Our
proposalexploits this feature to locate the protection paththatincursleag maiginal
costfor a particular link failure at a particular instarce of time. It is easyto exterd
our sclemeto encompssfurther consderaions, e.g., excluding paths that traverse

too mary hopsandthustake too muchtime to activate whenafailure occuss.

4.3.2 A generalization: node-basedorotection

In the previous secton we introducel a “bucket”-basedlink metric and a correspondng
shottest-widest routing algorithm. The study is setin the context of the link-basedfailure
detedion, i.e., we assune the loss of the opticd signd is cause by a link failure. The
implication, in relaion to our routing/protecion desiqn, is thatwe constuct the protection
patls that are constraired to go from one end of the protected link to the othe end, as

illustratedin Fig. 4.5-1.

1The numter of failuresis equalto numberof links in a link-basedprotectionscheme.As a comparison,
for a path-basedgrotectionschemedasedon the notion of buckets, whereworking pathsbetweena source
and a destinationarefixed, e.g., minimum-h@ paths. The numberof protectionlink statesthat needsto be
maintaineds O(|E||N|?).
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1) @

Figure4.4: (1) Link-basedcomputation;(2) Node-lasedcompuation.

We observe thatthis desgn posessesomeobviousmerits,espedlly the locdity
of the resbration opeaation However, it is alsoworth noting that restaation efficiency is
negatively impacteal by this choice. By condructing detaursfrom oneendof thefailurelink
to the othe end,evenwhentravering demandsare destned to different nodes the group
of resbration pathsmay unwittingly clog the “local ared andunder-utilze the potertial
sharing capability in the network. Fig. 4.4 illustratesthe problem: the working pathof 2
demand sharelink (a, b), but diverge to node ¢ andnoded respetively. With link-basel
restaation, the protection paths for both demand have to go from node a to nodeb. This
may not be desiable. Alternatively, if we setup thes protection patts suchthatthey stat
from node a, but endat nodec andnoce d, there is a better charce to exploit “network-
wide” shaing potertial. Fig. 4.5-(2 illustratesa different restoation mechaism, where
the protedion pathfor a givenlink ends at the nodetwo hopsaway on the correspondng
working path We call this “node’-basedresbration. For example for the protection of link
(a,b), instead of going from « to b, we condruct a protedion pathfrom a to c. A specia
caseis link (c,d), for which the nodebasedprotection path shae the sameendnodesas
their link-basel counerpars, sinced is thedestnation andthereareno nodesfurtherdown
theworking path.

From a pradical stardpoint, we note that the opticd cross-comects depictedin
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(1) 7))

Figure4.5: (1) Link-basedcomputation;(2) Node-lasedcompuation.

Fig. 4.5astheblack nodes, may alsocauseadisruptedservie whenthey fail, in which case
all the links adjacent to the failed nodewill “fail” simultaneousgy. Underthis condtion,
the constuction of the protedion pathsfor a particular link shoull conseously exclude
thelinks that are experiencing the prodem at the sametime. Differentiating link or nodd
failurestakestime andcaugsundesirable delays in senice recovery. In certan caseit is
more advantageusto be consenative, i.e., to usethe nodd failure modelasthe gereral
modelof the failure events,andtreatthe sinde link failure asa specal case.The “jump-
aheal” operdion propcsedaborve is well suited for provisioning protection wavelenghsin
this context. Fig. 4.6 containsthe psewo-calefor thenodebasel protedion pathcomputa
tion. Themaindifferencedrom thelink-basel algorithm are: (1) To enablethe nodebase
opemtionswe needto maintan afunction next_link(p, i) atnodesource(i) which outputs
the link thatis right next to link < on the pathp, if suchalink exists. (2) As highlighted
in Fig. 4.6,the major modificaion to thealgarithm in Fig. 4.3liesin lines4 and5, where
we “jump ahead to identify theendnode of the protection path. Unlike theschanein Fig.
4.3,wherethe protection pathis constrairedto go from oneendof the protectedlink to the
otha, in Fig. 4.6 we statt the protedion pathat oneendof the protectedpath but endit at

