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Many in-hospital mortality risk prediction scores dichotomize predictive variables to simplify the score
calculation. However, hard thresholding in these additive stepwise scores of the form ‘‘add x points if
variable v is above/below threshold t’’ may lead to critical failures. In this paper, we seek to develop risk
prediction scores that preserve clinical knowledge embedded in features and structure of the existing
additive stepwise scores while addressing limitations caused by variable dichotomization. To this end,
we propose a novel score structure that relies on a transformation of predictive variables by means of
nonlinear logistic functions facilitating smooth differentiation between critical and normal values of
the variables. We develop an optimization framework for inferring parameters of the logistic functions
for a given patient population via cyclic block coordinate descent. The parameters may readily be updated
as the patient population and standards of care evolve. We tested the proposed methodology on two pop-
ulations: (1) brain trauma patients admitted to the intensive care unit of the Dell Children’s Medical
Center of Central Texas between 2007 and 2012, and (2) adult ICU patient data from the MIMIC II data-
base. The results are compared with those obtained by the widely used PRISM III and SOFA scores. The
prediction power of a score is evaluated using area under ROC curve, Youden’s index, and
precision-recall balance in a cross-validation study. The results demonstrate that the new framework
enables significant performance improvements over PRISM III and SOFA in terms of all three criteria.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Technological advancements in medical instrumentation and a
growing use of electronic medical records have created an abun-
dance of clinical patient data. Extracting and analyzing useful
information from such large and diverse data sets will enable
tremendous advancements in clinical decision-making, ultimately
leading towards improvements in health and quality of life as well
as to reduction of the overall healthcare costs. Availability of data
has enabled development of accurate mortality and morbidity risk
prediction scores for specific patient populations. Rapid prediction
of potentially poor outcomes may provide timely intervention to
reduce morbidity and mortality among the patients in the consid-
ered group.

Additive stepwise scores of the form ‘‘add x points if variable v
is above/below threshold t’’ are popular tools for mortality risk pre-
diction in both pediatric and adult intensive care unit (ICU)
populations, typically using data acquired at the beginning of an
ICU stay. Such scores comprise the Acute Physiology and Chronic
Health Evaluation (APACHE) [1,2], the Simplified Acute
Physiology Score (SAPS) [3,4], and the Pediatric Risk of Mortality
[5,6]. However, while simple enough to allow for fast manual eval-
uation, these scores dichotomize predictive variables to form pre-
diction scores. Dichotomization of continuous variables results in
a loss of information, increased probability of false negatives, and
high dependence on cut-off points [7,8]. This, in turn, may lead
to critical failures of the prediction process. To remain relevant,
risk scores need to be validated and updated periodically so that
they reflect innovations and the evolution of the standards of
healthcare [9,3], otherwise risking deteriorating accuracy due to
the changes in patient populations [10]. Moreover, risk scores
might have higher accuracy for certain diseases [1] or may need
to be customized for a subpopulation or a location [3].

In this paper, we seek to develop risk prediction scores that
preserve the clinical knowledge embedded in the features and
structure of the aforementioned additive stepwise risk scores
while allowing for soft thresholds in the score calculations. This
is accomplished by a novel scoring mechanism that relies on a
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transformation of predictive variables by means of nonlinear logis-
tic functions to facilitate smooth differentiation between critical
and normal values of the variables. The parameters in the proposed
framework can be readily optimized for specific sub-populations of
interest (e.g., particular disease or location) or re-learned to ensure
that the score remains relevant as the standards of care evolve. We
use the PRISM III score [5] and a pediatric brain trauma population,
as well as the Sequential Organ Failure Assessment (SOFA) score
[11,12] and an adult ICU population, as motivation and to test
the performance of the novel scoring mechanism. The paper is
organized as follows. Some of the most common risk scores used
in the pediatric and adult ICU are reviewed in Section 2. In
Section 3, we present the novel scoring mechanism, describe an
algorithm for finding the optimal parameters of the logistic func-
tions used to transform the data, and show quasiconvexity of the
corresponding optimization problem. Section 4 presents the
results obtained by applying the proposed methodology to predict
mortality of pediatric trauma patients admitted to the ICU of the
Dell Children’s Medical Center of Central Texas between 2007
and 2012 (Section 4.1) and predict mortality of adult ICU patients
from the MIMIC database (Section 4.2). Section 5 concludes the
paper.
2. Existing risk scores

In this section we overview existing prognostic models for both
pediatric and adult patient populations, with the emphasis on
PRISM III and SOFA. We also briefly mention data-driven tech-
niques that have recently been used in model development and
close the section by describing recent publications that incorporate
expert knowledge in their models.
2.1. Pediatric population risk scores

An example of the pediatric risk prediction scores, the Pediatric
Risk of Mortality (PRISM III) [5], is a widely used scoring mecha-
nism in pediatric ICU (PICU) [9] that has been validated in various
settings as both an individual predictor and a significant predictor
in a multivariate model in the United States and internationally
[13–21]. A state-of-the-art scheme, PRISM III has an additive step-
wise structure that relies on 17 physiological variables and 26
ranges. The physiological variables it considers are characterized
by their maximum or minimum values recorded during the first
12 or 24 h after a patient’s admission to the PICU. These variables
include the minimum systolic blood pressure, maximum heart
rate, the presence of fixed pupils, maximum and minimum body
temperature, and a variety of laboratory measures including min-
imum and maximum CO2 and pH, white blood cell count, glucose
and platelet count. Contribution of some variables to the score is
determined after evaluating a judiciously chosen logical OR state-
ment, such as in the case of maximum prothrombin time (PT)
and partial thromboplastin time (PTT), which can both detect
abnormalities in clotting time. Other variables, such as systolic
blood pressure and heart rate, have age-dependent ranges.

