
Copyright

by

Yuhuan Du

2015



The Dissertation Committee for Yuhuan Du
certifies that this is the approved version of the following dissertation:

Analysis and Design of Resource Allocation Policies for

Cloud-Based Computing Systems Supporting Soft

Real-Time Applications

Committee:

Gustavo de Veciana, Supervisor

Sanjay Shakkottai

Robert W. Heath Jr.

François Baccelli

C. Greg Plaxton



Analysis and Design of Resource Allocation Policies for

Cloud-Based Computing Systems Supporting Soft

Real-Time Applications

by

Yuhuan Du, B.E.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2015



Dedicated to my parents and my wife.



Acknowledgments

Foremost, I would like to express my sincerest gratitude to my PhD

supervisor Dr. Gustavo de Veciana, for his continuous support and guidance

during my PhD tenure at UT. I am fortune to have such a great supervisor

and I have greatly benefited from his steadfast knowledge, scientific keenness,

and extraordinary personality. Thanks to his patience and constant support,

my PhD life has been a truly enjoyable journey and I could not have imagined

a better supervisor, mentor, and lifetime friend.

I would also like to say thanks to Dr. Sanjay Shakkottai, Dr. Robert

W. Heath Jr., Dr. François Baccelli and Dr. C. Greg Plaxton for serving on my

dissertation committee, and for their valuable time and helpful comments on

my research work. I thank Dr. Jeff Andrews, Dr. Constantine Caramanis, Dr.

Sujay Sanghavi, Dr. Lorenzo Alvisi, Dr. Adnan Aziz, Dr. Craig Chase, Dr.

Dewayne E. Perry, Dr. Evdokia Nikolova, and several other faculty members

at UT who have influenced me and broadened my scientific horizons through

their excellent courses.

I gratefully acknowledge Huawei and National Science Foundation for

financially supporting my research. I would like to say thanks to Dr. Alan

Gatherer for his support and suggestions through the CRAN project, Dr.

Mattan Erez and Haishan Zhu for the collaboration and all the discussions.

v



I would also like to thank Dr. Carl Edlund and Mr. Donald Lau for serving

as my summer intern mentors at Microsoft and Yelp during summer 2012 and

2014. These experiences helped relate my research to the industry and will

remain beneficial for my future career.

My life at UT would never have been so memorable and fun without

my brilliant friends. I thank Virag, Vinay, Arjun, Pranav and Pablo for being

helpful group mates. I would like to say special thanks to my friends who

share the most enjoyable time with me: Zheng, Yicong, Jiaxiao, Tianyang,

Chao C., Hongbo, Qiaoyang, Jing, Yingxi, Ping, Yudong, Cong, Chao J.,

Xinyang, Yajun, Yingzhe, Tong, Jianhua, Nan, Qi, Xingqin and many others.

I will remember the time we watched and played soccer/basketball, our routine

dinners, our Happy Friday Nights, and all the wonderful moments we had fun

together.

Finally, I will always be indebted to my dear family: mom, dad, and

Yang, for their generous love and unconditional support.

vi



Analysis and Design of Resource Allocation Policies for

Cloud-Based Computing Systems Supporting Soft

Real-Time Applications

Publication No.

Yuhuan Du, Ph.D.

The University of Texas at Austin, 2015

Supervisor: Gustavo de Veciana

Cloud-based computing infrastructure can provide an efficient means to

support real-time applications with compute and/or communication deadlines,

e.g., virtualized base station processing, and collaborative video conferencing.

In many cases, such applications can tolerate occasional deadline violations

without substantially impacting their Quality of Service (QoS). A fundamental

problem in such systems is deciding how to allocate shared resources so as

to meet applications’ QoS requirements. A simple framework to address this

problem is to, (1) dynamically prioritize users as a possibly complex function of

their deficits (difference of achieved vs required QoS), and (2) allocate resources

so as to expedite users assigned higher priority.

In the first part of this dissertation, we focus on a general class of sys-

tems using such priority-based resource allocation. In this setting we character-

ize the set of feasible QoS requirements. We then consider “simple” weighted

vii



Largest Deficit First (w-LDF) prioritization policies, where users with higher

weighted deficits are given higher priority. We give an inner bound for the

feasible set of QoS requirements under w-LDF policies, and characterize its

geometry under an additional monotonicity assumption. Additional insights

on the optimality of LDF/hierarchical-LDF are also discussed.

In the second part of this dissertation, we consider a specific class of

computing systems having multiple uniform resources. We develop a general

outer bound on the feasible QoS region for non-clairvoyant resource allocation

policies, and study the efficiency and near-optimality of two natural resource

allocation policies: (1) priority-based greedy task scheduling for applications

with variable workloads, and (2) priority-based task selection and optimal

scheduling for applications with deterministic workloads. Analysis and simula-

tions show substantial resource savings for such policies over reservation-based

designs. We also discuss user/stream management for computing systems sup-

porting soft real-time users.

Overall, the main contribution of this dissertation is a theoretical study

on the efficiency and optimality of simple deficit-based resource allocation poli-

cies for systems supporting periodically generated, but stochastic workloads

requiring soft guarantees on completion times.

viii



Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

Chapter 2. Efficiency and Optimality of Largest Deficit First
Prioritization for General System Model 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 General Model for Systems Supporting Priority-Based
Resource Allocation . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Summary of System Model and Assumptions . . . . . . 16

2.2.3 Example: Centralized Computing System Supporting Real-
Time Applications . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Example: Complex Networks and Flexible Modeling of
Application Execution Payoffs . . . . . . . . . . . . . . 18

2.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 System Feasibility Region and Feasibility Optimal Policy 19

2.3.2 Weighted LDF Policies and Associated Feasibility Regions 22

2.3.3 Geometry of RIB under Monotonicity in Payoffs . . . . . 24

2.3.4 Sufficient Condition for w-LDF’s Optimality . . . . . . 28

2.3.5 Efficiency Ratio Analysis . . . . . . . . . . . . . . . . . 30

2.4 Examples for w-LDF’s Optimality . . . . . . . . . . . . . . . . 33

2.4.1 Exchangeable Expected Payoffs . . . . . . . . . . . . . . 33

ix



2.4.2 Multiple Classes of Exchangeable Users and Hierarchical-
LDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Some Practical Issues . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.1 Impact of Weights on Long-Term Completion Ratios . . 40

2.6.2 Characterization of Clustering of Failures and Impact of
Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8.1 Proof of Lemma 2.3.1 . . . . . . . . . . . . . . . . . . . 43

2.8.2 Proof of Theorem 2.3.2 . . . . . . . . . . . . . . . . . . 43

2.8.3 Proof of Theorem 2.3.3 . . . . . . . . . . . . . . . . . . 47

2.8.4 Proof of Theorem 2.3.4 . . . . . . . . . . . . . . . . . . 50

2.8.5 Proof of Lemma 2.8.2 . . . . . . . . . . . . . . . . . . . 55

2.8.6 Proof of Lemma 2.8.3 . . . . . . . . . . . . . . . . . . . 57

2.8.7 Proof of Theorem 2.3.5 . . . . . . . . . . . . . . . . . . 60

2.8.8 Proof of Theorem 2.3.7 . . . . . . . . . . . . . . . . . . 61

2.8.9 Proof of Corollary 2.4.1 . . . . . . . . . . . . . . . . . . 62

Chapter 3. LDF Prioritization and Scheduling for Computing
Systems with Uniform Resources 64

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.1 Soft Real-Time (SRT) User Model . . . . . . . . . . . . 69

3.2.2 Computing Infrastructure . . . . . . . . . . . . . . . . . 72

3.2.3 SRT QoS Feasibility . . . . . . . . . . . . . . . . . . . . 73

3.2.4 Summary of System Model and Assumptions . . . . . . 75

3.3 Reservation-Based Static Sharing and Outer Bound for the Sys-
tem Feasibility Region . . . . . . . . . . . . . . . . . . . . . . 76

3.3.1 Reservation-Based Static Sharing Policies . . . . . . . . 76

3.3.2 Outer Bound for the System Feasibility Region F . . . . 78

3.4 Largest Deficit First (LDF) Based Policies . . . . . . . . . . . 83

3.4.1 Inner Bound for Feasibility Region of LDF+X . . . . . . 85

3.4.2 Performance Analysis of LDF+Greedy Scheduling . . . 86

x



3.4.3 Performance Analysis of LDF+TS/LLREF Scheduling un-
der Deterministic Workloads . . . . . . . . . . . . . . . 93

3.4.4 Resource Requirements . . . . . . . . . . . . . . . . . . 97

3.4.4.1 Resource Requirements for Reservation-Based Static
Sharing . . . . . . . . . . . . . . . . . . . . . . 98

3.4.4.2 Lower Bound on Resource Requirements . . . . 98

3.4.4.3 Resource Requirements Estimate for LDF+Greedy 99

3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5.1 Near-Optimality of LDF+Greedy for Large δ . . . . . . 101

3.5.2 LDF+Greedy vs. LDF+TS/LLREF for Deterministic
Workloads and Small δ . . . . . . . . . . . . . . . . . . 103

3.5.3 LDF+TS/LLREF for Workloads with Small Variability 103

3.6 Possible Generalizations . . . . . . . . . . . . . . . . . . . . . 105

3.6.1 Cores with Different Processing Speeds . . . . . . . . . 107

3.6.1.1 Reservation-Based Static Sharing Policies . . . 107

3.6.1.2 Outer BoundROB for the System Feasibility Region109

3.6.1.3 LDF+Greedy Scheduling . . . . . . . . . . . . . 109

3.6.1.4 LDF+TS/LLREF Scheduling . . . . . . . . . . 111

3.6.2 Users Generating Tasks at Different Periods . . . . . . . 112

3.6.2.1 Reservation-Based Static Sharing Policies . . . 113

3.6.2.2 Outer BoundROB for the System Feasibility Region114

3.6.2.3 LDF-Based Policies Over Super Periods . . . . 114

3.6.2.4 Fine-Grained LDF-Based System Designs . . . 117

3.6.3 Tasks Consisting of Sub-Tasks . . . . . . . . . . . . . . 118

3.6.3.1 Reservation-Based Static Sharing Designs . . . 120

3.6.3.2 Outer Bound for the System Feasibility Region F 120

3.6.3.3 LDF-Based System Designs . . . . . . . . . . . 120

3.7 User Management for Computing Systems . . . . . . . . . . . 121

3.7.1 System Model for User Management . . . . . . . . . . . 121

3.7.2 Measurement-Based User Management Policy . . . . . . 123

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.9.1 Proof of Theorem 3.4.1 . . . . . . . . . . . . . . . . . . 126

xi



3.9.2 Lower Bound in Theorem 3.4.2 is Tight . . . . . . . . . 130

3.9.3 Proof of Theorem 3.4.3 . . . . . . . . . . . . . . . . . . 131

3.9.4 Proof of Corollary 3.6.1 . . . . . . . . . . . . . . . . . . 132

3.9.5 Proof of Corollary 3.6.2 . . . . . . . . . . . . . . . . . . 133

3.9.6 Proof of ROB when users generate tasks with different
periods . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.9.7 Proof of ROB under generalized sub-task model . . . . . 135

3.9.8 Achieving FRB via LLREF scheduling . . . . . . . . . . 137

Chapter 4. Conclusion and Challenges for Cloud-Based Infras-
tructure 139

4.1 Current Trends: Cloud-Based Radio Access Network (CRAN) 140

4.2 Technical Challenges . . . . . . . . . . . . . . . . . . . . . . . 143

4.2.1 Scale of Aggregation and Fronthaul Network . . . . . . 143

4.2.2 Cloud-Enabled Applications/Techniques . . . . . . . . . 148

4.2.3 Virtualizing Real-Time Processing in Computing Centers 151

4.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Bibliography 152

Vita 163

xii



List of Tables

2.1 Notation of regions. . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Achieved completion ratio vectors under two weight vectors. . 40

2.3 Characterization of clustering of failures. . . . . . . . . . . . 42

3.1 Results for different generalizations. . . . . . . . . . . . . . . 106

xiii



List of Figures

1.1 CRAN architecture. . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 An example for a network of resources. A, B, C and D represent
compute/communication resources. Tasks from User 1 need to
be processed on A, B, C, D while tasks from User 2 require
processing on B, C. . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Examples of set C when n = 2 and n = 3. . . . . . . . . . . . 20

2.3 Visualizing RIB for the three-user scenario in Figure 2.2. In this
example, RIB = cl(C − Conv(P )). . . . . . . . . . . . . . . . 25

2.4 An example where B ∩ C is larger than Conv(P ). . . . . . . 26

2.5 The framework for class-based hierarchical-LDF policy. . . . 36

2.6 Characteristics of clustering of failures. . . . . . . . . . . . . 41

2.7 Outline for the proof of Theorem 2.3.4. . . . . . . . . . . . . 50

2.8 The process of constructing β when C ∩ B equals to Conv(P )
(left figure), and when C ∩ B is larger than Conv(P ) (right
figure). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1 An example of the reservation-based approach. . . . . . . . . 77

3.2 The framework for prioritization-based resource allocation poli-
cies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 The framework for LDF+Greedy scheduling. . . . . . . . . . 87

3.4 An example for the greedy task scheduler if the selected priority
decision is d = (1, 2, · · · , n). . . . . . . . . . . . . . . . . . . . 88

3.5 The framework for LDF+TS/LLREF scheduling. . . . . . . . 96

3.6 Top: the probability density functions for Gamma(5, 1) and
Gamma(100, 0.05). Bottom: the resource savings for large period.102

3.7 Top: the resource savings under deterministic workloads. Bot-
tom: the resource savings under random workloads with small
variability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1 The CRAN architecture. . . . . . . . . . . . . . . . . . . . . 142

xiv



4.2 Different scale of aggregation implies different resource savings.
In traditional RAN, each radio resource requires 2 units of com-
pute resources. If one can aggregate the workloads for the busi-
ness and residential area, respectively, 3 units of compute re-
sources are required for each computing center. Moreover, if
one aggregates the business and residential area, further sav-
ings can be achieved. . . . . . . . . . . . . . . . . . . . . . . 145

xv



Chapter 1

Introduction

The shift towards delivering compute platforms/services via cloud-based

infrastructure is well on its way. An increasing number of the applications/services

migrating to the cloud involve real-time computation with processing dead-

lines and where failure to meet the deadlines degrades user’s Quality of Ser-

vice (QoS). Such infrastructure allows one to reap the significant benefits of

cloud computing, e.g., reduced cost of sharing computing, hoteling and cooling

resources, along with increased reliability and energy efficiency. In this disser-

tation, we focus on resource allocation for Soft Real-Time (SRT) applications

which can tolerate occasional violations of processing deadlines but still need

to meet QoS or Service Level Agreements (SLA).

An example of such a platform is the Cloud-based Radio Access Net-

work (CRAN) [6, 13, 26] being considered for next generation cellular deploy-

ments, see Figure 1.1. Instead of co-locating dedicated compute resources

next to base station antennas, they virtualize compute resources for baseband

processing. To do so, the received uplink signals associated with wireless sub-

frames are sampled and sent from antennas to the cloud for timely decoding

and processing such that downlink signals requiring timely channel measure-

1



ments, acknowledgements, etc., can be sent back to antennas for transmission.

This process must happen within several milliseconds as determined by the

cellular system standards. In this setting shared compute resources may occa-

sionally fail to complete subframe processing on time, but this must happen

infrequently, i.e., QoS/SLA requirements must be met. In fact, different tasks

may have different QoS/SLA requirements. For example, failures in subframe

baseband processing should be very infrequent whereas failures for tasks asso-

ciated with channel measurement/estimation might be acceptable once every

few subframes [29].

CRAN

Figure 1.1: CRAN architecture.

Another example of an SRT application are services associated with dis-

tributed multi-party collaborative video conferencing or educational applica-

tions. In this setting multiple participants at various locations send their video

and content to a processing center where it is combined, tailored, transcoded

and sent back to distributed attendees with possibly different resolutions or

2



points of view, etc. In interactive settings, one must ensure small end-to-end

delays and thus tight processing delays. Still in many cases, it is acceptable

that some video frames not be delivered on time without substantially impact-

ing user perceived quality of experience.

Google glass and other augmented reality platforms share similar char-

acteristics to the above examples. In such applications, a stream of local

observations including video/sound could be sent to computing centers for

processing, e.g., face and activity recognition, and results returned for display.

To ensure “fluidity” the turnaround for such processing must be quite tight

yet such applications may tolerate occasional failures in meeting processing

deadlines if they are handled properly.

Other SRT applications include multimedia processing, and real-time

control, transportation, and power networks.

The computing infrastructure, e.g. [68], to support such applications

may involve a large number of heterogeneous servers, e.g., various generations

of processors, which themselves have multiple cores, special purpose hardware,

shared memories/caches, etc. It typically requires a load balancer to distribute

application traffic across a number of resources and to achieve hardware re-

source virtualization so users can focus on application development. In other

words, the challenge is to orchestrate a complex collection of resources to ef-

ficiently meet applications’ SRT requirements. In this dissertation we mainly

focus on a single computing system, e.g., managed server/center, shared by

a set of users, corresponding to instances of SRT applications, and explore

3



the fundamental problem of allocating the shared resources efficiently so as to

meet users’ QoS requirements.

In Chapter 2, we study an approach to resource allocation based on

decomposition of concerns: (1) user priorities are dynamically set based on

the history outcomes, and (2) resources are allocated so as to favor users with

higher priority. This chapter focuses on a general class of systems using such

priority-based resource allocation. We first characterize the set of feasible QoS

requirements and show the optimality of max weight-like prioritization. We

then consider simple weighted Largest Deficit First (w-LDF) prioritization

policies, where users with higher weighted deficits are given higher priority.

In this chapter we develop an inner bound for the feasible set under w-LDF

policies, and, under an additional monotonicity assumption, characterize its

geometry leading to a sufficient condition for optimality. Additional insights

on the efficiency ratio of w-LDF policies, the optimality of hierarchical-LDF

and characterization of clustering of failures are also discussed.

In Chapter 3, we consider a specific class of computing systems hav-

ing multiple uniform resources and address the problem of resource alloca-

tion to support heterogeneous soft real-time applications subject to QoS con-

straints. We develop a general outer bound on the feasible QoS region for

non-clairvoyant resource allocation policies, and an inner bound for a natu-

ral class of policies based on dynamically prioritizing applications’ tasks by

favoring those with the largest (QoS) deficits, i.e., the prioritization schemes

discussed in Chapter 2. This provides an avenue to study the efficiency of two

4



natural resource allocation policies: (1) priority-based greedy task scheduling

for applications with variable workloads, and (2) priority-based task selection

and optimal scheduling for applications with deterministic workloads. The

near-optimality of these simple policies emerges when task processing dead-

lines are relatively large and/or when the number of compute resources is large.

Analysis and simulations show substantial resource savings for such policies

over reservation-based designs. User/stream management for computing sys-

tems supporting SRT users are also discussed.

In Chapter 4, we conclude the dissertation and point to other open

research challenges beyond scheduling in architecting cloud-based computing

systems to support heterogeneous soft real-time applications.

5



Chapter 2

Efficiency and Optimality of Largest Deficit

First Prioritization for General System Model

2.1 Introduction

A growing number of real-time applications with compute and/or com-

munication deadlines are being moved onto shared infrastructure, e.g., ranging

from embedded systems to efficient cloud infrastructure. Such applications in-

clude control, multimedia processing, and/or machine learning components

associated with enabling various types of user services as well as wireless, in-

telligent transportation and energy systems. In many cases such applications

can tolerate occasional deadline violations, i.e., have soft constraints, without

impacting the application Quality of Service (QoS). For example, applications

with feedback can quickly compensate for errors, or humans may tolerate oc-

casional failures in video processing since they can be partially concealed, or

wireless base stations can tolerate occasional frame losses, since these can be

This chapter is based on my work in [22] (submitted to INFOCOM 2016) and [23]
(submitted to ACM Transactions on Modeling and Performance Evaluation of Computing
Systems), which are co-authored by Dr. Gustavo de Veciana.

6



retransmitted. More generally real-time applications’ long-term QoS may de-

pend in a complex manner on what was accomplished on time, e.g., partial

completion of a set of tasks, or notions of video quality.

Enabling efficient sharing of compute/communication resources is a

challenging problem. On the one hand, even for a single resource, tying the

sharing model, e.g., round robin or priority schemes, to QoS metrics is gener-

ally hard due to the uncertainty in applications’ workloads and possible vari-

ations in processing speeds. On the other hand, today’s applications leverage

complex networks of heterogeneous compute/communication resources, e.g.,

multi-core computers, embedded network system, or combinations of compu-

tation on mobile devices and the cloud. Consider the example in Figure 2.1.

User 1 periodically generates a task that needs to be processed sequentially

on Resources A, B, C, D in each period while User 2 generates tasks to be

processed on Resource B then C. How should one go about designing resource

sharing policies across multiple heterogeneous resources, where parallelism,

task preemption and migration are allowed? Furthermore, how can one ad-

dress heterogeneous QoS requirements associated with real-time applications?

For example, User 1’s QoS may still benefit from partial completions while

User 2 only benefits if all processing is completed. This general class of prob-

lems involving both heterogeneous resources and user QoS requirements is the

focus of this chapter.

The design space of possible solutions to this problem is huge and has

been explored in many research communities. In this chapter we study an

7



User 2

BA C D

User 1

Figure 2.1: An example for a network of resources. A, B, C and D represent
compute/communication resources. Tasks from User 1 need to be processed
on A, B, C, D while tasks from User 2 require processing on B, C.

approach to resource allocation based on a decomposition of concerns:

1. user priorities are dynamically set based on the history outcomes;

2. and, resources are allocated so as to favor users with higher priority.

In such a framework there is quite a bit of latitude in choosing how priorities

are set, and in turn how these affect the allocation of resources. For example,

users’ priorities could be set based on measured deficits, the “difference” of

the required and achieved QoS, i.e., Largest Deficit First (LDF) prioritization.

In turn, for a complex system, such as that in Figure 2.1, resources could be

allocated greedily giving preemptive access to tasks associated with higher-

priority users.

In general an optimal user prioritization strategy could leverage de-

tailed information regarding how these priorities will impact the allocation of

resources and the completion outcomes to achieve the best possible user QoS.

Such strategies require excessive amounts of information regarding the under-

lying compute/communication resources and resource allocation mechanism,

8



and thus are generally hard to implement. By contrast, LDF-based prioritiza-

tion is quite intuitive. It requires only tracking of users’ possibly heterogeneous

QoS deficits, in this sense it is truly decoupling user prioritization from the

underlying priority-based resource allocation. Unfortunately, it is known to

be suboptimal in certain settings [19, 36, 38].

A theoretical study of the efficiency and, possible optimality, of LDF-

based prioritization systems supporting real-time users with heterogeneous

QoS requirements is the main focus of this chapter. We note, however, that

we do not directly address the design of the underlying priority-based resource

allocation, although we consider some natural characteristics it could have to

ensure optimality when combined with LDF user prioritization.

Related Work. There have been much work studying dynamic

prioritization policies in the context of diverse resource, workload and/or QoS

models.

The authors in [32, 33] propose a framework to model a wireless access

point serving a set of clients that in each period generate packets which need

to be transmitted by the end of the period. In their model only one client can

transmit at a time and thus the access point can be viewed as a single resource.

Each client transmits its packets over an unreliable channel which has a fixed

probability of success, and thus, the time to successfully transmit a packet

can be modeled as a geometric random variable. In this setting the authors

show that the LDF policy is “optimal.” However, the results are restricted to

a single resource shared by users with geometric workloads. In this chapter

9



we study the performance of LDF in a more general setting which includes

this prior work as a special case. This initial set of papers motivated follow-up

work in wireless context, see e.g., [34, 35, 54].

The performance of LDF and similar policies has also been studied in

[19, 36, 38, 49]. The authors in [19] consider the generalized switch model and

were the first to propose the notion of “local pooling” as a sufficient condition

for the Longest Queue First (LQF) policy to be throughput optimal. Sub-

sequently, the work in [36] considers a multi-hop wireless network under a

node-exclusive interference model and shows that the efficiency ratio of the

greedy maximal matching policy, which is essentially LQF, equals to the “lo-

cal pooling” factor of the network graph. More recently, the authors in [38]

consider real-time traffic in ad hoc wireless networks under a link-interference

model and also characterize the efficiency ratio of the LDF policy.

The results in [19, 36, 38] depend on the constant service rate model

and the specific interference model, i.e., where the set of links/queues that can

be scheduled simultaneously is restricted. These models may be appropriate

in some wireless/queueing networks but do not necessarily hold in our broader

context, e.g., soft real-time applications with stochastic workloads. Also, [19]

lacks a performance analysis of LQF when it is not optimal and the works in

[36, 38] focus on the efficiency ratio of LDF-like policies but lack a characteri-

zation of the full capacity region of these policies. Moreover, when the system

can deliver more than the requirements, either the QoS requirements for real-

time traffic or the throughput requirements for queueing systems, there is no

10



discussion of how to manage the allocation of the “excess capacity” across

users.

The authors in [16, 50, 64–66] propose max weight scheduling policies

for different types of queueing systems and show them to be throughput op-

timal via the approaches summarized in [20, 21, 52]. The authors in [55] and

[67] further characterize the delay of the max weight policy, and study its

inefficiency in spatial wireless networks, respectively. As we will see in the

sequel we too discuss a max weight-like scheduling policy, but it suffers from

the usual complexity problems when the decision space is large and it requires

excessive amounts of information, motivating us to consider simpler policies.

Additional related work includes work on modeling and scheduling of

real-time tasks, see e.g., [17, 41, 59, 61].

Attempts have been made to incorporate many of the important re-

search papers into our bibliography. Unfortunately we are almost certain to

have missed some relevant research articles. We apologize for overlooking pa-

pers which should have been included.

Our Contributions. In this chapter, we contribute to the theo-

retical understanding and performance characterization of the Largest Deficit

First (LDF) policy with applications to resource allocation in systems sup-

porting real-time services. We make three key contributions.

First, we propose a novel general model for a class of systems supporting

priority-based resource allocation and study different dynamic prioritization

11



policies. This model is general in terms of the “impact” the priority decisions

can have on the QoS payoffs. Specifically, in each period the payoffs under

a priority decision are modeled by a random vector, which includes as spe-

cial cases the single resource model, the geometric/constant workload and/or

specific interference model adopted in prior work. For this general model,

we propose a general inner bound RIB for the QoS feasibility region for LDF

prioritization policies.