the nodes two hopsaway, if sucha nodeexistson theworking path
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function node-rouing-protedion(G(N, E), s, t, w(E))
inputs:
G = (N, E): anetwork;
N thesetof nodesof G|
E: thesetof links of G, alsothe setof failureevent;
s: soucenocein N;
t: destirationnode in V;
h;: avecta link metricasso@tedwith link [ € E,
h, = (hL,h2,---hi,---h" i€ Bi+#e);
hf: thewavelenghsresenedonlink ¢, for the protectionof failure k;
returns:
working pathr(s, t) andassaiatedprotedion patts p[{] for all links [ € r(s, t).

r(s,t) = compute_working_path(s,t).
for eachlink [ € r(s,t)
s_node = source(l), d_node = end(l).
if d_node # t then
d_node = end(next_link(r(s,t),l).
endif
s_node perfomsthefoll owing:
for eachlink '€ E
l_width(I') =1 —
endfor
l_width(l) = —1;
if d_node # t then
l_width(next_link(r(s,t),l) = —1;
endif
(widest_paths, widest_width) = compute_widest_paths(s_node,d_node);
if ||widest_paths|| >1 and widest_width == 0 then
for eachp € widest_paths

c[p] = count_saturated(p);
endfor

p[l] = min, c[p];

i
hy,

max; hf;

elseif ||widest_paths|| >1 and widest_width > 0 then
p[l] = random_select(widest_paths);
else
p[l] = widest_paths;
endif
endfor

Figure4.6: Node-outing-protectiorn é\fnodifiedrouﬁng-protecion algorithm




4.4 Performanceevaluation

In orde to evalude the performanceof our propcsal for protection pathrouting, we per-
formeda numberof simulaions. In the following we presat our resuls asseiatedwith

the network topology shownin Fig. 4.7 [38] andFig. 2.8. Unlessspedfically indicated,
the soure andthe destnation nodeof thetraffic demandsaredistributed uniformly acros
nodes in the network. Thedemand arrive in sequenceandareroutedoneatatime. Each
demandequestsonewavelergth. We measue the“redundang”, i.e., theratio betweerthe
numberof protectionwavelengthsandthatof the working wavelenghs,andplot it again$
anincreasingnumberof demanisin the network (onthelog-scaledx-axis). As areference,
we solvedtheinteger progamformulatedin Sectiond.2. We areableto obtan the solution

for 100 demands For 15-nade network, the redundarcy is 61%. We arenot ableto solve
for larger numbe of demand dueto the inahility of CPLEX[5] andborsaiG[29 to deal
with larger-sized probems. Note thatif further incoming demand are merelyrepditions
of the first 100 demars, then the solution for the integer programwill staythe same,.e.,

61%. As it stand we think it is sensilbe to extrapolate this value asan appioximation for

the ideal off-line performancewith larger numbersof demand. As a reminder, we note
thatthisis a soluion thatassumescomplde knowledge of all thedemandsoit only senes
asa lower boundfor the performanceour distributed online algoithm might achiere. We
compae our propcsal anda baselne online algarithm, which protectseachlink along the
working pathby a detaur of minimumhop count We will seein the sequéthataswe shift

the problemdomaininto the online context, the baseine protectionschemeexhibits signif-

icantincreasesin redurdang. Our propcsalis aworthwhile effort to push the redundarcy

valuetowardthatof the ideal off-li ne solution.

4.4.1 Performanceimprovementover the baseline

Wefirst evaluatethe performanceof our proposalagaing the baséine algorithm. Thebase

line algorithm opelateswithout using the aggreyatebucketinformationasour schemeadoes,
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Figure4.7: 15nodenetwork

Performance: bucket-based link metric
15 .

—+— bucket metric
—— disjoint min—hop |
—=— offline

=

N
T
.

