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Abstract—Soft-constraint semi-supervised affinity propagation (SCSSAP) adds supervision to the affinity propagation (AP)
clustering algorithm without strictly enforcing instance-level constraints. Constraint violations lead to an adjustment of the AP
similarity matrix at every iteration of the proposed algorithm and to addition of a penalty to the objective function. This formulation
is particularly advantageous in the presence of noisy labels or noisy constraints since the penalty parameter of SCSSAP can
be tuned to express our confidence in instance-level constraints. When the constraints are noiseless, SCSSAP outperforms
unsupervised AP and performs at least as well as the previously proposed semi-supervised AP and constrained expectation
maximization. In the presence of label and constraint noise, SCSSAP results in a more accurate clustering than either of the
aforementioned established algorithms. Finally, we present an extension of SCSSAP which incorporates metric learning in the
optimization objective and can further improve the performance of clustering.
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1 INTRODUCTION

A FFINITY propagation (AP) is a frequently encoun-
tered clustering technique that uses similarities

between data points to select the best representatives
(exemplars) among them and assign each data point
to its most suitable exemplar [1]. The algorithm au-
tomatically detects the number of exemplars (and,
hence, the number of clusters), does not require that
the similarities between data points are metric, and
can take advantage of sparse similarities. AP is ef-
ficiently implemented as a message-passing scheme
on a graph representing the data. More specifically,
the AP message updates are obtained by applying the
max-sum algorithm in a factor graph [2]. By adding
nodes or modifying the factor node definitions, AP
can be expanded to enforce an upper limit on the
number of data points in a cluster [2], allow for
uncertain or varying similarities [3], perform hierar-
chical clustering [4], enable finding subclasses within
a category by allowing assignment of each exemplar
to a super-exemplar [5], and more. To introduce semi-
supervision in the AP clustering, Givoni and Frey [6]
include additional variable nodes in the factor graph
(so-called meta-points) and appropriately revise the
similarity function.

In semi-supervised clustering, a subset of data la-
bels or pairs of similar and dissimilar points are
known. Knowledge of instance-level constraints – i.e.,
sets of pairs of data points that are similar (must-link)
or dissimilar (cannot-link) – is especially valuable in
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settings where data labels are expensive, such as those
obtained by performing expensive or invasive medical
procedures, or slow to obtain, such as in the case of
enormous datasets. Note that partial labels can always
be converted to instance-level constraints, whereas
the reverse is not true. The inclusion of instance-
level constraints in the formulation of the clustering
problems results in higher accuracy of k-means [7],
expectation-maximization (EM) [8], and AP [6] algo-
rithms. Supervision can also be added to a clustering
algorithm by modifying the similarity measure before
or during the clustering [9], [10], [11], [12].

Algorithms that strictly enforce instance-level con-
straints assume that the provided labels or pairs of
similar and dissimilar instances are correct. However,
noisy labels or instance-level constraints can arise in a
variety of situations including those that involve a cer-
tain level of subjectivity, scenarios where the informa-
tion used for labeling is incomplete or inadequate, or
when data entry errors exist [13]. In medical domain,
for instance, noisy labels can arise from subjectivity
in situations where finding labels entails a qualitative
ranking, such as in the case of determining disease
severity or a disability outcome score. Furthermore,
noisy labels may arise from incomplete information
when established using a diagnosis where not all of
the informative tests have been performed [13]. Web
data, such as user-provided or search-based image
and video tags, is also often plagued by noisy labels
[14], [15]. The effect of noisy labels can be attenuated
by using filtering techniques, optimization over both
predicted soft labels and given hard labels, label
normalization or tuning, noise modeling and feature
extraction [13], [15], [16], [17], [18].

Previous work on semi-supervised clustering with
AP includes algorithms that strictly enforce instance-
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level constraints by insisting that data points with
must-link constraints belong to the same cluster [6],
[19]. Such hard constraints have been removed in [19],
[20], by means of bypassing the AP requirement that a
point acting as an exemplar (cluster center) for others
also acts as its own exemplar. In the current paper,
we describe a novel semi-supervised AP clustering
algorithm where a confidence is assigned to the set of
instance-level constraints; the constraints then need
not be strictly enforced during the clustering. The pa-
per is organized as follows. The affinity propagation
algorithm with extensions including softening con-
straints or added supervision are presented in Section
2. The new algorithm, soft-constraint semi-supervised
AP, is derived in Section 3. The clustering datasets and
evaluation metrics are described in Section 4, with
the results presented in Section 5. An extension of
SCSSAP that employs metric learning is presented in
Section 6. Section 7 concludes the work.

2 PRIOR WORK: AFFINITY PROPAGATION
AND EXTENSIONS

In affinity propagation [1], exemplars (i.e., represen-
tatives of the clusters) are selected after iterative ex-
change of messages between the nodes of a graph
that represents data points (instances) being clustered.
The chosen exemplars are data instances themselves,
and each instance is assigned to one of the exem-
plars. Hence, in the graphical representation clusters
correspond to subgraphs that are spanned by edges
connecting instances and their exemplars. The nodes
of the graph are related by a pre-defined similarity
measure such as the negative Eucledian distance or
the Pearson correlation coefficient. The similarities
between the nodes, conveniently organized in a ma-
trix, do not need to satisfy symmetry or the triangle
inequality. The diagonal components of the similarity
matrix, referred to as preferences, are typically set to
the median value of the similarity between instances.
In AP, the number of clusters need not be pre-specified
but increasing (decreasing) the preferences will result
in a higher (lower) number of clusters. Once the
similarity matrix has been defined, two messages are
exchanged between the nodes of the graph: responsi-
bility and availability. The responsibility ρij indicates
how well-suited node j is to be the exemplar for node
i, while the availability αij reflects how appropriate it
would be for node i to choose node j as its exemplar.
These messages, derived from a max-sum algorithm
in a factor graph [2], aim to maximize the sum of
similarities between nodes and their exemplars. In a
factor graph, binary variable nodes indicate whether
one node is an exemplar of another. The factor nodes
enforce two sets of clustering constraints: (a) each
node must have exactly one exemplar, and (b) if a
node serves as an exemplar to another node then it
must serve as an exemplar to itself.

