EE381V: Genomic Signal Processing
Basic Information

• Instructor: Haris Vikalo
 – E-mail: hvikalo@ece.utexas.edu
 – Phone: (512) 232-7922
 – Office: ACES 3.110
 – Hours: Mon, Wed, 2:00pm-3:00pm

• Electronic course site: Blackboard
 – courses.utexas.edu
 – distribution of homework assignments, solutions, and class notes
 – should be able to access it if you have UT EID and are registered

• Course website: http://users.ece.utexas.edu/~hvikalo/ee381v.html
 – class notes (mirrored from Blackboard) and suggested reading
 – final project information

• Lectures location & time: CLA 0.106, Mon, Wed 11:00-12:30pm
 – may have some guest lectures, not necessarily in the same room
Basic Information

- **Textbook:** none
 - class notes, reading assignments will be distributed via course website, Blackboard

- **Optional reading (on reserve desk in Life Sciences Library):**

- **Homeworks & Exams:**
 - bi-weekly homeworks (algorithmic rigorous thinking, programming assignments)
 - midterm (probably take-home)
 - final project (tackle a research problem, write-up a report)

- **Grading (tentative):**
 - homeworks (30%), midterm (30%), final project (40%)

- **Prerequisites:** EE381J Probability and Stochastic Processes or equivalent
 - exposure to differential equations beneficial
 - no biology background is required
 - familiarity with Matlab beneficial (to carry-out programming assignments)
Goals for the Term

• **Introduction to genomic signal processing**
 – fundamental problems in genomic signal and information processing
 – research directions for active participation in the field

• **Duality: computation and biology**
 – give a biology/technology background to motivate a computational task
 – provide background on the relevant signal processing / computational techniques
 – describe a solution

• **Foundations and frontiers**
 – well defined conventional problems and general methodologies
 – contemporary challenges, future research directions, etc.

• **Scope of the topics**
 – core biotechnologies: modeling and signal processing algorithms
 – cellular systems: algorithmic/computational tools for inferring their structure and understanding how they function
Signal Processing for Core Biotechnologies

Systems for sequencing and detection:

<table>
<thead>
<tr>
<th>DNA Sequencing</th>
<th>Gene Expression Profiling</th>
<th>DNA Amplification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI Prism ® 310 Genetic Analyzer</td>
<td>Affymetrix GeneChip ®</td>
<td>Roche LightCycler ®</td>
</tr>
</tbody>
</table>
• Information flow in a cell (traditional view: Central Dogma):

DNA → Transcription → RNA → Translation → Protein

• Information (signal) is carried by molecules.
Follow the information flow:

Moreover, study the temporal changes in the information flow:
- gives insight in regulation mechanisms, biological network structure, etc.
- Previously mentioned biotechnologies interrupt the information flow and so provide insight into the cellular structure and functions
Computational and Signal Processing Challenges

Sequencing and Genome assembly

Regulatory motif discovery

Comparative genomics

Evolutionary theory

Gene expression analysis

Cluster discovery

Regulatory networks inference

Emerging network properties

Protein network analysis
Computational and Signal Processing Challenges

Genome assembly

Gene finding

DNA

Sequence alignment

Database lookup

Comparative genomics

Evolutionary theory

ACATGCCTAT
ACGTGATAA
AGAGGATAT
ATATCATAT
ATATGATTT

Gene expression analysis

Cluster discovery

Sequences

Regulatory networks inference

Emerging network properties

Protein network analysis

Interactions

Sequences and interactions in computational and signal processing challenges.
Computational and Signal Processing Challenges

- Sample topics and computational / signal processing tools:
 - Sequencing and sequence analysis
 - modeling with hidden Markov models (HMM)
 - many problems require dynamic programming solutions
 - Technologies (systems) for bio-molecular detection
 - modeling with continuous-time Markov processes (discrete, stochastic), often use approximations (continuous-valued, deterministic)
 - estimation techniques for data recovery
 - Gene expression analysis / Network discovery
 - various data mining techniques
 - Network modeling and analysis
 - modeling with (multiple) continuous-time Markov processes, graph models (Boolean, Bayesian networks)
 - Monte Carlo simulation techniques, network inference
Computational and Signal Processing Challenges

