
Copyright

by

Zheng Lu

2015

The Dissertation Committee for Zheng Lu
certifies that this is the approved version of the following dissertation:

Scheduling Wireless Transmissions Exploiting

Application Awareness and Knowledge of the Future

Committee:

Gustavo de Veciana, Supervisor

Sanjay Shakkottai

Constantine Caramanis

Sujay Sanghavi

Lili Qiu

Scheduling Wireless Transmissions Exploiting

Application Awareness and Knowledge of the Future

by

Zheng Lu, B.E., M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2015

Dedicated to my parents.

Acknowledgments

First I wish to thank my parents for their enormous love and support

throughout my life, which is a debt that can never be paid off. I also wish to

thank my grandparents for their love and encouragement. I am so fortunate

to be born in this family and no matter how far I go I always know there is a

home I can return.

I am also very fortunate that I always meet great teachers and mentors

in my life. I wish to give special thanks to my PhD supervisor Dr. Gustavo

de Veciana, who has always been exceptional in personality, teaching and

research. I learned from him the way to think, the way to research and most

importantly the way to do things right. I will never forget the many discussions

we had and the time we sit at the desk and write down research ideas together,

which are all invaluable experience and lead me through a successful PhD

study.

I wish to thank the members of my dissertation committee: Dr. Sanjay

Shakkottai, Dr. Constantine Caramanis, Dr. Sujay Sanghavi and Dr. Lili Qiu

for generously offering their time, guidance, and support throughout my PhD

qualifying exam and my PhD dissertation and defense.

I thank Dr. Alan Bovik, Dr. Robert Heath, Dr. Jeffrey Andrews,

Dr.Constantine Caramanis, Dr. Xiaoqing Zhu, Dr. Vinay Joseph, Dr. Chao

v

Chen, and Dr. Sarabjot Singh for all the help and discussions through the

VAWN project.

I thank Dr. Kerstin Johnsson, Yicong Wang and Namyoon Lee for

the suggestions and discussions through the Intel 5G Research Program, and

thank Navid NaderiAlizadeh and Dr. Salman Avestimehr for sharing their

early work on ITLinQ.

I thank Dr. Jeffrey Foerster, Dr. V Srinivasa Somayazulu and Dr.

Hassnaa Moustafa for their guidance and help during my internship at Intel

Labs.

I thank Intel, Cisco and NSF for supporting the work in this dissertation

through the VAWN project, and thank Intel and NSF (CNS-1343383) for the

support through the Intel 5G Research Program.

I thank Dr. Vinay Joseph for the helpful discussions and his help with

the simulations. I thank Yuhuan Du for his help preparing the paperworks for

this dissertation. I also wish to thank all my colleagues and friends for their

help through my PhD study and life. Hook’em Horns!

vi

Scheduling Wireless Transmissions Exploiting

Application Awareness and Knowledge of the Future

Publication No.

Zheng Lu, Ph.D.

The University of Texas at Austin, 2015

Supervisor: Gustavo de Veciana

This dissertation explores ways to improve the scheduling of wireless

transmissions, by exploiting the application layer information of the ongoing

transmissions and exploiting the knowledge of the future capacity variations.

First, we consider the design of cross-layer opportunistic transport protocols

for stored video over wireless networks with a slow varying (average) capac-

ity. We focus on two key principles: (1) scheduling data transmissions when

capacity is high; and (2), exploiting knowledge of future capacity variations.

The latter is possible when users’ mobility is known or predictable, e.g., users

riding on public transportation or using navigation systems. We consider the

design of cross-layer transmission schedules which minimize system utilization

(and thus possibly transmit/receive energy) while avoiding, if at all possible,

rebuffering/delays, in several scenarios. For the single-user anticipative case

where all future capacity variations are known beforehand; we establish the

vii

optimal transmission schedule is a Generalized Piecewise Constant Thresh-

olding (GPCT) scheme. For the single-user partially anticipative case where

only a finite window of future capacity variations is known, we propose an

online policy: Greedy Fixed Horizon Control (GFHC). An upper bound on

the competitive ratio of GFHC and GPCT is established showing how perfor-

mance loss depends on the window size, receiver playback buffer, and capacity

variability. We also consider the multiuser case where one can exploit both

future temporal and multiuser diversity. Finally we investigate the impact of

uncertainty in knowledge of future capacity variations, and propose an offline

approach as well as an online algorithm to deal with such uncertainty. Our

simulations and evaluation based on a measured wireless capacity trace exhibit

robust potential gains for our proposed transmission schemes.

Second, we consider the design of scheduling algorithms for dynamic

D2D networks where links are set up to mediate file transfers among close

by users, but with limited ‘contact’ times or deadlines. Our focus is on im-

proving three performance metrics: (1) overall offload data; (2) number of

transfers which complete within their deadlines; and (3) file transfer delays.

The design and evaluation of existing D2D scheduling algorithms has mostly

focused on optimizing the network’s sum rate subject to fairness concerns for

a fixed set of links. Starting from a dynamic scenario where links share a single

collision domain, this dissertation investigates optimal scheduling algorithms

which exploit application layer context. These results drive our proposal for

application-aware versions of state-of-the-art schedulers such as FlashLinQ

viii

and CSMA/CA. Our simulations show that these schedulers could achieve

substantial performance improvements depending on the operational scenario,

i.e., density of users, file and contact time distributions, etc. We also show that

performance can be further enhanced by incorporating both application-aware

scheduling and admission control. Finally we investigate scenarios where D2D

links have no deadlines. We show that application-aware schedulers result in

smaller average file transfer delays and can increase the stability region of the

system. This is in part due to their ability to reduce spatial clustering of links

resulting from interference coupling in the dynamic setting.

ix

Table of Contents

Acknowledgments v

Abstract vii

List of Figures xii

Chapter 1. Introduction 1

Chapter 2. Video Delivery in Wireless Networks: Value of Know-
ing the Future 5

2.1 Introduction . 5

2.2 Single-User Anticipative Case 11

2.2.1 Model Formulation . 11

2.2.2 Piecewise Constant Thresholding (PCT) Algorithm Un-
der No Rebuffering Assumption 17

2.2.3 Proof of Optimality . 23

2.2.4 General Piecewise Constant Thresholding (GPCT) . . . 25

2.3 Single-User Partially Anticipative Case 28

2.3.1 Fixed Horizon Control Scheme 28

2.3.2 Competitive Optimality of GFHC 31

2.4 Multiuser Anticipative Case 35

2.4.1 Multiuser Piecewise Constant Thresholding Under Pro-
portional Capacity Allocation (MTP) 35

2.4.2 Multiuser Piecewise Constant Thresholding Under Op-
portunistic Capacity Allocation (MTO) 36

2.5 Simulation Results . 38

2.6 Uncertainty in Knowledge of Future Capacity Variations . . . 43

2.6.1 Offline Approach under Uncertainty in Capacity Prediction 44

2.6.2 Online Approach under Uncertainty in Capacity Prediction 49

2.7 Conclusion . 55

x

Chapter 3. Application-Aware Scheduling in D2D Networks 56

3.1 Introduction . 56

3.2 Dynamic D2D Network Model 66

3.3 Single Collision Domain Model 67

3.3.1 Schedulers Maximizing Offload Traffic 68

3.3.2 Schedulers Maximizing Number of File Completions . . 71

3.3.3 General Online Optimal Scheduling Algorithms Do Not
Exist . 74

3.4 Application-Aware FlashLinQ and CSMA-Like Schedulers . . . 75

3.4.1 Application-Aware FlashLinQ 76

3.4.2 Application-Aware CSMA-Like Protocols 81

3.4.3 Managing FLow-Level Performance Through Deadlines . 84

3.5 Performance Evaluation . 85

3.5.1 Dynamic D2D Networks with Homogeneous Links . . . 87

3.5.2 Dynamic D2D Networks with Heterogeneous Links . . . 92

3.5.2.1 Independent File Sizes and Deadlines 92

3.5.2.2 Correlated File Sizes and Deadlines 96

3.5.3 Admission Control . 99

3.5.4 Dynamic D2D Networks without Link Deadlines 100

3.6 Conclusion . 106

Chapter 4. Conclusion and Future Work 108

Bibliography 110

Vita 118

xi

List of Figures

2.1 The channel variations in four time slots. Transmitting the
video at peak capacity in the first and third slots and trans-
mitting nothing in the second and fourth slots, gives the lowest
system utilization. 7

2.2 The piecewise constant functions l(·), u(·) and the cumulatively
transmitted data s(·). l(t) is the cumulative amount of data
consumed (i.e. watched) by the user over [t0, t]. u(t) is the
maximum cumulative amount of data that can be received by
the user over [t0, t]. Jumps happen at times t1, t2, t3, ..., tn. s(·)
lies between l(·) and u(·) if there are no playback buffer under-
flow and overflow. 13

2.3 An example of GPCT. An I-rebuffering happens at t1 and lasts
for τ1. A B-rebuffering happens at t5 + τ1 and lasts for τ5. The
latest buffer overflow associated with the B-rebuffering happens
at t4 + τ1, which is denoted as t̃5.GPCT performs greedy trans-
mission during [t0, t1 + τ1] and [t̃5, t1 + τ1 + τ5]; and it runs PCT
on [t1 + τ1, t̃5]. 29

2.4 The stationary distribution (cdf) of capacity (kbps) used in our
simulation. 39

2.5 (a) The performance of GFHC under correlated capacity vari-
ation. (b) The performance of GFHC under iid capacity vari-
ation. Each point shows the percent rebuffering time versus
(1 − utilization) for a specific playback buffer size and window
size. The points on the bottom right of the figures correspond
to best performance. 39

2.6 (a) The system utilization. The proportional rate allocation has
the highest system utilization. MTP and MTO achieve reduced
system utilization. MTO schemes do a little better than MTP.
An MTO scheme with a higher token limit achieves a lower sys-
tem utilization. (b) The average percent rebuffering time. The
proportional rate allocation and MTP have the same percent re-
buffering time. MTO schemes result in higher rebuffering time
which increases as the token limit increases. 42

xii

2.7 Performance comparison among BDT, GPCT and the greedy
strategy. BDT achieves up to a 15% reduction in system uti-
lization as compared to the greedy strategy and only results in a
slight increase in rebuffering time. Also as the prediction error
grows, the performance of BDT does not drop too much. . . . 55

3.1 (a) The number of file transfer completions and the amount of
offloaded traffic under FlashLinQ vs. link arrival rate; (b) A
snapshot of the locations of active D2D links during the simu-
lation. 60

3.2 Example of how application level groups and quantized residual
service times along with a random priority assignment to all
links can be combined to get an application aware prioritization
of links. 80

3.3 Simulation results for A-FlashLinQ under homogeneous sce-
nario. (a) number of file transfer completions vs. link arrival
rate; (b) total amount of offloaded data vs. link arrival rate;
(c) average file transfer delay for completed transfers vs. link
arrival rate. 89

3.4 Simulation results for A-SCSMA under homogeneous scenario.
(a) number of file transfer completions vs. link arrival rate; (b)
total amount of offloaded data vs. link arrival rate; (c) average
file transfer delay for completed transfers vs. link arrival rate. 91

3.5 Simulation results for A-FlashLinQ under heterogeneous sce-
nario with independent file sizes and deadlines. (a) number of
file transfer completions vs. link arrival rate; (b) total amount
of offloaded data vs. link arrival rate; (c) average file transfer
delay for completed transfers vs. link arrival rate; (d) fraction
of links that complete within deadlines vs. link distance. . . . 93

3.6 Simulation results for A-SCSMA under heterogeneous scenario
with independent file sizes and deadlines. (a) number of file
transfer completions vs. link arrival rate; (b) total amount of
offloaded data vs. link arrival rate; (c) average file transfer delay
for completed transfers vs. link arrival rate; (d) fraction of links
that complete within deadlines vs. link distance. 95

3.7 Simulation results for A-FlashLinQ under heterogeneous sce-
nario with correlated file sizes and deadlines. (a) number of
file transfer completions vs. link arrival rate; (b) total amount
of offloaded data vs. link arrival rate; (c) average file transfer
delay for completed transfers vs. link arrival rate; (d) fraction
of links that complete within deadlines vs. link distance. . . . 97

xiii

3.8 Simulation results for A-SCSMA under heterogeneous scenario
with correlated file sizes and deadlines. (a) number of file trans-
fer completions vs. link arrival rate; (b) total amount of of-
floaded data vs. link arrival rate; (c) average file transfer delay
for completed transfers vs. link arrival rate; (d) fraction of links
that complete within deadlines vs. link distance. 98

3.9 Simulation results for Admission Control (AC) strategy under
heterogeneous scenario with correlated file sizes and deadlines.
(a) number of file transfer completions vs. link arrival rate; (b)
total amount of offloaded data vs. link arrival rate; (c) average
file transfer delay for completed transfers vs. link arrival rate;
(d) fraction of links that complete within deadlines vs. link
distance. 101

3.10 Average file transfer delay vs. link arrival rate in the scenario
where links have no deadlines. 103

3.11 L function minus search radius L̂(t) − t vs. search radius t.

L̂(t)−t > 0 indicates spatial clustering and L̂(t)−t ≤ 0 indicates
spatial regularity. 105

xiv

Chapter 1

Introduction

We have seen, and continue to see increasing growth in traffic and

reliance on wireless networks. The main part of this growth comes from the

increasing video traffic such networks support. According to the Cisco Visual

Networking Index [1], mobile data traffic will increase 10-fold between 2014

and 2019 and about 80 percent of the consumer Internet traffic will be video

including real-time video, video on demand (VoD), video conferencing etc.

Many innovations have been made to accommodate this growth. For

example video transport protocols have gone through a major upgrade in the

last decade, changing from Real-time Transport Protocol (RTP) which is based

on UDP and progressive video download which delivers videos as data files,

to a new set of HTTP based video streaming protocols (e.g., DASH, Apple’s

HTTP live streaming, etc.). HTTP based video streaming protocols provide

users with different quality choices and enable adaptation of the rate (and thus

video quality) to the level of congestion on the network. They thus are able

to improve users’ Quality of Experience (QoE) when the networks are limited

in capacity.

Software-Defined Networking (SDN) is another technology that promises

1

to help to improve networks ability to manage Quality of Service (QoS). SDN

separates the control plane from the data plane and thus enables monitoring,

prediction and control on a per flow basis. Applications can talk to the SDN

controller via APIs to collect network information and control the resources al-

located to its flows (e.g., bandwidth allocation, route selection, etc.), providing

new methods and opportunities to improve users’ QoE.

Also new technologies are enhancing the ability of systems to predict

human behavior. For example, many people traveling in their cars use GPS

devices, which are able to predict their future locations. Taxis (e.g., Uber

cars) and public transportations (e.g., UT shuttles) provide their real-time

locations via smart phone apps. By using a wireless signal strength map or

a coverage map along with the predictions of the future location, a network

can make a prediction of the wireless capacity a mobile is likely to see in the

future. In addition there are some features of SDN (e.g., time series data

repository in OpenDaylight) which enable storage, analysis and prediction of

the network statistics, and can be easily accessed by applications, adding to

the predictability of the future loads.

These new technologies provide both new opportunities and demands

to make network schedulers “smarter”. This dissertation exploits two key ideas

towards improving wireless network schedulers: the first is to let the schedulers

exploit application layer information of the traffic flows being scheduled so as

to improve both the system performance and the end users’ QoE; the second

idea is to exploit the knowledge of future capacity variations.

2

In Chapter 2, we investigate how knowledge of future capacity varia-

tions can be used towards reducing system utilization (increasing capacity)

while minimizing video rebuffering. We propose a new class of video trans-

port protocol which exploits both application layer information (e.g., playback

buffer status) and knowledge of future capacity variations. This is an attempt

towards devising anticipative networking, and to our knowledge the first work

on devising video transport protocols that exploit knowledge of future capac-

ity variations. We study the case where we have perfect knowledge of future

capacity variations, and the case where we only have perfect knowledge for a

finite window in the future, and finally the case where the predictions are im-

perfect. Simulation and evaluations exhibit this approach can provide robust

potential gains.

In Chapter 3, we study application-aware opportunistic scheduling in

Device-to-Device (D2D) communication networks. D2D is an emerging tech-

nology that facilitates wireless devices to directly exchange transmissions among

each other, with the potential to enable substantial traffic offloads from wireless

infrastructure while increasing area spectral efficiency. Existing D2D sched-

ulers do not consider network dynamics (i.e., users come and go) and thus

typically focus on improving sum network throughput without considering

flow-level performance (e.g., number of file transfer completions within a given

deadline). In Chapter 3 we propose application-aware versions of state-of-the-

art schedulers such as FlashLinQ and CSMA/CA. Our simulations show that

these schedulers could achieve substantial improvements on flow-level perfor-

3

mance without sacrificing the sum throughput in such networks. Another

interesting finding is that the proposed application-aware schedulers are able

to reduce spatial clustering of links resulting from the coupling of link trans-

missions through interference in the dynamic setting.

Chapter 4 concludes the dissertation and discusses some future direc-

tions.

4

Chapter 2

Video Delivery in Wireless Networks: Value of

Knowing the Future

2.1 Introduction

Video delivery over wireless networks is expected to grow quickly in

the next few years. Recent studies (see [1]) show that mobile data traffic will

increase 10-fold between 2014 and 2019 and about 80 percent of the traffic will

be video including real-time video, video on demand (VoD), video conferencing

etc. The wireless infrastructure can hardly keep pace with such growth, thus

it is important to make effective use of the available wireless resources in video

delivery.

Even the successor to current cellular systems, 4G broadband, promises

not only improvements in overall capacity but also, unfortunately, higher de-

grees of capacity variability, particularly in the case of mobile users. Our

premise in this chapter, is that approaches can be devised that exploit such

This chapter is based on my work in [27] (published) and [26] (in submission to
IEEE/ACM Trans. on Networking), which are co-authored by Dr. Gustavo de Veciana.

5

capacity variations, and the nature of the underlying services. Indeed, mobile

devices are increasingly equipped with video playback buffers, giving more

flexibility in exploiting capacity variations without interrupting playback.

In this chapter we design application-layer opportunistic transport for

stored video over wireless networks with a slow varying (average) capacity.

We focus on two key ideas: (1) scheduling data transmission when capacity is

high; and (2), exploiting knowledge of future capacity variations. The latter is

possible when users’ future locations are known, which can in turn be used to

infer their future wireless coverage/capacity. For example this is the case for

users on public transportation buses/trains, or others using navigation systems

in their cars. In fact, even without prior knowledge of vehicle routes, one can

still infer future vehicle’s mobility. Indeed [39] demonstrate the effectiveness

on real data of “K Nearest Trajectories” an algorithm to predict future ca-

pacity variations for vehicles. More generally, humans’ mobility patterns tend

to be highly predictable, [40] show a potential 93% average ‘predictability’

suggesting knowing the future (in this regard) is quite reasonable.

Let us consider a simple example. Suppose a server is delivering a

constant-bit-rate stored video to a mobile user. The length of the video is 4

seconds and the streaming rate is 200kbps, thus the size of the video is 800kb.

Suppose the capacity variation is as shown in Fig. 2.1. If the video is deliv-

ered at a fixed rate of roughly 200kbps then two of the four slots are partially

utilized, leading to a 75% system utilization. However if the video is deliv-

ered greedily, i.e., at the full available capacity, then transmission completes

6

in 2.5secs, resulting in utilization of 62.5%. However, it is easy to see that an

optimal schedule would send at a full rate in Slots 1 and 3, and transmit noth-

ing in Slots 2 and 4, which guarantees smooth video playback and results in

a minimal utilization of 50%. This scheme transmits when channel conditions

are good, i.e., we set a threshold and transmit only when the capacity is above

the threshold. The threshold choice, however, depends on the future capacity

variations and video playback requirements. We will call this a ‘thresholding

scheme’ and define it formally in the sequel.

0

Capacity

/kbps

400

200

0
t/sec1 2 3 4

Figure 2.1: The channel variations in four time slots. Transmitting the video
at peak capacity in the first and third slots and transmitting nothing in the
second and fourth slots, gives the lowest system utilization.