In PRISM III, the score is incremented when the maximum (min-
imum) value of a variable in the score is above (below) a predeter-
mined threshold. For example, if a child has a minimum Glasgow
Coma Scale (GCS) [22,23] score less than 8, then 5 points are added
to her/his PRISM III score. Clearly, calculation of the score is highly
dependent on the established cutoff points and thus the prediction
may change abruptly due to very small changes in the underlying
variables. For instance, interpretation of the variables such as heart
rate or blood pressure, which are altered by the simple act of
breathing, may widely change due to the strict threshold structure
– an adolescent with a maximum heart rate of 144 beats per
minute is considered healthy, while another one with a single mea-
sure of 145 beats per minute has 3 extra points added in the PRISM
III score calculation. Although the PRISM scores have been vali-
dated in numerous settings, they have also been shown to overpre-
dict [24,25] and underpredict [26,27] PICU deaths. Poor patient
discrimination by PRISM scores, especially in neonates and infants
[28,29], and the fact that only a small subset of PRISM variables are
significant predictors of the outcome [30], render the PRISM scores
sensitive to population characteristics and standards of care and
suggest that they may not necessarily be institution independent.
Unlike in PRISM III (and the previous versions of PRISM) where
the score is computed based on binary indicators of the raw feature
values, in this paper each feature is first transformed by a
non-linear logistic function whose inflection point and slope we
find via an optimization procedure. As a result, we identify a range
of values for which the risk changes continuously and monotoni-
cally (i.e., increases or decreases with the feature values), which
stands in contrast to describing the effect of physiological variables
on the risk of mortality by comparing the variables to pre-defined
thresholds (the strategy employed by state-of-the-art prediction
schemes such as PRISM III).

In addition to PRISM III, widely-used scores in the PICU include
the injury severity score (ISS) [31] and the pediatric index of mor-
tality (PIM2) [32], where the former is specific to trauma patients.
The ISS is an anatomic score based on the location and severity of
the injuries. Limitations of the ISS have led to various modifications
as well as risk scores that incorporate the ISS in the calculation
[33]. In a pediatric trauma population, PRISM has outperformed
the ISS and its variants in identifying in-hospital mortality [17].
Logistic regression has often been employed to learn the weighting
coefficients for physiological variables or binary indicators in mor-
tality prediction models [33]. PIM2 is a second generation score,
based on recalibrating coefficients of PIM [34] and adding variables
for diagnostic groups with poor performance or calibration. PIM2
models risk using logistic regression with 10 variables acquired
upon hospital admission or in the first hour after PICU admission,
7 of which are binary indicators. Specifically, the continuous
PIM2 variables include first systolic blood pressure, ratio of FiO2

to PaO2, and absolute arterial or capillary base excess. Fixed pupils,
mechanical ventilation, elective admission, PICU admission for
procedure recovery, and cardiac bypass are included in the model
as binary variables. Finally, a selection of high risk or low risk diag-
noses, where the model was found to over- or under-estimate mor-
tality, complete the list of logistic regression variables [32].
2.2. Adult population risk scores

The Sequential Organ Failure Assessment (SOFA) [11,12] is an
additive stepwise score that assigns a score of 0–4 to each of six
physiological systems: respiratory, coagulation, hepatic, cardiovas-
cular, renal, and central nervous systems. The total SOFA score is
then evaluated as the sum of the individual system scores. SOFA
was originally designed to describe the degree of organ dysfunc-
tion in patients rather than be a mortality prediction score.
However, Vincent et al. acknowledge that there is a correlation
between the mortality rate and organ dysfunction [11,12].
Subsequently, SOFA has been successfully implemented as a mor-
tality prediction score, achieving performance comparable to that
of other established risk-prediction scores [35,36]. Studies devel-
oping SOFA-based models consider the score at either a fixed time
or incorporate sequential measurements where the difference in
SOFA might be indicative of the risk of mortality [35]. Going a step
beyond examining the delta SOFA values, Toma et al. developed
risk prediction models that include temporal patterns from SOFA
measurements [37]. Moreover, SOFA has been shown to improve
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the accuracy of mortality risk-prediction of established scores such
as APACHE and SAPS when used in combination with them [38,39].

Commonly used mortality risk prediction scores developed for
adult populations [40] include the popular APACHE, [1,2], SAPS
[3,4], and Mortality Prediction Model at ICU admission (MPM0)
[41,42]. SAPS 3 [3] and MPM0III [42] use data obtained within
one hour of ICU admission, while APACHE IV [1] is calculated from
data obtained in the first 24 h of the ICU stay. MPM0III is calculated
from 15 binary features and age, where the binary features com-
prise dichotomized physiological variables, CPR before admission,
mechanical ventilation, and the existence of certain chronic and
acute diagnoses. In addition to these features, MPM0III includes 7
two-way interaction terms. Because feature weights are coeffi-
cients from a logistic regression, the weights can be positive or
negative. SAPS 3 also has either positive or negative contribution
from its variables, but with integer-valued weights. Twenty vari-
ables are required for SAPS 3 calculation; these variables can be
divided into 3 groups: information before admission such as
comorbidities and medications, circumstances of ICU admission
such as whether it is a planned admission, and physiological vari-
ables. Unlike MPM0III, variable contribution to SAPS 3 follows an
additive stepwise structure with multiple hard thresholds for the
physiological variables. Mortality risk based on SAPS 3 is addition-
ally differentiated from other scores by the existence of multiple
formulas to calculate risk based on the geographic region of the
patient. Like SAPS 3, APACHE is an additive stepwise score. The
most recent iteration, APACHE IV [1], includes 142 variables, 115
of which are categorical for admission diagnoses. Some of the vari-
ables in the model, such as age and the acute physiology score
(APS), have linear and nonlinear contribution in the form of
restricted cubic splines. The APS is in turn calculated as the
APACHE III [2] score in the first 24 h of the ICU stay. The variables
in APACHE III are divided into 3 groups: age, physiology, and
chronic health. The chronic health variables specify different point
contributions based on certain comorbidities, while age and the 17
physiological variables contribute to the score in an additive step-
wise fashion. APACHE III includes interactions between variables in
the form of AND statements, where the integer-valued contribu-
tions to the score are dependent on two physiological variables
being within specified ranges. A common customization of prog-
nostic models requires relearning the feature weights for a given
population, as in the case of APACHE IV which has been success-
fully implemented to predict mortality at different time points in
a Dutch ICU population [43]. While many have focused on validat-
ing and comparing the prognostic models, as described in review
articles [44,45], others have sought to understand which compo-
nent of a score is most predictive of mortality [46] or whether
the addition of a particular variable such as age or resuscitation
status will increase the discriminatory capability of a model
[46,47]. However, these modifications do not address the variable
dichotomization limitation of these scores.