Second, with an additional property, monotonicity in payoffs, we char-

acterize the geometry of the inner bound RIB. Based on this, we further

propose a sufficient condition for the optimality of the LDF policy and charac-

terize the efficiency ratio of LDF. In practice, understanding the geometry of

RIB enables us to understand and identify possible bottlenecks in the priority-

based resource allocation infrastructure. We also show that the LDF policies

(as well as a hierarchical-LDF version) are optimal when there are two classes

of exchangeable users.

Finally, we also consider the class of weighted LDF policies, which

enable us to explore the allocation of “excess payoffs” when the system has

“excess” capacity. Simulation results are exhibited to show the impact of the

weights and to characterize the clustering of failures.

Organization of the Chapter. This chapter is organized as follows:

Section 2.2 introduces our general model for systems supporting priority-based

resource allocation. Section 2.3 develops theoretical results and characterizes

the performance of weighted LDF policies while Section 2.4 presents some

12



examples for the optimality of the weighted LDF/hierarchical-LDF policies.

Section 2.5 discusses some practical issues while the impact of weights is eval-

uated via simulation in Section 2.6. Section 2.7 concludes this chapter and

points to future work. Some of the proofs are provided in the Appendix.

2.2 System Model

We consider applications which periodically generate random workloads

with the same period and specify long-term QoS requirements. In the sequel

we let a user denote a specific instance of such an application.

We begin by introducing a general model for systems that allocate

resources in each period based on the following decomposition: (1) users are

assigned priorities dynamically, e.g., at runtime, according to a function of the

past history, and (2) the system allocates resources based on these priorities.

For the most part in this chapter, the manner in which (2) is carried out

will not be our concern. Instead our focus will be on how to perform dynamic

user prioritization to achieve optimal (or near-optimal) system performance

when combined with a given underlying mechanism for (2).

2.2.1 General Model for Systems Supporting Priority-Based Re-
source Allocation

We consider an abstract system that serves n users indexed from 1 to

n. Let N = {1, 2, · · · , n} be the user set. The system operates in discrete

time, over periods t = 1, 2, · · · . In each period, it picks a user priority decision

13



d = (d1, d2, . . . , dn) where dm is the index of the user with mth highest priority.

We let D denote the set of all possible priority decisions and let |D| represent

the number of possible decisions, thus, |D| = n!

In each period, given the priority decision d passed to the underly-

ing resources, since there are intrinsic uncertainties in users’ workloads, each

user i achieves a non-negative random QoS payoff, denoted by Vi(d). We

let V(d) = (V1(d), V2(d), · · · , Vn(d)). We assume the payoffs are indepen-

dent across periods. The distribution of V(d) depends on the selected pri-

ority decision d and the expected payoff vector given d ∈ D is denoted by

p(d) = E[V(d)]. We assume all possible payoff vectors form a finite rational

set. Moreover, we naturally assume that for each user i ∈ N , there exists a

decision d such that pi(d) > 0.

Each user requires a long-term average QoS payoff qi ≥ 0 as the QoS

requirement. We let q = (q1, q2, · · · , qn) and assume qi’s are rational1. We

denote by d(t) the priority decision at period t. To keep track of the deficits

between required and achieved QoS payoffs, for each user i ∈ N and period

t+ 1, we define2

Xi(t+ 1) = [Xi(t) + qi − Vi(d(t+ 1))]+, (2.1)

where [x]+ = max[x, 0].

1All the results in this chapter can be generalized to models with irrational values. For
simplicity in the proof we do not consider that level of generality.

2We truncate the deficit at 0 for the convenience of defining feasibility in the sequel.
Removing the truncation won’t change the results in this chapter.

14



The goal is thus to devise user prioritization policies which will meet

users’ long-term payoff requirements.

Definition 2.2.1. A user prioritization policy is a stationary policy that

picks a priority decision d(t+ 1) ∈ D at period t+ 1 based on the following:

• users’ payoff requirement vector q;

• expected payoff vectors P = {p(d)|d ∈ D};

• and, the deficits X(t) = (X1(t), X2(t), · · · , Xn(t)).

The process {X(t)}t≥1 is a Markov chain under any such policy. We

assume the initial state X(0), the requirements q, the set of all possible pay-

off vectors and the user prioritization policy make {X(t)}t≥1 an irreducible

Markov chain.

Definition 2.2.2. A payoff requirement vector q is said to be feasible if there

exists a user prioritization policy η under which the Markov chain {X(t)}t≥1

is positive recurrent. We also say this policy fulfills this requirement vector.

The expected payoff vectors P = {p(d)|d ∈ D} could in principle be

statistically inferred from the history of events or by repeated experiments.

However, in a practical setting this can be challenging and it is of interest to

find a policy that performs well and uses little a-priori information regarding

the exponential set of expected payoff vectors P .

15



Note that this model is general in the sense that the “impact” of priority

decisions d ∈ D on the QoS payoff vectors P is at this point general, whereas

the specific resource and workload models in prior work, e.g., [19, 36, 38], im-

plicitly impose properties on P and therefore restrict the results significantly.

2.2.2 Summary of System Model and Assumptions

To summarize, the problem is to develop user prioritization policies to

meet users’ long-term payoff requirements and here are the assumptions:

• The system serves n users.

• In each period, the system picks a priority decision d.

• Given the selected decision d, the random payoff vectors V(d) are inde-

pendent across periods and the distribution depends on d. We assume

all possible payoff vectors form a finite rational set.

• We let p(d) = E[V(d)]. We assume for each user i ∈ N , there exists a

decision d such that pi(d) > 0.

• q is the long-term QoS requirement vector. We assume qi’s are rational.

• User prioritization policies pick decisions based on q, P = {p(d)|d ∈ D}

and X(t).

• We further assume the initial state X(0), the requirements q, the set

of all possible payoff vectors and the user prioritization policy make

{X(t)}t≥1 an irreducible Markov chain.

16



2.2.3 Example: Centralized Computing System Supporting Real-
Time Applications

Our model can for example capture a centralized computing infrastruc-

ture supporting Soft Real-Time (SRT) applications where the n users share

compute resources. In a cloud-based collaborative video conferencing context,

a user might correspond to an individual end user and the period length might

correspond to the length of a group of video frames.

The users generate periodic streams of tasks. Specifically in each period

a user generates several tasks. A task may further consist of a graph of possi-

bly dependent sub-tasks with (possibly) random processing requirements, i.e.,

workloads. These tasks/sub-tasks need to be fully completed before the end of

the period. For real-time services, it is generally useless to process a task after

its deadline. For example, in the video conferencing context it is not desirable

to present an out-of-date frame. Therefore, we assume tasks/sub-tasks not

completed on time are dropped.

In each period t, the user prioritization policy picks a user priority de-

cision d(t), based on which compute resources are allocated to process tasks.

Given the task processing results, a payoff Vi(d(t)) is achieved for each user

i based on whether the tasks were successfully processed, or how much of

the task graphs were completed. In general, Vi(d(t)) may represent any user-

specific QoS payoff per period, that can be averaged over time, e.g., the qual-

ity/resolution of video frame processing, or the number of task completions.

Accordingly the vector q represents the long-term average QoS requirements.

17



2.2.4 Example: Complex Networks and Flexible Modeling of Ap-
plication Execution Payoffs

As indicated in the introduction, our model also applies to a complex

network of heterogeneous compute and communication resources, as long as

users periodically and synchronously generate tasks that require timely pro-

cessing on diverse resources and moving around in the network, e.g., as shown

in Figure 2.1.

Given the priority decision in each period, the network of resources

coordinate according to some priority-based resource allocation mechanism to

accelerate the processing of tasks with high priorities, by reducing the commu-

nication/queueing delays, processing with higher processor speed, allocating

more shared resources, etc.

Again, different users can define their payoffs in different ways and

specify their QoS requirements accordingly.

2.3 Performance Analysis

In this section we shall develop theoretical results for such systems.

Some of these results are similar to prior work but in the more general model

while other results are completely new. For completeness we shall develop a

self-contained theoretical framework.

18



2.3.1 System Feasibility Region and Feasibility Optimal Policy

The set of all feasible long-term payoff requirement vectors will be re-

ferred to as the system feasibility region F . We let Fη denote the feasibility

region of a user prioritization policy η. To characterize F we introduce some

further notation.

A vector x is said to be dominated by a vector y if xi ≤ yi for all i and

is denoted by x � y. We define x ≺ y, x � y and x � y in a similar manner.

Given the set of priority decisions D and the expected payoff vectors

P = {p(d)|d ∈ D}, we let C be the set of requirement vectors q ∈ Rn
+ which

are dominated by a vector in the convex hull of P denoted Conv(P ), i.e.,

C ≡ {q ∈ Rn
+ | ∃x ∈ Conv(P ) such that q � x}. (2.2)

Figure 2.2 exhibits C for a two-user (left figure) and three-user (right

figure) setting. In the two-user setting, the points labeled p(d1) and p(d2) are

the expected payoff vectors of two priority decisions, i.e., where User 1 or User

2 has higher priority, respectively. The shadowed area represents C. In the

three-user setting, the circles represent the expected payoff vectors associated

with the 6 possible priority decisions for three users, and the region dominated

by their convex hull is C. Note that in an n-user scenario where n ≥ 3, as

displayed the expected payoff vectors need not be on a hyperplane in the n-

dimensional space. As we will see this is essentially the source of complexity

in studying such systems.

19



Figure 2.2: Examples of set C when n = 2 and n = 3.

Clearly, for any requirement vector q in the interior of C, denoted by

int(C), one can achieve q if one is allowed to do probabilistic time sharing

among priority decisions by picking decisions according to a pre-computed

probability distribution whose mean payoff dominates q. Therefore, int(C) ⊆

F . We can also show the following result.

Lemma 2.3.1. The system feasibility region F is such that

F ⊆ cl(C),

where cl(C) is the closure of C.

Intuitively, if q is feasible, it is fulfilled by some user prioritization

policy that in the long-term picks each priority decision some fraction of the

time and thus, q is dominated by some point in the convex hull of P . This

is similar to prior work, e.g., [65]. See Appendix 2.8.1 for a detailed proof.

In other words, C is different from F by at most a boundary, and therefore,

20



characterizes F for practical purposes. Thus, in the sequel we will also refer

to C as the system feasibility region.

Ideally, it is desirable to devise an “optimal” policy that can fulfill all

feasible requirements. More formally, a user prioritization policy η is said to

be feasibility optimal if int(C) ⊆ Fη ⊆ cl(C). Similar to prior work [65, 66],

the following max weight-like policy is one such feasibility optimal policy.

Definition 2.3.1. The deficit-based max weight (MW) prioritization pol-

icy is such that, at period t + 1, given the deficit vector X(t) computed by

(2.1), it picks a priority decision d(t+ 1) that satisfies

d(t+ 1) ∈ arg max
d∈D

〈X(t),p(d)〉, (2.3)

where 〈x,y〉 is the inner product of two vectors.

Theorem 2.3.2. The system feasibility region F and the feasibility region of

the MW policy FMW are related to C as follows,

int(C) ⊆ FMW ⊆ F ⊆ cl(C),

and therefore, the MW policy is feasibility optimal.

See Appendix 2.8.2 for the proof.

However, the MW policy and time sharing policies require full knowl-

edge of P which is challenging in complex practical systems. Moreover, these

policies are hard to implement since they involve solving fairly complex opti-

mization problems, i.e., Eq (2.3). Changes in the user set or payoff requirement

21



vector q will also impact the realization of these policies. In summary, the re-

quirements in terms of a-priori knowledge, the computational complexity and

lack of flexibility to changes make them hard to use in practice. This motivates

the policies considered in the next subsection.

For ease of reference, Table 2.1 provides a summary of the notation

used to denote various regions identified in the rest of this chapter—some of

these are introduced in the sequel.

Table 2.1: Notation of regions.
Regions Description

F System Feasibility Region.
Conv(P ) Convex hull of the expected payoff vectors.

C Region dominated by Conv(P ).
Fw-LDF Feasibility region of the w-LDF policy.
RIB An inner bound for Fw-LDF

B Dominant of the convex hull.
R Region characterizing the geometry of RIB.

2.3.2 Weighted LDF Policies and Associated Feasibility Regions

The LDF user prioritization policies require no a-priori knowledge of the

system, are simple to implement and adapt easily to changes in q or the user

set. We shall characterize the feasibility regions of these policies by providing

an inner bound.

Definition 2.3.2. Given a vector w = (w1, w2, · · · , wn) � 0, the weighted

Largest Deficit First (w-LDF) user prioritization policy is such that, at

period t + 1, given the deficit vector X(t), it picks a priority decision d that

22



satisfies

wd1Xd1(t) ≥ wd2Xd2(t) ≥ · · · ≥ wdnXdn(t),

with ties broken arbitrarily (possibly randomly). In other words, it sorts

the weighted deficits of users and assigns priorities accordingly. Let 1 ≡

(1, 1, · · · , 1). We refer to the policy with w = 1 the Largest Deficit First

(LDF) policy.

Clearly, the w-LDF prioritization policies do not require knowledge of

the expected payoff vectors P . In terms of computational complexity, solving

(2.3) is O(n!) while sorting weighted deficits only requires O(n log n). It also

allows us to further differentiate the performance across users by assigning

different weights. The impact of weights is discussed in Section 2.6.

Prior work has established that the LDF policy need not be feasibility

optimal. Therefore, a key question is whether the feasibility regions for the

w-LDF policies are acceptable and to characterize the gap between their feasi-

bility regions and the system feasibility region F . To that end, we first provide

an inner bound, denoted by RIB, for the feasibility region of any w-LDF policy.

Theorem 2.3.3. For any w � 0, an inner bound for the feasibility region of

the w-LDF policy Fw-LDF is given by int(RIB) ⊆ Fw-LDF, where

RIB ≡ {q ∈ Rn
+ | ∃α � 0 such that ∀S ⊆ N,∑

i∈S

αiqi ≤ min
d∈D(S)

∑
i∈S

αipi(d)} (2.4)

where D(S) denotes the set of all priority decisions that assign the highest |S|

priorities to users in S.

23



In other words, if q ∈ RIB, it is feasible under all w-LDF policies except

perhaps boundary points. The underlying intuition for this bound is as follows.

A vector q is in RIB if there is a weight vector α � 0 such that for any subset

of users S, and decisions giving users in S the highest priorities, the weighted

sum of payoff requirement
∑
i∈S

αiqi will not exceed the least sum weighted payoff∑
i∈S

αipi(d). Based on α, we can construct an appropriate Lyapunov function

to show feasibility for q and each w. See Appendix 2.8.3 for the proof.

Understanding the geometry of RIB enables us to characterize the per-

formance gap between w-LDF and feasibility optimal policies. Let us infor-

mally consider the geometry of RIB for the two special cases in Figure 2.2.

In the two-user case in Figure 2.2, RIB is the same as C and thus, the w-

LDF policies are always feasibility optimal. However, in the three-user case in

Figure 2.2, this need not be true. Indeed, in this setting, the region RIB cor-

responds to C “minus” the convex hull of P , modulo some boundary points.

This is exhibited in Figure 2.3. In the next subsection, we will formalize these

observations and show under what conditions they hold true.

2.3.3 Geometry of RIB under Monotonicity in Payoffs

In order to formally characterize the geometry of RIB we will add a

further natural requirement to the general model.

We define Si(d) to be the set of users that have higher priorities than

user i under decision d.

Definition 2.3.3. The system with expected payoff vectors P = {p(d)|d ∈

24



1

_ =

Figure 2.3: Visualizing RIB for the three-user scenario in Figure 2.2. In this
example, RIB = cl(C − Conv(P )).

D} is said to satisfy monotonicity in individual expected payoffs if, for

any two priority decisions d1 and d2 and any user i such that Si(d1) ⊆ Si(d2),

we have that pi(d1) ≥ pi(d2). We call this monotonicity in payoffs for

short.

In other words, a user i can expect to get a higher payoff if some

users that have higher priority than it are re-assigned to have lower priorities.

Note that we are not comparing the expected payoffs of different users since

payoffs can be defined in different ways for different users and may not be

comparable. This property characterizes in a broad sense how priorities impact

the expected payoffs when the underlying system allocates resources. It is a

natural condition but need not hold in general. For example, by the property

of monotonicity in payoffs, if Si(d1) = Si(d2), then pi(d1) = pi(d2). In other

words, re-ordering users with higher priority than user i does not impact its

payoff, which may not hold in general.

We shall define B to be the set of payoff requirement vectors q which

25



dominate a vector in the convex hull of P , i.e.,

B ≡ {q ∈ Rn
+ | ∃x ∈ Conv(P ) such that q � x}.

We call B the dominant of the convex hull. Contrast this to the definition of

C in (2.2).

For the special cases in Figure 2.2 and 2.3, B∩C equals to Conv(P ), but

in general it can be larger than Conv(P ). Figure 2.4 shows a conceptual picture

of what could happen. The three circles represent three possible expected

payoff vectors. Here, the whole shadowed area B ∩C is larger than the region

Conv(P ) which is the triangle formed by the three circles. Note that this is

only a conceptual example to help visualize B ∩ C in higher dimensions. In

reality for two dimensions, i.e., systems with two users, we know there are only

2 expected payoff vectors as shown in Figure 2.2.

Figure 2.4: An example where B ∩ C is larger than Conv(P ).

In the sequel we will see that given monotonicity in payoffs, RIB is

obtained by “removing” B ∩C, rather than just Conv(P ) from C. To develop

this result we need some further notation associated with each subset of users

S ⊆ {1, 2, · · · , n}.

26



The projection of a vector x on the subspace of S is denoted by xS,

i.e.,

xSi =

{
xi if i ∈ S
0 otherwise.

We let P S ≡ {pS(d)|d ∈ D(S)} represent the projections of expected

payoff vectors corresponding to decisions in D(S), i.e., which assign the highest

priorities to users in S.

Given a subset S and P S, we define the feasibility region CS and the

dominant of the convex hull BS as follows.

CS ≡ {qS ∈ Rn
+ | ∃xS ∈ Conv(P S) such that qS � xS},

BS ≡ {qS ∈ Rn
+ | ∃xS ∈ Conv(P S) such that qS � xS}.

Note that CS and BS are not necessarily the same as projecting C and

B on the subspace of S, respectively. This is because in the definitions of

CS and BS, we only focus on a subset of decisions D(S) rather that the full

decision set D.

Let us now define a region R which will help characterize the geometry

of the inner bound RIB.

Definition 2.3.4. Let R be defined as follows:

R ≡ {q ∈ Rn
+ | ∀S ⊆ N,qS ∈ CS \BS},

where CS \ BS = {qS|qS ∈ CS,q /∈ BS}. In other words, any q ∈ R is such

that for any user subset S, its projection on the subspace of S belongs to

27



the set CS \BS, which is the feasibility region CS minus the dominant of the

convex hull BS.

One can visualize obtaining the set R as a process of removing BS∩CS

from CS in all subspaces corresponding to all subsets S. The geometry of RIB

is then captured as follows.

Theorem 2.3.4. If the system satisfies monotonicity in payoffs, then the inner

bound region RIB is such that

int(R) ⊆ RIB ⊆ cl(R).

See Appendix 2.8.4 for this somewhat intricate argument.

2.3.4 Sufficient Condition for w-LDF’s Optimality

By Theorem 2.3.3 and Theorem 2.3.4, we immediately get

int(R) ⊆ int(RIB) ⊆ Fw-LDF. (2.5)

Since R is obtained by removing BS ∩ CS from CS for each S, if what is

removed is nothing more than a boundary, the difference between R and C is

at most a boundary and thus w-LDF policies are feasibility optimal. It is easy

to see this happens when vectors in P S lie on a hyperplane for each subset of

users S. This can be formalized as follows.

Definition 2.3.5. The system with expected payoff vectors P = {p(d)|d ∈

D} is said to satisfy subset payoff equivalence if for each subset of users S

28



the vectors in P S = {pS(d)|d ∈ D(S)} lie on a hyperplane, i.e., there exists a

nonzero αS � 0 such that for all d1,d2 ∈ D(S),

〈αS,pS(d1)〉 = 〈αS,pS(d2)〉.

Theorem 2.3.5. If the system satisfies monotonicity in payoffs and subset

payoff equivalence, then

int(C) ⊆ Fw-LDF ⊆ cl(C),

and therefore, the w-LDF policies are feasibility optimal.

Please refer to Appendix 2.8.7 for detailed proof.

The conditions for this theorem are akin but not equivalent to the

conditions introduced in [19] for the generalized switch model. Specifically,

we require the system to satisfy monotonicity in payoffs and subset payoff

equivalence. The work in [19] requires local pooling in the generalized switch

model. In the model in [19], given a priority decision d = (d1, d2, · · · , dn)

where di is the index of the queue with the the ith highest priority, the queue

service rate vector can be denoted by m(d), where mdi(d) represents the units

of work that can be removed from queue di in one time slot under priority

decision d. m(d) is akin to p(d) in our context. However, the generalized

switch model in [19] implies properties on the service rate vectors m(d). For

example, it implies that for all d = (d1, d2, · · · , dn), we have md1(d) ≥ md1(d
′)

for all d′, and md2(d) ≥ md2(d
′) for all d′ satisfying md1(d) = md1(d

′), etc.

29



These implicit requirements do not necessarily hold in systems which satisfy

the conditions in Theorem 2.3.5.

If the system has only two users, then clearly subset payoff equiva-

lence is satisfied since the two expected payoff vectors are always on a line.

Therefore, we get the following corollary.

Corollary 2.3.6. If the system has two users and satisfies monotonicity in

payoffs, then w-LDF policies are feasibility optimal.

Note that in a two-user scenario, the property of monotonicity in payoffs

simply means a user gets higher payoff under the higher priority than its payoff

under the lower priority. In Section 2.4.2 we will consider hierarchical systems

serving two classes of exchangeable users and use this corollary to show the

optimality of LDF-like policies.

2.3.5 Efficiency Ratio Analysis

When the optimality conditions in Theorem 2.3.5 do not hold, one can

still study the efficiency ratio, see e.g., [36], to evaluate the performance of

w-LDF policies.

Definition 2.3.6. The efficiency ratio of the w-LDF policy is defined as

γw-LDF = sup{γ|γF ⊆ Fw-LDF}.

Clearly γw-LDF equals to 1 if and only if the w-LDF policy is feasibility optimal.

30



If a system does not satisfy subset payoff equivalence, i.e., for some

subset of users S the vectors in P S are not on the same hyperplane, we can

characterize the “heterogeneity” of these vectors based on the following notion.

Definition 2.3.7. Given a subset of users S ⊆ N , the subset payoff ratio

σS for S is defined as

σS = max
αS�0

αS 6=0

min
d∈D(S)

〈αS,pS(d)〉

max
d∈D(S)

〈αS,pS(d)〉
. (2.6)

The optimal αS is such that the projections of the vectors in P S on αS are as

close to each other as possible.

Clearly if the vectors in P S are on the same hyperplane, then σS = 1

and the optimal αS is the normal vector to the hyperplane. Intuitively, σS

characterizes the degree to which the vectors in P S deviate from being on the

same hyperplane.

This notion enables us to characterize the efficiency ratio of w-LDF for

a given system.

Theorem 2.3.7. If the system satisfies monotonicity in payoffs, the efficiency

ratio of the w-LDF policy is such that

γw-LDF ≥ min
S⊆N

σS.

See Appendix 2.8.8 for the proof. Intuitively, the bottleneck of the efficiency

ratio is the subset S where σS is the smallest.

31



Note that by picking any α � 0, we can get lower bounds on σS for

all subsets S ⊆ N by placing its projection αS into (2.6). Thus, any α � 0

enables us to construct a lower bound on γw-LDF. A trivial option is α = 1,

where for each subset S the value of 〈1S,pS(d)〉 represents the sum payoff of

users in S under decision d.

We have shown that the efficiency and optimality of the w-LDF policies

is related to RIB. Understanding and analyzing the geometry of RIB can

in principle enable us to provide feedback to the designers of priority-based

resource allocation mechanisms regarding which specific priority decision or set

of priority decisions are problematic and bottlenecks for the system so that the

designers can focus on improving the resource allocation for these problematic

decisions. For example, in the conceptual setting shown in Figure 2.4, the

priority decision corresponding to the lower left circle is the “bottleneck” of

the system and should be targeted to make the dominant of the convex hull

as small as possible. This is of particular interest for some practical systems

where it is possible to get explicit knowledge of P which reflect the underlying

priority-based resource allocation, e.g., by collecting data over a long time.

A priority decision is problematic if the associated underlying resource

allocation suffers from resource contention, blocking among users/applications,

or even deadlocks on compute resources, etc. Based on feedback regarding

the bottlenecks, the designer could improve the associated resource allocation

schemes, e.g., by increasing the processing speed of the certain computing

resources, spending more energy, reducing the contention, and/or resolving

32



the blocking/deadlock, and thus, improve the efficiency of the overall system

under the w-LDF prioritization policies.

2.4 Examples for w-LDF’s Optimality

Theorem 2.3.5 gives a sufficient condition for w-LDF to be feasibility

optimal. One example system that satisfies these conditions is the model

considered in prior work [32] which, as mentioned in Section 2.1, can be viewed

as a single-resource geometric-workload model. In this section we consider

more system settings and show how our results provide useful and practical

insights.

2.4.1 Exchangeable Expected Payoffs

We shall start by showing that for systems that are “symmetric”, w-

LDF policies are feasibility optimal.

Definition 2.4.1. A subset of users S is said to have exchangeable ex-

pected payoffs if, for all priority decisions d ∈ D and all i, j ∈ S, if we

switch the priorities of user i and j and use d′ to represent the resulting new

priority decision, then

pk(d
′) =


pk(d) if k 6= i, j
pj(d) if k = i
pi(d) if k = j.

In other words, exchanging the priorities of two users in S will simply

exchange their expected payoffs without impacting that of other users. This

33



would be true if the priority-based resource allocation were symmetric for users

in S and the users generate tasks with identically distributed or exchangeable

workloads.

If the users in N have exchangeable expected payoffs, we can verify the

property of subset payoff equivalence by picking αS = 1S for each subset of

users S. Therefore, by Theorem 2.3.5 we get the following corollary.

Corollary 2.4.1. If the set of users N have exchangeable expected payoffs

and the system satisfies monotonicity in payoffs, then the w-LDF policies are

feasibility optimal.