Related Work. There has been a substantial body of literature on stored

video delivery. Below we focus on a few key works that are closest to ours,

in terms of methodology, but differ terms of their objectives. A piecewise

constant-rate transmission scheme was developed in [29], wherein dynamic

7

programming was applied to find the optimal schedules for a variety of op-

timization criteria, in particular minimizing the maximum transmission rate

subject to a maximum initial delay, minimizing the maximum transmission

rate subject to a maximum user interaction delay, and minimizing the average

user interaction delay subject to a constraint on the maximum transmission

rate. Similarly [37] suggest several ways to reduce transmission rate variability

for stored video delivery and propose an optimal smoothing scheme which is

further explored in [9, 17]. However, if one or more users will see highly vari-

able wireless capacity, it should be clear that smoothing transmissions may not

be the right objective; indeed, ‘bursty’ transmissions might be preferable. [35]

consider a scenario where video streams share a source server. They propose a

centralized prefetching protocol which schedules transmissions to users whose

playback buffer queues are shortest. This does not explicitly account for capac-

ity variations – present or future. The work in [36], proposes a decentralized

protocol targeting a scenario where streams from multiple video servers share

a multiplexer and dynamically adjust their transmit windows in a window flow

control mechanism to mitigate packet loss.

The key differentiating element of our work from the above is a formal

investigation of how knowledge of future capacity variations could be used

towards reducing utilization (increasing capacity) while minimizing video re-

buffering. The idea of exploiting knowledge of future capacity variations has

been studied by a few works, e.g., [41] proposes an optimal proactive resource

allocation which assumes users’ demand can be tracked, learned and predicted.

8

And predictable peak-hour requests are served during off-peak time to reduce

cost in the networks. This is similar to our work from the perspective of ex-

ploiting temporal diversity in the future capacity variations. However it has

a much slower time scale, i.e., offloading traffic from peak time to off-peak

time considers a time scale of hours, as compared to a time scale of seconds

in our work. Also their paper does not consider the delay sensitivity of video

delivery (e.g., rebuffering constraints) as we do. In [6] the authors exploit

future knowledge of capacity variations to improve the performance of video

delivery. Their goal is to trade off video quality with rebuffering, which is

different from our objective. Also they did not look into the case as we do,

where predictions of future capacity variations have error. [7] has a similar ob-

jective as our work. It first proposes an offline optimal resource allocation that

minimizes system utilization under perfect capacity predictions, then proposes

an online algorithm to deal with uncertainty in the predictions. However, [7]

is different from our work in the following aspects: (1) the offline algorithm

in [7] only considers the optimization of one video user and treats all the other

users as background traffic, but in our work we exploit multiuser diversity by

jointly considering video traffic from multiple concurrent users; (2) we perform

analysis and show an upper bound on the performance degradation caused by

prediction error, which is not studied in [7]; and (3) to deal with prediction er-

ror, [7] proposes an online algorithm that iteratively uses the offline algorithm

in a finite horizon, which has higher complexity and requires more statistical

capacity information, as compared to our BDT algorithm which does not make

9

use of the offline optimal algorithm and only requires the prediction of mean

capacity in a finite horizon.

Contributions and Organization. This chapter of the dissertation pro-

poses a new class of cross-layer transmission schedules which minimize system

utilization (and thus possibly transmit/receive energy) while avoiding, if at

all possible, rebuffering/delays. We propose approaches to exploit the knowl-

edge of future capacity variations and study how to deal with error in the

predictions of capacity variations. In Section 2.2 we study the single-user an-

ticipative case where all future capacity variations are known beforehand; we

formally establish the optimal transmission schedule is a Generalized Piece-

wise Constant Thresholding (GPCT) scheme. In Section 2.3 we consider the

single-user partially anticipative case where only a finite window of future ca-

pacity variations is known, we propose an online Greedy Fixed Horizon Control

(GFHC). An upper bound on the competitive ratio of GFHC and GPCT is es-

tablished clearly indicating how performance loss depends on the window size,

receiver playback buffer, and capacity variability. In Section 2.4, we consider

the multi-user anticipative case, and we develop two multiuser schemes based

on GPCT, which are suboptimal, but straightforward to implement, and able

to achieve good performance. Simulations described in Section 2.5 explore the

performance gains achievable for a typical scenario and explore the impact of

correlation in capacity variations on these gains. Our simulations show the

potential gains for such opportunistic transmission schemes exhibit an up to

70% reduction in the system utilization. In Section 2.6 we deal with the uncer-

10

tainty in capacity predictions. We first propose an offline approach and show

an upper bound on the performance degradation caused by prediction error.

We then propose an online Buffer-Dependent Thresholding (BDT) algorithm

that only requires the prediction of mean capacity for a finite window in the

future. Simulations show that BDT is effective and robust. Section 2.7 briefly

concludes the chapter.

2.2 Single-User Anticipative Case

We will first consider the anticipative case where a server is delivering

video content to a single user and future variations in wireless capacity are

known beforehand.

2.2.1 Model Formulation

Consider a video server streaming a stored video to a mobile user via

one (or more) base station(s). Suppose the wireless part is the bottleneck so

that the application layer throughput mainly depends on the wireless capacity.

Further let us focus on slow variations in wireless capacity, e.g., on the order

of secs, so that timely end-to-end feedback actions can be realized before the

capacity changes too much. Let c(t) be the average1of the peak capacity at

time t, and r(t) be the actual transmission schedule such that 0 ≤ r(t) ≤ c(t).

Then r(t)/c(t) can be roughly regarded as the system utilization at time t. Let

s(t) be the cumulative amount of data sent and received2, i.e. s(t) =
∫ t

0
r(τ)dτ .

Now suppose the video to be transmitted has a finite length T (seconds),

11

a finite size S (bits), and define two functions l(·) and u(·) associated with

requirements on the video’s transmission. Suppose the transmission begins

at time 0 and no interruptions (rebuffering) happen during the transmission.

Let l(t) denote the cumulative data consumed if the user watches the first t

secs of the video, where t ∈ [0, T]. Note that if the user’s playback buffer has

finite size, s/he can only receive a limited amount of data before viewing it. We

define u(t) to be the maximum cumulative amount of data that can be received

by the user over [0, t], where t ∈ [0, T]. Further we assume l(·) and u(·) are both

nondecreasing piecewise constant and right continuous functions as depicted

in Fig. 2.2, where jumps happen at times t0, t1, t2, ..., tn. The jumps might

correspond to individual (or groups of related, e.g., intra-coded/predicted)

frames being displayed and which are no longer necessary to reconstruct future

content. Note that the jump points are chosen such that t0 = 0, tn = T ,

and t0 ≤ t1 ≤ t2 ≤ ... ≤ tn. Also note that it is possible for ti = ti+1

where ti is a jump point of u(·) and ti+1 is a jump point of l(·). Further let

Il = {i : ti is a jump point of l(·)} and Iu = {i : ti is a jump point of u(·)}

denote the sets of jump point indices for the two piecewise constant functions.

Note that if the client has a fixed playback buffer size b, then there is a vertical

gap of size b between u(·) and l(·). However Fig. 2.2 shows a more general

case where there may be time varying buffer allocations for playback.

Next, we define the cost function in our model. The cost is a sum of

1The average is taken over periods on the order of seconds to smooth out fast capacity
variations.

2We assume that transport exploits playback buffering and thus can be made reliable.

12

t0 t 1 t 2 t 3 t 4 t 5 t 6 tn-1

u(t)

tn

l(t)

......

s(t)

Figure 2.2: The piecewise constant functions l(·), u(·) and the cumulatively
transmitted data s(·). l(t) is the cumulative amount of data consumed (i.e.
watched) by the user over [t0, t]. u(t) is the maximum cumulative amount
of data that can be received by the user over [t0, t]. Jumps happen at times
t1, t2, t3, ..., tn. s(·) lies between l(·) and u(·) if there are no playback buffer
underflow and overflow.

13

two terms: the average system utilization costu and the rebuffering time costr.

Assuming no rebuffering, the average system utilization during video watch

period [0, T] can be defined as:

costu =
1

T

∫ ∞
0

r(t)

c(t)
dt.

Note we assume r(t) = 0 after the transmission finishes, so the above inte-

gration actually has a finite time horizon. We use the above cost function

versus
∫ T

0
r(t)dt/

∫ T
0
c(t)dt because the former properly captures the reduc-

tion in utilization in a system with time varying capacity using opportunistic

‘scheduling.’

The rebuffering cost depends on the waiting time a user experiences

when buffer underflow occurs during video playback. We assume that playback

buffer underflows can only happen at the jump points for l(·), i.e., times in

Il. This is a reasonable assumption since the video playback can be paused

only after an entire frame is displayed. Further we denote the associated

waiting times as τ0, τ1, ..., τn. Note the functions u(·), l(·) and the jump points

in Fig. 2.2 are known before transmission, and thus they do not take into

account delays due to rebuffering times. In other words, t0, t1, t2, ..., tn are fixed

constants before transmission, which may be shifted by τ0, τ1, ..., τn, which are

variables whose values depend on the actual wireless capacities and rebuffering

during transmission.

Our rebuffering cost is defined as

costr = a
n∑
i=0

τi,

14

where a is a constant. In practice it is natural to put a higher priority on

minimizing rebuffering over system utilization. Thus the constant a should

be large enough such that one cannot obtain a lower total cost by increasing

rebuffering time to reduce system utilization. Suppose we know upper and

lower bounds on the wireless capacity, denoted cmax and cmin > 0. Then adding

a waiting time τ can result in a maximum reduction in system utilization of

no more than τ(cmax−cmin)
Tcmin

, which is obtained by assuming video content of size

cmaxτ is transmitted at rate cmax during the waiting time τ instead of being

transmitted at rate cmin during a period of cmaxτ
cmin

, which results in a reduction

of cmaxτ
cminT

− τ
T

= τ(cmax−cmin)
Tcmin

in system utilization. Thus if we set a = cmax−cmin

Tcmin
,

we achieve our goal of strictly prioritizing minimization of rebuffering cost over

system utilization.

The above rebuffering cost function is a simplification, since it only cap-

tures the cumulative rebuffering time without accounting for how rebuffering

periods are distributed over time. In fact, a viewer may prefer that rebuffering

happen all at once rather than being spread out and causing several inter-

ruptions during playback. To capture this concern one can take a concave

function to each waiting time τi before summing them up so as to penalize a

higher number of interruptions. In the rest of the chapter, we will focus on the

simpler cost function. The “concave-sum” version can be studied similarly.

Also note that if we assume cmin > 0, the normalization factor T in

costu can be replaced by T̃ = max[S
cmin

, T] ensuring the utilization cost remains

below 1 without changing the overall character of the objective function. Cor-

15

respondingly we choose a = cmax−cmin

T̃ cmin
to prioritize minimization of rebuffering.

We will use these from now on.

When minimizing our cost, we are constrained to ensure that the play-

back buffer does not drop below 0 or exceed the available buffer. This can be

captured by the following constraints:∫ ti+
∑i

k=0 τk

0

r(t)dt+ b0 ≥ l(ti), ∀i ∈ Il∫ ti+
∑i

k=0 τk

0

r(t)dt+ b0 ≤ u(ti), ∀i ∈ Iu

where b0 is the initial buffer content (in bits) that is not accounted in the

transmission schedule (often, it is 0). Note the upper bound in the above

integration intervals is the current total time ti +
∑i

k=0 τk which consists of

the current time of the video ti and the cumulative rebuffering time
∑i

k=0 τk.

We call these buffer underflow and overflow constraints respectively. Also we

have the terminal condition:∫ tn+
∑n

k=0 τk

0

r(t)dt+ b0 = l(tn),

which captures the fact that the video transmission must finish prior to final

video playback.

Letting ~τ = (τ0, τ1, ..., τn) and r(·) denote the rebuffering times and

video transmission schedule, we summarize our overall goal in terms of the

following optimization problem:

16

Optimal Streaming Problem

min
r(·),~τ

1

T̃

∫ ∞
0

r(t)

c(t)
dt+

cmax − cmin
T̃ cmin

n∑
i=0

τi, (2.1)

s. t.

∫ ti+
∑i

k=0 τk

0

r(t)dt+ b0 ≥ l(ti), ∀i ∈ Il,∫ ti+
∑i

k=0 τk

0

r(t)dt+ b0 ≤ u(ti), ∀i ∈ Iu,∫ tn+
∑n

k=0 τk

0

r(t)dt+ b0 = l(tn).

We say the above optimization problem is a video delivery optimization with

initial state b0 and terminal state l(tn). Note this problem is not convex since

the constraints are not convex. However it always has a feasible solution if

cmin > 0. In the sequel, we will first deal with the simpler situation where the

optimization has a feasible solution without rebuffering, i.e., ~τ = ~0. Subse-

quently we generalize the solution to situations where rebuffering is necessary.

2.2.2 Piecewise Constant Thresholding (PCT) Algorithm Under
No Rebuffering Assumption

Assume c(·) is such that there is a feasible solution to Optimal Stream-

ing (2.1) without rebuffering, i.e., ~τ = ~0. Note in the model above, the con-

stant a is chosen large enough such that costr dominates costu in the sense

that we cannot achieve a lower cost by adding rebuffering time. Thus under

the no rebuffering assumption, Optimal Streaming (2.1) is equivalent to the

Min Utilization (2.2) given below.

17

Min Utilization Problem

min
r(·)

1

T̃

∫ tn

0

r(t)

c(t)
dt, (2.2)

s. t.

∫ ti

0

r(t)dt+ b0 ≥ l(ti), ∀i ∈ Il,∫ ti

0

r(t)dt+ b0 ≤ u(ti), ∀i ∈ Iu,∫ tn

0

r(t)dt+ b0 = l(tn).

In this subsection we determine delivery schedules that solve this problem, i.e.,

schedules r(·) achieving a minimum utilization while ensuring the cumulative

data s(·) lies between u(·) and l(·) as shown in Fig. 2.2. Before introducing

our algorithm let us define some terminology.

Definition 1 A single threshold transmission scheme on an interval [ts, te]

with initial state s(ts) and terminal state s(te) is such that for t ∈ [ts, te]:

r(t) =

{
c(t) if c(t) > α or c(t) = α, t ≤ τ
0 if c(t) < α or c(t) = α, t > τ

where α ∈ [0,maxt∈[ts,te] c(t)], and τ ∈ [ts, te] are thresholds such that:∫ te

ts

r(t)dt = s(te)− s(ts).

Further, we denote by βα,τ,ts(t) =
∫ t
ts
r(τ)dτ + s(ts) the cumulative amount of

transmitted data for t ∈ [ts, te].

18

Note we refer to this as a “single” threshold scheme although in fact

it is a pair: α is a threshold on wireless capacity, and τ is a threshold on

time. Basically the scheme transmits data only when the capacity is above

the threshold α. Thus continuously decreasing α will increase the cumulative

amount of data transmitted with a potential for jumps if the capacity stays

constant at some levels. By varying τ we can further control transmission so

that the cumulative data transmitted varies continuously over its range.

The goal of the single threshold transmission scheme is to find α and

τ , such that given an initial state s(ts) and wireless capacity c(t), t ∈ [ts, te],

the terminal state s(te) is achieved. The thresholds can be computed by using

binary search algorithm. However in practice, we can assume that the capacity

c(·) is a piecewise constant function, i.e., we can use a discrete-time system

model, in which case we assume the interval [ts, te] is divided into m slots

and the capacity function is constant on each slot. We denote the ith slot as

[pi−1, pi], i = 1, 2, ...,m and denote the associated capacity as ci. Under these

assumptions, the thresholds of the single threshold transmission scheme can

be found by using a sorting algorithm, which provides a unique one-to-one

mapping f : {1, 2, ...,m} → {1, 2, ...,m} such that f(i) < f(j) if and only if

ci > cj or ci = cj, i < j. Note this mapping sorts the capacities of the slots in

descending order. Then we can sum the sorted capacities up from the highest

value to the lowest value, such that the sum exceeds s(te)−s(ts). Suppose this

happens after we add the kth sorted slot, and the sum exceeds s(te)−s(ts) by s.

Then the thresholds are α = cf−1(k) and τ = pf−1(k)−(pf−1(k)−pf−1(k)−1) s
cf−1(k)

.

19

Also note that under a single threshold transmission scheme, the server

only has two choices: send at peak capacity or send nothing. Hence, the

corresponding utilization is proportional to the length of time the server is

sending data.

We define two types of constraint violations associated with Min Uti-

lization (2.2). We refer to a buffer underflow violation when one of the first set

of constraints (buffer underflow constraints) in Min Utilization is not met, and

we refer to buffer overflow violation when one of the second set of constraints

(buffer overflow constraints) is not met.

Let u[a,b], l[a,b], c[a,b], r[a,b] and βα,τ,ts,[a,b] denote the values of the func-

tions u(·), l(·), c(·), r(·) and βα,τ,ts(·) on the interval [a, b] respectively. Then

the optimal transmission schedule for (2.2), r?[t0,tn] can be calculated using

Piecewise Constant Thresholding (PCT) algorithm (Algorithm 1) with initial

state ss = b0 and terminal state se = l(tn).

Algorithm 1 Piecewise Constant Thresholding (PCT)

Input: ss, se, l[t0,tn], u[t0,tn], c[t0,tn]

1: m← 0, r?[t0,tn] ← 0
2: ts ← t0, te ← tn
3: repeat
4: (tb, sb, r

?
[ts,tb)) =

Breakpoint(ss, se, ts, te, l[ts,te], u[ts,te], c[ts,te])
5: m← m+ 1
6: ss ← sb, ts ← tb
7: until ss = se

Output: r?[t0,tn], m

20

Algorithm 2 Breakpoint

Input: ss, se, ts, te, l[ts,te], u[ts,te], c[ts,te]

1: loop
2: Apply single threshold transmission scheme on [ts, te] with initial state

ss and terminal state se to get α, τ and r[ts,te], βα,τ,ts,[ts,te].
3: if βα,τ,ts,[ts,te] does not violate any buffer underflow or overflow con-

straints then
4: tb ← te, sb ← βα,τ,ts(te)
5: break
6: else
7: find the largest i, ts ≤ ti ≤ te, such that the violations on [ts, ti] are

of the same type
8: if the violation type is buffer overflow then
9: se ← u(ti), te ← ti

10: else
11: se ← l(ti), te ← ti
12: end if
13: end if
14: end loop
Output: tb, sb, r[ts,te)

21

The logic underlying PCT is as follows. First try to apply the single

threshold scheme on the interval [t0, tn] with initial state ss and terminal state

se. If the resulting transmission schedule r[t0,tn] meets the buffer overflow and

underflow constraints, then it is the final solution; we call it a 1-piecewise

constant thresholding solution. Otherwise if any of the constraints is violated,

divide the time interval [t0, tn] into two subintervals [t0, tb) and [tb, tn] at some

point tb (we call it a breakpoint), which is carefully chosen such that we can

once again run the single threshold transmission scheme on [t0, tb) to obtain a

feasible solution which is output as the solution on subinterval [t0, tb). Then

the remaining subinterval [tb, tn] is treated as a new interval and we apply the

same procedure to it as on [t0, tn]. This recursive procedure is realized by a

repeat loop in Algorithm 1, where in each loop, the function “Breakpoint”

is called to calculate the breakpoint tb, and the transmission schedule r(t)

for t ≤ tb. The function “Breakpoint” is described in Algorithm 2, where

we use a loop to find the breakpoint, and in each loop the single threshold

transmission scheme described in Definition 1 is used. Finally if Algorithm 1

takes m loops to finish, then we end up with m subintervals and we call the

solution an m-piecewise constant thresholding solution.

The following theorem states that PCT provides an optimal solution

for Min Utilization (2.2).

Theorem 1 If there exists a feasible solution to Min Utilization (2.2), then

PCT determines an optimal transmission schedule.

22

2.2.3 Proof of Optimality

We prove the optimality of PCT by induction on the total number of

jumps n in u(·) and l(·).

First, when n = 1, the algorithm is optimal due to the characteristic of

the thresholding scheme, i.e., one transmits only at the highest capacities.

As an induction hypothesis, suppose the algorithm is optimal for all the

feasible video delivery optimization problems with n jumps where n ≤ k − 1.

We then show that it is also optimal for problems with k jumps.

If PCT results in a 1-piecewise constant thresholding solution, then it

is optimal due to the characteristic of the thresholding scheme. Otherwise,

if we obtain an m-piecewise solution denoted by s0(·) =
∫ ·

0
r0(t)dt, where

m > 1, then suppose the first breakpoint found by the algorithm is ti, and

without loss of generality we suppose s0(ti) = u(ti). (The other possible case

is s0(ti) = l(ti), which can be addressed in a similar manner.) In the sequel,

we will show that the solution s0(·) is as good as any other feasible solution

s1(·). We consider two cases separately.