2.3. Data driven risk scores and the preservation of expert knowledge

Going beyond the traditional statistical methods, data mining
and machine learning techniques have recently been applied to
the development of prognostic models seeking to aid in determin-
ing the time for treatment initiation, therapy choice, and health-
care quality assessment [48]. Recently used methods include
decision tree techniques [49,50], neural networks [50], topic mod-
els [51], autoregressive implementation of PRISM [52], and tech-
niques that incorporate injury coding schemes in the models
[53]. While several scores with additive stepwise structure exist
for adult populations (such as APACHE and SAPS), most pediatric
mortality risk prediction scores assume that risk depends linearly
on the variables and do not consider nonlinear variable
transformations. PRISM III is an exception since it uses threshold-
ing to prevent uninformative increase in risk at very high or very
low variable values. In neonate morbidity prediction, the
PhysiScore [54] achieves greater predictive power than previously
established neonatal morbidity scoring systems by relying on a
nonlinear transformation of the raw variables in the feature set.
In particular, that work employs nonlinear Bayesian models based
on log odds ratios of the risk derived from the probability distribu-
tion that provides the best fit to the data for each of two patient
classes.

Additive stepwise scores, including PRISM III and SOFA, have a
strong dependence on expert knowledge during the developmental
stage. Paetz [55] proposed a data-driven method for designing
additive stepwise scores, where the step weights and the variable
ranges are randomly initialized and learned by means of evolution-
ary strategies. This method does not require experts until the final
fine-tuning stage if such a stage is deemed necessary, which pre-
sents many advantages in the initial stages of the score design.
However, training of the score does not allow for missing data,
which is unlikely in the typical practical scenarios where many
variables need to be collected and analyzed.

Models that integrate domain expert knowledge with a data
driven approach have been reported to result in greater predictive
accuracy. In [56], combining knowledge based and data driven risk
factors in a prediction model for heart failure greatly improved on
the performance of a solely knowledge based classifier while still
resulting in a clinically meaningful model. In the task of identifying
similar concept pairs in clinical notes, combining context-based
similarity and knowledge-based similarity in an algorithm has
likewise resulted in a more accurate similarity score [57].

3. Methods

Most of the existing scores described in Section 2 require clini-
cal expert input in the score development stage to determine
thresholds for physiological variables. Data-driven approaches lar-
gely ignore expert knowledge in order to achieve the most discrim-
inative results for a given dataset, which may lead to lack of
interpretability. The method for designing an optimal risk predic-
tion algorithm described in this section employs data-driven tech-
niques while preserving the expert knowledge embedded in the
existing risk scores. In particular, in this section we propose a novel
outcome prediction score that relies on a nonlinear transformation
of the features, present an algorithm for optimizing the parameters
of the transformation, and discuss optimality of the aforemen-
tioned algorithm.

3.1. The new score and an algorithm for optimizing parameters of the
logistic transformation of predictive features

We describe the risk of mortality using a logistic regression
model, where the conditional probability that patient i dies during
the hospital stay is given by

Pðyi ¼ 1jw; ziÞ ¼
1

1þ expð�wT ziÞ
; ð1Þ

and the conditional probability of survival is

Pðyi ¼ �1jw; ziÞ ¼
1

1þ expðwT ziÞ
; ð2Þ

where yi 2 f�1;1g is an indicator of mortality, the vector
w ¼ ½w1 w2 . . . wMw �

0 collects weights for the features
zi ¼ ½zi1 zi2 . . . ziMw �

0, and Mw denotes the total number of features.
In a departure from the commonly used hard thresholding of

predictive features and discrete scoring, we introduce a logistic
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transformation of the predictive features. The resulting new score
is continuous and differentiable which enables computationally
efficient search for the optimal parameters of the logistic transfor-
mation.2 In particular, for patient i and feature j, the nonlinear trans-
formation zij of the raw variable xij is

zij ¼

1
1þexpð�ajðxij�tijÞÞ

if xij is a maximum

1� 1
1þexpð�ajðxij�tijÞÞ

if xij is a minimum

0 if xij is missing

8>><
>>:

ð3Þ

where aj P 0 is the slope of the nonlinear transformation and tij is
the inflection point of the logistic function (i.e., a ‘‘soft threshold’’
counterpart to the hard thresholds used by the existing stepwise
scoring schemes). It should be noted that if clinical knowledge sug-
gests the use of age-dependent thresholds, the tij’s are not different
for every subject i but rather have the same value for all patients
within a specific age group and a given feature j. In the case where
this age-dependence is not evidenced, the soft thresholds tij in the
novel algorithm are shared across the entire patient population
and thus the soft threshold for feature j can be written as tj.

The optimal weights and parameters for the nonlinear transfor-
mations are determined by minimizing the negative log-likelihood
of the logistic regression model,

min
Xn

i¼1

logð1þ expð�yiðwT ziÞÞÞ: ð4Þ

To preserve and exploit clinical knowledge previously used in the
creation of other scores, a lognormal prior is imposed in the opti-
mization for w; this also ensures all features will be associated with
a positive weight. In particular, for w 2 Rd we set

PðwÞ ¼
exp � 1

2 ðlog w� lÞTR�1ðlog w� lÞ
� �

ð2pÞd=2jRj0:5
Qd

j¼1wj

:

For a lognormal prior with mean l and covariance R ¼ 1
2k I, the opti-

mization over w then becomes

arg min
w

Xn

i¼1

logð1þ expð�yiðwT ziÞÞÞ þ
Xd

j¼1

log wj þ kk log w

� lk2
2: ð5Þ

The joint optimization (5) over w, a ¼ ½a1 a2 . . . aMa �, and/or
t ¼ ½t1 t2 . . . tMt � is carried out by cyclic block coordinate descent
with backtracking line search [59]. Optimization over a and t
includes an additional step of projections onto the constraint set.
The blocks for the coordinate descent consist of features derived
from the same raw variable. For example, one block contains two
features derived from the maximum heart rate, which correspond
to two steps with different weights in a simple thresholding-based
additive score. The algorithm is formalized as Algorithm 1 given
below. Note that the objective function of the optimization (5) is
not convex. Nevertheless, even if we use an iterative optimization
method that merely ensures the objective function is decreased at
each step, in our empirical studies the resulting local minimum
leads to an improvement over the existing risk score. In fact, our
computational studies show that the proposed scheme is robust
with respect to the initial point of the search – for instance, in
the application to pediatric population, starting the iterative opti-
mization procedure with a vector w comprising PRISM III weights
and starting with a vector of uniform weights w ¼ ð½1; . . . ;1�
results in almost identical prediction accuracy on the considered
dataset.
2 In machine learning parlance, the new score can broadly be categorized as a
generalized additive model [58].
Algorithm 1. Optimization over the slopes a.
al Informatics 56 (2015) 145–156
að0Þj  0:01; j ¼ 1;2; . . . ;Ma

