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Disciplined Engineering of Large Scale CDNs

e ‘Content is King’ [Bill Gates ’96]

Netflix + Youtube: ~50% of today’s peak internet traffic
¢ More than a billion hours of video per month

Akamai: ~150,000 servers distributed over 1,200 ISPs
¢ Delivers 15-30% of all Web traffic, reaching up to 15 TB/s

Providing better user-perceived performance (download time) at
low operating cost is a key problem

Our Goal: Provide robust models to enable large scale system
design, and performance analysis + optimization



Selected Related Work

Large Scale Performance Modeling applicable to CDNs:

e Is routing request to the/a least loaded server enough?
[Vvedenskaya et al.’96; Mitzenmacher '96; Bramson et al.’12]

o |f we defer service decision until servers become available, how
should the number of copies scale? [Tsitsiklis & Xu '13]

e How should content be replicated/dynamically cached to reduce
traffic to centralized back-up? [Leconte et al.'14, Moharir et al.’14]

Other metrics:

e Reliability, e.g., [Cidon et al.’13] show randomized content
placement is not always optimal

e Reducing energy costs, e.g., by leveraging energy storage
[Palasamudram ’12], etc.



The Question

What is the impact on user performance in a large scale system if a
subset of servers work together, as a pooled resource, to serve
individual download requests?

B
@X%

Two key elements:
1. Parallel downloads of customer files

2. Coupling across servers



System Model: Simple Example
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One queue for each file type
Network state x = (x1, x2)

Service:

1. rate r;(x) for i queue
— state dependent r(x) € C C R2 for each state x

2. PS discipline within a queue
3. Service requirements: i.i.d. with mean v; for file i



Dynamic Resource Allocation & Fairness
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e |deally, r(x) assigns more rate to bigger queues, i.e., to file types
with more requests

e e.g., Max-min, Proportional, a-fair, Balanced fair

e We use Balanced fair because it is close to Proportional fair &

tractable
[ e.g., Bonald & Proutiere '03, Massoulié 07, Joseph & de Veciana '11]



What is Balanced Fairness?
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For some function ®(.) : Z2 — R,

e; := unit vector
in /™ direction
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What is Balanced Fairness?

e Balanced fair rate allocation is the choice for ¢(.) such that

vx, r(x) = (r1(x), r2(x)) = (4’(;()(—)()61 ! ’ CI>(Z‘Z(_X)GZ))

and is on the boundary of C.
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e Similarly, generalizes to n dimensions



Content Delivery System Model: General
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Structural Result: Polymatroid Capacity Region

Theorem
For a given file placement, the capacity region C is a polymatroid
with rank function p(.).

 Rank function: 1 : 27 — R, where x(A) := sum capacity
for servers that can serve any file in set A

e 4(.) is submodular, i.e., u(A) + p(B) > u(AU B) + (AN B)



Performance Result: Expression for Mean Delay
for Serving File Requests

Theorem
Given capacity region C with rank function u(.), and
p = (pi: pi =\, I € F), the mean delay for file f; is:

l/ig,% G(p)

“PI= 60

o where G(p) = " pcr Galp).

e and where Gy(p) = 1, and Ga(p) can be computed recursively
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Complexity of Expression for Mean Delay

e Bad news: u(.) has exponential complexity in n, so mean delay
is hard to compute

e Good news: If u(.) is symmetric, then complexity is linear in n

e Better news: Some asymmetric large systems can be
asymptotically approximated by that of a symmetric system

¢ We now use this idea to analyze practically relevant large
scale systems!



Large-Scale CDN Asymptotic Regime
and Randomized File Placement

e Large number of server: m — oo
e Larger number of files: n — oo faster than m

e Fixed number of copies for each file: ¢
e Stored at random across servers



Load & Capacity: Homogeneity, Scaling and Stability

e Homogeneity of Load and Scaling:

« Arrival rate for each file: A(™" = 27 for some constant A
o Arrival rate per server: A

¢ Mean service requirements for requests of each file: v

e Load per server: p = \v, a constant.

e Homogeneity of Capacity and Stability:

o Let u; = ¢ for each server i
o Let p < £ for stability.



RPBF Systems: Randomized Placement and
Balanced Fairness

n Files m Servers
degree ¢
1 For given m and n, the capacity region ¢(™") is random
@ 2 o M(m™M)( ) := associated random
@ - @ rank function
[ o u(mMN)( ) := a realization of M(™M(.)

Hm
Random bipartite graph

Given a realization of the Randomized Placement, we study the
performance under Balanced Fair rate allocation



Approximation via ‘Averaged’ Capacity

¢ In a randomized file placement, the averaged rank function
™ (A) = E[M™N(A)] forall AC F,

is symmetric!



