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Disciplined Engineering of Large Scale CDNs

• ‘Content is King’ [Bill Gates ’96]

• Netflix + Youtube: ~50% of today’s peak internet traffic

• More than a billion hours of video per month

• Akamai: ~150,000 servers distributed over 1,200 ISPs

• Delivers 15-30% of all Web traffic, reaching up to 15 TB/s

• Providing better user-perceived performance (download time) at
low operating cost is a key problem

• Our Goal: Provide robust models to enable large scale system
design, and performance analysis + optimization

2



Selected Related Work
Large Scale Performance Modeling applicable to CDNs:

• Is routing request to the/a least loaded server enough?
[Vvedenskaya et al.’96; Mitzenmacher ’96; Bramson et al.’12]

• If we defer service decision until servers become available, how
should the number of copies scale? [Tsitsiklis & Xu ’13]

• How should content be replicated/dynamically cached to reduce
traffic to centralized back-up? [Leconte et al.’14, Moharir et al.’14]

Other metrics:

• Reliability, e.g., [Cidon et al.’13] show randomized content
placement is not always optimal

• Reducing energy costs, e.g., by leveraging energy storage
[Palasamudram ’12], etc.
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The Question
What is the impact on user performance in a large scale system if a
subset of servers work together, as a pooled resource, to serve
individual download requests?

Two key elements:

1. Parallel downloads of customer files

2. Coupling across servers
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System Model: Simple Example

r2

r1

µ2

µ1 + µ2
r2(x)

r1(x) r(x)

Capacity region

x1

Network state x = (x1, x2)

x2

λ1

λ2

Service:

2. PS discipline within a queue

1. rate ri (x) for i th queue
– state dependent r(x) ∈ C ⊂ R2

+ for each state x

C

f1

f2

s1

s2

µ1

µ2

Poisson

Dynamic Model

Files Servers

3. Service requirements: i.i.d. with mean νi for file i

arrivals

One queue for each file type

under pooling
File placement

ν2

ν1

5



Dynamic Resource Allocation & Fairness
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• Ideally, r(x) assigns more rate to bigger queues, i.e., to file types
with more requests

• e.g., Max-min, Proportional, α-fair, Balanced fair

• We use Balanced fair because it is close to Proportional fair &
tractable
[ e.g., Bonald & Proutiere ’03, Massoulié ’07, Joseph & de Veciana ’11]
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What is Balanced Fairness?

ρ = λν
PS
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ri (x) = Φ(x−ei )
Φ(x)
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What is Balanced Fairness?

• Balanced fair rate allocation is the choice for Φ(.) such that

∀x, r(x) = (r1(x), r2(x)) =

(
Φ(x− e1)

Φ(x)
,

Φ(x− e2)

Φ(x)

)
and is on the boundary of C.
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• Similarly, generalizes to n dimensions
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Content Delivery System Model: General
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Structural Result: Polymatroid Capacity Region

Theorem
For a given file placement, the capacity region C is a polymatroid
with rank function µ(.).

• Rank function: µ : 2F → R+, where µ(A) := sum capacity
for servers that can serve any file in set A

• C = {r ≥ 0 :
∑

i∈A ri ≤ µ(A), ∀A ⊂ F}

• µ(.) is submodular, i.e., µ(A) + µ(B) ≥ µ(A ∪ B) + µ(A ∩ B)
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Performance Result: Expression for Mean Delay
for Serving File Requests

Theorem
Given capacity region C with rank function µ(.), and
ρ = (ρi : ρi = λiνi , i ∈ F ), the mean delay for file fi is:

E [Di ] =
νi

∂
∂ρi

G(ρ)

G(ρ)

• where G(ρ) =
∑

A⊂F GA(ρ),

• and where G∅(ρ) = 1, and GA(ρ) can be computed recursively
as GA(ρ) =

∑
i∈A ρi GA\{i}(ρ)

µ(A)−
∑

j∈A ρj
.
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Complexity of Expression for Mean Delay

• Bad news: µ(.) has exponential complexity in n, so mean delay
is hard to compute

• Good news: If µ(.) is symmetric, then complexity is linear in n

• Better news: Some asymmetric large systems can be
asymptotically approximated by that of a symmetric system

• We now use this idea to analyze practically relevant large
scale systems!
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Large-Scale CDN Asymptotic Regime
and Randomized File Placement

• Large number of server: m→∞

• Larger number of files: n→∞ faster than m

• Fixed number of copies for each file: c
• Stored at random across servers
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Load & Capacity: Homogeneity, Scaling and Stability

• Homogeneity of Load and Scaling:

• Arrival rate for each file: λ(m,n) = λm
n for some constant λ

• Arrival rate per server: λ
• Mean service requirements for requests of each file: ν
• Load per server: ρ = λν, a constant.

• Homogeneity of Capacity and Stability:

• Let µi = ξ for each server i
• Let ρ < ξ for stability.
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RPBF Systems: Randomized Placement and
Balanced Fairness

For given m and n, the capacity region C(m,n) is randomf1
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M(m,n)(.) := associated random
rank function

µm
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µ(m,n)(.) := a realization of M(m,n)(.)