Case 1. Suppose s1(ti) = u(ti). In this case, we can change the

constraint s(ti) ≤ u(ti) to s(ti) = u(ti) in the original Min Utilization (2.2).

Then we will get a new optimization problem denoted by Õ. Note that both

s0(·) and s1(·) are feasible solutions for Õ. On the other hand, Õ can be

divided into two video delivery optimization problems Õ1 and Õ2, where Õ1

is on the interval [t0, ti], Õ2 is on the interval [ti, tk]. And we can solve them

23

separately to obtain the optimal solution for Õ. Note that it follows from the

characteristic of the proposed algorithm that, if we apply the algorithm on

Õ1 and Õ2 separately, we will get the same result as s0(·). Further, by the

induction hypothesis, the proposed algorithm gives optimal solutions on Õ1

and Õ2, so s0(·) is an optimal solution on Õ. Thus, s0(·) is as good as s1(·).

Case 2. Suppose l(ti) ≤ s1(ti) < u(ti). In this case, we can remove

the constraint s(ti) ≤ u(ti) from the original Min Utilization (2.2), to get

a new optimization problem Õ. Note that both s0(·) and s1(·) are feasible

solutions for Õ, and by the induction hypothesis, we can apply the proposed

algorithm on Õ to get an optimal solution s2(·). Suppose the utilizations of

s1(·) and s2(·) are costu1 and costu2 respectively, then it should be such that

costu1 ≥ costu2. Note since ti is a breakpoint found by PCT algorithm and

s0(ti) = u(ti) which corresponds to a buffer overflow violation, we can claim

that if we relax the buffer overflow constraints at ti, the associated optimal

cumulative transmission at ti should be greater than u(ti), i.e., s2(ti) > u(ti).

Now we construct a feasible solution s′0(·) to Õ by doing time sharing between

s1(·) and s2(·) as follows,

s′0(t) = λs1(t) + (1− λ)s2(t), t ∈ [t0, tk],

where λ is a parameter chosen from (0, 1) such that,

s′0(ti) = s0(ti) = u(ti).

Then, the utilization of s′0(·) can be calculated as

cost′u0 = λcostu1 + (1− λ)costu2.

24

Thus, we have costu2 ≤ cost′u0 ≤ costu1. That means, scheme s′0(·) is as good

as s1(·). But according to the result in Case 1, s0(·) is as good as s′0(·), so we

can claim that s0(·) is as good as s1(·).

Thus, by induction the optimality of the proposed algorithm is proved.

2.2.4 General Piecewise Constant Thresholding (GPCT)

In this subsection, we generalize PCT to solve Optimal Streaming (2.1),

i.e., including the possibility of rebuffering. By the results in Subsection II.B,

we immediately have the following corollary:

Corollary 1 If there exists a feasible solution to Optimal Streaming (2.1) with

~τ = ~0, then PCT solves the optimization.

However, if Optimal Streaming (2.1) does not allow a feasible solution

with ~τ = ~0, then rebuffering must happen and PCT cannot be used directly.

Instead we require a modification of PCT to deal with the rebuffering issue.

Before we state the new algorithm, we introduce some definitions.

Definition 2 We say a transmission scheme is greedy if it sends as much

as possible given the capacity and playback buffer constraints, i.e., the greedy

transmission scheme tries to keep the buffer full. During the transmission the

video plays as long as the playback buffer is not empty and rebuffering hap-

pens only when the buffer underflows. Consider a greedy transmission scheme

starting at time t1, and for which rebuffering happens at time t2 where t2 > t1.

25

We say this rebuffering is an I-rebuffering if 100% utilization was achieved

during (t1, t2). Otherwise, if the greedy schedule on (t1, t2) was precluded from

realizing 100% utilization, i.e., due to a limited playback buffer, we call the

rebuffering a B-rebuffering.

Note if the playback buffer size is infinite (or at least larger than the

video size), then there can only be I-rebufferings. While B-rebufferings are

caused by playback buffer overflows. During a video transmission, both I-

rebufferings and B-rebufferings can happen. Suppose they happen at the jump

points tn1 , tn2 , ..., tnk
, denote the corresponding rebuffering times as τn1 , τn2 , ..., τnk

,

and define d(ni) =
∑i

j=1 τnj
, the cumulative rebuffering time up to time tni

.

With the above definitions we can state our solution to Optimal Stream-

ing (2.1) as General Piecewise Constant Thresholding (GPCT) (Algorithm 3)

with initial state ss = b0 and terminal state se = l(tn).

In GPCT, we first use greedy transmission scheme to find where the

rebufferings need to happen and identify all the associated rebuffering types. If

no rebuffering happens, then the algorithm degenerates to PCT, and Corollary

1 ensures optimality. Otherwise if an I-rebuffering occurs, we have to use

greedy transmission scheme to minimize the waiting time since our rebuffering

cost dominates the utilization cost. However if a B-rebuffering happens, we

can use PCT before the latest playback buffer overflow, which is denoted as

t̃(ni) in the algorithm, to achieve the minimum system utilization. Thus we

have the following theorem.

26

Algorithm 3 General Piecewise Constant Thresholding (GPCT)

Input: ss, se, l[t0,tn], u[t0,tn], c[t0,t0+T̃]

1: Perform greedy transmission on [t0,∞] until se − ss of the video is de-
livered. Suppose the rebufferings under the greedy scheme happen at
jump points tn1 , tn2 , ..., tnk

, denote the corresponding rebuffering times
as τn1 , τn2 , ..., τnk

, and identify their rebuffering types (I or B). If a B-
rebuffering happens at tni

for some i ∈ [1, k], denote t̃(ni) = max{t <
tni

+ d(ni) : playback buffer is full at t}
2: tn0 ← 0, d(ni)← 0, i← 1
3: while i ≤ k do
4: if the rebuffering at tni

is an I-rebuffering then
5: do greedy transmission on [tni−1

+ d(ni−1), tni
+ d(ni)]. Let the corre-

sponding transmission schedule be the solution r?[tni−1+d(ni−1),tni+d(ni))

6: else
7: run PCT on [tni−1

+ d(ni−1), t̃(ni)] with input max[l(tni−1
), ss],

u(t̃(ni) − d(ni−1)), l[tni−1 ,t̃(ni)−d(ni−1)], u[tni−1 ,t̃(ni)−d(ni−1)]

and c[tni−1+d(ni−1),t̃(ni)]; and do greedy transmission during

[t̃(ni), tni
+ d(ni)]. Let the corresponding transmission schedule

be the solution r?[tni−1+d(ni−1),tni+d(ni))

8: end if
9: i← i+ 1

10: end while
11: if nk < n then
12: Run PCT on [tnk

+d(nk), tn+d(nk)] with input max[l(tnk
), ss], se, l[tnk

,tn],
u[tnk

,tn] and c[tnk
+d(nk),tn+d(nk)], and let the corresponding transmission

schedule be the solution r?[tnk
+d(nk),tn+d(nk)]

13: end if
Output: r?[t0,tn+d(nk)]

27

Theorem 2 The General Piecewise Constant Thresholding (GPCT) solves

the Optimal Streaming Problem (2.1).

An example of GPCT is shown in Fig 2.3, where an I-rebuffering hap-

pens at t1 and lasts for τ1. A B-rebuffering happens at t5 + τ1 and lasts for

τ5. The latest buffer overflow associated with the B-rebuffering happens at

t4 + τ1, which is denoted as t̃5. Then GPCT performs greedy transmission

during [t0, t1 + τ1) and [t̃5, t1 + τ1 + τ5); and it runs PCT on [t1 + τ1, t̃5).

2.3 Single-User Partially Anticipative Case

2.3.1 Fixed Horizon Control Scheme

Now we consider a ‘partially anticipative’ case in which only a finite

window of future wireless capacity variations are known beforehand. Assume

that at time t, we know the capacity c[t,t+w], where w is the future window

size, and we do not know the capacity beyond t + w. Thus we cannot use

an offline scheme like GPCT. However we can apply the GPCT algorithm on

[t, t+ w], which provides a baseline for online schemes. We propose a Greedy

Fixed Horizon Control (GFHC) transmission scheme in Algorithm 4 below.

GFHC is an online scheme that successively applies GPCT on a se-

quence of w-sized intervals. For each interval it must set the initial buffer

state ss, and target buffer state s′e at the end of the interval. The latter is

done in Step 3 of Algorithm 4, where s′e ← ss+mi, which is the maximum one

could achieve at the end of the ith interval using greedy transmission. The

28

Figure 2.3: An example of GPCT. An I-rebuffering happens at t1 and lasts
for τ1. A B-rebuffering happens at t5 + τ1 and lasts for τ5. The latest buffer
overflow associated with the B-rebuffering happens at t4 +τ1, which is denoted
as t̃5.GPCT performs greedy transmission during [t0, t1+τ1] and [t̃5, t1+τ1+τ5];
and it runs PCT on [t1 + τ1, t̃5].

29

Algorithm 4 Greedy Fixed Horizon Control (GFHC)

Input: ss, se, l[t0,tn], u[t0,tn], c[t0,t0+T̃]

1: i← 0, d← 0
2: repeat
3: s′e ← ss + mi, where mi is the maximum amount of data that can be

delivered (i.e., using greedy transmission) during [t0 + iw, t0 + (i+ 1)w]
4: run GPCT on [t0+iw, t0+(i+1)w] with input ss, s

′
e, l[t0+iw−d,t0+(i+1)w−d],

u[t0+iw−d,t0+(i+1)w−d] and c[t0+iw,t0+(i+1)w)]. Let the resulting transmission
schedule be r?[t0+iw,t0+(i+1)w), and the rebuffering time be τ

5: d← d+ τ
6: ss ← ss +

∫ t0+(i+1)w

t0+iw
r?(t)dt

7: i← i+ 1
8: until ss = se

Output: r(·)

initial state ss is initialized and subsequently updated (Step 6) once the trans-

mission schedule for the current window is determined. GFHC runs GPCT on

w intervals, during which it computes a transmission schedule and may incur

rebuffering delays. Thus in Step 4, the constraints have been shifted by d the

cumulative rebuffering incurred so far. The resulting transmission schedule r?

is the concatenation of those computed across w-windows.

Note in Step 3 shown in Algorithm 4 the target buffer state s′e is chosen

in a “greedy” manner, i.e., as high as possible in order to minimize rebuffering

time. This is why we call the proposed scheme “greedy fixed horizon control”.

In fact, one can in principle define different kinds of Fixed Horizon Control

(FHC) schemes by using different strategies in Step 3 of Algorithm 4 to choose

s′e. For example, we can define a “resource saving FHC” by setting s′e =

max[ss, l((i+ 1)w)].

30

2.3.2 Competitive Optimality of GFHC

To evaluate the performance of GFHC, we use the “competitive ratio”

which is defined as the ratio of the cost of GFHC and the optimal offline cost

achieved by GPCT under the same problem settings (i.e., the same capacity

variations, l(·), u(·), etc., but they are known ahead of time). The following

theorem gives an upper bound on the competitive ratio.

Theorem 3 Given a maximum playback buffer size b, video length T and size

S, window size w, maximum capacity cmax and minimum capacity cmin > 0,

the competitive ratio of GFHC to GPCT satisfies:

costG

costO
≤ 1 + max

[
1

cmin
,
T

S

]
b

w
(
cmax
cmin

− 1).

Note that when S
T
> cmin: i.e., the overall average video compression

rate exceeds the minimum capacity the upper bound in Theorem 3 can be

viewed as having two parts.. The first, b
wcmin

, captures the size of the play-

back buffer relative to the minimum amount of data that will be delivered

in future window. If these are close clearly the offline opportunistic schedul-

ing realized by GPCT will not achieve great gains over GFHC. The second,

cmax

cmin
− 1 captures the worst case variability in capacity. In general, the worst

case performance of GFHC is closer to GPCT under a larger minimum ca-

pacity, a larger prediction window size, a smaller playback buffer size and a

smaller ratio between the maximum and the lowest capacities. The proof of

Theorem 3 is as follows.

31

Proof: We denote by costO = costOu +costOr and costG = costGu +

costGr the optimal costs achieved by GPCT and GFHC – the two terms cor-

respond to the system utilization and rebuffering time. We also let rO() and

rG() denote the optimal transmission schedules for GPCT of GFHC respec-

tively. Suppose t0 = 0 and let sO(t) =
∫ t

0
rO(τ)dτ and sG(t) =

∫ t
0
rG(τ)dτ be

the the cumulative transmitted data for the two schemes. The greedy nature

of GFHC ensures that sG(t) ≥ sO(t),∀t ≥ 0, i.e., GFHC is always ahead of

GPCT, and so it has a rebuffering cost no higher than GPCT. Since GPCT

strictly prioritizes minimization of rebuffering cost over system utilization, it

follows that GPCT achieves the lowest possible rebuffering cost. We can con-

clude that costGr = costOr . Next we develop an upper bound for the difference

in the utilization costs, i.e., costGu − costOu .

Suppose GFHC uses k window intervals, each with length w. On the

ith interval, 1 ≤ i ≤ k, the amount of data delivered by GFHC is denoted as

δGi = sG(iw) − sG((i − 1)w). Also denote δOi = sO(iw) − sO((i − 1)w) as the

amount of data delivered by the optimal scheme during the ith interval. Then

we define two index sets as follows:

I1 = {i : δGi ≤ δOi };

I2 = {i : δGi > δOi }.

Note that ∀i ∈ I1, GFHC delivers less data than the optimal scheme on interval

i. We can define an intermediate transmission scheme on this interval, which

32

starts at initial state sG((i− 1)w), transmits at following rate rI(t):

rI(t) = rO(t)1{t∈[(i−1)w,t̃]},

where t̃ ≤ iw is chosen such that,∫ t̃

(i−1)w

rI(t)dt = sG(iw)− sG((i− 1)w).

It is easy to check that such a scheme is well-defined, and we can claim that the

utilization cost of the intermediate scheme on interval i is no more than that

of GPCT, since it transmits at the same rate as GPCT on [(i − 1)w, t̃], and

transmits nothing on [t̃, iw]. Note on interval i, GPCT transmits an amount

of δOi − δGi more than the intermediate scheme. Transmission of the extra

data requires an extra utilization no less than
δOi −δGi
T̃ cmax

, which is obtained by

assuming that the data is transmitted at maximum capacity thus achieving

the best savings. Thus we have, costIu,i ≤ costOu,i −
δOi −δGi
T̃ cmax

. Also since sG(t) ≥

sO(t),∀t ≥ 0, we have that sI(t) ≥ sO(t) on interval i, which in turn implies

costIr,i ≤ costOr,i (in fact they are equal). Thus we have costIi ≤ costOi −
δOi −δGi
T̃ cmax

.

However note that, the intermediate scheme and GFHC start at the

same initial state and end at the same terminal state on interval i. Also note

that GFHC uses GPCT on interval i and thus is optimal under fixed initial

state and terminal state on that interval. As a result, we have costGi ≤ costIi .

In conclusion we have

costGi ≤ costOi −
δOi − δGi
T̃ cmax

.

33

By similar arguments we have, ∀i ∈ I2,

costGi ≤ costOi +
δGi − δOi
T̃ cmin

,

where cmin comes from assuming the extra data is transmitted at the lowest

capacity giving an upper bound on the additional utilization.

Summing up all the intervals we get:

costG ≤ costO −
∑
i∈I1

δOi − δGi
T̃ cmax

+
∑
i∈I2

δGi − δOi
T̃ cmin

(2.3)

Note since GPCT and GFHC transmit the same amount of data at last, there

must be: ∑
i∈I1

(δOi − δGi) =
∑
i∈I2

(δGi − δOi)
def
= A.

Also note that on each interval i, the difference between δOi and δGi cannot

exceed the buffer size, i.e., |δOi − δGi | ≤ b, and since there are at most T̃
w

intervals, we have that

A ≤ T̃ b

w
. (2.4)

Then we can rewrite inequality (2.3) as

costG ≤ costO + A(− 1

T̃ cmax
+

1

T̃ cmin
). (2.5)

Combining inequalities (2.4) and (2.5), we have

costG ≤ costO − T̃ b/w

T̃ cmax
+
T̃ b/w

T̃ cmin

≤ costO +
b(cmax − cmin)

wcmaxcmin
.

34

Finally, dividing by costO and noticing that costO ≥ costOu ≥ 1
T̃

S
cmax

, we obtain

that

costG

costO
≤ 1 +

b(cmax − cmin)T̃

wcminS
,

≤ 1 + max[
1

cmin
,
T

S
]
b

w
(
cmax
cmin

− 1),

where we used the fact that T̃ = max[S
cmin

, T].

2.4 Multiuser Anticipative Case

In Section II we proposed GPCT and proved that it solves the Optimal

Streaming problem (2.1). However, the algorithm was developed for a single-

user case and it is hard to generalize it to the multiuser case. In this section, we

develop sub-optimal multiuser schemes based on GPCT which have reasonable

complexity.

2.4.1 Multiuser Piecewise Constant Thresholding Under Propor-
tional Capacity Allocation (MTP)

Suppose a base station is serving n mobile users and user i has a peak

capacity ci(t) at time t, i = 1, 2, ..., n. The peak capacities are assumed to

be known beforehand. A simple way to deal with the multiuser issue is to

make an up-front allocation of resources among the n users in a round robin

fashion and thus the allocated capacity for user i is c̃i(t) = ci(t)
n

, which is

proportional to his/her peak capacity ci(t). Each user i is then assumed to

35

have a capacity c̃i(t) which is independent of other users’ capacities and thus

we can apply GPCT to each user separately. We call this scheme multiuser

piecewise constant thresholding under proportional capacity allocation (MTP).

MTP is straightforward to implement since every user can independently run

a single-user algorithm on his/her own based on knowledge of his/her capacity

and the number of users sharing the bottleneck, and requests transmission

from server accordingly. Thus the scheme works in a decentralized way and

there is no need for a centralized controller. However, although it applies

GPCT which exploits temporal diversity in capacity variations well, MTP is

based on a proportional capacity allocation which does not directly exploit

multiuser diversity. Below we consider how both might be exploited.

2.4.2 Multiuser Piecewise Constant Thresholding Under Oppor-
tunistic Capacity Allocation (MTO)

We introduce a centralized scheme which exploits both temporal and

multiuser diversity. Consider a base station serving n mobile users. To reduce

the system utilization, there is a central scheduler at the base station which

knows future capacity variations of the mobiles. The system operates in dis-

crete (slotted) time and each time slot the scheduler chooses which of the video

users could be served in the slot. In order to exploit capacity variations across

different users while ensuring ’short-term’ fairness, we use the opportunistic

resource allocation scheme with a token counter mechanism proposed in [32].

It works as follows.

36

Each user i is associated a token counter Ti. At the beginning, all

the token counters are set to be the same positive integer value m, which is

referred to as the token limit. Each time slot, the scheduler searches among

the users who have a non-zero token counter and chooses the user with the

highest capacity3. Ti is decremented if user i is served in that time slot. When

all the token counters are zero, they are reset to m. Using the same token limit

m for all the users guarantees that the system allocates the same number (m)

of time slots to each user within m·n slots. Subsequently each user has his/her

allocated capacity c̃i(t) and thus GPCT can again be applied independently to

each user. The resulting scheme is denoted the multiuser piecewise constant

thresholding under opportunistic capacity allocation (MTO). MTO is of higher

complexity than MTP since it is based on a centralized controller. However it

can achieve a lower system utilization because it not only exploits the temporal

diversity for each user but also exploits the multiuser diversity across all the

users via the token counter mechanism. The choice of the token limit m

affects the performance of MTO in that a higher token limit allows the system

to exploit the multiuser diversity more aggressively and results in a higher

decrease in the system utilization, however, a smaller token limit enforces

more temporal fairness and results in a shorter rebuffering time. We will see

this point later in Section V.

3Selection could be weighted or driven by quantiles to address fairness concerns.