See Appendix 2.8.9 for the proof.

2.4.2 Multiple Classes of Exchangeable Users and Hierarchical-
LDF

In this subsection, we first consider a system supporting two classes

of exchangeable users. Formally, a class of users is exchangeable if they have

exchangeable expected payoffs and the same QoS requirement. The users in

different classes may have distinct payoffs and QoS requirements. In some con-

texts it is of practical interest to first prioritize the classes and then prioritize

users in each class, respectively. We refer to such schemes as using class-based

hierarchical prioritization.

In practice, depending on whether the priorities of classes can change

dynamically, there are two types of class-based hierarchical prioritization:

34



Type 1 where the class priorities are fixed, and Type 2 where one can dy-

namically prioritize classes of users, and then users within each class.

The first type of hierarchical prioritization might correspond to a set-

ting where the users/applications are separated into human-interactive/high-

QoS and background-processing/low-QoS categories [29], and it is always de-

sirable to first process high-QoS users. In this setting, the problem is reduced

to a collection of independent user prioritization problems similar to the one

considered in this chapter. By Corollary 2.4.1, w-LDF is feasibility optimal

to prioritize users in each class.

The second type of dynamic hierarchical prioritization might be of in-

terest in systems where switching between processing different user classes

involves overheads, and/or where it is inefficient to mix the processing of dif-

ferent user classes, probably because of resource contention or deadlocks.

In this setting, we propose a class-based hierarchical-LDF policy that

in each period works in two steps by (1) prioritizing classes by LDF based on

the aggregate deficits, i.e., the sum of deficits for users in the same class, and

(2) prioritizing users in each class according to LDF based on individual users’

deficits. The framework of hierarchical-LDF is exhibited in Figure 2.5. Note

that here LDF can be replaced by w-LDF for any w � 0 and the following

result would hold.

Theorem 2.4.2. In a system with two classes of exchangeable users, if the

property of monotonicity in payoffs is satisfied, the hierarchical-LDF policy

35



…

Intra-class LDF

User

Class 1

…

Intra-class LDF

User

Class 2

Inter-class LDF

Figure 2.5: The framework for class-based hierarchical-LDF policy.

is feasibility optimal among all possible class-based hierarchical prioritization

policies.

The proof follows directly from Corollary 2.3.6 and 2.4.1. By Corollary

2.3.6 we know the class-based LDF policy is optimal to set priorities amongst

the two classes and by Corollary 2.4.1 we know the LDF-based user prioriti-

zation is also optimal for the exchangeable users in each class.

More generally, for systems serving multiple (more than two) classes

of exchangeable users, one can view each class as a “super user”, and define

the aggregate payoff and QoS requirement for a super user to be the sum of

payoffs and QoS requirements for users in that class, respectively. Then the

dynamic prioritization of super users can be viewed as the problem considered

in this chapter. Therefore, by Theorem 2.3.5, if the system with the super

users’ expected aggregate payoffs satisfies monotonicity in payoffs and subset

payoff equivalence, the LDF policy is a feasibility optimal choice for prioritizing

super users and thus, the hierarchical-LDF policy is feasibility optimal among

all class-based hierarchical prioritization policies. Indeed, all the results we

36



have introduced, e.g., Theorem 2.3.2-2.3.7, still hold for the prioritization of

these super users.

2.5 Some Practical Issues

In practice, besides meeting minimum payoff requirements, users may

be willing to pay for additional payoffs, e.g., better video quality in the video

conferencing setting, albeit at possibly different prices. Given the requirements

q and the achieved average payoffs p = (p1, p2, · · · , pn), we call pi − qi the

excess payoff for each user i. While using w-LDF policies to fulfill users’

payoff requirements, we may also want to manage the allocation of excess

payoffs across users, perhaps with the aim of maximizing the benefits to the

system or users.

However, the non-negative definition of deficit (2.1) makes it hard to

track excess payoffs. For example, consider a model with 2 users and suppose

the payoff is always 1 for the high priority user and 0 for the low priority user.

Suppose the payoff requirement vector is q = (0.1, 0.5). Since 1 > 0.1 + 0.5,

we know q is feasible and the system can deliver 0.4 excess payoff. Suppose

we use the LDF policy, starting from X(0) = (0, 0) it is easy to verify3 that

the system will switch giving high priority to these two users, and thus the

achieved average payoff vector is p = (0.5, 0.5). Clearly User 1 gets 0.4 excess

payoff while User 2 gets nothing. This happens because X1(t) and X2(t)

3Since the payoffs are deterministic, we can verify this by evaluating the deficits for the
first few periods and we will observe that the process {X(t)}t≥1 evolves in a periodic pattern.

37



are frequently forced to 0 from different negative values, which causes the

“unfairness” between these two users.

To solve this problem, we modify the deficit definition for each user i

and period t+ 1 as follows,

X ′i(t+ 1) = X ′i(t) + qi − Vi(d(t+ 1)), (2.7)

i.e., we allow X ′i(t) to be negative.

Now for the simple example above, if we adopt LDF but based on

the possibly negative deficits X′(t) = (X ′1(t), X ′2(t), · · · , X ′n(t)), we can get

achieved average payoff vector p = (0.3, 0.7). We observe that the two users

equally split the excess payoff.

Intuitively, for each user i the modified deficit X ′i(t) changes roughly

linearly as t increases with the slope being qi − pi. Since w-LDF policy aims

to balance weighted deficit wiX
′
i(t), we know wi(pi − qi) is roughly the same

for all users. We will verify this observation in the simulation section and

based on this we can manage the excess payoffs across users by picking the

appropriate weight vector w.

Note that for completeness we will need to modify the feasibility defini-

tion since the process {X′(t)}t≥1 is no longer positive recurrent as it may keep

decreasing or increasing. Now we call a payoff requirement vector q feasible if,

under some user prioritization policy, for each user i the time-averaged payoff

per period is at least qi. Formally, recall that Yi(d(t)) is the random payoff

38



for user i in period t. As the payoff requirement, each user i requires that

lim inf
τ→∞

1

τ

τ∑
t=1

Yi(d(t)) ≥ qi,with probability 1.

Note that this definition and Definition 2.2.2 are just two technical ways to

define the feasibility. With the theorem in [8] we can actually show that for

any user prioritization policy, the sets of feasible QoS requirements under these

two different feasibility definitions differ by at most a boundary and thus, are

equivalent for practical purposes. Therefore, all the results we discuss in this

chapter hold under both feasibility definitions.

2.6 Simulations

In this section we explore via simulation the impact of the weights in

w-LDF policies.

Consider an illustrative system with single computing resource serving 3

soft real-time users. In each period of length δ = 10, each user generates a task

that needs to complete by end of the period. We let the non-negative work-

load, i.e., task service time, distributions for three users be Gamma(12, 0.5),

Gamma(4, 1) and Gamma(10, 0.1), respectively. We pick these workload dis-

tributions to make them general and heterogeneous. In each period, the payoff

for user i is 1 if user i’s task completes and is 0 otherwise. Accordingly, user

i’s QoS requirement qi represents the long-term task completion ratio.

We start with initial deficit X′(0) = (0, 0, 0). In each period, we inde-

pendently generate task workloads for users and simulate the w-LDF policy

39



based on X′(t) to pick a priority decision. The single resource sequentially

processes users’ tasks from highest to lowest priority. Tasks not completed on

time are dropped. All simulations are run for 30000 periods. A requirement

vector q is feasible if it is dominated by the achieved task completion ratio

vector p over the 30000 periods. The vectors q and w are specified in various

settings in the sequel.

Note that in this setting monotonicity in payoffs is satisfied while subset

payoff equivalence is not.

2.6.1 Impact of Weights on Long-Term Completion Ratios

In Table 2.2 we consider a requirement vector q that is feasible under

the w-LDF policies and display the achieved p under two different weight

vectors w. For each weight vector w, we verify that wi(pi − qi) is the same

for all three users. Contrasting the two lines in Table 2.2, we can see that

for a system which can deliver more than required, changing the weight vector

reallocates the excess payoffs and gives more excess payoff to users with smaller

weights.

Table 2.2: Achieved completion ratio vectors under two weight vectors.
q w Achieved p wi(pi − qi)

0.8, 0.6, 0.4
(1, 1, 1) 0.85, 0.65, 0.45 0.05
(10, 1, 1) 0.809, 0.69, 0.49 0.09

40



2.6.2 Characterization of Clustering of Failures and Impact of Weights

If a user’s task is not completed in a period, we call it a failure event.

The requirement vector q focuses on long-term task completion ratio, but it

would likely be undesirable for a user to experience consecutive or clustered

failure events. Figure2.6 gives an example of failure events. In this subsection

we consider the same q = (0.8, 0.6, 0.4) used above and explore the clustering

of failures under two w-LDF policies.

Isolated 

Failure

Consecutive 

Failures
Inter-Failure Intervals

Figure 2.6: Characteristics of clustering of failures.

We consider Inter-Failure Intervals (IFIs) between typical failures. IFI

is supported on the set {1, 2, 3, · · · }. To quantitatively evaluate the clustering

of the failures, we focus on the standard deviation (SD) of the IFIs for each

user. One extreme case is that failures happen strictly periodically and there-

fore, the SD is 0. Intuitively, a user with a smaller IFI SD implies that the

user experiences less clustered failures.

Next we introduce an evaluation benchmark. For each user i, we know

1 − pi represents the time-averaged failure ratio. If the failure happens in

each period independently with probability 1 − pi, the IFI can be modeled

by a geometric random variable supported on the set {1, 2, 3, · · · } with the

41



parameter being 1 − pi. We use the SD of such a geometric random variable

as a benchmark.

Under some w-LDF policy, we define SD ratio of user i to be the ratio

of user i’s IFI SD to the SD of the geometric random variable with parameter

1− pi. Table 2.3 shows the SD ratios of three users under two different weight

vectors w. Under w = (1, 1, 1), the ratios are less than 1, indicating that

the failures under the LDF policy are less clustered compared to the scheme

where failure event happens i.i.d. in each period. The last two columns in

Table 2.3 indicates that increasing the weight of user i reduces the degree

of failure clustering for user i but at the price of other users’ more clustered

failures. Thus, the users’ sensitivities to clustered failures is another factor to

consider when one assigns weights to users.

Table 2.3: Characterization of clustering of failures.
SD ratio under SD ratio under

w = (1, 1, 1) w = (10, 1, 1)

User 1 88% 39%
User 2 77% 97%
User 3 92% 107%

2.7 Conclusion

Resource allocation in complex systems supporting real-time users with

general QoS requirements can be relatively “easy”. One can in principle design

the system to allow priority-based resource allocation and adopt simple w-

LDF policies to dynamically prioritize users/applications. Our theory provides

42



guidance towards understanding the suboptimality and even optimality of such

solutions and how to improve the system design. For future work, it would

be interesting to explore the management of real-time users across systems

and/or sharing with non real-time traffic.

2.8 Appendix

2.8.1 Proof of Lemma 2.3.1

Given q ∈ F , since it is feasible there exists a user prioritization policy

η that fulfills q, i.e., the Markov chain {X(t)}t≥1 is positive recurrent, which

implies there exists a stationary distribution over the state space. Since η is a

stationary policy that picks d(t+ 1) based on X(t), by Ergodic Theorem each

priority decision d is selected with some time fraction αd such that
∑
d∈D

αd = 1

. If we consider Xi(t) as a queue, the average arrival qi should not be bigger

than the average departure which is given by
∑
d∈D

αdpi(d) since otherwise Xi(t)

goes a.s. to infinity and the chain cannot be positive recurrent.

Therefore,

q �
∑
d∈D

αdp(d) ∈ Conv(P ),

which implies q ∈ C ⊆ cl(C).

2.8.2 Proof of Theorem 2.3.2

We start by introducing a lemma.

Lemma 2.8.1. A payoff requirement vector q is in C if and only if, for any

43



non-negative vector γ � 0, there exists a priority decision d, such that

〈γ,q〉 ≤ 〈γ,p(d)〉.

Equivalently, q is in C if and only if, for any γ � 0,

〈γ,q〉 ≤ max
d∈D
〈γ,p(d)〉.

To understand this lemma, since any vector in C is dominated by some

q ∈ Conv(P ), we consider for simplicity a q ∈ Conv(P ). Such a vector

can be expressed as a convex combination of expected payoff vectors, i.e.,

q =
∑
d∈D

αdp(d), where
∑
d∈D

αd = 1 and αd ≥ 0,∀d ∈ D.

Now we have

〈γ,q〉 =
∑
d∈D

αd〈γ,p(d)〉

≤
∑
d∈D

αd max
d∈D
〈γ,p(d)〉

= max
d∈D
〈γ,p(d)〉.

This actually proves the necessity of the condition. The formal proof

is shown below.

Proof of Lemma 2.8.1. Given a payoff requirement vector q, by definition of

C, we know that q lying in set C is equivalent to the feasibility of the following

set of linear equations and inequalities,

44




q �

∑
d∈D

αdp(d)

αd ≥ 0,∀d ∈ D∑
d∈D

αd = 1.
(2.8)

The condition in Lemma 2.8.1 is equivalent to the infeasibility of{
γ � 0
〈γ,q〉 > 〈γ,p(d)〉,∀d ∈ D. (2.9)

By strong duality [10] it is easy to prove that set (2.8) being feasible is

equivalent to set (2.9) being infeasible and this concludes the proof.

Proof of Theorem 2.3.2. By Lemma 2.3.1 we know F ⊆ cl(C) and by defini-

tion we know FMW ⊆ F . To prove the theorem it suffices to show int(C) ⊆

FMW. We show this by constructing a Lyapunov function and using Foster’s

theorem.

Given q ∈ int(C), the goal is to show q can be fulfilled by the MW

policy.

By definition of interior there exists ε > 0 such that q′ = q + ε1 ∈ C

where 1 = (1, 1, · · · , 1). We define a Lyapunov function as

L(X(t)) =
n∑
i=1

Xi(t)
2.

45



In period t+ 1, we have

E [L(X(t+ 1))− L(X(t))|X(t) = x]

= E

[
n∑
i=1

Xi(t+ 1)2 −Xi(t)
2|X(t) = x

]

≤ E

[
n∑
i=1

(Xi(t) + qi − Vi(d(t+ 1)))2

−Xi(t)
2|X(t) = x

]

= E

[
n∑
i=1

(qi − Vi(d(t+ 1)))2

+2〈X(t),q−V(d(t+ 1))〉|X(t) = x

]

≤ E

[
n∑
i=1

(q2
i + Vi(d(t+ 1))2)

+2〈X(t),q−V(d(t+ 1))〉|X(t) = x

]
(2.10)

Under the MW policy, by (2.3) we know that

E[〈X(t),V(d(t+ 1))〉|X(t) = x]

= E[〈X(t),p(d(t+ 1))〉|X(t) = x]

= max
d∈D
〈x,p(d)〉.

46



Since q′ = q + ε1 ∈ C, we get that

E[〈X(t),q−V(d(t+ 1))〉|X(t) = x]

= E[〈X(t),q′ −V(d(t+ 1))〉|X(t) = x]− ε〈x,1〉

= 〈x,q′〉 −max
d∈D
〈x,p(d)〉 − ε〈x,1〉

≤ −ε〈x,1〉,

where the last step is true by Lemma 2.8.1.

Also since there are finite payoff vectors, we use b1 to represent an

upper bound on all possible payoff values and payoff requirements. Therefore,

by (2.10) we get that

E[L(X(t+ 1))− L(X(t))|X(t) = x] ≤ 2nb2
1 − 2ε〈x,1〉

≤ −1

for x satisfying 〈x,1〉 ≥ nb21
ε

+ 1
2ε

.

It is not hard to show4 there are finite states x with 〈x,1〉 < nb21
ε

+ 1
2ε

.

Therefore, by Foster’s theorem, {X(t)}t≥1 is positive recurrent and q is fulfilled

by the MW policy. Thus, this shows that int(C) ⊆ FMW.

2.8.3 Proof of Theorem 2.3.3

We first introduce some further notation. Given two vectors a =

(a1, a2, · · · , an) and b = (b1, b2, · · · , bn), we denote by a◦b = (a1b1, a2b2, · · · , anbn)

4This is true because given our assumption that requirement q and the payoff vectors are
rational valued and have finite options, the state space of process {X(t)}t≥1 is in a lattice,
see e.g., [15].

47



the entrywise product.

For any w � 0 and q ∈ int(RIB), the goal is to show that q can be

fulfilled by the w-LDF policy.

Let β = ( 1
w1
, 1
w2
, · · · , 1

wn
). By definition of interior there exists an ε > 0

such that q′ = q + εβ ∈ RIB. By definition of RIB, there exists a vector α � 0

such that q′ and α satisfy the conditions (2.4).

Consider the following candidate Lyapunov function:

L(X(t)) =
n∑
i=1

αiwiXi(t)
2.

Note that we consider a process {X(t)}t≥1 that is driven by the w-LDF

policy. In period t+ 1, by similar analysis as in (2.10) we have that

E [L(X(t+ 1))− L(X(t))|X(t) = x]

≤ E

[
n∑
i=1

αiwi(q
2
i + Vi(d(t+ 1))2)

+2〈α ◦w ◦X(t),q−V(d(t+ 1))〉|X(t) = x

]

= E

[
n∑
i=1

αiwi(q
2
i + Vi(d(t+ 1))2)

+2〈α ◦w ◦X(t),q′ −V(d(t+ 1))〉|X(t) = x

]
−2ε〈x,α〉 (2.11)

Let d denote the priority decision selected according to w-LDF policy.

48



Thus, We have that

E [〈α ◦w ◦X(t),q′ −V(d(t+ 1))〉|X(t) = x]

= 〈α ◦w ◦ x,q′ − p(d)〉.

By reordering users according to priorities, we get

〈α ◦w ◦ x,q′ − p(d)〉

=
n∑
i=1

wdixdi [αdiq
′
di
− αdipdi(d)]

=
n−1∑
i=1

[wdixdi − wdi+1
xdi+1

][
i∑

j=1

αdjq
′
dj
−

i∑
j=1

αdjpdj(d)]

+wdnxdn [
n∑
j=1

αdjq
′
dj
−

n∑
j=1

αdjpdj(d)].

By w-LDF policy we know wdixdi ≥ wdi+1
xdi+1

. By (2.4) we have
i∑

j=1

αdjq
′
dj
≤

i∑
j=1

αdjpdj(d) for 1 ≤ i ≤ n. Therefore,

E [〈α ◦w ◦X(t),q′ −V(d(t+ 1))〉|X(t) = x] ≤ 0.

Suppose b2 is an upper bound on all αi and wi, by (2.11), we get that

E[L(X(t+ 1))− L(X(t))|X(t) = x] ≤2nb2
2b

2
1 − 2ε〈x,α〉

≤ − 1

for x satisfying 〈x,α〉 ≥ nb22b
2
1

ε
+ 1

2ε
.

Again, since there are finite states x with 〈x,α〉 < nb22b
2
1

ε
+ 1

2ε
, by Foster’s

Theorem {X(t)}t≥1 is positive recurrent and q is fulfilled by the w-LDF policy.

49



Therefore, for any w � 0, we have that

int(RIB) ⊆ Fw-LDF.

2.8.4 Proof of Theorem 2.3.4

The proof of Theorem 2.3.4 is complicated and we apologize for that.

Part of the complication comes from understanding how the property of mono-

tonicity in payoffs characterizes the geometry of the region RIB. Further, a

feasible payoff requirement implies feasibilities for all user subsets, and thus

we need to look at the projections in all subspaces.

Figure 2.7 gives the high-level outline for the proof of Theorem 2.3.4.

There are two parts which involve the technical results Lemma 2.8.2 and 2.8.3,

which we will state in the proof. In order to allow the reader follow the proof,

we defer their own proof to later.

Theorem 3

Part I: Lemma 3

Part II: Claim 1 Lemma 4

(By induction)(Letting

)

Figure 2.7: Outline for the proof of Theorem 2.3.4.

Lemma 2.8.2. If a system satisfies monotonicity in payoffs, then for all q ∈ C

and all subsets of users S ⊆ N , qS ∈ CS.

We have argued in Section 2.3.3 that CS does not necessarily equal to

the projection of region C on the subspace of S in general, but the statement

50



is true if the system satisfies monotonicity in payoffs. Please refer to Appendix

2.8.5 for detailed proof of this lemma.

Given a subset of users S ⊆ N , for two vectors pS and qS, we say

pS �S qS if pSi > qSi for any i ∈ S. We define the subspace of S as RS
+ = {q ∈

Rn
+|qi = 0,∀i /∈ S}.

For a region X ⊆ Rn
+ which lies in the subspace of S, we denote by

intS(X) the relative interior of X, i.e., the interior of X, relative to the sub-

space of S. Similarly we use clS(X), bdS(X) to represent the relative closure

and boundary of X in the subspace of S, respectively.

Following the definition of region R in Definition 2.3.4, we can express

int(R) and cl(R) as below,

int(R) = {q|∀S ⊆ {1, 2, · · · , n},qS ∈ intS(CS \BS)}, (2.12)

cl(R) = {q|∀S ⊆ {1, 2, · · · , n},qS ∈ clS(CS \BS)}. (2.13)

By definition, we know CS and BS are closed sets. We can also show5

intS(CS \BS) = intS(CS) \BS,

clS(CS \BS) = CS \ intS(BS).

Next we prove Theorem 2.3.4 in two parts: RIB ⊆ cl(R) and int(R) ⊆

RIB.

Part I of the proof:

5This is clear from the definition of CS and BS . We omit the proof to save space.

51



We start with the easy part and first show RIB ⊆ cl(R).

Given q ∈ RIB, by definition, there exists α � 0 such that for all

subsets of users S, ∑
i∈S

αiqi ≤ min
d∈D(S)

∑
i∈S

αipi(d),

i.e.,

〈αS,qS〉 ≤ min
d∈D(S)

〈αS,pS(d)〉. (2.14)

To show q ∈ cl(R), by (2.13) we need to show for all subsets of users

S that qS ∈ CS \ intS(BS).

Since q ∈ RIB ⊆ C, by Lemma 2.8.2 we have qS ∈ CS.

Now suppose for some subset of users S, qS ∈ intS(BS). By definition of

BS and interior, there exists xS ∈ Conv(P S) such that qS � xS and qS 6= xS,

which implies that

〈αS,qS〉 > 〈αS,xS〉.

Since xS ∈ Conv(P S), there exists {cd|d ∈ D(S)} such that xS =∑
d∈D(S)

cdpS(d) and cd ≥ 0,
∑

d∈D(S)

cd = 1. Therefore,

〈αS,qS〉 > 〈αS,xS〉 =
∑

d∈D(S)

cd〈αS,pS(d)〉

≥ min
d∈D(S)

〈αS,pS(d)〉, (2.15)

which is contradicted to (2.14). Therefore, qS /∈ intS(BS) and thus q ∈ cl(R),

implying that RIB ⊆ cl(R).

Part II of the proof:

52



For the second part we show int(R) ⊆ RIB.

Given q ∈ int(R), by (2.12), we know for all S, qS ∈ intS(CS) \ BS.

The goal is to show q ∈ RIB, i.e., to find an α � 0 such that for all subsets of

users S,

〈αS,qS〉 ≤ min
d∈D(S)

〈αS,pS(d)〉. (2.16)

We start with the following lemma which is proved in Appendix 2.8.6

in the sequel.

Lemma 2.8.3. If a system satisfies monotonicity in payoffs, given q ∈ int(R),

for each subset of users S, there exists nonzero βS � 0, such that for all S ′ ⊆ S

where βS
′ 6= 0,

〈βS′ ,qS′〉 < min
d∈D(S′)

〈βS′ ,pS′(d)〉. (2.17)

Given Lemma 2.8.3, by letting S = N we find β that is very similar to

the α we are looking for, except for two differences: (1) β may not be strictly

positive, and (2) it is strictly “less than” in (2.17). The idea is to add a small

perturbation to β to construct a strictly positive vector.

Formally, given Lemma 2.8.3, to show q ∈ RIB we shall prove the

following even stronger statement by induction.

Claim 1: If a system satisfies monotonicity in payoffs, given q ∈

int(R), for each subset of users S, there exists αS �S 0 such that for all

53



S ′ ⊆ S,

〈αS′ ,qS′〉 ≤ min
d∈D(S′)

〈αS′ ,pS′(d)〉. (2.18)

By Claim 1, let S = N , we can find α � 0 satisfying (2.16) which

implies q ∈ RIB. Therefore, it suffices to prove Claim 1. We prove this by

induction on the cardinality |S| of user set S.

If |S| = 0, clearly Claim 1 is correct.

Suppose Claim 1 is correct for all S with |S| ≤ k−1 where k ≥ 1. Given

an S with |S| = k, by Lemma 2.8.3, we can find nonzero βS � 0 satisfying

the conditions in Lemma 2.8.3. We separate the set S into two sets S1 and S2

where

βSi > 0, i ∈ S1,

βSi = 0, i ∈ S2.

Since βS 6= 0, |S2| ≤ |S| − 1 = k − 1. By induction of Claim 1 on S2,

there exists γS2 �S2 0 such that for any S ′ ⊆ S2,

〈γS′ ,qS′〉 ≤ min
d∈D(S′)

〈γS′ ,pS′(d)〉. (2.19)

We claim that for small enough δ > 0,

αS = βS + δγS2 �S 0

satisfies condition (2.18) for all S ′ ⊆ S.

54



Any S ′ ⊆ S falls into one of the following two cases: S ′ ⊆ S2 and

S ′ 6⊆ S2. It suffices to show (2.18) in each case.

If S ′ ⊆ S2, then αS
′
= γS

′
. By (2.19), we know (2.18) is correct.

If S ′ 6⊆ S2, then βS
′ 6= 0. Let γS

′
= (γS2)S

′
. We know

〈αS′ ,qS′〉 = 〈βS′ ,qS′〉+ δ〈γS′ ,qS′〉.

By Lemma 2.8.3, 〈βS′ ,qS′〉 < min
d∈D(S′)

〈βS′ ,pS′(d)〉. Since there are finite

subsets S ′, for small enough δ,

〈αS′ ,qS′〉 ≤ min
d∈D(S′)

〈βS′ ,pS′(d)〉

≤ min
d∈D(S′)

〈αS′ ,pS′(d)〉,

i.e., (2.18) holds true.

In summary, this proves Claim 1 and thus q ∈ RIB. Therefore, int(R) ⊆

RIB.