In order to avoid oscillating solutions, a damping
parameter µ is often incorporated in the message
updates such that the new message is µ times the
old message plus 1− µ times the prescribed message
update. Affinity propagation has several advantages
over other clustering algorithms since it does not
require a pre-specified number of clusters, can be for-
mulated to take advantage of sparsity in the similari-
ties, and does not require multiple initializations with
varying initial cluster centers to find the clustering
solution.

2.1 AP extensions

The previously mentioned self-selection constraint
may be relaxed by either introducing a penalty to the
objective if the constraint is violated [20] or preventing
each instance to choose itself as an exemplar [19]. The
soft-constraint AP can be extended to semi-supervised
clustering [19] when a subset of data labels is avail-
able. Each labeled instance is assigned to a macro-
node for its class while the similarity between an
unlabeled instance and a macro-node is defined as the
maximum similarity between the unlabeled instance
and all instances assigned to the macro-node.

A natural extension of the semi-supervised AP algo-
rithm from labeled data to instance-level constraints
is obtained by introducing meta-points. The semi-
supervised AP formulation in [6] enforces additional
cannot-link constraints using function nodes between
meta-points that drive the objective to negative in-
finity when the cannot-link constraints are violated.
More specifically, one meta-point (MTP) is introduced
for each must-link group and for each instance in a
cannot-link constraint that is not also in a must-link
group. The similarity of the ith instance and the mth

meta-point MTPm is given by

s(i,MTPm) =

{
0 if i ∈ Pm

max
j∈Pm

s(i, j) otherwise (1)

where Pm denotes the set of data points associated
with MTPm. Note that instances can choose a meta-
point as an exemplar but a meta-point cannot choose
other meta-points as exemplars. In fact, each instance
in a must-link group will necessarily choose the meta-
point associated with it as its exemplar. The cannot-
link constraints are enforced by adding factor nodes
connected to the meta-point such that if x has MTPi

as an exemplar, y has MTPj as an exemplar, and
(x, y) have a cannot-link constraint between them,
then the exemplar for MTPi cannot be the same as
the exemplar for MTPj . In this example, the cannot-
link factor node between MTPi and MTPj is −∞
if the two meta-points have the same exemplar, and
is 0 otherwise. Following the addition of the cannot-
link factor nodes, updates for the responsibilities need
to be modified. The new updates can be interpreted
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as a change in the similarity for the meta-points
that are connected by the cannot-link constraints.
Semi-supervised AP outperformed both AP and con-
strained expectation maximization in image segmen-
tation tasks [6].

More recently, semi-supervised AP methods where
the clustering is preceded by supervision have been
proposed. Wang et al. [21] use instance-level con-
straints to guide the search for a lower-dimensional
projection in which AP is performed. Zhu et al. [22]
propose a semi-supervised AP algorithm for networks
where the supervision is facilitated by an appropriate
construction of the similarity measure. In particular,
the similarity between instances is set to 1 for must-
link pairs and 0 for cannot-link pairs, while the simi-
larity of pairs without constraints is determined based
on their relationships with other objects [23]. A fast
AP clustering is then performed using the pre-defined
similarities. Incremental AP clustering (I-APC) [24]
and incremental and decremental AP (ID-AP) [25]
incorporate supervision into AP via an iterative proce-
dure that runs AP until convergence and updates the
labeled data set based on associations between labeled
and unlabeled instances. The similarity measure is
updated once the new labeled data set is determined.
In ID-AP, the negative Eucledian distance is used as
the basic similarity measure. The similarity between
data instances in must-link constraints is set to zero
before starting AP iterations, thus forcing similarly-
labeled instances to be in the same cluster. Cannot-
link constraints are enforced by setting the similarity
between points in the constraint set to the smallest
value from the set of similarities.

As implied by the discussion in this section, there
exist no prior AP-based clustering scheme that di-
rectly imposes soft constraints on pairs of data in-
stances. Since the use of meta-points and macro-
nodes strictly enforces must-link constraints, semi-
supervised AP which relies on those concepts [6]
cannot be readily modified to allow for softening
of the instance-level constraints. Moreover, since the
instance level constraints in [22] affect only the sim-
ilarity metric while the actual affinity propagation
algorithm remains unsupervised, any softening of the
constraints in that scheme would have to be facilitated
by modifying the initial similarity metric (which then
remains unaltered in the AP iterations). Finally, while
the semi-supervised AP algorithm in [21] does not
strictly enforce instance-level constraints, imposing
“softness” of the constraints in that framework ap-
pears to be challenging.

3 SOFT-CONSTRAINT SEMI-SUPERVISED
AFFINITY PROPAGATION ALGORITHM

In this section we derive a new algorithm, soft-
constraint semi-supervised affinity propagation (SC-
SSAP), that incorporates pairwise constraints into the

AP framework by introducing factor nodes for each
must-link and cannot-link constraint. A penalty is
incurred when a constraint is violated, with poten-
tially different penalties imposed on must-link and
cannot-link constraints. Since clusterings that violate
constraints are not prohibited, the penalty can express
a confidence in the constraints. In the binary AP
framework, variable node cij = 1 if the jth data in-
stance is the exemplar for the ith one and 0 otherwise,
and factor nodes enforce these constraints.