• Recent IEEE special issues (can be accessed via IEEE Xplore):

• Today’s goal: Molecular Biology Primer
 • will be complemented by a few papers posted to Blackboard
Organisms are remarkably uniform at the molecular level.
Biological sciences study different morphology levels of biological systems.
Biological Systems: DNA Molecules

- In eukaryotes, DNA is tightly packaged into the structures called chromosomes, inside the nucleus of a cell.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Number of chromosomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pea plant</td>
<td>14</td>
</tr>
<tr>
<td>sun flower</td>
<td>34</td>
</tr>
<tr>
<td>cat</td>
<td>38</td>
</tr>
<tr>
<td>puffer fish</td>
<td>42</td>
</tr>
<tr>
<td>human</td>
<td>46</td>
</tr>
<tr>
<td>dog</td>
<td>78</td>
</tr>
</tbody>
</table>

- Potato has 48 of them, goldfish 94

- Prokaryotes (e.g., bacteria): only a single loop of stable chromosomal DNA
Structure of DNA

• Four nucleotides: adenine (A), cytosine (C), guanine (G), and thymine (T)
• Forms a double helix – each strand is linked via sugar-phosphate bonds, strands are linked via hydrogen bonds

DNA Basepairs

- Adenosine–Thymidine (Adenine–Thymine)
- Guanosine–Cytidine (Guanine–Cytosine)

• sugar-phosphate bonds are strong, hydrogen weak
Structure of DNA: Nucleotides

- Structure of adenine (one of the nucleotides):

 ![Structure of Adenine](image)

 - Symbolically:

 - Base pairing (A with T, C with G):

 ![Base Pairing](image)
Structure of DNA: Backbone

- What about the backbone?

Sugar-phosphate backbone is directional (5’-3’ or 3’-5’)

- Why it matters: enzymes typically “care” about the direction
Structure of DNA

- Human Genome has 3.2 billion DNA base pairs
- 3.2 billion \((3.2 \times 10^9)\) symbols:
 - 200 (1000 pages each) NYC phone books
 - 800Mb (roughly, a data CD)
 - a person typing 60 words/minute for 8 hours/day, would take more than 50 years to type the entire human genome sequence
 - placed end-to-end the DNA in one human cell extends almost 6 feet
 - if all the DNA in a body were connected this way, it would stretch approx. 67 billion miles!
 - 150k round trips to the moon, 70 to the sun
- DNA stores hereditary information
 - copied/replicated during the cell reproduction process
DNA Replication

• During the cell reproduction process, DNA replicates
 • The twisted, compacted double helix of DNA has to unwind and separate its two strands
 • Each strand becomes a pattern, or template, for making a new strand, so the two new DNA molecules have one new strand and one old strand
 • The copy is done by a cellular protein machine called DNA polymerase, which reads the template DNA strand and stitches together the complementary new strand
 • The process of replication is astonishingly fast and accurate, although occasional mistakes, such as deletions or duplications, occur.
Agent of DNA Replication: DNA Polymerase

- DNA polymerase adds free nucleotides to the 3’ end of the new strand
 - so, the new strand grows in a 5’-3’ direction
 - requires a “primer” (short sequence) to initiate extension

- New strands grow in 5’-3’ direction
Mistakes in DNA Replication

- A built-in proof reading system (mismatch-pair system) catches and corrects nearly all of these errors
 - DNA replication: 1 error per 1 billion bases
- Mistakes that are not corrected can lead to diseases such as cancer and certain genetic disorders
 - Fanconi anemia, early aging diseases, etc.
- A sidenote: many drugs used to treat cancer work by attacking DNA replication
 - chemotherapy drugs disrupt the DNA copying process, which goes on much faster in rapidly dividing cancer cells than in other cells
 - side-effect: most of these drugs do affect normal cells that grow and divide frequently, such as cells of the immune system and hair cells
Stated by Francis Crick in 1958, re-stated in a *Nature* paper published in 1970:

“The central dogma of molecular biology is based on the principle that the flow of genetic information travels from DNA to RNA and finally to the translation of proteins.”