37

2.5 Simulation Results

Performance sensitivity of GFHC. We ran a simulation to explore

the performance sensitivity of GFHC to window, playback buffer and temporal

correlation in capacity variations. We considered a server delivering a 10-

minute constant bit rate video, 900kbps, to a receiver. We simulated a slotted

system, with slots of length 0.1sec. Thus the jump points for l(·) are at 0.1sec,

0.2sec, 0.3sec,.. with values l(0.1m) = 9m, for m = 1, 2, ..., 6000. The initial

buffer b0 was set to 0.

Capacity variations, were modeled via a discrete time Markov chain

whose states represent capacities, specifically 0, 250, 500, . . . , 7500kbps. The

transition probability matrix for the chain is selected so that the invariant is a

pre-defined stationary distribution corresponding to the PDF for the through-

put of a randomly positioned user in an realistic HSPA system single antenna

equalizer on the receiver under medium system load. The distribution is shown

in Fig. 2.4. We consider two such matrices which differ in the speed at which

capacity varies. Specifically in the first case transitions can only happen be-

tween the two nearest states (e.g., from 250kbps to 500kbps) which results in

slow variations (i.e., with temporal correlation); in the second case we simply

take iid samples of the throughput PDF (i.e., with no temporal correlation).

Finally we let the receiver’s playback buffer size b vary from 1620, 1890, 2160, 2430

to 2700kb, and the window size w from 10, 20, 50, 100, 300 to 600sec. Each sce-

nario was simulated 20 times to obtain average results.

38

Capacity CDF Capacity CDF Capacity CDF

250 0.0024 2750 0.6851 5250 0.9784

500 0.012 3000 0.7284 5500 0.9832

750 0.1106 3250 0.7716 5750 0.9856

1000 0.2139 3500 0.8173 6000 0.9904

1250 0.2764 3750 0.863 6250 0.9952

1500 0.3582 4000 0.8894 6500 0.9976

1750 0.4303 4250 0.9135 6750 1

2000 0.512 4500 0.9375 7000 1

2250 0.5721 4750 0.9519 7250 1

2500 0.6226 5000 0.9615 7500 1

Figure 2.4: The stationary distribution (cdf) of capacity (kbps) used in our
simulation.

0.14

(a)

w
=

60
0

w
=

30
0

w
=

10
0

w
=

50

w
=

20

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.16
0.18
0.2

0.22
0.24
0.26
0.28
0.3

0.32
0.34

b=1620
b=1890
b=2160
b=2430
b=2700

w
=

10

1 - utilization

pe
rc

en
ta

ge
 o

f r
eb

uf
fe

rin
g

tim
e

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24
b=1620
b=1890
b=2160
b=2430
b=2700

1 - utilization

pe
rc

en
ta

ge
 o

f r
eb

uf
fe

rin
g

tim
e

(b)

w
=

10

w
=

20
w

=
50

w
=

10
0

w
=

30
0

w
=

60
0

Figure 2.5: (a) The performance of GFHC under correlated capacity variation.
(b) The performance of GFHC under iid capacity variation. Each point shows
the percent rebuffering time versus (1 − utilization) for a specific playback
buffer size and window size. The points on the bottom right of the figures
correspond to best performance.

39

The results shown in Figs. 2.5 (a) and (b) correspond to the scenarios

with correlated and iid capacity variations respectively. The figures show the

percent rebuffering time versus (1−utilization) for varying playback buffer and

window sizes. Note the points on the bottom right of the figures correspond

to best performance, i.e., lowest system utilization and rebuffering time. The

figures exhibit the following three observations.

1. For fixed b and capacity variation, increasing w significantly reduces uti-

lization but does not affect the rebuffering time.

2. For fixed w and capacity variation, increasing b reduces rebuffering time

and results in a marginal decrease in utilization. Note Theorem 3 suggests

that a smaller b should result in a better performance, but this corresponded

to worst case ‘performance’ vs the averages considered here.

3. For fixed b and w, temporal correlation in capacity variation results in

increased rebuffering and a higher utilization.

We also evaluated GFHC vs greedy transmission for a wireless capac-

ity trace measured from a vehicle driving through Mountain View, CA. We

considered a server delivering a 4min, 900kbps constant bit rate video to a

receiver. The capacity trace was rescaled to have an average rate of 2000kbps.

The playback buffer size was set to be 1/10 of the video size. The greedy

transmission scheme resulted in a 67.69% utilization and 8.1sec of rebuffering

time. The GFHC resulted in the same rebuffering time, but the utilization was

reduced to 29.00%,48.83%,55.17% and 59.44% when the window w was set to

40

240, 120, 60, and 30sec respectively. This confirms the benefit of exploiting

anticipated capacity variations for a trace from a real wireless network.

Performance and comparisons for multiuser algorithms. We

ran simulations to compare the performance of MTP and MTO versus that

of a proportional rate allocation scheme in which greedy transmission scheme

is used and the time slots are assigned to the mobile users in a round robin

fashion so that the transmission rate to each user is proportional to his/her

peak capacities. In our simulation, we assume a fixed number of users are

being served and each user is watching a 10-minute video with a constant bit

rate of 90kbps. All the users have the same playback buffer size which was set

to be 18000kb (i.e. one third of the video size), and they start watching the

videos simultaneously. The model for capacity variations is the slotted model

with correlated variations discussed above.

We let the number of users range from 1 to 12 and repeat each one 20

times to obtain average results. In MTO, we test the performance under four

token limits which are 1,3,6 and 9. The average system utilization and average

percent rebuffering time were computed and are plotted in Figs. 2.6 (a) and

(b).

Fig. 2.6 (a) exhibits the utilization as a function of the number of

users. As can be seen, proportional rate allocation achieves the highest system

utilization; by comparison, MTP and MTO achieve a 60 − 70% reduction.

Alternatively, for the same system utilization, MTP and MTO might allow

2x-3x more users. As expected MTO achieves a lower system utilization than

41

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

users

sy
st

em
 u

til
iz

at
io

n

Proportional rate allocation
MTP
MTO token limit 1
MTO token limit 3
MTO token limit 6
MTO token limit 9

70%

60%

2x-3x

increasing token limits

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7
x 10

users

av
er

ag
e

pe
rc

en
ta

ge
 o

f r
eb

uf
fe

rin
g

tim
e

Proportional rate allocation
MTP
MTO token limit 1
MTO token limit 3
MTO token limit 6
MTO token limit 9

(a) (b)

-3

Figure 2.6: (a) The system utilization. The proportional rate allocation has
the highest system utilization. MTP and MTO achieve reduced system uti-
lization. MTO schemes do a little better than MTP. An MTO scheme with
a higher token limit achieves a lower system utilization. (b) The average per-
cent rebuffering time. The proportional rate allocation and MTP have the
same percent rebuffering time. MTO schemes result in higher rebuffering time
which increases as the token limit increases.

42

MTP, since it exploits multiuser diversity, and MTO with a higher token limit

results in a lower utilizations. However, as shown in Fig. 2.6 (b) this benefit

is obtained at the cost of a additional rebuffering. Fig. 2.6 (b) exhibits the

percent rebuffering time versus the number of users. It shows that MTP

and proportional rate allocation require the same rebuffering time, but MTO

results in more rebuffering as does MTO with higher token limits.

2.6 Uncertainty in Knowledge of Future Capacity Vari-
ations

So far we have developed video delivery policies assuming knowledge

of future capacity variations (either in the anticipative case or the partially

anticipative case) is perfect. However in practice there will be uncertainty in

predictions of future capacity. Such uncertainty may arise from many sources,

e.g., the mapping of wireless signal strength on the coverage map to capacity,

uncertainty in a user’s motion, interference from other mobile users, uncer-

tainty in the number of mobile users contending for resources, etc.

Such uncertainty limits the optimality of our proposed approaches (GPCT

and GFHC). For example, GPCT opportunistically chooses when to request

video delivery based on future capacity variations. If the true capacity varia-

tions are lower than the predicted ones, then the users may experience longer

rebuffering times. Similarly one can show that the minimum system utilization

will not be achieved under imperfect capacity predictions.

In this section we explore different approaches to address such uncer-

43

tainty. We first develop an offline approach which is able to achieve a mini-

mum rebuffering time with an upper-bound on system utilization, under the

assumption that the uncertainty in capacity variations can be bounded. We

then propose an online algorithm that can deal with general types of uncer-

tainty.

2.6.1 Offline Approach under Uncertainty in Capacity Prediction

Let c̃(t) denote the predicted capacity at time t, and c(t) the true ca-

pacity which is unknown beforehand. If the prediction is good, such that c̃(·)

is uniformly close to c(·), then it seems reasonable to use GPCT on the pre-

dicted capacity function to obtain an offline video delivery strategy. We shall

denote such a policy by S̃?. This policy can then be used under the true capac-

ity function to mediate video delivery. Note that strategy S̃? specifies when

the user should request video delivery under the predicted capacity function

c̃(·), which is a set of time intervals, e.g., S̃? = {[t1, t2]} indicating that the

user should request video delivery during [t1, t2] under capacity c̃(·). However,

when the user applies S̃? under the true capacity function c(·), some changes

have to be made. For example, if c̃(t) ≤ c(t), ∀t, the user have more video

delivered than expected. To avoid buffer overflow violations, the user needs

to adjust policy S̃? to stop requesting video delivery whenever the playback

buffer is full. We denote this modification to S̃? by S̃?m.

We can compare the perfromance of S̃?m obtained based on the predicted

capacity function to the optimal policy (GPCT) S? obtained assuming the

44

true capacity function were known. Since we give higher priority to avoiding

rebuffering, it is reasonable to require that S̃?m result in no more rebuffering

time than S?. The following lemma shows that such requirement is met if

c̃(t) ≤ c(t), ∀t.

Lemma 1 Suppose S? and S̃?m are as defined above, then applying S̃?m on the

true capacity function c(·) results in no more rebuffering time than S?, if for

all t

0 < c̃(t) ≤ c(t). (2.6)

Proof: We prove the lemma by contradiction. Suppose the claim

is not true, i.e., S̃?m results in more rebuffering time than S?. This implies

that there exists a period [t, t + τ] * S̃?m, such that the modified strategy

S̃?m ∪ [t, t + τ] reduces the rebuffering time of S̃?m. Note that since S̃?m differs

from S̃? only at times when the buffer is full, we can claim that [t, t+ τ] /∈ S̃?.

Also by Condition (2.6) applying S̃? to c̃(·) delivers no more than S̃?m on c(·)

cumulatively at any time. Thus strategy S̃?∪ [t, t+τ] results in less rebuffering

time than S̃? under the capacity function c̃(·), which contradicts the fact that

S̃? was obtained using GPCT and thus results in the minimum rebuffering

time.

However in practice, Condition (2.6), i.e., that predictions are always

pessimistic, may not hold, and the appropriate offline approaches should de-

pend on the uncertainty in capacity prediction, i.e., the difference between c̃(·)

45

and c(·). To pursue this further let us assume that the prediction error can be

bounded.

Definition 3 We say the capacity function prediction satisfies an (α, β) -

prediction error if for all t

c(t) ∈ [(1− α)c̃(t), (1 + β)c̃(t)], α, β ∈ [0, 1). (2.7)

Note that under the (α, β) - prediction error, the true capacity function

is bounded within a certain range of the predicted one. Let ĉ(t) = (1−α)c̃(t),

which is thus a lower bound on the true capacity. Let Ŝ? and Ŝ?m denote the

strategy obtained by applying GPCT on ĉ(·) and the corresponding modified

strategy obtained by applying Ŝ? on c(·) avoiding buffer overflow, respectively.

Now according to Lemma 1, Ŝ?m should result in no more rebuffering time than

S?.

To evaluate the performance of Ŝ?m, we need to compare the system

utilization (denoted by û?m) to the optimal system utilization (denoted by u?)

obtained by S?. The following lemma shows that û?m can indeed be upper

bounded.

Lemma 2 Suppose Ŝ?m, S?, û?m and u? are defined as above, T̃ , cmin, S are

as defined in Section 2.2, and the true capacity satisfies Condition (2.7), then

u? ≤ û?m ≤ u? +
α + β

1 + β

S

cminT̃
. (2.8)

46

Proof: The first inequality in (2.8) holds due to the fact that S?

is the strategy obtained by applying GPCT to the true capacity function c(·),

which according to Theorem 2 should lead to the minimum system utilization

among all strategies that result in the minimum rebuffering time for a given

capacity function.

We prove the second inequality in (2.8) as follows. Due to the fact

that Ŝ?m is the modified version of Ŝ? so as to avoid buffer overflow, and

that ĉ(t) ≤ c(t), ∀t, we can claim that the system utilization resulting from

applying Ŝ?m to ĉ(·) (denoted as û?) is no less than û?m, which gives:

û?m ≤ û?. (2.9)

Paralleling the way we obtained the strategy Ŝ?m, we will construct another

strategy S?m by applying S? to the capacity function ĉ(·). However since ĉ(t) ≤

c(t), ∀t, S? may end up delivering only a part of the video under ĉ(·). We

deliver the remaining part of the video (denote its size as Sr bits) using time

intervals not included in S? and in a greedy manner (i.e., deliver as early

as possible) to keep the rebuffering time as low as possible. We denote this

strategy by S?m and the corresponding system utilization is denoted by u?m.

Note that according to Theorem 2, it follows that

û? ≤ u?m. (2.10)

Next we calculate the gap between u?m and u?. Note that the file size of the

47

video S can be written as:

S =

∫
t∈S?

c(t)dt. (2.11)

Similarly, Sr can be written as:

Sr = S −
∫
t∈S?

ĉ(t)dt. (2.12)

According to the definition of ĉ(·) and Equation (2.7), we have:

1− α
1 + β

c(t) ≤ ĉ(t), ∀t. (2.13)

Combining (2.11), (2.12) and (2.13), we obtain:

Sr ≤
α + β

1 + β
S. (2.14)

Thus the extra time spent delivering Sr is no more than α+β
1+β

S
cmin

. Normalizing

the time by T̃ we obtain a bound on the gap of the realized system utilization:

u?m − u? ≤
α + β

1 + β

S

cminT̃
. (2.15)

Combining (2.9), (2.10) and (2.15), we obtain:

û?m − u? ≤
α + β

1 + β

S

cminT̃
,

which proves the second inequality in (2.8).

Lemma 2 shows that under errors in capacity prediction if the prediction

is good enough (i.e. α and β are close to zero), then the offline strategy Ŝ?m

performs nearly as well as the optimal offline strategy S?.

48

So far we have proposed an offline approach under bounded prediction

error. It first uses GPCT on a lower bound of the capacity variation (i.e., ĉ(·))

and then modifies the obtained strategy to be feasible, i.e., avoiding buffer

overflow when it is applied to the true capacity function. We have also showed

that the proposed approach results in no more rebuffering time than GPCT,

and the resulting system utilization can be bounded if the uncertainty in the

capacity prediction is bounded. These results are summarized in the following

theorem.

Theorem 4 Suppose Ŝ?m is the offline video delivery strategy proposed earlier

in this section, and S? is the optimal strategy obtained by GPCT. Then under

(α, β) - capacity prediction error, Eq(2.7), Ŝ?m results in no more rebuffering

time than S?. Also Ŝ?m results in a higher system utilization than S?, which

can be upper bounded as shown in (2.8).

2.6.2 Online Approach under Uncertainty in Capacity Prediction

In the previous subsection we proposed an offline approach, the perfor-

mance of which, can only be guaranteed when uncertainty is small. If there

is substantial uncertainty in the prediction of the future capacity variations,

online approaches are preferable since they are able to adjust their strategies

based on what they have experienced. In this subsection, we propose an on-

line approach in which the users adaptively decide their thresholds based on

their playback buffer status and the average value of their predicted capacity

for a finite window into the future. The basic idea of our online approach is

49

that when a user’s playback buffer is low, in order to avoid rebuffering, the

user should use a small threshold to request video content as soon as possible;

when a user’s playback buffer is high, in order to reduce the system utiliza-

tion, the user should use a relatively large threshold based on the prediction of

the average future capacity to exploit the temporal opportunism in capacity

variations.

To simplify the problem, we assume the requested video has a constant

bit rate r, and the size of the video is S. Suppose we can predict the average

capacity for a window into the future of wmax seconds. Based on the capacity

predictions and the playback buffer status we make sequential decisions on the

capacity threshold γ (i.e., video will be requested only when the true capacity

is above γ and the playback buffer is not full). The thresholds are determined

by a Buffer-Dependent Thresholding (BDT) strategy displayed in Algorithm

5.

In Algorithm 5, time is divided into intervals and the capacity threshold

γ is determined sequentially on each interval. At the beginning of the ith

interval, suppose there is bi seconds of unwatched video content in the playback

buffer, then the length of the ith interval is wi = min[wmax, bi]. Suppose the

average predicted capacity in the ith interval is c̃i. We set two thresholds b

and b on the playback buffer with b > b, indicating the fullness of buffer. We

consider the buffer is high if bi > b and low if bi < b. The capacity threshold

of the ith interval γi is then determined based on the buffer status.

First, if the buffer is neither high nor low, i.e., b ≤ bi ≤ b, then the

50

Algorithm 5 Buffer-Dependent Thresholding (BDT)

Input: r, S, wmax, b, b
1: i← 0, s = 0
2: tsi ← 0
3: repeat
4: bi ← length (sec) of unwatched video in buffer at tsi
5: wi ← min[wmax, bi]
6: tei ← tsi + wi
7: c̃i ← predicted mean capacity in [tsi , t

e
i]

8: if b ≤ bi ≤ b then
9: γi ← max[c̃i − r, 0]

10: else if bi > b then

11: γi ← max[c̃i − r + r(bi−b)
wi

, 0]
12: else
13: γi ← 0
14: end if
15: γ(t)|t∈[tsi ,t

e
i] = γi

16: During [tsi , t
e
i], request video only when the true capacity is above γi and

the playback buffer is not full.
17: si ← the amount of video delivered during [tsi , t

e
i]

18: s← s+ si
19: i← i+ 1
20: tsi ← tei−1

21: until s = S
Output: γ(·)

51

threshold is set to

γi = max[c̃i − r, 0]. (2.16)

We explain the rationale of this capacity threshold as follows.

Note that in the thresholding policy (2.16) if c̃i ≤ r, then γi = 0, which

leads to the greedy strategy and results in the minimum rebuffering time.

Otherwise if c̃i > r, the following lemma indicates that if the prediction of the

average future capacity is accurate, then the thresholding policy (2.16) results

in no rebuffering.

Lemma 3 In the thresholding policy (2.16), suppose the prediction of the av-

erage capacity is accurate, i.e.,

c̃i =
1

tei − tsi

∫ tei

tsi

c(t)dt, (2.17)

where tsi and tei are the start and end time of the ith interval. If c̃i > r, then

the following holds:

1

tei − tsi

∫
t∈I+i

c(t)dt ≥ r, (2.18)

where I+
i = {t|c(t) ≥ γi, t ∈ [tsi , t

e
i]}, which is the set of times where video

delivery will be requested.

Proof: Let I−i = [tsi , t
e
i]\I+

i , which is the set of times where no

video will be requested. And let |I−i | be the total length of time in the set I−i .

According to (2.17), it follows that:

c̃i =
1

tei − tsi

∫
t∈I+i

c(t)dt+
1

tei − tsi

∫
t∈I−i

c(t)dt. (2.19)

52

Due to the definition of I−i , we have:

1

|I−i |

∫
t∈I−i

c(t)dt < γi = c̃i − r. (2.20)

Since |I−i | ≤ tei − tsi , the following can be obtained from (2.20):

1

tei − tsi

∫
t∈I−i

c(t)dt < γi = c̃i − r. (2.21)

Then (2.18) can be proved by combining (2.19) and (2.21).

Lemma 3 shows that the playback buffer will keep growing when c̃i > r.

If the buffer grows too high, i.e., bi > b it is reasonable to set the threshold γ in

a more aggressive way than (2.16) so as to further reduce system utilization. So

when bi > b, we will reduce the amount of requested video so that the playback

buffer drops to b at the end of the ith interval. Thus the total amount of video

delivered is rwi − r(bi − b). By analogy with the thresholding policy (2.16),

we set the threshold to be:

γi = max{c̃i −
rwi − r(bi − b)

wi
, 0},

which motivates thresholding policy when buffer is high in BDT (Line 11).