Figure 1 illustrates an example of the connections
between variable nodes and factor nodes in a segment
of the factor graph. In this example, the pair of points
(i, k) is in the cannot-link constraint set C and the pair
(i,m) is in the must-link constraint set M.
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Fig. 1. Soft-constraint semi-supervised affinity propa-
gation. The cannot-link (CL) and must-link (ML) factor
nodes are not present in the classical AP formulation.
In this graph, the pair (i, k) is in the set of cannot-link
constraints and the pair (i,m) is in the set of must-
link constraints, i, j, k, l,m ∈ {1, 2, . . . , N}, where N de-
notes the number of instances. Here sij is the similarity
between ith and jth instance, and cij indicates whether
the jth instance is the exemplar for the ith instance.

Factor nodes impose constraints that naturally arise
in the clustering problems. For instance, Ii(ci1,...,iN )
restrict nodes to only have one exemplar,

Ii(ci1,...,iN ) =

−∞ if
∑
j

cij 6= 1

0 otherwise.
(2)

Furthermore, Ej(c1j,...,Nj) enforces self-selection, i.e.,
if instance j is an exemplar for any other instance then
it must be its own exemplar,

Ej(c1j,...,Nj) =

−∞ if cjj = 0 and
∑
i

cij > 0

0 otherwise.
(3)



DRAFT: SEMI-SUPERVISED AFFINITY PROPAGATION WITH SOFT INSTANCE-LEVEL CONSTRAINTS 4

The must-link (ML) and cannot-link (CL) factor nodes
introduce penalties whenever the instance-level con-
straints are violated,

MLj
im(cij , cmj) =

−qm if cij 6= cmj

for (i,m) ∈M
0 otherwise,

(4)

CLj
ik(cij , ckj) =

−qc if cij = 1 and cij = ckj
for (i, k) ∈ C

0 otherwise,
(5)

where qm ≥ 0 and qc ≥ 0. In particular, for a
clustering specified by the set of variables c =
{c11, c12, . . . , cNN}, the max-sum objective of SCSSAP
is

arg max
c

∑
i,j

Sij(cij) +
∑
i

Ii(ci1, . . . , ciN )

+
∑
j

Ej(c1j , . . . , cNj) +
∑

(i,k)∈C

∑
j

CLj
ik

+
∑

(i,m)∈M

∑
j

MLj
im, (6)

where C denotes the set of instance pairs with cannot-
link constraints andM is the set of instance pairs with
must-link constraints. The similarity factor nodes Sij

ensure that similarities contributing to the objective
function (6) are only those between an instance and
its exemplar,

Sij(cij) =

{
s(i, j) if cij = 1

0 otherwise.
(7)

Note that the probability of a given clustering c is
given by

P [c] =
1

Z

∏
i,j

exp (Sij(cij))
∏
i

exp (Ii[c])
∏
j

exp (Ej [c])∏
j,(i,k)∈C

C̄L
j
ik

∏
j,(i,m)∈M

M̄L
j
im, (8)

where 1/Z is a normalizing term, C̄Lj
ik = exp(CLj

ik)

and M̄L
j
im = exp(MLj

im). Clearly, both C̄Lj
ik, M̄L

j
im ∈

[0, 1] and hence qm, qc should be adjusted on a log
scale in order to have a significant effect on the
objective. The proposed SCSSAP framework reduces
to the classical AP by setting qm = qc = 0, while the
pairwise constraints can be strictly enforced by setting
qm, qc → ∞ such that a clustering configuration that
violates pairwise constraints will have probability
close to zero.

The SCSSAP messages between factor and variable
nodes are labeled in Figure 2. Update rules for these
scalar messages are derived following the max-sum
update rules [26], similar to how it was done in [2].
Each message is derived for both values of the vari-
able node (e.g., αij(b), b ∈ {0, 1}), with the difference
defined as αij = αij(1) − αij(0). The messages from
the variable nodes to the factor nodes are updated as

cij	  

Ej	  

Ii	  

Sij	  

CLikj	  

	  	  	  	   MLimj	  

γikj	


λikj	


ωimj	


τimj	

αij	


ρij	


βij	


ηij	


s(i,j)	  

Fig. 2. Messages in soft-constraint semi-supervised
affinity propagation. The α, ρ, η, and β messages are
as same as those in the classical AP derived for the
binary factor graph. Here i, j, k, l,m ∈ {1, 2, . . . , N},
where N is the number of instances.

βij = s(i, j) + αij +
∑

m:(i,m)∈M

ωj
im +

∑
k:(i,k)∈C

γjik (9)

ρij = s(i, j) + ηij +
∑

m:(i,m)∈M

ωj
im +

∑
k:(i,k)∈C

γjik (10)

τ jim = s(i, j) + αij + ηij +
∑

l:(i,l)∈M
l 6=m

ωj
il +

∑
k:

(i,k)∈C

γjik (11)

λjik = s(i, j) + αij + ηij +
∑
m:

(i,m)∈M

ωj
im +

∑
l:(i,l)∈C

l 6=k

γjil. (12)

Since messages from the factor nodes to the variable
node only depend on the value of the factor node and
the messages to the factor node, the update equations
for ηij and αij remain as same as in [2],

ηij =−max
k 6=j

βik (13)

αij =


min

[
0, ρjj +

∑
k 6∈{i,j}

max[ρkj , 0]

]
if i 6= j∑

k 6=j

max[ρkj , 0] if i = j.