I
N
:

.

o
©
T
.

|

Wavelength redundancy
[

©

3
:
,

o
o
:

\

107 10° 10*

number of demand

Figure4.8: Perfomanceevaluation: 15-rodenet

89
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hene providesa legitimate referenceto (1) demongrate the dramaticincreasein wave-
lengh reduindany whenwe shift the prodem domainfrom off-line computdion to online
computtion, and(2) evaluae the impad that the addtional bucket stateinformaion has
on the overall wavelergth utilization. We obseve from Fig. 4.8 that a significant reduc
tion in redundarey is obtaned by introducng the bucket link staes. In addition, we seea
nearcongantcapaility of ourapprachatrealizng the network’s sharng potertial, when
it is sufiiciently loaded, i.e., arourd 75% protection wavelengh redurdang for a 15-node

network.

4.4.2 Impact on performance of the demandstructure

The demandsn the previoussecton weredrawn randomly from the (souce, destiration)
spae. It is interesting to study the chang in the performanceif demand exhibit locality.
In particular, we aremotivatedto investigatehe effect of the different demandocales,i.e.,

whethe they are“remote” or “co-located. In thissectonwerespetively arrargefor all the
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demandsourcesanddestirations to be (1) at least3 hopsapart,or (2) at most2 hopsapart.
Fig. 4.10and4.11lindicae thatwhenthe souice andthe destiration arerelatively remote
from eachother, thewavelengthredurdang, i.e., theratio of thewavelengthsusedto proted
and thoseusedto carry primary traffic, is higher. This suggeststhat there exists larger
potential for wavelength shaing whenthe traffic are more co-located This makesseng
sincefor the links that are closeby, their protection pathsare morelikely to go through

samesetof links, thusshaing acommonsetof wavelemgths.

4.4.3 Usingiterations to impr ove the solution quality

An interestingindicator of the quaity of our proposedrouting apprach,is the degreeof
sharing potential that hasnot beenutili zed after we configue the protectionpatts. By al-
lowing iteration, or re-routing of the protectionpaths we canmeasue the degreeof unreat
izedshaing opportunties. The"iteration” heresimply meanswve allow the re-compuation
of theresbration pathswith renavedaggegatenetwork information,i.e., bucketlink staes,

reflectirg theresuts of the previous(protection) routing computaion. It is possibleto find
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a bette protectionpathfor a partticular demanl by running iteraions sincein so doing we

appoachthe offline soluions with complde knowledge of whatother protedion demand

wererouted. The degreeof the improvemert indicateshow closeto (local) optimality the

initial configurtionis. The smallerthe improvement,the highe the quality of the initial

configuation
demanls# | workingwavelendghs | ite-0 | ite-1 | ite-2 | ite-3
100 222 202 194 194 | 194
1000 2174 1687 | 1666 | 1666 | 1665
128m® 2822 21538 | 21531 | 2153 | 2153
Table4.1: Iteration: 15-nade network
demand# | workingwavelenghs | ite-0 | ite-1 | ite-2 | ite-3
100 232 242 226 226 | 226
1000 2313 1969 | 1951 | 1951 | 1951
12800 299% 24867 | 2489 | 2489 | 24829

Table4.2: Iteraion: NSFet

Tables4.1 and 4.2 demorstratethat we obtan a mamginal amountof redwction in
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Performance: node-based vs. link-based restoration
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wavelergth reduindang with oneiteration, andthe iterations after that do not improve the
perfomance. For example,in the caseof 1000 demanis, the first iteration redwcesthe
protection wavelength consimptionby 22 units, a merel.3%decreae. Moreover, further
iterations make no addiional improvemern. Thusit is justified to statethat our routing

schameis ableto realze almog all of the shaing potertial during its first run.