w wstepwise score

t tstepwise score

k 1
repeat

a aðk�1Þ

for all g 2 G do
Maj  �ðraf ða; t;wÞÞj if j 2 g

Maj  0 if j R g
h 1

while f ðaþ hMa; t;wÞ > f ða; t;wÞ � ahkMak2 do
h bh

end while
a ProjAðaþ hMaÞ

end for
aðkÞ  a

until stopping criterion is met

In Algorithm 1, G is the set of feature groups, A denotes the pro-
jection set for a, and a and b are the backtracking line search
parameters. The feature groups g 2 G are defined as the groups of
nonlinear features related to the same raw variables (e.g., in the
application to pediatric population the feature group for maximum
pH has two elements corresponding to PRISM III thresholds of 7.55
and 7.48), and make up the blocks for the coordinate descent.

The projection sets are defined so that the clinical knowledge
used for the existing score is preserved. In Algorithm 1, A ensures
the nonlinear transformations follow the same direction as the
steps in the existing score (A ¼ fa : aj P 0for j ¼ 1; . . . ;Mag). The
projection set T for optimization over the soft thresholds of the non-
linear transformations in (3), t, preserves the order of soft thresh-
olds for a raw variable with multiple nonlinear transformations.
For example, if the feature i in SOFA corresponds to the minimum

platelet count between 100 and 150 �103=mm3 (tð0Þi ¼ 150) and
feature j corresponds to the minimum platelet count between 50

and 100 �103=mm3 (tð0Þj ¼ 100), then the projection ensures that
ti P tj at all steps of the optimization procedure. It should be noted
that this projection set may lead to a collapse of thresholds if the
optimal solution is found at tj ¼ ti. For example, the minimum pla-
telet count, which has 4 levels in SOFA, may end up having only two
different inflection points in the novel score.

The dimensions of the three optimization parameters are not
equal due to the existence of binary features (e.g., those associated
with pupillary reaction in PRISM III and drug administration in
SOFA) that do not have nonlinear transformations (Ma < Mw) and
the age-dependence of some of the thresholds (Mw < Mt).
Optimization over the slopes a and soft thresholds t are imple-
mented without inclusion of a prior in the objective.

3.2. Quasiconvexity of the logistic transformation

As stated earlier in this section, the objective function in (5) is
not convex. However, we will here show that each block in the
block-coordinate descent procedure is both quasiconvex and qua-
siconcave in the slope parameter a, and is thus quasilinear. Since
the logistic function is asymptotically flat, the objective in (5) is
not strictly quasiconvex. However, since the objectives in the steps
of block-coordinate descent procedure are quasilinear, if the initial
values of a are such that the gradient is nonzero in every coordi-
nate, the block coordinate descent will reach a global optimum.



N.M. Arzeno et al. / Journal of Biomedical Informatics 56 (2015) 145–156 149
For differentiable f and domain D; f is quasiconvex if and only if
D is convex and for all x; y 2 D holds that f ðyÞ 6 f ðxÞ )
rf ðxÞTðy� xÞ 6 0 [59]. Similarly, f is quasiconcave if and only if D

is convex and for all x; y 2 D it holds that f ðyÞP f ðxÞ )
rf ðxÞTðy� xÞP 0.

The objective of the optimization is

min f ¼
Xn

i¼1

logð1þ expð�yiðwT ziÞÞÞ; ð6Þ

where

wT zi¼
X
j2U

wj

1þexpð�ajðxij� tijÞÞ

þ
X
k2D

wk 1� 1
1þexpð�akðxik� tikÞÞ

� �
þ
X
p2P

wpdðpi¼1Þ; ð7Þ

where U denotes the set of indices of features with maximum val-
ues whose contribution to the score is in the form of an up-step
(i.e., the risk is higher when their values are above a threshold), D
is the set of indices of features with minimum values
(down-steps), P is the set of indices of the binary features and
dðpi ¼ 1Þ is an indicator function for these features. In PRISM III,
the binary pupillary reflex features indicate whether one or both
pupils are >3 mm and fixed. In SOFA, the binary features in the car-
diovascular component of the score indicate the administered
dosage of certain vasoactive drugs and the binary features in the
respiratory component indicate respiratory support.

Note that if we want to find when is f ða0jÞ 6 f ða00j Þ for a given a0j
and a00j , it is sufficient to find the conditions on a0j; a

00
j ; yi; xij; tij such

that it holds that f iða0jÞ 6 f iða00j Þ for all i 2 1; . . . n, where f ¼
Pn

i¼1f i.
For any j 2 U, condition f ða0jÞ 6 f ða00j Þ is satisfied on the domain
where

�yiwj

1þ expð�a0jðxij � tijÞÞ
6

�yiwj

1þ expð�a00j ðxij � tijÞÞ
:

This inequality will hold for any of the parameter combinations
marked by an X in Table 1. The blank spaces in Table 1 satisfy
f iða0jÞP f iða00j Þ for j 2 U, the fact which we next use to show quasi-
concavity. To show quasilinearity, we also need to examine the gra-
dient of f at a00j which, for j 2 U, is given by

raj
f iða00j Þ ¼ �

expð�yiðwT ziÞÞ
1þ expð�yiðwT ziÞÞ

�
yiwjðxij � tijÞ expð�a00j ðxij � tijÞÞ

1þ expð�a00j ðxij � tijÞÞ
� �2 : ð8Þ

The sign of the gradient in (8) is determined by �yiwjðxij � tijÞ.
Simple arithmetic shows that when f iða0jÞ 6 f iða0jÞ (corresponding
to the entries marked by X in Table 1), raj

f iða00j Þða0j � a00j Þ 6 0, and
hence the condition for quasiconvexity is satisfied. Similarly,
when f iða0jÞP f iða00j Þ (corresponding to blanks in Table 1),
raj

f iða00j Þða0j � a00j ÞP 0, which implies quasiconcavity.
The same procedure can be followed to show quasilinearity

when j 2 D, with appropriate sign changes. Note that the blocks
Table 1
Satisfy f iða0jÞ 6 f iða0jÞ for j 2 U.

a0j 6 a00j a0j P a00j

yi ¼ 1 yi ¼ �1 yi ¼ 1 yi ¼ �1

xij � tij P 0 X X
xij � tij 6 0 X X
of features where all of the features in the block belong to U or
all of the features in the block belong to D will also satisfy the
quasilinearity condition. Since the coordinate blocks in Algorithm
1 correspond to nonlinear transformations of the same physiolog-
ical variable, quasilinearity holds. The initial value of aj in
Algorithm 1 is set to 0.01 for all j. This corresponds to a small slope
in the nonlinear transformations of the variables, and will only
result in raj

f iðajÞ ¼ 0 for subjects i with xij ¼ tij. Therefore, the ini-
tial slope of the cumulative function in (6) will be nonzero and the
coordinate descent algorithm will not begin at a stationary point.