(14)

The messages from the cannot-link factor nodes to
the variable nodes are

γjik(1) = max
ckj

[CLj
ik(ckj , cij = 1) + λjki(ckj)]

= max
ckj

[−qc1(ckj = 1) + λjki(ckj)], (15)

γjik(0) = max
ckj

[CLj
ik(ckj , cij = 0) + λjki(ckj)]

= max
ckj

[λjki(ckj)], (16)

where 1 is an indicator function, and CLj
ik(ckj , cij =

0) = 0 since cannot-link constraints only penalize the
objective when an instance pair in the cannot-link set
shares the exemplar (i.e., (i, k) ∈ C and cij = ckj = 1).
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The final message γjik = γjik(1)− γjik(0) is then

γjik = max
ckj

{
−qc1(ckj = 1) + λjki(ckj)−max

ckj

{λjki(ckj)}
}

= max

{
−qc + λjki(1)−max

ckj

λjki(ckj),

λjki(0)−max
ckj

λjki(ckj)

}
=−min

{
qc + max{0,−λjki}, max{0, λjki}

}
. (17)

Following similar steps, we derive the message up-
dates from the must-link factor nodes to the variable
nodes as

ωj
ik(1) = max

ckj

{MLj
ik(ckj , cij = 1) + τ jki(ckj)}

= max
ckj

{−qm1(ckj = 0) + τ jki(ckj)} (18)

ωj
ik(0) = max

ckj

{MLj
ik(ckj , cij = 0) + τ jki(ckj)}

= max
ckj

{−qm1(ckj = 1) + τ jki(ckj)} (19)

ωj
ik = max

ckj

{−qm1(ckj = 0) + τ jki(ckj)}

−max
ckj

{−qm1(ckj = 1) + τ jki(ckj)}

= max
{

min{−τ jki,−qm}, min{τ jki, qm}
}
. (20)

Note that the confidence in each of the pairwise
constraints may additionally be tuned by multiplying
qc in eq. (17) and qm in eq. (20) with a constraint-
specific value ∈ [0, 1].

The dependence of ρij , τ
j
im and λjik on ηij can be

eliminated using eqs. (9) and (13). The new updates
become

ρij =s(i, j) +
∑

m:(i,m)∈M

ωj
im +

∑
k:(i,k)∈C

γjik

−max
l 6=j

s(i, l) + αil +
∑
m:

(i,m)∈M

ωl
im +

∑
k:

(i,k)∈C

γlik


(21)

τ jim =αij + ρij − ωj
im (22)

λjik =αij + ρij − γjik. (23)

The update for ρij can further be simplified by mod-
ifying the similarity metric and introducing

ŝ(i, j) = s(i, j) +
∑

m:(i,m)∈M

ωj
im +

∑
k:(i,k)∈C

γjik. (24)

Then the update for ρij can be rewritten as

ρij = ŝ(i, j)−max
k 6=j
{ŝ(i, k) + αik}, (25)

which is of the same form as the responsibility update
in the unsupervised AP with a modified similarity
metric.

Note that qc > 0 (by construction) and hence, as
evident from the update for γjik in eq. (17), it holds that
γjik ≤ 0, i.e., as expected, the cannot-link constraints
can only decrease the modified similarity function.

The SCSSAP algorithm summarized as Alg. 1 re-
places the τ jki and λjki messages in the updates of γjik
(eq. (17)) and ωj

ik (eq. (20)) by their definitions in eqs.
(22) and (23). Therefore, the algorithm only requires
update and storage of two messages in addition to the
availabilities α and responsibilities ρ. The damping
parameter µ ∈ [0.5, 1) is also explicitly employed in
Alg. 1. The damping parameter aids the convergence
of AP in the case of oscillating solutions.

While the availability α and responsibility ρ need
to be calculated for all instance pairs, the messages
γjik and ωj

lm only need to be calculated for (i, k) ∈ C,
(l,m) ∈ M and j ∈ {1, . . . , N}. Note that if (i, k) ∈ C
then (k, i) ∈ C; similar statement can be made for the
set M of must-link pairs. Therefore, compared to the
classical AP, SCSSAP requires an additional 2N(|C|+
|M|) message updates in each iteration, where | · |
denotes the number of non-ordered pairs in the set.
We may choose to terminate the iterations once a
change in message values falls below a certain thresh-
old, or after we obtain a consistent set of exemplars
for a predetermined number of iterations, or upon
reaching a maximum number of iterations. Instance
j is identified as a self-exemplar if αjj + ρjj > 0 after
the iterations terminate. The exemplar for instance i
is identified as arg maxk αik + ρik, where k is in the
set of self-exemplars.

4 ALGORITHM EVALUATION

To evaluate performance of the proposed SCSSAP
algorithm and compare it with existing schemes,
we have used the negative squared Euclidian dis-
tance as the similarity measure, s(i, j) = −‖xi −
xj‖2, and the affinity propagation damping param-
eter µ = 0.75. All the preferences (i.e., diagonal
elements of the similarity matrix) were set to the
median value of the similarities between data in-
stances. Eight datasets from the UCI Machine Learn-
ing Repository [27] were examined: iris, wine, parkin-
sons [28], SPECTF heart, ionosphere, breast cancer,
balance, and diabetes. We performed clustering with
SCSSAP using several penalty parameters exp(−qc) =
exp(−qm) ∈ {0, 0.00005, 0.1, 0.5, 0.9}, where exp(−q) =
0 imposes an infinite penalty for violating constraints
and exp(−q) = 1 is equivalent to the unsupervised
affinity propagation.