Note that Lemma 3 holds under the assumption that the prediction

of the average capacity is accurate. However if the prediction is higher than

the true capacity, the thresholding policy (2.16) may lead to extra rebuffering

time. To mitigate this problem, we use the greedy strategy, i.e., set γi = 0

when bi < b, which results in policy when the buffer is low in BDT (Line 13)

53

Note that BDT does not rely on precise capacity predictions. It only re-

quires reasonable precision in the prediction of the average capacity variations

for a finite window into the future.

To test the performance of BDT, we ran simulations where we use the

same settings as in Section 2.5. For BDT, we took wmax = 10s, b = 2s, b = 12s,

r = 900kbps, and the buffer size is 21600kbits, which corresponds to 24 sec-

onds of video. We generate prediction error for the average capacity variations

as i.i.d. Gaussian random variables with zero mean and standard deviation

σ varying within the set {0, 0.2cavg, 0.4cavg, 0.6cavg, 0.8cavg, cavg}, where cavg

is the average of the true capacity. We compare BDT with GPCT and the

greedy strategy which always delivers video content as soon as possible. The

results are shown in Figure 2.7. As can be seen, BDT achieves up to a 15%

reduction in system utilization as compared to the greedy strategy, while the

optimal offline solution achieves a 25% reduction in the same simulation sce-

nario. Moreover, BDT only results in a slight increase in rebuffering time (up

to 0.05 seconds in the simulations, which is almost negligible as compared to

the length of the video). Also as the prediction error grows, the performance

of BDT does not drop too much. Thus BDT is effective in terms of reducing

system utilization, and simultaneously keeping a low rebuffering time, and can

work against uncertainty in future capacity variations.

54

0 0.2 0.4 0.6 0.8 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

σ / mean capacity

sy
st

em
 u

til
iz

at
io

n

Greedy
GPCT
BDT

0 0.2 0.4 0.6 0.8 1
0.27

0.28

0.29

0.3

0.31

0.32

0.33

σ / mean capacity

re
bu

ffe
rin

g
tim

e
(s

ec
on

d)

Greedy
GPCT
BDT

Figure 2.7: Performance comparison among BDT, GPCT and the greedy strat-
egy. BDT achieves up to a 15% reduction in system utilization as compared
to the greedy strategy and only results in a slight increase in rebuffering time.
Also as the prediction error grows, the performance of BDT does not drop too
much.

2.7 Conclusion

By leveraging geolocation and contextual information regarding users

mobility patterns it is possible to predict the large-scale wireless capacity vari-

ations mobile users are likely to see. In this chapter we have developed and

analyzed new cross-layer transport protocols that exploit knowledge of future

capacity variations to deliver stored video (or other files) efficiently without

compromising rebuffering/delays. Our analysis and simulations suggest this

has substantial potential to increase the ability of wireless systems to deliver

stored video in the case of mobile users seeing high variability in their available

capacity.

55

Chapter 3

Application-Aware Scheduling in D2D

Networks

3.1 Introduction

Device to Device (D2D) communication refers to establishing direct

wireless links among mobile devices circumventing relaying through infras-

tructure, e.g., Wi-Fi and cellular access points. This is expected to be a key

technology to improve overall system capacity and users’ experience for various

proximity-driven services, e.g., file sharing, spatial context sharing and adver-

tising, local voice service, local multicasting, multiplayer gaming, augmented

reality, synchronization among personal devices, communication among wear-

able devices and smart phones, etc. Overviews of D2D technologies can be

found in [23] and [24].

D2D links have many advantages. First, short-range links can achieve

high data rate at low power thus increasing spatial reuse. Second, such links

This chapter is based on my work in [25] (in submission to IEEE/ACM Trans. on
Networking), which is co-authored by Dr. Gustavo de Veciana.

56

can directly offload traffic that would otherwise need to be relayed on 2 hops

through infrastructure, thus reducing overheads, transmission delay, and sav-

ing precious infrastructure resources. Third, D2D connectivity also makes

cooperation among devices, e.g., a mobile device can function as a gateway

or relay for others, enabling flexible usage scenarios. Note that D2D commu-

nications can be supported on licensed and/or unlicensed bands, e.g., LTE

Direct [34] and LTE Proximity Service (ProSe) [3] are targeted for licensed

bands while Wi-Fi Direct [42] operates on unlicensed band, thus the benefi-

ciaries of offloading and thus cost structures may differ.

A key feature of D2D networks is link dynamics. Since links are only

available when devices are within close proximity of each other, network topol-

ogy can have substantial variability. D2D links are likely to be initialized and

ended frequently depending on users’ behavior. For example, people who meet

during a conference may have a few hours to share a large file; while meeting

on the street may limit link availability to several minutes; vehicle-to-vehicle

communications may be available only for a few seconds. The work in [18]

presents a study of the distribution for such available times. We refer to the

time for which a link is available as its contact time, thus giving a deadline

for completing the associated data transmission. The characteristics of traf-

fic loads and network dynamics can thus have a substantial impact on the

usefulness of D2D technology.

The focus of this chapter is on understanding how scheduling can im-

prove the performance of such networks. We consider a broad class of appli-

57

cations where links are set up to share files (data, images, videos, etc.) but

are only available for a limited ‘contact time’. Our focus is on the following

performance metrics: (1) total offloaded data; (2) number of transfers com-

pleting within deadlines; and (3) average file transfer delays for completed

transfers. Offload traffic is a system performance metric, since increasing the

offloaded data will reduce the traffic on the infrastructure networks. Of course

individual users will likely also benefit from offloaded data if such transfers

are cheaper or free relative to infrastructure mediated communications. Com-

pletion of transfers is desirable from both the users’ and system’s perspective

since in the worst case it reduces partial transfers/lost data and in the best

case it reduces overheads/delays associated with switching the transmissions

from the D2D link to infrastructure networks. Average delays for completed

transfers are also a natural user perceived performance metric. Note that we

focus on file transfers because they are the intrinsic components of many ap-

plications e.g., web browsing, multi-user gaming, stored video streaming, etc.

Thus besides file transfers, our work will provide insights on managing QoS in

a broader set of applications.

Many D2D link scheduling algorithms have been proposed over the last

decade. Current state-of-the-art examples include FlashLinQ [44] which is

intended for D2D transmission on licensed bands, and CSMA-based protocols

e.g., IEEE 802.11 family, IEEE 802.15.4, which are used in establishing D2D

links via Wi-Fi technology, e.g., SoftAP, Wi-Fi direct, etc. Further recent

research building on these standards include ITLinQ [31] and Quantile-based

58

CSMA [20] aiming to further enhance sum throughput and/or fairness. The

focus to date has been on ‘greedily’ optimizing the sum throughput perhaps

subject to fairness concerns for a static set of users. Such schedulers may,

however, not result in good performance in the dynamic settings we envisage

in practice. For example, Figure 3.1(a) exhibits simulation results for the

offload traffic and number of completed transfers for a dynamic network with

increasing D2D link arrival rates under FlashLinQ scheduling – details are

provided in Section 3.5. As expected when the D2D traffic load increases so

does the offload traffic, however, the number of successful transfers eventually

collapses. This is not really surprising since at higher loads one might expect

individual users to have lower throughputs and thus miss their completion

deadlines. Could better schedulers further enhance both traffic offload and

completed transfers?

Figure 3.1(b) shows a snapshot of the locations of active D2D links,

during a simulation of a dynamic network, wherein most of the D2D links are

clustered in the upper right corner of the square area, while only a few links

are present at the bottom right. This ‘clustering phenomenon’ is partly caused

by the randomness of the underlying arrival process – again see Section 3.5 for

details. However another cause for such link clustering is that they experience

more interference than those in a less crowded area, which results in lower

throughput for the clustered links, which delays their completions. As a result

the links in a crowded area will further delay new links in that area. Overall

this results in the emergence of increased link clustering which may result

59

in poorer performance. In this chapter we explore the significance of this

phenomenon. Could better schedulers mitigate this clustering effect?

clustering

Link location x coordinate
Li

nk
 lo

ca
tio

n
y

co
or

di
na

te
−150 −100 −50 0 50 100 150

−150

−100

−50

0

50

100

150

Link arrival rate
0 10 20 30

0

50

100

150

200

N
um

be
r

of
 tr

an
sf

er
 c

om
pl

et
io

ns

0

1

2

3

4
x 10

10

number of completions
total offloaded traffic

T
ot

al
 o

ffl
oa

de
d

tr
af

fic

(a) (b)

Figure 3.1: (a) The number of file transfer completions and the amount of
offloaded traffic under FlashLinQ vs. link arrival rate; (b) A snapshot of the
locations of active D2D links during the simulation.

Related Work. There has been a substantial body of literature on re-

source allocation in D2D networks. These works can be categorized in terms of

four usage scenarios: (1) non-cooperative D2D networks overlaid on separate

frequency bands than the cellular network, where each D2D link is initiated

between a transmitter and its associated receiver, and scheduling algorithms

(either distributed or with base station assistance) can be designed without

consideration of the cellular users. The goal is then to avoid link collisions (or

mitigate interference) and optimize the network sum throughput subject to

some fairness concerns for D2D users. Examples of such work are [44], [31], [20]

and [33]. (2) The second scenario is that of a non-cooperative D2D network

60

underlaid with a cellular network, where D2D transmitter-receiver pairs and

cellular users are sharing the same resource. The D2D users usually can have

two transmission modes: cellular mode in which the D2D transmissions use

the base station as a relay; and D2D mode where the D2D transmitters com-

municate directly with their receivers. Thus the schedulers need to decide

how to allocate the resources between cellular and D2D users, and also decide

which mode a D2D pair should be in if mode selection is allowed. Such works,

e.g., [4], [46], [47] and [8], mainly focus on maximizing the total throughput

or minimizing the total power consumption, again possibly subject to some

fairness concerns. (3) The third scenario is that of cooperative D2D net-

works, where users are divided into cooperating clusters, and in each cluster

the users are receiving the same service (e.g., downloading the same file) from

base station and/or sharing it amongst each other through D2D links. These

works mainly focus on finding optimal clusterings that minimize file trans-

fer delay, maximize total throughput or minimize total power consumption,

e.g., [13], [11] and [21]. (4) The fourth scenario is that of D2D relay networks,

where D2D links are set up for the purpose of relaying traffic from one user to

another or to the base station, in order to mitigate rate degradation for users

with poor coverage or in dead spots, or relaying traffic from an overloaded

cell to an underloaded cell to balance traffic loads. The goal is to improve

overall throughput (or minimize power consumption) and provide fair service

to all users. Note that many of the ideas in D2D relay networks can be bor-

rowed from early works on ad hoc networks. Such works have been studied

61

in, e.g., [28], [15] [43], [2]. Moreover, [12] proposes a relaying policy taking

advantage of user mobility.

This chapter focuses on the first scenario, i.e., non-cooperative D2D

networks overlaid on a cellular network. The difference between our work and

the other works in this setting is that, we consider D2D links’ dynamics and

QoS in terms of perceived per-flow performance. We devise scheduling policies

jointly improving offloading and number of successful completions when D2D

links’ transfers have deadlines. To the best of our knowledge, there is no prior

work on this topic. There is however a literature on scheduling traffic with

deadline constraints in a broader settings which we discuss next.

Going back to the real-time scheduling literature [30] presents problems,

e.g., resource sharing, processor allocation, etc., for distributed systems where

tasks have hard real-time constraint. They propose conditions for the feasibil-

ity of scheduling policies to meet hard constraints, but do not consider the case

where the requirements may be infeasible and one still wishes to maximize the

number of successful completions. In [38] the authors study the scheduling of

multiple real-time streams with deadlines, over a shared channel. The focus

is on maximizing the number of packets successfully transmitted within their

deadlines. They propose the Feasible Earliest Due Date (FEDD) scheduling

policy and prove optimality under particular assumptions. This work focuses

on packet-level deadline constraints, not flow-level (i.e., file transfer) dead-

lines which are our concern. Also the work assumes an on/off wireless chan-

nel model with only two channel states, and thus there is no concern with

62

throughput. The authors in [14] study a wireless network with time-varying

capacities and delay constraints. They propose an online scheduling algorithm

that optimizes users’ long-term average rates under packet delay constraints.

The algorithm addresses fairness by guaranteeing each user a certain mini-

mum long-term service rate, and assumes this is strictly feasible. This work

also focuses on packet-level deadlines, and thus does not address the flow-level

deadline constraints. In [45] the authors propose a family of bandwidth allo-

cation criteria which depends on the residual work of on-going transfers. This

is a similar idea to that proposed in this chapter, i.e., giving high priority to

the flows with smaller residual sizes. However, [45] focuses on minimizing the

user perceived average bit transmission delay, and does not address the issue

of completion/failure of flows subject to deadlines. The authors of [5] study a

dynamic scenario similar to ours, where users come and go as governed by the

arrival and completion of service demands over time. They focus on the per-

formance of channel-aware scheduling algorithms at the flow level and provide

analysis on the distribution of the number of active users, the mean service

times, the throughput and on the stability of the system. This work however

uses a processor-sharing model which does not capture the characteristics of

D2D networks. Moreover, it does not address flows with deadlines.

Our Contributions. In this chapter we explore the potential benefits of

sharing and exploiting application-aware information, e.g., residual file sizes,

deadlines etc., in D2D link scheduling. Our specific contributions are as fol-

lows. First we analyze a single collision domain setting where all links contend

63

for the same shared resource. In this setting we establish conditions under

which there exist performance optimal schedulers maximizing offload traffic

or the number of transfer completions. A key result is that if the transfers

have deadlines, the Earliest Deadline First (EDF) scheduler, will maximize

the total offload traffic when links have homogeneous service rates. Note that

EDF is known to either produce a feasible schedule under flow-level delay

constraints (e.g., in [30]), or to maximize total number of delivered packets

under packet-level delay constraints (e.g., in [38]). However in this chapter we

show that it can also maximize throughput under flow-level delay constraints.

Another key result is that if transfers have deadlines, the Shortest Remaining

Processing Time (SRPT) first scheduler, will maximize the number of com-

pletions when specific traffic requirements are met. Note that although SRPT

is known to minimize average delays in settings without deadlines, we show,

perhaps surprisingly, that in a deadline constrained scenario it also maximizes

completions. The requirements for this to be true will tend to be satisfied

when the network is heavily loaded, i.e., when these constraints are tight. The

key insight is that when loads are heavy SRPT will end up maximizing the

number of completions. We also show that the schedulers maximizing the of-

fload traffic may not be compatible with those maximizing completions, and

further that in general no online policy is available to optimize the two metrics.

Second we use these insights to develop application-aware versions of

FlashLinQ and CSMA-like protocols with a view on improving offload traf-

fic, number of completions and reducing delays in dynamic D2D networks.

64

Our simulation results validate the theoretical insights suggesting that indeed

there are substantial benefits to be gleaned from application-aware D2D link

scheduling. We explore the sensitivity of these results to various underly-

ing assumptions on the network scenario. Third we investigate the benefit of

applying admission control. Our simulations show that a simple admission

control strategy can improve QoS among admitted links, moreover, admission

control used together with application-aware schedulers can further enhance

its performance. Fourth, we consider a scenario where D2D links’ transfers

have no deadlines and thus the system can be unstable for high link arrival

rates. Our simulation show that application-aware schedulers result in lower

file transfer delays and have the potential to increase the system stability

region. Finally, we show that application-aware schedulers are able to miti-

gate spatial clustering of links and thus reduce the overall interference among

nearby links, which explains why such schedulers are able to enhance links’

QoS as well as system capacity.

Paper Organization. The rest of the chapter is organized as follows.

Section 3.2 describes the dynamic D2D networks to be considered. In Section

3.3 we analyze a simple scenario where all D2D links contend for the same

shared resource, i.e., a single collision domain. We establish optimal schedulers

maximizing offloaded data and the number of successful transfers separately

under particular assumptions, and obtain insights for designing scheduling al-

gorithms in general scenarios. We exploit these insights and design application-

aware schedulers based on FlashLinQ and a CSMA like protocols in Section

65

3.4. In Section 3.5 we evaluate the performance of our proposed schedulers

via simulation and show the merit of application-aware schedulers in various

aspects e.g., improving links’ QoS, increasing total offload amount, enhancing

performance for a system under admission control, reducing transfer delays in

the scenario where links have no deadlines, mitigating links’ spatial clustering,

etc. Section 3.6 briefly concludes the chapter.

3.2 Dynamic D2D Network Model

We consider a network where D2D transceiver pairs associated with

interactions among users and/or machines are initiated according to a general

spatio-temporal arrival process. Upon initiation a D2D link i has both an

associated file of size si it wishes to transfer and a deadline di modeling a

limited contact time amongst the associated devices or possibly an application-

level requirement. The pairs (si, di), i = 1, 2, .. can be arbitrary, possibly

capturing usage scenarios where the file sizes and deadlines are correlated,

e.g. (1), it may be expected if two users of a D2D link initiate a large D2D

file transfer, they have a priori knowledge of the time they are likely to be

close to each other; or (2), in order for users to experience a consistent D2D

throughput of at least r the network may assign a deadline for a file transfer

of size si given by di = si/r. We assume the D2D links’ locations, and thus

associated users/machines do not change during their presence in the system.

If a link is only available for a limited time, it leaves the system when either

the associated file transfer completes or its deadline expires.

66

We shall also assume a D2D network which is operating on a dedi-

cated frequency band which is orthogonal to the infrastructure network, e.g.,

cellular network, WLAN, etc. So there is no interference amongst D2D and

infrastructure transmissions. For simplicity we assume all D2D links share the

same frequency band so their transmissions may interfere with each other. In

particular as the density of D2D links becomes large the distance between a

typical D2D link and its nearest neighbor will become smaller and thus the

interference they experience if they transmit simultaneously will be higher.

So scheduling algorithms are needed to avoid transmission failure caused by

interference. As should be clear, there will be a complex interaction among

the D2D link dynamics, the scheduling of D2D link transmissions, interfer-

ence, and deadlines, which will drive the performance metrics of interest. In

order to develop a basic understanding, in the next section we first consider a

simpler system where all the links belong to a single collision domain, i.e., a

region where all ongoing D2D links strongly interfere with each other so only

one can be scheduled at a time.

3.3 Single Collision Domain Model

When D2D links belong to a single collision domain the network can be

modeled as a single server queue where links arrive as a random process. Each

link i has an associated initial file size si, transfer deadline di and service rate ri

bits/s corresponding to link i’s capacity when it is scheduled. We let tai denote

the arrival time for link i and denote by tdi its departure which occurs when

67

either the file transfer completes or the deadline expires, and thus depends on

the link scheduling algorithm. As mentioned earlier in this setting only one

link will be scheduled at a time but we assume service given to a link’s file

can be preempted and subsequently resumed at will. For link i, we let sri (t),

dri (t) and τi(t) denote the residual file size, remaining time to deadline, and

the cumulative service it has been given up to time t ∈ [tai , t
d
i]. In other words,

when link i arrives at tai we have sri (t
a
i) = si and dri (t

a
i) = di and subsequently

at some time t ∈ [tai , t
d
i] we have that sri (t) = si−riτi(t) and dri (t) = di−(t−tai).

As we will see below, under additional specific conditions one can de-

vise online scheduling policies which maximize the total offload traffic and/or

number of file transfer completions.

3.3.1 Schedulers Maximizing Offload Traffic

In order to maximize the offload traffic, i.e., aggregate D2D bits deliv-

ered, one might imagine greedily serving the link with the highest service rate.

Unfortunately since each link has a deadline, this greedy strategy is not op-

timal. The following result exhibits the role of D2D link deadlines for offload

optimal schedulers.

Theorem 5 Consider the server system modeling a single collision domain

described above and suppose further that links’ service rates are homogeneous,

i.e., ri = r ∀i, then Earliest Deadline First (EDF) scheduling policy maxi-

mizes the offload traffic at all times for arbitrary arrival processes but without

accumulation points. Under the EDF scheduler at any time t, the link with

68

the earliest deadline is served, i.e., that with smallest dri (t) among all links

available for service.

Proof: Since all the links share the same service rate r, a sched-

uler maximizing the system’s utilization will also maximize the offload traffic.

We shall prove the theorem via an exchange argument. Consider an optimal

scheduler φ, we shall show that through a sequence of swaps we can convert

φ into EDF scheduling without decreasing the system utilization.