Goodness of Approximation via ‘Averaged’ Capacity
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Mean Delay of RPBF Systems: Asymptotics via
‘Averaged’ Capacity

Theorem
For the ‘averaged’ capacity region with rank function fi(.), under load
homogeneity, scaling and stability assumptions, the expected delay

satisfies: 1
lim lim E[D(™M] = o ()
O e
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e Compare this with standard M/GlI/1 PS queue where

L
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e In M/Gl/1, total service rate across jobs is fixed

E[D] x

¢ In RPBF systems, effective service rate increases with more
jobs!



Performance Evaluation: Key factors

1. Parallel downloads from servers
« Abstracted in capacity region C(™")

2. Coupling across servers
e Randomized placement — overlapping pools of servers

Claim: BF over (™" nicely exploits both for load balancing
across servers!



Baseline Policy 1: Fixed Pools and Parallel Downloads

n files m servers

i
.. c servers
.,:’.‘_'jft\. in a group

e Pro: Parallel download from servers
e Con: Non-overlapping pools —> No load balancing
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Baseline Policy 2: Random Placement and
Least-loaded Routing

Randomized File Placement ! Least-loaded Routing

Poisson file request arrivals

¥ Route to one of the ¢ servers with
™™ the least number of waiting jobs

nFiles ¢ m Servers
N

O
[[]
[ I

So S3 Sm
m servers

e Pro: Good load balancing across servers

e Con: No parallel downloads from multiple servers .



Performance Comparison
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Summary

e Parallel service sharing gives substantial performance
improvements across loads, e.g., even over least loaded
routing
( Multipath TCP; P2P content delivery = )

e Back of the envelope performance estimates
«eg,E[D]x!, and E[D]x log (QW)

e Enabled evaluation of Performance-Reliability-Energy
tradeoffs in engineering CDNs
e e.g., can limit overlapping of pools for reliability at cost of
performance
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Energy-Delay Tradeoffs

o Power consumption model: f(¢) = &2 when service rate ¢
[Wierman et al. '12].

e Speed scaling policy: Turn server off when idle, turn on
with service rate £ when busy.

e Increasing ¢ trades off energy for performance.

™. Fixed pooling

‘* S
: ~~._ Least loaded routing

Mean delay

>M§* > 70% energy Savimgs- - - . _ . 1
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Randomized placement & fair allocatr

0.7 0.8 0.9 1 11 1.2 1.3 1.4 15 16 17
Mean energy consumption per unit time

m Energy-delay tradeoff with varying server speed . p = 0.8, v = 1,
and ¢ = 3.
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Reliability Against Correlated Failures

Consider large scale correlated failures: e.g., about 1% of
servers can fail after power outage

All the ¢ copies of some files may be lost

Recovering from cold storage may incur high fixed costs,
less affected by number of files lost [Cidon et al.’13]

Goal: keep probability of a file loss (Ploss) low
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Strategy For Better Reliability

e File placement policy [Cidon et al.’13]:

o Partition set of servers into m/x pools of size
e Partition set of files into m/x groups
¢ Random file-server association within a group

e Keep x small for lower Pjysg

Files . -

Random
association

within a group "
Serve 9 . .

K Servers in a group
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Performance Reliability Tradeoff

¢ Upon power outage, say with probability 0.01 a server fails.
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Probability of file loss: o
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v Pool e ¢ 50 a0”
Bn=2x10°, m=400,¢c=3,p=07,andv = 1.
e At k = 14, mean delay is 12% greater than the minimum
value, while Py is less than 1%.
e Decreasing « can further lower Posg but at the cost of a

significant increase in mean delay.



Key Idea behind Asymptotic Result
¢ In our asymptotic regime, one gets concentration of
measure on states x such that a(™"(Ay) ~ pm
™) (Ax)

Total load into the system = pm

pm b : .
™D (Ax) > pm
|Ax| drifts downwards

- ™M (Ac) < pm
|Ax| drifts upwards

>
|Ax|
¢ Proof a bit technical, uses the exact mean delay expression
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More Detailed Intuition for Asymptotic Expression

e In the limiting regime, the invariant distribution
concentrates on states x such that (™" (Ay) ~ pm
o If g(MmN(A) < pmor a(™"(A) > pm, system quickly drifts
towards equilibrated states
o Actual proof quite technical, uses the exact mean delay
expression

e Recall:
MmN (A) = eém(1 — (1 — ¢/m)A) ~ ¢m (1 — e=clA/m)

o A(MM(Ay) ~ pm when |Ay| ~ Zlog (1*17,0/6)
e Asn— o0, ) X; = |Ax| w.h.p.

o By Little’s Law, E[D(™")] ~ ﬁ log (ﬁ)
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Balanced Fairness: Defintion
d(x—ej) . -~
W i=1,2

e Balanced fair rate allocation is the choice of ®(.) such that
VX, r(x) = (r1(x), r2(x)) is on the boundary of C.

ri(x) =

o Formally, set ¢(0) =1, #(x) =0, ¥x s.t. x; < 0 for some
i, otherwise, set:

o (x) = inf <a: <¢(x_ &) *x= 62)) eC>

« «
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d(x —
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