Since we constrain the slopes a and weights w to be nonnega-
tive, quasilinearity of the objective function in soft thresholds t
can be shown in fewer steps than that for a. We will only show
quasiconvexity in tij when j 2 U, but quasiconvexity when j 2 D
and quasiconcavity can be easily shown in a similar manner. To
demonstrate quasiconvexity, it is sufficient to show that

f iðt0ijÞ 6 f iðt00ijÞ ) rtij
f iðt00ijÞðt0ij � t00ijÞ 6 0:

Note that for j 2 U; f iðt0ijÞ 6 f iðt00ijÞ if yi ¼ �1 and t0ij P t00ij, or if
yi ¼ 1 and t0ij 6 t00ij. By examining the gradient of f i, it is clear that
since wj; aj P 0;rtij

f iðt00ijÞ 6 0 only when yi ¼ �1,

rtij
f iðt00ijÞ ¼

expð�yiðwT ziÞÞ
1þ expð�yiðwT ziÞÞ

�
yiwjaj expð�a0jðxij � t00ijÞÞ

1þ expð�ajðxij � t00ijÞÞ
� �2 : ð9Þ

Note that the required conditions for f iðt0ijÞ 6 f iðt00ijÞ also guaran-
tee that rtij

f iðt00ijÞðt0ij � t00ijÞ 6 0. However, unlike with the optimiza-
tion over slopes a, we cannot guarantee that the initial t will be
at a point with nonzero slope. Nevertheless, we have empirically
observed that although rtij

f i ¼ 0 for some ði; jÞ;
P

irtij
f i – 0 in the

first iteration of the alternating optimization of a and t, indicating
the optimization does not start at a stationary point for any of the
nonlinear features. As with the weights w, we initialize tð0Þ using
the hard thresholds of the existing score. Despite the approxima-
tions made in order to simplify calculation of the existing score,
one expects its thresholds to be close to the optimal values due
to the reliance on domain expert knowledge and extensive testing.
Therefore, the proposed initialization will likely avoid start of the
optimization procedure in the flat part of the quasiconvex curve,
implying the global optimality of the block coordinate descent.

3.3. Algorithm testing

We validate the algorithm on a pediatric brain injury dataset and
an adult ICU dataset. Note that the proposed method allows a
straightforward refinement and optimization of the novel risk pre-
diction score for a specific subpopulation and/or location of the hos-
pital. The proposed prediction scheme is tested using leave-one-out
cross-validation for the pediatric dataset (n = 217) and 10-fold
cross-validation for the adult dataset (n = 3711) and compared with
existing methods in terms of three discrimination criteria: (i) area
under the receiver operating characteristic (ROC) curve (AUC), (ii)
the Youden index (J), which aims to maximize the overall correct
classification rate [60,61]: J ¼ SensitivityðSeÞ þ SpecificityðSpÞ � 1,
and (iii) the point on the ROC curve that maximizes the minimum
of the positive predictivity (þP, precision) and sensitivity (recall).
The last criterion takes into account class imbalance by balancing
the percentage of true positives that are correctly predicted
with the percentage of predicted positives that are correct. Thus,
correctly predicted true negatives, the majority class, does not
affect the performance metric. It should be noted that in evaluating
algorithms by the third criterion (PrecRec), a false positive has the
same effect as a false negative. These criteria only assess the dis-
criminatory capabilities of the algorithms. In prognostic models,
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particularly those that lead to clinical decision-making, the precise-
ness of the predicted probability, or calibration, should also be
examined [48,62]. We assess the model calibration in terms of the
Brier score (BS) [63], calculated as

BS ¼ 1
N

XN

k¼1

ðpk � ckÞ2; ð10Þ

where N denotes the number of subjects, ck 2 f0;1g is the binary
class for subject k, and pk is the probability of mortality for subject
k. The probabilities were calculated by means of Platt scaling [64]
during the cross-validation, such that the algorithm outputs were
entered in a logistic regression to find the probability of mortality.
The Brier score ranges from 0 to 1, where lower values indicate a
better calibrated score.

4. Results and discussion

In this section, we analyze pediatric and adult datasets to
demonstrate the performance of the novel scoring scheme that
preserves expert knowledge from PRISM III and SOFA, respectively.
Therefore, the variables used by the novel score and the initial
parameters for the optimization (feature weights and thresholds)
are those from the aforementioned existing scores.

4.1. Implementation and results for the novel pediatric population
scores

Here we detail the implementation of the novel algorithm and
present the discrimination and calibration results from the
leave-one-out cross-validation tests on a population of 217 chil-
dren with brain trauma and other brain malady or injury. We com-
pare these results with those achieved by the classifiers that use
raw non-transformed data as features. Since the latter classifiers
do not allow for missing data (as in the case of PRISM III and our
novel algorithm), different imputation strategies are examined.

4.1.1. Pediatric patient population
Data were retrospectively abstracted for 217 children (11.06%

mortality rate) admitted to the Dell Children’s Medical Center
PICU. We included admissions to the PICU between August 2007
and April 2012, age range of 0–14 years, with an ICD-9 code reflect-
ing brain injury, and a PICU stay of at least 24 h. The ICD-9 codes
indicate patients with brain trauma (excluding simple concussion)
as well as other brain malady or injury such as cerebral palsy,
drowning, epilepsy, and asphyxiation. This group of patients was
selected in order to emphasize the ease of optimizing the novel
score for a specific high mortality population. This particular
high-mortality population is of interest since trauma is the leading
cause of death in children in the United States [65], with traumatic
brain injury being a major contributor [66]. Minimum and maxi-
mum variable values from the first 12 h of the PICU stay are used
in the calculation of PRISM III and our new score. The use of the
data has been approved by the University of Texas at Austin
Institutional Review Board and the Seton Clinical Research
Steering Committee.