Suppose EDF and φ schedule the same links during [0, t1) but they

differ thereafter. If so, without loss of generality since the arrival has no limit

points, there is an interval [t1, t1 + δ) where EDF schedules a link, say Link 1

and φ schedules a different set of links, for simplicity lets say Link 2. 1

We now modify φ so that it matches EDF over the interval [0, t1 + δ)

but still has the same utilization. There are two cases to consider:

Case 1. Suppose φ schedules the bits EDF schedules for Link 1 on [t1, t1 + δ)

at some later time, e.g., an interval [t2, t2 + δ) or possibly a set of intervals

but with the same length δ. If so, we can exchange the service times that φ

allocates to Link 2 on [t1, t1 + δ) with those it allocates to Link 1 later on, e.g.,

[t2, t2 + δ). This modification results in no change of utilization for φ but now

it matches EDF on the interval [0, t1 + δ). This modification must be feasible,

i.e., meet deadlines, since Link 2’s deadline must be greater than or equal to

1Note for simplicity we assume the scheduler φ schedules but one link at a time, i.e., if
it were continuously time sharing between two or more links one could aways modify it so
that it scheduled but one link at a time for the appropriate fractions of times.

69

that of Link 1.

Case 2. Suppose φ does never schedules some of the bits served by EDF on

[t1, t1 + δ) at some later time. If so we can let φ schedule those bits during

[t1, t1 + δ) in lieu of those it was serving. Once again there is no change

of system utilization for φ and this replacement must be consistent with the

deadlines of the traffic. Once again φ has been modified to match EDF without

lowering its utilization.

The above procedure can be carried out until φ has been transformed

into EDF without modifying its utilization and thus its associated offload

traffic. It follows that EDF is also optimal.

The insight behind Theorem 5 is that when links have different dead-

lines, if we serve the link with the earliest deadline first, we may still be able

to serve the links with longer deadlines at a later time. Otherwise if we serve

the links with longer deadlines first, the links with early deadline may expire

before getting served. Although our optimality result is only guaranteed when

all the links have homogeneous service rates, this insight also reflects the role

of deadlines in heterogeneous cases, especially when system is not fully loaded.

However we should point out that when the links’ arrival rate is large, the role

of deadlines is less critical. In fact, in such cases there will likely to be a large

number of links in the system at any time, and one can always find a link

with a high capacity to serve, thus no need to delay the transmission of the

links with high rates and long deadlines. As a result, greedily serving the link

with the highest service rate may be near optimal when the system is heavily

70

loaded.

3.3.2 Schedulers Maximizing Number of File Completions

Schedulers aiming to maximize the number of file completions also face

the challenge of not knowing future arrivals and their associated deadlines.

Still with an additional condition on the traffic, we can prove the optimality

of a simple online scheduler.

Theorem 6 Consider the server system modeling a single collision domain

described above. If file sizes, transfer deadlines and possibly heterogeneous

user service rates are such that for each link i we have

di −
si
ri
<
sj
rj
, ∀j, (3.1)

then the Shortest Remaining Processing Time (SRPT) first scheduling policy

maximizes the number of file completions for all finite times for arbitrary ar-

rival processes but without accumulation points. Under SRPT scheduling at

any time t, a link i∗ is served only if

i∗ ∈ argmini{
sri (t)

ri
|sri (t) > 0, dri (t)−

sri (t)

ri
≥ 0}, (3.2)

i.e., has unfinished work, its deadline has not expired and has the shortest

residual service time. Ties can be broken arbitrarily.

Proof: In Lemma 4 below we will show that when the link traffic

load satisfies Condition (3.1) and links are scheduled according to the SRPT

71

policy then at any time t, for any active link i, the following condition holds:

dri (t)−
sri (t)

ri
<
srj(t)

rj
∀j, s.t.

srj(t)

rj
>
sri (t)

ri
. (3.3)

Now suppose rather than scheduling i∗ (i.e., an active link with the SRPT) we

schedule link j. The above condition guarantees that completing the transfer

for link j will make it impossible to finish link i∗ before its deadline. In other

words more time i.e.,
srj (t)

rj
will be required to complete j than would be required

to complete i∗, i.e.,
sr
i∗ (t)

ri∗
. Thus such scheduling policy would be suboptimal.

Note that Condition (3.1) is tied to the deadline slack for each file trans-

fer being less than the service time for files. The following lemma establishes

that under SRPT such conditions propagate.

Lemma 4 Consider the server system modeling a single collision domain de-

scribed above. If file sizes, transfer deadlines and possibly heterogeneous link

service rates are such that for each link i, Condition (3.1) is satisfied, then

under the SRPT first scheduling policy at any time t, for any active link i,

Condition (3.3) holds.

Proof: First note that SRPT will keep serving a link until the

file transfer completes, deadline expires or a new link arrives. We prove the

lemma by induction. The condition holds trivially prior to the first link arrival

to the system. Now suppose the condition holds at all times during the interval

[0, t) and that at time t there are n active links in the system, denoted without

72

loss of generality link 1, 2, ..., n, and Condition (3.3) holds for these links up to

time t. Suppose SRPT is scheduling Link i at time t. We consider two cases.

Case 1. Suppose no new link arrives before Link i’s file transfer completes or

deadline expires, at time tdi = t+ δ, then (3.3) will continue to hold for all the

n links at all times during the process, and it holds for the other n − 1 links

in the system when link i exits at time t+ δ. This should be clear since when

SRPT is serving link i, drj(t)−
srj (t)

rj
is decreasing, while

srj (t)

rj
stays fixed for all

j ∈ {1, ..., n}\{i}. Thus (3.3) will continue to hold for [0, t+ δ].

Case 2. A new link say n + 1 arrives at time tan+1 = t + δ, before the file

transfer of link i completes. On one hand for any link j ∈ {1, ..., n} where

sn+1

rn+1
>

srj (tan+1)

rj
, we have:

drj(t
a
n+1)−

srj(t
a
n+1)

rj
≤ dj −

sj
rj
<
sn+1

rn+1

=
srn+1(tan+1)

rn+1

. (3.4)

Note the first inequality in (3.4) is due to the fact that the slack (i.e., drj(t)−
srj (t)

rj

for link j at time t) of a link is always non-increasing. The second inequality

in (3.4) is Condition (3.1). On the other hand, if sn+1

rn+1
<

srj (tan+1)

rj
, similarly we

have:

drn+1(tan+1)−
srn+1(tan+1)

rn+1

=

= dn+1 −
sn+1

rn+1

<
sn+1

rn+1

<
srj(t

a
n+1)

rj
, (3.5)

where the first inequality is derived from Condition (3.1). Combining (3.4)

and (3.5) it follows that (3.3) holds for all the n + 1 links over the interval

[0, t + δ]. The induction hypothesis thus holds for the larger time interval

73

[0, t + δ]. Since the arrival process has no accumulation points it should be

clear that this guarantees it holds for all subsequent times.

3.3.3 General Online Optimal Scheduling Algorithms Do Not Exist

The restrictions (homogeneous service rates, tight deadline constraints)

for the optimal schedulers developed in the previous two subsections leave open

the question whether there may exist more general optimal online algorithms

for the single collision domain model. In this section we show that general

online optimal scheduling algorithms do not exist, in other words to achieve

optimality one will need knowledge of the future. Consider the following simple

example.

Suppose at time t = 0, there are two links in the system, with cor-

responding residual file sizes, service rates and deadlines given by sr1(0) =

2, r1 = 1, dr1(0) = 2, sr2(0) = 2, r2 = 2, dr2(0) = 3. If there are no future

arrivals, the optimal schedule is to first serve Link 1 until time t = 2, then

schedule Link 2 until time t = 3. The maximum offload is 4, and the maximum

number of completions is 2. However, if two new links arrive at time t = 1,

with s3 = s4 = 2, r3 = r4 = 2, d3 = d4 = 2, then the previous schedule cannot

achieve optimality in terms of either the offload or number of completions,

even if we change the schedule upon the new arrivals at t = 1. Indeed it can

be easily seen that the optimal schedule is to serve Link 2 during t ∈ [0, 1],

then serve Link 3 during t ∈ [2, 3], and serve Link 4 during t ∈ [3, 4]. But note

that serving Link 2 during t ∈ [0, 1] cannot achieve optimality in the previous

74

case. Thus any online algorithm which is agnostic of future arrivals cannot

guarantee optimality.

3.4 Application-Aware FlashLinQ and CSMA-Like Sched-
ulers

In the previous section, we obtained some insights on how to schedule

links in a dynamic D2D network by analyzing a single server model. Although

we proposed optimal schedulers under some specific conditions, we should note

that there is no easy way to generalize these to a general D2D network, due

to the complex interactions among: the link dynamics, the scheduling of link

transmissions, interference, and deadlines. However the insights we obtained

can be used to devise good schedulers.

Theorem 5 suggests that to maximize offload traffic it is beneficial to

serve the links with early deadlines first, especially when the links have similar

capacities or when the system is not heavily loaded. Theorem 6 suggests that

in order to improve the number of file transfer completions it is better to

first schedule the links associated with files having short remaining processing

times. Note that Theorem 6 is proved assuming Condition (3.1), which requires

that the deadline slack for each file transfer is less than the service time for

files. One can expect this might hold in a network with heavy loads since due

to interference the service rate per link might be low.

Although these insights were obtained under special assumptions, we

think they should still work well under general situations. Below we show

75

how to modify two state-of-the-art D2D schedulers, FlashLinQ and CSMA

like protocols, based on these insights.

3.4.1 Application-Aware FlashLinQ

FlashLinQ is a synchronous peer-to-peer wireless PHY/MAC network

architecture with many interesting innovations [44]. One of the innovative

aspects of this protocols is an signaling mechanism which enables each receiver

to know the channel gains from neighboring transmitter and transmitter to

subsequently know the channel gains to neighboring receivers, again see [44]

for details. Here we shall focus on link scheduling. The basic idea is to schedule

a maximal feasible set of links based on measured channel conditions. On any

time slot, FlashLinQ determines the set of links it would schedule as follows.

First all links are randomly assigned a priority for that slot– this is actually

computed based on the link identifier and a shared seed, so all links have a

consistent view of the priorities of their neighboring links on each slot without

exchanging additional information. Second, each receiver decides if it should

yield and does so by checking if the interference from higher priority links

would push its signal to interference ratio below a threshold γrx. Subsequently

each transmitter decides if it should yield to higher priority links that have

been scheduled (i.e., receiver has not yielded), by checking that it does not

cause undue interference to those links. In principle this process could be

repeated to efficiently achieve a dense packing of links.

Later in Section 3.5 we are going to see a simulation result for a dy-

76

namic D2D network under FlashLinQ, as in Figure 3.3. It exhibits reasonable

performance in terms of offload traffic but a poor performance in terms of num-

ber of file transfer completions. This makes sense since FlashLinQ is agnostic

of both file sizes and link deadlines – so we can ask whether performance could

be substantially improved by making the scheduler application-aware. Recall

that in FlashLinQ, the links with higher priority have a higher chance to be

scheduled. Thus, instead of assigning random priorities to links, we might

consider assigning priorities, based on application-layer state.

We briefly discuss our proposed Application-aware FlashLinQ (A-FlashLinQ)

scheduler. Each active D2D link, say Link i in the system maintains a mov-

ing window average estimate of its application layer throughput r̄i(t) at time

t, corresponding to the throughput seen in the window [t − tpwnd, t). Link i

also updates its residual file size sri (t) and remaining time to deadline dri (t) if

known. Links are scheduled every tslot second, which is on the order of the

wireless frame time 2ms.

Setting priorities for link scheduling. We propose to set priorities for

link scheduling in an application-aware manner. For now lets us discuss this as

a centralized process. On each time slot t, links are classified into two groups:

Group 1 contains links which are tightly constrained while Group 2 contains

those which are loosely constrained and infeasible. These are defined as follows:

• Tightly constrained links have either been in the system less than tpwnd

second, or have residual time to deadlines close to the estimated residual pro-

77

cessing time, i.e.,

{i|dri (t) ∈ [αl, αh]
sri (t)

r̄i(t)
},

where αl < 1, αh > 1 are two thresholding parameters. Note that these links

are close to violating their deadlines.

• Loosely constrained links are such that their residual time to deadlines ex-

ceeds the estimated remaining processing time, i.e.,

{i|dri (t) > αh
sri (t)

r̄i(t)
},

i.e., they have some time before the deadline expires.

• Infeasible links are such that their residual time to deadlines is less than the

estimated residual processing time, i.e.,

{i|dri (t) < αl
sri (t)

r̄i(t)
},

so, such links are unlikely to complete.

In addition to avoid instability we include hysteresis, whereby once a

link is classified to be of a given type, it must wait tpwnd second before changing

its classification.

Priorities are set as follows. First we give Group 1 links higher priority

than Group 2. This is because the tightly constrained links are those likely

to fail in the near term but may still be able to finish if getting served in

time. Meanwhile loosely constrained links can wait since they have more

slack, – this matches the insight from Theorem 5. Finally infeasible links have

little hope of completing their file transfers prior to their deadlines and so are

78

given low priority. In summary we will prioritize resource allocation to tightly

constrained but feasible links in order to improve file transfer completions.

Furthermore amongst Group 1 links priority is given in ascending order

according to their estimated remaining processing times, i.e., s
r(t)
r̄i(t)

, so these are

at the top of the priority list. Similarly among Group 2 links prioritization is

based on their estimated remaining processing time sr(t)
r̄i(t)

. Note we use residual

processing time as the key criterion for prioritization so as to improve the

number of file transfer completions, – this is based on the insight given in

Theorem 6. Given this overall priority list, we let the other parts of FlashLinQ

to proceed unchanged.

Reducing overheads in application-layer information exchanges. As

mentioned above FlashlinQ requires all links to have a consistent priority list,

thus the above prioritization needs established and shared amongst all (neigh-

boring) links. This appears to require quite a bit of information to be ex-

changed, e.g., share residual processing times and possibly deadlines amongst

all neighboring links. To reduce such overheads, we assume that only 3 bits

of application-layer information are broadcast by each transmitter with its

receiver and the transmit/receiver of all neighboring links. To that end we re-

quire links to quantize their residual processing times. The first bit indicates

if the link is in Group 1 or 2. The second and third bits reflect its quantized

residual processing time. With the above application-level info and a random

prioritization of the links (as currently available in FlashlinQ) an app-aware

prioritization of links can be determined as follows. Links in Group 1 have

79

higher priority than those in Group 2. Within each group, links are prioritized

according to an ascending order of their quantized residual processing time.

Furthermore if two links have the same quantized value, then they are ordered

based on their current random priorities. Figure 3.2 shows an example of this

process. Each link, say L1, determines its neighbors which are in Group 1

and have smallest quantized residual processing time, e.g., L2,L3. These are

then ordered based on their current random priorities, i.e., L3 before L2. This

is also easily done for other residual processing time intervals, and then for

neighboring links in Group 2 also based on their quantized residual processing

times. Note that the application layer information really only needs to be

exchanged when there is a change in the quantized status of the link, thus

further reducing overheads.

L1
L2
L3
L4

1
3
2
4

Random Priority
Assignment to Links

Link Priority

App.-level Link
Categorization

Group1 L3 L2
 L4

Group 2 L1

App.-Aware
Random Priorities

L3
L2
L4
L1

1
2
3
4

Link Priority

Figure 3.2: Example of how application level groups and quantized residual
service times along with a random priority assignment to all links can be
combined to get an application aware prioritization of links.

Note that in most cases it is easy for applications to track the residual

80

file size and average application layer throughput, and thus estimate remaining

processing time. However our prioritization procedure also requires the appli-

cations to have knowledge or estimates of their deadlines. This is straightfor-

ward if deadlines are driven by application requirements. However if deadlines

are modeling link contact times which mainly depend on the users’ behavior,

it may not easy for the applications to determine their deadline slack in this

case. If this is the case one can skip the grouping procedure and simply sort

all links based on their quantized remaining processing times (where all 3 bits

are used to represent quantized remaining processing time). We refer to this

strategy as A-FlashLinQ without grouping.

3.4.2 Application-Aware CSMA-Like Protocols

Application-aware scheduling can be similarly realized in other D2D

link scheduling protocols. Carrier Sense Multiple Access (CSMA) is the MAC

scheduling protocol widely used in random access networks, e.g., CSMA/CD

in early local area networks (Ethernet), CSMA/CA in IEEE 802.11 wireless

local area networks, slotted CSMA/CA in IEEE 802.15.4 low-rate wireless

personal area networks, etc. D2D networks, especially those based on Wi-Fi

technology can use CSMA-like protocols to realize link scheduling. Our goal

in this section is not to cover the substantial details of CSMA implementation,

but instead we focus on a simplified model for CSMA-like protocol and explore

the benefits of incorporating application-aware scheduling.

We consider a slotted CSMA/CA model similar to the beacon-enable

81

mode in IEEE 802.15.4, but we make several simplifications. A detailed de-

scription and evaluation of slotted CSMA/CA can be found in [22]. In our

model we assume availability of a central node (e.g., PAN coordinator) sending

beacon signals every tslot second to all the D2D transmitters in the network

so all D2D transmissions are synchronized at the start of each slot. Each time

slot is further subdivided into a contention period of length tcp, followed by a

transmission period with length ttp, where tcp + ttp = tslot.

The transmitter of each link, say Link i maintains a contention window

of length cwi, and chooses a random backoff timer uniformly distributed on

[0, cwi]. During each contention period, the transmitter of Link i counts down

its backoff timer if the wireless medium is sensed to be free. If the timer reaches

0, the transmitter starts to transmit immediately. The transmission continues

through the rest of the contention period and the transmission period. Subse-

quently, the transmitter of Link i picks a new random backoff timer on [0, cwi],

and repeats the same counting down procedure in the next contention period.

The count down procedure is suspended if during the transmission period or

if the medium is sensed to be busy by the transmitter of Link i during the

contention period.

By contrast with traditional CSMA, we shall update the value of con-

tention window cw based on application layer information. We do this in a

similar manner to our proposed application-aware FlashLinQ. Links are self-

classified into Group 1 or 2, based on the criteria described in Section 3.4.1.

If Link i is in Group 1, then at time t, it picks a contention window of size

82

1
2βRPT

sri (t)

r̄i(t)
tcp, where

sri (t)

r̄i(t)
is the estimated remaining processing time at t for

Link i, and βRPT is a normalization factor which is larger than
srj (t)

r̄j(t)
, ∀j. If

Link i is in Group 2, then at time t, it picks a contention window of size

1
2βRPT

sri (t)

r̄i(t)
tcp + 1

2
tcp. Note that by doing so, the links in Group 1 will have

smaller contention windows and thus higher transmission priority than oth-

ers. Also within each group links with small residual service times will have

a relatively high transmission priority. We refer to such a scheduler as an

Application-aware Slotted CSMA-like (A-SCSMA) scheduler.

Note that the above A-SCSMA scheduler does not require the links to

share individual application layer information. However all links need to know

the normalization factor βRPT which may require the knowledge of the maxi-

mum remaining processing time among the concurrent links. In practice links

can have a rough knowledge of such value based on estimation or historical

statistics, or the central node (PAN coordinator) can collect and periodically

broadcast this value via its beacon signals on a crude scale.

As with A-FlashLinQ, A-SCSMA requires a link to be aware of the

remaining deadline of its file transfer. When such information is not available,

we can skip the grouping policy in A-SCSMA, and treat all links as if they are

in Group 1. We refer to this A-SCSMA without grouping.

Note that in our proposed A-SCSMA we skip many details as in con-

ventional CSMA, e.g., DCF inter-frame space (DIFS) and short inter-frame

space (SIFS) time intervals, RTS/CTS access mode, etc. We do not consider

the overhead from frame headers or acknowledge packets (ACK). Again, we

83

would like to point out that our goal is to explore the benefit of making the

scheduler application-aware by studying this simplified model. Test bed or

real case simulations are not the focus of this dissertation.

3.4.3 Managing FLow-Level Performance Through Deadlines

One of the challenges with devising scheduling algorithms for D2D net-

works is heterogeneity among links and users’ needs, e.g., the performance

seen by the users is highly dependent on their link lengths and their local

environment. So there is a tradeoff between the sum rate and the fairness

users will see. Ideally we would like to guarantee a certain user-level quality of

service. One way to do this is to have the applications set deadlines for their

transfers, and then have the system try to meet these deadlines. In addition

the application could also let the users specify deadlines to reflect the users’

preferences and/or contact times if they have such prior knowledge.