2.8.5 Proof of Lemma 2.8.2

First we introduce a further notation. Given a decision d and a user

set S, we let m(d, S) represent the decision that satisfies

• m(d, S) ∈ D(S).

• For users i, j ∈ S or i, j /∈ S, if i has higher priority than j in d, then i

also has higher priority than j in decision m(d, S).

55



In other words, m(d, S) is the priority decision obtained by modifying decision

d to assign highest priorities to users in S without changing the relative orders

in and out of S, respectively.

Given that the system satisfies monotonicity in payoffs, for all i ∈ S,

we have that

pi(m(d, S)) ≥ pi(d). (2.20)

Given q ∈ C, the goal is to show qS ∈ CS for all subsets of users S.

By definition of C, there exists a convex combination of vectors in P that

dominates q, i.e., there exists {αd|d ∈ D} such that

q �
∑
d∈D

αdp(d),

and αd ≥ 0,
∑
d∈D

αd = 1.

Therefore, for any subset of users S,

qS �
∑
d∈D

αdpS(d),

which by (2.20) gives

qS �
∑
d∈D

αdpS(m(d, S)).

We let xS =
∑
d∈D

αdpS(m(d, S)). Since m(d, S) ∈ D(S), we know

xS ∈ Conv(P S) , and by definition of CS,

qS ∈ CS.

56



2.8.6 Proof of Lemma 2.8.3

Given q ∈ int(R), by (2.12) we know that for all subsets of users S,

qS ∈ intS(CS) \ BS. Given a subset of users S, the goal is to find βS which

satisfies the requirements in Lemma 2.8.3. In this proof, we focus on the

subspace of S.

Since qS ∈ intS(CS), there exists xS ∈ Conv(P S) such that qS ≺S xS.

Since qS /∈ BS and xS ∈ Conv(P S) ⊆ BS, we know that connecting qS and

xS intersects bdS(BS) at some point denoted by vS. By the closure property

of BS, vS ∈ BS and thus, vS �S qS. Since vS ∈ bdS(BS), we get that vS lies

on a supporting hyperplane [10] of BS, and by definition of BS, there exists

nonzero normal vector βS � 0 of this supporting hyperplane such that

〈βS,vS〉 = min
d∈D(S)

〈βS,pS(d)〉. (2.21)

Figure 2.8 conceptually shows the process of constructing βS. The

circles represent the expected payoff vectors. For simplicity we suppress the

superscript S in the figure. We shall show this βS satisfies the requirements

in Lemma 2.8.3.

Since vS ∈ bdS(BS) ⊆ BS, there exists uS ∈ Conv(P S) such that

vS � uS, and by (2.21), we get that

〈βS,uS〉 ≤ min
d∈D(S)

〈βS,pS(d)〉.

The vector uS is also shown in Figure 2.8.

57



larger than

Figure 2.8: The process of constructing β when C ∩B equals to Conv(P ) (left
figure), and when C ∩B is larger than Conv(P ) (right figure).

On the other hand, since uS ∈ Conv(P S), by similar analysis as in

(2.15) we know that

〈βS,uS〉 ≥ min
d∈D(S)

〈βS,pS(d)〉.

Thus,

〈βS,uS〉 = 〈βS,vS〉 = min
d∈D(S)

〈βS,pS(d)〉,

which implies uSi = vSi if βSi 6= 0. Since vS �S qS, for all subset S ′ ⊆ S where

βS
′ 6= 0, we have that

〈βS′ ,qS′〉 < 〈βS′ ,uS′〉,

Therefore, to show (2.17) it suffices to show for all S ′ ⊆ S where βS
′ 6= 0

that

〈βS′ ,uS′〉 ≤ min
d∈D(S′)

〈βS′ ,pS′(d)〉. (2.22)

Given uS ∈ Conv(P S), we write uS =
∑

d∈D(S)

cdpS(d) where cd ≥ 0 and∑
d∈D(S)

cd = 1.

58



For all S ′ ⊆ S where βS
′ 6= 0, we can rewrite 〈βS′ ,uS′〉 as follows,

〈βS′ ,uS′〉

= 〈βS,uS〉 − 〈βS\S′ ,uS\S′〉

= min
d∈D(S)

〈βS,pS(d)〉 −
∑

d∈D(S)

cd〈βS\S
′
,pS\S

′
(d)〉

≤ min
d∈D(S)

〈βS,pS(d)〉 − min
d∈D(S)

〈βS\S′ ,pS\S′(d)〉.

To show (2.22), it suffices to show that

min
d∈D(S)

〈βS,pS(d)〉

≤ min
d∈D(S)

〈βS\S′ ,pS\S′(d)〉 (2.23)

+ min
d∈D(S′)

〈βS′ ,pS′(d)〉. (2.24)

Suppose d1 ∈ D(S) and d2 ∈ D(S ′) are the optimal solutions for (2.23)

and (2.24), respectively. Formally,

〈βS\S′ ,pS\S′(d1)〉 = min
d∈D(S)

〈βS\S′ ,pS\S′(d)〉,

〈βS′ ,pS′(d2)〉 = min
d∈D(S′)

〈βS′ ,pS′(d)〉.

We consider the unique decision d3 that satisfies the following: First,

d3 ∈ D(S ′), i.e., d3 assigns highest priority to users in S ′. Second, the priority

ordering for user subset S ′ in d3 are the same as those in d2. Third, the

priority ordering for user subset N \ S ′ in d3 are the same as those in d1.

Since d1 ∈ D(S), we know d3 ∈ D(S) and therefore,

min
d∈D(S)

〈βS,pS(d)〉 ≤ 〈βS,pS(d3)〉.

59



Now it suffices to show that

〈βS,pS(d3)〉 ≤ 〈βS\S′ ,pS\S′(d1)〉+ 〈βS′ ,pS′(d2)〉.

This is true because given that the system satisfies monotonicity in

payoffs, we can get that

pS
′

i (d3) ≤ pS
′

i (d2) for i ∈ S ′,

and

p
S\S′
i (d3) ≤ p

S\S′
i (d1) for i ∈ S \ S ′.

In summary, this proves (2.22) and thus βS satisfies the conditions in

Lemma 2.8.3.

2.8.7 Proof of Theorem 2.3.5

Clearly Fw-LDF ⊆ F ⊆ cl(C). To show int(C) ⊆ Fw-LDF, by (2.5) it

suffices to show int(C) ⊆ int(R).

Given q ∈ int(C), the goal is to show q ∈ int(R), i.e., for all user

subsets S,

qS ∈ intS(CS) \BS.

Given a user subset S, by Lemma 2.8.2 we know qS ∈ CS. Further we

can show qS ∈ intS(CS) since otherwise q ∈ bd(C). By definition of interior

and CS, there exists xS ∈ Conv(P S) such that qS ≺S xS.

Suppose qS ∈ BS, by definition there exists yS ∈ Conv(P S) such that

qS � yS. Now we get two vectors xS,yS ∈ Conv(P S) and xS �S yS. Since

60



vectors in P S lie on a hyperplane and xS,yS ∈ Conv(P S), there exists nonzero

αS � 0 such that

〈αS,xS〉 = 〈αS,yS〉,

which contradicts with xS �S yS.

Therefore, qS /∈ BS and thus int(C) ⊆ int(R).

2.8.8 Proof of Theorem 2.3.7

Given monotonicity in payoffs, by (2.5) we know int(R) ⊆ Fw-LDF and

F differs from C by at most a boundary. By the definition of the efficiency

ratio, we know

γw-LDF = sup{γ|γF ⊆ Fw-LDF} ≥ sup{γ|γC ⊆ int(R)} = sup{γ|γC ⊆ cl(R)}.

To show γw-LDF ≥ min
S⊆N

σS, it suffices to show sup{γ|γC ⊆ cl(R)} ≥

min
S⊆N

σS, i.e., for each q ∈ C, we have min
S⊆N

σS ·q ∈ cl(R), which is equivalent to

showing that for each q ∈ C, there exists a subset of users S ⊆ N , such that

σS · q ∈ cl(R).

Given a q ∈ C, we define λ(q, R) = sup{λ|λq ∈ R} which represents

how far the vector q can extend before it goes beyond the region R and let

q(R) = λ(q, R) · q. We claim there exists a user subset S such that qS(R) ∈

bdS(BS) since otherwise we can increase λ(q, R) while guaranteeing q(R) is

still in R. Next we shall show σS · q ∈ cl(R), i.e., λ(q, R) ≥ σS.

Since qS(R) ∈ bdS(BS) ⊆ BS, there exists xS ∈ Conv(P S) such that

61



qS(R) � xS. Since q ∈ C, by Lemma 2.8.2 we know qS ∈ CS and thus, there

exists yS ∈ Conv(P S) such that qS � yS.

Given that q(R) = λ(q, R) · q, for any nonzero αS � 0, we have that

〈qS(R),α
S〉 = λ(q, R) · 〈qS,αS〉.

By qS(R) � xS and qS � yS, we get that

〈xS,αS〉 ≤ λ(q, R) · 〈yS,αS〉.

Since xS ∈ Conv(P S), by similar analysis as in (2.15) we know 〈xS,αS〉 ≥

min
d∈D(S)

〈αS,pS(d)〉. Similarly we can show 〈yS,αS〉 ≤ max
d∈D(S)

〈αS,pS(d)〉. Thus,

min
d∈D(S)

〈αS,pS(d)〉 ≤ λ(q, R) · max
d∈D(S)

〈αS,pS(d)〉. (2.25)

Clearly, max
d∈D(S)

〈αS,pS(d)〉 > 0 for any nonzero αS � 0.

Since (2.25) is true for any nonzero αS � 0, we get that

λ(q, R) ≥ max
αS�0

αS 6=0

min
d∈D(S)

〈αS,pS(d)〉

max
d∈D(S)

〈αS,pS(d)〉
= σS.

Therefore, for each q ∈ C, there exists a subset of users S ⊆ N such

that σS · q ∈ cl(R), and thus, γw-LDF ≥ min
S⊆N

σS.

2.8.9 Proof of Corollary 2.4.1

By Theorem 2.3.5, to show w-LDF policies are feasibility optimal, it

suffices to show the system satisfies subset payoff equivalence. To show this, it

62



suffices to show for all user subsets S ⊆ N and all priority decisions d1,d2 ∈

D(S) that

〈1S,pS(d1)〉 = 〈1S,pS(d2)〉.

This is true because we can convert d1 to d2 by repeatedly switching

a pair of users in d1 at each step such that at step k both decisions assign

the highest k priorities to the same users, respectively. By the definition of

exchangeable expected payoffs, the sum of the expected payoffs for users in S

remains the same at each step.

63



Chapter 3

LDF Prioritization and Scheduling for

Computing Systems with Uniform Resources

3.1 Introduction

In Chapter 2 we have analyzed a general class of systems using priority-

based resource allocation schemes. In this chapter we focus on a specific model

for a single computing system, e.g., managed server/center, shared by a set

of users, corresponding to SRT applications, that periodically generate work-

loads. The traditional management approach is to allocate dedicated resources

to users to meet their QoS requirements. However, given the typical uncer-

tainty in users’ workloads and “interference” across shared resources, doing so

typically involves over-provisioning.

Computing systems today are engineered so as to permit prioritization

of one user over another, e.g., production vs. non-production tasks, which

in turn translates to priority in accessing shared compute resources and/or

This chapter is based on my work in [24] (submitted to INFOCOM 2016) and [25]
(submitted to ACM Transactions on Modeling and Performance Evaluation of Computing
Systems), which are co-authored by Dr. Gustavo de Veciana.

64



memory. In this chapter we consider resource allocation policies which can

dynamically prioritize users in each period. Such dynamic prioritization of

users would typically reduce the required resources vs. static allocations, and

is further flexible to changes in users’ workload characteristics or QoS require-

ments.

Given a set of users and a computing system, here are some key ques-

tions of interest:

• What QoS requirements are feasible?

• Can we design simple efficient resource allocation policies meeting users’

QoS requirements and characterize the performance of these policies?

• Compared with dedicated resource allocation, what kinds of reductions

in resource requirements can one expect from enabling dynamic resource

sharing?

In the sequel we will address these basic questions and more, but we

first turn to related work.

Related Work. There is a substantial body of work on scheduling

real-time tasks. Starting with [42], the community has established theoretical

frameworks to study the scheduling of real-time applications where tasks are

subject to hard deadlines, see e.g., [12, 17, 40, 44]. The results typically as-

sume worst case execution times/workloads and are too conservative for SRT

applications.

65



Different models have been introduced for the QoS needs of Soft Real-

Time (SRT) applications. The work in [7, 30] proposes the notion of (m, k)-firm

deadlines requiring at least m out of any k consecutive tasks complete by their

deadlines. But many services do not need such tight requirements and there is

no analysis of approaches to meet such requirements. The authors in [33, 45]

consider imprecise computation models where each task consists of a manda-

tory part, which needs to complete by the deadline, and an optional part which

improves the computational results. This is a reasonable model for tasks like

artificial intelligence computation since additional optional iterations improve

the results. However, many real-time tasks do not contain optional part and

some of these tasks can miss the deadlines up to some degree. The work in [43]

aims to guarantee bounded maximum deadline tardiness for all users. How-

ever, these frameworks and QoS models are not suitable for applications like

CRAN and video conferencing where it is useless to process a task after its

deadline and it is better to simply drop the task if it misses the deadline.

This chapter focuses on an SRT QoS model where a bound on the

fraction of tasks completed on time is the QoS requirement. Such a model was

first introduced in [4] where the authors propose a static allocation approach to

meet such a QoS requirements. We shall use this as an evaluation benchmark.

More recently, the authors in [32, 33] adopt this QoS model to study a wireless

access point supporting users that periodically generate packets which need to

be transmitted within that period, and propose simple “optimal” scheduling

policies. However, their results are limited to the setting where only one user

66



can transmit at a time and where packet transmissions can be viewed as tasks

with geometrically distributed workloads.

In this chapter we consider prioritization policies that use the idea

underlying longest-queue-first policies, whose performance has been studied

in [19, 36, 38] but in different settings. Moreover, the scheduling problem we

consider is more than just one of ordering users according to a policy such

as largest-deficit-first. We also need to design the task scheduler to allocate

resources to tasks across a computing system’s cores.

Work on stochastic scheduling, e.g., [1, 2, 9, 11, 39, 58] considers how to

schedule a set of tasks with random workloads on multiple cores and aims to

find a single schedule to minimize some objective function. Most of this type

of work does not consider task completion deadlines and focuses on minimizing

the expected completion time of the last task or the average expected com-

pletion time of all tasks. Moreover, such work typically assumes exponential

workloads in order to get analytical results.

Additional related work include those studying the mixing of real-time

and non real-time traffic, see e.g., [35, 57, 62], and those studying user/job

management, see e.g., [3, 18, 48].

Our Contributions. In this chapter, we consider a computing

system consisting of multiple resources and study the scheduling of SRT users’

random workloads subject to QoS constraints on timely task completions. To

our knowledge, we are the first to give a theoretical characterization of the

67



feasibility region for this general SRT framework and to consider performance

and near-optimality of simple efficient scheduling policies. The contributions

of this chapter are threefold.

First, we propose a general framework for SRT user scheduling on mul-

tiple resources, albeit we assume the workloads are New Better than Used in

Expectation (NBUE) type. In this framework, we develop an outer bound for

the set of feasible QoS requirements for all possible non-clairvoyant resource

allocation policies.

Second, we study resource allocation policies which prioritize users

based on Largest “Deficit” First (LDF) in each period and schedule tasks

accordingly. We develop a general inner bound for the feasibility region for

this class of policies. This enables us to study the efficiency of two policies:

(1) LDF-based greedy task scheduling for users with variable workloads, and

(2) LDF-based task selection and optimal scheduling for users with determin-

istic workloads. These simple policies are near-optimal when the deadlines are

relatively lax, and/or the number of resources is large.

Finally, we evaluate the performance of the proposed policies in terms

of the required number of resources to fulfill a given set of users’ QoS require-

ments. We exhibit substantial savings versus a traditional reservation-based

approach in various system settings. We also discuss generalizations of our re-

sults, e.g., to resources with different processing speeds, and user management

for computing systems.

68



Organization of the Chapter. This chapter is organized as fol-

lows: Section 3.2 introduces our system model and Section 3.3 describes a

reservation-based approach and a general outer bound for the feasibility re-

gion. Section 3.4 discusses two prioritization-based policies and studies their

efficiency ratios. Simulation results are exhibited in Section 3.5. Section 3.6

discusses generalizations and Section 3.7 discusses user management for com-

puting systems. Section 3.8 concludes the chapter and some of the proofs are

provided in the Appendix.

3.2 System Model

We first introduce our user, system and QoS models.

3.2.1 Soft Real-Time (SRT) User Model

We consider a computing system shared by a set of usersN = {1, 2, · · · , n}.

The system operates over discrete periods t = 1, 2, · · · . We denote by δ the

length of a period. In each period each of the n users generates exactly one

task. These tasks are available for processing at the beginning of the period,

and need to complete by the end of the period. Tasks not completed on time

are dropped, i.e., cannot be processed in subsequent periods. Here we assume

a task is the unit of scheduling, i.e., a task cannot be processed in parallel.

The workload of a task will refer to its resource requirement or ser-

vice time. If a task’s workload is large it may not be possible to complete

it on time. A task’s workload is modeled by a random variable whose distri-

69



bution captures variability in its resource requirement and/or uncertainty in

the computing system, e.g., caused by memory contention across the cores.

We assume task workloads for a given user are independent and identically

distributed (i.i.d.) across periods and workloads from different users are inde-

pendent, possibly with different distributions. Let Wi be a random variable

denoting the workload of a task from user i and let µi = E[Wi]. Next we

introduce a further assumption on task workloads which seems reasonable for

SRT users and will enable theoretical analysis.

Definition 3.2.1. A non-negative random variable W is said to satisfy New

Better than Used in Expectation (NBUE) if for all t > 0,

E[W − t|W > t] ≤ E[W ]. (3.1)

In this chapter we shall assume all task workloads are NBUE.

The exponential and geometric distributions are special NBUE distri-

butions since they result in equality in the above for all t > 0 and for all

integers t > 0, respectively. The notion of NBUE, see e.g., [53, 60], captures

workload/lifetime distributions where the expected residual workload/lifetime

of a task/device of age t is no more than that of a new task/device. By [60]

the set of NBUE distributions is closed under convolution. Formally one can

show the following results:

Proposition 3.2.1. The NBUE property satisfies the following,

• If two independent random variables W,V are NBUE, then W + V is

NBUE.

70



• If a random variable W is NBUE, then for all real numbers c > 0, cW

is NBUE.

The NBUE property characterizes many workload distributions of in-

terest, e.g., [53] provides a discussion of NBUE distributions including but are

not limited to exponential, gamma with shape parameter k ≥ 1 and deter-

ministic distributions. A common class of distributions that are not NBUE

is the heavy-tailed one. However since tasks need to complete within a pe-

riod1, we are not likely to encounter tasks with such tails in the settings under

consideration.

We shall assume that each user i has a QoS requirement given by a

minimal long-term average number of tasks completed on time per period,

denoted by qi where qi ∈ [0, 1]. We let q = (q1, q2, · · · , qn) and assume qi’s are

rational2.

Let us consider some examples. An SRT user might correspond to the

processing associated with a set of co-located cellular antennas in the CRAN

context or an end user in video conferencing. Accordingly, the period δ would

correspond to a wireless subframe or the length of a group of video frames,

respectively. For SRT users, it is generally useless to process a task after its

deadline. For example, in video conferencing it is not desirable to display an

out-of-date frame. This is why in this model tasks not completed on time are

1In fact, we only require (3.1) to be true for 0 < t ≤ δ.
2All the results in this chapter can be generalized to q’s with irrational values. For

simplicity in the proof we do not consider that level of generality.

71



dropped. In Section 3.6, we discuss possible generalizations where users may

generate tasks at different periods and where a task may further consist of

sub-tasks.

3.2.2 Computing Infrastructure

A computing system can be very complex consisting of diverse, het-

erogeneous resources. In this chapter, for simplicity, we start by considering

a computing system comprised of m identical resources (cores)—a simple but

relevant model. In Section 3.6 we discuss generalizations where cores have

different processing speeds.

Given m identical cores, a task processed on any core has the same

processing time distribution and each core can process only one task at a time.

In each period, the computing system dynamically schedules tasks according

to a given strategy. Given limited resources and the randomness of workloads,

some tasks complete on time and some may fail.

Unless otherwise specified we allow task preemption/migration, i.e.,

interrupting a task being processed and resuming later on the same/different

core. We shall ignore the overheads of these operations. But in practice they

involve context switching, and therefore, policies with minimal preemption

and migration are desirable.

A resource allocation policy is said to be non-clairvoyant if it does not

make use of information regarding future events, such as tasks’ workload real-

izations, which are not generally known until the tasks complete. However, a

72



non-clairvoyant resource allocation policy may still have knowledge of a user’s

task workload distribution, which can be obtained from the history events or

repeated experiments. We shall only consider non-clairvoyant resource alloca-

tion policies.

In our model a “core” represents the minimum unit of compute resource

such as physical computing core, specialized hardware, or hyper-thread as ap-

propriate. The computing system could be a cloud-based cluster of machines

or a centralized server with a collection of processors/cores. There are many

possible non-clairvoyant resource allocation policies which may involve exploit-

ing knowledge of workload distributions, exploiting history events, preempting

tasks at appropriate times, dynamically prioritizing tasks, etc.

3.2.3 SRT QoS Feasibility

Given a QoS requirement vector q, a computing system and a non-

clairvoyant resource allocation policy, how do we verify if q is feasible? To

keep track of the deficit among users’ QoS requirements and actually completed

tasks, for each user i ∈ N and period t+ 1, we define3

Xi(t+ 1) = [Xi(t) + qi − Yi(t+ 1)]+, (3.2)

where [x]+ = max[x, 0] and Yi(t + 1) is an indicator random variable which

takes value 1 if user i’s task completes in period t + 1. We let X(t) =

3We truncate the deficit at 0 via [x]+ simply for the convenience of defining feasibility.
Removing the truncation does not change the results in this chapter.

73



(X1(t), X2(t), · · · , Xn(t)) denote the deficit vector. X(t) is a summary of the

history of events up to period t.

We shall say that the long-term QoS requirement qi for user i is met

if and only if Xi(t) is “stable”. Formally, in this chapter we consider non-

clairvoyant resource allocation policies under which the process {X(t)}t≥1 is

a Markov chain4. We assume the initial state X(0), the QoS requirements q

and the policy make {X(t)}t≥1 an irreducible Markov chain.

Definition 3.2.2. We say the QoS requirement vector q is feasible if there

exists a non-clairvoyant resource allocation policy η under which the Markov

chain {X(t)}t≥1 is positive recurrent, i.e., this policy fulfills q. We denote by

Fη the feasibility region of policy η, i.e., the set of QoS requirement vectors

fulfilled by policy η. The union of Fη over all allowable policies gives the

system feasibility region F .

We shall refer to this model as SRT-Multiple Identical Cores (SRT-

MIC) with NBUE workloads and the aim is to devise non-clairvoyant resource

allocation policies that fulfill q.

In summary, the SRT-MIC model with NBUE workloads is an abstract

system model which captures a family of systems supporting SRT users with

4All the results in this chapter can be generalized to a broader range of non-clairvoyant
resource allocation policies under which some variation of X(t) is a Markov chain. For
example, if a resource allocation policy depends on the deficit vectors in the past two periods,
then {(X(t),X(t + 1))}t≥1 is a Markov chain. For simplicity of explanation, we assume
{X(t)}t≥1 is a Markov chain.

74



random workloads. It is parameterized by the number of cores m, number

of users n, period length δ, QoS requirements q, and the NBUE workload

distributions.

3.2.4 Summary of System Model and Assumptions

To summarize, the problem is to devise non-clairvoyant resource allo-

cation policies to meet users’ long-term QoS requirements and here are the

assumptions:

• The system consists of m identical cores and n users.

• The system operates over periods of length δ.

• In each period, each user generate one task that is available for processing

at the beginning of the period and has to be processed by the end of the

period. Tasks not completed on time are dropped.

• The task workloads for a given user are i.i.d. across periods and work-

loads from different users are independent, possibly with different distri-

butions. We assume all task workloads are NBUE.

• qi is the required percentage of tasks completed on time for user i. We

assume all qi’s are rational.

• We consider non-clairvoyant resource allocation policies and we ignore

the overheads of task preemption and migration.

75



• We further assume the initial state X(0), the requirements q and the

policy make {X(t)}t≥1 an irreducible Markov chain.

3.3 Reservation-Based Static Sharing and Outer Bound
for the System Feasibility Region

In this section we introduce a reservation-based policy and a general

outer bound for the system feasibility region F which applies to any non-

clairvoyant resource allocation policy. These serve as benchmarks which enable

us to evaluate the performance of the policies proposed in the sequel.

3.3.1 Reservation-Based Static Sharing Policies

A straightforward and commonly adopted approach to meet users’ QoS

requirements q is to allocate dedicated resources, i.e., core time, to each user.

For user i, with task workload Wi and the requirement qi, we let wi(qi) be

the minimum core time reservation needed to ensure the requirement is met.

Specifically, wi(qi) is given by

Pr(Wi ≤ wi(qi)) = qi,

and thus, when qi is close to 1, wi(qi) will approach the worst-case workload

for user i.

Reservation-based static sharing policies allocate core time wi(qi) to

each user i in each period and the tasks from users are only processed in the

corresponding allocated time. Figure 3.1 exhibits an example with 2 cores.

76



Note that in this example User 3’s task first executes on Core 2 and later con-

tinues on Core 1. Therefore, a reservation-based static sharing policy, although

seemingly simple, can be aggressive in requiring task preemption/migration

and knowledge of workload distributions to compute wi(qi) for all users.

Core 1

Core 2

Figure 3.1: An example of the reservation-based approach.

Note that since a task cannot be processed in parallel, if wi(qi) exceeds

the period length δ, the requirement for user i cannot be met. In this chapter,

we assume the task workloads and requirements q are such that for all i, wi(qi)

are bounded by δ.

For a system withm identical cores, the feasibility region FRB of reservation-

based static sharing is given by

FRB = {q ∈ Rn
+ | q � 1,

∑
i∈N

wi(qi) ≤ mδ,

wi(qi) ≤ δ, ∀i ∈ N}, (3.3)

where q � 1 means qi ≤ 1 for all i ∈ N . Clearly q � 1 comes from the fact

that each user generates only one task in each period.