For benchmarking purposes, SCSSAP is compared
to the unsupervised AP and SSAP [6]. All the algo-
rithms were tested in the presence of two types of
noise. In the first type of noise, after the constraint sets
C and M were selected, 5% or 10% of the constraint
pairs in C ∪ M were moved from one set to the
other. This type of noise occurs in the situation were
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Algorithm 1 Soft-constraint semi-supervised affinity propagation

Initialize: t=1, α(0)
ij = 0, ρ

(0)
ij = 0, γ

j(0)
ik = 0, ω

j(0)
ik = 0 for i, j, k ∈ {1, 2, . . . , N}

while termination criteria not met do
γ
j(t)
ik = −min

{
qc + max{0,−(α

(t−1)
kj + ρ

(t−1)
kj − γj(t−1)ki )}, max{0, α(t−1)

kj + ρ
(t−1)
kj − γj(t−1)ki }

}
ω
j(t)
ik = max

{
min{−qm,−(α

(t−1)
kj + ρ

(t−1)
kj − ωj(t−1)

ki )}, min{qm, α(t−1)
kj + ρ

(t−1)
kj − ωj(t−1)

ki }
}

ŝ(i, j)(t) = s(i, j) +
∑

m:(i,m)∈M
ω
j(t)
im +

∑
k:(i,k)∈C

γ
j(t)
im

α
(t)
ij = µα

(t−1)
ij + (1− µ) min

{
0, ρ

(t−1)
jj +

∑
k 6∈{i,j}

max{ρ(t−1)kj , 0}

}
if i 6= j

α
(t)
jj = µα

(t−1)
jj + (1− µ)

∑
k 6=j

max{ρ(t−1)kj , 0}

ρ
(t)
ij = µρ

(t−1)
ij + (1− µ)

(
ŝ(i, j)(t) −max

k 6=j
{ŝ(i, k)(t) + α

(t)
ik }
)

t=t+1
end while
Identify exemplars.

the constraints are derived subjectively, such as when
different physicians determine similarity of hospi-
tal patients, and can result in relationships such as
(i, j) ∈ M, (i, k) ∈ M, (j, k) ∈ C when the constraints
are propagated. The second type of noise examined
simulates mislabeled data and does not result in
contradicting pairwise constraints. The labels of 10%
or 20% of the data instances are randomly changed
before randomly selecting the pairwise constraints,
simulating questionable labeling such as scoring of
different stages of a progressive disease or in user-
provided image tags. Note that data entry errors can
result in either type of noise.

As an example of a semi-supervised clustering
algorithm that is not based on AP, we also tested
the performance of the constrained expectation-
maximization (EM) [8] algorithm on the iris, parkin-
sons, wine, and SPECTF heart datasets. Since con-
strained EM assumes prior knowledge of the number
of clusters, we used the number of clusters identified
by SCSSAP with an infinite penalty as an input to
the constrained EM algorithm. Note that, in con-
strained EM, must-link constraints are enforced by
introducing so-called chunklets in the formulation of
the clustering problem. The chunklets are defined as
the transitive closure of the must-link constraints; data
instances absent from the constraint set are in a chun-
klet of size one. The chunklets are then treated as data
points weighed by their cardinality. To incorporate the
cannot-link constraints, the joint distribution of data
instances and labels conditioned on the constraints is
described using a Markov network.

Performance of the algorithms is quantified using
the modified Rand index. The original Rand index, a
measure of overall clustering accuracy, gives the per-
centage of instance pairs that are correctly classified as
being in either the same cluster or different clusters.
More specifically, let ci be the label of instance i and

ĉi be the exemplar or a cluster assigned to instance i
by the clustering algorithm. Then,

Rand =

∑
i>j

1 (1(ci = cj) = 1(ĉi = ĉj))

total number of instance pairs
. (26)

For n data instances, there are 0.5n(n − 1) instance
pairs. The modified Rand index [6] weights point
pairs that are in the same cluster and those that are
in different clusters equally,

mod Rand =

∑
i>j

1(ci = cj)1(ĉi = ĉj)

2
∑
i>j

1(ĉi = ĉj)

+

∑
i>j

1(ci 6= cj)1(ĉi 6= ĉj)

2
∑
i>j

1(ĉi 6= ĉj)
. (27)

Typically, clustering algorithms correctly separate
majority of instance pairs that should indeed belong
to different clusters. This may result in a misleadingly
inflated Rand index, especially when the number of
clusters is large. In the modified Rand index, accurate
predictions that pairs of points should be in different
clusters contribute to no more than half of the accu-
racy measure, while the correct predictions that pairs
of points belong to the same cluster account for the
rest (this means that the latter carries a higher weight
than in the Rand index as soon as there are more
than two clusters). It should be noted that, as with
the Rand index, the modified Rand index is inflated
when applied to assess algorithms that produce a high
number of clusters.

5 RESULTS: SCSSAP
Overall, the results for various data sets consistently
demonstrate that the proposed SCSSAP algorithm
performs at least as well as SSAP, with significant
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improvements in the clustering accuracy when the
constraint noise is present. Note that each point in
the graphs shown in this section corresponds to the
average of 20 random sets of constraints.

In the noiseless case (the results shown in Figure 3),
a very large SCSSAP penalty parameter (exp(−q) = 0)
leads to the most accurate clustering performance.
Depending on the dataset, SCSSAP either performs
comparably to SSAP (parkinsons, breast cancer, di-
abetes) or outperforms SSAP over a wide range of
explored constraints. As expected, a small SCSSAP
penalty (exp(−q) = 0.9) typically results in clustering
accuracy similar to that of unsupervised AP, although
a notable improvement in clustering is evident in
the balance and iris datasets even when the SCSSAP
penalty is small.