4.4.4 Performanceevaluation: node-basedvs. link-based algorithms

In Fig. 4.12and4.13we compae the performanceof the link-basedandthe nodebase
schames. The redwction in the redurdang is evident whenwe apply the nodebasel pro-
tection mechaism. In paricular, a 7% redudion in wavelengh redundang is achieved by
switching from alink-basedo anode-bagdschenewhenusingour proposedliink metrics.
Obsenedthe lowesttwo curvesin Fig. 4.12. This validatesour intuition thata relaxation
onthedestnation nodes allows for the morediverdfied seard for the bestprotectionpatts,

which leadsto a bette utilization of the “network-wide€’ sharng potentials.
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4.5 Summary and discussion

In this chapte we explored a novel design for routing algorithmsthataimsto provide effi-
cientfailure protectionin WDM networks. Thekey ideaof the“bucket’-basel link metrics
canbe appliedto a range of restoation mechaisms,including link-based,nodebased or
pathbasedappraches We evaluaedthe effectivenessof this proposalvia simulation and
the resuts are promising. In the future we will look into the various issuesthat may im-
pactthe performanceof our scheme. In particular, we intendto explore possilde ways of
improving thecoorination of the protectionpathcomputtion, probably amongthe protec
tion requess thatareiniti atedby the sameworking path. Thetrade-off betwee link-basal
and path-basel protection schenesis theaeticdly interesting and pradically usetul. The
bendit of joint working/protection path design or the lack thereof, hasnot beenstuded
hereandwarrarts further investigatian.

Ourwork in this chager mainly focused on provisioning protedion wavelenghsin

WDM networks. We assumehe WDM network can provide fully dynamic recorfigura-
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tion suchaslight-path switch-over upona failure event. This may or may not be feasble
in practice. Indeed, it is often the casethat there exists a numker of overlay/virtual net-
works running highe-layer protocols suchas SONETATM/IP/MPLS on top of phydcal
WDM infrastrucure. Thesehighe-layer networks may be equippedwith their own failure
recovery mechamsms. From a protectionrestaation’s pergectiwe this is bendicial in that
certdn failurescanbe captued and dealtwith in multiple layersandthusare unlikely to
stayunatendedfor long andcau® significant perfoomancedegracation. However, without
further coardination thefailuresmight “propagaté up the protoml stack,e.g., afiber cut at
the WDM layer cancausemultiple link failuresat the IP/MPLS layer, sincea WDM link
might be mappe into multiple links at the overlay layers. To alleviate this problem, we
needto either malke lower level failuresinvisible to highe level networks[2(], or jointly
design network routing at both higher and lower level networks [14], or desigh network
overlays sothatthe possbilit y of failure propagatia is eliminated[1d. In the specific con
text of thework presatedin this chapter, i.e., provisioning resaircefor failure protedion,
thisamounsto aneedto account for multiple failures/alamsif the protection is condgdered
ata certan overlay layer. The notion of bucket metricsis geneic since eachbucket corre
spordsto afailure event,not necessarilya spedfic link/nodédpath Henceour appoachcan
beadapedto the protection of any typeof failure combirations. Evidertly, it is notatrivial
taskto identify the setof failuresthatmight happe andneed to be protectedagairstin a
layered network, andthis warrans further reseach.

In this chgpterwe estaltish the protection pathsasthe working pathis congructed,
using the current resouce shaing information expressedin the form of buckets. Whenthe
conrectiors finish their sojoun the correpondng light pathsnea to be torn down and
the correspondng working and protection resouceswill be returnedto the network. In a
dynamic ervironmert whereconnetionscomeandgo theresouceresenedfor protedion,
i.e., the height of the highest bucket, varies over time. A protection paththat is “free-

riding” atits setw time, i.e., the onewhich neednot reseve wavelengh on a givenlink it
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traversessinceit cansharethe protection resouce with otherongoing protedion requests,
might becomethe only oneresening the protection resouce whenother protection paths
aretorn down. Henceit seemdbendicial to incorporde certdn predction capability into

the protection provisioning mechamsm soasto minimizethe cod of protection for agiven
conrection not only at the time it arrives at the network, but during its sojaurn in the
netwok. The predictive mechaism suggetedin the previous chager, or otha simple
schanesaccaunting for the changein the sharing potertials at a given link, might helpin