This approach is essentially equivalent to applications communicating

to the network their QoS requirements. In such networks users might game

the system, e.g., an application may manipulate its deadline (so that the cor-

responding link is scheduled as one that is “tightly constrained”) and try to

take unfair advantage over other transfers. Another example is one where an

application may choose to break up its file into several smaller files to transmit

in order to obtain higher transmission priority due to the smaller remaining

processing times of the subfiles. This is not fair to the users who are not

breaking up their files, and moreover, breaking up a file into pieces might also

84

be problematic for the application level, e.g,. having more overhead associated

with the initialization of file transfers. These concerns are typical in any sys-

tem that schedules the users based on their reported QoS requirements. Such

systems may need to let the users pay a well-designed “cost” to disincentivize

them from gaming/cheating. While we do not study them in this dissertation,

different approaches to disincentivize selfish behavior can be found in literature

e.g., the auction mechanism proposed in [14].

Our study of deadline constrained file transfers also provides insights

on managing QoS for other applications. For example, stored video delivery

can be viewed as sequentially transferring a number of subfiles (in HTTP-

based video streaming they are referred to as the video segments), where each

subfile has to be delivered within a deadline to avoid rebuffering. By setting

proper deadlines for these subfiles, one can manage users’ video quality of

experience. Similar arguments can be made for other types of applications in

D2D networks by setting appropriate deadlines on file transfers.

3.5 Performance Evaluation

We ran simulations of our proposed A-FlashLinQ and A-SCSMA sched-

ulers for dynamic D2D networks using Matlab. D2D links are initiated accord-

ing to a homogeneous spatio-temporal Poisson point process with intensity λ

arrivals/(m2 ·second) in a 300m×300m region. The length of each link may be

different, according to a specified distribution but the orientation is rotation-

ally invariant. Each link is set up to mediate a file transfer from a designated

85

transmitter side to a receiver, although this will of course require bidirectional

communications (i.e., ACKs) we focus on the direction in which the majority

of the data will flow. Once a D2D link is initiated it attempts to transmit

its file within a specified deadline. A link leaves the system either when its

transfer completes or its deadline expires.

We let both A-FlashLinQ and A-SCSMA operate over a 5 MHz spec-

trum, and all the links transmit on the same spectrum so simultaneous trans-

missions will cause interference to each other. We use a transmit power of

20 dBm for each transmitter along with an antenna gain of −2.5 dB and

a noise figure of 7 dB. The simulation uses a wrap-around model to calcu-

late the distance between any two devices and eliminate edge effects. Based

on these distances we model the pathloss between two devices according to

the radiowave propagation model suggested in ITU-R Recommendations P.

1411 [16] with an antenna height of 1.5 meters. We do not model fast fading

but let each channel experience independent shadowing with a standard de-

viation of 10 dB. The transmission capacity of a D2D link is determined by

the Shannon capacity function taking into account the aggregated interference

from other scheduled D2D links.

We test the performance of A-FlashLinQ and A-SCSMA in two cases:

(1) homogeneous case where links have homogeneous link distances, file sizes

and deadlines; and (2) heterogeneous link distances.

86

3.5.1 Dynamic D2D Networks with Homogeneous Links

We assume each link has a distance 20 meters, file size 150 Mbits and

30 seconds of deadline. For A-FlashLinQ we use the same parameters, e.g.,

9dB transmitter and receiver yielding thresholds as in [44]. A link schedule is

performed once every 2 ms, i.e., tslot = 2ms. The parameters used for grouping

in both A-FlashLinQ and A-SCSMA are that tpwnd = 0.5 second, αl = 0.7,

and αh = 2.

Remember that A-FlashLinQ allows each link to use 3 bits to share their

application layer information, of which the first bit indicates whether or not a

link is in Group 1, and the other 2 bits represent the link’s remaining processing

time, which basically requires a quantization function mapping the residual

service time into one of 4 intervals. The intervals were chosen to be [0, 10),

[10, 20), [20, 30) and [30,∞) seconds for the links in Group 1, and for those in

Group 2 the intervals are [0, 10), [10, 50), [50, 100) and [100,∞) seconds. For

A-FlashLinQ without grouping, all 3 bits are used for the remaining processing

time, and thus links need to map their residual processing time into 8 intervals.

In the simulations the 8 intervals are [0, 5), [5, 15), [15, 25),[25, 35), [35, 45),

[45, 55),[55, 65), and [65,∞) seconds. The priority list is then constructed

based on the 3-bit information as described in Section 3.4.

For A-SCSMA, we let tslot = 2ms. We further assume the contention

periods are much shorter compared to the transmission periods, i.e., tcp << ttp,

and thus we can ignore the contention overheads.

87

A-FlashLinQ and A-SCSMA are simulated separately as two indepen-

dent systems. The baseline schedulers in the two systems are FlashLinQ and

Simplified Slotted CSMA (SCSMA) which are oblivious to application-level

information. For FlashLinQ we use the same parameters as A-FlashLinQ

except that the priority list is constructed randomly, agnostic of application

layer information. For SCSMA, the contention window of each link is fixed as

cw = tcp.

For both systems, we simulated various arrival rates λ varying from

1/(3002 × 30) to 32/(3002 × 30) arrivals/(m2 · second). Note that since the

simulation space has an area of 300m2 and each link can stay in the system

for no longer than 30 second, an arrival rate of x/(3002× 30) implies there are

on average no more than x links simultaneously in the system. For each value

of λ, we simulate both systems for 300 second. We repeat this procedure for

10 iterations and collect average results.

Figure 3.3 exhibits simulation results for FlashLinQ, A-FlashLinQ and

A-FlashLinQ without grouping. Figure 3.3(a) shows that as we increase link

arrival rate, all the schedulers will at first have increment in the number of file

transfer completions, but when the arrival rate exceeds some value (e.g., 20 on

the x-axis), the number of completions will drop. This is not surprising because

when the system is heavily loaded, each individual link will have reduced

throughput and is thus likely to miss its deadline. However A-FlashLinQ

is able to achieve a significantly higher number of completions (up to 2.5x

increase) than FlashLinQ at high arrival rates, which shows the benefit of

88

(b)(a)

0 5 10 15 20 25 300

20

40

60

80

100

120

140

160

180

nu
m

be
r

of
 fi

le
 tr

an
sf

er
 c

om
pl

et
io

ns

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5 x 10
10

to
ta

l o
ffl

oa
d

am
ou

nt
 (

bi
ts

)

0 5 10 15 20 25 300

5

10

15

20

25

30

av
er

ag
e

de
la

y
fo

r
co

m
pl

et
ed

 tr
an

sf
er

s

(c)

lambda*3002*30 lambda*3002*30

lambda*3002*30

FlashLinQ
A−FlashLinQ without grouping
A−FlashLinQ

FlashLinQ
A−FlashLinQ without grouping
A−FlashLinQ

FlashLinQ
A−FlashLinQ without grouping
A−FlashLinQ

(second)

250%

Figure 3.3: Simulation results for A-FlashLinQ under homogeneous scenario.
(a) number of file transfer completions vs. link arrival rate; (b) total amount of
offloaded data vs. link arrival rate; (c) average file transfer delay for completed
transfers vs. link arrival rate.

89

incorporating application awareness into the scheduler. Also A-FlashLinQ is

able to achieve a higher number of completions than A-FlashLinQ without

grouping, which exhibits the benefit of knowing the file transfer deadlines.

Figure 3.3(b) shows that all three schedulers achieve basically the same

total amount of offloaded data. In fact FlashLinQ itself is able to achieve a

high offload. Thus 3.3(a) and (b) suggest that our proposed A-FlashLinQ can

greatly improve the number of completions and simultaneously result in an

offload amount as good as that in FlashLinQ.

Figure 3.3(c) exhibits the average file transfer delay among the com-

pleted file transfers. It is not surprising to see A-FlashLinQ without grouping

result in the lowest file transfer delay since it uses an SRPT-like strategy to

prioritize the links’ transmissions. However note that A-FlashlinQ results in

the highest delay. This is because A-FlashLinQ classifies into Group 2 the

loosely constrained links which are likely to have small remaining processing

time, and delay their transmissions by giving them lower priority. This pre-

vents them from finishing early and thus increases the average delay. This

result along with that in Figure 3.3(a) shows a tradeoff between number of

completions and average transfer delay – with grouping strategy A-FlashLinQ

achieves higher number of completions but without grouping it results in lower

transfer delay.

Figure 3.4 exhibits the simulation results for SCSMA, A-SCSMA and

A-SCSMA without grouping. The results and intuitions are similar to those as

in Figure 3.3, which suggests that our application-aware strategy can benefit

90

(b)

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

nu
m

be
r

of
 fi

le
 tr

an
sf

er
 c

om
pl

et
io

ns

(a)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4 x 1010

to
ta

l o
ffl

oa
d

am
ou

nt
 (

bi
ts

)

0 5 10 15 20 25 300

5

10

15

20

25

av
er

ag
e

de
la

y
fo

r
co

m
pl

et
ed

 tr
an

sf
er

s

(c)

SCSMA
A−SCSMA without grouping
A−SCSMA

SCSMA
A−SCSMA without grouping
A−SCSMA

SCSMA
A−SCSMA no grouping
A−SCSMA

lambda*3002*30 lambda*3002*30

lambda*3002*30

(second)

100%

Figure 3.4: Simulation results for A-SCSMA under homogeneous scenario. (a)
number of file transfer completions vs. link arrival rate; (b) total amount of
offloaded data vs. link arrival rate; (c) average file transfer delay for completed
transfers vs. link arrival rate.

91

not only a D2D system using FlashLinQ scheduler but also one that uses

CSMA-like protocols. Thus we expect it to work well in a broad set of D2D

systems.

3.5.2 Dynamic D2D Networks with Heterogeneous Links

3.5.2.1 Independent File Sizes and Deadlines

We also simulated a heterogeneous case where link lengths are inde-

pendent and uniformly distributed on [5, 35]m. The file sizes associated with

the links are generated independently and uniformly on [20, 1000] Mbits. The

deadlines are generated independently and uniformly on [1, 60] seconds. The

rest of the simulation setup is as described in Section 3.5.1.

Figure 3.5 exhibits simulation results for FlashLinQ, A-FlashLinQ and

A-FlashLinQ without grouping. One major difference from the results for

homogeneous case (Figure 3.3) is that in Figure 3.5(a), the number of file

transfer completions does not collapse when λ ∈ [20, 60]/(3002 × 30), as it

does in the homogeneous case. This is because in heterogeneous case, when

the user density is large, there are likely more ‘lucky’ links, i.e., those with low

link distances, small file sizes and long deadlines, which can complete within

their deadlines, and thus increases the number of completions. In other words,

heterogeneity brings a kind of “opportunism”. Another difference from homo-

geneous case is that in Figure 3.5(b), A-FlashLinQ (either with or without

grouping) results in higher offload amount (up to 15% increase) than Flash-

LinQ, which along with Figure 3.5(a) suggests that A-FlashLinQ is able to

92

0 10 20 30 40 50 600

10

20

30

40

50

60

70

80

90

100

lambda*3002*30

nu
m

be
r

of
 fi

le
 tr

an
sf

er
 c

om
pl

et
io

ns

FlashLinQ
A−FlashLinQ without grouping
A−FlashLinQ

(a)

0 10 20 30 40 50 600

1

2

3

4

5

6 x 10
10

to
ta

l o
ffl

oa
d

am
ou

nt
 (

bi
ts

)

(b)

5 10 15 20 25 30 350

0.1

0.2

0.3

0.4

0.5

0.6

0.7

link distance (meter)

fr
ac

tio
n

of
 li

nk
s

th
at

 c
om

pl
et

e

(c)

0 10 20 30 40 50 60
6

8

10

12

14

16

18

20

22

av
er

ag
e

de
la

y
fo

r
co

m
pl

et
ed

 tr
an

sf
er

s

(d)

lambda*3002*30

FlashLinQ
A−FlashLinQ without grouping
A−FlashLinQ

(second)

lambda*3002*30

FlashLinQ
A−FlashLinQ without grouping
A−FlashLinQ

FlashLinQ
A−FlashLinQ without grouping
A−FlashLinQ

100%

15%

Figure 3.5: Simulation results for A-FlashLinQ under heterogeneous scenario
with independent file sizes and deadlines. (a) number of file transfer comple-
tions vs. link arrival rate; (b) total amount of offloaded data vs. link arrival
rate; (c) average file transfer delay for completed transfers vs. link arrival rate;
(d) fraction of links that complete within deadlines vs. link distance.

93

achieve a significant gain in the number of completions and at the same time

has a moderate gain in the offloaded data. Also note that in Figure 3.5(c),

A-FlashLinQ results in lower average delay for completed transfers than Flash-

LinQ, which suggests that A-FlashLinQ dominates FlashlinQ in all the three

performance metrics.

Note that A-FlashLinQ schedules links giving higher priority to the

ones which have higher transmission rates and/or smaller file sizes. Although

it achieves better overall performance than FlashLinQ, it is reasonable to ask

whether these gains have been achieved by degrading unfavorable, i.e., long

links. To address this issue, we group the links based on link distances, e.g.,

we put links whose link distances are in [5, 7.5)m into one group, and links

whose link distances are in [7.5, 10)m are put into another group, etc. For each

group we calculate the fraction of links that finish their file transfers before

their deadlines. Figure 3.5(d) shows that the fraction of completed links for

A-FLashLinQ (either with or without grouping) dominates that of FlashLinQ

in all groups of link lengths. This is surprising because it implies that, A-

FlashLinQ benefits not only the users with high transmission rates, it benefits

the users with low transmission rates as well.

Figure 3.6 exhibits simulation results for SCSMA, A-SCSMA and A-

SCSMA without grouping in heterogeneous case. The results are similar to

those for A-FlashLinQ (i.e., Figure 3.5), except that the gains in total offload

amount are smaller and that A-SCSMA with grouping strategy results in a

higher average delay than SCSMA and A-SCSMA without grouping strategy.

94

(c)

0 10 20 30 40 50 600

10

20

30

40

50

60

70

80

90

100

nu
m

be
r

of
 fi

le
 tr

an
fe

r
co

m
pl

et
io

ns

(a)

0 10 20 30 40 50 600

1

2

3

4

5

6

7 x 10
10

to
ta

l o
ffl

oa
d

am
ou

nt
 (

bi
ts

)

(b)

5 10 15 20 25 30 350

0.1

0.2

0.3

0.4

0.5

0.6

0.7

link distance (meter)

fr
ac

tio
n

of
 li

nk
s

th
at

 c
om

pl
et

e

(d)

0 10 20 30 40 50 60
6

8

10

12

14

16

18

20

22

24

av
er

ag
e

de
la

y
fo

r
co

m
pl

et
ed

 tr
an

sf
er

s

SCSMA
A−SCSMA without grouping
A−SCSMA

SCSMA
A−SCSMA without grouping
A−SCSMA

SCSMA
A−SCSMA without grouping
A−SCSMA

SCSMA
A−SCSMA without grouping
A−SCSMA

lambda*3002*30 lambda*3002*30

lambda*3002*30

(second)

60%

Figure 3.6: Simulation results for A-SCSMA under heterogeneous scenario
with independent file sizes and deadlines. (a) number of file transfer comple-
tions vs. link arrival rate; (b) total amount of offloaded data vs. link arrival
rate; (c) average file transfer delay for completed transfers vs. link arrival rate;
(d) fraction of links that complete within deadlines vs. link distance.

95

In fact as compared to Figure 3.4, we can see that A-SCSMA with grouping

strategy performs better in the homogeneous case, while A-SCSMA without

grouping strategy is more suitable for the heterogeneous case.

3.5.2.2 Correlated File Sizes and Deadlines

We have investigated the case where the file sizes and deadlines are

independent. However in practice, there are usage scenarios where the file

sizes and deadlines may be correlated. For example, a link with file size s to

transmit may be assigned a deadline d = s/r if a minimum throughput of r is

desired. Another example is one where users have a priori knowledge of their

contact times, and thus may choose to transfer files of “compatible” sizes.

We simulate the correlated case where file sizes si associated with the

links i = 1, 2, ... are generated independently and uniformly on [20, 1000]

Mbits, and deadlines di are set to di = 6 × 10−8si second. Other simulation

settings are the same as the previous case.

Figure 3.7 and 3.8 exhibits simulation results for the correlated case.

Most of the results are similar to the independent case except those in Fig-

ure 3.7(c), where the average delay for FlashLinQ drops with increasing load.

This is due to the fact that under FlashLinQ only a small number of file

transfers can finish, and most of the finished transfers are the ones with small

file sizes and short deadlines. However A-FlashLinQ is able to finish more

transfers including the ones with relatively large file sizes and long deadlines,

which results in a higher average delay than FlashLinQ. Also from Figure 3.8

96

(d)(c)

(b)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

lambda*3002*30

nu
m

be
r

of
 fi

le
 tr

an
sf

er
 c

om
pl

et
io

ns

FlashLinQ
A−FlashLinQ without Grouping
A−FlashLinQ

(a)

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7
x 10

10

lambda*3002*30
to

ta
l o

ffl
oa

d
am

ou
nt

 (
bi

ts
)

FlashLinQ
A−FlashLinQ without grouping
A−FlashLinQ

0 10 20 30 40 50 60
5

10

15

20

25

lambda*3002*30

av
er

ag
e

de
la

y
fo

r
co

m
pl

et
ed

 tr
an

sf
er

s

FlashLinQ
A−FlashLinQ without grouping
A−FlashLinQ

(second)

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

link distance (meter)

fr
ac

tio
n

of
 li

nk
s

th
at

 c
om

pl
et

e

FlashLinQ
A−FlashLinQ
A−FlashLinQ without grouping

900%

20%

Figure 3.7: Simulation results for A-FlashLinQ under heterogeneous scenario
with correlated file sizes and deadlines. (a) number of file transfer completions
vs. link arrival rate; (b) total amount of offloaded data vs. link arrival rate;
(c) average file transfer delay for completed transfers vs. link arrival rate; (d)
fraction of links that complete within deadlines vs. link distance.

97

(d)(c)

(b)

0 10 20 30 40 50 60
10

20

30

40

50

60

70

lambda*3002*30

nu
m

be
r

of
 fi

le
 tr

an
sf

er
 c

om
pl

et
io

ns

SCSMA
A−SCSMA without grouping
A−SCSMA

0 10 20 30 40 50 60
0

2

4

6

8
x 10

10

lambda*3002*30
to

ta
l o

ffl
oa

d
am

ou
nt

 (
bi

ts
)

SCSMA
A−SCSMA without grouping
A−SCSMA

(a)

0 10 20 30 40 50 60
5

10

15

20

25

lambda*3002*30

av
er

ag
e

de
la

y
fo

r
co

m
pl

et
ed

 tr
an

sf
er

s

SCSMA
A−SCSMA without grouping
A−SCSMA

(Second)

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

link distance (meter)

fr
ac

tio
n

of
 li

nk
s

th
at

 c
om

pl
et

e

SCSMA
A−SCSMA without grouping
A−SCSMA

150%

Figure 3.8: Simulation results for A-SCSMA under heterogeneous scenario
with correlated file sizes and deadlines. (a) number of file transfer completions
vs. link arrival rate; (b) total amount of offloaded data vs. link arrival rate;
(c) average file transfer delay for completed transfers vs. link arrival rate; (d)
fraction of links that complete within deadlines vs. link distance.

98

we can see that, A-SCSMA without grouping achieves a better performance

than A-SCSMA, which suggests that grouping strategy is not beneficial in this

particular scenario.

3.5.3 Admission Control

The simulation results shown in the above subsections exhibited that

both FlashLinQ and SCSMA have a poor performance in the number of file

transfer completions when subjected to high arrival rates. Part of the reason

lies in that the schedulers try to maintain a certain degree of throughput

fairness while maximizing the spatial packing of links. As a result, when link

density is high, each link is able to get some throughput, but few of them have

enough throughput to finish their file transfer within their deadlines. This is

essentially a problem caused by many links contending for limited resources.

Instead of having everyone fail, one might prefer to block some links so that

others can succeed. Admission Control (AC) usually plays this role.

Here we propose a simple admission control in which each newly initi-

ated link monitors its throughput for 0.5 second, and then decides whether to

quit (i.e., be blocked) or stay in the system. This is a distributed admission

control policy akin to that developed in [19]. Specifically, a link with file size

s, deadline d and average throughput r̄ during the initial 0.5 second makes its

decision based on the following criterion: the link is

• admitted, if r̄ ≥ s/d;

• blocked, if r̄ < s/d.