- Genes carry hereditary information but do not do the any actual work in cells
 - they serve as instruction books for making functional molecules such as ribonucleic acid (RNA) and proteins
 - two steps: transcription and translation
Transcription

- In transcription, the information coded in DNA is copied into RNA
 - the RNA nucleotides are complementary to those on the DNA
 - note: RNA pairs a uracil (U), instead of a T, with an A on the DNA

 - RNA building blocks (4 different nucleotides)

 - Selective binding of enzyme to promoter region
 - Synthesizing RNA based of the DNA template
 - Enzyme detachment at termination region

- Reading and copying the DNA is facilitated by the RNA polymerase
RNA Polymerase

- Like DNA polymerase, RNA polymerase adds free nucleotides to the 3’ end of the new strand
 - only one DNA strand is copied
 - the new strand grows in a 5’-3’ direction

- The resulting mRNA sequence:

- This direction is preferred for energy reasons…
Transcription

- All cells contain the same DNA
 - so, what makes a nerve cell different from a red blood cell?

- Each cell "turns on," or expresses, only a subset of genes

- Activity of RNA polymerase is affected by a number of proteins
 - these proteins vary in different cell types throughout the body

- Note: gene expression levels are affected by diseases
Translation

• In translation, messenger RNA (mRNA) is mapped to a specific protein (string of amino acids) according to the rules specified by the genetic code

• A four-letter alphabet is mapped to a 20-letter alphabet
 • there is an embedded redundancy
During translation, a four-letter alphabet is mapped to a 20-letter alphabet:

DNA: ACGCTACGTCAGTCGCA
	TCGACTCGCCGCTACGAG
	ACGCGCCGATTTCCAA
	AAAAAACGCGCTTACTACT
	ATACGCAGGCTACGTACG
	CCCCCTTACTTCCAGAGAC

RNA: ACGCUACGCAGUGCCGA
	UCGACUCGCGCCAUACAG
	ACGCGCCGAUUCACAAA
	AAAAAACGCGCUAUACU
	ATACGCAGGCACUACAG
	CCCUUACUGACAGAC

Protein: TLRQSHRLASDAPISQK
	KTRYTIRRHRRPLTSRTH
	THTHTSPRGVRFYHRQHL

DNA Sequence Length = 324 bases
RNA Sequence Length = 324 bases
Amino acid length = 108 bases
Translation

- Simplified version of the translation mechanism:

 1. **Initiation**: Ribosome binds to a specific sequence of RNA
 2. **Elongation**: Synthesizing proteins based on the RNA template
 3. **Termination**: Enzyme detachment at the stop code region
Translation

- This is a fairly good description of the translation process in prokaryotes (give or take a few details omitted for simplicity)

- However, the process is much more complicated in eukaryotes
Translation in Eukaryotes

- In eukaryotes, the region of DNA coding for a protein is usually not continuous. This region is composed of alternating stretches of *exons* and *introns*:
 - *exons*: pieces of coding sequence
 - *introns*: regions between exons

- To get an mRNA molecule which is mapped to a working protein, the intron sections are trimmed and exon pieces stitched together: **RNA splicing**

- If inaccurate, splicing may lead to an abnormal protein or no protein at all
 - a form of Alzheimer’s disease is caused by this
Translation in Eukaryotes

- **Alternative splicing**: arranging exons in different patterns
 - enables cells to make different proteins from a single gene.