4.1.2. Implementation of the novel prediction scheme in pediatric
population

Our novel score incorporates all of the variables and ranges pre-
viously used by PRISM III. Specifically, the 17 variables that our
algorithm uses include: systolic blood pressure, heart rate, body
temperature, pupillary reflexes, Glasgow Coma Scale, total CO2,
pH, PaO2, PCO2, glucose, potassium, creatinine, blood urea nitro-
gen, white blood cell count, platelet count, PT, and PTT. Detailed
information about the ranges and cutoff points for PRISM III can
be found in [5]. The features transformed using OR statements in
PRISM III (e.g., by adding 6 points to the score if pH < 7:0 OR
total CO2 < 5) were treated as additive features in order to
seamlessly include them in the optimization procedure. The back-
tracking line search parameters were chosen empirically based on
the discrimination and the speed of convergence of the algorithm.
The results shown are for a ¼ 0:2 and b ¼ 0:5. In the case of opti-
mization over w, the imposed prior has l ¼ 0; k ¼ 0:25.

4.1.3. Performance comparison of the novel scores and existing scores
Fig. 1 illustrates the difference in computing the contribution of

a feature to the prediction score between the 12-h PRISM III and
the novel scheme. Plots on the left show the logistic transforma-
tions of the features after performing optimization over the nonlin-
ear transformation slopes a, while the plots on the right show the
logistic transformations after performing optimization over both
the slopes a and weights w. From the plots, we see that the opti-
mization over a results in mortality risk increasing over a range
of 3–4 beats per minute for each step in the maximum heart rate
and the risk from minimum systolic blood pressure increasing over
a range of 7 mmHg around the 75 mmHg threshold and increasing
over a range of 4 mmHg around the 55 mmHg threshold. The risk
from the minimum platelet count loses much of the stepwise scor-
ing structure used by PRISM III, and instead increases monotoni-
cally for minimum platelet counts between 250,000 and 50,000.
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This illustrates how our novel score can capture risk that increases
continuously throughout a certain range while maintaining sharp
thresholds when those are optimal. Optimizing over both a and
w provides further insight into the contribution of variables to
the risk of mortality for a given population. For example, the novel
score shows that, for this dataset, the second step in the nonlinear
transformation of the systolic blood pressure and heart rate should
be weighted similarly, if not more heavily, than the lower step. The
lower panels of Fig. 1 also indicate that while PRISM III has the
mortality risk increasing slightly more when the minimum platelet
count falls below 50,000, our inferred scoring function indicates
the risk contribution from this variable doubles at approximately
50,000.

The results of the ROC analysis on the cross-validated scores are
shown in Table 3. Our novel score optimized over the slopes a of
the nonlinear transformations results in a more accurate classifier
than PRISM III, in terms of the AUC and J, but not in terms of the
precision-recall balance (PrecRec). Optimization of the feature
weights w results in a score that performs better than PRISM III
in all three evaluation criteria. Alternating optimization over the
slopes a and weights w results in a further improvement of AUC,
J, and precision-recall balance over individual parameter optimiza-
tion, as well as the best calibration values (Brier score), and thus
provides a significant advancement over PRISM III. The inclusion
of soft thresholds t along with slopes a in the alternating optimiza-
tion results in some of the soft thresholds falling outside the phys-
iological range of the raw variables – in particular, logistic
transformations of these variables result in zero contribution to
the risk score for all patients. This optimization results in better
discrimination than PRISM III in the upper range of scores (higher
J and precision-recall balance) and poorer classification than PRISM
in the lower score range (lower AUC). However, we expect that
these results would improve with a larger patient population given
the age-dependency of some of thresholds and the mortality distri-
bution across age groups (Table 2). The ROC results for PIM2 are
also included in Table 3 to compare the novel score to another
widely used pediatric risk score. The novel score optimized over
any of the parameters outperforms PIM2 in terms of AUC, and opti-
mization over two parameters also yields a higher precision-recall
balance than PIM2. Though PIM2 results in a slightly higher J than
the novel score optimized over a;w, the large gain in AUC and
higher precision-recall balance make the novel score the preferred
choice for predicting risk of in-hospital mortality in the studied
population.
Table 2
Mortality and missing data by age group.

Age group No.
subjects

No.
deaths

Missing variables
(mean ± SD)

Neonate (0 mo., 1 mo.) 2 0 9 ± 11.31
Infant [1 mo., 12 mo.) 39 5 6.95 ± 7.13
Child [12 mo., 144 mo.] 143 15 7.02 ± 7.22
Adolescent (144 mo., 180 mo.) 33 4 6.03 ± 7.14

Table 3
Risk score accuracy: Pediatric patient population.

Score AUC J PrecRec BS

PRISM III 0.8735 0.5840 0.5172 0.0686
Novel score optimized over a 0.8897 0.6215 0.5000 0.0680
Novel score optimized over w 0.8841 0.6369 0.5600 0.0715
Novel score optimized over a and t 0.8358 0.6153 0.5833 0.0708
Novel score optimized over a and w 0.8927 0.6682 0.5833 0.0679
PIM 2 0.8331 0.6729 0.5417 0.0766
The boxplots in Fig. 2 illustrate how the proposed prediction
scheme compares with PRISM III. The probability of mortality
(right column in Fig. 2) is also included in order to compare the
algorithms on the same scale. The probability of mortality is calcu-
lated by means of Platt scaling as stated in Section 3.3. Despite
additional features used by our scheme (due to splitting of the
OR statements into components), the novel scores have similar
average values to those of PRISM III. Given the class imbalance, this
is likely the result of lower slopes in the nonlinear transformations
which decrease the feature contributions of survivors having mea-
surements near the soft thresholds. The movement of soft thresh-
olds outside the physiological range following inclusion of t as an
optimization parameter results in lower average score values com-
pared to PRISM III. Finally, reduction in mean scores when the
weights are included as optimization variables is expected due to
the prior on the weight distribution. It should be noted that the
optimizations which result in overall lower risk scores (i.e., opti-
mizations including t or w) yield lower risk scores for both the sur-
vivor and nonsurvivor groups; the relative difference between the
groups remains and the mean probability of mortality is not signif-
icantly different from that of PRISM III or the score optimized only
over a.