99

To test the performance of the proposed admission control strategy, we

simulate FlashLinQ and A-FlashLinQ, both with and without the proposed

admission control, under the correlated case in the heterogeneous scenario

introduced in Section 3.5.2 (Note the results in the other scenarios are similar,

so we do not show them here). The results are shown in Figure 3.9, which

exhibits that FlashLinQ with Admission Control (AC) can achieve a significant

improvement in the number of file transfer completions, and also reduction

in average delay among the completed transfers. Moreover with admission

control, additional improvements can be obtained by applying application-

aware schedulers, as indicated by the superiority of A-FlashLinQ+AC over

the other schemes in Figure 3.9(a) and (c). However since a number of links

are blocked by admission control and they hardly get any throughput, the

system does not see any improvement in the total amount of offload under

admission control.

3.5.4 Dynamic D2D Networks without Link Deadlines

Last we considered a scenario where the D2D links have no deadlines,

i.e., the links will not leave the system until they finish their file transfers. Note

that such a system will become unstable as we increase its link arrival rate, i.e.,

as time advances, the number of concurrent links in the system will increase to

infinity, and so will the average file transfer delay. Although possibly unstable,

this scenario is of interest particularly in terms of evaluating the file transfer

delays and evaluating the “capacity” of the dynamic network under various

100

(d)(c)

(b)

0 10 20 30 40 50 60
0

20

40

60

80

100

120

lambda*3002*30

nu
m

be
r

of
 fi

le
 tr

an
sf

er
 c

om
pl

et
io

ns FlashLinQ
FlashLinQ+AC
A−FlashLinQ
A−FlashLinQ+AC

(a)
0 10 20 30 40 50 60

0

1

2

3

4

5

6

7
x 10

10

lambda*3002*30
to

ta
l o

ffl
oa

d
am

ou
nt

 (
bi

ts
)

FlashLinQ
FlashLinQ+AC
A−FlashLinQ
A−FlashLinQ+AC

0 10 20 30 40 50 60
5

10

15

20

25

lambda*3002*30

av
er

ag
e

de
la

y
fo

r
co

m
pl

et
ed

 tr
an

sf
er

s

FlashLinQ
FlashLinQ+AC
A−FlashLinQ
A−FlashLinQ+AC

(Second)

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

link distance (meter)

fr
ac

tio
n

of
 li

nk
s

th
at

 c
om

pl
et

e

FlashLinQ
FlashLinQ+AC
A−FlashLinQ
A−FlashLinQ+AC

2000%

20%

Figure 3.9: Simulation results for Admission Control (AC) strategy under
heterogeneous scenario with correlated file sizes and deadlines. (a) number
of file transfer completions vs. link arrival rate; (b) total amount of offloaded
data vs. link arrival rate; (c) average file transfer delay for completed transfers
vs. link arrival rate; (d) fraction of links that complete within deadlines vs.
link distance.

101

schedulers, i.e., what is the maximal spatial arrival rate at which the system

becomes unstable.

It is hard to simulate such system if unstable because there is no good

stopping point, e.g., if we stop simulation at 300 second as we did in the

previous subsections, most of the links that finished their file transfers may be

the ‘fortunate’ ones, i.e., links that have small file sizes and good transmission

capacities, and thus if we collect the average file transfer delay for the successful

transfers, the result is likely to be biased. In our simulations, we approximate

the system by stopping the link arrival process after a certain time τa(λ) =

30λ × 3002second, and stopping the simulation when all the links complete

their transfers. Note that this approach guarantees all links will finish at the

end. However the system is always stable, so we enforce longer simulation

times for large arrival rates by letting τa(λ) be proportional to λ, in hopes

that this would capture the system’s instability, if present.

We simulated FLashLinQ and A-FlashLinQ without grouping for such

networks. Note that since links do not have deadlines, we did not simulate

A-FlashLinQ with grouping. Other unmentioned system parameters are the

same as those used in Section 3.5.2.

Figure 3.10 exhibits the average file transfer delay vs. link arrival rate

λ. A-FlashLinQ achieves a lower average file transfer delay and appears to

have a larger stability region.

A phenomenon we conjectured and then observed via simulation was

102

0 5 10 15 20
0

100

200

300

400

500

600

lambda*3002*30

av
er

ag
e

fil
e

tr
an

sf
er

 d
el

ay
 (

se
co

nd
)

FlashLinQ

A−FlashLinQ without grouping

Figure 3.10: Average file transfer delay vs. link arrival rate in the scenario
where links have no deadlines.

103

that in a dynamic network scenario the active links are likely to cluster, even

though the arrival process is a homogeneous Poisson point process. An exam-

ple of the clustering phenomenon was shown in Figure 3.1(b), which suggests

the emergence of increased link clustering which may result in poorer perfor-

mance.

To formally verify the presence of such clustering we use the Ripley’s K

function. A detailed description of Ripley’s K function can be found in [10].

In our case, for a given set of N links distributed in a region of area A, the

estimated K function is given by:

K̂(t) =
A

N

∑
i

∑
j 6=i

1(dij < t)

N
, (3.6)

where 1(·) is the indicator function and dij is the distance between the receiver

of link i and the transmitter of link j. Note that the distance should be calcu-

lated according to the wrap-around model. Note that the two-fold summation

in Equation (3.6) calculates the empirical expectation of the following quan-

tity: for a randomly chosen receiver, the number of transmitters (excluding

the corresponding transmitter of the chosen receiver) within distance t of the

chosen receiver.

If the links were uniformly distributed, we would have K̂(t) ≈ πt2. So if

we define an estimated L function as L̂(t) =

√
K̂(t)/π, then we have L̂(t) ≈ t,

and one way to measure the spatial clustering is to test the value of L̂(t)− t:

L̂(t) − t > 0 indicates spatial clustering and L̂(t) − t ≤ 0 indicates spatial

regularity. Again more details of this test method can be found in [10].

104

20 25 30 35 40 45 50
1

1.5

2

2.5

3

3.5

4

search radius t

L−
t (

L
fu

nc
tio

n
m

in
us

 s
ea

rc
h

ra
di

us
)

FlashLinQ

A−FlashLinQ without grouping

Figure 3.11: L function minus search radius L̂(t) − t vs. search radius t.
L̂(t) − t > 0 indicates spatial clustering and L̂(t) − t ≤ 0 indicates spatial
regularity.

105

Figure 3.11 shows a plot of L̂(t) − t, which is the average value calcu-

lated based on the snapshots of the link locations at time 100, 200 and 300

second in 7 independent simulations under an arrival rate of 10/(3002 × 30)

arrivals/(m2 · second). Note that the fact that the curves are above zero indi-

cates the existence of clustering. However the curve of A-FlashLinQ is below

that of FlashLinQ, which implies that our application-aware scheduling miti-

gates the clustering effect. This may be because A-FlashLinQ speeds up the

transmission of links with short remaining processing time and lets them finish

faster, resulting in fewer close-by concurrent active links contending for system

resources. This suggests another merit of incorporating application-awareness

in D2D link scheduling: the potential for mitigating clustering, which improves

spatial reuse and reduces overall interference among the links that are close

by.

3.6 Conclusion

In this chapter we explored the potential benefit of incorporating application-

awareness when scheduling deadline constrained file transfers in D2D networks.

We propose approaches to modify priorities in FlashLinQ and the contention

window mechanism in a CSMA-like protocol so as to increase successful file

transfer completions. Our analysis and simulations suggest that if D2D net-

works are dense this approach has substantial merit towards increasing the

number of completions and even provides moderate increase in offload traffic.

Moreover, we show that our application-aware schedulers have several other

106

benefits, e.g., enhancing performance of the systems under admission control,

increasing system stability region when the links have no deadlines, mitigat-

ing links’ spatial clustering and thus reduce the interference among close-by

links, etc. We expect that D2D schedulers providing more uniformity on user

perceived performance metrics, e.g., completions and/or flow-level throughput

seen on transfers, and have an important role to play in future.

107

Chapter 4

Conclusion and Future Work

The development of new technologies provides opportunities to make

the schedulers in wireless networks “smarter” in two ways. On one hand,

HTTP based video delivery protocols and software-defined networking pro-

vide the servers, users and network devices with easier access to application

layer information, which can be exploited to improve the scheduling policies.

On the other hand, by leveraging geolocation and contextual information re-

garding users mobility patterns it is possible to predict the large-scale wireless

capacity variations mobile users are likely to see. In this dissertation we studied

how application-awareness and knowledge of future capacity variations can be

exploited in network schedulers to improve performance from both the system

perspective and the users’ point of view.

We proposed scheduling schemes for video delivery in wireless networks

that exploit knowledge of future capacity variations to minimize system utiliza-

tion without compromising rebuffering/delays. We also proposed application-

aware D2D schedulers that improve flow-level performance under link dynam-

ics. Simulation and performance evaluation show that the proposed schedulers

can achieve significant gains in various scenarios.

108

For future work, one might consider generalizing the thresholding poli-

cies in Chapter 2 to fit an HTTP based video delivery framework, where

optimizing video quality is considered as an important objective along with

minimizing system utilization and minimizing rebuffering time. We also be-

lieve it would be worthwhile to study the dynamic D2D networks that use

mmWave transmissions, where more aspects need to be considered, e.g., di-

rectional transmissions, human body absorption, and reflections of mmWaves.

109

Bibliography

[1] Cisco visual networking index: Forecast and methodology, 2014-2019.

http://www.cisco.com/c/en/us/solutions/collateral/ns341/service-provider/

ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf.

[2] 3GPP. 3rd generation partnership project; technical specification group

radio access network; opportunity driven multiple access. 3GPP TR

25.924, V1.0.0, Dec. 1999.

[3] 3GPP. 3rd generation partnership project; technical specification group

services and system aspects; feasibility study for proximmity based ser-

vices (ProSe) (release 12). 3GPP TR 22.803, V12.2.0, Jun. 2013.

[4] M. Belleschi, G. Fodor, and A Abrardo. Performance analysis of a dis-

tributed resource allocation scheme for d2d communications. In Proc.

IEEE GLOBECOM Workshops (GC Wkshps), pages 358–362, December

2011.

[5] S. Borst. User-level performance of channel-aware scheduling algorithms

in wireless data networks. IEEE/ACM Trans. on Networking, 13(3):636–

647, June 2005.

[6] N. Bui, S. Valentin, and J. Widmer. Anticipatory quality-resource allo-

cation for multi-user mobile video streaming. In Proc. the 2nd Workshop

110

on Communication and Networking Techniques for Contemporary Video,

in conjunction with the 34th IEEE International Conference on Computer

Communications (INFOCOM),, April 2015.

[7] N. Bui and J. Widmer. Mobile network resource optimization under

imperfect prediction. In Proc. IEEE 16th International Symposium on

World of Wireless, Mobile and Multimedia Networks (WoWMoM), June

2015.

[8] Tao Chen, G. Charbit, and S. Hakola. Time hopping for device-to-

device communication in LTE cellular system. In Proc. IEEE Wireless

Communications and Networking Conference (WCNC), pages 1–6, April

2010.

[9] G. Van der Auwera and M. Reisslein. Implications of smoothing on

statistical multiplexing of H.264/AVC and SVC video streams. IEEE

Trans. on Broadcasting, 55(3):541–558, September 2009.

[10] Philip M. Dixon. Ripley’s K function. In Encyclopedia of Environ-

metrics, volume 3, pages 1796–1803. John Wiley & Sons, Ltd, Chichester,

2002.

[11] Frank H.P. Fitzek, Marcos Katz, and Qi Zhang. Cellular controlled short-

range communication for cooperative p2p networking. Wireless Personal

Communications, 48(1):141–155, 2009.

111

[12] Matthias Grossglauser and D.N.C. Tse. Mobility increases the capacity of

ad hoc wireless networks. IEEE/ACM Trans. on Networking, 10(4):477–

486, August 2002.

[13] Han Han, Hao Wang, and Xiaokang Lin. A low-cost link-selection strat-

egy for cellular controlled short-range communications. In Proc. IEEE

International Conference on Communication Technology (ICCT), pages

1332–1335, November 2010.

[14] I. Hou and P. R. Kumar. Utility-optimal scheduling in time-varying

wireless networks with delay constraints. In Proc. ACM International

Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),

pages 31–40, 2010.

[15] Hung-Yun Hsieh and R. Sivakumar. On using peer-to-peer communica-

tion in cellular wireless data networks. IEEE Trans. on Mobile Comput-

ing, 3(1):57–72, January 2004.

[16] ITU. Recommendation ITU-R P.1411-1 propagation data and prediction

methods for the planning of short-range outdoor radio communication

systems and radio local area networks in the frequency range 300 MHz to

100 GHz. Tech. Rep., 2001.

[17] J.Rexford and D.Towsley. Smoothing variable-bit-ratevideo in an inter-

network. IEEE/ACM Trans. on Networking, 7(2):202–215, April 1999.

112

[18] T. Karagiannis, J.-Y. Le Boudec, and M. Vojnovic. Power law and expo-

nential decay of intercontact times between mobile devices. IEEE Trans.

on Mobile Computing, 9(10):1377–1390, October 2010.

[19] F.P. Kelly, P.B. Key, and S. Zachary. Distributed admission control.

IEEE Journal on Selected Areas in Communications, 18(12):2617–2628,

December 2000.

[20] Y. Kim, F. Baccelli, and G. de Veciana. Spatial reuse and fairness of

Ad Hoc networks with channel-aware CSMA protocols. IEEE Trans. on

Infromation Theory, 60(7):4139–4157, July 2014.

[21] T. Koskela, S. Hakola, Tao Chen, and J. Lehtomaki. Clustering concept

using device-to-device communication in cellular system. In Proc. IEEE

Wireless Communications and Networking Conference (WCNC), pages

1–6, April 2010.

[22] A. Koubaa, M. Alves, and E. Tovar. A comprehensive simulation study of

slotted CSMA/CA for IEEE 802.15.4 wireless sensor networks. In Proc.

6th IEEE International Workshop on Factory Communication Systems

(WFCS), 2006.

[23] Lei Lei, Zhangdui Zhong, Chuang Lin, and Xuemin Shen. Operator con-

trolled device-to-device communications in lte-advanced networks. IEEE

Wireless Communications, 19(3):96–104, June 2012.

113

[24] Xingqin Lin, Jeffrey G. Andrews, Amitabha Ghosh, and Rapeepat Rata-

suk. An overview of 3GPP device-to-device proximity services. IEEE

Communications Magazine, 52(4):40–48, April 2014.

[25] Z. Lu and G. de Veciana. Application-aware opportunistic D2D link

schedulers: Traffic offloading and user perceived QoS. IEEE/ACM Trans.

on Networking. In submission.

[26] Z. Lu and G. de Veciana. Optimizing stored video delivery for mobile

networks: The value of knowing the future. IEEE/ACM Trans. on

Networking. In submission.

[27] Z. Lu and G. de Veciana. Optimizing stored video delivery for mobile

networks: The value of knowing the future. In Proc. IEEE INFOCOM,

April 2013.

[28] Xiran Ma, Rui Yin, Guanding Yu, and Zhaoyang Zhang. A distributed

relay selection method for relay assisted device-to-device communication

system. In Proc. IEEE International Symposium on Personal Indoor and

Mobile Radio Communications (PIMRC), pages 1020–1024, September

2012.

[29] Jean McManus and Keith W. Ross. A dynamic programming methodol-

ogy for managing prerecorded VBR sources in packet-switched networks.

Telecommunication Systems, 9:133–152, 1998.

114

[30] A. K. Mok. Fundamental design problems of distributed systems for the

hard-real-time environment. Technical report, Cambridge, MA, USA,

1983.

[31] N. Naderializadeh and A. S. Avestimehr. ITLinQ: A new approach for

spectrum sharing in device-to-device communication systems. IEEE

Journal on Selected Areas in Communications, 32(6):1139–1151, June

2014.

[32] S. Patil and G. de Veciana. Managing resources and quality of service

in heterogeneous wireless systems exploiting opportunism. IEEE/ACM

Trans. on Networking, 15(5):1046–58, October 2007.

[33] A Pyattaev, K. Johnsson, S. Andreev, and Y. Koucheryavy. 3GPP lte

traffic offloading onto wifi direct. In Proc. IEEE Wireless Communica-

tions and Networking Conference Workshops (WCNCW), pages 135–140,

April 2013.

[34] Qualcomm Research. LTE direct: Always-on, autonomous proximal dis-

covery at scale. http://www.qualcomm.com/system/files/document/

files/lte-direct-proximal-discovery-wireless-networks.pdf.

[35] M. Reisslein and K. W. Ross. A join-the-shortest queue prefetching pro-

tocol for VBR video on demand. In Proc. IEEE International Conference

on Network Protocols (ICNP), pages 63–72, October 1997.

115

[36] Martin Reisslein, Keith Ross, and Vincent Verillotte. A decentralized

prefetching protocol for VBR video on demand. In Multimedia Appli-

cations, Services and Techniques-ECMAST’98, volume 1425 of Lecture

Notes in Computer Science, pages 388–401. Springer Berlin / Heidel-

berg, 1998.

[37] J.D. Salehi, Z.L. Zhang, J.F. Kurose, and D. Towsley. Supporting stored

video: Reducing rate variability and end-to-end resource requirements

through optimal smoothing. In Proc. ACM SIGMETRICS, pages 222–

231, May 1996.

[38] S. Shakkottai and R. Srikant. Scheduling real-time traffic with deadlines

over a wireless channel. Wireless Networks, 8(1):13–26, January 2002.

[39] Upendra Shevade, Yichao Chen, Lili Qiu, Yin Zhang, Vinoth Chan-

dar, Mi Kyung Han, Han Hee Song, and Yousuk Seung. Enabling

high-bandwidth vehicular content distribution. In Proc. ACM Interna-

tional Conference on emerging Networking EXperiments and Technologies

(CoNEXT), number 23, pages 1–12, 2010.

[40] Chaoming Song, Zehui Qu, Nicholas Blumm, and AlbertLaszlo Barabasi.

Limits of predictability in human mobility. Science, 327(5968):1018–

1021, 2010.

[41] J. Tadrous, A. Eryilmaz, and H. El Gamal. Proactive content download

and user demand shaping for data networks. IEEE/ACM Trans. on

Networking, PP(99), August 2014.

116

[42] Wi-Fi Alliance Technical Committee, P2P Task Group. Wi-Fi Peer-to-

Peer (P2P) technical specification, ver. 1.2. WiFi Alliance, Tech. Rep.,

2010.

[43] H. Wu, Chunming Qiao, S. De, and O. Tonguz. Integrated cellular

and ad hoc relaying systems: iCAR. IEEE Journal on Selected Areas in

Communications, 19(10):2105–2115, October 2001.

[44] X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia, and

A. Jovicic. FlashLinQ: a synchronous distributed scheduler for peer-to-

peer ad hoc networks. IEEE/ACM Trans. on Networking, 21(4):1015–

1228, August 2013.

[45] Shanchieh Jay Yang and G. de Veciana. Enhancing both network and

user performance for networks supporting best effort traffic. IEEE/ACM

Trans. on Networking, 12(2):349–360, April 2004.

[46] Chia-Hao Yu, K. Doppler, C.B. Ribeiro, and O. Tirkkonen. Resource

sharing optimization for device-to-device communication underlaying cel-

lular networks. IEEE Trans. on Wireless Communications, 10(8):2752–

2763, August 2011.

[47] M. Zulhasnine, Changcheng Huang, and A Srinivasan. Efficient resource

allocation for device-to-device communication underlaying LTE network.

In Proc. IEEE International Conference on Wireless and Mobile Comput-

ing, Networking and Communications (WiMob), pages 368–375, October

2010.

117

Vita

Zheng Lu received his B.E. degree in Electronics Engineering from Ts-

inghua University in China, and his M.S.E. degree in Electrical and Computer

Engineering from The University of Texas at Austin in 2011. He has been

working under the supervision of Prof. Gustavo de Veciana in the Wireless

Networking and Communications Group (WNCG) in the Department of Elec-

trical and Computer Engineering at the University of Texas at Austin since

2010. He interned at Intel Labs, Hillsboro during summer 2013.

Email: zhenglu@utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

118