 ![Diagram of alternative splicing](image)

- Leads to possibility of creating many proteins from a single gene
 - e.g., 25k human genes can make hundreds of thousands of different proteins
Detailed description of the translation process in prokaryotes is complicated:
Detailed description of the translation process in eukaryotes is even more complicated:
Central Dogma Revisited

• The traditional view:

- Very stable molecule
- Very large length
- Only 4 building blocks

- Unstable molecules
- A fragment of DNA length
- Only 4 building blocks

- Complex molecules with huge variety of shapes and forms
- Proportional to RNA size
- Has 20 building blocks

• However, there is feedback, creating a control system:

External Stimuli
Central Dogma Revisited

- **Feedback**, creating a control system:

![Central Dogma Diagram](image)

- We are interested in information/signals in these complex, nonlinear, and probabilistically described biomolecular systems with feedback.
Central Dogma Revisited

- The signal/information in these systems is carried by bio-molecules
 - so, we may be interested in their structure, amounts, interaction…
Cell as a Control System

- Information/signals are carried by molecules:
 - Transcription
 - DNA
 - Chemical Building Blocks
 - Translation
 - RNA
 - Chemical Building Blocks
 - Ribosome
 - Protein
 - RNA Polymerase

- Signals are controlled via feedback
 - control allows adaptability to varying conditions
 - again, molecules facilitate the control
Controlling Transcription Mechanism

- May be rather complex, involves transcription factors (proteins) which bind to promoter regions (upstream of a gene):

 - Initiation: Selective binding of enzyme to promoter region
 - Polymerization: Synthesizing RNA based of the DNA template
 - Termination: Enzyme detachment at termination region

- Transcription can be upregulated/downregulated
Transcription factors bind to promoters and recruit RNA polymerase:

- Since located close to the beginning of a gene, promoter regions are indicative of genes locations on DNA

v: nucleotides which may vary
X: transcribed sequence
A Few Words About Viruses

Capsid (Protein Coat)

DNA or RNA

Virus is not a living organism. It is a biological system which merely contains genetic material.

Ebola Virus

Bacteriophage Virus

Genome (DNA or RNA)

Protein Coat

2D
Hepatitis B virus:

DNA Sequence

It is just one long (3182 bp) DNA!
How Virus Reproduces

Viruses impose themselves into the genetic information flow of organisms:

They exploit existing mechanisms!
How Virus Reproduces

HIV Virus:

Drugs: reverse transcriptase inhibitors
Biotechnological Methods

Use biological machinery to help us achieve desired goals

For instance, to examine a DNA/RNA strand, we first break it into pieces

• might use mechanical force to randomly fragmentize
• alternative: restriction enzymes
 • ordinarily, they break foreign DNA into fragments for protection
 • make them break DNA strands we want to examine (as opposed to breaking them with mechanical force)
 • the cleavage sites characterized by certain sequences (usually palindromes)

Another example: cloning to obtain sufficient quantities of a desired material

• insert a DNA fragment of interest into an autonomously replicating DNA molecule, called a cloning vector (often plasmids - circular DNA - in bacteria)
• the fragment of interest obtained using restriction enzyme
 • also, use restriction enzyme to create an insertion in the plasmid
• Recall: sugar-phosphate bonds are strong, hydrogen bonds are weak
 • when heated, hydrogen bonds break and strands separate
• It goes the other way around, too: when complementary single stranded molecules (ssDNA) get close to each other, electrostatic interactions (via hydrogen bonds) may create dsDNA

• Because of thermal energy, the binding is a reversible stochastic process
Many biosensors exploit the hybridization property when complementary single stranded molecules (DNA or RNA) get close to each other, they may bind due to electrostatic interactions. The number of created dsDNA can be detected to detect the presence and quantify the amounts of DNA fragments.
End of a (brief) molecular biology primer

Next: DNA Sequencing
DNA Sequencing: Human Genome Project

• The goals of Human Genome Project:
 • Identify all of the approximately 30,000-35,000 genes in human DNA
 • determine the sequences of the 3 billion base pairs that make up human DNA
 • store this information in databases, etc.