This approach was perhaps first proposed in [4] and is also loosely used

in reservation based schemes adopted in modern cloud infrastructure, see e.g.,

77



[68]. Cores are not used efficiently under such a policy. When the realization

of a task workload is smaller than the allocated time, the remaining time is

wasted and cannot be used to process other real-time tasks. Typically, see

e.g., [68], the resources are then used to support other, e.g., best effort, traffic.

3.3.2 Outer Bound for the System Feasibility Region F

Ideally we aim to devise a policy that can fulfill all feasible QoS re-

quirement vectors. More formally, a non-clairvoyant resource allocation pol-

icy η is said to be feasibility optimal if its feasibility region Fη is such that

int(Fη) ⊆ F ⊆ cl(Fη), where int(Fη) and cl(Fη) is the interior and closure

of Fη, and thus is for practical purposes equivalent to the system feasibility

region F .

Given the heterogeneity and randomness of tasks’ workloads and the

large number of possible non-clairvoyant resource allocation policies, a feasibil-

ity optimal policy is unknown except for very specific resource and workload

models, see e.g., [32]. To evaluate possible resource allocation policies, we

provide a benchmark based on a simple outer bound ROB for F given in the

following theorem.

Theorem 3.3.1. For the SRT-MIC model with NBUE workloads, the system

feasibility region F is such that

F ⊆ ROB ≡ {q ∈ Rn
+ | q � 1,

∑
i∈N

qiµi ≤ mδ}.

78



Intuitively, if qi tasks of user i are completed each period, the expected

time spent on user i is roughly given by qiµi. To make q feasible, the total

time spent on all users
∑
i∈N

qiµi cannot exceed the total available core time

given by mδ. This informal argument is perhaps deceptive. Note that in fact

the expected time to complete the qi tasks for user i in each period might be

smaller than qiµi since completed tasks might tend to have smaller workloads.

This seems to imply that mδ could be smaller than
∑
i∈N

qiµi for some feasible

q. This is where the NBUE assumption on workloads is critical to the result.

Note this simple outer bound applies only to non-clairvoyant resource

allocation policies for a specific SRT-MIC system with NBUE workload dis-

tributions. A formal proof of the theorem is given below.

Proof. Given a feasible QoS requirement vector q � 1, the goal is to show∑
i∈N

qiµi ≤ mδ.

Suppose q is fulfilled by a non-clairvoyant resource allocation policy η,

by Definition 3.2.2, it follows that under η the process {X(t)}t≥1 is positive

recurrent and therefore, there exists a stationary distribution. Consider a typi-

cal period where the deficit vector X(t) follows the stationary distribution and

introduce further notation associated with period t+ 1. To simplify notation,

we will suppress the period index in this proof.

For each user i, we let Yi be the indicator random variable that the

task from user i completes in a typical period. By the Ergodic Theorem, E[Yi]

represents the time-averaged number of task completions per period for user

79



i. If we view Xi(t) as a queue, the average arrival qi should not exceed the

average departure E[Yi]. For each user subset S ⊆ N , we define US to be a

random variable denoting the total core time spent on users in S in a typical

period. Clearly, E[US] cannot exceed the total available core time mδ. To

show
∑
i∈N

qiµi ≤ mδ, it suffices to show that
∑
i∈N

E[Yi]µi ≤ E[UN ]. To that end

we first develop an equation connecting
∑
i∈N

E[Yi]µi and E[UN ], and then use

the NBUE assumption to show the inequality.

We say a task is unfinished if it starts processing but does not complete

in a given period. Let Ai be the indicator random variable that user i’s task is

unfinished in a typical period. Now if Yi+Ai = 1 it indicates that user i’s task

starts processing in the period though it may not complete. For each user i,

we further define Ei = Ai(Wi − U{i}). Intuitively, Ei represents the “residual

workload for user i’s unfinished tasks”. Note that these random variables and

their means depend on the policy η.

For each user subset S ⊆ N , the total time spent on users in S can be

written as

US =
∑
i∈S

(Yi + Ai)Wi −
∑
i∈S

Ei,

and by taking expectations, we get

E[US] =
∑
i∈S

E[(Yi + Ai)Wi]−
∑
i∈S

E[Ei]. (3.4)

Clearly Yi + Ai, which indicates that user i’s task starts processing, is

independent of Wi. Indeed this follows from the requirement that the resource

80



allocation policy be non-clairvoyant, and the independence among users’ task

workloads. In a typical period under policy η, the event that user i’s task

starts may depend on the workloads of others’ tasks, but not on Wi.

Note that although Yi + Ai is independent of Wi, in general Yi which

indicates user i’s task completes may depend on Wi, i.e., E[YiWi] 6= E[Yi]µi. To

better understand this, consider an extreme example. If Wi > δ, clearly user i’s

task cannot complete implying that Yi = 0. Thus, E[Yi|Wi > δ] = 0 6= E[Yi].

Similarly, we can argue Ai is not independent of Wi.

Still given the independence of Yi + Ai and Wi, we have that

E[(Yi + Ai)Wi] = E[Yi + Ai] · E[Wi] = (E[Yi] + E[Ai])µi.

So (3.4) becomes

E[US] =
∑
i∈S

E[Yi]µi +
∑
i∈S

E[Ai]µi −
∑
i∈S

E[Ei]. (3.5)

This equation holds for all non-clairvoyant resource allocation policies and for

all subsets of users S ⊆ N .

Now let S = N . To show
∑
i∈N

E[Yi]µi ≤ E[UN ], by (3.5) it suffices to

show E[Ai]µi ≥ E[Ei] for all users i ∈ N . We will show this is true under the

NBUE workload assumption in the discrete-time scenario and it is straightfor-

ward to generalize the proof to the continuous-time scenario.

Suppose each period contains δ discrete time units. For all i and for

c = 1, 2, · · · , δ, we let Ai,c denote the indicator random variable that user i’s

81



task is unfinished and is processed for c time units in a typical period. Clearly,

Ai =
δ∑
c=1

Ai,c and E[Ai,c] = Pr(Ai,c = 1). By the law of total probability, the

expected residual workload E[Ei] for user i can be written as

E[Ei] =
δ∑
c=1

E[Ei|Ai,c = 1] Pr(Ai,c = 1)

=
δ∑
c=1

µi,c E[Ai,c], (3.6)

where µi,c = E[Wi − c|Wi > c]. This is because under the non-clairvoyant

design the event Ai,c = 1 tells nothing about Wi except that Wi > c.

By the NBUE workload assumption we know that µi,c ≤ µi for c > 0

and therefore, we get the following inequality,

E[Ei] ≤
δ∑
c=1

µi E[Ai,c] = µi E[Ai]. (3.7)

Note that the equality holds if all users’ task workloads follow geometric dis-

tributions (or exponential distributions in continuous-time scenario), possibly

with different parameters.

To summarize, by (3.5) and (3.7) we know that given a feasible require-

ment vector q, for all user subsets S ⊆ N ,∑
i∈S

qiµi ≤
∑
i∈S

E[Yi]µi ≤ E[US] ≤ mδ, (3.8)

which by letting S = N implies
∑
i∈N

qiµi ≤ mδ, and thus, F ⊆ ROB.

A key part of this argument is the inequality (3.8), stating that for a

feasible q the “effective” workload
∑
i∈S

qiµi for any user subset S should not

82



exceed the total time spent on users in S, which is bounded by mδ. This holds

under the NBUE workload assumption but may not be true if users have non-

NBUE task workloads. For example, suppose all users generate tasks with

non-NBUE workloads as follows,

Wi =

{
1 with probability 0.5
9 with probability 0.5.

Clearly, the mean workload is µi = 5. Let us consider such a policy. In each

period, the system processes each task for exactly 1 time unit and stops if the

task does not complete because given its workload distribution we know this

task will require 8 more time units to complete. Suppose m and δ is such that

mδ = n and therefore, the system can process each task for 1 time unit per

period. Under such a policy we know qi = 0.5 for all user i and the total time

spent per period is UN = n. Therefore,

∑
i∈N

qiµi = 2.5n > n = E[UN ] = mδ,

which is not consistent with (3.8) and Theorem 3.3.1. Non-NBUE workloads

are beyond the scope of this chapter. Yet for real-time computing workloads

we expect NBUE to be a good assumption.

3.4 Largest Deficit First (LDF) Based Policies

Our aim is to devise a non-clairvoyant resource allocation policy that is

easy to implement and whose feasibility region is near optimal. In this section

we consider a specific class of policies, called prioritization-based resource al-

83



location policies, which decompose resource allocation into two sub-problems,

see Figure 3.2:

1. User prioritization: in each period the system dynamically prioritizes

users based on the history of outcomes.

2. Task scheduler: the system schedules users’ tasks on cores based on their

priorities.

There are still many options for each sub-problem. For example, task schedul-

ing might be done greedily by simply scheduling the task with the highest

priority, or using the priorities to first select a subset of tasks and then process

the task subset via optimal scheduling policies.

User Prioritization

Task Scheduler

Priority Decisions

Feedback 

History 

Events

User-Level QoS

Figure 3.2: The framework for prioritization-based resource allocation policies.

In this chapter we shall prioritize users based on the Largest Deficit

First (LDF) policy which is defined as follows.

We let d = (d1, d2, · · · , dn) denote a priority decision where dk is the

index of the user with kth highest priority and D denote the set of all possible

priority decisions.

84



Definition 3.4.1. The Largest Deficit First (LDF) policy is such that,

given the users’ deficit vector X(t), the priority decision d for period t + 1 is

such that

Xd1(t) ≥ Xd2(t) ≥ · · · ≥ Xdn(t),

with ties broken arbitrarily (possibly randomly). In other words, it sorts the

deficits and assigns priorities accordingly.

The LDF user prioritization can be combined with different approaches

of task scheduling. In the sequel we will explore such combinations and char-

acterize their performance.

3.4.1 Inner Bound for Feasibility Region of LDF+X

Given a task scheduling policy X, we let LDF+X refer to the resource

allocation policy that combines LDF user prioritization and task scheduler X.

In this subsection, we provide an inner bound for its feasibility region FLDF+X.

We first introduce some further notation. Given a task scheduler, in

each period, the task completions depend on the selected priority decision.

We let pi(d) denote the expected number of tasks completed in a period for

user i under priority decision d and let p(d) = (p1(d), p2(d), · · · , pn(d)). Note

that different task schedulers will correspond to different sets of vectors P =

{p(d)|d ∈ D}. We denote by x � 0 a positive vector x with xi > 0 for all

i ∈ N . For all user subsets S ⊆ N , we let |S| be the number of users in S

and we let D(S) denote the set of all priority decisions that assign the highest

85



|S| priorities to users in S. The following theorem gives an inner bound on

FLDF+X.

Theorem 3.4.1. Given a task scheduler X and thus the X dependent expected

completion vectors P = {p(d)|d ∈ D}, an inner bound for the feasibility region

of the resource allocation policy LDF+X is given by int(RIB) ⊆ FLDF+X, where

RIB ≡ {q ∈ Rn
+ | ∃α � 0 such that ∀S ⊆ N,∑

i∈S

αiqi ≤ min
d∈D(S)

∑
i∈S

αipi(d)}.

Intuitively, q is in RIB and is feasible under the LDF+X policy if there

is a weight vector α � 0 such that for any subset of users S, if the users in S

are given the highest priorities, the weighted sum of the requirements
∑
i∈S

αiqi

does not exceed the least weighted sum of the “service rate”
∑
i∈S

αipi(d). Again,

different task schedulers X will have different vectors P and thus different inner

bounds RIB. A proof is provided in Appendix 3.9.1.

Next we explore specific task schedulers and use Theorem 3.4.1 to study

their performance.

3.4.2 Performance Analysis of LDF+Greedy Scheduling

Given an LDF-based user prioritization in each period, a natural way

to allocate resources is to greedily process tasks from highest to lowest priority.

Specifically, to start by putting the m tasks with the highest priority on the m

cores and, once one of these tasks completes, continue by processing the task

with priority m+ 1 on the available core, etc.

86



We let LDF+Greedy refer to the resource allocation policy that com-

bines LDF and such a greedy task scheduler. The framework is exhibited in

Figure 3.3. Note this is easy to implement and does not require any a-priori

knowledge of the tasks’ workloads. Also this policy does not use task preemp-

tion or migration.

LDF User Prioritization

Greedy Task Scheduler

Priority Decisions

Feedback 

History 

Events

User-Level QoS

Figure 3.3: The framework for LDF+Greedy scheduling.

Figure 3.4 shows an example realization of greedy task scheduling for a

system with 2 cores and where the selected priority decision is d = (1, 2, · · · , n).

Note that the execution of tasks under the greedy scheduler is not pre-determined

and actually depends on the realizations of tasks’ workloads, still it is non-

clairvoyant.

Next we characterize the performance of LDF+Greedy. To that end,

we introduce a metric called the efficiency ratio, see e.g., [36]. The efficiency

ratio of a non-clairvoyant resource allocation policy η is defined as

γη = sup{γ|γF ⊆ Fη}.

87



6 7 91 3

5 82 4

Core 1

Core 2

Figure 3.4: An example for the greedy task scheduler if the selected priority
decision is d = (1, 2, · · · , n).

Clearly γη characterizes the performance gap between a policy η and the best

possible way of orchestrating the scheduling of multiple tasks across multiple

cores. Also γη equals to 1 if and only if the η policy is feasibility optimal.

Theorem 3.4.2. For the SRT-MIC model with NBUE workloads, the effi-

ciency ratio of LDF+Greedy exceeds γ1 where

γ1 = 1−
max
i∈N

µi

δ
.

The intuition underlying this result is as follows. We say a task is

unfinished if it starts processing but does not complete in a period. The time

spent on an unfinished task goes to waste since it does not contribute to a

task completion. For LDF+Greedy, in one period, at most 1 task is unfinished

per core and thus the wasted time on each core is expected to be less than

max
i∈N

µi. Given the period is of length δ, the gap between LDF+Greedy and

optimality is bounded by
max
i∈N

µi

δ
. Note that again this argument is deceptively

simplified since unfinished tasks might tend to have larger workloads. Also

as for Theorem 3.3.1, this result does not necessarily hold for non-NBUE

workloads. The formal proof is given below.

88



Proof. Given a requirement vector q fulfilled by resource allocation policy η,

by (3.8) we know for all subsets of users S ⊆ N ,∑
i∈S

qiµi ≤ E[US],

where E[US] represents the time-averaged core time spent on users in S per

period under policy η.

During each period, the total time US spent on users in S is bounded

by the total task workload
∑
i∈S

Wi of users in S and the total available core

time mδ. We define TS = min

[∑
i∈S

Wi,mδ

]
and therefore, for all user subsets

S, we have that ∑
i∈S

qiµi ≤ E[US] ≤ E[TS]. (3.9)

Thus, for a vector q satisfying (3.9) the aim is to show γLDF+Greedy ≥ γ1

which is equivalent to showing γ1q ∈ cl(FLDF+Greedy). By Theorem 3.4.1,

it suffices to show that γ1q ∈ RIB. For LDF+Greedy, the expected vector

p(d) described in Section 3.4.1 represents the expected numbers of timely

completions for the greedy task scheduler under priority decision d. Therefore,

γ1q ∈ RIB follows if one can find a vector α � 0 such that for all S ⊆ N ,∑
i∈S

αiγ1qi ≤ min
d∈D(S)

∑
i∈S

αipi(d).

We will show α = (µ1, µ2, · · · , µn) � 0 satisfies the above condition. By (3.9)

it suffices to show for all S,

γ1 E[TS] ≤ min
d∈D(S)

∑
i∈S

µipi(d),

89



which is equivalent to showing for any given user subset S and priority decision

d ∈ D(S) that

∑
i∈S

µipi(d) ≥ γ1 E[TS] = E[TS]−
max
i∈N

µi

δ
E[TS]. (3.10)

First we rewrite
∑
i∈S

µipi(d) by similar approach used to obtain (3.5).

As in the proof of Theorem 3.3.1, for each subset of users S ⊆ N and each

user i ∈ N , we let US(d), Ai(d) and Ei(d) denote the time spent on users

in S, the indicator random variable that user i’s task is unfinished and the

residual workload of user i’s unfinished tasks in a period under the greedy

task scheduler with priority decision d, respectively.

By (3.5), for the given S and d, we have that

∑
i∈S

pi(d)µi = E[US(d)] +
∑
i∈S

E[Ei(d)]−
∑
i∈S

E[Ai(d)]µi.

Now (3.10) follows by showing that

E[US(d)] +
∑
i∈S

E[Ei(d)] ≥ E[TS] (3.11)

and

∑
i∈S

E[Ai(d)]µi ≤
max
i∈N

µi

δ
E[TS], (3.12)

respectively.

To demonstrate (3.11), it suffices to show for each workload realization,

uS(d) +
∑
i∈S

ei(d) ≥ tS,

90



where uS(d), ei(d), tS are realizations of US(d), Ei(d), TS, respectively.

If uS(d) = mδ, clearly uS(d)+
∑
i∈S

ei(d) ≥ mδ ≥ tS. Otherwise, uS(d) <

mδ. Since d ∈ D(S) assigns the highest priorities to users in S, by greedy

task scheduler uS(d) < mδ implies that at the end of the period no task

from users in S is waiting to be scheduled, i.e., all tasks from users in S start

processing and therefore, uS(d) +
∑
i∈S

ei(d) =
∑
i∈S

wi ≥ tS, where wi represents

the realization of workload Wi. Therefore, (3.11) is verified.

Now it remains to show (3.12). Clearly we have that

∑
i∈S

E[Ai(d)]µi ≤ max
i∈N

µi ·
∑
i∈S

E[Ai(d)].

Thus, to demonstrate (3.12) it suffices to show that

∑
i∈S

E[Ai(d)] ≤ E[TS]

δ
. (3.13)

We define AS(d) =
∑
i∈S

Ai(d) to be the number of unfinished tasks in a

period from users in S under greedy task scheduler under priority decision d.

Since there are at most m unfinished tasks, we have AS(d) ≤ m.

Under greedy task scheduling, for d ∈ D(S) we claim AS(d) = k implies

TS ≥ kδ for k = 0, 1, · · · ,m. This is true because AS(d) = k means there are k

unfinished tasks on k different cores, implying these k cores are busy processing

tasks from users in S throughout the period. Therefore,
∑
i∈S

Wi ≥ kδ and thus

TS ≥ kδ.

91



By this claim, we can get that

E[TS] =
m∑
k=0

E[TS|AS(d) = k] · Pr(AS(d) = k)

≥
m∑
k=0

kδ · Pr(AS(d) = k)

= δ
m∑
k=0

k · Pr(AS(d) = k)

= δ E[AS(d)]

= δ
∑
i∈S

E[Ai(d)].

This proves (3.13) which in turn shows (3.10) and therefore, γ1q ∈

RIB ⊆ cl(FLDF+Greedy).

Theorem 3.4.2 provides a lower bound on the efficiency ratio of LDF+Greedy,

denoted by γLDF+Greedy. The bound is tight in the sense that for any ε > 0,

there exists an SRT-MIC system with NBUE workloads such that γLDF+Greedy <

1−
max
i∈N

µi

δ
+ ε. Such a system is detailed in Appendix 3.9.2.

It follows that if δ � max
i∈N

µi, then γ1 is close to 1, i.e., LDF+Greedy

is close to optimal. This is true when the task workloads are small relative to

the core processing speed.

However, when δ is comparable to max
i∈N

µi, the efficiency ratio lower

bound γ1 is small, although in some scenarios LDF+Greedy may still be effi-

cient. For example, LDF+Greedy is feasibility optimal if the task workloads

92



of all users follow the same exponential (or geometric) distribution, or prior

work in [32]. This is due to the memoryless property of the exponential (or

geometric) distribution. Still in some scenarios where we know more about the

task workloads it is interesting to explore other simple policies that perform

better than LDF+Greedy, especially when δ is comparable to the maximum

mean workload. That motivates the discussion in the next subsection.

3.4.3 Performance Analysis of LDF+TS/LLREF Scheduling under
Deterministic Workloads

In this subsection, we consider systems where users generate tasks with

deterministic, but possibly different, workloads, i.e., Pr(Wi = µi) = 1 for all

i ∈ N . For soft real-time users that can tolerate missing some deadlines, even

if they generate tasks with deterministic workloads, one can still intentionally

drop a fraction of tasks in each period while guaranteeing the users’ long-term

QoS requirements. Selecting a subset of tasks to be processed in each period is

like a bin backing problem. And to fulfill the long-term soft QoS requirements,

one need to dynamically change or rotate the selected task subset.

Note deterministic workloads satisfy the NBUE property. Also note

that for deterministic workloads, non-clairvoyant policies have knowledge of

workload realizations. We shall once again prioritize users using LDF priori-

tization. Intuitively, the greedy task scheduler wastes time on multiple cores

if multiple tasks are unfinished at the end of a period, so we will devise a task

scheduler that orchestrates across cores so as to “reduce” wasted core time to

93



finish more tasks.

For deterministic workloads, one can assess how many tasks one can

complete prior to initiating processing. Indeed, it is intuitive, and established

in [14], that one can complete all tasks in a user subset S in a period by some

optimal scheduling if and only if
∑
i∈S

µi ≤ mδ. We consider one such optimal

algorithm: Largest Local Remaining Execution time First (LLREF) [14]. Let

us briefly describe how LLREF5 would work in the SRT-MIC model and then

introduce a task scheduler that combines the idea of task selection and LLREF

scheduling.

To that end we introduce some terminology used in [14]. Consider a

period starting at time tδ and ending at time (t + 1)δ , at any time τ ∈

[tδ, (t + 1)δ], the Local Remaining Execution time (LRE) of user i is defined

as the remaining time needed to complete its task. The LRE decrements as

the task is processed. Further, the laxity of user i is defined as the remaining

time before the deadline of user i’s task, i.e., (t + 1)δ − τ , minus the current

LRE of user i. Thus, if some user has zero laxity at some time, one needs to

start processing the task immediately to complete it by its deadline.

Definition 3.4.2. For the SRT-MIC model with deterministic workloads, the

Largest Local Remaining Execution time First (LLREF) policy is such

that, given a selected user subset S for the period, it does the following:

5LLREF is defined to be applicable in more general settings where users might generate
tasks with different period. We will discuss this in Section 3.6.

94



1. At the beginning of the period, m tasks associated with users in S are

chosen to be processed according to largest LRE first.

2. When a running task completes, or a non-running task reaches a state

where it has zero laxity, again the m tasks in S with largest local re-

maining execution time are selected to be processed.

Note that the LLREF policy uses task preemption and possibly migra-

tion. A review of variants of LLREF aimed at reducing task preemptions is

provided in [17].

Definition 3.4.3. The Task Selection/LLREF (TS/LLREF) task sched-

uler is such that, given the user priority decision d for a period, it does the

following:

1. Task selection: it greedily selects users based on d until the sum workload

exceeds mδ. More formally, it selects

j(d) = max
{
j|

j∑
i=1

µdi ≤ mδ
}
. (3.14)

Let J(d) = {d1, d2, · · · , dj(d)} represent the selected user subset6.

2. LLREF for J(d): the system uses LLREF scheduling for tasks in J(d)

in this period.

By [14], it follows that all tasks from J(d) will complete.

6One trivial way to extend the task selection step is to continue checking users greedily
according to d and adding users to J(d) while guaranteeing

∑
i∈J(d)

µi ≤ mδ. But that does

not improve the results in the sequel and therefore, we do not discuss this extension.

95



Priority Decisions

LDF Task Prioritization

Task Selection

LLREF for Sa

Feedback 

History 

Events

User-Level QoS

User Subset

Figure 3.5: The framework for LDF+TS/LLREF scheduling.

Paralleling Theorem 3.4.2, we have the following result for the LDF+TS/LLREF

resource allocation, i.e., the combination of LDF user prioritization and TS/LLREF

task scheduling. The framework of LDF+TS/LLREF is exhibited in Fig-

ure 3.5.

Theorem 3.4.3. For the SRT-MIC model with deterministic workloads, the

efficiency ratio of LDF+TS/LLREF exceeds γ2 where

γ2 = 1−
max
i∈N

µi

mδ
.

Intuitively, under TS/LLREF, the task selection rule guarantees that in

any given period the wasted time mδ−
∑

i∈J(d)

µi is less than max
i∈N

µi. Given the

total available core time mδ, the gap between LDF+TS/LLREF and optimal-

ity is again bounded by the fraction of wasted time, i.e.,
max
i∈N

µi

mδ
. A formal proof

96



of this result is similar to that of Theorem 3.4.2 and is provided in Appendix

3.9.3.

The efficiency ratio lower bound γ2 in this theorem is better than

γ1 obtained in Theorem 3.4.2, specifically the dependence on m is much

stronger. For a system with a large number of cores m, γ2 is close to 1,

i.e., LDF+TS/LLREF is close to feasibility optimal even if δ is comparable to

max
i∈N

µi.

Although LDF+TS/LLREF is designed for deterministic workloads,

we envisage it will work well for workloads with small variability by using

the expected workload, or some more sophisticated workload estimation west
i .

Specifically, TS makes selections based on west
i and LLREF computes local

remaining execution time and laxity by assuming Wi = west
i .

Note that this heuristic LDF+TS/LLREF is still non-clairvoyant but

picking appropriate west
i is key to the performance. On one hand big west

i

reduces the number of tasks selected per period and on the other hand small

west
i may cause user i’s task fail to complete. This will be explored in the

simulation section.

3.4.4 Resource Requirements

So far we have analytically characterized the efficiency ratios of two

LDF-based resource allocation policies. Another metric of interest is the re-

sources needed, in terms of the number of cores m, to fulfill a set of users’ QoS

requirements. To that end in this subsection we shall explore the required m

97



given n, δ, the random workload distributions and the requirement vector q.

A policy that requires a smaller m is better in that it saves compute resources

and/or energy.

3.4.4.1 Resource Requirements for Reservation-Based Static Shar-
ing

Based on the definition of FRB in 3.3.1, the required number of cores

to fulfill the users’ QoS requirements q under reservation-based static sharing

is given by

mRB =
⌈ ∑
i∈N

wi(qi)

δ

⌉
, (3.15)

where dxe is the ceiling of x.

