Performance Evaluation and Asymptotics for Content Delivery Networks

Virag Shah, Prof. Gustavo de Veciana

The University of Texas at Austin

May 02, 2014

Disciplined Engineering of Large Scale CDNs

- 'Content is King' [Bill Gates '96]
- Netflix + Youtube: ~50% of today's peak internet traffic
 - More than a billion hours of video per month
- Akamai: ~150,000 servers distributed over 1,200 ISPs
 - Delivers 15-30% of all Web traffic, reaching up to 15 TB/s
- Providing better user-perceived performance (download time) at low operating cost is a key problem
- Our Goal: Provide robust models to enable large scale system design, and performance analysis + optimization

Selected Related Work

Large Scale Performance Modeling applicable to CDNs:

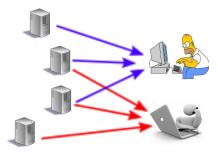
- Is routing request to the/a least loaded server enough? [Vvedenskaya et al.'96; Mitzenmacher '96; Bramson et al.'12]
- If we defer service decision until servers become available, how should the number of copies scale? [Tsitsiklis & Xu '13]
- How should content be replicated/dynamically cached to reduce traffic to centralized back-up? [Leconte et al.'14, Moharir et al.'14]

Other metrics:

- Reliability, e.g., [Cidon et al.'13] show randomized content placement is not always optimal
- Reducing energy costs, e.g., by leveraging energy storage [Palasamudram '12], etc.

The Question

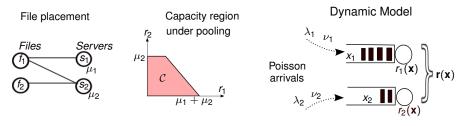
What is the impact on user performance in a large scale system if a subset of servers work together, as a pooled resource, to serve individual download requests?



Two key elements:

- 1. Parallel downloads of customer files
- 2. Coupling across servers

System Model: Simple Example



One queue for each file type

Network state $\mathbf{x} = (x_1, x_2)$

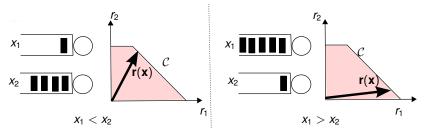
Service:

1. rate $r_i(\mathbf{x})$ for i^{th} queue

– state dependent $\mathbf{r}(\mathbf{x}) \in \mathcal{C} \subset \mathbb{R}^2_+$ for each state \mathbf{x}

- 2. PS discipline within a queue
- 3. Service requirements: i.i.d. with mean ν_i for file *i*

Dynamic Resource Allocation & Fairness



- Ideally, r(x) assigns more rate to bigger queues, i.e., to file types with more requests
- e.g., Max-min, Proportional, α-fair, Balanced fair
- We use Balanced fair because it is close to Proportional fair & tractable
 [e.g., Bonald & Proutiere '03, Massoulié '07, Joseph & de Veciana '11]

What is Balanced Fairness?

$$r(\mathbf{x}) = \mu$$

$$\pi(\mathbf{x}) = \rho^{x}(1-\rho)$$

insensitive to service requirement distribution

For some function $\Phi(.) : \mathbb{Z}^2_+ \to \mathbb{R}_+,$ $r_i(\mathbf{x}) = \frac{\Phi(\mathbf{x} - \mathbf{e}_i)}{\Phi(\mathbf{x})}$

$$\pi(\mathbf{x}) = \Phi(\mathbf{x}) \rho_1^{x_1} \rho_2^{x_2} (G(\rho_1, \rho_2))^{-1}$$

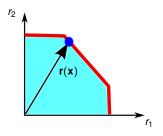
insensitive to service requirement distribution

What is Balanced Fairness?

Balanced fair rate allocation is <u>the</u> choice for Φ(.) such that

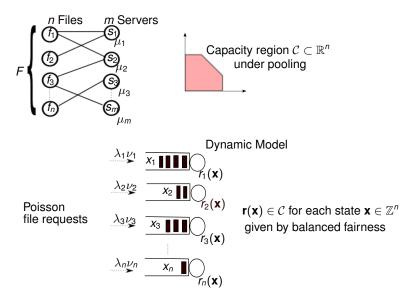
$$\forall \mathbf{x}, \ \mathbf{r}(\mathbf{x}) = (r_1(\mathbf{x}), r_2(\mathbf{x})) = \left(\frac{\Phi(\mathbf{x} - \mathbf{e}_1)}{\Phi(\mathbf{x})}, \frac{\Phi(\mathbf{x} - \mathbf{e}_2)}{\Phi(\mathbf{x})}\right)$$

and is on the boundary of C.



Similarly, generalizes to n dimensions

Content Delivery System Model: General



Structural Result: Polymatroid Capacity Region

Theorem For a given file placement, the capacity region C is a **polymatroid** with **rank function** $\mu(.)$.