The advantage of allowing the constraints to be
violated (and penalizing the clustering objective when
such violations take place) instead of strictly enforcing
the constraints become evident in the presence of
constraint and label noise (see Figures 4 and 5). By
constructing metapoints, SSAP ensures that must-link
constraints are satisfied in the final cluster assign-
ments. In the case of contradicting constraints, some
of the cannot-link constraints are ignored because a
cannot-link factor node cannot point to a single meta-
point. Noisy constraints greatly decrease the accuracy
of SSAP and, in fact, often lead to a worse clustering
solutions than unsupervised AP. The performance of
SCSSAP may also deteriorate in the presence of noisy
constraints and may result in inferior performance
compares to unsupervised AP in the scenarios where
the penalty parameter is very large and the noisy
constraints are numerous. However, in all of the
datasets we studied, SCSSAP provides more accurate
clustering than AP for some penalty parameter. More-
over, for most datasets, SCSSAP can overcome noisy
constraints and lead to clustering with a modified
Rand index closer to noiseless SCSSAP than to un-
supervised AP.

Unlike the scenario where the noise is added di-
rectly to constraints, the constraints derived from
noisy labels will not create contradictions in the tran-
sitive closures of the must-link and cannot-link sets.
In situations where strong supervision (imposed by
choosing very large values of penalty parameters) is
beneficial to the clustering results, performances of
SCSSAP and SSAP are comparable. This is reflected
in the results for parkinsons, balance and diabetes
datasets shown in Figure 5. However, if strict supervi-
sion is detrimental for the clustering performance (i.e.,
if one should use small values of penalty parameters),
SCSSAP outperforms both SSAP and unsupervised
AP. This is illustrated with the results for iris and wine
datasets, and ionosphere and breast cancer with 20%
label noise shown in Figure 5.

Not only does SCSSAP outperform SSAP and un-
supervised AP, it also clusters more accurately than
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Fig. 3. Modified Rand index for SCSSAP (o), SSAP
(blue), and unsupervised AP (red). The darkness of
the SCSSAP curve indicates magnitude of the penalty
parameter, where the darkest curve is for exp(−q) = 0.

constrained expectation-maximization (EM, see Fig-
ure 6). Although the performances of constrained EM
and SCSSAP are comparable for noise-free constraints,
SCSSAP is more accurate for some datasets in the
presence of label noise, and for all the tested datasets
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Fig. 4. Modified Rand index for SCSSAP, SSAP (blue),
and unsupervised AP (red) in the presence of 5% (o)
and 10% (∗) noisy constraints. The darkness of the
SCSSAP curve indicates the magnitude of the penalty
parameter, where the darkest curve is for exp(−q) = 0.

in the scenario where noise is added to the constraints.
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Fig. 5. Modified Rand index for SCSSAP, SSAP (blue),
and unsupervised AP (red) in the presence of 10%
(o) and 20% (∗) noisy labels. The darkness of the
SCSSAP curve indicates the magnitude of the penalty
parameter, where the darkest curve is for exp(−q) = 0.

6 SCSSAP WITH METRIC LEARNING

Learning a global or local (cluster-specific) pseudo-
metric prior to or during clustering can greatly in-
crease clustering accuracy [9], [10], [11], [29] (note
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Fig. 6. SCSSAP (circles) and constrained EM (lines)
modified Rand index for datasets without noise (black),
5% constraint noise (red), and 10% label noise (blue).

that, as in much of the metric learning literature,
we will use the terms metric and pseudometric in-
terchangeably). A pseudometric d(x, y) satisfies the
following: d(x, y) ≥ 0, d(x, y) = d(y, x), and d(x, y) +
d(y, z) ≥ d(x, z). In this section, we focus on the
Mahalanobis distance, where dA(x, y) = ‖x − y‖A =√

(x− y)TA(x− y). For dA(x, y) to be a metric, A
must be positive semidefinite. Most of the work de-
scribed in this section aims to find the Mahalanobis
matrix A, where the feature selection or feature weigh-
ing problems constrain the potential matrices to those
of diagonal form.

6.1 Related work: learning a similarity metric
In the early work on semi-supervised metric learning,
Xing et al. [9] infer a global Mahalanobis metric by
minimizing the squared distance over similar points
subject to a minimum distance over dissimilar points.
While [9] relies on must-link and cannot-link pairs,
Relevant Components Analysis (RCA) [11] learns the
Mahalanobis matrix by examining the covariance of
chunklets, groups of instances that are known to
belong to the same class. This method yields similar
clustering accuracy to [9], while finding the solution
in a single step instead of requiring gradient de-
scent [11]. Discriminant Component Analysis (DCA)
[30] generalizes RCA by including dissimilarity con-
straints and aims to both minimize the variance of the

data within the chunklets and maximize the variance
of the data between chunklets that contain dissimilar
instances. In [31], the DCA objective is changed from a
ratio of determinants to a ratio of distances, expressed
as traces, subject to an orthogonality constraint which
prevents degenerate solutions.

The Pseudo-metric Online Learning Algorithm
(POLA) [12] incrementally learns a metric and a
threshold, and decides that a pair of points is dissim-
ilar if the distance between them exceeds the thresh-
old. The metric and threshold are updated using the
feedback about correct classifications by minimizing
the loss function and ensuring a positive semidefinite
metric. In an information theoretic approach to metric
learning [32], [33], the LogDet divergence between a
preselected Mahalanobis distance function evaluated
using prior information and the Mahalanobis matrix
being learned is minimized subject to the constraints
on distances between pairs of instances. In a Bayesian
approach to metric learning [34], the Mahalanobis
matrix is assumed to be a weighted combination of
the top eigenvectors of the data, and the posterior
distribution of the weights is learned by a variational
method through EM-like iterations.