3.4.4.2 Lower Bound on Resource Requirements

For any non-clairvoyant resource allocation policy η, we let mη denote

the required number of cores to fulfill users’ QoS requirements under policy

η. By Theorem 3.3.1, we know mη must satisfy mηδ ≥
∑
i∈N

qiµi , giving the

following lower bound on the required number of cores:

m ≡
⌈ ∑
i∈N

qiµi

δ

⌉
. (3.16)

98



If we ignore the ceilings,

1− m

mRB

' 1−

∑
i∈N

qiµi∑
i∈N

wi(qi)
(3.17)

gives us a upper bound on the possible resource savings compared with reservation-

based static sharing, i.e., the percentage of cores we can save by devising the

best possible non-clairvoyant resource allocation policies. Clearly, this depends

on the workload distributions and the requirement vector q. We will see in

the simulation section that the proposed approaches can achieve this upper

bound in some scenarios.

3.4.4.3 Resource Requirements Estimate for LDF+Greedy

Ideally one would like a tight upper bound for the required resources

mLDF+Greedy for LDF+Greedy. By Theorem 3.4.2 we know that LDF+Greedy

may expect to waste up to max
i∈N

µi time on each core in a period because

of unfinished tasks. Thus, to complete an “effective” workload
∑
i∈N

qiµi, we

propose an estimate for mLDF+Greedy as follows,

mest
LDF+Greedy ≡

⌈ ∑
i∈N

qiµi

δ −max
i∈N

µi

⌉
. (3.18)

If δ � max
i∈N

µi, this estimate is close to the lower bound m.

We can analytically show that indeed mest
LDF+Greedy ≥ mLDF+Greedy when

δ and n are large, see the proposition as follows. We also observe that the

inequality holds true in the various simulation settings considered next.

99



Proposition 3.4.4. For a SRT-MIC system model with homogeneous users

where all users have i.i.d. NBUE task workloads with mean µ and the same

QoS requirement q, if the period length satisfies 1− µ
δ
> q, then for any NBUE

workload distribution and for any ε > 0 satisfying 1− (1+ ε)µ
δ
> q, there exists

n′, such that for all n ≥ n′,

m =
⌈ nqµ

δ − (1 + ε)µ

⌉
is a sufficient number of cores to meet the QoS requirement for n users.

By letting ε approach 0, them in this proposition approachesmest
LDF+Greedy.

This is due to the law of large numbers and we omit the proof.

3.5 Simulations

In this section we address through simulation some of the questions

that are still open:

1. What are possible resource savings of adopting LDF+Greedy versus

reservation-based static sharing? Are they close to optimal when δ is

large? How do they depend on the QoS requirements q?

2. Our theorems on the lower bounds on efficiency ratios imply that LDF+TS/LLREF

is better than LDF+Greedy for small δ and deterministic workloads. Is

it true that LDF+TS/LLREF is more efficient?

3. For workloads with small variability, can one use LDF+TS/LLREF and

get gains over LDF+Greedy?

100



Our simulation setup is as follows. We start with an initial deficit

vector X(0) = (0, 0, · · · , 0). In each period, we independently generate a task

workload realization for each user and simulate the specified policy to evaluate

if tasks complete. All simulations are run for 3000 periods. A QoS requirement

vector q is feasible if for all users i the fraction of task completions over the

3000 periods exceeds qi.

3.5.1 Near-Optimality of LDF+Greedy for Large δ

To evaluate the resource savings of LDF+Greedy for large period length

δ, we consider an SRT-MIC system model with n = 200 and δ = 50, serving

homogeneous users that have the same QoS requirement q and generate tasks

with Gamma(5, 1) workloads, i.e., a sum of 5 independent exponential random

variables with parameter 1. The probability density function is shown in the

top panel in Figure 3.6. We choose this NBUE workload distribution as a

representative one.

In the bottom panel in Figure 3.6, we show the simulated resource

savings of LDF+Greedy versus the reservation-based static sharing, i.e., 1 −
mLDF+Greedy

mRB
, and the computed upper bound on resource savings 1− m

mRB
as the

QoS requirement q increases from 0 to 1. The lines are not smooth because

we take ceilings when computing m and mRB.

It can be seen that the savings under LDF+Greedy is close to the upper

bound in this setting. The “U” shape of the exhibited results depends on the

workload distribution. Intuitively, in this homogeneous-user scenario, if we

101



ignore the ceilings in (3.15) (3.16), the upper bound on savings becomes,

1− m

mRB

' 1− qµ

w(q)
, (3.19)

where µ is the common mean workload and w(q) is the common required static

allocation. Given Gamma(5, 1) as the workload distribution, for high q, w(q)

is like a worst-case workload and this is an improvement from worst case to

average which is as high as 60-70% for Gamma(5, 1) distribution. For medium

q ∼ 50%, qµ is around 0.5µ while w(q) is roughly µ, giving a 50% resource

savings. For low q, qµ is much smaller compared to w(q) and the savings can

be up to 80-90%.

3.5.2 LDF+Greedy vs. LDF+TS/LLREF for Deterministic Work-
loads and Small δ

To compare LDF+Greedy and LDF+TS/LLREF for short periods δ

and deterministic workloads, we consider a system where n = 30 and δ = 9 and

where users are homogeneous and generate tasks with deterministic workloads

µ = 5. In the top panel in Figure 3.7, we exhibit the upper bound of resource

savings and the resource savings under LDF+Greedy and LDF+TS/LLREF

as the requirement q changes from 0 to 1.

As can be seen, LDF+TS/LLREF can achieve the upper bound on

savings while LDF+Greedy does not perform as well. For high q, the savings

for LDF+Greedy is even negative implying that LDF+Greedy is worse than

the reservation-based approach. This is because we chose µ and δ such that

LDF+Greedy wastes a significant amount of time on unfinished tasks. Observe

102



0 2 4 6 8 10 12 14
0

0.5

1
Probability Density Functions

 

 

Gamma(5, 1)
Gamma(100, 0.05)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Requirement q

Sa
vi

ng
s

Savings for Large Period

 

 

Upper Bound
LDF+Greedy

Figure 3.6: Top: the probability density functions for Gamma(5, 1) and
Gamma(100, 0.05). Bottom: the resource savings for large period.

103



that the savings are monotonically decreasing in q, which is different from the

“U” shape exhibited in Figure 3.6. Intuitively, this is because for deterministic

workloads, by (3.19) we know w(q) equals to µ and thus we get

1− m

mRB

' 1− q.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Requirement q

S
av

in
gs

Savings for Deterministic Workloads

 

 

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Requirement q

S
av

in
gs

Savings for Workloads with Small Variabilities

 

 

Upper Bound
LDF+TS/LLREF
LDF+Greedy

Upper Bound
Heuristic LDF+TS/LLREF
LDF+Greedy

Figure 3.7: Top: the resource savings under deterministic workloads. Bottom:
the resource savings under random workloads with small variability.

104



3.5.3 LDF+TS/LLREF for Workloads with Small Variability

For workloads with small variability, we envisage that the heuristic

LDF+TS/LLREF described in Section 3.4.3 is a good non-clairvoyant policy.

Consider an SRT-MIC system with homogeneous users where n = 30 and δ = 9

and where the task workload distributions are Gamma(100, 0.05) exhibited on

the top panel in Figure 3.6. Note that the distribution Gamma(100, 0.05) has

the same mean µ = 5 but a small variance. In this setting, we shall estimate the

workload to be west = 1.1µ and use our proposed heuristic LDF+TS/LLREF

in Section 3.4.3. We conduct the same analysis for resource savings and exhibit

the results in the bottom panel in Figure 3.7.

As can be seen, the heuristic LDF+TS/LLREF indeed performs better

than LDF+Greedy. However, the performance of the heuristic LDF+TS/LLREF

degrades for high q. This is due to the fact that some selected tasks fail to

complete since their workloads are larger than west and that becomes a more

critical problem as q becomes bigger. One approach to solve this is to increase

west as q becomes bigger.

Although we only considered homogeneous users, the above observa-

tions were found to be robust for heterogeneous users.

3.6 Possible Generalizations

In this section we discuss the following generalizations of the SRT-MIC

NBUE-workload model and associated results:

105



T
ab

le
3.

1:
R

es
u
lt

s
fo

r
d
iff

er
en

t
ge

n
er

al
iz

at
io

n
s.

M
o
d

el
R

es
er

va
ti

on
-B

as
ed

F
R
B

O
u

te
r

B
o
u

n
d
R

O
B

γ
1

(N
B

U
E

w
o
rk

lo
a
d

s)
γ
2

p
re

em
p

ti
ve

n
o
n

-
(d

et
er

m
in

is
ti

c
p

re
em

p
ti

ve
w

o
rk

lo
a
d

s)

S
R

T
-

M
IC

{q
∈
R
n +
|q
�

1
,

∑ i∈
N

w
i(
q i

)
≤
m
δ,

w
i(
q i

)
≤
δ,
∀i
∈
N
}

{q
∈
R
n +
|q
�

1
,

∑ i∈
N

q i
µ
i
≤
m
δ}

1
−

m
a
x

i
∈
N
µ
i

δ
1
−

m
a
x

i
∈
N
µ
i

m
δ

{q
∈
R
n +
|q
�

1
,

B
n
(q

)
≤
S
m
·δ
,

B
k
(q

)
≤
S
k
·δ
,1
≤
k
≤
m
}

{q
∈
R
n +
|q
�

1
,

∑ i∈
N

q i
µ
i
≤
S
m
·δ
}

1
−

m
a
x

i
∈
N
µ
i

s
·δ

1
−

m
a
x

i
∈
N
µ
i

m
in

c
∈
C
s
c
·δ

1
−

m
a
x

i
∈
N
µ
i

S
m
·δ

D
iff

er
en

t
sp

ee
d

s
s c

{q
∈
R
n +
|q
�

1
,

∑ i∈
N

w
i(
q i

)

δ i
≤
m
,

w
i(
q i

)
≤
δ i
,∀
i
∈
N
}

{q
∈
R
n +
|q
�

1
,

∑ i∈
N

q i
µ
i

δ i
≤
m
}

N
/
A

1
−

m
a
x

i
∈
N

µ
i
δ
i

m

D
iff

er
en

t
p

er
io

d
s

δ i

{q
∈
R
n +
|q
�

1
,

∑ i∈
N

w
i(
q i

)
≤
m
δ,

w
i(
q i

)
≤
δ,
∀i
∈
N
}

{q
∈
R
n +
|q
�

1
,

∑ i∈
N

q i
µ
i
≤
m
δ}

1
−

m
a
x

i
∈
N
µ
i

δ
1
−

m
a
x

i
∈
N
µ
i

m
δ

C
h

ai
n

s
of

su
b

ta
sk

s
k
(i

)

106



1. Cores with different processing speeds.

2. Users generating tasks at different periods.

3. Tasks which further consist of sub-tasks that need to be processed in

order.

We discuss these three generalizations in the following three subsections, re-

spectively.

For ease of reference, Table 3.1 provides a summary of various general-

izations—the necessary notation is introduced in the sequel.

3.6.1 Cores with Different Processing Speeds

We first consider generalizations where the cores may have different

processing speeds. Let C = {1, 2, · · · ,m} denote the set of cores. Suppose

all cores are of the same type and each core c ∈ C has processing speed sc,

i.e., cores are “uniform”, see the taxonomy in, e.g., [17]. In other words, if a

task runs on a core with speed s for t time units, then s× t units of work are

performed. In this context, the workload of a task refers to the required units of

work to fully complete the task. Therefore, a task with workload w processed

on core c has a processing time w
sc

. Let s =

∑
c∈C

sc

m
be the average processing

speed. Clearly, in the SRT-MIC model we have previously considered, sc = 1

for each c ∈ C.

We assume n ≥ m since otherwise one only needs the n fastest cores.

Next we discuss generalizations of our results.

107



3.6.1.1 Reservation-Based Static Sharing Policies

In reservation-based static sharing, given the computed wi(qi) for all

users i ∈ N , the question is whether it is feasible to find a static allocation

guaranteeing that wi(qi) units of work can be performed for each user i in each

period.

To answer this question, we first introduce some notation. Given a

set Z of non-negative numbers and a positive integer k which satisfies 1 ≤

k ≤ |Z|, we let a(Z, k) be the sum of the largest k numbers in Z. We let

Sk = a({sc|c ∈ C}, k). Given a QoS requirement vector q, for 1 ≤ k ≤ n,

we let Bk(q) = a({wi(qi)|i ∈ N}, k) be the sum of the k largest core time

reservations. By [27, 28], we know that a static allocation is feasible if and

only if the following conditions hold:

Bn(q) ≤ Sm · δ, (3.20)

Bk(q) ≤ Sk · δ for 1 ≤ k ≤ m. (3.21)

Intuitively, (3.20) implies that the sum of required reservations does not exceed

the total units of work that can be performed in a period. And (3.21) implies

that the k largest reservation requirements can be satisfied by the k fastest

cores.

Such a static allocation can be obtained according to prior work, see

e.g., [27, 28]. Therefore, the feasibility region of reservation-based static shar-

108



ing FRB is given by

FRB = {q ∈ Rn
+ | q � 1, Bn(q) ≤ Sm · δ,

Bk(q) ≤ Sk · δ for 1 ≤ k ≤ m}.

This is consistent with our analysis when sc = 1 for all c ∈ C, see Eq (3.3).

3.6.1.2 Outer Bound ROB for the System Feasibility Region

For a system with different core processing speeds, the outer bound

ROB in Theorem 3.3.1 needs to be modified to

ROB ≡ {q ∈ Rn
+ | q � 1,

∑
i∈N

qiµi ≤ Sm · δ},

i.e., the “effective” workload
∑
i∈N

qiµi cannot exceed the maximum units of

work Sm · δ that can be performed in a period.

A proof of this result requires a slight modification of that of Theorem

3.3.1: we replace mδ by Sm · δ; we redefine US to be the total units of work

performed for users in S in a typical period; and we redefine Ai,c to be the

indicator random variable that user i’s task is unfinished and c units of work

are performed for user i’s task in a typical period.

3.6.1.3 LDF+Greedy Scheduling

For LDF+Greedy, if all cores have the same speed, there is no benefit

of moving a running task from one core to another. However, if cores have

different speeds, one may want to migrate tasks to faster cores if they be-

come available. Therefore, depending on whether task preemption/migration

109



is allowed, there are two types of greedy task schedulers: preemptive and

non-preemptive greedy task scheduler.

Preemptive Greedy Task Scheduler: In the preemptive case,

the task scheduler greedily and preemptively schedules tasks with the high-

est priority on the fastest cores. Specifically, at all times the task scheduler

guarantees that the available7 task with the highest priority is placed on the

fastest core, the available task with the second highest priority is on the sec-

ond fastest core, etc. In this setting, similarly to Theorem 3.4.2 we get the

following corollary.

Corollary 3.6.1. For the generalization of SRT-MIC model to cores with dif-

ferent processing speeds, the efficiency ratio of the preemptive LDF+Greedy

exceeds γ1 where

γ1 = 1−
max
i∈N

µi

s · δ
.

Note that in the denominator we have an average processing speed s,

which equals to 1 in the SRT-MIC model we considered previously. Intuitively,

this is because under the preemptive greedy task scheduler the unfinished tasks

are always on the fastest cores. And the average processing speed of the k

fastest cores is at least s for 1 ≤ k ≤ m. Refer to Appendix 3.9.4 for the

proof.

Non-Preemptive Greedy Task Scheduler: The non-preemptive

greedy task scheduler starts by putting the task with the highest priority on

7A task is available if it is not completed yet.

110



the fastest core, the task with the second highest priority on the second fastest

core, etc. Once one of these tasks completes, it continues by processing the

task with priority m+ 1 on the available core, etc. In this setting, we get the

following corollary.

Corollary 3.6.2. For the generalization of SRT-MIC model with different pro-

cessing speeds, the efficiency ratio of the non-preemptive LDF+Greedy exceeds

γ1 where

γ1 = 1−
max
i∈N

µi

min
c∈C

sc · δ
.

See Appendix 3.9.5 for the proof.

Note that γ1 under the preemptive LDF+Greedy is larger than that

under the non-preemptive LDF+Greedy. This captures the benefit of task

preemption/migration although these operations involve overheads in practice.

3.6.1.4 LDF+TS/LLREF Scheduling

For deterministic workloads, we shall generalize our proposed LDF+TS/LLREF

scheduling. We first introduce a further assumption.

Assumption 1. We suppose the n users’ deterministic workloads are such

that for all 1 ≤ k ≤ m,

Mk ≤ Sk · δ,

where Mk = a({µi|i ∈ N}, k) represents the sum of the k largest workloads.

Intuitively, this guarantees that for all 1 ≤ k ≤ m, the k tasks with

largest workloads can complete on the k fastest processors in a period.

111



Under Assumption 1, and by [27, 28], we can complete all tasks in a

user subset S in a period by some optimal scheduling if and only if
∑
i∈S

µi ≤

Sm · δ. Such optimal scheduling algorithms include U-LLREF [28], a variant

of LLREF for cores with different speeds, and Proportionate Fair (Pfair) [5].

Similar to the TS/LLREF task scheduler in Definition 3.4.3, we pro-

pose TS/U-LLREF or TS/Pfair where the task selection rule (3.14) naturally

becomes

j(d) = max
{
j|

j∑
i=1

µdi ≤ Sm · δ
}
, (3.22)

and the selected subset of users are scheduled via U-LLREF or Pfair algo-

rithms.

Under Assumption 1, and similarly to Theorem 3.4.3, we can show that

the efficiency ratio of LDF+TS/U-LLREF or LDF+TS/Pfair exceeds γ2 where

γ2 = 1−
max
i∈N

µi

Sm · δ
.

The proof of this result follows that of Theorem 3.4.3 by simply replacing mδ

with Sm · δ.

3.6.2 Users Generating Tasks at Different Periods

In this subsection, we consider possible generalizations of the SRT-

MIC NBUE-workload model where users generate tasks at different periods,

and discuss results that cannot be generalized and/or associated difficulties.

Specifically, suppose starting from time 0 each user i generates a task at

112



the beginning of each period of length δi. We assume there exists a minimum

common multiple ∆ of δi for all i. We shall refer to ∆ as a super period.

Again, each user requires the long-term time-averaged number of tasks

completed on time per period qi ∈ [0, 1]. To be consistent with the SRT-MIC

model, we define the feasibility in terms of the positive recurrence of a Markov

chain. Given q = (q1, q2, · · · , qn), we keep track of the deficits of users across

super periods. For each user i ∈ N and super period t + 1, we shall define

deficit updates as follows,

Xi(t+ 1) = [Xi(t) + qi ·
∆

δi
− Yi(t+ 1)]+, (3.23)

where Yi(t+1) is a random variable representing the number of tasks completed

on time for user i in super period t+ 1. Let X(t) = (X1(t), X2(t), · · · , Xn(t)).

We only consider non-clairvoyant resource allocation policies such that the

process {X(t)}t≥1 is a Markov chain. A QoS requirement vector q is feasible if

the Markov chain {X(t)}t≥1 is positive recurrent under some non-clairvoyant

resource allocation policy.

3.6.2.1 Reservation-Based Static Sharing Policies

We first generalize the performance characterization of reservation-

based static sharing policies. Similarly to the setting in 3.3.1, we can compute

the required core time reservation per period wi(qi) for all users i. Now wi(qi)
δi

represents the required core utilization for user i if we want to allocate wi(qi)

core time to user i per period. Clearly, if
∑
i∈N

wi(qi)
δi

> m we cannot meet the

113



core time reservations wi(qi) for all users. Indeed, by prior work, see e.g.,

[14, 17], we can characterize the feasibility region FRB of reservation-based

static sharing policies as follows,

FRB = {q ∈ Rn
+ | q � 1,

∑
i∈N

wi(qi)

δi
≤ m,

wi(qi) ≤ δi,∀i ∈ N}.

Note that this is consistent with our analysis when all users have the same

period, see Eq (3.3).

Given that
∑
i∈N

wi(qi)
δi
≤ m and wi(qi) ≤ δi for all i ∈ N , since users have

different periods, the remaining problem is how to allocate wi(qi) to each user

i in each period. One solution is to use the LLREF scheduling policy. Refer

to Appendix 3.9.8 for more details.

3.6.2.2 Outer Bound ROB for the System Feasibility Region

When users generate tasks with different periods, the outer bound ROB

for the system feasibility region can be generalized as follows,

ROB = {q ∈ Rn
+ | q � 1,

∑
i∈N

qiµi
δi
≤ m}.

Intuitively,
∑
i∈N

qiµi
δi

represents the sum of core utilizations to fulfill QoS

requirement q, which cannot exceed the maximum degree of parallelism m.

The proof is similar to that of Theorem 3.3.1—refer to Appendix 3.9.6 for

details.

114



3.6.2.3 LDF-Based Policies Over Super Periods

A heuristic way to generalize our proposed LDF-based resource alloca-

tion policies to different-period scenarios is to adopt the LDF policy to pick a

priority decision for each super period. Specifically, at the beginning of super

period t + 1, the system orders the deficit vector X(t) and assigns priorities

from largest to smallest. These priorities are interpreted by the task scheduler

to schedule tasks in this super period.

LDF+Greedy: When users generate tasks with different periods, the

greedy task scheduler can be preemptive or non-preemptive depending on

whether preemption/migration is allowed. In the preemptive version, at all

times the task scheduler processes the m available tasks with the highest pri-

ority on the m cores. In the non-preemptive version, the task scheduler starts

with m tasks with the highest priority. When a running task completes or

reaches its deadline8, the available non-running task with the highest priority

is selected to be processed on the available core.

Unfortunately, for this generalized LDF+Greedy policy we cannot get

a similar performance characterization as Theorem 3.4.2. Intuitively, this is

because the greedy task scheduler can potentially waste a lot of time on unfin-

ished tasks in different-period scenarios. For example, under the preemptive

greedy task scheduler, we may start processing a task right before its dead-

line and fail to complete it, or we may process a task only for a short time

8This implies that another task from the same user is released. That new task is also
considered to be a non-running task.

115



before we have to switch to process another task with higher priority leaving

the original task unfinished. These scenarios degrade the performance of the

LDF+Greedy policy.

LDF+TS/LLREF under Deterministic Workloads: If the

users generate tasks with different periods but with deterministic workloads,

we can generalize the LDF+TS/LLREF policy and also Theorem 3.4.3. Natu-

rally we assume µi ≤ δi for all i ∈ N . Otherwise, the tasks from user i cannot

complete on time.

Under LDF+TS/LLREF, in each super period, a priority decision d is

selected according to the LDF policy. Similarly to (3.14), the system selects

the user subset J(d) = {d1, d2, · · · , dj(d)} where j(d) is computed as follows,

j(d) = max
{
j|

j∑
i=1

µdi
δdi
≤ m

}
. (3.24)

We shall consider the case where the system adopts the LLREF policy to

process and complete all tasks from J(d) in this super period.

To characterize the efficiency ratio, we proved the following corollary

which is similar to Theorem 3.4.3.

Corollary 3.6.3. For the SRT-MIC system model with different periods and

deterministic workloads, the efficiency ratio of LDF+TS/LLREF that operates

over super periods exceeds γ2, where

γ2 = 1−
max
i∈N

µi
δi

m
.

116



Intuitively, under the task selection rule (3.24), for the selected user

subset J(d) we know that m−
∑

i∈J(d)

µi
δi

is less than max
i∈N

µi
δi

, and therefore, the

performance gap is bounded by
max
i∈N

µi
δi

m
. The formal proof is straightforward

generalization of the proof of Theorem 3.4.3 and we shall omit it.

Again, this result is consistent with our analysis when all users have

the same period, see Theorem 3.4.3.

3.6.2.4 Fine-Grained LDF-Based System Designs

A problem for the LDF-based resource allocation policies over super

periods is that the task completions of users vary a lot from super period to

super period. For example, a user with high priority in one super period may

complete a large number of tasks in this super period and then be assigned a

low priority in the next super period, completing only a small number of tasks.

Such bursty completions would likely be undesirable for users especially when

the super period ∆ is large.

To mitigate this problem, we could consider a fine-grained LDF policy

to change the priority decisions more frequently. We divide the timeline into

intervals associated with times where tasks become available for processing and

deadlines. At the beginning of each interval, we compute the deficit between

the QoS requirement and the actual number of completed tasks up to that time

for each user i, sort the deficits from largest to smallest and assign priorities

accordingly.

117



Given the priority decision in each interval, we can adopt a greedy

task scheduler. If task preemption/migration is allowed, naturally we start

by putting the m tasks with highest priority on the m cores, and once one of

these tasks completes, we continue by putting the task with priority m + 1

on the available core, etc. If preemption/migration is not allowed, at the

beginning of this interval, we continue processing the tasks running at the

end of the previous interval, and once one of these tasks completes or reaches

the deadline, we put the non-running task with the highest priority on the

available core, etc.

It would be of interest to characterize the performance of such resource

allocation policies and to generalize LDF+TS/LLREF in future work.

3.6.3 Tasks Consisting of Sub-Tasks

We continue our discussion of possible generalizations of our SRT-MIC

NBUE-workload model to the case where each task consists of several sub-tasks

that need to be processed in order and all of which need to be completed by

the end of the corresponding period. We assume all sub-tasks can be processed

on all cores.

Specifically, suppose in each period each user i ∈ N generates a task

consisting of k(i) sub-tasks, which have to be processed in order and cannot

be processed in parallel. But sub-tasks of different tasks can be processed

simultaneously. A task in a period is said to be completed on time if and only

if all its sub-tasks complete by the end of the period. Each user i requires

118



time-averaged task completions per period qi. For a given user, we assume

the sub-task workloads with the same sub-task index are i.i.d. across periods

and the sub-task workloads with different indices are independent. For each

user i ∈ N and each sub-task index k = 1, 2, · · · , k(i), we denote by W
(k)
i

the workload of the kth sub-task from user i and let µ
(k)
i = E[W

(k)
i ] be the

mean sub-task workload. Clearly Wi =
k(i)∑
k=1

W
(k)
i and µi =

k(i)∑
k=1

µ
(k)
i . We further

assume each sub-task has an NBUE workload distribution. By [60] we know

user i’s task workload Wi also has an NBUE distribution.

This generalized task model captures tasks that are completed in phases.

For example, in the CRAN context each antenna generates a task associ-

ated with each subframe. A task may further consist of sub-tasks like encod-

ing/decoding, modulation/demodulation, FFT/IFFT.