• **Rank function:** $\mu : 2^F \to \mathbb{R}_+$, where $\mu(A) :=$ sum capacity for servers that can serve any file in set *A*

•
$$C = \{\mathbf{r} \ge \mathbf{0} : \sum_{i \in A} r_i \le \mu(A), \forall A \subset F\}$$

• $\mu(.)$ is submodular, i.e., $\mu(A) + \mu(B) \ge \mu(A \cup B) + \mu(A \cap B)$

Performance Result: Expression for Mean Delay for Serving File Requests

Theorem Given capacity region C with rank function $\mu(.)$, and $\rho = (\rho_i : \rho_i = \lambda_i \nu_i, i \in F)$, the mean delay for file f_i is:

$$\mathsf{E}\left[\mathsf{D}_{i}
ight] =rac{
u_{i}rac{\partial}{\partial
ho_{i}}\mathsf{G}(oldsymbol{
ho})}{\mathsf{G}(oldsymbol{
ho})}$$

• where
$$G(
ho) = \sum_{A \subset F} G_A(
ho),$$

• and where $G_{\emptyset}(\rho) = 1$, and $G_A(\rho)$ can be computed recursively as $G_A(\rho) = \frac{\sum_{i \in A} \rho_i G_{A \setminus \{i\}}(\rho)}{\mu(A) - \sum_{j \in A} \rho_j}$.

Complexity of Expression for Mean Delay

- Bad news: μ(.) has exponential complexity in n, so mean delay is hard to compute
- Good news: If $\mu(.)$ is symmetric, then complexity is linear in n
- Better news: Some asymmetric large systems can be asymptotically approximated by that of a symmetric system
 - We now use this idea to analyze practically relevant large scale systems!

Large-Scale CDN Asymptotic Regime and Randomized File Placement

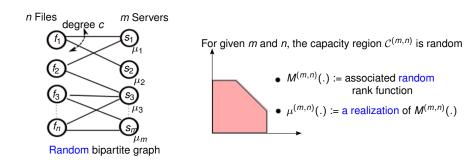
- Large number of server: $m \to \infty$
- Larger number of files: $n \to \infty$ faster than m
- Fixed number of copies for each file: c
 - Stored at random across servers

Load & Capacity: Homogeneity, Scaling and Stability

Homogeneity of Load and Scaling:

- Arrival rate for each file: $\lambda^{(m,n)} = \frac{\lambda m}{n}$ for some constant λ
- Arrival rate per server: λ
- Mean service requirements for requests of each file: ν
- Load per server: $\rho = \lambda \nu$, a constant.
- Homogeneity of Capacity and Stability:
 - Let $\mu_i = \xi$ for each server *i*
 - Let $\rho < \xi$ for stability.

RPBF Systems: <u>R</u>andomized <u>P</u>lacement and <u>B</u>alanced <u>F</u>airness



Given a realization of the Randomized Placement, we study the performance under Balanced Fair rate allocation

Approximation via 'Averaged' Capacity

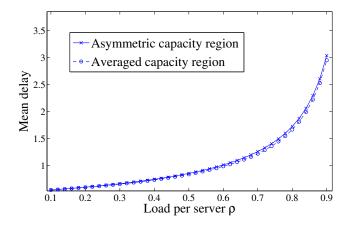
In a randomized file placement, the averaged rank function

 µ^(m,n)(A) := E[M^(m,n)(A)] for all A ⊂ F,

is symmetric!

Goodness of Approximation via 'Averaged' Capacity

$$m = 4, n \rightarrow \infty, c = 2, and \xi = 1$$



Mean Delay of RPBF Systems: Asymptotics via 'Averaged' Capacity

Theorem

For the 'averaged' capacity region with rank function $\bar{\mu}(.)$, under load homogeneity, scaling and stability assumptions, the expected delay satisfies:

$$\lim_{m\to\infty}\lim_{n\to\infty}E[D^{(m,n)}]=\frac{1}{\lambda c}\log\left(\frac{1}{1-\rho/\xi}\right)$$

• Compare this with standard M/GI/1 PS queue where

$$E[D] \propto rac{1}{1-
ho/\xi}$$

- In M/GI/1, total service rate across jobs is fixed
- In RPBF systems, effective service rate increases with more jobs!

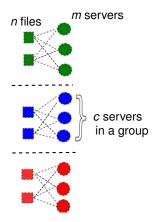
Performance Evaluation: Key factors

1. Parallel downloads from servers

- Abstracted in capacity region $C^{(m,n)}$
- 2. Coupling across servers
 - Randomized placement \implies overlapping pools of servers

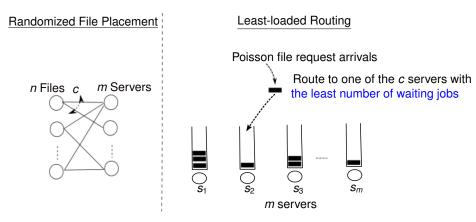
Claim: BF over $C^{(m,n)}$ nicely exploits both for load balancing across servers!