Other algorithms simultaneously learn a metric
while clustering in either unsupervised or supervised
settings [10], [35], [36], [37]. Bilenko et al. [10] learn
cluster-specific Mahalanobis matrices in a k-means
clustering framework through an EM procedure by
alternating between assigning clusters (E-step) and
updating centroids and performing metric learning
(M-step). There, constraint violations incur a penalty
weighted by the distance between points violating
the constraints. In [35], the metric is updated using
instance-level constraints but the clustering steps are
unsupervised. The similarity metric in AP, the cluster-
ing method used, is gradually adjusted by modifying
the weights for each pair of points in the constraint
set based on how correctly they were classified. Adap-
tive Metric Learning (AML) [36], an unsupervised
algorithm, is formulated as the maximization of the
distance between clusters in a lower dimensional
embedding. Locally Adaptive Clustering (LAC) [37],
assigns a weight vector to each cluster, which is
similar to learning a diagonal Mahalanobis matrix
with unit trace. LAC alternates updating weights and
centroids until convergence, which is achieved fast
due to using an exponential weighting scheme [37]. In
[38], a data partitioning matrix and the cluster-specific
classifiers are alternately optimized. The constrained
optimization problem has a log loss function as the
objective and constraints that regulate the cluster sizes
and enforce the given instance-level constraints.

Sparse metrics are desirable in a multitude of ap-
plications. Metric learning algorithms that enforce
sparsity often include an `1 penalty in the objective.
Roth and Lange [39] use an EM framework where
fuzzy labels are estimated in the E-step while the
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M-step employs a linear discriminant analysis (LDA)
with feature selection by `1 penalty. In [40], a regres-
sion problem with constraints promoting supervised
clustering and feature selection is solved. In Sparse
Distance Metric Learning (SDML) [41], a sparse Ma-
halanobis matrix is learned by minimizing the sum
of the LogDet divergence between a given matrix
with the a priori distribution, the `1 norm of the off-
diagonal elements of the matrix, and a loss function
defined over the instance-level constraints. The Semi-
Supervised Sparse Metric Learning algorithm (S3ML)
[42] aims to minimize the LogDet divergence between
a given matrix and the desired matrix with an added
`1 penalty term that promotes a sparse metric.

By focusing on the nearest neighbors, metric learn-
ing algorithms designed for kNN classifiers [29], [43],
[44], [45], [46], [47] often make no parametric assump-
tions about the data structure [29], [44], [46]. Neigh-
borhood Components Analysis (NCA) [29] seeks to
maximize the expected number of correctly classi-
fied points in a leave-one-out framework which is
then solved with a gradient-based optimizer. Large
Margin Nearest Neighbor metric learning (LMNN)
[44] minimizes the distance between points and the
desired neighbors while maximizing the margin with
points belonging to other classes. As in NCA and
LMNN, local distance metric learning (LDM) [45]
does not assume unimodal classes. The LDM objec-
tive aims to maximize the log-likelihood of correctly
predicting the classes, where the probability of a
correct prediction is derived from kernel-based kNN.
The Maximally Collapsing Metric Learning Algorithm
(MCML) [46] objective aims to collapse instances
from the same class into a single point and make
distance between points in different classes infinite
by minimizing the KL divergence. The Laplacian
Regularized Metric Learning (LRML) [47] objective
minimizes a regularization term equal to the sum
of distances between instances and their designated
nearest neighbors along with loss terms correspond-
ing the instance-level constraints.

Distance metrics can also be learned when sets of
similar or dissimilar points are not readily available
but are described in a rather qualitative form such as
“xi is more similar to xj than it is to xk” [48], [49].

Depending on the formulation of the objective func-
tion, the metric learning problem can be solved by
means of convex optimization [9], [35], [40], [41], [44],
[46], [47], eigendecomposition [12], [30], [31], [46],
iterative schemes [32], [33], [36], [38], [42], [45], or
admit closed form solutions [10], [11], [37].

6.2 SCSSAP with metric learning algorithm

In this section, we add feature weighings to the
clustering problem by learning a pseudometric for
each cluster. In order to maintain the AP objective
for clustering, we focus on metric learning objectives

that include the Mahalanobis distance between data
instances and their corresponding cluster centers. By
defining the similarity function in SCSSAP as a neg-
ative squared Mahalanobis distance and adding a
regularizing function g to the SCSSAP objective in eq.
(6), we can potentially improve clustering by learning
a new metric for instances in the same cluster. The
objective then becomes

arg max
c,Al1

...AlN

∑
i,j

S′ij(cij) +
∑
i

Ii(ci1, . . . , ciN )

+
∑
j

Ej(c1j , . . . , cNj) +
∑

k:(i,k)∈C

∑
j

CLj
ik

+
∑

m:(i,m)∈M

∑
j

MLj
im −

∑
i

g(Ali), (28)

where li is the cluster of instance i. For data vectors xi
and xj , S′ij(cij) = s′(i, j) if j is the exemplar of i and
0 otherwise. We define s′(i, j) = −0.5‖xi − xj‖2Ali

−
0.5‖xi − xj‖2Alj

. We only consider diagonal matrices
A and add the constraint trace(A) = 1 to be able to
interpret the resulting matrix as feature weights.

We consider two regularizing functions ḡ and ĝ
for the objective arg maxAli

∑
i,j

S′ij(cij) −
∑
i

g(Ali) =

arg minAli

∑
i

(‖xi − ci‖2Ali
+ g(Ali)),

ḡ = log det(Ali) (29)

ĝ =h
∑
d

alidd log(alidd), (30)

where alidd is the dth component of the diagonal of
Ali and h ≥ 0. The metric learning is a convex
problem if the regularizing function is convex and the
matrix A is positive semidefinite. Both regularizing
functions satisfy the convexity constraint. Moreover,
since we are only considering diagonal matrices A, the
regularizing functions force the values on the diagonal
to be ≥ 0 thus ensuring positive semidefiniteness. The
function ḡ, which enforces the positive semidefinite
constraint on A, is derived from the solution to the
maximum likelihood problem where the lthi cluster is
Gaussian with covariance matrix A−1li

[10], [11]. The
function ĝ, the negative entropy of the feature weight
distribution, penalizes clusters that just use a single
feature. The parameter h controls how much the
distribution of the weights deviates from a uniform
distribution [37].