Suppose the system can observe the sub-task completions, these obser-

vations enable a broader range of non-clairvoyant resource allocation policies,

which could potentially achieve better performance, i.e., a larger system feasi-

bility region F . For example, now we can consider a resource allocation policy

that stops processing a task if its first sub-task takes too long.

Clearly our original SRT-MIC system model is a special case of this

generalized model where k(i) = 1 for all users i. It turns out that our proposed

approaches and performance characterization still hold under this generalized

task model although some of the proofs need modification. Next we shall

discuss this in more detail.

119



3.6.3.1 Reservation-Based Static Sharing Designs

Given the sub-task workload distributions and the assumption of work-

load independence, we can get the workload distribution of Wi and thus wi(qi)

for all users i ∈ N . Therefore, the discussion of reservation-based static shar-

ing policies in Section 3.3.1 still holds.

3.6.3.2 Outer Bound for the System Feasibility Region F

The definition of the outer bound region ROB and Theorem 3.3.1 still

holds, but the proof for Theorem 3.3.1 requires some modification. See Ap-

pendix 3.9.7 for the details.

3.6.3.3 LDF-Based System Designs

We can still use our proposed LDF-based resource allocation policies,

i.e., LDF+Greedy and LDF+TS/LLREF, to process tasks consisting of sub-

tasks. When applying these approaches, we consider each task as a whole task

and do not use the sub-task information. This is reasonable because partially

completing some sub-tasks does not help to meet the QoS requirements q.

Our performance characterization results Theorem 3.4.2, Theorem 3.4.3, etc.,

still hold.

As a summary, tasks consisting of sequences of sub-tasks with indepen-

dent NBUE workloads do not change the results in this chapter.

In this section we have introduced three possible generalizations in

parallel. Given these results, the combinations of multiple generalizations,

120



e.g., scenarios where the processors have different processing speeds and users

generate tasks with different periods, are straightforward and we omit the

discussion here.

3.7 User Management for Computing Systems

In this dissertation we have taken a computing system to be either a

cluster of machines or a centralized server with a large number of cores. A

large-scale cloud-based infrastructure generally consists of several such sys-

tems, and thus requires a centralized user/stream management strategy to

add new users to existing systems, and/or to move users across computing

systems. In this section, we consider a cloud-based infrastructure consisting

of several SRT-MIC systems with NBUE workloads and discuss the problem

of how to allocate users across such possibly heterogeneous systems.

3.7.1 System Model for User Management

We consider a cloud-based infrastructure consisting of several SRT-

MIC systems, each of which serves a set of users with NBUE workloads ac-

cording to some optimized non-clairvoyant resource allocation policies, such

as LDF+Greedy or LDF+TS/LLREF we proposed. The users generate tasks

periodically, with the same period δ, as discussed in Section 3.2. Let L be

the set of all SRT-MIC systems. Each SRT-MIC system l ∈ L has m(l)

identical cores. For simplicity, we assume different SRT-MIC systems have

identical cores, but possible different numbers of cores. The set of users and

121



the associated cardinality for system l ∈ L is denoted by N (l) and n(l), re-

spectively. The QoS requirement vector for system l ∈ L is denoted by

q(l) = (q
(l)
1 , q

(l)
2 , · · · , q(l)

n(l)) where q
(l)
i represents the requirement on timely task

completion for user i ∈ N (l).

We can evaluate the performance of an SRT-MIC system based on

measurements of the history outcomes. For example, for each SRT-MIC system

l ∈ L we can measure the achieved time-averaged9 task completion vector

p(l) = (p
(l)
1 , p

(l)
2 , · · · , p

(l)

n(l)) where p
(l)
i represents the achieved time-averaged

number of tasks completed on time per period for user i ∈ N (l). The SRT-

MIC system l ∈ L is called feasible if p
(l)
i ≥ q

(l)
i for all users i ∈ N (l). Here we

assume all SRT-MIC systems are feasible. For each user i ∈ N (l) we can also

measure the time-averaged time spent on that user per period, denoted by t
(l)
i .

Suppose a new user u is to be admitted and served by the cloud in-

frastructure and that its QoS requirement is qu and mean workload µu. Our

objective is to allocate this new user to a SRT-MIC system in such a way that

we meet the user’s QoS requirements without violating that of existing users.

Based on the discussion in this chapter, we have seen that it is very hard

to accurately predict the impact of adding a new user to an SRT-MIC system.

Moreover, in practice it could be challenging to get fine-grained information

about workload distributions. In this section we propose a suboptimal user

management policy that is based on monitoring the current performance of

9In practice we can measure the average over a reasonable time window.

122



the SRT-MIC systems.

3.7.2 Measurement-Based User Management Policy

We are motivated by the inequality (3.8) in the characterization of our

outer bound feasibility region ROB. By letting S = {i} in (3.8) we know for

each SRT-MIC system l ∈ L and each user i ∈ N (l), we have

p
(l)
i µi ≤ t

(l)
i , (3.25)

and the equality holds if user i generates tasks with exponential workloads

in the continuous-time scenario (or geometric workloads in the discrete-time

scenario). We define
t
(l)
i q

(l)
i

p
(l)
i

to be the estimated required average time for user

i to meet QoS requirement q
(l)
i .

Our policy consists of two parts: feasibility checking, to find SRT-MIC

systems that could admit this new user, and scoring, to select one out of the

feasible candidate SRT-MIC systems. A similar two-part approach is adopted

in the Google Borg system [68] to allocate tasks, not necessarily soft real-time

tasks, to machines.

In feasibility checking, we aim to find a set of SRT-MIC systems that

have enough “resources” to admit the new user u. For each SRT-MIC system

l ∈ L, we define the remaining available resources r(l) as follows,

r(l) = m(l)δ −
∑
i∈N(l)

t
(l)
i q

(l)
i

p
(l)
i

.

Intuitively,
∑

i∈N(l)

t
(l)
i q

(l)
i

p
(l)
i

represents the sum required time for users in N (l) to

meet the QoS requirement q(l) and r(l) represents the remaining time system l

123



can spend on additional users. All the quantities that we need here, i.e., m(l),

δ, q
(l)
i , p

(l)
i and t

(l)
i , are easy to obtain or measure from system l.

We mark the system l ∈ L as a feasible candidate system if

r(l) ≥ quµu + h,

where h is a non-negative safety guard. We use L∗ to represent the set of

candidate systems, i.e.

L∗ = {l|r(l) ≥ quµu + h}.

We introduce this safety guard h because there is generally a gap between

p
(l)
i µi and t

(l)
i in (3.25). In the sequel we will discuss how to adapt the value

of h based on the “correctness” of our user allocation decisions.

In scoring, we compute a score for each candidate system l ∈ L∗ ac-

cording to some scoring function f(l) and pick the SRT-MIC system with the

largest score. We may use different scoring functions for different purposes.

For example, to enable a tight “packing” of users across the SRT-MIC systems,

we could let f(l) = −r(l) which is equivalent to picking the system l ∈ L∗ with

smallest remaining space r(l). That enables us to consolidate the SRT-MIC

systems so as to shut down some SRT-MIC systems to save energy or to use

those resources for other purposes. But under this scoring function, we may

get penalized for even small errors in the estimations of h, µu, etc.

Alternatively, one can be conservative and let f(l) = r(l) which is equiv-

alent to picking the system l ∈ L∗ with the largest remaining space r(l). Such

124



a choice would result in the users’ workloads being balanced across SRT-MIC

systems. A potential problem for using this scoring function is that the avail-

able “space” be separated across SRT-MIC systems and we may not be able

to find a candidate system for a new user with a large quµu. Some other

more complicated scoring functions may take into account the mixing of users

with high QoS requirements and low QoS requirements. In practice we can

design an appropriate scoring function based on the specific design require-

ments/objectives.

Once we allocate the new user u to an SRT-MIC system l according to

the above policy, we check the correctness of this allocation by observing the

achieved task completion vector and comparing it with the QoS requirements.

If the system l is no longer feasible after adding user u, we remove user u from

l and re-allocate the user according to the above policy. But this time we no

longer mark system l as a candidate system for user u.

To realize efficient resource sharing we propose to adapt the safety

guard h based on the correctness of our previous user allocation decisions. One

might for example start with h = δ/2 and we allocate a new user u to system

l according to the policy above. If the user allocation decision turns out to be

incorrect, that implies the value of h is too small and we double the value of h.

Otherwise, we want to decrease the value of h to be more aggressive. Note that

h only plays a role when r(l) is close to quµu. If r(l) � quµu, the correctness of

the decision is straightforward and does not provide much insight on whether

h is a good value. Therefore, in such scenario we keep h unchanged. Formally,

125



if r(l) is close to quµu, by which we mean quµu + 2h ≥ r(l) ≥ quµu + h, and

the decision is correct, then we decrease the value of h by a small constant

ε while guaranteeing h is non-negative; if the decision is incorrect, we double

the value of h. In this way we dynamically adapt the value of h based on the

correctness of user allocation decisions.

3.8 Conclusion

We have considered a computing system with multiple resources sup-

porting soft real-time applications and established analytically and through

simulation that simple resource allocation policies like LDF+Greedy are near-

optimal and achieve substantial resource savings, except when the real-time

constraints are tight, i.e., the period length is similar to the service time for

a user’s task. In this case, LDF+Greedy may not work well and it is worth

exploring other policies. For workloads with small variability, we have pro-

posed the LDF+TS/LLREF policy which indeed outperforms LDF+Greedy.

For future work, a more detailed exploration of systems consisting of possibly

different types of resources is of interest.

3.9 Appendix

3.9.1 Proof of Theorem 3.4.1

We first introduce some additional notation. Given two vectors a =

(a1, a2, · · · , an) and b = (b1, b2, · · · , bn), we denote by a◦b = (a1b1, a2b2, · · · , anbn)

the entrywise product.

126



Given q ∈ int(RIB), we need only show q can be fulfilled by the LDF+X

policy.

By definition of interior there exists an ε > 0 such that q′ = q + ε1 ∈

RIB. By definition of RIB, there exists a vector α � 0 such that for all S ⊆ N ,

∑
i∈S

αiq
′
i ≤ min

d∈D(S)

∑
i∈S

αipi(d). (3.26)

Consider the following candidate Lyapunov function:

L(X(t)) =
n∑
i=1

αiXi(t)
2.

Note that the process {X(t)}t≥1 is now driven by LDF, and let Y(t) =

(Y1(t), Y2(t), · · · , Yn(t)) be the vector of indicator variables for users’ task com-

127



pletions under LDF. At period t+ 1, we have that

E [L(X(t+ 1))− L(X(t))|X(t) = x]

= E

[
n∑
i=1

αi(Xi(t+ 1)2 −Xi(t)
2)|X(t) = x

]

≤ E

[
n∑
i=1

αi((Xi(t) + qi − Yi(t+ 1))2

−Xi(t)
2)|X(t) = x

]

= E

[
n∑
i=1

αi(qi − Yi(t+ 1))2

+2〈α ◦X(t),q−Y(t+ 1)〉|X(t) = x

]

≤ E

[
n∑
i=1

αi(q
2
i + Yi(t+ 1)2)

+2〈α ◦X(t),q−Y(t+ 1)〉|X(t) = x

]

= E

[
n∑
i=1

αi(q
2
i + Yi(t+ 1)2)

+2〈α ◦X(t),q′ −Y(t+ 1)〉|X(t) = x

]
−2ε〈x,α〉 (3.27)

For simplicity, let d denote the priority decision selected by LDF at

period t+ 1. We have

E [〈α ◦X(t),q′ −Y(t+ 1)〉|X(t) = x]

= 〈α ◦ x,q′ − p(d)〉.

128



By reordering users according to priorities, we get

〈α ◦ x,q′ − p(d)〉

=
n∑
i=1

xdi [αdiq
′
di
− αdipdi(d)]

=
n−1∑
i=1

[xdi − xdi+1
][

i∑
j=1

αdjq
′
dj
−

i∑
j=1

αdjpdj(d)]

+xdn [
n∑
j=1

αdjq
′
dj
−

n∑
j=1

αdjpdj(d)].

By the LDF policy we know xdi ≥ xdi+1
. By (3.26) we have

i∑
j=1

αdjq
′
dj
≤

i∑
j=1

αdjpdj(d) for 1 ≤ i ≤ n. Therefore,

E [〈α ◦X(t),q′ −Y(t+ 1)〉|X(t) = x] ≤ 0.

Suppose b is an upper bound for all αi, qi and possible Yi(t + 1), by

(3.27)

E[L(X(t+ 1))− L(X(t))|X(t) = x] ≤2nb3 − 2ε〈x,α〉

≤ − 1

for x satisfying 〈x,α〉 ≥ nb3

ε
+ 1

2ε
.

It is not hard to show10 there are finite states x satisfying 〈x,α〉 <
nb3

ε
+ 1

2ε
. Therefore, by Foster’s Theorem {X(t)}t≥1 is positive recurrent and

q is fulfilled by the LDF policy.

10This is true because given our assumption that requirement q are rational valued, the
state space of process {X(t)}t≥1 is in a lattice [15].

129



3.9.2 Lower Bound in Theorem 3.4.2 is Tight

Given ε > 0, consider a SRT-MIC system model that has m = d
1
ε
+1

2
e

identical cores serving 2m users generating tasks with deterministic workload

w in each period of length δ = 2w − w
m

. Suppose all users have the same QoS

requirement q.

In this setting, since w ≤ δ ≤ 2w, by using LDF+Greedy one can

complete m tasks per period. However, by using LDF+TS/LLREF policy we

can complete dmδ
w
e = 2m− 1 tasks per period, which is a lower bound on the

number of completed tasks per period under a feasibility optimal policy.

Given that all users have the same QoS requirement, the efficiency ratio

of LDF+Greedy equals to ratio of the number of tasks completed per period

under LDF+Greedy to that under a feasibility optimal policy, and thus

γLDF+Greedy ≤
m

2m− 1
.

Since m = d
1
ε
+1

2
e ≥

1
ε
+1

2
, we know ε ≥ 1

2m−1
. Further since δ = 2w− w

m
,

we get that

1− w

δ
+ ε ≥ 1− 1

2− 1
m

+
1

2m− 1
=

m

2m− 1
.

Thus, in this setting, we have that

γLDF+Greedy ≤ 1− w

δ
+ ε = 1−

max
i∈N

µi

δ
+ ε.

130



3.9.3 Proof of Theorem 3.4.3

Suppose we are given a QoS requirement vector q. Under deterministic

workloads, to fulfill q the average core processing time
∑
i∈N

qiµi per period

should not exceed mδ. Therefore, a feasible requirement vector q implies

∑
i∈N

qiµi ≤ mδ,

and clearly q � 1.

The goal is to show γ2q ∈ cl(FLDF+TS/LLREF). Recall that in this set-

ting the vector p(d) represents the expected numbers of task completions

per period for TS/LLREF task scheduling under priority decision d. Given

deterministic workloads and any decision d, under LDF+TS/LLREF, pi(d)

equals to 1 if user i’s task is selected and thus completes, and equals to 0

otherwise. By Theorem 3.4.1 it suffices to show γ2q ∈ RIB and by letting

α = (µ1, µ2, · · · , µn), it suffices to show for any given user subset S ⊆ N and

priority decision d ∈ D(S),

∑
i∈S

µipi(d) ≥ γ2

∑
i∈S

µiqi. (3.28)

We show this in the following two cases.

If
∑
i∈S

µi ≤ mδ, the task selection rule (3.14) will assure that all users

in S are selected and thus, pi(d) = 1 for all i ∈ S. Since q � 1 and γ2 ≤ 1,

we have
∑
i∈S

µipi(d) =
∑
i∈S

µi ≥ γ2

∑
i∈S

µiqi.

131



Otherwise,
∑
i∈S

µi > mδ and then not all users in S are selected. The

task selection rule (3.14) will ensure

j(d)∑
i=1

µdi ≤ mδ <

j(d)+1∑
i=1

µdi

and therefore,

∑
i∈S

µipi(d) =

j(d)∑
i=1

µdi

> mδ −max
i∈N

µi

= mδ(1−
max
i∈N

µi

mδ
)

= γ2mδ

≥ γ2

∑
i∈N

µiqi

≥ γ2

∑
i∈S

µiqi.

This proves (3.28) and therefore,

γ2q ∈ RIB ⊆ cl(FLDF+TS/LLREF).

3.9.4 Proof of Corollary 3.6.1

The proof is similar to that of Theorem 3.4.2. To avoid duplication

here we only discuss the differences in the associated arguments. First, mδ

should be replaced by Sm · δ. Second, instead of showing (3.12), one needs to

show ∑
i∈S

E[Ai(d)]µi ≤
max
i∈N

µi

s · δ
E[TS], (3.29)

132



for which it suffices to show that∑
i∈S

E[Ai(d)] ≤ E[TS]

s · δ
. (3.30)

We still define AS(d) =
∑
i∈S

Ai(d). Under preemptive greedy task

scheduling, if AS(d) = k for k = 0, 1, · · · ,m, then there are k unfinished

tasks on the k fastest cores, implying that the k fastest cores are busy pro-

cessing tasks from users in S throughout the period. Therefore,
∑
i∈S

Wi ≥ Skδ

and thus TS ≥ Sk · δ. Clearly by the definition of Sk we know

S1 ≥
S2

2
≥ · · · Sm

m
= s.

Therefore, TS ≥ Sk · δ ≥ ksδ.

Thus it follows that

E[TS] =
m∑
k=0

E[TS|AS(d) = k] · Pr(AS(d) = k)

≥
m∑
k=0

ksδ · Pr(AS(d) = k)

= sδ
∑
i∈S

E[Ai(d)].

This proves (3.30) and concludes the proof.

3.9.5 Proof of Corollary 3.6.2

The proof is similar as that of Corollary 3.6.1. But this time, instead

of showing (3.29), we shall show∑
i∈S

E[Ai(d)]µi ≤
max
i∈N

µi

min
c∈C

sc · δ
E[TS], (3.31)

133



for which it suffices to show that

∑
i∈S

E[Ai(d)] ≤ E[TS]

min
c∈C

sc · δ
. (3.32)

This is true because, if AS(d) = k for k = 0, 1, · · · ,m, then there are

k unfinished tasks, implying that there are k cores busy processing tasks from

users in S throughout the period. Thus, TS ≥ k ·min
c∈C

sc · δ.

Thus it follows that

E[TS] =
m∑
k=0

E[TS|AS(d) = k] · Pr(AS(d) = k)

≥
m∑
k=0

k ·min
c∈C

sc · δ · Pr(AS(d) = k)

= min
c∈C

sc · δ ·
∑
i∈S

E[Ai(d)],

which proves (3.32).

3.9.6 Proof of ROB when users generate tasks with different periods

The proof of this generalization is similar to that of Theorem 3.3.1.

The main differences lie in the definitions of the random variables Yi, Ai, Ei

and US. In this setting, for each user i we define Yi to be the random variable

that represents the number of tasks completed on time over a typical super

period ∆. For a feasible q, by the Ergodic Theorem, we know qi · ∆δi ≤ E[Yi] for

all i ∈ N . We further define Ai to be the number of user i’s unfinished tasks

over a typical super period and define Ei to be the total residual workloads of

user i’s unfinished tasks over a typical super period. For each subset of users

134



S ⊆ N , we define US to be a random variable denoting the total core time

spent on users in S in a typical super period. We can still get equation (3.5)

and by E[Ei] ≤ E[Ai]µi we can get that∑
i∈N

qi ·
∆

δi
· µi ≤

∑
i∈N

E[Yi]µi ≤ E[UN ] ≤ m ·∆.

Therefore, ∑
i∈N

qiµi
δi
≤ m.

3.9.7 Proof of ROB under generalized sub-task model

In systems where each task consists of a sequence of sub-tasks, the

definition of the outer bound region ROB and Theorem 3.3.1 still holds, but

the proof for Theorem 3.3.1 requires some modification, specifically (3.6) in

the proof no longer holds.

Recall that in the proof of Theorem 3.3.1 we want to show E[Ei] ≤

µi E[Ai] for all users i, where E[Ei] is the mean residual workload of user i’s

unfinished tasks and E[Ai] is the mean number of user i’s unfinished tasks.

Our approach is to define Ai,c to be the indicator random variable that user

i’s task is unfinished and is processed for c time units in a typical period. By

total probability we have that

E[Ei] =
δ∑
c=1

E[Ei|Ai,c = 1] Pr(Ai,c = 1).

Under the original SRT-MIC system model where k(i) = 1, by NBUE property

E[Ei|Ai,c = 1] = E[Wi − c|Wi > c] ≤ µi and that enables us to show E[Ei] ≤

135



µi E[Ai].

However, under this generalized task model, E[Ei|Ai,c = 1] may no

longer equal to µi,c = E[Wi − c|Wi > c]. This is because in some resource

allocation policies, the event Ai,c = 1 could give more information than Wi > c.

For example, suppose user i generates tasks with two sub-tasks, i.e., k(i) = 2.

Consider a policy that always finishes user i’s sub-task 1 and then stops.

Suppose the period length δ is large enough to complete user i’s sub-task 1.

In this scenario we know for all c, E[Ei|Ai,c = 1] = E[W
(2)
i ] which may not

equal to µi,c.

Next we shall show E[Ei] ≤ µi E[Ai] is still true under the generalized

task model for a user i with k(i) = 2. The proof can be easily extended to

general k(i). We define I
(1)
i to be the indicator random variable that sub-task

1 from user i completes in a typical period. By total probability we have that

E[Ei|Ai,c = 1] (3.33)

= E[Ei|Ai,c = 1, I
(1)
i = 1] Pr(I

(1)
i = 1|Ai,c = 1)

+ E[Ei|Ai,c = 1, I
(1)
i = 0] Pr(I

(1)
i = 0|Ai,c = 1).

Given that I
(1)
i = 1, the residual workload Ei is only the remaining

workload of sub-task 2 and by the NBUE property of sub-task 2, we know

E[Ei|Ai,c = 1, I
(1)
i = 1] ≤ µ

(2)
i ≤ µi.

Similarly, if I
(1)
i = 0, then Ei is the sum of the remaining workload of sub-task

1, and the whole workload of sub-task 2 which is independent of the event

136



Ai,c = 1. Therefore, by the NBUE property of sub-task 1, we have that

E[Ei|Ai,c = 1, I
(1)
i = 0] ≤ µ

(1)
i + E[W

(2)
i |Ai,c = 1, I

(1)
i = 0]

= µ
(1)
i + µ

(2)
i = µi.

Now by (3.33) we get that

E[Ei|Ai,c = 1] ≤ µi Pr(I
(1)
i = 1|Ai,c = 1)

+ µi Pr(I
(1)
i = 0|Ai,c = 1)

≤ µi.

Therefore,

E[Ei|Ai,c = 1] ≤
δ∑
c=1

µi Pr(Ai,c = 1) = µi E[Ai].

The other part of the proof of Theorem 3.3.1 remains unchanged, and

thus, our discussion of ROB still holds.

3.9.8 Achieving FRB via LLREF scheduling

Given that
∑
i∈N

wi(qi)
δi
≤ m and wi(qi) ≤ δi for all i ∈ N , since users have

different periods, the challenge is how to allocate wi(qi) to each user i in each

period. We convert this to the following equivalent hard real-time scheduling

problem. Consider a system where each user i ∈ N periodically generates

tasks with period δi and deterministic task workload wi(qi). The tasks are

available for processing at the beginning of periods and need to be completed

by the end of the corresponding periods. The objective is to schedule these

137



tasks on m identical cores to guarantee that all tasks complete on time without

exception. One solution is to use the LLREF scheduling policy which always

gives a feasible schedule if it is possible. In Section 3.4.3 we have introduced

LLREF policy when users have the same periods. Next we introduce how

to apply LLREF to solve this hard real-time scheduling problem where users

generate tasks with different periods.

LLREF divides the timeline into intervals by task releases/deadlines.

In each interval of length τ , the local workload of each user i ∈ N is defined

as τ
δi
wi(qi). Therefore, to complete all tasks on time it suffices to complete

the local workloads of all users in each interval. To achieve that, in each

interval we adopt the LLREF policy introduced in Definition 3.4.2 to process

local workloads for all users. This LLREF policy solves the hard real-time

scheduling problem.

By adopting this policy we can get a static time allocation such that

each user i ∈ N gets core time reservation wi(qi) in each period, which further

guarantees that each user i meets the QoS requirement qi.

138



Chapter 4

Conclusion and Challenges for Cloud-Based

Infrastructure

Cloud-based computing infrastructure can be efficient to support soft

real-time applications with compute/communicate deadlines and QoS require-

ments. In this dissertation, we consider the problem of compute resource

allocation in such cloud-based systems and our main contribution is a theoret-

ical study on the efficiency and optimality of deficit-based resource allocation

policies.

Beyond the resource allocation problem, there are many challenges that

infrastructure providers face as they consider evolving towards a cloud-based

architecture. One important application of cloud-based infrastructure sup-

porting real-time traffic is the Radio Access Networks (RAN). In this chapter,

we focus on the RAN context and discuss some of the key technical insights and

challenges associated with this possible evolution of cloud-based architecture.

139



4.1 Current Trends: Cloud-Based Radio Access Net-
work (CRAN)

In order to handle the exponential growth in traffic associated with

delivering content (video, images, data) to and from mobile devices, opera-

tors are relying on network densification leveraging a heterogeneous mix of

macro/micro/femto cells along with Wi-Fi access points to enhance network

capacity where it is most needed. The next generation (5G) wireless tech-

nologies currently under study further take aim at this problem through en-

hanced massive MIMO physical layer technologies, and the short range but

high capacity mmWave band. At the core these are based on densification

and increasingly demanding computation to realize the baseband processing

associated with achieving the targeted 1000x increases in capacity.

Whether increasing capacity through densification or through the de-

sign of higher capacity physical layer standards one ends up with a massive

deployment of compute resources dedicated to baseband processing necessary

to enable wireless connectivity. Indeed, it is estimated that the amount of com-

pute resources associated with today’s wireless infrastructure far exceeds that

of current cloud compute services [29]. Perhaps disappointingly such infras-

tructure is poorly utilized. It is not unsual for a base station’s average load to

be no more than 20%. With densification one might see even lower utilizations,

since each base station will aggregate traffic from smaller regions/number of

users, potentially leading to increased burstiness in load and lower utilization.