this exploration
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Chapter 5

Conclusions

In this dissetation we studydynamic network routing probems. We take a flow level per-
spedive of the network traffic anddesign routing schremesto achieve variousnetwork-wide
andbr usercentic perfarmanceobjedives.In particular, we constderrouting asa dynamic
decison-making processthatnot only respandsto but alsoimpacs the network condtion.
A well-devisedrouting schemeshoud try to satify anincoming use’s QoSdemandand
limit the negative impacton the performanceof the ongoing andfuture demands To this
endwe identfy anumbe of distinct operding regimesin which routing decisons, userde-
mandsandnetwork staesinteract. We proposerouting schemebasdonthecharateridics
of theseopemtingregimes

In anoperating regime wheretraffic demandsrebursty andnetwork states fluctu-
atein a highly dynamic fashbn, we examine the perforomanceof the dynamic single path
routing schene based on adwertisedlink loadinformation We observe thatalthougha dy-
namicrouting schemeshout respand to theadertisedlink statesin orderto avoid network
congestion anunwiserelianceon outdaedlink staeswill leadto degradednetwork perfor-
mance.We proposeto addessthis problemby usinga dynamicmulti-path routing scheme
which disperseghetraffic flows betwee a soure anda destiration over a setof leastcon
gesteal paths. We analyz the critical issueof how to seled the setof pathsover which to

dispersetraffic, andprovide insightson the performanceof this schenein a meshnetwork.
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We find our dynamicmulti-pathrouting schemeis quite robustto various opeiating param-
etersand offers consstentperfoomanceimprovement over a baselne singe pathrouting
schame. Our finding, along with recent work in [66, 44] thataim at approaimating optimal
routing performanc¢ll, 35|, confirmsthatit is feasible to usedynamic multi-path rout-
ing schemeto improve routing performancewhennetwork staesare dynamic andtraffic
demand arebursty.

In anetwork environmentwherenetwork statesanduserdemand®volve onamod-
esttimesale,we design routing schemeshatjointly consder flow properties suchasflow
holding times,and network propeties, suchasthe averagelink loads and meanreverson
for theloaddynamics. We shav thatin somecasesve canimprove boththe network-wide
andthe user-perced perfomance. The improvemens aredueto: (1) the predctability
of network state,thusone candevise routing mechaismsthat exploit it to bendit sygem
perfoomanceand(2) theadvantagethatcanbe gleanedby designing routing schemeshat
improve uses’ perfomanceduring their sojoun in the network, rather thanat the time of
arrival. We reaize theseideasby modeling the link load dynamics androuting incoming
flows sothatduring their sojourn in thenetwork they seeminimal averace loads As aresut
flows not only experiencegoaod performance but alsodeliver leastnegative impacton the
perfoomanceof otherongoing (andfuture) flows. By simulaion we show thatour routing
schameleads to afair and efficient sharing of the network resairces

Our design strateyy for protection pathrouting is quite different from the working
path routing, both in termsof its objectives and algorithms. For protection routing the
objective is to provide 100% failure protection so that when ceriain failures ocaur there
will beenowgh sparecapaity to allow for there-routing of thetraffic with minimal service
disruption. This requires protection patrs to be link or path disjoint from the asseiated
working paths therebre limitin g the desgn space of the protection routing. We obseve
thatalink-basel protedion pathis restridedin selecting its “detours” arourd failure links,

but it canshae the protedion resairceswith protection paths for other links. We identify
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arouting metric that capuresthe sharirg potentialin the network andrepresentt by a set
of “buckets’ maintairedatead link in the network. This repregntaton, andits asseiated
routing algorithms,areshawvn to resut in protection patts with minimal maminal cost and
significantly reducethe numberof wavelengthsneedel for failure provisioning. We note
thatthis link metricis alsoapplicableto pathbasedandnodebasedprotedion/restoraion,
andmay be extendedto account for not only the instantareousmaiginal costof protedion,

but alsothe “time-averaga@” cod of sharihg protection resoucesin the network.
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