These above functions are of interest since they have
closed-form solutions [10], [37]. Let U be the set of
clusters and u ∈ U be the set of data instances in
cluster u, and cu be the exemplar for cluster u. Our
metric learning objective can be rewritten as

arg min
Au,u∈U

∑
u∈U

∑
i∈u

(
−‖xi − ci‖2Au

+ g(Au)
)
. (31)

Let ā
(u)
dd be the dth component of the diagonal of

Au when g = ḡ, â(u)dd be the dth component of the
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diagonal of Au when g = ĝ, |Xu| be the number of
data instances in cluster u, and xid and cid be the dth

element of xi and ci respectively. Then, the closed-
form expressions for these entries can be found as

ā
(u)
dd =|Xu|

(∑
i∈u

(xid − cid)2

)−1
(32)

â
(u)
dd =

exp

(
−
∑
i∈u

(xid − cid)2/(h|Xu|)
)

∑
d

exp

(
−
∑
i∈u

(xid − cid)2/(h|Xu|)
) (33)

The closed-form solution in eq. (32) does not en-
force the constraint trace(A) = 1. Nevertheless, the
alternating optimization without this constraint was
tested and empirically found to perform similarly to
the case where the matrix was normalized to have
its trace equal 1. The results presented include the
additional step of ā(u)dd ← ā

(u)
dd /

∑
d ā

(u)
dd .

The SCSSAP with metric learning objective in eq.
(28) is solved by means of an alternating maximiza-
tion over the parameters. SCSSAP is employed in the
optimization of the exemplars c = c11, c12, . . . , cNN ,
while the optimization over Al1 , . . . AlN is performed
by solving eq. (31) (see Alg. 2). Similar to SCSSAP,
SCSSAP with metric learning terminates after the
list of exemplars is unchanged for a given number
of iterations or a maximum number of iterations is
reached.

Algorithm 2 SCSSAP with metric learning

Initialize: u = {1, . . . , N}, Au = 1
D ID×D,U = u

while termination criteria not met do
define s(i, j) = −0.5‖xi − xj‖2Ali

− 0.5‖xi − xj‖2Alj

for i, j ∈ {1, . . . , N}
update clusters: run SCSSAP
update metric: solve a(u)dd for d∈{1, . . . , D},u∈U

end while

6.3 Results

Algorithm 2 is evaluated on the iris, wine, parkinsons,
and soybean datasets from the UCI Machine Learning
Repository [27] with regularizing functions ḡ (eq. (29))
and ĝ (eq. (30)) with h = 0.1. In learning the metric
with ĝ, a very large value of h will select a uniform
weight vector while setting h = 0 will assign all the
weight to a single feature [37]. Both single metrics and
cluster-specific metrics are learned for each dataset.

For some datasets, such as iris and soybean, metric
learning can greatly improve he results of SCSSAP
(see Figure 7), while others do not benefit much from
metric learning. Metric learning aids with clustering
in the wine dataset as well, providing moderate im-
provements. The clustering performance with ĝ as the
regularizing function could potentially be improved

by finding the optimal h for each dataset. In addition
to h = 0.1, SCSSAP with metric learning with h = 1
was evaluated (results not shown), but the resulting
accuracy turned out to be similar to that of SCSSAP
without metric learning. This indicates uniform fea-
ture weights are not optimal for clustering in the
iris, wine, and soybean datasets. Although the reg-
ularizing functions do not explicitly impose sparsity,
when clusters are best characterized by a subset of
features SCSSAP with cluster-specific metric learning
will provide an improved clustering over SCSSAP.
Sparse solutions, however, may be undesirable in the
case of single metric learning. In particular, when
using ḡ as the regularizing function, if there exists
one or more features d for which

∑
i(xid − cid) = 0,

then the metric will be uniform over these features
and 0 elsewhere. This could result in a very sparse
metric that does not capture feature set necessary for
optimal clustering and lead to deterioration of the
performance of SCSSAP, as in single metric learning
with ḡ in the soybean dataset.
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Fig. 7. SCSSAP without metric learning (black), with
ḡ in the objective (blue) and with ĝ in the objective
(green). Empty circles correspond to a single metric
for the entire dataset, while filled circles correspond to
cluster-specific metrics.

7 CONCLUSION

In this paper, a novel soft-constraint semi-supervised
affinity propagation (SCSSAP) scheme is derived from
a factor graph with additional factor nodes linking
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data instances in the constraint set. Instead of forcing
must-link and cannot-link constraints to be met in the
final clustering, these factor nodes allow constraints
to be violated while imposing a penalty to the clus-
tering objective. The penalty parameter can be tuned
to represent a confidence level on the constraints.
The algorithm follows the message updates from AP,
but at each iteration the messages flowing from the
instance-level constraint nodes affect the similarity
between data points. In a noiseless setting, SCSSAP
performs at least as well as constrained EM and
SSAP, which strictly enforce instance-level constraints.
In the presence of constraint noise or label noise,
SCSSAP significantly outperforms both of the existing
algorithms. The SCSSAP algorithm is also extended to
alternately optimize the clustering and learn a global
or cluster-specific metric by means of an unsupervised
step with a closed form solution. Depending on the
dataset, this extension can further improve the clus-
tering performance. In conclusion, we derived a semi-
supervised clustering algorithm, based on message
passing, which does not strictly enforce constraints
and is beneficial in a plethora of scenarios where the
constraints are noisy. Moreover, we provided an ex-
tension that includes metric learning and often results
in an increase in accuracy of the clustering.
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