The difference in AUC between PRISM III and the novel scores
(Fig. 3) is primarily caused by low PRISM III scores for some non-
survivors. Due to the finite set of PRISM III values, patients are
more likely to share the same score which causes a decrease in
both the true positive rate and the false positive rate as the cutoff
value is lowered in the ROC analysis. The largest differences in the
curves can be traced to patients with PRISM III scores between 7
and 13. While 45 out of 193 survivors have PRISM III scores in this
range, so do 7 out of 24 nonsurvivors. We further examined the
effect of softening the thresholds on patient outcome prediction
for the subjects with low PRISM values by selecting the thresholds
corresponding to the highest specificity with a sensitivity of at
least 0.9. Such a sensitivity restriction promotes accurate identifi-
cation of the in-hospital mortality class. For the selected cutoff
scores, the novel score (optimized over the slopes a) correctly
identifies three subjects as high risk of in-hospital mortality that
are incorrectly classified by PRISM III. One of these subjects is cor-
rectly identified by the novel score due to a nonzero contribution
to the score from a systolic blood pressure with a value precisely
at the PRISM III hard threshold. The other two subjects are cor-
rectly identified by the novel score due to nonzero contributions
from the Glasgow Coma Scale feature (GCS 2 f8;9g), which in the
optimized score has an approximately linear relationship to risk
whereas PRISM III is affected only if GCS < 8.

4.1.4. Comparison of the novel and existing scores for pediatric age
groups

Analysis of the results for different age groups suggests that the
novel algorithm provides the largest gains in discrimination for the
child age group (12–144 months). The ROC curves for different age
groups are shown in Fig. 4, where the neonate and infant groups
are combined due to the low number of subjects in the latter
group. Note that the presented results display performance of the
novel algorithm optimized over the entire population rather than
those of three separate optimizations using only subjects from
the age groups of interest. For the neonate and infant groups
(n = 41, 5 deaths), both PRISM III and the novel score optimized
over the slopes a and weights w of the nonlinear transformation
achieve the AUC of 0.9833. In the child age group (n = 143, 15
deaths), the novel score (AUC = 0.8844) was significantly more dis-
criminative than PRISM III (AUC = 0.8516). Both scores exhibited
less accurate performance in the adolescent group (n = 33, 4
deaths), with the novel score (AUC = 0.7500) slightly outperform-
ing PRISM III (0.7414). The high AUC in the neonate and infant
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group can be attributed to the characterization of the subjects in
the nonsurvivor group, where most of them were near drowning
victims and unresponsive upon ICU admission. The worse discrim-
ination in the adolescent group is likely due to the low number of
subjects and deaths, where two of the subjects in the nonsurvivor
group had low scores with both the novel algorithm and PRISM III.
It should also be noted that the distribution of brain injuries in the
adolescent group is different from the other two groups. For exam-
ple, this age group has a higher incidence of the asphyxia-
tion/strangulation ICD-9 code. Given that the method presented
in this paper can be used to design optimal scores for different pop-
ulations, were more data available, it would have been interesting
to design a mortality prediction score specifically for the adoles-
cent population.
4.1.5. Consideration of alternate feature transformation
To illustrate the improvement in discrimination enabled by

using nonlinear transformations of the features, we also performed
a logistic regression with ridge, lasso [67], and elastic net
[68] penalties on the age and raw variables of the datasets.
Additionally, to demonstrate the significance of the specific logistic
feature transformations used by the novel score, we implemented
.5 1
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r the slopes a and weights w of the proposed nonlinear transformation (blue). (For
e web version of this article.)
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and tested logistic regression models with restricted cubic spline
transformation of the raw physiological variables. Since missing
data is prevalent and complete data sets are required for logistic
regression, missing values of the variables are imputed by k
nearest-neighbors (kNN) [69], the probabilistic principal compo-
nents analysis (PPCA) method [70], mean values, and normal val-
ues [71]. In the kNN imputation, Euclidean distances normalized
by the number of common features between patients are calcu-
lated and the missing values are imputed as the average value of
the k-nearest neighbors that observe the variable. PPCA aims to
reduce the dimensionality of the data by associating a Gaussian
latent variable model with the observed data and imputing missing
values by an iterative expectation–maximization procedure. In our
tests, data were imputed with k ¼ 5 and 4 principal components.
The best AUC values were achieved using the elastic net for the lin-
ear feature set and elastic net or ridge penalty for the nonlinear
feature set. The discrimination and calibration measures for the
logistic regression with linear (raw) and nonlinear (cubic spline
transformation) feature sets are compared to the PRISM III values
calculated with the imputed dataset in Table 4.

Though logistic regression with linear features and variables
imputed with PPCA leads to a slight improvement in terms of J
and the precision-recall balance over the PRISM III scores without
imputation, the PRISM III scores calculated with the imputed data
outperforms both logistic scores in terms of AUC and J. Logistic
regression with linear features and variables imputed with mean
or normal values results in the same PrecRec value as the novel
score. However, the novel score greatly outperforms both of these
raw variable models in terms of AUC and J. These discrimination
results suggest the variables in the scores should be nonlinearly
transformed in order to achieve accurate mortality prediction.
Note that the novel score without imputation performs better than
the scores presented in Table 4 in terms of all of the evaluation cri-
teria except for the Brier score of the logistic model with linear
variables and imputation with normal values.