• Meeting the goals of Human Genome Project required further improvement of speed, reliability, and cost
 • in 1998, the total sequencing efforts produced 200 Mb
 • in January 2003, the DOE Joint Genome Institute alone sequenced 1.5 Bb
DNA Sequencing: Technology

- Early sequencing methods were laborious, often required extensive use of hazardous chemicals (radioactive labeling), and did not scale.

- It all changed in the ‘70s with the work of Sanger, Gilbert:
 - shared the 1980 Nobel prize in chemistry.

- Today, sequencing tasks are often performed using the **chain termination method** (Sanger et al., 1977) or a variation thereof:
 - separate ssDNA fragments using **gel electrophoresis**.
DNA Sequencing: Background

- Phosphate groups in the DNA backbone contain negatively-charged oxygen molecules
- The phosphate-sugar backbone of DNA has an overall negative charge

- DNA fragments of different length have different overall negative charge
DNA Sequencing: Background

- Distinguish between DNA fragments by subjecting them to an electric field

- Due to their negative charge, DNA fragments move
 - force applied: $\vec{F} = q\vec{E}$
 - developed velocity: $\vec{v} = \frac{q\vec{E}}{m} t$

- A classical setup: movement through a gel
 - on a molecular scale, the gel looks like a matrix
 - longer DNA fragments travel slower (because they get trapped in the matrix)

- dye reporters
Polymerization

- How do we generate copies of DNA fragments of different length?

DNA polymerization:

1. **Hybridization**
 - Primer hybridizes to the matching sequence on the DNA template
 - Primer sequence: ACCGCT
 - Template sequence: TGGCGA

2. **Enzyme binding**
 - The polymerase enzyme has affinity to only bind to the 3’-end of the primer of template
 - Primer sequence: ACCGCT
 - Template sequence: TGGCGA

3. **Polymerization**
 - The polymerase copies DNA using nucleotides
In addition to standard nucleotides (A, C, G, T), we add modified (A', C', G', T') when incorporated into the strand, they terminate the polymerization.

Example: Add A' to the original A, C, G, and T nucleotides

Output of polymerization process: a number of DNA fragments (varying length), each terminated where the template has a ‘T’
DNA Sequencing

- Example: Add A’ to the original mix of A, C, G, and T nucleotides

\[
\begin{array}{cccccc}
A' & A & C & G & T \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\end{array}
\]

- Subject the product of polymerization (denatured) to the gel electrophoresis:

![Diagram showing gel electrophoresis and ladder](image-url)
Sanger DNA Sequencing

- If we use different nucleotides with terminators in different polymerization steps for the same sample, we sequence the entire template DNA.

- Improvements of the basic idea: capillary electrophoresis (CE)
 - process in the interior of a small capillary filled with an electrolyte.
Sanger DNA Sequencing

- Lots of data to acquire and process:

- Achievable resolution limits the length of fragments to be sequenced
Sanger DNA Sequencing

- We can use labeled primers:

- Alternatively, we can use “color” labeled nucleotides to mix the polymerized samples:
Sanger DNA Sequencing

- Even more data to acquire and process:
Shotgun Sequencing

- Chain termination method is suitable only for short strands (300-1000bp)
 - longer sequences must be subdivided into smaller fragments
 - re-assembled to give the overall sequence
- Two methods are used for the fragmentation:
 - chromosome walking -- going through the entire strand piece by piece
 - shotgun sequencing -- random fragments (faster, more complex)
- Shotgun sequencing:
 - break the DNA randomly into small segments and sequence them
 - perform several rounds of the above step (multiple reads)
 - use the overlapping ends of different reads to assemble them into a contiguous sequence
 - assembly requires computational tasks such as overlap detection, error correction, etc.