Given a realization of the Randomized Placement, we study the
performance under Balanced Fair rate allocation
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Approximation via ‘Averaged’ Capacity

• In a randomized file placement, the averaged rank function

µ̄(m,n)(A) := E [M(m,n)(A)] for all A ⊂ F ,

is symmetric!
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Goodness of Approximation via ‘Averaged’ Capacity

m = 4, n→∞, c = 2, and ξ = 1
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Mean Delay of RPBF Systems: Asymptotics via
‘Averaged’ Capacity

Theorem
For the ‘averaged’ capacity region with rank function µ̄(.), under load
homogeneity, scaling and stability assumptions, the expected delay
satisfies:

lim
m→∞

lim
n→∞

E [D(m,n)] =
1
λc

log
(

1
1− ρ/ξ

)
• Compare this with standard M/GI/1 PS queue where

E [D] ∝ 1
1− ρ/ξ

• In M/GI/1, total service rate across jobs is fixed

• In RPBF systems, effective service rate increases with more
jobs!
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Performance Evaluation: Key factors

1. Parallel downloads from servers
• Abstracted in capacity region C(m,n)

2. Coupling across servers
• Randomized placement =⇒ overlapping pools of servers

Claim: BF over C(m,n) nicely exploits both for load balancing
across servers!
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Baseline Policy 1: Fixed Pools and Parallel Downloads

n files m servers

c servers
in a group

µ1 = ξ

ξ

ξ

ξ

ξ

ξ

• Pro: Parallel download from servers
• Con: Non-overlapping pools =⇒ No load balancing
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Baseline Policy 2: Random Placement and
Least-loaded Routing

s1 s2 s3 sm

n Files m Serversc

Poisson file request arrivals

Route to one of the c servers with

m servers

Randomized File Placement Least-loaded Routing

the least number of waiting jobs

• Pro: Good load balancing across servers
• Con: No parallel downloads from multiple servers
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Performance Comparison
• c = 3, ξ = 1, ν = 1

• n→∞ and then m→∞
• Each policy is stable for ρ < 1
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Summary

• Parallel service sharing gives substantial performance
improvements across loads, e.g., even over least loaded
routing
( Multipath TCP; P2P content delivery ¨̂ )

• Back of the envelope performance estimates
• e.g., E [D] ∝ 1

c , and E [D] ∝ log
(

1
1−ρ/ξ

)
• Enabled evaluation of Performance-Reliability-Energy

tradeoffs in engineering CDNs
• e.g., can limit overlapping of pools for reliability at cost of

performance
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Energy-Delay Tradeoffs
• Power consumption model: f (ξ) = ξ2 when service rate ξ

[Wierman et al. ’12].
• Speed scaling policy: Turn server off when idle, turn on

with service rate ξ when busy.
• Increasing ξ trades off energy for performance.
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Reliability Against Correlated Failures

• Consider large scale correlated failures: e.g., about 1% of
servers can fail after power outage

• All the c copies of some files may be lost

• Recovering from cold storage may incur high fixed costs,
less affected by number of files lost [Cidon et al.’13]

• Goal: keep probability of a file loss (Ploss) low

25



Strategy For Better Reliability

• File placement policy [Cidon et al.’13]:
• Partition set of servers into m/κ pools of size κ
• Partition set of files into m/κ groups
• Random file-server association within a group

• Keep κ small for lower Ploss

Files

Servers

Random
association

within a group

κ servers in a group

c = 2
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Performance Reliability Tradeoff
• Upon power outage, say with probability 0.01 a server fails.
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n = 2× 106, m = 400, c = 3, ρ = 0.7, and ν = 1.

• At κ = 14, mean delay is 12% greater than the minimum
value, while Ploss is less than 1%.

• Decreasing κ can further lower Ploss but at the cost of a
significant increase in mean delay. 27



Key Idea behind Asymptotic Result
• In our asymptotic regime, one gets concentration of

measure on states x such that µ̄(m,n)(Ax) ≈ ρm

ρm

|Ax|

µ̄(m,n)(Ax)

Total load into the system = ρm

|Ax| drifts upwards

µ̄(m,n)(Ax)� ρm
|Ax| drifts downwards

µ̄(m,n)(Ax)� ρm

• Proof a bit technical, uses the exact mean delay expression
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More Detailed Intuition for Asymptotic Expression
• In the limiting regime, the invariant distribution

concentrates on states x such that µ̄(m,n)(Ax) ≈ ρm
• If µ̄(m,n)(A)� ρm or µ̄(m,n)(A)� ρm, system quickly drifts

towards equilibrated states
• Actual proof quite technical, uses the exact mean delay

expression

• Recall:
µ̄(m,n)(A) = ξm(1− (1− c/m)|A|) ≈ ξm

(
1− e−c|A|/m)

• µ̄(m,n)(Ax ) ≈ ρm when |Ax| ≈ m
c log

(
1

1−ρ/ξ

)
• As n→∞,

∑
i xi ≈ |Ax | w.h.p.

• By Little’s Law, E [D(m,n)] ≈ 1
λc log

(
1

1−ρ/ξ

)
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Balanced Fairness: Defintion

ri(x) =
Φ(x− ei)

Φ(x)
i = 1,2

• Balanced fair rate allocation is the choice of Φ(.) such that
∀x, r(x) = (r1(x), r2(x)) is on the boundary of C.

• Formally, set Φ(0) = 1, Φ(x) = 0, ∀x s.t. xi < 0 for some
i , otherwise, set:

Φ(x) = inf
(
α :

(
Φ(x− e1)

α
,

Φ(x− e2)

α

)
∈ C
)

Φ(x− e2)

Φ(x− e1)

r2

r1
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