A close inspection of the measures of discrimination of the
logistic regression with a nonlinear feature set in Table 4 further
emphasizes the importance of performing the nonlinear transfor-
mation of physiological variables. Despite slightly higher AUC
and J achieved by the logistic models with cubic spline transforma-
tions of the features as compared to the novel algorithm, the novel
algorithm outperforms the logistic models in terms of
precision-recall balance and the Brier score. These two measures
are of particular significance when considering the class imbalance
and assessing accuracy of identifying subjects at risk for in-hospital
mortality. Additionally, expert knowledge is ignored in the logistic
Table 4
Risk score accuracy: Logistic with raw variables vs. PRISM III with imputed data.

kNN PPCA Mean Normal

AUC
PRISM III 0.8790 0.8741 0.8709 0.8735
Raw linear 0.8437 0.8683 0.8400 0.8141
Raw nonlinear 0.9011 0.8940 0.8975 0.9223

J
PRISM III 0.6047 0.6153 0.5788 0.5840
Raw linear 0.5479 0.5889 0.5637 0.5682
Raw nonlinear 0.6835 0.7144 0.7198 0.7301

PrecRec
PRISM III 0.5000 0.5000 0.5172 0.5172
Raw linear 0.5000 0.5542 0.5833 0.5833
Raw nonlinear 0.5172 0.5417 0.5000 0.5152

BS
PRISM III 0.0693 0.0685 0.0696 0.0686
Raw linear 0.0713 0.0689 0.0707 0.0631
Raw nonlinear 0.0998 0.0783 0.0911 0.0907
regression with cubic spline covariates and the interpretation of
the variable contributions to the score is unclear since the range
of increasing risk is not a byproduct of the algorithm as in the case
of our proposed algorithm.

4.2. Implementation and results for the novel adult population scores

We apply our optimization framework to design scores that
preserve the clinical knowledge embedded in SOFA while trans-
forming the features using nonlinear logistic functions (as we did
earlier for PRISM III and a pediatric brain injury population).

4.2.1. Adult patient population
We use the data from the MIMIC II clinical database [72,73] to

find the parameters of the logistic functions and test the ability
of the novel score to predict mortality in the current ICU stay.
The examined dataset consists of 3711 adult ICU patients (7.14%
mortality).

4.2.2. Implementation of the novel prediction scheme in adult
population

The variables included in the SOFA score calculation are
PaO2=FiO2, respiratory support, platelets, bilirubin, mean arterial
pressure, Glasgow Coma Scale, creatinine, daily urine output, and
certain cardiovascular drugs. The worst value of each physiological
variable in the first 24 h is used to compute SOFA and as a raw vari-
able for the calculation of the new score. The features representing
the respiratory and cardiovascular systems are treated as indicator
variables since the respiratory SOFA calculation includes an AND
statement (e.g., the respiratory SOFA = 3 if PaO2=FiO2 < 200 AND
the patient is receiving respiratory support) and because the car-
diovascular SOFA greater than 1 is dependent on the administra-
tion of certain drugs. The urine output criterion for the renal
SOFA is ignored since urine output was not charted consistently
and thus the daily value might not be reliable. The parameters of
the backtracking line search and the prior on w are as specified
in Section 4.1.2 with the exception of the backtracking line search
over t, which was implemented with b ¼ 0:9 due to a fast conver-
gence of the algorithm.

4.2.3. Performance comparison of novel score and existing score in
adult population

The novel score is compared to SOFA in terms of the same dis-
crimination (AUC, J, precision-recall balance) and calibration (Brier
score) criteria described in Section 3.3. The average discrimination
and calibration results from 10-fold cross-validation for the novel
scores with optimization over various parameters are presented
in Table 5. In order to visually compare the discriminatory capabil-
ities of the novel score optimized over a and w, we also present
the ROC curve calculated from the risk scores obtained from the
cross-validation results (in the left panel of Fig. 5) and the ROC
curves from the 10 folds (in the right panel of Fig. 5). It should
be noted that the novel score has higher discrimination than
SOFA for every fold.

The novel scores outperform SOFA in all of the discrimination
criteria, while the score optimized over the slopes of the nonlinear
Table 5
Risk score accuracy: Adult patient population.

Score AUC J PrecRec BS

SOFA 0.6514 0.3069 0.2258 0.0630
Novel score optimized over a 0.7753 0.5213 0.3188 0.0603
Novel score optimized over w 0.7921 0.5357 0.2886 0.0666
Novel score optimized over a and t 0.7167 0.4498 0.2678 0.0641
Novel score optimized over a and w 0.7885 0.5275 0.3191 0.0617
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transformations a and the score optimized over a and the nonlin-
ear feature weights w also yield better Brier scores. The highest
AUC and J are obtained when optimizing over the weights w.
Including the slopes a in the optimization along with w results
in a slight decrease in AUC and J but leads to an improvement of
the precision-recall balance and the Brier score. This score, opti-
mized over a and w, might therefore be preferred given the
class-imbalance of the problem and the importance of identifying
true positives. The novel score optimized over the slopes a and soft
thresholds t exhibits worse discrimination than the scores
obtained via other optimizations despite achieving the lowest
objective value on the training sets. Upon further examination,
we found that the final score no longer retained the step-wise
structure of SOFA. More specifically, the final soft thresholds either
collapsed into a single step or were outside the physiological range
for some variables and thus had minor contribution to the final
score. This finding stresses the importance of preserving the clini-
cal knowledge embedded in the original score; to perform well on
the test set, the novel score structure and optimization methodol-
ogy should result in a score that resembles the original one.
5. Conclusions

We have developed a novel outcome prediction score
that exploits advantages of additive stepwise risk scores and
addresses the key limitation of hard thresholds typically used by
state-of-the-art prediction methods. In particular, by transforming
predictive variables using a combination of logistic functions, the
developed method allows for a fine differentiation between critical
and normal values of the predictive variables. Optimization of the
continuous score allows for not only specifying different weights
for the variables but, by optimizing over the slope and/or inflection
point of the logistic curve in the feature transformation, we can
also identify the range of values of each variable where the risk
increases. This optimization need only be performed once to deter-
mine the optimal parameters and the score is thereafter quickly
calculated for each patient. Optimal values of the parameters of
logistic functions may be readily re-learned as the patient popula-
tion and standards of care evolve. The novel scores derived using
the proposed optimization framework demonstrate significantly
higher predictive power than the widely used PRISM III in a pedi-
atric brain trauma population and the SOFA in an adult ICU
population.
The presented method can be broadly applied to devise and
optimize risk scores with predictive power superior to schemes
that use hard-thresholding of physiological variables, as has been
shown in the cases of PRISM III and SOFA. Future applications of
the developed scheme include optimization of other in-hospital
mortality risk scores designed for adult ICU population, such as
the Acute Physiology and Chronic Health Evaluation (APACHE)
[1,2] and the Simplified Acute Physiology Score (SAPS) [3].
Moreover, the proposed method may be used to develop risk
prediction scores geared towards sub-populations of interest when
a hard-thresholding score exists for a larger population (e.g.
specific diseases within an ICU population) or in geographical areas
with different standards of care than those used in the
development of the existing scores.
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