Needless to say that the capital and operational costs (CAPEX/OPEX)

140



of such wireless deployments are high. These are not simply those of the

base stations, access points, antennas, compute resources, fronthaul/backhaul,

but also include the housing, cooling, maintenance and powering of such an

extensive and distributed infrastructure. By contrast cloud based compu-

tational/storage services have, for the most part, leveraged consolidation of

resources enabling extremely cost efficient centralized resource management.

One exception to this would be content delivery networks (CDNs) whose focus

on caching content at the network “edge” aims to reduce backhauling costs

and improve performance by serving users’ requests from servers which are

closer by. Given the enormous infrastructure investments that wireless infras-

tructure operators have and will be making, there has been substantial interest

in attempting to replicate the cloud compute model in this setting.

In other words, the challenge is to develop the technologies needed

to achieve Cloud-based Radio Access Network (CRAN), where the radio re-

sources are distributed and baseband signal processing are centralized. A

simplified CRAN architecture is exhibited in Figure 4.1. Broadly speaking

such an infrastructure would make use of co-located shared compute resources

to meet the baseband processing needs of close by radio resources. Such shar-

ing might be realized through virtualization of compute resources enabling

improved flexibility and higher reliability. In this setting the degree of cen-

tralization is limited by the relatively high bandwidth baseband signals that

need to transported from spatially distributed antennas to the cloud and the

tight processing constraints. Such limitations may however provide a further

141



opportunity to also aggregate additional computational workloads associated

with other services requiring computation close to users, e.g., latency sensi-

tive and/or real-time processing associated with control, transportation, power

networks. An alternative approach to overcome such limitations is to consider

flexibly partitioning processing tasks across compute resources at the radio

resources and in the cloud.

Transmission

Latency

Fiber 

Connection

CRAN Computing Center

Shared resources for 

baseband processing

Radio Resources 

(RR)

Internet

CRAN Computing Center

Figure 4.1: The CRAN architecture.

The goal of this chapter is to explore opportunities and challenges, that

wireless infrastructure providers face as they consider evolving towards a more

cloud-based architecture.

142



4.2 Technical Challenges

In this section we identify and discuss key technical challenges to achieve

CRAN in various areas:

• Scale of aggregation and fronthaul network.

• Cloud-enabled applications/techniques.

• Virtualizing real-time processing in the centralized computing center.

4.2.1 Scale of Aggregation and Fronthaul Network

In order to virtualize compute resources for baseband processing, the

received uplink signals associated with wireless subframes are sampled and sent

from radio resources to the cloud for timely decoding and processing such that

downlink signals requiring timely channel measurements, acknowledgements,

etc., can be sent back to the radio resources for transmission. Cellular system

standards require this process to be carried out within several milliseconds.

While compute resource sharing enables hardware resource savings in CRAN,

it poses unique challenges in making the right decision with respect to the

degree of centralization and the design of the fronthaul network.

Challenge 1: How much centralization is possible/desirable?

The processing workload associated with each radio resource typically

varies from subframe to subframe due to time-varying user activity, user move-

ment and channel quality. Intuitively, a larger degree of centralization enables

143



more resource consolidation and thus more savings to acquire from statistical

multiplexing of compute resources. By aggregating close-by radio resources

with independent or negatively correlated workloads, e.g., due to user move-

ment within a small area, one can realize the multiplexing gains and share the

compute resources more efficiently. Moreover on a larger time scale, recent

studies, e.g. [13], have indicated that the users in cellular systems generally

move in a spatial-temporal pattern. For example, in dense urban areas the

users move from residential areas to business areas in the morning and back in

the late afternoon. Consequently, the aggregate processing workloads associ-

ated with base stations experience large long-term and predictable variations

throughout the day, i.e., the “tidal effect”. If the spatial scale of aggregation,

i.e., the coverage area of a centralized infrastructure, is large and covers the

“tidal effect”, one can consolidate the resources in different areas, e.g., the

residential and business areas, and achieve higher savings. These observations

are exhibited in Figure 4.2. At the top of Figure 4.2, we show the workloads of

several radio resources, and the total workloads of the business and residential

area during a day. Due to the short-term workload variations associated with

radio resources and the “tidal effect”, it can be seen that a larger spatial scale

of aggregation implies higher multiplexing gains.

However, given the stringent real-time deadline associated with base-

band signal processing and transmission, the spatial scale of aggregation is

limited by the transmission latency to/from the cloud. A computing center

that covers a larger area requires more time to transmit signals back and forth,

144



Dedicated 

Resources

Business Area Residential Area

RR 1

RR 2 RR 3
RR 4

Computing Center

Shared resources

Computing Center

Business Area Residential Area

RR 1

RR 2 RR 3
RR 4

Business Area Residential Area

Computing Center

Shared resources

RR 1

RR 2 RR 3
RR 4

0

10

0 8 16 24
Time

Workload

Total

RR 1

RR 2
0

10

0 8 16 24
Time

Workload

Total

RR 3

RR 4

Figure 4.2: Different scale of aggregation implies different resource savings. In
traditional RAN, each radio resource requires 2 units of compute resources. If
one can aggregate the workloads for the business and residential area, respec-
tively, 3 units of compute resources are required for each computing center.
Moreover, if one aggregates the business and residential area, further savings
can be achieved.

145



and therefore leaves less time for the processing in the cloud. This effectively

requires the processors in the cloud to be faster and also makes it harder to

share compute resources efficiently. The fronthaul/backhaul network cost in

terms of optical fiber deployment and maintenance, energy consumption, etc.,

is another factor that impacts the desirable spatial scale of aggregation. Ad-

vanced techniques being considered for the next generation cellular system,

e.g., mmWave transmission/reception and massive MIMO with high densities

of radio resources, may dramatically increase the generated baseband signals

in each subframe, and thus the transportation cost, making it possibly hard

to afford a large scale of aggregation.

Challenge 2: How should one architect the fronthaul net-

work?

In CRAN, the fronthaul network, which connects distributed radio re-

sources to the associated computing centers, is required to be reliable and

fault-tolerant, i.e., able to provide an alternative route for baseband signal

transmission in case of connection breaks. It is also desirable to design the

fronthaul network to reduce the deployment and maintenance cost. Different

fronthaul topologies, e.g., star vs. tree, ring topologies, typically result in

different costs and transmission delays.

Furthermore, if the spatial scale of aggregation is small as compared to

the scale in which the long-term “tidal effects” occur, it is potentially benefi-

cial to consider dynamic radio resource association policies permitting one to

dynamically re-route the traffic associated with radio resources to the appro-

146



priate cloud centers in order to track and exploit the workload movement in

the system and further save resources. This poses an interesting question as

to whether flexible fronthaul networks provide significant cost savings.

The need for high-speed low-latency fronthaul networks is perhaps the

Achilles’s heel of the CRAN architecture. Indeed this has affected the mar-

kets where operators find CRAN architecture attractive, e.g., those where

government encourages fiber deployment or there is already significant dark

fiber available, e.g., China, South Korea and Japan. That said the benefits

and flexibility of moving to a cloud based RAN on commodity hardware may

outweigh these issues.

Challenge 3: To what degree can compression reduce fron-

thaul costs?

The high performance requirements of fronthaul connections, in terms

of capacity, reach and especially latency, mandate point-to-point fiber con-

nection between radio resources and the computing centers via the standard

Common Public Radio Interface (CPRI). The commonly deployed 1Gbps back-

haul links cannot be reused to support CPRI and thus, the fronthaul network

and the associated baseband signal transmission accounts for a large fraction

of cost in CRAN. An opportunity/challenge that arises is to develop advanced

baseband signal compression techniques aimed at dramatically decreasing the

amount of baseband signals that need to be transmitted and thus the associ-

ated transmission cost.

147



Still, CPRI is compatible with several other common physical layer

standards and helps keep the network cost down in the future. New technolo-

gies, e.g., transmission over microwave, might also substantially reduce these

costs.

4.2.2 Cloud-Enabled Applications/Techniques

Due to the centralized processing of baseband signals associated with

disparate radio resources, CRAN facilitates the cooperation amongst distributed

radio resources and provides great opportunities for advanced coordination and

control techniques.

Challenge 4: What are the advantages/challenges of facili-

tating Coordinated Multi-Point (CoMP) transmission/reception in

CRAN?

There is continuous interest in realizing high per-user throughput, par-

ticularly for edge users. CoMP techniques provide a path to address this

problem. This can be particularly advantageous when leveraging dense but

spatially distributed radio resources. By clustering neighboring radio resources

into Virtual Base Stations (VBSs) and using cooperation amongst them to re-

duce or eliminate mutual interference, edge users, which were traditionally

poorly served, can become “central” to one or more VBSs, i.e., are well sit-

uated relative to their serving VBSs. Ideally, if there is enough freedom in

choosing VBSs each user could be “central”. The centralization of computa-

tion in CRAN would certainly facilitate such dynamic use of CoMP transmis-

148



sion/reception.

Given the benefits of CoMP and assuming no computational constraints,

one could in principle coordinate across all radio resources connected to the

same computing center leveraging spatial diversity (in antennas) and removing

all interference. However, previous work, e.g. [47], has shown that coordina-

tion across a large collection of radio resources does not bring as much benefit

as expected because of measurement and signaling overheads. In practice co-

operation is only possible, or desirable, for VBSs of limited size.

If we cluster radio resources into static sets of VBSs there may still be

users at the edge of neighboring VBSs suffering from interference. To realize

“no-edge” wireless networks it is thus necessary to dynamically use different

VBSs in different sub-bands (or at different times) guaranteeing that each

user can be “central” to a VBS. Advanced power control and user selection

strategies are also essential to reap the benefits of CoMP to deliver good

performance to every user. Some preliminary related work include [26, 31,

37, 46, 51, 56, 63, 69, 70].

Challenge 5: Can CRAN better manage heterogeneous net-

works consisting of macro, femto and small cells?

To meet the surging mobile traffic demands, multiple cellular stan-

dards, including GSM, WCDMA, LTE, etc., have been developed and coexist

in current cellular network. In parallel, Wi-Fi and femtocell networks are also

deployed but in a more distributed and self-organized manner. Similarly to

149



the macro cell aggregation, these small cells may have their own centralized

hub, which may or may not be connected to the macro cell computing cen-

ter. The management of such a heterogeneous and multi-standard network is

challenging.

The centralized infrastructure in CRAN provides a way to coordinate

and mitigate the mutual interference. For example, in a system where femto

cells and macro cells coexist, one may decide to turn off the macro cells in

a small area for a short time to mitigate the interference between femto and

macro cells.

Challenge 6: How can service providers leverage CRAN/SDN

flexibility?

A benefit of cloud-computing is the abstraction it gives system admin-

istrators to enable centralized control of the shared resources and the network

to meet application/service requirements. This is consistent with the trend

towards Software Defined Networking (SDN). For example, in the CRAN con-

text, given the “tidal effect” in a city, the administrators could config the

behavior of the network, e.g., the dynamic radio resource association policy

and the scheduling algorithm, on a daily basis to track the movement of the

workloads. But if there is a football game or a concert in the city which causes

traffic boost in a small area, the administrators can have the power of manag-

ing the resources for the event. Advanced research on SDN in cellular systems

has the potential to adapt to dynamic traffic changes through flexible control.

150



4.2.3 Virtualizing Real-Time Processing in Computing Centers

The soft real-time requirements of baseband signal processing and the

virtualization/abstraction of compute resources pose significant challenges on

the design of the shared computing centers. This dissertation is devoted to the

design of compute resource allocation policies, i.e., dynamically allocating com-

pute resources and processing capacity to the baseband processing associated

with radio resources taking into account the dynamic workloads, different QoS

requirements, the criticality of the workloads, etc. Beyond that, the challenges

in the design of hardware architecture, e.g., making the right tradeoff between

flexibility and efficiency in the processor architecture, although beyond the

scope of this dissertation, are also essential to realizing efficient utilization of

the compute resources.

4.3 Outlook

There has been substantial interest in building cloud-based computing

centers to deal with applications with real-time constraints and reduce costs

associated with network construction and maintenance. Some of the challenges

to enable such an evolution are highlighted in this chapter. This dissertation

has been focused on the analysis and design of compute resource allocation

policies, which fits in this vision as one of the fundamental questions on how to

manage and support soft real-time applications in cloud-based infrastructure.

151



Bibliography

[1] Fardin Ahmadizar, Mehdi Ghazanfari, and Seyyed Mohammad Taghi Fatemi

Ghomi. Group shops scheduling with makespan criterion subject to ran-

dom release dates and processing times. Computers and Operations Re-

search, 37:152–162, 2010.

[2] Ali Allahverdi and Yuri Sotskov. Two-machine flowshop minimum-length

scheduling problem with random and bounded processing times. Inter-

national Transactions in Operational Research, 10:65–76, 2003.

[3] Yair Amir, Baruch Awerbuch, Amnon Barak, R. Sean Borgstrom, and

Arie Keren. An Opportunity Cost Approach for Job Assignment in a

Scalable Computing Cluster. IEEE Transactions on Parallel and Dis-

tributed Systems, 11:760–768, July 2000.

[4] Alia Atlas and Azer Bestavros. Statistical Rate Monotonic Scheduling.

In Proceedings of RTSS 1998, pages 123–132, December 1998.

[5] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportion-

ate Progress: A Notion of Fairness in Resource Allocation. Algorithmica,

15:600–625, June 1996.

[6] Carlos Bernardos, Antonio La Oliva, Pablo Serrano, Albert Banchs, Luis Miguel

Contreras, Hao Jin, and Juan Carlos Zúñiga. An architecture for software

152



defined wireless networking. IEEE Wireless Communications, 21(3):52–

61, 2014.

[7] Guillem Bernat and Alan Burns. Combining (nm)-Hard deadlines and

Dual Priority Scheduling. In Proceedings of RTSS 1997, pages 46–57,

December 1997.

[8] David Blackwell. An Analog of the minimax theorem for vector payoffs.

Pacific Journal of Mathematics, 6(1):1–8, November 1956.

[9] J. Blazewicz, M. Drabowski, and J. Weglarz. Scheduling multiprocessor

tasks to minimize schedule length. IEEE Transactions on Computers,

C-35:389–393, 1986.

[10] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-

bridge university press, 2009.

[11] J. Bruno, E. G. Coffman Jr., and R. Sethi. Scheduling independent tasks

to reduce mean finishing time. Communications of the ACM, 17:382–387,

1974.

[12] John Carpenter, Shelby Funk, Philip Holman, Anand Srinivasan, James

Anderson, and Sanjoy Baruah. A Categorization of Real-time Multipro-

cessor Scheduling Problems and Algorithms. Handbook of Scheduling:

Algorithms, Models, and Performance Analysis, 2004.

[13] China Mobile. C-RAN The Road Towards Green RAN, Oct 2011.

153



[14] Hyeonjoong Cho, Binoy Ravindran, and E. Douglas Jensen. An Optimal

Real-Time Scheduling Algorithm for Multiprocessors. In Proceedings of

RTSS 2006, pages 101–110, December 2006.

[15] J.H. Conway and N.J.A. Sloane. Sphere Packings, Lattices and Groups.

Springer, 2013.

[16] J.G. Dai and Balaji Prabhakar. The throughput of data switches with

and without speedup. In Proceedings of INFOCOM 2000, pages 556–564,

March 2000.

[17] Robert I. Davis and Alan Burns. A Survey of Hard Real-Time Scheduling

for Multiprocessor Systems. ACM Computing Surveys, 43, October 2011.

[18] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-Efficient

and QoS-Aware Cluster Management. In Proceedings of the 19th inter-

national conference on Architectural support for programming languages

and operating systems, pages 127–144, 2014.

[19] Antonis Dimakis and Jean Walrand. Sufficient Conditions for Stability

of Longest-Queue-First Scheduling: Second-Order Properties Using Fluid

Limits. Advances in Applied Probability, 38(2), June 2006.

[20] D. Down and S. Meyn. A Survey of Markovian Methods for Stability of

Networks. In 11th International Conference on Analysis and Optimiza-

tion of Systems, 1994.

154



[21] D. Down and S.P. Meyn. Piecewise linear test functions for stability and

instability of queueing networks. Queueing Systems, 27:205–226, April

1997.

[22] Yuhuan Du and Gustavo de Veciana. Efficiency and Optimality of

Largest Deficit First Prioritization: Resource Allocation for Real-Time

Applications. INFOCOM 2016. In submission.

[23] Yuhuan Du and Gustavo de Veciana. Efficiency and Optimality of

Largest Deficit First Prioritization: Resource Allocation for Real-Time

Applications. ACM Transactions on Modeling and Performance Evalua-

tion of Computing Systems. In submission.

[24] Yuhuan Du and Gustavo de Veciana. Scheduling for Cloud-Based Com-

puting Systems to Support Soft Real-Time Applications. INFOCOM

2016. In submission.

[25] Yuhuan Du and Gustavo de Veciana. Scheduling for Cloud-Based Com-

puting Systems to Support Soft Real-Time Applications. ACM Trans-

actions on Modeling and Performance Evaluation of Computing Systems.

In submission.

[26] Yuhuan Du and Gustavo de Veciana. Wireless Networks Without Edge:

Dynamic Radio Resource Clustering and User Scheduling. In Proceedings

of INFOCOM 2014, pages 1321–1329, April 2014.

155



[27] Shelby Funk, Joël Goossens, and Sanjoy Baruah. On-line Scheduling on

Uniform Multiprocessors. In Proceedings of RTSS 2001, pages 183–192,

December 2001.

[28] Shelby Funk and Archana Meka. U-LLREF: An Optimal Scheduling

Algorithm for Uniform Multiprocessors. In Workshop on Models and

Algorithms for Planning and Scheduling Problems, June 2009.

[29] Alan Gatherer. Personal communication.

[30] Moncef Hamdaoui and Parameswaran Ramanathan. A Dynamic Priority

Assignment Technique for Streams with (m, k)-Firm Deadlines. IEEE

Transactions on Computers, 44:1443–1451, December 1995.

[31] Mingyi Hong, Ruoyu Sun, Hadi Baligh, and Zhiquan Luo. Joint base

station clustering and beamformer design for partial coordinated trans-

mission in heterogeneous networks. IEEE Journal on Selected Areas in

Communications, 31, February 2013.

[32] I-Hong Hou and P. R. Kumar. Queueing systems with hard delay con-

straints: a framework for real-time communication over unreliable wireless

channels. Queueing Systems, 71:151–177, March 2012.

[33] I-Hong Hou and P. R. Kumar. Packets with Deadlines: A Framework

for Real-Time Wireless Networks. Morgan & Claypool Publishers, May

2013.

156



[34] I-Hong Hou and P. R. Kumar. Scheduling Heterogeneous Real-Time

Traffic over Fading Wireless Channels. IEEE/ACM Transactions on

Networking, 22:1631–1644, October 2014.

[35] Juan Jose Jaramillo and R. Srikant. Optimal Scheduling for Fair Re-

source Allocation in Ad Hoc Networks With Elastic and Inelastic Traffic.

IEEE Transactions on Networking, 19:1125–1136, August 2011.

[36] Changhee Joo, Xiaojun Lin, and Ness B. Shroff. Performance Limits of

Greedy Maximal Matching in Multi-hop Wireless Networks. In IEEE

Conference on Decision and Control, pages 1128–1133, 2007.

[37] Robert W. Heath Jr., Tao Wu, Young Hoon Kwon, and Anthony C. K.

Soong. Multiuser mimo in distributed antenna systems with out-of-cell

interference. IEEE Transactions on Signal Processing, 59(10), 2011.

[38] Xiaohan Kang, Weina Wang, Juan Jose Jaramillo, and Lei Ying. On the

Performance of Largest-Deficit-First for Scheduling Real-Time Traffic in

Wireless Networks. In Proceedings of MobiHoc, pages 99–108, July 2013.

[39] Eugene L. Lawler, Jan karel Lenstra, Alexander H.G. Rinnooy Kan, and

David B. Shmoys. Sequencing and Scheduling: Algorithms and Com-

plexity. Logistics of Production and Inventory, pages 445–522, 1993.

[40] Joseph Y.-T. Leung. A New Algorithm for Scheduling Periodic, Real-

Time Tasks. Algorithmica, 4:209–219, June 1989.

157



[41] Zukui Li and Marianthi Ierapetritou. Process scheduling under uncer-

tainty: Review and challenges. Computers and Chemical Engineering,

32:715–727, 2008.

[42] C. L. Liu and James W. Layland. Scheduling Algorithms for Multi-

programming in a Hard Real-Time Environment. Journal of the ACM,

20(1):46–61, January 1973.

[43] Cong Liu and James H. Anderson. Task Scheduling with Self-Suspensions

in Soft Real-Time Multiprocessor Systems. In Proceedings of RTSS 2009,

pages 425–436, December 2009.

[44] Jane W. S. Liu. Real-Time Systems. Prentice Hall, April 2000.

[45] Jane W.S. Liu, Kwei-Jay Lin, and Swaminathan Natarajan. Scheduling

Real-time, Periodic Jobs Using Imprecise Results. In Proceedings of

RTSS 1987, pages 252–260, 1987.

[46] Xin Liu, Edwin K.P. Chong, and Ness B. Shroff. A framework for oppor-

tunistic scheduling in wireless networks. Computer Networks, 41:451–474,

March 2003.

[47] Angel Lozano, Robert W. Heath Jr., and Jeff G. Andrews. Fundamental

limits of cooperation. IEEE Transactions on Information Theory, PP:1,

March 2013.

[48] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou

Soffa. Bubble-Up: Increasing Utilization in Modern Warehouse Scale

158



Computers via Sensible Co-locations. In Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture, 2011.

[49] Nicholas McKeown. Scheduling Algorithms for Input-Queued Cell Switches.

1995. Ph.D. dissertation.

[50] Nick McKeown, Adisak Mekkittikul, Venkat Anantharam, and Jean Wal-

rand. Achieving 100% Throughput in an Input-Queued Switch. IEEE

Transactions on Communications, 47(8):1260–1267, August 1999.

[51] W. Mennerich and W. Zirwas. User centric coordinated multi point

transmission. In Proc. IEEE 72nd Vehicular Technology Conference Fall

(VTC 2010-Fall), pages 1–5, September 2010.

[52] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability.

Cambridge University Press, 2008.

[53] A. Müller and D. Stoyan. Comparison Methods for Stochastic Methods

and Risks. Wiley, March 2002.

[54] Sirajum Munir, Shan Lin, Enamul Hoque, S. M. Shahriar Nirjon, J. A.

Stankovic, and K. Whitehouse. Addressing Burstiness for Reliable Com-

munication and Latency Bound Generation in Wireless Sensor Networks.

In IPSN 2010, pages 303–314, April 2010.

[55] M. J. Neely. Delay Analysis for Max Weight Opportunistic Scheduling in

Wireless Systems. IEEE Transactions on Automatic Control, 54:2137–

2150, September 2009.

159



[56] E. Pateromichelakis, M. Shariat, A. ul Quddus, and R. Tafazolli. On the

evolution of multi-cell scheduling in 3gpp lte / lte-a. IEEE Communica-

tions Surveys and Tutorials, 15:701–717, May 2013.

[57] Shailesh Patil and Gustavo de Veciana. Managing Resources and Quality

of Service in Heterogeneous Wireless Systems Exploiting Opportunism.

IEEE/ACM Transactions on Networking, 15:1046–1058, October 2007.

[58] Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer,

2012.

[59] Lui Sha, Tarek Abdelzaher, Karl-Erik ÅRZÉN, Anton Cervin, Theodore

Baker, Alan Burns, Giorgio Buttazzo, Marco Caccamo, John Lehoczky,

and Aloysius K. Mok. Real Time Scheduling Theory: A Historical Per-

spective. Real-Time Systems, 28:101–155, November-December 2004.

[60] Moshe Shaked and J. George Shanthikumar. Stochastic Orders. Springer,

2007.

[61] Sanjay Shakkottai and R. Srikant. Scheduling Real-Time Traffic With

Deadlines over a Wireless Channel. Wireless Networks, 8:13–26, January

2002.

[62] Sanjay Shakkottai and Alexander L. Stolyar. Scheduling algorithms for

a mixture of real-time and non-real-time data in HDR. In Proceedings of

the International Teletraffic Congress, pages 793–804, 2001.

160



[63] A. L. Stolyar and H. Viswanathan. Self-organizing dynamic fractional

frequency reuse for best-effort traffic through distributed inter-cell coor-

dination. In Proceedings of INFOCOM 2009, pages 1287–1295, April

2009.

[64] Alexander L. Stolyar. Maxweight Scheduling in a Generalized Switch:

State Space Collapse and Workload Minimization in Heavy Traffic. The

Annals of Applied Probability, 14(1), February 2004.

[65] Leandros Tassiulas and Anthony Ephremides. Stability Properties of

Constrained Queueing Systems and Scheduling Policies for Maximum

Throughput in Multihop Radio Networks. IEEE Transactions on Au-

tomatic Control, 37:1936–1948, December 1992.

[66] Leandros Tassiulas and Anthony Ephremides. Dynamic Server Alloca-

tion to Parallel Queues with Randomly Varying Connectivity. IEEE

Transactions on Information Theory, 39(2):466–478, March 1993.

[67] P.M. van de Ven, S.C. Borst, and L. Ying. Inefficiency of MaxWeight

scheduling in spatial wireless networks. Computer Communications,

36:1350–1359, July 2013.

[68] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer,

Eric Tune, and John Wilkes. Large-scale cluster management at Google

with Borg. In Proceedings of EuroSys 2015, 2015.

161



[69] G. Wunder, M. Kasparick, A. Stolyar, and H. Viswanathan. Self-organizing

distributed inter-cell beam coordination in cellular networks with best ef-

fort traffic. 8th International Symposium on Modeling and Optimization

in Mobile, Ad Hoc, and Wireless Networks (WiOpt 2010), pages 295–302,

June 2010.

[70] Taesang Yoo and Andrea Goldsmith. On the optimality of multiantenna

broadcast scheduling using zero-forcing beamforming. IEEE Journal on

Selected Areas in Communications, 24, March 2006.

162



Vita

Yuhuan Du is a PhD candidate in department of Electrical and Com-

puter Engineering at The University of Texas at Austin. He received his B.E.

degree in Electronics Engineering from Tsinghua University in China in 2011,

and his M.S.E. degree from The University of Texas at Austin in 2013. He

has been working under the supervision of Prof. Gustavo de Veciana at The

University of Texas at Austin since 2011. He interned at Microsoft and Yelp

during summer 2012 and 2014, respectively.

Permanent email: dyhuan123@gmail.com

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

163