Baseline Policy 1: Fixed Pools and Parallel Downloads



- Pro: Parallel download from servers
- Con: Non-overlapping pools \implies No load balancing

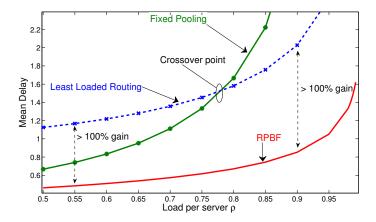
Baseline Policy 2: Random Placement and Least-loaded Routing



- Pro: Good load balancing across servers
- Con: No parallel downloads from multiple servers

Performance Comparison

- $c = 3, \xi = 1, \nu = 1$
- $n \to \infty$ and then $m \to \infty$
- Each policy is stable for ρ < 1



Summary

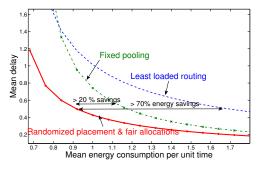
- Parallel service sharing gives substantial performance improvements across loads, e.g., even over least loaded routing
 (Multipath TCP; P2P content delivery ~)
- · Back of the envelope performance estimates

• e.g.,
$$E[D] \propto rac{1}{c}$$
, and $E[D] \propto \log\left(rac{1}{1-
ho/\xi}
ight)$

- Enabled evaluation of Performance-Reliability-Energy tradeoffs in engineering CDNs
 - e.g., can limit overlapping of pools for reliability at cost of performance

Energy-Delay Tradeoffs

- Power consumption model: f(ξ) = ξ² when service rate ξ
 [Wierman et al. '12].
- Speed scaling policy: Turn server off when idle, turn on with service rate ξ when busy.
- Increasing ξ trades off energy for performance.



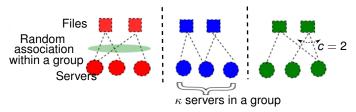
Energy-delay tradeoff with varying server speed ξ . $\rho = 0.8$, $\nu = 1$, and c = 3.

Reliability Against Correlated Failures

- Consider large scale correlated failures: e.g., about 1% of servers can fail after power outage
- All the *c* copies of some files may be lost
- Recovering from cold storage may incur high fixed costs, less affected by number of files lost [Cidon et al.'13]
- Goal: keep probability of a file loss (Ploss) low

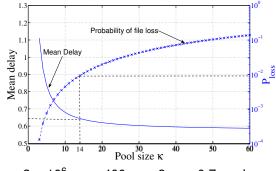
Strategy For Better Reliability

- File placement policy [Cidon et al.'13]:
 - Partition set of servers into *m*/κ pools of size κ
 - Partition set of files into *m*/κ groups
 - Random file-server association within a group
- Keep κ small for lower P_{loss}



Performance Reliability Tradeoff

• Upon power outage, say with probability 0.01 a server fails.

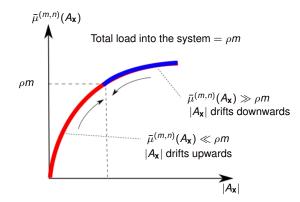


 \blacksquare $n = 2 \times 10^{6}$, m = 400, c = 3, $\rho = 0.7$, and $\nu = 1$.

- At κ = 14, mean delay is 12% greater than the minimum value, while P_{loss} is less than 1%.
- Decreasing κ can further lower P_{loss} but at the cost of a significant increase in mean delay.

Key Idea behind Asymptotic Result

 In our asymptotic regime, one gets concentration of measure on states x such that μ
^(m,n)(A_x) ≈ ρm



Proof a bit technical, uses the exact mean delay expression

More Detailed Intuition for Asymptotic Expression

- In the limiting regime, the invariant distribution concentrates on states x such that μ^(m,n)(A_x) ≈ ρm
 - If μ
 ^(m,n)(A) ≪ ρm or μ
 ^(m,n)(A) ≫ ρm, system quickly drifts towards equilibrated states
 - Actual proof quite technical, uses the exact mean delay expression

• Recall:
$$\bar{\mu}^{(m,n)}(A) = \xi m(1 - (1 - c/m)^{|A|}) \approx \xi m (1 - e^{-c|A|/m})$$

•
$$\bar{\mu}^{(m,n)}(A_x) \approx \rho m$$
 when $|A_x| \approx \frac{m}{c} \log\left(\frac{1}{1-\rho/\xi}\right)$

• As
$$n \to \infty$$
, $\sum_i x_i \approx |A_x|$ w.h.p.

• By Little's Law,
$$E[D^{(m,n)}] \approx rac{1}{\lambda c} \log\left(rac{1}{1-
ho/\xi}
ight)$$

Balanced Fairness: Defintion

$$r_i(\mathbf{x}) = rac{\Phi(\mathbf{x} - \mathbf{e}_i)}{\Phi(\mathbf{x})}$$
 $i = 1, 2$

- Balanced fair rate allocation is <u>the</u> choice of $\Phi(.)$ such that $\forall \mathbf{x}, \mathbf{r}(\mathbf{x}) = (r_1(\mathbf{x}), r_2(\mathbf{x}))$ is on the boundary of C.
- Formally, set $\Phi(\mathbf{0}) = 1$, $\Phi(\mathbf{x}) = 0$, $\forall \mathbf{x}$ s.t. $x_i < 0$ for some *i*, otherwise, set: